WO2005116594A1 - Pyroelectric element and pyroelectric infrared sensor - Google Patents

Pyroelectric element and pyroelectric infrared sensor Download PDF

Info

Publication number
WO2005116594A1
WO2005116594A1 PCT/JP2005/009325 JP2005009325W WO2005116594A1 WO 2005116594 A1 WO2005116594 A1 WO 2005116594A1 JP 2005009325 W JP2005009325 W JP 2005009325W WO 2005116594 A1 WO2005116594 A1 WO 2005116594A1
Authority
WO
WIPO (PCT)
Prior art keywords
pyroelectric
dual
receiving surface
area
infrared
Prior art date
Application number
PCT/JP2005/009325
Other languages
French (fr)
Japanese (ja)
Other versions
WO2005116594A8 (en
Inventor
Shinya Nozu
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Publication of WO2005116594A1 publication Critical patent/WO2005116594A1/en
Publication of WO2005116594A8 publication Critical patent/WO2005116594A8/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/19Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems
    • G08B13/191Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems using pyroelectric sensor means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point

Definitions

  • the present invention relates to a pyroelectric element formed by forming an electrode on a substrate surface having a pyroelectric effect, and a pyroelectric infrared ray sensor for detecting a person and an object in a predetermined detection area using the pyroelectric element.
  • a pyroelectric element formed by forming an electrode on a substrate surface having a pyroelectric effect
  • a pyroelectric infrared ray sensor for detecting a person and an object in a predetermined detection area using the pyroelectric element.
  • a pyroelectric infrared sensor includes a pyroelectric element that outputs a detection signal by receiving infrared light, and an optical system that causes the pyroelectric element to receive infrared light, and moves within a predetermined detection area.
  • an optical system that causes the pyroelectric element to receive infrared light, and moves within a predetermined detection area.
  • a pyroelectric element used in such a pyroelectric infrared sensor includes a pyroelectric substrate made of a ferroelectric material or the like, and electrodes provided on both sides of the pyroelectric substrate.
  • the pyroelectric substrate does not generate electric charge between both surfaces in a steady state (when the substrate temperature is constant), but when the substrate temperature changes, electric charge is generated between both surfaces according to the change.
  • the pyroelectric substrate which is a ferroelectric material
  • the spontaneous polarization state is changed when the substrate temperature changes.
  • This is a phenomenon that occurs because the neutral state changes due to change.
  • Pyroelectric elements use this phenomenon to extract charge fluctuations that change in accordance with the magnitude of temperature change due to infrared radiation applied to the electrode-formed portion of the pyroelectric substrate, using the electrodes formed on these surfaces. This outputs a detection signal.
  • Such a pyroelectric element is provided with one single element composed of a single electrode and a pyroelectric substrate formed on both sides of the pyroelectric substrate so as to be opposed to each other as described above.
  • a device having a dual element formed by arranging two single elements has been devised (see Patent Document 1).
  • a pyroelectric element having such a dual element two single elements are arranged in parallel, and the light-receiving surface electrode or the opposing surface electrode of each single element has the opposite polarity of the charge generated by the temperature change of the pyroelectric substrate. Are connected in series so that This is to correct the external temperature dependency that occurs when only the element is used.
  • This configuration can also be used simply as two single elements arranged at a predetermined interval.
  • the pyroelectric element that detects infrared radiation from different positions is configured by making the light receiving area different for each single element constituting the pyroelectric element including the dual element.
  • a pyroelectric infrared sensor for detecting the moving direction of an object such as a person is formed.
  • Patent Document 1 JP-A-5-187918
  • Patent Document 2 Registered Utility Model No. 3042061
  • an infrared sensor used in a security system it is desirable to mainly detect a specific narrow area and also to detect a wide area around the specific area.
  • a guard area priority monitoring area
  • a guard preparation area light monitoring area
  • the surrounding area is usually located on both sides of the central area (high priority monitoring area) where priority detection is performed.
  • a dual element corresponding to the priority monitoring area and two dual elements respectively corresponding to the light monitoring areas on both sides are provided.
  • dual elements must be formed in the pyroelectric element by the number of areas to be detected.
  • the sensor cannot be made small-sized and low-cost.
  • a pyroelectric infrared sensor in which pyroelectric elements are arranged according to the number of detection areas can detect the above-mentioned area, but the increase in the number of pyroelectric elements increases the size and cost.
  • An object of the present invention is to configure a pyroelectric infrared sensor having a simple structure that detects a specific region and detects regions on both sides of the specific region as described above. Means for solving the problem
  • the present invention provides a pyroelectric substrate, a light receiving surface electrode formed on one surface of the pyroelectric substrate, and an opposing surface electrode formed on the other surface of the pyroelectric substrate so as to face the light receiving surface electrode.
  • the pyroelectric element formed by arranging a plurality of single elements formed in approximately one row four or more even single elements are formed, and two single elements adjacent to each other at the center in the arrangement direction
  • the first dual element formed by conducting between the light receiving surface electrodes or the opposite surface electrodes, and the single element on both sides sandwiching the first dual element in the arrangement direction are combined one by one from the inside, and combined.
  • one or more second dual elements formed by electrically connecting the light receiving surface electrodes of the respective single elements or between the opposing surface electrodes.
  • a plurality of single elements are arrayed and formed in the pyroelectric element, and the single element adjacent to the first dual element is combined with the first dual element interposed therebetween to form another second dual element.
  • a single element adjacent to both sides of the outer second dual element with the first and second dual elements interposed therebetween is combined to form another second dual element.
  • Such repetition of the dual element configuration is performed for at least four single elements formed in the pyroelectric element.
  • two single elements constituting the sandwiched dual element are arranged on both sides of the sandwiched dual element.
  • the pyroelectric element of the present invention is formed by electrically connecting the light receiving surface electrodes or the opposing surface electrodes of the first dual element and the single elements on both sides of the first dual element in the arrangement direction. And a second dual element.
  • the two single elements of the second dual element are arranged on both sides of the first dual element.
  • the pyroelectric infrared sensor irradiates infrared rays generated in a specific region to the formation position of the above-mentioned pyroelectric element and the first dual element of the pyroelectric element, and the first dual element Optical means for irradiating other dual elements with infrared rays generated in a region sandwiching the specific region.
  • infrared light generated in the detection area is transmitted to the red light of the pyroelectric element through the optical means.
  • the portion corresponding to the region where the outside line is generated is irradiated.
  • the pyroelectric element generates an electric charge due to a change in temperature, so that the temperature of a portion irradiated with infrared rays rises, and a local electric charge is generated. Then, the pyroelectric element outputs a detection signal by detecting this charge with a single element.
  • the pyroelectric element of the present invention has a structure in which the first dual element is sandwiched by the second dual element as described above, so that the area detected by the first dual element is the single area of the second dual element. It is sandwiched between each area detected by the element. If a second dual element is formed further outside, each area detected by each single element of the sandwiched second dual element is detected by the second dual element sandwiched. Located on both sides of the area. That is, the second dual element, which is a single element on both sides sandwiching the first dual element for detecting the predetermined area, detects the area on both sides sandwiching the predetermined area, and the two dual elements, the inner two areas and this area, Four regions consisting of the two outer regions sandwiching are detected.
  • the pyroelectric infrared sensor of the present invention is characterized in that the optical means is constituted by an infrared condensing lens provided on the detection area side of the pyroelectric element.
  • the infrared light generated in the detection area is collected by the single infrared light condensing lens, and is applied to each part of the pyroelectric element corresponding to each area of the detection area.
  • the first dual element and the second dual element composed of a single element sandwiching the first dual element, infrared rays from a specific area can be detected and this specific element can be detected.
  • the pyroelectric element for detecting the infrared rays generated by the area force on both sides of the area can be configured with a simple structure.
  • infrared rays having a specific area are detected by the first dual element, and infrared rays on both sides of the specific area are separated by a single element having the first dual element interposed therebetween. Is detected by the second dual element.
  • a pyroelectric infrared sensor that detects four regions, that is, two regions in a specific region and two regions on both sides of the specific region, can be configured by these two dual elements. That is, the pyroelectric infrared sensor for detecting the specific region and the regions on both sides thereof can be configured with a simple structure.
  • a pyroelectric infrared sensor having a simpler structure can be configured by irradiating infrared light in the detection area to the pyroelectric element using a single infrared light condensing lens. it can.
  • FIG. 1 is a plan view, a sectional view, and a bottom view of a pyroelectric element of the present invention.
  • FIG. 2 is a perspective view of a pyroelectric infrared sensor according to the present invention.
  • FIG. 3 is an equivalent circuit diagram of the pyroelectric infrared sensor of the present invention.
  • FIG. 4 is a conceptual diagram showing a relationship between a range of a detection area and an infrared irradiation position of a pyroelectric element.
  • FIG. 5 is a conceptual diagram showing a state of detecting movement of a person by the pyroelectric infrared sensor of the present invention.
  • a pyroelectric element according to an embodiment of the present invention and a pyroelectric infrared sensor using the pyroelectric element will be described with reference to FIGS.
  • FIG. 1 (A) is a plan view of a pyroelectric element according to an embodiment of the present invention
  • FIG. 1 (B) is a cross-sectional view taken along the line AA ′ of the pyroelectric element shown in (A) and (C).
  • FIG. 1C is a bottom view of the pyroelectric element of the present embodiment.
  • the pyroelectric element 10 is formed on a flat pyroelectric substrate 1 having a pyroelectric effect, for example, a ferroelectric force, and a surface of the pyroelectric substrate 1 (a surface shown in FIG. 1A).
  • the surface electrodes 4A, 4B, the second opposed surface electrodes 5A, 5B, and the external connection electrodes 6A, 6B, 7A, 7B formed on the back surface of the pyroelectric substrate 1 act as forces.
  • light receiving surface electrodes 2A and 2B having a rectangular shape in plan view are arranged and formed so as to be separated by a predetermined distance so that long sides are adjacent to each other.
  • a connection electrode 2C is formed substantially at the center of the two light receiving surface electrodes 2A and 2B in the long side direction, and the light receiving surface electrodes 2A and 2B are electrically connected.
  • Light receiving surface electrodes 2A and 2B are formed on the surface of the pyroelectric substrate 1 and light receiving surface electrodes 3A and 3B having substantially the same shape as the light receiving surface electrodes 2A and 2B are formed at positions separated by a predetermined distance. I have.
  • the light receiving surface electrode 3A is arranged on the side facing the light receiving surface electrode 2B with the light receiving surface electrode 2A as the center, and the light receiving surface electrode 3B is arranged on the side facing the light receiving surface electrode 2A with the light receiving surface electrode 2B as the center. I have. Further, the light receiving surface electrodes 3A, 3B are electrically connected by the connection electrodes 3C formed at positions not overlapping with the first light receiving surface electrodes 2A, 2B and the connection electrode 2C of the pyroelectric substrate 1.
  • the first light-receiving surface electrodes 2A and 2B and the second light-receiving surface electrodes 3A and 3B are materials that absorb infrared rays from the outside and partially raise the temperature of the pyroelectric substrate 1.
  • the light receiving surface electrodes 2A, 2B are provided at positions facing the light receiving surface electrodes 2A, 2B, 3A, 3B provided on the front surface side of the pyroelectric substrate 1, respectively. , Same as 3A, 3B Opposite surface electrodes 4A, 4B, 5A, 5B are formed.
  • a single element 24A is composed of the light receiving surface electrode 2A, the facing surface electrode 4A, and the pyroelectric substrate 1 sandwiched therebetween, and the light receiving surface electrode 2B, the facing surface electrode 4B, and the pyroelectric body sandwiched therebetween.
  • the substrate 1 forms a single element 24B, the light receiving surface electrode 3A, the opposing surface electrode 5A, and the pyroelectric substrate 1 sandwiched therebetween constitute a single element 35A, and the light receiving surface electrode 3B and the opposing surface electrode 5B.
  • the pyroelectric substrate 1 sandwiched therebetween forms a single element 35B.
  • the single element 24A and the single element 24B are electrically connected so that charges detected by the connection electrodes 2C have opposite polarities, and constitute the first dual element 24.
  • the single element 35A and the single element 35B are electrically connected so that charges detected by the connection electrodes 3C have opposite polarities, and constitute the second dual element 35.
  • connection electrodes of the single elements are provided on the light receiving surface (the surface of the pyroelectric substrate 1), but the connection electrodes may be provided on the opposing surface (the back of the pyroelectric substrate 1).
  • the pyroelectric substrate 1 Since the pyroelectric substrate 1 has a pyroelectric effect, as described above, the infrared rays are radiated or irradiated, and the infrared rays are cut off. Imbalance occurs. At this time, there is an imbalance of charges of opposite polarity between the case where the temperature is changed by irradiation of the infrared ray and the case where the temperature is changed by blocking the infrared ray. For example, when infrared light is irradiated, positive charges are biased toward the light receiving surface of the pyroelectric substrate 1 and negative charges are biased toward the opposing surface.
  • the infrared rays It is possible to detect whether infrared light has been irradiated to the single element 24B when the light was irradiated.
  • the irradiation of infrared rays to the light receiving surface electrodes 3A and 5A is detected by the second dual element 35. Since the polarities of the charges detected by the single element 35A and the single element 35B are reversed, by observing the detection signal from the second dual element 35, the power of the irradiation of the single element 35A with the infrared light is obtained. It is possible to detect whether infrared rays have been irradiated to the single element 35B.
  • the pyroelectric element 10 detects infrared rays with the two dual elements of the pyroelectric substrate 1 according to the portion of the pyroelectric substrate 1 irradiated with the infrared rays, and detects infrared rays from the two output systems.
  • An output signal can be output.
  • the voltages output from the single elements 24A and 24B are opposite to each other. Are canceled and are not output to the outside. Since this effect is also applied to the single element 35A and the single element 35B, the effect of external light can be eliminated by these functions.
  • FIG. 2 is a perspective view of the pyroelectric infrared sensor according to the present embodiment in a state where a part of the filter support 40 and the lens dome 60 is cut out. It is formed in a shape that covers the element 10.
  • FIG. 3 is an equivalent circuit diagram of the pyroelectric infrared sensor of the present embodiment.
  • the pyroelectric element 10 is disposed on a base substrate 20 on which a predetermined electrode pattern is formed, with the side on which the first and second light receiving surface electrodes 2A, 2B, 3A, 3B are formed as an upper surface. It is electrically and mechanically connected.
  • FET1, FET2 and resistors Rl, R2 (not shown in FIG. 2) are mounted.
  • a circuit according to the equivalent circuit diagram shown is formed. Specifically, the external connection electrode 6A of the pyroelectric element 10 is connected to the gate of the FET1, the external connection electrode 6B is connected to the ground electrode GND, and a resistor R1 is connected between the ground electrode GND and the gate of the FET1. It is connected.
  • the first dual element 24 of the pyroelectric element 10 and the resistor R1 are connected in parallel between the gate of the FET 1 and the ground.
  • the external connection electrode 7A of the pyroelectric element 10 is connected to the gate of the FET2
  • the external connection electrode 7B is connected to the ground electrode GND
  • a resistor R2 is connected between the ground electrode GND and the gate of the FET2. I have. That is, the second dual element 35 of the pyroelectric element 10 and the resistor R2 are connected in parallel between the gate of the FET 2 and the ground electrode GND.
  • the drain of FET1 and the drain of FET2 are connected to the drain terminal D, the source of FET1 is connected to the first source terminal S1, and the source of FET2 is connected to the second source terminal S2.
  • a drive voltage is applied to the drain terminal D, and a predetermined resistor (not shown) is connected between the first source terminal S1 and the second source terminal S2 and the ground electrode GND, so that the first source terminal
  • a source follower-type infrared detection circuit that outputs a voltage-type detection signal from Sl and the second source terminal S2 is configured.
  • the FET used in the output section of this circuit is generally high impedance on the pyroelectric element 10 side. This is for performing matching and transmitting the detection signal with low loss.
  • the base substrate 20 is mounted on a metal stem 30 having external connection pins 31A to 31D.
  • the external connection pins 31A to 31D are connected to the drain terminal D, the first source terminal Sl, and the second source terminal. Connected to either terminal S2 or ground electrode GND.
  • the ground electrode GND of the base substrate 20 is formed in a shape that conducts to the stem 30 (for example, a shape formed on both the front and back surfaces of the base substrate 20 and conducted through through holes).
  • the ground electrode is mounted on the substrate on which the pyroelectric infrared sensor is mounted and grounded, so that the ground electrode GND of the base substrate 20 is grounded together with the external connection pins.
  • the cylindrical filter support (can case) 40 that covers the pyroelectric element 10 is provided on the upper surface side of the stem 30 on which the base substrate 20 on which the pyroelectric element 10 is mounted is mounted.
  • an infrared light passing filter 50 that allows only infrared light of a desired wavelength to pass therethrough is disposed at a position facing the pyroelectric element 10 at an opening formed in the filter support 40.
  • a lens dome 60 in which a spherical Fresnel lens is formed in a shape covering the filter support 40 is arranged. As shown in FIG.
  • the dome on the top surface of the lens dome 60 condenses infrared light generated in a predetermined range of each detection area by a Fresnel lens and irradiates the infrared light to a predetermined position of the pyroelectric element 10. It is formed in a shape.
  • FIG. 4 is a conceptual diagram showing the relationship between the range of the detection area and the infrared irradiation position of the pyroelectric element 10.
  • FIG. 4A is a conceptual diagram showing the relationship in the horizontal direction (H direction).
  • (B) is a conceptual diagram showing the relationship in the vertical direction (V direction). It should be noted that the relationship shown in this figure is when the arrangement direction of the single elements 24A, 24B, 35A, 35B of the pyroelectric element 10 is the horizontal direction (H direction).
  • the arrangement direction of the light receiving surface electrodes 2A, 2B, 3A, 3B that is, the arrangement direction of the single elements 24A, 24B, 35A, 35B is horizontal, as shown in FIG. 24A and 24B are arranged near a straight line passing through the zenith of the lens dome 60 and perpendicular to the pyroelectric substrate 1, so that the portion composed of the single elements 24A and 24B, that is, the first dual element 24, It is possible to detect infrared rays within a range of a predetermined angle ⁇ in the horizontal direction around a point orthogonal to the horizontal axis and the straight line.
  • the single elements 35 ⁇ and 35 ⁇ are arranged at positions sandwiching the single elements 24 ⁇ and 24 ⁇ , the portion composed of the single elements 35 ⁇ and 35 ⁇ , that is, the second dual element 35 is located between the horizontal axis of the detection area and the straight line.
  • infrared rays in a range of a predetermined angle ⁇ wider than the predetermined angle ⁇ can be detected excluding the range of the predetermined angle ⁇ .
  • the single element 35 ⁇ , 24 ⁇ , 24 ⁇ , and 35 ⁇ are arranged in this order, so that the area detected by the single element 35 ⁇ and the area detected by the single element 35 ⁇ correspond to the area detected by the first dual element 24. Located on both sides. That is, the area where the first dual element 24 detects infrared rays is sandwiched between the area where the second dual element 35 detects infrared rays.
  • the vertical predetermined angle ⁇ of each dual element may be made different.
  • the operation of detecting the movement of a person using the pyroelectric infrared sensor having such a configuration will be described with reference to FIG.
  • FIG. 5 is a conceptual diagram showing how the movement of a person is detected by the pyroelectric infrared sensor of the present embodiment.
  • the light receiving surface electrodes 2A and 3A that is, the single element 24
  • a circuit is configured to generate a positive voltage detection signal when the portions A and 35A are irradiated with infrared rays.
  • the voltage V decays with a predetermined time constant (approaches 0 value). And this signal is FET2
  • the voltage V decays with a predetermined time constant (approaches 0 value). And this signal is FET1
  • V decays with a predetermined time constant (approaching 0). And this signal is higher than FET1.
  • the width is output.
  • V decays with a predetermined time constant (approaching 0). And this signal is higher than FET2.
  • the width is output.
  • the single elements 35A, 35B that is, the second dual element 35 in a shape sandwiching the single elements 24A, 24B, ie, the first dual element 24, as described above, for example, the first dual element 24
  • the area to be detected is set as the alert area
  • the area to be detected by the second dual element 35 is set as the alert preparation area
  • four areas consisting of two areas within the alert area and the alert preparation areas on both sides sandwiching it Can be detected by two sets of dual elements.
  • the first dual element is sandwiched by one second dual element, and the force described in the pyroelectric infrared sensor having the structure of two dual elements is compared to the first dual element.
  • a pyroelectric infrared sensor having a structure in which a plurality of second dual elements are sequentially sandwiched in order by the inner force can also be configured, and the same effects as described above can be obtained.
  • the number of the second dual elements to be formed may be appropriately set according to the required specifications.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

On a pyroelectric board (1), single elements (35A, 24A, 24B, 35B) are successively arranged in a horizontal direction. The single elements (24A, 24B) form a first dual element (24), and the single elements (35A, 35B) form a second dual element (35). To the single elements (35A, 24A, 24B, 35B), infrared rays generated in substantially continuous different areas (C, D, E, F) are focused and irradiated. A signal detected by the second dual element (35) by infrared ray irradiation is outputted from an FET (2), and a signal detected by the first dual element (24) is outputted from an FET (1). Thus, a human body (100) in center areas (D, E) corresponding to the first dual element (24) and in peripheral areas (C, F) corresponding to the second dual element (35) sandwiching the areas (D, E) is detected.

Description

明 細 書  Specification
焦電素子および焦電型赤外線センサ  Pyroelectric element and pyroelectric infrared sensor
技術分野  Technical field
[0001] この発明は、焦電効果を有する基板表面に電極を形成してなる焦電素子、および 該焦電素子を用いて所定検知領域内の人および物体の検知を行う焦電型赤外線セ ンサに関するものである。 背景技術  The present invention relates to a pyroelectric element formed by forming an electrode on a substrate surface having a pyroelectric effect, and a pyroelectric infrared ray sensor for detecting a person and an object in a predetermined detection area using the pyroelectric element. Related to sensors. Background art
[0002] 従来、焦電型赤外線センサは、赤外線を受光することにより検出信号を出力する焦 電素子と、該焦電素子に赤外線を受光させる光学系と、を備え、所定検知領域内を 移動する物体 (例えば、人)が発生する赤外線を検知することで、この物体の移動を 検出するものである。  Conventionally, a pyroelectric infrared sensor includes a pyroelectric element that outputs a detection signal by receiving infrared light, and an optical system that causes the pyroelectric element to receive infrared light, and moves within a predetermined detection area. By detecting infrared rays generated by a moving object (for example, a person), the movement of this object is detected.
[0003] このような焦電型赤外線センサに用いられる焦電素子は、強誘電体等からなる焦電 体基板と、該焦電体基板の両面に対向して設けられた電極とからなる。  [0003] A pyroelectric element used in such a pyroelectric infrared sensor includes a pyroelectric substrate made of a ferroelectric material or the like, and electrodes provided on both sides of the pyroelectric substrate.
[0004] 焦電体基板は定常時 (基板温度が一定な状態)では両表面間で電荷を発生しな 、 力 基板温度が変化するとこの変化に応じて両表面間に電荷が発生する。これは、 強誘電体等力 なる焦電体基板が定常時には自発分極しているが外気内の浮遊電 荷を引き寄せて中性状態にあるのに対し、基板温度が変化すると自発分極の状態が 変化して前記中性状態が崩れるために生じる現象である。焦電素子はこの現象を利 用し、焦電体基板の電極が形成された部分に照射された赤外線による温度変化の 大きさに応じて変化する電荷変動をこれら表面に形成された電極で取り出すことで、 検出信号を出力する。  [0004] The pyroelectric substrate does not generate electric charge between both surfaces in a steady state (when the substrate temperature is constant), but when the substrate temperature changes, electric charge is generated between both surfaces according to the change. This is because the pyroelectric substrate, which is a ferroelectric material, is spontaneously polarized in a steady state, but is in a neutral state by attracting a floating charge in the outside air, whereas the spontaneous polarization state is changed when the substrate temperature changes. This is a phenomenon that occurs because the neutral state changes due to change. Pyroelectric elements use this phenomenon to extract charge fluctuations that change in accordance with the magnitude of temperature change due to infrared radiation applied to the electrode-formed portion of the pyroelectric substrate, using the electrodes formed on these surfaces. This outputs a detection signal.
[0005] このような焦電素子には、前述のように焦電体基板の両面に対向に形成されたそれ ぞれ単体の電極と焦電体基板とからなる一つのシングル素子を備えるものに対し、こ のシングル素子を 2つ配列形成したデュアル素子を備えるものが考案されて 、る(特 許文献 1参照)。このようなデュアル素子を備える焦電素子は、シングル素子を 2つ平 行に配置し、各シングル素子の受光面電極または対向面電極を焦電体基板の温度 変化により発生する電荷が逆極性となるように直列接続したものであり、シングル素 子のみを用いた際に生じる外部温度依存性を補正するものである。この構成は、単 にシングル素子が所定の間隔で 2つ配置されたものとしても利用することできる。すな わち、デュアル素子を備える焦電素子を構成する各シングル素子で受光する領域を 異ならせることで、異なる位置からの赤外線の放射を検出する焦電素子が構成される 。そして、各シングル素子の配列方向を水平方向にすることで、人等の物体の移動 方向を検出する焦電型赤外線センサが構成される。 [0005] Such a pyroelectric element is provided with one single element composed of a single electrode and a pyroelectric substrate formed on both sides of the pyroelectric substrate so as to be opposed to each other as described above. On the other hand, a device having a dual element formed by arranging two single elements has been devised (see Patent Document 1). In a pyroelectric element having such a dual element, two single elements are arranged in parallel, and the light-receiving surface electrode or the opposing surface electrode of each single element has the opposite polarity of the charge generated by the temperature change of the pyroelectric substrate. Are connected in series so that This is to correct the external temperature dependency that occurs when only the element is used. This configuration can also be used simply as two single elements arranged at a predetermined interval. In other words, the pyroelectric element that detects infrared radiation from different positions is configured by making the light receiving area different for each single element constituting the pyroelectric element including the dual element. By arranging the single elements in the horizontal direction, a pyroelectric infrared sensor for detecting the moving direction of an object such as a person is formed.
[0006] また、デュアル素子を備えた焦電素子であっても検知領域には限りがあるため、デ ュアル素子を複数配列形成した焦電素子を用いて、検知領域を拡大させた焦電型 赤外線センサが考案されて ヽる (特許文献 2参照)。 [0006] Furthermore, since the detection area is limited even in the case of a pyroelectric element having a dual element, a pyroelectric element in which the detection area is enlarged using a pyroelectric element in which a plurality of dual elements are formed is used. An infrared sensor has been devised (see Patent Document 2).
特許文献 1 :特開平 5— 187918号公報  Patent Document 1: JP-A-5-187918
特許文献 2 :登録実用新案第 3042061号公報  Patent Document 2: Registered Utility Model No. 3042061
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 防犯システムに用いるような赤外線センサでは、特定の狭 、領域を重点的に検知 するとともに、その周囲の広い領域に対しても検知を行うことが望ましい。このような例 としては、警戒区域 (重点監視区域)と警戒準備区域 (軽監視区域)とを同時に監視( 人や物体の検知)する場合などがある。この場合、通常、重点的に検知する中心領 域 (重点監視区域)を挟む両側に、周辺領域 (軽監視区域)が位置する。  [0007] In an infrared sensor used in a security system, it is desirable to mainly detect a specific narrow area and also to detect a wide area around the specific area. As an example of this, there is a case where a guard area (priority monitoring area) and a guard preparation area (light monitoring area) are simultaneously monitored (detection of a person or an object). In this case, the surrounding area (light monitoring area) is usually located on both sides of the central area (high priority monitoring area) where priority detection is performed.
[0008] このように重点監視区域とこの両側の軽監視区域とを検知する場合には、重点監 視区域に対応するデュアル素子と、両側の軽監視区域にそれぞれ対応する 2つのデ ュアル素子とを焦電素子に形成しなければならない。すなわち、従来の複数のデュア ル素子を備えた焦電素子では、検知する領域の数だけデュアル素子を焦電素子に 形成しなければならず、焦電素子が大きくなつてしまい、焦電型赤外線センサを小型 ィ匕、低コストィ匕することができない。また、検知領域の数に応じて焦電素子を配置した 焦電型赤外線センサでも、前述の領域を検知することは可能であるが焦電素子が増 加する分、大型になるとともにコストアップしてしまう。  [0008] When detecting the important monitoring area and the light monitoring areas on both sides in this way, a dual element corresponding to the priority monitoring area and two dual elements respectively corresponding to the light monitoring areas on both sides are provided. Must be formed on the pyroelectric element. In other words, in a conventional pyroelectric element having a plurality of dual elements, dual elements must be formed in the pyroelectric element by the number of areas to be detected. The sensor cannot be made small-sized and low-cost. Also, a pyroelectric infrared sensor in which pyroelectric elements are arranged according to the number of detection areas can detect the above-mentioned area, but the increase in the number of pyroelectric elements increases the size and cost. Would.
[0009] この発明の目的は、前述のように、特定領域を検知するとともにこの特定領域を挟 む両側の領域を検知する焦電型赤外線センサを簡素な構造で構成することにある。 課題を解決するための手段 [0009] An object of the present invention is to configure a pyroelectric infrared sensor having a simple structure that detects a specific region and detects regions on both sides of the specific region as described above. Means for solving the problem
[0010] この発明は、焦電体基板と該焦電体基板の一方面に形成された受光面電極と焦電 体基板の他方面に受光面電極に対向して形成された対向面電極とで形成されるシ ングル素子を複数略 1列に配列形成してなる焦電素子にぉ 、て、シングル素子を 4 つ以上の偶数個形成し、配列方向の中心で互いに隣り合う 2つのシングル素子の受 光面電極同士または対向面電極同士を導通して形成される第 1デュアル素子と、配 列方向で第 1デュアル素子を挟む両側のシングル素子同士を内側から 1組ずつ組み 合わせて、組み合わされた各シングル素子の受光面電極同士または対向面電極同 士を導通して形成される 1つ以上の第 2デュアル素子と、を備えたことを特徴としてい る。  [0010] The present invention provides a pyroelectric substrate, a light receiving surface electrode formed on one surface of the pyroelectric substrate, and an opposing surface electrode formed on the other surface of the pyroelectric substrate so as to face the light receiving surface electrode. In the pyroelectric element formed by arranging a plurality of single elements formed in approximately one row, four or more even single elements are formed, and two single elements adjacent to each other at the center in the arrangement direction The first dual element formed by conducting between the light receiving surface electrodes or the opposite surface electrodes, and the single element on both sides sandwiching the first dual element in the arrangement direction are combined one by one from the inside, and combined. And one or more second dual elements formed by electrically connecting the light receiving surface electrodes of the respective single elements or between the opposing surface electrodes.
[0011] この構成では、焦電素子に複数のシングル素子が配列形成されており、第 1デュア ル素子を挟み、この第 1デュアル素子に隣り合うシングル素子が組み合わされて別の 第 2デュアル素子が構成され、これら第 1、第 2デュアル素子を挟み外側の第 2デュア ル素子の両側に隣り合うシングル素子が組み合わされてさらに別の第 2デュアル素 子が構成される。このようなデュアル素子の構成の繰り返しが焦電素子に形成された 少なくとも 4つのシングル素子に対して行われる。これにより、挟み込む側のデュアル 素子を構成する 2つのシングル素子が挟み込まれる側のデュアル素子の両側に配置 される。  [0011] In this configuration, a plurality of single elements are arrayed and formed in the pyroelectric element, and the single element adjacent to the first dual element is combined with the first dual element interposed therebetween to form another second dual element. A single element adjacent to both sides of the outer second dual element with the first and second dual elements interposed therebetween is combined to form another second dual element. Such repetition of the dual element configuration is performed for at least four single elements formed in the pyroelectric element. As a result, two single elements constituting the sandwiched dual element are arranged on both sides of the sandwiched dual element.
[0012] また、この発明の焦電素子は、第 1デュアル素子と、配列方向で第 1デュアル素子 を挟む両側のシングル素子の受光面電極同士または対向面電極同士を導通して形 成される第 2デュアル素子と、を備えたことを特徴として 、る。  [0012] Further, the pyroelectric element of the present invention is formed by electrically connecting the light receiving surface electrodes or the opposing surface electrodes of the first dual element and the single elements on both sides of the first dual element in the arrangement direction. And a second dual element.
[0013] この構成では、第 2デュアル素子の 2つのシングル素子力 第 1デュアル素子を挟 む両側に配置される。  [0013] In this configuration, the two single elements of the second dual element are arranged on both sides of the first dual element.
[0014] また、この発明の焦電型赤外線センサは、前述の焦電素子と、該焦電素子の第 1 デュアル素子の形成位置に特定領域で発生した赤外線を照射させ、第 1デュアル素 子以外のデュアル素子に特定領域を挟む領域で発生した赤外線を照射させる光学 手段と、を備えたことを特徴としている。  Further, the pyroelectric infrared sensor according to the present invention irradiates infrared rays generated in a specific region to the formation position of the above-mentioned pyroelectric element and the first dual element of the pyroelectric element, and the first dual element Optical means for irradiating other dual elements with infrared rays generated in a region sandwiching the specific region.
[0015] この構成では、検知領域内で発生した赤外線は、光学手段を介して焦電素子の赤 外線が発生された領域に対応する部分に照射される。焦電素子は、前述のように温 度変化により電荷を発生するので、赤外線が照射された部分の温度が上昇し、局所 電荷が発生する。そして、焦電素子は、シングル素子でこの電荷を検知することで検 知信号を出力する。ここで、本発明の焦電素子は前述のように第 1デュアル素子を第 2デュアル素子が挟み込む構造を成しているため、第 1デュアル素子で検知する領 域が第 2デュアル素子の各シングル素子で検知するそれぞれの領域に挟まれる。そ して、さらに外側に第 2デュアル素子が形成される場合には、挟み込む側の第 2デュ アル素子の各シングル素子で検知するそれぞれの領域が挟み込まれる側の第 2デュ アル素子で検知する領域の両側に配置される。すなわち、所定領域を検知する第 1 デュアル素子を挟み込む両側のシングル素子力 なる第 2デュアル素子が所定領域 を挟み込む両側の領域を検知し、 2つのデュアル素子で、内側の 2つの領域とこの領 域を挟む外側の 2つの領域とからなる 4つの領域の検知が行われる。 [0015] With this configuration, infrared light generated in the detection area is transmitted to the red light of the pyroelectric element through the optical means. The portion corresponding to the region where the outside line is generated is irradiated. As described above, the pyroelectric element generates an electric charge due to a change in temperature, so that the temperature of a portion irradiated with infrared rays rises, and a local electric charge is generated. Then, the pyroelectric element outputs a detection signal by detecting this charge with a single element. Here, the pyroelectric element of the present invention has a structure in which the first dual element is sandwiched by the second dual element as described above, so that the area detected by the first dual element is the single area of the second dual element. It is sandwiched between each area detected by the element. If a second dual element is formed further outside, each area detected by each single element of the sandwiched second dual element is detected by the second dual element sandwiched. Located on both sides of the area. That is, the second dual element, which is a single element on both sides sandwiching the first dual element for detecting the predetermined area, detects the area on both sides sandwiching the predetermined area, and the two dual elements, the inner two areas and this area, Four regions consisting of the two outer regions sandwiching are detected.
[0016] また、この発明の焦電型赤外線センサは、光学手段を焦電素子の検知領域側に備 えられた赤外線集光レンズで構成することを特徴としている。  Further, the pyroelectric infrared sensor of the present invention is characterized in that the optical means is constituted by an infrared condensing lens provided on the detection area side of the pyroelectric element.
[0017] この構成では、検知領域内で発生した赤外線は、単体の赤外線集光レンズで集光 され、検知領域の各領域に応じた焦電素子の各部分に照射される。  [0017] In this configuration, the infrared light generated in the detection area is collected by the single infrared light condensing lens, and is applied to each part of the pyroelectric element corresponding to each area of the detection area.
発明の効果  The invention's effect
[0018] この発明によれば、第 1デュアル素子と該第 1デュアル素子を挟むシングル素子で 構成された第 2デュアル素子とを備えることにより、特定領域からの赤外線を検出す るとともに、この特定領域の両側の領域力 発生する赤外線を検出する焦電素子を 簡素な構造で構成することができる。  According to the present invention, by including the first dual element and the second dual element composed of a single element sandwiching the first dual element, infrared rays from a specific area can be detected and this specific element can be detected. The pyroelectric element for detecting the infrared rays generated by the area force on both sides of the area can be configured with a simple structure.
[0019] また、この発明によれば、特定領域力もの赤外線が第 1デュアル素子で検出され、 この特定領域を挟む両側の領域の赤外線が第 1デュアル素子を挟み込んで配置さ れたシングル素子力 なる第 2デュアル素子で検出される。これにより、これら 2つの デュアル素子で特定領域内の 2つの領域とこの特定領域を挟む両側の 2つの領域と の 4つの領域を検知する焦電型赤外線センサを構成することができる。すなわち、特 定領域とその両側の領域を検知する焦電型赤外線センサを簡素な構造で構成する ことができる。 [0020] また、この発明によれば、検知領域内の赤外線を単体の赤外線集光レンズを用い て焦電素子に照射することで、さらに簡素な構造の焦電型赤外線センサを構成する ことができる。 Further, according to the present invention, infrared rays having a specific area are detected by the first dual element, and infrared rays on both sides of the specific area are separated by a single element having the first dual element interposed therebetween. Is detected by the second dual element. Thus, a pyroelectric infrared sensor that detects four regions, that is, two regions in a specific region and two regions on both sides of the specific region, can be configured by these two dual elements. That is, the pyroelectric infrared sensor for detecting the specific region and the regions on both sides thereof can be configured with a simple structure. Further, according to the present invention, a pyroelectric infrared sensor having a simpler structure can be configured by irradiating infrared light in the detection area to the pyroelectric element using a single infrared light condensing lens. it can.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]本発明の焦電素子の平面図、断面図、および底面図である。 FIG. 1 is a plan view, a sectional view, and a bottom view of a pyroelectric element of the present invention.
[図 2]本発明の焦電型赤外線センサの斜視図である。  FIG. 2 is a perspective view of a pyroelectric infrared sensor according to the present invention.
[図 3]本発明の焦電型赤外線センサの等価回路図である。  FIG. 3 is an equivalent circuit diagram of the pyroelectric infrared sensor of the present invention.
[図 4]検知領域の範囲と焦電素子の赤外線照射位置との関係を示す概念図である。  FIG. 4 is a conceptual diagram showing a relationship between a range of a detection area and an infrared irradiation position of a pyroelectric element.
[図 5]本発明の焦電型赤外線センサによる人の移動検出の様子を示す概念図である 符号の説明  FIG. 5 is a conceptual diagram showing a state of detecting movement of a person by the pyroelectric infrared sensor of the present invention.
[0022] 1 焦電体基板 [0022] 1 Pyroelectric substrate
2A, 2B—受光面電極  2A, 2B—Light receiving surface electrode
2C—接続電極  2C—Connection electrode
4A, 4B—対向面電極  4A, 4B—facing electrode
24A, 24B シングル素子  24A, 24B Single element
24 第 1デュアル素子  24 1st dual element
3A, 3B—受光面電極  3A, 3B—Light receiving surface electrode
3C—接続電極  3C—Connection electrode
5A, 5B—対向面電極  5A, 5B—facing electrode
35A, 35B—シングル素子  35A, 35B—Single element
35 第 2デュアル素子  35 2nd dual element
6A, 6B, 7A, 7B—外部接続電極  6A, 6B, 7A, 7B—External connection electrode
10—焦電素子  10—pyroelectric element
20—ベース基板  20—Base substrate
30—ステム  30—Stem
31A〜31D 外部接続ピン  31A to 31D External connection pins
40 フィルタ支持体(キャンケース) 50 赤外線通過フィルタ 40 Filter support (can case) 50 Infrared pass filter
60 フレネルレンズを備えるレンズドーム  60 Lens dome with Fresnel lens
100—人  100 people
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 本発明の実施形態に係る焦電素子およびこの焦電素子を用いた焦電型赤外線セ ンサについて図 1〜図 5を参照して説明する。  A pyroelectric element according to an embodiment of the present invention and a pyroelectric infrared sensor using the pyroelectric element will be described with reference to FIGS.
図 1 (A)は本発明の実施形態に係る焦電素子の平面図であり、図 1 (B)は (A) , (C )に示す焦電素子の A— A'面断面図であり、図 1 (C)は本実施形態の焦電素子の底 面図である。  FIG. 1 (A) is a plan view of a pyroelectric element according to an embodiment of the present invention, and FIG. 1 (B) is a cross-sectional view taken along the line AA ′ of the pyroelectric element shown in (A) and (C). FIG. 1C is a bottom view of the pyroelectric element of the present embodiment.
焦電素子 10は、焦電効果を示す、例えば強誘電体力もなる平板状の焦電体基板 1 と、該焦電体基板 1の表面(図 1 (A)に示す面)に形成された第 1受光面電極 2A, 2B 、第 2受光面電極 3A, 3B、接続電極 2C, 3Cと、焦電体基板 1の裏面(図 1 (C)に示 す面)に形成された第 1対向面電極 4A, 4B、第 2対向面電極 5A, 5Bと、焦電体基 板 1の裏面に形成された外部接続電極 6A, 6B, 7A, 7Bと力 なる。  The pyroelectric element 10 is formed on a flat pyroelectric substrate 1 having a pyroelectric effect, for example, a ferroelectric force, and a surface of the pyroelectric substrate 1 (a surface shown in FIG. 1A). The first light-receiving surface electrodes 2A, 2B, the second light-receiving surface electrodes 3A, 3B, the connection electrodes 2C, 3C, and the first opposing surface formed on the back surface of the pyroelectric substrate 1 (the surface shown in FIG. 1 (C)). The surface electrodes 4A, 4B, the second opposed surface electrodes 5A, 5B, and the external connection electrodes 6A, 6B, 7A, 7B formed on the back surface of the pyroelectric substrate 1 act as forces.
[0024] 焦電体基板 1の表面の略中央には、平面視した形状が長方形状の受光面電極 2A , 2Bが、所定間隔離間されて長辺が隣り合うように配列形成されている。また、これら 2つの受光面電極 2A, 2Bの長辺方向の略中心には接続電極 2Cが形成されており 、受光面電極 2A, 2Bが導通されている。また、焦電体基板 1の表面には、受光面電 極 2A, 2Bを挟み込み、所定間隔離間した位置に、受光面電極 2A, 2Bと略同形状 の受光面電極 3A, 3Bが形成されている。そして、受光面電極 3Aは受光面電極 2A を中心に受光面電極 2Bと対向する側に配置され、受光面電極 3Bは受光面電極 2B を中心に受光面電極 2Aと対向する側に配置されている。さらに、受光面電極 3A, 3 Bは焦電体基板 1の第 1受光面電極 2A, 2Bおよび接続電極 2Cと重ならない位置に 形成された接続電極 3Cにより導通されている。ここで、これら第 1受光面電極 2A, 2 B、第 2受光面電極 3A, 3Bは、外部からの赤外線を吸収して焦電体基板 1を部分的 に温度上昇させる材質力 なる。  [0024] At substantially the center of the surface of the pyroelectric substrate 1, light receiving surface electrodes 2A and 2B having a rectangular shape in plan view are arranged and formed so as to be separated by a predetermined distance so that long sides are adjacent to each other. A connection electrode 2C is formed substantially at the center of the two light receiving surface electrodes 2A and 2B in the long side direction, and the light receiving surface electrodes 2A and 2B are electrically connected. Light receiving surface electrodes 2A and 2B are formed on the surface of the pyroelectric substrate 1 and light receiving surface electrodes 3A and 3B having substantially the same shape as the light receiving surface electrodes 2A and 2B are formed at positions separated by a predetermined distance. I have. The light receiving surface electrode 3A is arranged on the side facing the light receiving surface electrode 2B with the light receiving surface electrode 2A as the center, and the light receiving surface electrode 3B is arranged on the side facing the light receiving surface electrode 2A with the light receiving surface electrode 2B as the center. I have. Further, the light receiving surface electrodes 3A, 3B are electrically connected by the connection electrodes 3C formed at positions not overlapping with the first light receiving surface electrodes 2A, 2B and the connection electrode 2C of the pyroelectric substrate 1. Here, the first light-receiving surface electrodes 2A and 2B and the second light-receiving surface electrodes 3A and 3B are materials that absorb infrared rays from the outside and partially raise the temperature of the pyroelectric substrate 1.
[0025] 焦電体基板 1の裏面には、焦電体基板 1の表面側に設けられた受光面電極 2A, 2 B, 3A, 3Bにそれぞれ対向する位置に、これら受光面電極 2A, 2B, 3A, 3Bと略同 形状の対向面電極 4A, 4B, 5A, 5Bが形成されている。これ〖こより、受光面電極 2A と対向面電極 4Aとこれらにより挟まれる焦電体基板 1とでシングル素子 24Aが構成さ れ、受光面電極 2Bと対向面電極 4Bとこれらにより挟まれる焦電体基板 1とでシング ル素子 24Bが構成され、受光面電極 3Aと対向面電極 5Aとこれらにより挟まれる焦 電体基板 1とでシングル素子 35Aが構成され、受光面電極 3Bと対向面電極 5Bとこ れらにより挟まれる焦電体基板 1とでシングル素子 35Bが構成される。そして、シング ル素子 24Aとシングル素子 24Bとは接続電極 2Cにより検出する電荷が逆極性となる ように導通されており、第 1デュアル素子 24を構成している。また、シングル素子 35A とシングル素子 35Bとは接続電極 3Cにより検出する電荷が逆極性となるように導通さ れており、第 2デュアル素子 35を構成している。 [0025] On the back surface of the pyroelectric substrate 1, the light receiving surface electrodes 2A, 2B are provided at positions facing the light receiving surface electrodes 2A, 2B, 3A, 3B provided on the front surface side of the pyroelectric substrate 1, respectively. , Same as 3A, 3B Opposite surface electrodes 4A, 4B, 5A, 5B are formed. Thus, a single element 24A is composed of the light receiving surface electrode 2A, the facing surface electrode 4A, and the pyroelectric substrate 1 sandwiched therebetween, and the light receiving surface electrode 2B, the facing surface electrode 4B, and the pyroelectric body sandwiched therebetween. The substrate 1 forms a single element 24B, the light receiving surface electrode 3A, the opposing surface electrode 5A, and the pyroelectric substrate 1 sandwiched therebetween constitute a single element 35A, and the light receiving surface electrode 3B and the opposing surface electrode 5B. The pyroelectric substrate 1 sandwiched therebetween forms a single element 35B. The single element 24A and the single element 24B are electrically connected so that charges detected by the connection electrodes 2C have opposite polarities, and constitute the first dual element 24. The single element 35A and the single element 35B are electrically connected so that charges detected by the connection electrodes 3C have opposite polarities, and constitute the second dual element 35.
なお、本実施形態ではシングル素子同士の接続電極を受光面 (焦電体基板 1の表 面)側に設けたが、対向面 (焦電体基板 1の裏面)側に接続電極を設けてもょ ヽ。  In the present embodiment, the connection electrodes of the single elements are provided on the light receiving surface (the surface of the pyroelectric substrate 1), but the connection electrodes may be provided on the opposing surface (the back of the pyroelectric substrate 1). Yeah.
[0026] また、焦電体基板 1の裏面には、対向面電極 4A, 4Bのそれぞれに導通する外部 接続電極 6A, 6Bと、対向面電極 5A, 5Bのそれぞれに導通する外部接続電極 7A, 7Bとが形成されている。これら外部接続電極 6A, 6B, 7A, 7Bは、焦電体基板 1の 裏面において、表面に形成された各電極 2A〜2C, 3A〜3Cのいずれに対しても対 向しな 、位置に形成されている。  [0026] Also, on the back surface of the pyroelectric substrate 1, external connection electrodes 6A and 6B conducting to the opposing surface electrodes 4A and 4B, and external connection electrodes 7A and 6A conducting to the opposing surface electrodes 5A and 5B, respectively. 7B are formed. These external connection electrodes 6A, 6B, 7A, 7B are formed on the back surface of the pyroelectric substrate 1 at positions not facing any of the electrodes 2A to 2C, 3A to 3C formed on the front surface. Have been.
[0027] 焦電体基板 1は焦電効果を備えるので、前述のように、赤外線が照射されたり、照 射されて!/、た赤外線が遮断されることで、基板の温度が変化すると電荷の不平衡が 生じる。この際、赤外線が照射されて温度が変化する場合と赤外線が遮断されて温 度が変化する場合とでは、逆極性の電荷の不平衡が生じる。例えば、赤外線が照射 された場合には、焦電体基板 1の受光面側に正電荷が偏り、対向面側に負電荷が偏 る。一方、赤外線が遮断された場合には、焦電体基板 1の受光面側に負電荷が偏り 、対向面側に正電荷が偏る。この現象を利用し、例えば、焦電体基板 1の受光面電 極 2A部分にのみ赤外線が照射した場合、この部分の電荷の不平衡をシングル素子 24Aで検出する。一方、焦電体基板 1の受光面電極 2Bの部分にのみ赤外線が照射 された場合、この部分の電荷の不均衡をシングル素子 24Bで検出する。これにより、 受光面電極 2A, 2Bの部分への赤外線の照射は、第 1デュアル素子 24により検出さ れる。この際、シングル素子 24Aとシングル素子 24Bとでは、前述のように検出される 電荷の極性が逆になるので、第 1デュアル素子 24からの検出信号を観測することで 、シングル素子 24A部分に赤外線が照射されたのカゝ、シングル素子 24B部分に赤 外線が照射されたのかを検出することができる。 [0027] Since the pyroelectric substrate 1 has a pyroelectric effect, as described above, the infrared rays are radiated or irradiated, and the infrared rays are cut off. Imbalance occurs. At this time, there is an imbalance of charges of opposite polarity between the case where the temperature is changed by irradiation of the infrared ray and the case where the temperature is changed by blocking the infrared ray. For example, when infrared light is irradiated, positive charges are biased toward the light receiving surface of the pyroelectric substrate 1 and negative charges are biased toward the opposing surface. On the other hand, when infrared rays are blocked, negative charges are biased toward the light receiving surface of the pyroelectric substrate 1 and positive charges are biased toward the opposing surface. By utilizing this phenomenon, for example, when infrared rays are irradiated only on the light-receiving surface electrode 2A of the pyroelectric substrate 1, the single element 24A detects the charge imbalance in this part. On the other hand, when infrared light is irradiated only on the light receiving surface electrode 2B of the pyroelectric substrate 1, the single element 24B detects the charge imbalance in this part. Thus, the irradiation of the infrared rays to the light receiving surface electrodes 2A and 2B is detected by the first dual element 24. It is. At this time, since the polarity of the detected charge is reversed between the single element 24A and the single element 24B as described above, by observing the detection signal from the first dual element 24, the infrared rays It is possible to detect whether infrared light has been irradiated to the single element 24B when the light was irradiated.
[0028] 第 2デュアル素子 35についても第 1デュアル素子 24と同様の作用が生じるので、 受光面電極 3A, 5Aの部分への赤外線の照射は、第 2デュアル素子 35により検出さ れる。そして、シングル素子 35Aとシングル素子 35Bとでも検出される電荷の極性が 逆になるので、第 2デュアル素子 35からの検出信号を観測することで、シングル素子 35A部分に赤外線が照射されたの力 シングル素子 35B部分に赤外線が照射され たのかを検出することができる。  [0028] Since the same effect as the first dual element 24 occurs in the second dual element 35, the irradiation of infrared rays to the light receiving surface electrodes 3A and 5A is detected by the second dual element 35. Since the polarities of the charges detected by the single element 35A and the single element 35B are reversed, by observing the detection signal from the second dual element 35, the power of the irradiation of the single element 35A with the infrared light is obtained. It is possible to detect whether infrared rays have been irradiated to the single element 35B.
[0029] すなわち、焦電素子 10は、焦電体基板 1の赤外線が照射された部分に応じて、焦 電体基板 1の 2つのデュアル素子で赤外線を検出し、 2つの出力系統から赤外線検 出信号を出力することができる。  That is, the pyroelectric element 10 detects infrared rays with the two dual elements of the pyroelectric substrate 1 according to the portion of the pyroelectric substrate 1 irradiated with the infrared rays, and detects infrared rays from the two output systems. An output signal can be output.
また、シングル素子 24Aとシングル素子 24Bとで検出する電荷の極性が逆であるの で、太陽光のような広い範囲に照射する赤外線の場合には、互いのシングル素子か ら出力される電圧同士が相殺されて外部には出力されない。この作用はシングル素 子 35Aとシングル素子 35Bに対しても適用されるので、これらの作用により、外光に よる影響を取り除くことができる。  Also, since the polarities of the charges detected by the single element 24A and the single element 24B are opposite, in the case of infrared rays irradiating a wide range such as sunlight, the voltages output from the single elements 24A and 24B are opposite to each other. Are canceled and are not output to the outside. Since this effect is also applied to the single element 35A and the single element 35B, the effect of external light can be eliminated by these functions.
[0030] 次に、前述の焦電素子 10を用いた焦電型赤外線センサについて図 2、図 3を参照 して説明する。  Next, a pyroelectric infrared sensor using the above-described pyroelectric element 10 will be described with reference to FIGS.
図 2は本実施形態の焦電型赤外線センサのフィルタ支持体 40およびレンズドーム 60の一部を切り取った状態での斜視図であり、実際には、フィルタ支持体 40および レンズドーム 60は焦電素子 10を覆う形状で形成されている。  FIG. 2 is a perspective view of the pyroelectric infrared sensor according to the present embodiment in a state where a part of the filter support 40 and the lens dome 60 is cut out. It is formed in a shape that covers the element 10.
また、図 3は本実施形態の焦電型赤外線センサの等価回路図である。  FIG. 3 is an equivalent circuit diagram of the pyroelectric infrared sensor of the present embodiment.
[0031] 前述の焦電素子 10は、第 1、第 2受光面電極 2A, 2B, 3A, 3Bが形成されている 側を上面として、所定の電極パターンが形成されたベース基板 20上に配置され、電 気的、機械的に接続されている。ベース基板 20に形成されている電極パターンには 、 FET1, FET2、および抵抗 Rl, R2 (図 2には図示せず)が実装されており、図 3に 示す等価回路図に従った回路が形成されている。具体的には、焦電素子 10の外部 接続電極 6Aが FET1のゲートに接続され、外部接続電極 6Bが接地電極 GNDに接 続されており、この接地電極 GNDと FET1のゲート間に抵抗 R1が接続されている。 すなわち、焦電素子 10の第 1デュアル素子 24と抵抗 R1とが FET1のゲートと接地と の間に並列接続されている。また、焦電素子 10の外部接続電極 7Aが FET2のゲー トに接続され、外部接続電極 7Bが接地電極 GNDに接続されており、この接地電極 GNDと FET2のゲート間に抵抗 R2が接続されている。すなわち、焦電素子 10の第 2 デュアル素子 35と抵抗 R2とが FET2のゲートと接地電極 GNDとの間に並列接続さ れている。さらに、 FET1のドレインと FET2のドレインとがドレイン端子 Dに接続され ており、 FET1のソースが第 1ソース端子 S1に接続され、 FET2のソースが第 2ソース 端子 S2に接続されている。そして、ドレイン端子 Dに駆動電圧を印加するとともに、第 1ソース端子 S1、第 2ソース端子 S2と接地電極 GNDとの間に所定の抵抗(図示せず )を接続することで、第 1ソース端子 Sl、第 2ソース端子 S2から電圧型の検出信号を 出力する、ソースホロワ型の赤外線検出回路が構成される。なお、この回路の出力部 に FETを用いたのは、焦電素子 10側が一般に高インピーダンスであるので、高入力 インピーダンスである FETをインピーダンス変換回路としても機能させることで、後段 の回路とのインピーダンス整合を行い、検出信号を低損失に伝送するためである。 The pyroelectric element 10 is disposed on a base substrate 20 on which a predetermined electrode pattern is formed, with the side on which the first and second light receiving surface electrodes 2A, 2B, 3A, 3B are formed as an upper surface. It is electrically and mechanically connected. In the electrode pattern formed on the base substrate 20, FET1, FET2 and resistors Rl, R2 (not shown in FIG. 2) are mounted. A circuit according to the equivalent circuit diagram shown is formed. Specifically, the external connection electrode 6A of the pyroelectric element 10 is connected to the gate of the FET1, the external connection electrode 6B is connected to the ground electrode GND, and a resistor R1 is connected between the ground electrode GND and the gate of the FET1. It is connected. That is, the first dual element 24 of the pyroelectric element 10 and the resistor R1 are connected in parallel between the gate of the FET 1 and the ground. The external connection electrode 7A of the pyroelectric element 10 is connected to the gate of the FET2, the external connection electrode 7B is connected to the ground electrode GND, and a resistor R2 is connected between the ground electrode GND and the gate of the FET2. I have. That is, the second dual element 35 of the pyroelectric element 10 and the resistor R2 are connected in parallel between the gate of the FET 2 and the ground electrode GND. Further, the drain of FET1 and the drain of FET2 are connected to the drain terminal D, the source of FET1 is connected to the first source terminal S1, and the source of FET2 is connected to the second source terminal S2. A drive voltage is applied to the drain terminal D, and a predetermined resistor (not shown) is connected between the first source terminal S1 and the second source terminal S2 and the ground electrode GND, so that the first source terminal A source follower-type infrared detection circuit that outputs a voltage-type detection signal from Sl and the second source terminal S2 is configured. The FET used in the output section of this circuit is generally high impedance on the pyroelectric element 10 side. This is for performing matching and transmitting the detection signal with low loss.
[0032] ベース基板 20は外部接続ピン 31A〜31Dを備える金属製のステム 30上に載置さ れており、外部接続ピン 31A〜31Dは前記ドレイン端子 D、第 1ソース端子 Sl、第 2 ソース端子 S2、および接地電極 GNDのそれぞれいずれかに接続されている。ここで 、ベース基板 20の接地電極 GNDは、ステム 30に導通する形状 (例えば、ベース基 板 20の表裏面ともに形成され、これらをスルーホールで導通させた形状)に形成され ており、ステム 30がこの焦電型赤外線センサを実装する基板に実装されて接地され ることで、前記外部接続ピンとともに、ベース基板 20の接地電極 GNDも接地される。  [0032] The base substrate 20 is mounted on a metal stem 30 having external connection pins 31A to 31D. The external connection pins 31A to 31D are connected to the drain terminal D, the first source terminal Sl, and the second source terminal. Connected to either terminal S2 or ground electrode GND. Here, the ground electrode GND of the base substrate 20 is formed in a shape that conducts to the stem 30 (for example, a shape formed on both the front and back surfaces of the base substrate 20 and conducted through through holes). The ground electrode is mounted on the substrate on which the pyroelectric infrared sensor is mounted and grounded, so that the ground electrode GND of the base substrate 20 is grounded together with the external connection pins.
[0033] このように、焦電素子 10が設置されたベース基板 20を載置したステム 30の上面側 には、焦電素子 10を覆う円筒形状のフィルタ支持体 (キャンケース) 40が設置されて おり、このフィルタ支持体 40に形成されて開口部には、焦電素子 10と対向する位置 に所望波長の赤外線のみを通過させる赤外線通過フィルタ 50が配置されて 、る。さ らに、このフィルタ支持体 40を覆う形状で、球面フレネルレンズが形成されたレンズド ーム 60が配置されている。このレンズドーム 60の天面のドームは、図 4に示すように、 検知領域のそれぞれ所定範囲で発生する赤外線をフレネルレンズで集光して、それ ぞれ焦電素子 10の所定位置に照射させる形状で形成されている。 As described above, the cylindrical filter support (can case) 40 that covers the pyroelectric element 10 is provided on the upper surface side of the stem 30 on which the base substrate 20 on which the pyroelectric element 10 is mounted is mounted. In addition, an infrared light passing filter 50 that allows only infrared light of a desired wavelength to pass therethrough is disposed at a position facing the pyroelectric element 10 at an opening formed in the filter support 40. The Further, a lens dome 60 in which a spherical Fresnel lens is formed in a shape covering the filter support 40 is arranged. As shown in FIG. 4, the dome on the top surface of the lens dome 60 condenses infrared light generated in a predetermined range of each detection area by a Fresnel lens and irradiates the infrared light to a predetermined position of the pyroelectric element 10. It is formed in a shape.
[0034] 図 4は、検知領域の範囲と焦電素子 10の赤外線照射位置との関係を示す概念図 であり、(A)は水平方向(H方向)の関係を示す概念図であり、(B)は垂直方向 (V方 向)の関係を示す概念図である。なお、本図に示す関係は、焦電素子 10のシングル 素子 24A, 24B, 35A, 35Bの配列方向を水平方向(H方向)とした場合である。  FIG. 4 is a conceptual diagram showing the relationship between the range of the detection area and the infrared irradiation position of the pyroelectric element 10. FIG. 4A is a conceptual diagram showing the relationship in the horizontal direction (H direction). (B) is a conceptual diagram showing the relationship in the vertical direction (V direction). It should be noted that the relationship shown in this figure is when the arrangement direction of the single elements 24A, 24B, 35A, 35B of the pyroelectric element 10 is the horizontal direction (H direction).
[0035] 受光面電極 2A, 2B, 3A, 3Bの配列方向、すなわちシングル素子 24A, 24B, 35 A, 35Bの配列方向を水平方向にした場合、図 4 (A)に示すように、シングル素子 24 A, 24Bは、焦電体基板 1に垂直でレンズドーム 60の天頂を通る直線の近傍に配置 されているので、シングル素子 24A, 24Bからなる部分すなわち第 1デュアル素子 24 は、検知領域の水平軸と前記直線との直交点を中心にて水平方向に所定角 αの範 囲の赤外線を検知することができる。一方、シングル素子 35Α, 35Βはシングル素子 24Α, 24Βを挟み込む位置に配置されているので、シングル素子 35Α, 35Βからな る部分すなわち第 2デュアル素子 35は、検知領域の水平軸と前記直線との直交点を 中心にて水平方向に、前記所定角 αよりも広い所定角 βの範囲の赤外線を所定角 αの範囲を除いて検知することができる。そして、シングル素子 35Α, 24Α, 24Β, 3 5Βの順に配列されて 、ることで、シングル素子 35Αが検出する領域とシングル素子 35Βが検出する領域とは、第 1デュアル素子 24が検出する領域の両側に配置される 。すなわち、第 1デュアル素子 24が赤外線を検出する領域は第 2デュアル素子 35が 赤外線を検出する領域に挟まれた構成となる。  When the arrangement direction of the light receiving surface electrodes 2A, 2B, 3A, 3B, that is, the arrangement direction of the single elements 24A, 24B, 35A, 35B is horizontal, as shown in FIG. 24A and 24B are arranged near a straight line passing through the zenith of the lens dome 60 and perpendicular to the pyroelectric substrate 1, so that the portion composed of the single elements 24A and 24B, that is, the first dual element 24, It is possible to detect infrared rays within a range of a predetermined angle α in the horizontal direction around a point orthogonal to the horizontal axis and the straight line. On the other hand, since the single elements 35Α and 35Β are arranged at positions sandwiching the single elements 24Α and 24Β, the portion composed of the single elements 35Α and 35Β, that is, the second dual element 35 is located between the horizontal axis of the detection area and the straight line. In the horizontal direction around the orthogonal point, infrared rays in a range of a predetermined angle β wider than the predetermined angle α can be detected excluding the range of the predetermined angle α. The single element 35Α, 24Α, 24Β, and 35Β are arranged in this order, so that the area detected by the single element 35Α and the area detected by the single element 35Β correspond to the area detected by the first dual element 24. Located on both sides. That is, the area where the first dual element 24 detects infrared rays is sandwiched between the area where the second dual element 35 detects infrared rays.
なお、垂直方向については、シングル素子 24Α, 24Β, 35Α, 35Βは垂直方向に は同じ位置に配置されているので、第 1、第 2デュアル素子 24, 35からなる部分は、 検知領域の垂直軸と焦電体基板 1に垂直でレンズドーム 60の天頂を通る直線との直 交点を中心にて垂直方向に所定角 γの範囲の赤外線を検知することができる。  In the vertical direction, since the single elements 24Α, 24Β, 35Α, and 35 配置 are arranged at the same position in the vertical direction, the portion composed of the first and second dual elements 24, 35 And a line perpendicular to the pyroelectric substrate 1 and passing through the zenith of the lens dome 60 as a center.
[0036] ここで、第 1、第 2デュアル素子の垂直方向の大きさを変えることにより、それぞれの デュアル素子の垂直方向の所定角 γを異ならせてもよい。 [0037] このような構成の焦電型赤外線センサを用いた人の移動の検出動作について、図Here, by changing the vertical size of the first and second dual elements, the vertical predetermined angle γ of each dual element may be made different. The operation of detecting the movement of a person using the pyroelectric infrared sensor having such a configuration will be described with reference to FIG.
5を参照して説明する。 This will be described with reference to FIG.
図 5は本実施形態の焦電型赤外線センサによる人の移動検出の様子を示す概念 図である。なお、本説明では、受光面電極 2A, 3Aの部分すなわちシングル素子 24 FIG. 5 is a conceptual diagram showing how the movement of a person is detected by the pyroelectric infrared sensor of the present embodiment. In this description, the light receiving surface electrodes 2A and 3A, that is, the single element 24
A, 35Aの部分に赤外線が照射された場合に、正の電圧の検出信号を発生する回 路構成がされた場合について説明する。 A case will be described in which a circuit is configured to generate a positive voltage detection signal when the portions A and 35A are irradiated with infrared rays.
図 5に示すように、人 100が検知領域内を水平方向に点 Aから点 Bに向力つて移動 する場合、人 100は分割領域 C, D, E, Fを順に通過する。  As shown in FIG. 5, when the person 100 moves in the detection area horizontally from the point A to the point B, the person 100 sequentially passes through the divided areas C, D, E, and F.
[0038] (1)まず、人 100が分割領域 C内に入ると、人 100から放射される赤外線はレンズド ーム 60を介してシングル素子 35Aの部分に集光され照射される。この部分に赤外線 が照射されることで、シングル素子 35Aで検出される電圧 V は正電圧となる。そして (1) First, when the person 100 enters the divided area C, infrared rays radiated from the person 100 are condensed and radiated to the single element 35 A via the lens dome 60. When this portion is irradiated with infrared rays, the voltage V detected by the single element 35A becomes a positive voltage. And
F2  F2
、人 100が分割領域 Cを通過中には常時略同量の赤外線がシングル素子 35A部分 に照射され続けるので、前記電圧 V は所定の時定数で減衰していく(0値に近づく)  When the person 100 is passing through the divided area C, almost the same amount of infrared light is continuously irradiated to the single element 35A, so that the voltage V attenuates at a predetermined time constant (approaches a value of 0).
F2  F2
。次に、人 100が分割領域 C外に出るとシングル素子 35A部分への赤外線の照射が 無くなるので、シングル素子 35Aで検出される電圧 V は負電圧となる。そして、この  . Next, when the person 100 goes out of the divided area C, the irradiation of the infrared rays to the single element 35A stops, and the voltage V detected by the single element 35A becomes a negative voltage. And this
F2  F2
電圧 V は所定の時定数で減衰していく(0値に近づく)。そして、この信号は FET2よ The voltage V decays with a predetermined time constant (approaches 0 value). And this signal is FET2
F2 F2
り増幅されて出力される。  Is amplified and output.
[0039] (2)次に、人が分割領域 D内に入ると、人 100から放射される赤外線はレンズドー ム 60を介してシングル素子 24Aの部分に集光され照射される。この部分に赤外線が 照射されることで、シングル素子 24Aで検出される電圧 V は正電圧となる。そして、 (2) Next, when a person enters the divided area D, infrared rays radiated from the person 100 are condensed and radiated to the portion of the single element 24A via the lens dome 60. When this part is irradiated with infrared rays, the voltage V detected by the single element 24A becomes a positive voltage. And
F1  F1
人 100が分割領域 Dを通過中には常時略同量の赤外線がシングル素子 24A部分に 照射され続けるので、前記電圧 V は所定の時定数で減衰していく(0値に近づく)。  While the person 100 is passing through the divided area D, substantially the same amount of infrared light is continuously irradiated to the single element 24A, and the voltage V attenuates with a predetermined time constant (approaches a value of 0).
F1  F1
次に、人 100が分割領域 D外に出るとシングル素子 24A部分への赤外線の照射が 無くなるので、シングル素子 24Aで検出される電圧 V は負電圧となる。そして、この  Next, when the person 100 goes out of the divided area D, the irradiation of the infrared rays to the single element 24A stops, and the voltage V detected by the single element 24A becomes a negative voltage. And this
F1  F1
電圧 V は所定の時定数で減衰していく(0値に近づく)。そして、この信号は FET1よ The voltage V decays with a predetermined time constant (approaches 0 value). And this signal is FET1
F1 F1
り増幅されて出力される。  Is amplified and output.
[0040] (3)次に、人が分割領域 E内に入ると、人 100から放射される赤外線はレンズドーム 60を介してシングル素子 24Bの部分に集光され照射される。この部分に赤外線が照 射されることで、シングル素子 24Bで検出される電圧 V は負電圧となる。そして、人 (3) Next, when a person enters the divided area E, infrared rays radiated from the person 100 are condensed and radiated to the single element 24 B via the lens dome 60. This area is illuminated by infrared light. As a result, the voltage V detected by the single element 24B becomes a negative voltage. And people
F1  F1
100が分割領域 Eを通過中には常時略同量の赤外線がシングル素子 24B部分に照 射され続けるので、前記電圧 V は所定の時定数で減衰していく(0値に近づく)。次  While 100 passes through the divided area E, almost the same amount of infrared light is continuously irradiated to the single element 24B, and the voltage V attenuates with a predetermined time constant (approaches 0 value). Next
F1  F1
に、人 100が分割領域 E外に出るとシングル素子 24B部分への赤外線の照射が無く なるので、シングル素子 24Bで検出される電圧 V は正電圧となる。そして、この電圧  On the other hand, when the person 100 goes out of the divided area E, the irradiation of the infrared rays to the single element 24B is stopped, and the voltage V detected by the single element 24B becomes a positive voltage. And this voltage
F1  F1
V は所定の時定数で減衰していく(0値に近づく)。そして、この信号は FET1より増 V decays with a predetermined time constant (approaching 0). And this signal is higher than FET1.
F1 F1
幅されて出力される。  The width is output.
[0041] (4)次に、人が分割領域 F内に入ると、人 100から放射される赤外線はレンズドーム 60を介してシングル素子 35Bの部分に集光され照射される。この部分に赤外線が照 射されることで、シングル素子 35Bで検出される電圧 V は負電圧となる。そして、人  (4) Next, when a person enters the divided area F, infrared rays radiated from the person 100 are condensed and radiated to the single element 35 B via the lens dome 60. When this part is irradiated with infrared rays, the voltage V detected by the single element 35B becomes a negative voltage. And people
F2  F2
100が分割領域 Fを通過中には常時略同量の赤外線がシングル素子 35B部分に照 射され続けるので、前記電圧 V は所定の時定数で減衰していく(0値に近づく)。次  While 100 passes through the divided area F, almost the same amount of infrared light is continuously irradiated on the single element 35B, so that the voltage V attenuates with a predetermined time constant (approaches 0 value). Next
F2  F2
に、人 100が分割領域 F外に出るとシングル素子 35B部分への赤外線の照射が無く なるので、シングル素子 35Bで検出される電圧 V は正電圧となる。そして、この電圧  On the other hand, when the person 100 goes out of the divided area F, the irradiation of the infrared rays to the single element 35B is stopped, and the voltage V detected by the single element 35B becomes a positive voltage. And this voltage
F2  F2
V は所定の時定数で減衰していく(0値に近づく)。そして、この信号は FET2より増 V decays with a predetermined time constant (approaching 0). And this signal is higher than FET2.
F2 F2
幅されて出力される。  The width is output.
[0042] このように、 FET1, FET2からの出力信号を観測することで、人の移動を検出する ことができる。また、シングル素子を複数配列することで、検知領域を分割し、それぞ れの分割領域での人の移動を検出することができる。  As described above, by observing the output signals from the FET1 and the FET2, it is possible to detect the movement of a person. Further, by arranging a plurality of single elements, it is possible to divide the detection area and detect the movement of a person in each of the divided areas.
[0043] さらに、前述のようにシングル素子 24A, 24Bすなわち第 1デュアル素子 24を挟み 込む形状でシングル素子 35A、 35Bすなわち第 2デュアル素子 35を配置することで 、例えば、第 1デュアル素子 24が検知する領域を警戒領域とし、第 2デュアル素子 3 5が検知する領域を警戒準備領域に設定して、警戒領域内の 2つの領域とこれを挟 む両側の警戒準備領域とからなる 4つの領域を 2組のデュアル素子で検知することが できる。このため、従来のように、検知する領域毎にデュアル素子を用いる必要が無 くなり、複数分割された 1つの中心領域とその周辺領域とを検知する焦電型赤外線セ ンサを簡素な構造で実現することができる。これにより、従来と同じ検知領域に対して 、部品点数が少なくコストが抑制された、小型の焦電型赤外線センサで検知すること ができる。 Further, by arranging the single elements 35A, 35B, that is, the second dual element 35 in a shape sandwiching the single elements 24A, 24B, ie, the first dual element 24, as described above, for example, the first dual element 24 The area to be detected is set as the alert area, the area to be detected by the second dual element 35 is set as the alert preparation area, and four areas consisting of two areas within the alert area and the alert preparation areas on both sides sandwiching it Can be detected by two sets of dual elements. This eliminates the need for using a dual element for each area to be detected as in the related art, and a simple structure of a pyroelectric infrared sensor for detecting one central area divided into a plurality of areas and its peripheral area. Can be realized. As a result, detection can be performed with a small pyroelectric infrared sensor that has a small number of parts and reduced cost for the same detection area as before. Can do.
なお、前述の実施形態では、第 1デュアル素子を 1つの第 2デュアル素子が挟み込 む、 2つのデュアル素子力 なる構造の焦電型赤外線センサが説明した力 第 1デュ アル素子に対して、内側力 順に複数の第 2デュアル素子でそれぞれ順に挟み込む 構造の焦電型赤外線センサを構成することもでき、前述と同様の効果を奏することが できる。ここで、形成する第 2デュアル素子の数は、必要とする仕様に応じて適宜設 定すればよい。  In the above-described embodiment, the first dual element is sandwiched by one second dual element, and the force described in the pyroelectric infrared sensor having the structure of two dual elements is compared to the first dual element. A pyroelectric infrared sensor having a structure in which a plurality of second dual elements are sequentially sandwiched in order by the inner force can also be configured, and the same effects as described above can be obtained. Here, the number of the second dual elements to be formed may be appropriately set according to the required specifications.

Claims

請求の範囲 The scope of the claims
[1] 焦電体基板と、該焦電体基板の一方面に形成された受光面電極と、前記焦電体基 板の他方面に前記受光面電極に対向して形成された対向面電極とで形成されるシ ングル素子を複数略 1列に配列形成してなる焦電素子において、  [1] A pyroelectric substrate, a light receiving surface electrode formed on one surface of the pyroelectric substrate, and an opposing surface electrode formed on the other surface of the pyroelectric substrate facing the light receiving surface electrode In a pyroelectric element in which a plurality of single elements formed by
前記シングル素子は 4つ以上の偶数個形成され、  The single element is formed of an even number of four or more,
配列方向の中心で互いに隣り合う 2つの前記シングル素子の受光面電極同士また は対向面電極同士を導通して形成される第 1デュアル素子と、  A first dual element formed by conducting light-receiving surface electrodes of two of the single elements adjacent to each other at the center in the arrangement direction or opposing surface electrodes;
前記配列方向で前記第 1デュアル素子を挟む両側の前記シングル素子同士を内 側から 1組ずつ組み合わせて、組み合わされた各シングル素子の受光面電極同士ま たは対向面電極同士を導通して形成される 1つ以上の第 2デュアル素子と、を備えた ことを特徴とする焦電素子。  The single elements on both sides sandwiching the first dual element in the arrangement direction are combined one by one from the inner side, and the light receiving surface electrodes or the opposing surface electrodes of each combined single element are formed by conduction. A pyroelectric element comprising at least one second dual element.
[2] 前記第 1デュアル素子と、前記配列方向で前記第 1デュアル素子を挟む両側の前 記シングル素子の受光面電極同士または対向面電極同士を導通して形成される第 2 デュアル素子と、を備えた請求項 1に記載の焦電素子。  [2] The first dual element, and a second dual element formed by conducting light-receiving surface electrodes or opposing surface electrodes of the single element on both sides sandwiching the first dual element in the arrangement direction, The pyroelectric element according to claim 1, comprising:
[3] 請求項 1または請求項 2に記載の焦電素子と、  [3] The pyroelectric element according to claim 1 or claim 2,
該焦電素子の前記第 1デュアル素子に特定領域で発生した赤外線を照射させ、前 記第 1デュアル素子以外のデュアル素子に前記特定領域を挟む領域で発生した赤 外線を照射させる光学手段と、を備えたことを特徴とする焦電型赤外線センサ。  Optical means for irradiating the first dual element of the pyroelectric element with infrared rays generated in a specific area, and irradiating dual elements other than the first dual element with infrared rays generated in an area sandwiching the specific area, A pyroelectric infrared sensor comprising:
[4] 前記光学手段は、前記焦電素子の受光面側に備えられた赤外線集光レンズである 請求項 3に記載の焦電型赤外線センサ。  4. The pyroelectric infrared sensor according to claim 3, wherein the optical means is an infrared focusing lens provided on a light receiving surface side of the pyroelectric element.
PCT/JP2005/009325 2004-05-28 2005-05-23 Pyroelectric element and pyroelectric infrared sensor WO2005116594A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004159729A JP2007292461A (en) 2004-05-28 2004-05-28 Pyroelectric element and pyroelectric infrared sensor
JP2004-159729 2004-05-28

Publications (2)

Publication Number Publication Date
WO2005116594A1 true WO2005116594A1 (en) 2005-12-08
WO2005116594A8 WO2005116594A8 (en) 2006-03-30

Family

ID=35450981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009325 WO2005116594A1 (en) 2004-05-28 2005-05-23 Pyroelectric element and pyroelectric infrared sensor

Country Status (2)

Country Link
JP (1) JP2007292461A (en)
WO (1) WO2005116594A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103399352A (en) * 2013-07-26 2013-11-20 广州唯创电子有限公司 Pyroelectric human body transducer-based direction recognition device and recognition method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010134255A1 (en) 2009-05-18 2012-11-08 日本電気株式会社 Infrared sensor, electronic device, and method of manufacturing infrared sensor
WO2011101938A1 (en) 2010-02-16 2011-08-25 日本電気株式会社 Infrared ray sensor, infrared ray detection device, and electronic apparatus
JP5481290B2 (en) * 2010-07-02 2014-04-23 Necトーキン株式会社 Pyroelectric infrared sensor
EP2677288A4 (en) * 2011-02-18 2017-12-13 Nec Corporation Infrared detection sensor array and infrared detection device
CN102640666A (en) * 2012-05-03 2012-08-22 上海沃施园艺股份有限公司 Pruning machine with infrared safety protection device
DE102012107739B4 (en) * 2012-08-22 2023-11-02 Avago Technologies International Sales Pte. Ltd. Sensor system for detecting movement of an infrared light source
JP5797814B1 (en) * 2014-06-12 2015-10-21 Necトーキン株式会社 Pyroelectric infrared sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6478186A (en) * 1987-06-19 1989-03-23 Sanyo Electric Co Human body detecting system
JPH01178830A (en) * 1988-01-08 1989-07-17 Nippon Ceramic Kk Infrared ray sensor
JPH0378221U (en) * 1989-11-29 1991-08-07
JPH0843552A (en) * 1994-06-30 1996-02-16 Eta Sa Fab Ebauches Ultrathin-type wrist watch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6478186A (en) * 1987-06-19 1989-03-23 Sanyo Electric Co Human body detecting system
JPH01178830A (en) * 1988-01-08 1989-07-17 Nippon Ceramic Kk Infrared ray sensor
JPH0378221U (en) * 1989-11-29 1991-08-07
JPH0843552A (en) * 1994-06-30 1996-02-16 Eta Sa Fab Ebauches Ultrathin-type wrist watch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103399352A (en) * 2013-07-26 2013-11-20 广州唯创电子有限公司 Pyroelectric human body transducer-based direction recognition device and recognition method thereof

Also Published As

Publication number Publication date
WO2005116594A8 (en) 2006-03-30
JP2007292461A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
WO2005116594A1 (en) Pyroelectric element and pyroelectric infrared sensor
US4697081A (en) Infra-red radiation detector devices
KR970010976B1 (en) Infrared array sensor system
US5045702A (en) Infrared intrustion detector
US8354643B2 (en) Infrared motion sensor
US5126718A (en) Intrusion detection system
JPH0631387Y2 (en) Pyroelectric infrared sensor
US5468960A (en) Pyroelectric infrared detector
US7105819B2 (en) Infrared ray sensor using silicon oxide film as infrared ray absorption layer and method of fabricating the same
JP2004257885A (en) Multi-element type infrared detector
US6262418B1 (en) Thermal type infrared sensing device, fabrication method for thermal type infrared sensing device, and infrared imaging system and infrared imaging apparatus
JPS637611B2 (en)
WO1999041575A1 (en) Infrared detector element, and infrared sensor unit and infrared detector using infrared detector element
CN109328295B (en) Infrared detection device
JPH0416236Y2 (en)
JPH0229180B2 (en) SEKIGAISENKENSHUTSUKI
JPH08271345A (en) Pyroelectric infrared detecting element
JPH0637306Y2 (en) Infrared sensor
JP2983424B2 (en) Pyroelectric infrared detector
US6114698A (en) Domain engineered ferroelectric optical radiation detector
JPH11237279A (en) Pyroelectric infrared detection element
JPS6243160A (en) Structure of electrode
JP3835244B2 (en) Pyroelectric infrared detector
JP2983410B2 (en) Pyroelectric infrared detector
JP2616654B2 (en) One-dimensional pyroelectric sensor array

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WR Later publication of a revised version of an international search report
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP