WO2005115583A1 - Apparatus for filtering of solids suspended in fluids - Google Patents

Apparatus for filtering of solids suspended in fluids Download PDF

Info

Publication number
WO2005115583A1
WO2005115583A1 PCT/NO2005/000166 NO2005000166W WO2005115583A1 WO 2005115583 A1 WO2005115583 A1 WO 2005115583A1 NO 2005000166 W NO2005000166 W NO 2005000166W WO 2005115583 A1 WO2005115583 A1 WO 2005115583A1
Authority
WO
WIPO (PCT)
Prior art keywords
screen
pipe
filter
cavity
solids
Prior art date
Application number
PCT/NO2005/000166
Other languages
English (en)
French (fr)
Inventor
Michael Hilditch
Knut Nyborg
Geir Inge Olsen
Original Assignee
Aker Kvaerner Subsea As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aker Kvaerner Subsea As filed Critical Aker Kvaerner Subsea As
Publication of WO2005115583A1 publication Critical patent/WO2005115583A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/31Self-supporting filtering elements
    • B01D29/35Self-supporting filtering elements arranged for outward flow filtration
    • B01D29/356Self-supporting filtering elements arranged for outward flow filtration open-ended, the arrival of the mixture to be filtered and the discharge of the concentrated mixture are situated on both opposite sides of the filtering element
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • E21B43/35Arrangements for separating materials produced by the well specially adapted for separating solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0208Separation of non-miscible liquids by sedimentation
    • B01D17/0211Separation of non-miscible liquids by sedimentation with baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • B01D17/045Breaking emulsions with coalescers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/08Thickening liquid suspensions by filtration
    • B01D17/10Thickening liquid suspensions by filtration with stationary filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0031Degasification of liquids by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/44Edge filtering elements, i.e. using contiguous impervious surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/44Edge filtering elements, i.e. using contiguous impervious surfaces
    • B01D29/48Edge filtering elements, i.e. using contiguous impervious surfaces of spirally or helically wound bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • B01D29/64Regenerating the filter material in the filter by scrapers, brushes, nozzles, or the like, acting on the cake side of the filtering element
    • B01D29/6407Regenerating the filter material in the filter by scrapers, brushes, nozzles, or the like, acting on the cake side of the filtering element brushes
    • B01D29/6423Regenerating the filter material in the filter by scrapers, brushes, nozzles, or the like, acting on the cake side of the filtering element brushes with a translational movement with respect to the filtering element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • B08B9/04Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes
    • B08B9/053Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes moved along the pipes by a fluid, e.g. by fluid pressure or by suction
    • B08B9/055Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes moved along the pipes by a fluid, e.g. by fluid pressure or by suction the cleaning devices conforming to, or being conformable to, substantially the same cross-section of the pipes, e.g. pigs or moles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents

Definitions

  • the present invention relates to an apparatus for filtering of solids suspended in fluids, comprising a screen, adapted to allow fluid to pass there through and preventing particles larger than a specific size from passing there through, the screen forming at least a part of a wall defining a cavity, the screen having an inner surface facing the cavity, the inner surface being substantially smooth with a plurality of openings.
  • filter screens are made up by a wire mesh, wherein wires with a circular cross section are placed with a small distance from each other. The distance between each wire is large enough to let the fluid or gas pass and small enough to prevent particles beyond a certain size from passing.
  • particles of a certain order of size become entrained in the crevices of the wire mesh. These particles in turn trap smaller particles and finally form a cake that may clog the filter. Thereby, the fluid and gas amount passing through the filter will decrease and hence the capacity of the filter will be greatly reduced.
  • the sand screen of this type is called "wedge wire” screen. It consists of wires with a wedge shaped cross section. The broader part of the wedge section is facing outward towards the walls of the well bore. The slot created between the wires is narrowest closer to the walls of the well bore and broadens towards the production tubing. Thereby, particles that pass the narrowest part of the slot will pass all the way through the screen and not clog the wire mesh.
  • This wire type of screen used as a sand screen can be found on the Internet web page http :// ww.reslink.no/products 1.ph .
  • This type of wedge wire screen has also been used in cartridges for filters, as shown, e.g., on the Internet web page http://www.novafiltration.com/norsk/ etcer olie gass/manuellefiltre.htm.
  • the cartridge is placed inside a vessel and has to be removed from the vessel for cleaning.
  • the cartridges are generally of a diameter from 50 - 100 mm.
  • the invention has its main object to make use of the principles of the new type of screen in the interior of a particle filter apparatus and facilitate the cleaning of the filter screen, avoiding the need for removing of the filter screen for cleaning.
  • This is achieved by an apparatus wherein the cavity has a substantially uniform cross-section over the length of the screen and that the screen at either end is coupled to a channel having a cross- section with at least the same dimension as the cross-section of the cavity, to allow for through pigging of the screen, on order to remove solids accumulated on the inner surface of the screen.
  • the openings in the screen comprises an entrance opening facing the inner cavity and an exit opening facing away from the inner cavity, the entrance opening being of a smaller dimension than the exit opening. This results in a rigid screen with a reduced risk of clogging.
  • the apparatus comprise an outer vessel or pipe with at least one inlet and at least one outlet, the vessel or pipe enclosing an inner pipe comprising the wall with the filter screen, the inner pipe passing through the outer vessel or pipe and forming two ends of the inner pipe outside of the outer vessel or pipe.
  • the outer pipe, the inner pipe and filter screen are elongate generally cylindrical elements. This results in an apparatus that can be manufactured easily at low cost.
  • the inner pipe and filter screens are situated concentric to the outer pipe. This provides an apparatus that is easy to manufacture and gives an even distribution of the fluid within the apparatus.
  • the inner pipe and filter screens are situated eccentric to the outer pipe. This provides the possibility to place the inner pipe in the vessel where it is most convenient to have the outlet of the fluids from the screen.
  • the filter screens are constructed of a wedge type profile, having a wedge base facing the inner cavity. This provides a smooth inner surface and a widening screen opening from the entrance to the exit.
  • the outer vessel or pipe comprises means for backwashing the filter screen. This provides for an additional means for cleaning out solids.
  • the apparatus may be installed as a primary and or secondary solids/sand screen filter to a production well head, production well template production well manifold and/or a processing unit, or as a stand alone separator or a part of or multiple parts of another separator.
  • the apparatus and/or filter screen is removable and/or re-installable or is a part of another apparatus that is removable and or re-installable.
  • An important advantage of the apparatus according to the present invention is that it can be cleaned by pigging and/or backwashing. This can take place in a stand alone system, sub system or inline with a flow line or pipe line, or as an integral part of any other type of processing equipment. Many of the applications were the apparatus of the invention would be used are for subsea but may be applied to topside or land based systems were solids filtering is required, especially with a pipeline or similar allowing for pigging or other types of mechanical cleaning of the filtered residue.
  • the apparatus has at least one main process inlet and at least one main process outlet and may have several secondary inlets/outlets and would generally be referred to as a pressure vessel and is preferably generally orientated horizontally, although it can be oriented differently.
  • the apparatus is formed from a pipe in pipe construction where the outer pipe acts as the main pressure retaining shell, the inner pipe, which traverses through the apparatus, acts as an inline pigging pipe and contains one or more sections for filtering solids media from fluids (liquid and/or gas) flowing from the inner pipe into the outer pipe.
  • the apparatus may be equipped with backwashing facilities, mixing and chemical dosing, heat tracing and insulation. *
  • the invention is intended to cover all applications for use in the processing of a hydrocarbon well stream needing protection were the well stream can carry solids that may be detrimental to the operation or clogging or residue build-up or erosion in items generally used in process systems such as e.g. rotating equipment (pumps and compressors etc), separation and separation enhancing equipment, control equipment and instrumentation.
  • rotating equipment umps and compressors etc
  • separation and separation enhancing equipment control equipment and instrumentation.
  • apparatus of the invention may be used to act as a primary particle filter for larger solids hence reducing the load and operation of equipment such as fine solids de- sanders and continuous production fines handling devices.
  • the apparatus of the invention may provide a secondary solids filter barrier for accidental screen failure in a production well resulting in large quantities of sand entering the system that may overload and cause failure to a process systems sand management system.
  • the apparatus may also act as a primary solids filtering screen for wells that are not fitted with downhole well sand screens.
  • the apparatus can also be installed in or with the following systems/equipment:- • As part of, upstream or down stream or parallel to a well head tree's choke valve bridging spool. • As part of, upstream or down stream or parallel to a between a well head tree and associated manifold, jumper line. • As part of, upstream or down stream or parallel to a manifold system. • As part of, upstream or down stream or parallel to a manifold to pipe line end manifold jumper. • As part of, upstream or down stream or parallel to a PLEM to PLEM jumper. • As part of, upstream or down stream or parallel to a riser base piping/manifold. • As part of, upstream or down stream or parallel to a topside or land based pipe line, header or manifold.
  • this invention relates to the use/operation of the said apparatus either as a stand- alone unit or multiples thereof and/or integrated with and/or inline with other sub sea and/or topside units/systems.
  • the said apparatus in addition to being used inline with pipe manifolds, flow lines and pipe lines, can be integrated into a system with other processing units and or be an integral part of processing equipment e.g. gravity separators of conventional pressure vessel types to long pipe separators whether or not pigging is required.
  • the apparatus can itself be a separator or part of a separator used singularly or in multiples thereof and may be of varying lengths from short to long. Further the apparatus may be used singularly or in multiples thereof combined inline with other processing apparatus installed singularly or multiples thereof as pre, intermediate or post processing phases.
  • the apparatus would normally be installed inline with a flow line/pipe line or manifold, when used subsea it can be made removable for cleaning and or replacement or made such that the internal screen can be a removable insert, in such case the apparatus would be fitted with well known tie-in devices commonly used in the industry, methods of retrieving/reinstalling/replacing the apparatus from the seabed can be in many forms and will be readily understood by a person of skill.
  • the method of vertical installation can be adopted with a so-called guide and hinge over principle were one end of the said apparatus is guided and located at one end and then lowered into its final resting place before be coupled to the system.
  • the apparatus can be manually connected by bolted flanges without the use of special tie-in devices as would also be the case for the apparatus being used topside.
  • FIGS 1 a - c show the apparatus according to the invention
  • Figure la shows the main body of a filter according to the principles of the present invention
  • figure lb shows a see-through version of figure la
  • lc shows a longitudinal section of figure la.
  • Figures 2a-d shows an example of the apparatus according to the present invention with figure 2a showing the filter in figure la in side elevation, figure 2b showing a detail of the inner filter screen, figure 2c showing the principle working of the wedge type screen and figure 2d showing the principle working of a conventional wire screen.
  • Figures 3a-c illustrates the principles of a method for using a cleaning pig in the filter according to figure la in three steps.
  • Figures 4a and b illustrate two examples of the use of the filter according to figure la shown in a system diagram.
  • Figures 5a-e illustrate some additional examples of the use of the apparatus according to the invention were figure 5a shows the apparatus according to the invention as a stand alone long small diameter separator/ pipe separator, figure 5b as a part of a long small diameter separator/pipe separator.
  • Figure 5ab shows an alternative route for piping to figures 5a-b.
  • Figures 5c-d show examples of how the apparatus may be configured for assisting in the collection of separated phases.
  • Figure 5e shows the apparatus according to the invention installed as an integral part of a separators inlet device, which allows for pigging through the separator.
  • Figures 6a and 6b illustrate an example of the placement of the inner pipe of a separator according to the invention.
  • Figure 6c is showing a detail of figures 6a-6b.
  • Figures 7a-f illustrate additional examples of the filter screens placement and orientation in the inner pipe of a separator according to the invention.
  • the apparatus which in the illustrated examples is a filter, comprises a vessel 1, which is generally cylindrical and may be made from pipe and forms the main pressure- retaining component.
  • the apparatus of figure la has one main process inlet 2 and one main process outlet shown in figure la-c with two process outlets 4 and 5.
  • the outlet 3 is for pigging.
  • the apparatus may have several primary or secondary inlets and/or outlets (e.g. for back-washing facilities, mixing, chemical dosing flushing/purging etc, not shown).
  • the inner pipe 8 which is extending from inlet 2 to outlet 3, and is best shown in figures lb and lc, is a through pipe designed for full bore pigging and contains a section that has a filter screen 9 (further illustrated and explained in figure 2a-c).
  • the processing unit outlet 3 Under normal production feeding the processing unit outlet 3 will be isolated by a valve 10 (fig. 3 a) downstream of outlet 3, fluid flow from the production wells (typically a mixture of gas, oil and water) enters the inlet 2 and passes through the filter screen 9 into the outer volume between the outer pipe 1 and the inner pipe 8, 9. Depending on the filter screen 9 openings, solids in the production fluid are retained on the inner surface of filter screen 9. The filtered fluid is then passed through the outlets 4 and 5 that may be a single or multiples of outlets. The number of outlets will depend on the length of the filter screen 9, so as to even out the flow through the open areas path. The outlets 4, 5 may then be collected into a header pipe 6, converging into a single outlet 7 to then feed the relevant system.
  • a valve 10 fig. 3 a downstream of outlet 3
  • a special feature of the said apparatus of the present invention is the use of a newer type filter screen which is today used as a sand screen in the well borehole.
  • a well bore sand screen is generally a filter media wrapped onto the outside of a perforated pipe, were the flow is from the outer area (between the production tube and the walls of the well bore) into the inner pipe (production tube), thus retaining solid particles on the outer surface of the sand screen.
  • This sand screen can be subject to wear, failure or damage during installation, which in turn can cause extra or unexpected sand production.
  • the conventional wire mesh, e.g., involving woven screens have in addition a tendency to become blocked.
  • FIG. 2a shows a partly see-through side elevation of the filter of figure la.
  • Figure 2d shows a conventional type wire mesh screen.
  • this type of screen wires with a generally circular cross section is laid side by side with a predetermined distance between the wires. The distance is determining the maximum particle size that is allowed to pass through the wire screen. Particles that are large than the distance between the wires cannot pass through but may become entrained in the crevices of the wire mesh, as illustrated in figure 2d. The larger particles may then trap smaller particles, which may form a cake and eventually clog the filter.
  • Figures 2b and 2c illustrates the newer wedge shaped wire mesh.
  • the wires are placed with a predetermined distance there between.
  • this screen has an even surface facing the fluid that is to be filtered.
  • the openings between the wires are at their narrowest closest to the even surface and broadens away form this surface. This means that this filter screen traps larger particles onto the top face of the filter screen and allows the smaller particles to pass through the filter screen openings. As long as the particle can pass through the narrowest part of the screen, the particle will pass all the way through. There is no crevice on the substantially even surface for the particles to become entrained.
  • this principle is used but inverted compared to the downhole sand screens, that is to say that the even surface with the broadest cross section of the wedge wire is on the inner face of the pipe 8, 9, with the fluid flow from the inner to outer side of the screen, as shown in figure 2b.
  • the filter screen opening size for particle size filtering can vary from at least 30 microns and larger.
  • the filtered particles being captured on the inner surface of the pipe shaped screen 9 can be mechanically cleaned by pigging, as will be explained in detail below.
  • the actual wedge profile of the filter screen can be continuous wire, wire rings, machined rings and slotted plates, the only criteria is that the inner surface of the screen 9 is mainly flush with the inner surface of the pipe 8, to facilitate pigging, and that the filter pipe 9 is adequately reinforced to sustain the strength required for pressure loads and the mechanical cleaning forces created by pigging the system.
  • FIG. 3a shows a valve 10 closed downstream of the apparatus with particle retention in the inner pipe.
  • Figure 3b shows the valve 10 in open position and a line cleaning pig 11 entering the main through inner pipe 8 at inlet 2.
  • Figure 3 c shows the pig 11 having passed through the filter screen area 9 together with collected particles. After pigging, the valve 10 is closed and the apparatus returns to its filtering condition.
  • the apparatus Prior to pigging, the apparatus can be backwashed by reversing the flow through the filter screen 9 from outlets 4 and 5 to free/loosen any build-up of sediment/solids that may become caked on the inner surface of filter screen 9.
  • the backwashing can also take the form of dedicated connections on the vessel 1 supplying washing media from the outer to inner pipe.
  • the system diagram in figure 4a illustrates a typical use of the apparatus according to the invention as described previously as a process solids protection device prior to the well stream entering a processing unit.
  • the hydrocarbon production from a well 21 enters a header 22 and flows to a solids filter vessel 1 , the valve 10 and a valve 20 are closed,.
  • the hydrocarbon stream then enter the solids filter vessel 1 and passes through the filter screen 9 and flow out, subsequent to particle entrainment, into outlets 4, 5 and 7 through a pipe 13 and into a process unit 12.
  • the processed hydrocarbons then leave to their various routings, as water through a pipe 14 to an injection well 22, as oil in a pipe 16 downstream of the valve 10 and into a flow line 18, and as gas through a pipe 15 into a flow line 17.
  • the flow lines 17 and 18 are routed to and from a topside unit 23.
  • the flow lines 17 and 18 are the main pigging lines in addition to the header 22 and the filter screen 9.
  • the pigging operation from the topside unit 23 is executed by closing valves 24, 25 and 26. Valves 19, 20 and 10 are opened, allowing the cleaning pig (not shown in figure 4a) from the unit 23 to round trip pig clean the whole system flow lines 17 and 18, the header 22 and the filter screen 9.
  • the system diagram of figure 4b illustrates a typical use of the apparatus according to the invention as a process solids protection device installed on or in a topside manifold system between incoming riser lines 17b and 18b and separator system feed line.
  • the pigging line can extend from a pig launcher 100 to a pig receiver 101, or alternatively a round trip pigging route as described for figure 4a.
  • Figure 5a illustrates an example of the use of the apparatus according to the invention as a stand alone long small diameter separator or pipe separator were the main phase separation can take place in an inner cavity defined by an inner pipe section 34.
  • Production fluids are supplied through an inlet 32.
  • Bulk gas is filtered for solids through a filter screen 35 in top of the inner pipe 34 and is then routed out through a gas outlet 37 from the outer vessel 31.
  • Bulk water is filtered for solids through a filter screen 36 in the base of the inner pipe 34 and routed out through a water outlet 38.
  • the remaining bulk oil is passed through the inner pipe 34 to an end outlet 33 from the separator.
  • FIG. 7a-f Prior, typical cross-sections of the apparatus of figure 5a are described in figures 7a-f. These will be described more in detail below.
  • the apparatus allows for full pig cleaning of solids through the inner pipe 34 that are accumulated on the inner surface of filter screen 36, as described above.
  • the general design of the inner pipe may be substantially as described in Norwegian patent 316428, except that the inlet and outlet arrangements are formed as a through pipe with uniform cross-section adapted for pigging.
  • Figure 5b illustrates an example of the use of the apparatus according to the invention, which is similar to the example of figure 5a, but is a typical end section of a long small diameter separator or pipe separator were phase separation takes place in the inner pipe section 34.
  • Water is filtered for solids through filter the screen 36, accumulates in the outer vessel 31 and is drawn off through 38.
  • a typical example of the use here with a pipe separator would be when applied to the apparatus described in WO 2004/016907.
  • the apparatus allows for full pig cleaning of solids through the inner pipe 34 that are accumulated on the inner surface of filter screen 36.
  • Figure 5ab shows an apparatus similar to figure 5a and 5b but with some variations.
  • An isolation valve 40 which is closed during separation, is situated downstream of the apparatus at an end 33.
  • Separated oil and/or gas is routed through a pipe 39 downstream of the valve 40. Separated water is filtered through the filter screen 36 and routed out through the water outlet 38. When pigging is to be performed, the valve 40 is opened allowing the pig to pass through the inner pipe 34.
  • Figures 5c and 5d illustrate variations on the function of the apparatus shown in examples 5 a, b and ab.
  • the piping or vessels main runs 44a and 44b upstream and downstream of the apparatus may be elevated to form a sump or water lock at the position of the separator. This has the effect of raising the interface level between the two different phases, water 47 and oil/gas 48, allowing the water phase 47 to accumulate in greater volume for draw off through a water outlet 46 after being filtered through a filter screen 45.
  • the apparatus according to the present invention allows for full pig cleaning of solids that are accumulated on the inner surface of the filter screen 45 through the inner pipe 44a-b.
  • Figure 5d illustrates a variation on the function of the apparatus shown in the example in figure 5 c, were some of the lighter phases can be drawn off the section 44a through a pipe 50 before entering the pipe section 44b.
  • the lighter phase may also be drawn of through the pipe 50 and routed to another location other than to the pipe section 44b.
  • Figure 5e illustrates a further variation on the function of the apparatus were a solids filter screen 55 forms a part of an inlet 52 to a separator 51.
  • a feed pipe 54 passes through the separator 51 with an isolation valve 59 downstream of the separator 51.
  • Fluid entering the separator via the inlet 52 is filtered for solids through the filter screen 55 and is routed back to the end of the inner part of the separator via a pipe shroud 56 (see detail on top of figure 5e), thus allowing for the fluid to be filtered over a long surface length in the separator and then be routed back to one end for the full separators full retention time.
  • the apparatus may also form a part of another inlet device.
  • the various separated phases leave the separator via outlets 57 (oil & gas) and 58 (water). Shown here is a common outlet for oil and gas, but these may also be separate.
  • the apparatus allows for full pig cleaning of the solids that are accumulated on the inner surface of filter screen 55, through the inner pipe 54.
  • the apparatus according to the invention as shown in fig 5 e could be used to retain large solids allowing fines produced to pass through the filter screen 55 and follow the process streams out of the separator (or be handled by the separators sand cleaning system if installed).
  • Figures 6a and 6b illustrate that the placement of the inner pipe and filter screen 62 and may be either concentric or eccentric to the outer pipe/vessel 61, and/or the inner pipe/filter section 62 may vary its alignment relative to the outer pipe/vessel at one or several positions along the length of the pipe/vessel 61.
  • Figure 6c illustrates the filter section of the inner pipe 61.
  • the said apparatus may be equipped with back washing facilities by applying pressure and flow from the outer to the inner volumes reversing the normal flows direction through the filter screen.
  • Various other utility systems may be added or used on the said apparatus e.g. mixing and chemical dosing, purging, venting, draining, heat tracing and insulation etc as would be readily understood by a person of skill. It is also conceivable to install nozzles or dedicated piping on the inside of the outer vessel to wash loose any solids that may have got through the filter and accumulated on the inside of the outer vessel.
  • Figures 7a to 7f show some examples of cross-sections of the apparatus according to the invention when used in phase separation, showing various filter screen area placements in the inner pipe, enabling the different phases to be filtered for solids.
  • Figure 7a and 7b show the inner pipe filter screen 73 placed in the upper quadrant of the inner pipe 71, allowing oil and or gas to be filtered and then being routed through the top of the outer area via an outlet 77 (figure 7a) or through the bottom of the outer area via an outlet 84 (figure 7b).
  • the heavier phase, water 74 is routed further to another area (not shown in figures 7a and 7b)
  • the heaviest solids are accumulated in the bottom of the inner pipe 71, which is not equipped with a screen, and eventually removed by pigging the line.
  • Figures 7c and 7d show the inner pipe filter screen 72 placed in the bottom quadrant of the inner pipe 71, allowing water 74 to be filtered into the area 78, between the inner pipe 71 and the outer vessel 70, and then routed to an outlet 84, as shown in figure 7c, or as shown in figure 7d, to two separate outlets 80 and 81. These outlets are separated by a dividing plate 79.
  • the outer volume 78 can be fully divided by two plates (one plate 79 below the inner pipe 71 and one (not shown) above the inner pipe) forming two separate outer volumes. In this case one side can be backwashed while the other side produces filtered water.
  • Figures 7e and 7f show some possible configurations were the phases 74 and 75 in the inner pipe are filtered through screens 72 and 73, respectively, relevant to the position of the phases in the inner pipe.
  • the separated phases in the outer areas 76 and 78 may be segregated by plate segments 85 and routed out through their relevant outlets 77 and 84. Whichever configuration is chosen it will still allow for the inner pipe to be mechanically cleaned by pigging.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Filtration Of Liquid (AREA)
PCT/NO2005/000166 2004-05-27 2005-05-18 Apparatus for filtering of solids suspended in fluids WO2005115583A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20042196A NO20042196L (no) 2004-05-27 2004-05-27 Anordning for filtrering av faste stoffer suspendert i fluider
NO20042196 2004-05-27

Publications (1)

Publication Number Publication Date
WO2005115583A1 true WO2005115583A1 (en) 2005-12-08

Family

ID=35005887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NO2005/000166 WO2005115583A1 (en) 2004-05-27 2005-05-18 Apparatus for filtering of solids suspended in fluids

Country Status (2)

Country Link
NO (1) NO20042196L (no)
WO (1) WO2005115583A1 (no)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1853793A1 (en) * 2005-02-18 2007-11-14 Norsk Hydro ASA Arrangement related to a separator for the cleaning of such separator
WO2010094741A1 (de) * 2009-02-20 2010-08-26 Fränkische Rohrwerke Gebr. Kirchner Gmbh & Co. Kg Leichtflüssigkeitsabscheidevorrichtung
WO2010142612A1 (en) * 2009-06-08 2010-12-16 Aker Subsea As Filter arrangement
FR2964885A1 (fr) * 2010-09-21 2012-03-23 Paul Helderle Dispositif perfectionne de filtration d'hydrocarbure
GB2490543A (en) * 2011-05-06 2012-11-07 Moss Hydro As Filter arrangement
GB2512385A (en) * 2013-03-28 2014-10-01 Michael Edward Brown Tank connector, filter and manifold assembly and method
US9359554B2 (en) 2012-08-17 2016-06-07 Suncoke Technology And Development Llc Automatic draft control system for coke plants
US9476547B2 (en) 2012-12-28 2016-10-25 Suncoke Technology And Development Llc Exhaust flow modifier, duct intersection incorporating the same, and methods therefor
US9580656B2 (en) 2014-08-28 2017-02-28 Suncoke Technology And Development Llc Coke oven charging system
US9683740B2 (en) 2012-07-31 2017-06-20 Suncoke Technology And Development Llc Methods for handling coal processing emissions and associated systems and devices
US9759057B2 (en) 2014-04-11 2017-09-12 Dynacorp Fabricators Inc. Apparatus, system and method for separating sand and other solids from oil and other fluids
US9862888B2 (en) 2012-12-28 2018-01-09 Suncoke Technology And Development Llc Systems and methods for improving quenched coke recovery
WO2018033758A1 (en) * 2016-08-19 2018-02-22 Trevelyan Trading Ltd A drain apparatus for a subsea pipeline
EP2427636B1 (en) * 2009-03-13 2018-04-04 SunCoke Technology and Development LLC Cleanable in situ spark arrestor
US10016714B2 (en) 2012-12-28 2018-07-10 Suncoke Technology And Development Llc Systems and methods for removing mercury from emissions
US10041002B2 (en) 2012-08-17 2018-08-07 Suncoke Technology And Development Llc Coke plant including exhaust gas sharing
US10047295B2 (en) 2012-12-28 2018-08-14 Suncoke Technology And Development Llc Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods
US10053627B2 (en) 2012-08-29 2018-08-21 Suncoke Technology And Development Llc Method and apparatus for testing coal coking properties
WO2018175706A1 (en) * 2017-03-24 2018-09-27 Fmc Technologies, Inc. Modular flowback filter system
CN110180238A (zh) * 2019-07-01 2019-08-30 重庆飞扬测控技术研究院有限公司 一种反冲洗水质过滤器
US10526541B2 (en) 2014-06-30 2020-01-07 Suncoke Technology And Development Llc Horizontal heat recovery coke ovens having monolith crowns
US10526542B2 (en) 2015-12-28 2020-01-07 Suncoke Technology And Development Llc Method and system for dynamically charging a coke oven
US10619101B2 (en) 2013-12-31 2020-04-14 Suncoke Technology And Development Llc Methods for decarbonizing coking ovens, and associated systems and devices
US10760002B2 (en) 2012-12-28 2020-09-01 Suncoke Technology And Development Llc Systems and methods for maintaining a hot car in a coke plant
US10851306B2 (en) 2017-05-23 2020-12-01 Suncoke Technology And Development Llc System and method for repairing a coke oven
US10883051B2 (en) 2012-12-28 2021-01-05 Suncoke Technology And Development Llc Methods and systems for improved coke quenching
US10927303B2 (en) 2013-03-15 2021-02-23 Suncoke Technology And Development Llc Methods for improved quench tower design
US10968395B2 (en) 2014-12-31 2021-04-06 Suncoke Technology And Development Llc Multi-modal beds of coking material
US10968393B2 (en) 2014-09-15 2021-04-06 Suncoke Technology And Development Llc Coke ovens having monolith component construction
US11008518B2 (en) 2018-12-28 2021-05-18 Suncoke Technology And Development Llc Coke plant tunnel repair and flexible joints
US11021655B2 (en) 2018-12-28 2021-06-01 Suncoke Technology And Development Llc Decarbonization of coke ovens and associated systems and methods
US11060032B2 (en) 2015-01-02 2021-07-13 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
US11071935B2 (en) 2018-12-28 2021-07-27 Suncoke Technology And Development Llc Particulate detection for industrial facilities, and associated systems and methods
US11098252B2 (en) 2018-12-28 2021-08-24 Suncoke Technology And Development Llc Spring-loaded heat recovery oven system and method
US11142699B2 (en) 2012-12-28 2021-10-12 Suncoke Technology And Development Llc Vent stack lids and associated systems and methods
EP3781783A4 (en) * 2018-04-20 2022-01-19 Seabed Separation AS METHOD OF CONTROLLING AN INNER TUBE OF AN INCLINED TUBULAR OIL AND WATER SEPARATOR
US11261381B2 (en) 2018-12-28 2022-03-01 Suncoke Technology And Development Llc Heat recovery oven foundation
US11395989B2 (en) 2018-12-31 2022-07-26 Suncoke Technology And Development Llc Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems
US11486572B2 (en) 2018-12-31 2022-11-01 Suncoke Technology And Development Llc Systems and methods for Utilizing flue gas
US11508230B2 (en) 2016-06-03 2022-11-22 Suncoke Technology And Development Llc Methods and systems for automatically generating a remedial action in an industrial facility
US20230265730A1 (en) * 2022-02-22 2023-08-24 Oceaneering International, Inc. Hydraulic control line filters for subsea high-pressure application
US11760937B2 (en) 2018-12-28 2023-09-19 Suncoke Technology And Development Llc Oven uptakes
US11767482B2 (en) 2020-05-03 2023-09-26 Suncoke Technology And Development Llc High-quality coke products
US11788012B2 (en) 2015-01-02 2023-10-17 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
US11851724B2 (en) 2021-11-04 2023-12-26 Suncoke Technology And Development Llc. Foundry coke products, and associated systems, devices, and methods
US11946108B2 (en) 2021-11-04 2024-04-02 Suncoke Technology And Development Llc Foundry coke products and associated processing methods via cupolas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328098A (en) * 1980-04-14 1982-05-04 Seapower, Inc. Filter apparatus
US5427680A (en) * 1992-02-18 1995-06-27 Benson; Robert A. Processing apparatus with wall conditioning shuttle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328098A (en) * 1980-04-14 1982-05-04 Seapower, Inc. Filter apparatus
US5427680A (en) * 1992-02-18 1995-06-27 Benson; Robert A. Processing apparatus with wall conditioning shuttle

Cited By (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1853793A4 (en) * 2005-02-18 2010-09-01 Norsk Hydro As ARRANGEMENT RELATING TO A SEPARATOR FOR CLEANING THE SAME
EP1853793A1 (en) * 2005-02-18 2007-11-14 Norsk Hydro ASA Arrangement related to a separator for the cleaning of such separator
EP2609976A1 (de) * 2009-02-20 2013-07-03 Fränkische Rohrwerke Gebr. Kirchner GmbH + Co KG Leichtflüssigkeitsabscheidevorrichtung
WO2010094741A1 (de) * 2009-02-20 2010-08-26 Fränkische Rohrwerke Gebr. Kirchner Gmbh & Co. Kg Leichtflüssigkeitsabscheidevorrichtung
EP2226106A1 (de) * 2009-02-20 2010-09-08 FRÄNKISCHE ROHRWERKE GEBR. KIRCHNER GmbH & Co KG Leichtflässigkeitsabscheidevorrichtung
EP2427636B1 (en) * 2009-03-13 2018-04-04 SunCoke Technology and Development LLC Cleanable in situ spark arrestor
WO2010142612A1 (en) * 2009-06-08 2010-12-16 Aker Subsea As Filter arrangement
FR2964885A1 (fr) * 2010-09-21 2012-03-23 Paul Helderle Dispositif perfectionne de filtration d'hydrocarbure
GB2490543B (en) * 2011-05-06 2013-06-12 Moss Hydro As Filter arrangement
GB2490543A (en) * 2011-05-06 2012-11-07 Moss Hydro As Filter arrangement
US9683740B2 (en) 2012-07-31 2017-06-20 Suncoke Technology And Development Llc Methods for handling coal processing emissions and associated systems and devices
US11441077B2 (en) 2012-08-17 2022-09-13 Suncoke Technology And Development Llc Coke plant including exhaust gas sharing
US9359554B2 (en) 2012-08-17 2016-06-07 Suncoke Technology And Development Llc Automatic draft control system for coke plants
US10947455B2 (en) 2012-08-17 2021-03-16 Suncoke Technology And Development Llc Automatic draft control system for coke plants
US11692138B2 (en) 2012-08-17 2023-07-04 Suncoke Technology And Development Llc Automatic draft control system for coke plants
US10611965B2 (en) 2012-08-17 2020-04-07 Suncoke Technology And Development Llc Coke plant including exhaust gas sharing
US10041002B2 (en) 2012-08-17 2018-08-07 Suncoke Technology And Development Llc Coke plant including exhaust gas sharing
US10053627B2 (en) 2012-08-29 2018-08-21 Suncoke Technology And Development Llc Method and apparatus for testing coal coking properties
US10047295B2 (en) 2012-12-28 2018-08-14 Suncoke Technology And Development Llc Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods
US11008517B2 (en) 2012-12-28 2021-05-18 Suncoke Technology And Development Llc Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods
US11142699B2 (en) 2012-12-28 2021-10-12 Suncoke Technology And Development Llc Vent stack lids and associated systems and methods
US10016714B2 (en) 2012-12-28 2018-07-10 Suncoke Technology And Development Llc Systems and methods for removing mercury from emissions
US9862888B2 (en) 2012-12-28 2018-01-09 Suncoke Technology And Development Llc Systems and methods for improving quenched coke recovery
US11117087B2 (en) 2012-12-28 2021-09-14 Suncoke Technology And Development Llc Systems and methods for removing mercury from emissions
US9476547B2 (en) 2012-12-28 2016-10-25 Suncoke Technology And Development Llc Exhaust flow modifier, duct intersection incorporating the same, and methods therefor
US11845037B2 (en) 2012-12-28 2023-12-19 Suncoke Technology And Development Llc Systems and methods for removing mercury from emissions
US11939526B2 (en) 2012-12-28 2024-03-26 Suncoke Technology And Development Llc Vent stack lids and associated systems and methods
US10760002B2 (en) 2012-12-28 2020-09-01 Suncoke Technology And Development Llc Systems and methods for maintaining a hot car in a coke plant
US10323192B2 (en) 2012-12-28 2019-06-18 Suncoke Technology And Development Llc Systems and methods for improving quenched coke recovery
US11359145B2 (en) 2012-12-28 2022-06-14 Suncoke Technology And Development Llc Systems and methods for maintaining a hot car in a coke plant
US10975309B2 (en) 2012-12-28 2021-04-13 Suncoke Technology And Development Llc Exhaust flow modifier, duct intersection incorporating the same, and methods therefor
US10883051B2 (en) 2012-12-28 2021-01-05 Suncoke Technology And Development Llc Methods and systems for improved coke quenching
US11746296B2 (en) 2013-03-15 2023-09-05 Suncoke Technology And Development Llc Methods and systems for improved quench tower design
US10927303B2 (en) 2013-03-15 2021-02-23 Suncoke Technology And Development Llc Methods for improved quench tower design
GB2512385B (en) * 2013-03-28 2015-04-29 Michael Edward Brown Tank connector, filter and manifold assembly and method
GB2512385A (en) * 2013-03-28 2014-10-01 Michael Edward Brown Tank connector, filter and manifold assembly and method
US10619101B2 (en) 2013-12-31 2020-04-14 Suncoke Technology And Development Llc Methods for decarbonizing coking ovens, and associated systems and devices
US11359146B2 (en) 2013-12-31 2022-06-14 Suncoke Technology And Development Llc Methods for decarbonizing coking ovens, and associated systems and devices
US10577911B2 (en) 2014-04-11 2020-03-03 Enercorp Sand Solutions Inc. Apparatus, system and method for separating sand and other solids from oil and other fluids
US9759057B2 (en) 2014-04-11 2017-09-12 Dynacorp Fabricators Inc. Apparatus, system and method for separating sand and other solids from oil and other fluids
US10526541B2 (en) 2014-06-30 2020-01-07 Suncoke Technology And Development Llc Horizontal heat recovery coke ovens having monolith crowns
US10233392B2 (en) 2014-08-28 2019-03-19 Suncoke Technology And Development Llc Method for optimizing coke plant operation and output
US10920148B2 (en) 2014-08-28 2021-02-16 Suncoke Technology And Development Llc Burn profiles for coke operations
US9580656B2 (en) 2014-08-28 2017-02-28 Suncoke Technology And Development Llc Coke oven charging system
US9708542B2 (en) 2014-08-28 2017-07-18 Suncoke Technology And Development Llc Method and system for optimizing coke plant operation and output
US10308876B2 (en) 2014-08-28 2019-06-04 Suncoke Technology And Development Llc Burn profiles for coke operations
US9976089B2 (en) 2014-08-28 2018-05-22 Suncoke Technology And Development Llc Coke oven charging system
US11053444B2 (en) 2014-08-28 2021-07-06 Suncoke Technology And Development Llc Method and system for optimizing coke plant operation and output
US10968393B2 (en) 2014-09-15 2021-04-06 Suncoke Technology And Development Llc Coke ovens having monolith component construction
US11795400B2 (en) 2014-09-15 2023-10-24 Suncoke Technology And Development Llc Coke ovens having monolith component construction
US10975310B2 (en) 2014-12-31 2021-04-13 Suncoke Technology And Development Llc Multi-modal beds of coking material
US10968395B2 (en) 2014-12-31 2021-04-06 Suncoke Technology And Development Llc Multi-modal beds of coking material
US10975311B2 (en) 2014-12-31 2021-04-13 Suncoke Technology And Development Llc Multi-modal beds of coking material
US11788012B2 (en) 2015-01-02 2023-10-17 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
US11060032B2 (en) 2015-01-02 2021-07-13 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
US11214739B2 (en) 2015-12-28 2022-01-04 Suncoke Technology And Development Llc Method and system for dynamically charging a coke oven
US10526542B2 (en) 2015-12-28 2020-01-07 Suncoke Technology And Development Llc Method and system for dynamically charging a coke oven
US11508230B2 (en) 2016-06-03 2022-11-22 Suncoke Technology And Development Llc Methods and systems for automatically generating a remedial action in an industrial facility
US11767747B2 (en) 2016-08-19 2023-09-26 Trevelyan Trading Ltd Drain apparatus for a subsea pipeline
IL264899B1 (en) * 2016-08-19 2023-06-01 Trevelyan Trading Ltd Drainage device for an underwater pipeline system
WO2018033758A1 (en) * 2016-08-19 2018-02-22 Trevelyan Trading Ltd A drain apparatus for a subsea pipeline
EP4063613A1 (en) * 2016-08-19 2022-09-28 Trevelyan Trading Ltd A drain apparatus for a subsea pipeline
WO2018175706A1 (en) * 2017-03-24 2018-09-27 Fmc Technologies, Inc. Modular flowback filter system
US11845898B2 (en) 2017-05-23 2023-12-19 Suncoke Technology And Development Llc System and method for repairing a coke oven
US10851306B2 (en) 2017-05-23 2020-12-01 Suncoke Technology And Development Llc System and method for repairing a coke oven
EP3781783A4 (en) * 2018-04-20 2022-01-19 Seabed Separation AS METHOD OF CONTROLLING AN INNER TUBE OF AN INCLINED TUBULAR OIL AND WATER SEPARATOR
US11680208B2 (en) 2018-12-28 2023-06-20 Suncoke Technology And Development Llc Spring-loaded heat recovery oven system and method
US11365355B2 (en) 2018-12-28 2022-06-21 Suncoke Technology And Development Llc Systems and methods for treating a surface of a coke plant
US11597881B2 (en) 2018-12-28 2023-03-07 Suncoke Technology And Development Llc Coke plant tunnel repair and flexible joints
US11071935B2 (en) 2018-12-28 2021-07-27 Suncoke Technology And Development Llc Particulate detection for industrial facilities, and associated systems and methods
US11643602B2 (en) 2018-12-28 2023-05-09 Suncoke Technology And Development Llc Decarbonization of coke ovens, and associated systems and methods
US11845897B2 (en) 2018-12-28 2023-12-19 Suncoke Technology And Development Llc Heat recovery oven foundation
US11098252B2 (en) 2018-12-28 2021-08-24 Suncoke Technology And Development Llc Spring-loaded heat recovery oven system and method
US11505747B2 (en) 2018-12-28 2022-11-22 Suncoke Technology And Development Llc Coke plant tunnel repair and anchor distribution
US11008518B2 (en) 2018-12-28 2021-05-18 Suncoke Technology And Development Llc Coke plant tunnel repair and flexible joints
US11261381B2 (en) 2018-12-28 2022-03-01 Suncoke Technology And Development Llc Heat recovery oven foundation
US11760937B2 (en) 2018-12-28 2023-09-19 Suncoke Technology And Development Llc Oven uptakes
US11193069B2 (en) 2018-12-28 2021-12-07 Suncoke Technology And Development Llc Coke plant tunnel repair and anchor distribution
US11021655B2 (en) 2018-12-28 2021-06-01 Suncoke Technology And Development Llc Decarbonization of coke ovens and associated systems and methods
US11395989B2 (en) 2018-12-31 2022-07-26 Suncoke Technology And Development Llc Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems
US11486572B2 (en) 2018-12-31 2022-11-01 Suncoke Technology And Development Llc Systems and methods for Utilizing flue gas
US11819802B2 (en) 2018-12-31 2023-11-21 Suncoke Technology And Development Llc Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems
CN110180238B (zh) * 2019-07-01 2023-05-05 重庆飞扬测控技术研究院有限公司 一种反冲洗水质过滤器
CN110180238A (zh) * 2019-07-01 2019-08-30 重庆飞扬测控技术研究院有限公司 一种反冲洗水质过滤器
US11767482B2 (en) 2020-05-03 2023-09-26 Suncoke Technology And Development Llc High-quality coke products
US11851724B2 (en) 2021-11-04 2023-12-26 Suncoke Technology And Development Llc. Foundry coke products, and associated systems, devices, and methods
US11946108B2 (en) 2021-11-04 2024-04-02 Suncoke Technology And Development Llc Foundry coke products and associated processing methods via cupolas
US20230265730A1 (en) * 2022-02-22 2023-08-24 Oceaneering International, Inc. Hydraulic control line filters for subsea high-pressure application
US11988061B2 (en) * 2022-02-22 2024-05-21 Oceaneering International, Inc. Hydraulic control line filters for subsea high-pressure application

Also Published As

Publication number Publication date
NO20042196D0 (no) 2004-05-27
NO20042196L (no) 2005-11-28

Similar Documents

Publication Publication Date Title
WO2005115583A1 (en) Apparatus for filtering of solids suspended in fluids
CA3006558C (en) Gravity desanding apparatus with filter polisher
US7383958B2 (en) Desanding apparatus and system
AU2014366820B2 (en) A desanding apparatus and a method of using the same
US4673500A (en) Sand separation and removal method and apparatus
EP2235322B1 (en) Sand separation system and method
US10513899B2 (en) Debris catcher
US9938812B2 (en) Desanding apparatus and a method of using same
US6758982B2 (en) Integrated debris management method
US10525381B2 (en) Purging system for desanding vessels
WO2010142612A1 (en) Filter arrangement
US10384154B2 (en) High pressure sand trap with screen
CA2535215C (en) System, method and apparatus for desanding wellhead production
CA2433741C (en) Desanding apparatus and system
EP3226998B1 (en) A desanding apparatus and a method of using same
AU2018203981B2 (en) Purging system for desanding vessels
US11603722B2 (en) System for collecting solid particles accumulating at the bottom of a subsea oil/water separation station
CA3006790C (en) Purging system for desanding vessels
NZ704897B2 (en) A desanding apparatus and system
NZ704897A (en) A desanding apparatus and system
NZ724583A (en) A desanding apparatus and a method of using same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase