WO2005112219A1 - Active filter - Google Patents

Active filter Download PDF

Info

Publication number
WO2005112219A1
WO2005112219A1 PCT/JP2004/006816 JP2004006816W WO2005112219A1 WO 2005112219 A1 WO2005112219 A1 WO 2005112219A1 JP 2004006816 W JP2004006816 W JP 2004006816W WO 2005112219 A1 WO2005112219 A1 WO 2005112219A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
commercial
inverter
compensation current
amplifier
Prior art date
Application number
PCT/JP2004/006816
Other languages
French (fr)
Japanese (ja)
Inventor
Masaji Haneda
Original Assignee
Ntt Data Ex Techno Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Data Ex Techno Corporation filed Critical Ntt Data Ex Techno Corporation
Priority to PCT/JP2004/006816 priority Critical patent/WO2005112219A1/en
Publication of WO2005112219A1 publication Critical patent/WO2005112219A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Definitions

  • the present invention relates to an active filter device that is inserted between a commercial power supply and a load and performs current compensation, power factor improvement, and the like.
  • the present invention also relates to an active filter device having excellent response speed.
  • an inverter power supply is built inside.
  • Equipment incorporating this inverter power supply has features such as quiet power consumption and power saving if switching between 5 OH z and 6 OH Z is not necessary, so its use will be further promoted in the future. It is expected.
  • devices incorporating this inverter power supply are also viewed as having problems such as the deterioration of the power factor of the load due to the harmonic current flowing through the load and the reduction of power use efficiency.
  • Patent Document 1 there is an active filter device described in Patent Document 1 below.
  • the active filter device described in this document includes a compensation capability determiner, a power factor improvement compensation current control circuit, a reactive current compensation current control circuit, a compensation current control circuit, and the like.
  • the excess compensation capability of the compensation current that can be generated by the inverter is determined based on the voltage of the DC power supply connected to the power supply, and the power factor improvement compensation current control circuit matches the excess compensation capability determined by the compensation capability determiner.
  • the reactive current compensation current control circuit calculates the reactive current compensation current corresponding to the surplus compensation capability.
  • the compensation current control circuit calculates the harmonic compensation current and the power factor.
  • a circuit for detecting a fundamental wave current flowing in a power supply system and a harmonic are disclosed.
  • Circuit for detecting current circuit for detecting operating power factor from phase signal of power supply voltage and fundamental wave current
  • circuit for generating compensation current circuit for generating compensation current
  • other various types such as phase inversion circuit, phase shift circuit, adder, multiplier, etc. Since various circuits are used, the configuration of the device is complicated, and the device has a drawback that the device is expensive.
  • the waveform analysis of the signal waveform is indispensable to generate the compensation current, there is a problem that the response speed is slow.
  • an object of the present invention is to provide an active filter device which has a simple device configuration, and does not particularly require any means such as waveform analysis and has an excellent response speed. Disclosure of the invention
  • an inverter for transmitting and drawing a compensation current for compensating a harmonic current generated from a load connected to a commercial power supply, and an inverter connected to a DC side of the inverter.
  • An active filter device comprising: a compensation current supply means serving as a supply source of the compensation current; and a control means for controlling the inverter, wherein the control means detects a current component flowing to the commercial power supply A commercial current detection means, and a commercial voltage detection means for detecting a voltage component of the commercial power supply, a commercial current detection signal detected by the commercial current detection means, and a commercial voltage detection signal detected by the commercial voltage detection means.
  • the inverter is controlled based on the combined signal of the inverter.
  • a commercial current detecting means for detecting a current component flowing to a commercial power supply
  • the control means including commercial voltage detection means for detecting the voltage component of the commercial power supply is based on a composite signal of the commercial current detection signal detected by the commercial current detection means and the commercial voltage detection signal detected by the commercial voltage detection means. To control the inverter.
  • the control means charges the compensation current supply means based on a change in terminal voltage of the compensation current supply means connected to the DC side of the inverter. ⁇ Discharge is controlled. According to this invention, the control means controls charging / discharging of the compensation current supply means based on a change in the terminal voltage of the compensation current supply means connected to the DC side of the inverter.
  • the control means includes: a first amplifier that amplifies the commercial current detection signal; and a second amplifier that amplifies the commercial voltage detection signal. The control of the charge amount of the compensation current supply means is performed by gain control of the second amplifier based on a terminal voltage of the compensation current supply means.
  • control means including the first amplifier for amplifying the commercial current detection signal and the second amplification ⁇ for amplifying the commercial voltage detection signal is based on the terminal voltage of the compensation current supply means.
  • the gain of the second amplifier By controlling the gain of the second amplifier, the charge amount of the compensation current supply means is controlled.
  • the compensation current supply means is constituted by a capacitor.
  • an active filter device can be easily configured using a capacitor.
  • the control means includes: a first amplifier that amplifies the commercial current detection signal; and a second amplifier that amplifies the commercial voltage detection signal. It is characterized in that the control of sending out of the compensation current performed by the inverter is performed by gain control of the first amplifier based on the compensation current.
  • the first amplifier for amplifying the commercial current detection signal and the commercial voltage detection The control means including the second amplifier for amplifying the output signal controls the Z-pull-in of the compensation current, which is performed by the inverter, by controlling the gain of the first amplifier based on the compensation current.
  • the control means includes: a first amplifier that amplifies the commercial current detection signal; a second amplifier that amplifies the commercial voltage detection signal; and a current of the compensation current.
  • compensating current detecting means for detecting a component wherein the control of the amount of charge of the compensating current supplying means is performed by controlling the gain of the second amplifier based on the terminal voltage of the compensating current supplying means.
  • the control of the output of the compensation current and the Z-pull-in performed by the inverter is performed by gain control of the first amplifier based on the current component detected by the compensation current detection means.
  • the control means including the first amplifier for amplifying the commercial current detection signal and the second amplifier for amplifying the commercial voltage detection signal comprises: By controlling the gain of the second amplifier, the charge amount of the current supply means is controlled. Further, the control means controls transmission and pull-in of the compensation current performed by the inverter by performing gain control of the first amplifier based on the compensation current.
  • an inverter for transmitting / drawing in a compensation current for compensating for a phase lag advance current generated from a load connected to a commercial power supply, and a DC side of the inverter.
  • an active filter device comprising: a compensating current supply unit connected as a supply source of the compensation current; and a control unit for controlling the inverter, the control unit converts a current component flowing to the commercial power supply into A commercial current detection means for detecting the voltage component of the commercial power supply, a commercial current detection signal detected by the commercial current detection means, and a commercial voltage detection signal detected by the commercial voltage detection means.
  • the inverter is controlled based on a combined signal with the signal.
  • control means including the commercial current detecting means for detecting the current component flowing to the commercial power supply and the commercial voltage detecting means for detecting the voltage component of the commercial power supply, Current detection signal and commercial voltage detected by commercial voltage detection means
  • the inverter is controlled based on the combined signal with the detection signal.
  • control means is configured to charge the compensation current supply means based on a change in terminal voltage of the compensation current supply means connected to the DC side of the inverter. Controlling z discharge.
  • the control means controls the charge Z discharge of the compensation current supply means based on the change in the terminal voltage of the compensation current supply means connected to the DC side of the inverter.
  • the control means includes: a first amplifier that amplifies the commercial current detection signal; a second amplifier that amplifies the commercial voltage detection signal; A compensating current detecting means for detecting a current component of the current, wherein a control of a charge amount of the compensating current supplying means is based on a terminal voltage of the compensating current supplying means.
  • the compensation is performed by the inverter, and the control of the sending and drawing of the compensation current performed by the inverter is performed by a gain control of the first amplifier based on a current component detected by the compensation current detection unit.
  • the control means including the first amplifier for amplifying the commercial current detection signal and the second amplifier for amplifying the commercial voltage detection signal is based on the terminal voltage of the compensation current supply means.
  • the gain of the second amplifier the charge amount of the compensation current supply means is controlled.
  • the control means controls the sending / drawing-in of the compensation current performed by the inverter by the IJ gain control of the first amplifier based on the compensation current.
  • FIG. 1 is a diagram showing a circuit configuration according to an embodiment of the present invention.
  • FIG. 2A is a diagram showing waveforms of a voltage signal or a current signal of a main part of the active filter device, and FIG. The figure shows the waveform of the input signal to the bidirectional inverter.
  • the figure 3 shows that the commercial current is improved by the compensation current of the bidirectional inverter INV 1 when a load current containing harmonics flows through the load.
  • Fig. 4 shows how the phase lag is improved by the compensation current of the bidirectional inverter INV1 when a phase lag current with a phase lag flows through the load.
  • FIG. 1 is a diagram showing a circuit configuration according to an embodiment of the present invention.
  • an active filter device 10 having an input terminal and an output terminal includes a voltage transformer PT, current transformers CT1 and CT2, variable gain voltage control amplifiers AGCl and AGC2, an inverting circuit PR1 and It has an adder circuit SUM1, a bidirectional inverter I NV1, a diode D1, and capacitors C1 and C2.
  • a commercial power supply is connected to the input terminal of the active filter device 10, and a load is connected to the output terminal.
  • the voltage transformer PT has a primary winding and a secondary winding.
  • the primary winding of the voltage transformer PT is connected to a power supply line in the active filter device 10.
  • the secondary winding is connected to the inverting circuit PR1.
  • the current transformer CT1 is connected to one end of the power supply line in the active filter device 10 so as to detect a current flowing through the power supply line without being inserted into the power supply line.
  • the summing circuit SUM 1 has its input side connected to the variable gain voltage control amplifier AGC 1 connected to the current transformer CT 1 and the variable gain voltage control amplifier AGC 2 connected to the inverting circuit PR 1, and has both output sides.
  • Inverter I Connect to NV1.
  • the bidirectional inverter INV 1 has a pair of DC terminals DT 1 and DT 2 and a pair of AC terminals AT 1 and AT 2.
  • the AC side terminal AT1 of the bidirectional inverter INV1 is connected to one power supply line, and the AC side terminal AT2 is connected to the other power supply line.
  • the DC terminal DT 1 of the bidirectional inverter INV 1 The DC terminal DT2 is connected to the other end of the capacitor C1 (the ground terminal which is also grounded to the circuit ground).
  • One end of the capacitor C1 connected to the DC terminal DT1 of the bidirectional inverter INV1 is also connected to the variable gain voltage control amplifier AGC2.
  • a current transformer CT2 connected to the diode D1 node; Connected by The force sword of the diode D1 is connected to the variable gain voltage control amplifier AGC1 and also to one end of the capacitor C2. The other end of the capacitor C2 is set to the circuit ground similarly to the capacitor C1.
  • I1, ⁇ 2, and I3 shown in the figure represent a commercial current flowing on the commercial power supply side, an inverter current output from the bidirectional inverter I NV1, and a load current flowing on the load side, respectively.
  • the current transformer CT1 detects the current flowing through the load without being inserted into the power supply line, and does not affect the operation between the commercial power supply and the load. Therefore, when the active filter device 10 does not act on the commercial power supply or the load, that is, when the inverter current I2 does not flow, the commercial current becomes the load current as it is.
  • a voltage transformer ⁇ detects a power supply voltage Vin supplied from a commercial power supply
  • a current transformer CT 1 detects a commercial current 11 flowing in a power supply line.
  • the voltage signal detected by the voltage transformer PT is inverted by the inverting circuit PR1, and is input to the variable gain voltage control amplifier AGC2.
  • the current signal detected by the current transformer CT 1 is directly input to the variable gain voltage control amplifier AGC 1.
  • These signals are amplified by the variable gain voltage control amplifiers AGC1 and AGC2, added by the addition circuit SUM1, and output from the addition circuit SUM1 as an input signal to the bidirectional inverter I NV1. .
  • the capacitor C1 connected to the DC terminals DT1 and DT2 of the bidirectional inverter INV1 is for holding a predetermined DC voltage. Further, the capacitor C 1 is a supply source of the inverter current I 2 that the bidirectional inverter INV 1 flows through the power supply line. In the capacitor C1, a charging operation and a discharging operation are performed alternately according to the direction in which the inverter current I2 flows. That is, when the inverter current I2 is in the direction shown in Fig. 1 (when the inverter current I2 operates so as to supply the inverter current I2 to the commercial current I1), the capacitor C1 performs a discharging operation. When the inverter current I2 is opposite to the direction shown in Fig. 1 (when the inverter current I2 is drawn from the commercial current I1), the capacitor C1 performs a charging operation.
  • a predetermined voltage is generated based on the output signal that is output, and the predetermined inverter current I from AC side terminal AT 1 2 flows and is supplied to the power line.
  • 1 3 1 1 + 1 2 between the commercial current I 1, the inverter current I 2 and the load current I 3.
  • the inverter current I2 takes charge of these harmonic currents and the phase-lagging / leading current, and the The waveform of the current I1 can be improved.
  • the power factor on the commercial power supply side can be improved and the usage efficiency can be improved.
  • the operation of supplying the inverter current I2 will be described later.
  • the current transformer CT2 detects the current of the inverter current I2 supplied by the bidirectional inverter INV1. This detection current is charged to the capacitor C2 through the diode D1. The voltage charged in the capacitor C2 is used as a control signal for the variable gain voltage control amplifier AGC1. This control signal is used as a current drooping control signal for the inverter current I 2, that is, when the inverter current I 2 exceeds the allowable capacity that the bidirectional inverter INV 1 can supply, the inverter current I 2 is suddenly cut off. (Not supplied to the power line).
  • the gain of the variable gain voltage control amplifier AGC1 is reduced, and the signal supplied to the addition circuit SUM1 is reduced.
  • the voltage charged in the capacitor C2 is determined at predetermined intervals based on a capacitance value of the capacitor C2, a time constant determined by a resistor (not shown), an input impedance of the variable gain voltage control amplifier AGC1, and the like. (Eg, every commercial power cycle). .
  • the voltage charged in the capacitor C1 is used as a control signal for the variable gain voltage control amplifier AGC2.
  • This control signal is supplied to the variable gain voltage control amplifier AGC2 for controlling the amount of charge charged in the capacitor C1.
  • the inverter current I2 when the output from the adding circuit SUM1 is negative, the capacitor C1 is charged, and conversely, when the output from the adding circuit SUM1 is positive. In this case, a discharge current flows from the capacitor C1. Therefore, when the voltage of the capacitor C1 is large, the gain of the variable gain voltage control amplifier AGC '2 is controlled to decrease. Conversely, when the voltage of the capacitor C1 is small, the variable gain voltage control amplifier AGC2 is controlled.
  • variable gain voltage control pump AGC1 is rapidly controlled based on the voltage of the capacitor C2
  • the gain of the variable gain voltage control pump AGC2 is changed according to the terminal voltage of the capacitor C1. It is controlled continuously.
  • FIG. 2 is a diagram showing a waveform of a voltage signal or a current signal of a main part of the active filter device 10, and FIG. 2B is a diagram showing a waveform of an input signal to the bidirectional inverter INV1.
  • a portion shown by a thin solid line, that is, a signal K1 is a voltage signal of a commercial power supply detected by the voltage transformer PT.
  • the portion indicated by the thick line and the solid line, that is, the signal K2 is a current signal detected by the current transformer CT1.
  • the signal K3 in the signal K2, which is the current signal, is due to the harmonic current generated in the load.
  • the portion shown by the broken line that is, the signal 4 is an inverted waveform inverted by the inverting circuit PR1.
  • Signal 2 is input to the variable gain voltage control amplifier AGC 1 and signal 4 is input to the variable gain voltage control amplifier AGC 2 so that the variable gain voltage control amplifier AGC 1 and the variable gain voltage control amplifier AGC 2 each have a predetermined gain.
  • the signal shown in FIG. 2B is output from the adder circuit SUM1.
  • the inverter current I2 proportional to the current shown in the figure is supplied from the bidirectional inverter INV1 toward the power supply line. You.
  • the inverter current .I2 proportional to the current shown in the figure is drawn from the power supply line to the bidirectional inverter INV1. More specifically, referring to FIG. 2B, the current is extracted in the shaded L1 portion, and the current is supplied in the shaded L2 portion.
  • the capacitor C1 performs charging or discharging operations, respectively. That is, in the portion of L1, the capacitor C1 is charged by the inverter current I2 drawn from the power supply line, and in the portion of L2, the inverter current I2 toward the power supply line is discharged by the current discharged from the capacitor C2. Is supplied.
  • FIG. 3 is an explanatory diagram showing how the commercial current is improved by the compensation current of the bidirectional inverter I NV1 when a load current including harmonics flows through the load.
  • (a) shows the waveform of the power supply voltage (V in)
  • (b) shows the waveform of the inverted signal of the power supply voltage of (a)
  • (c) shows the waveform of the load current including harmonics.
  • (D) shows the waveform of the compensation current extracted from the bidirectional inverter INV1, and (e) shows the waveform of the final commercial current.
  • the voltage transformer PT detects the signal shown in FIG. 3 (a), and the inverting circuit PR1 generates the signal shown in FIG. 3 (b).
  • the current transformer CT 1 detects the signal shown in the figure (). This detection signal is obtained by detecting the commercial current I 1 at the moment when the load current I 3 including the harmonic flows on the commercial power supply side.
  • the signals shown in FIGS. 3B and 3C are respectively input to the variable gain voltage control amplifier AGC 2 and the variable gain voltage control amplifier AGC 1 and the variable gain voltage control amplifier AG C 1 and the gain of the variable gain voltage control amplifier AGC 2 are properly controlled. Then, according to the above-described operation, the compensation current (inverter current 12) shown in FIG.
  • 11D is supplied from the bidirectional inverter INV1 to the power supply line.
  • the load current I3 including the harmonic current flows to the load and the harmonic current flows to the commercial power supply
  • a change in the commercial current I1 on the commercial power supply is detected, and this change component is detected.
  • the commercial current I1 a current having a sinusoidal waveform as shown in FIG.
  • FIG. 4 is an explanatory diagram showing how the phase lag is improved by the compensation current of the bidirectional inverter I NV1 when a phase lag current with a phase lag flows through the load.
  • (a) shows the waveform of the power supply voltage (V in)
  • (b) shows the waveform of the inverted signal of the power supply voltage of (a)
  • (c) shows the waveform of the delay current
  • (d) Shows the waveform of the compensation current extracted from the bidirectional inverter INV1
  • (e) shows the waveform of the final commercial current.
  • the same operation as when a harmonic current flows on the commercial power supply side is performed, and the waveform on the commercial power supply side is improved by the compensation current of the bidirectional inverter INV1.
  • This waveform improvement is performed by the compensation current of the bidirectional inverter 1 NV1, so that the current flowing to the load may be any waveform current.
  • the waveform of the commercial current can be improved even if the current flowing through the load is a leading current, or if the harmonic current and the lagging current or the leading current occur simultaneously.
  • an appropriate inverter current I 2 according to the capability of the bidirectional inverter INV 1 can be supplied to the power supply line.
  • an inverter that sends out a compensation current for compensating for a harmonic current generated from a load connected to a commercial power supply, and a Z-pull-in inverter, and is connected to the DC side of the inverter
  • a control means provided with a commercial current detecting means and a commercial voltage detecting means for controlling the inverter.
  • the commercial current detecting means detects the commercial current detected by the commercial current detecting means.
  • the inverter is controlled based on the combined signal of the signal and the commercial voltage detection signal detected by the commercial voltage detection means, no matter what kind of waveform current flows to the commercial power supply due to the current flowing to the load This also has the effect that the waveform of the commercial current can be improved.
  • control means controls the charge / discharge of the compensation current supply means based on a change in the terminal voltage of the compensation current supply means connected to the DC side of the inverter. This has the effect that control of the compensation current according to the supply capability of the compensation current supply means can be realized.
  • control means including the first amplifier for amplifying the commercial current detection signal and the second amplifier for amplifying the commercial voltage detection signal is based on the terminal voltage of the current supply means.
  • controlling the amount of charge of the current supply means by controlling the gain of the second amplifier, and transmitting the compensation current performed by the inverter by controlling the gain of the first amplifier based on the compensation current. Since the pull-in control is performed, there is no need to perform waveform analysis or the like, and it is possible to achieve an excellent response speed and an effect that the device can be configured simply and inexpensively.
  • the control stage here is the voltage transformer PT, current transformer CT1, C ⁇ 2, variable gain amplifier AGC]., AGC2, inverting circuit PR1, adding circuit SUM1, capacitor Cl, Implemented by diode D1.
  • the commercial current detection means here corresponds to the current transformer CT1.
  • the commercial voltage detection means corresponds to the voltage transformer PT
  • the compensation current supply means corresponds to the capacitor C1
  • the first amplifier corresponds to the variable gain amplifier AGC2
  • the second amplifier corresponds to the variable gain amplifier AGC1.
  • the present invention is useful as an active filter device that is inserted between a commercial power supply and a load to perform current compensation, power factor improvement, and the like.
  • This function is suitable for simply configuring functions to perform such functions as to ensure excellent response speed performance.

Abstract

An active filter comprises a bi-directional inverter (INV1) for delivering/leading in a compensation current used for compensating a harmonic current generated from a load connected to a commercial power supply, a capacitor (C1) connected to the DC side of the bi-directional inverter (INV1) and serving as a compensation current supply, a current transformer (CT1) for detecting a current component flowing into the commercial power supply, and a voltage transformer (PT) for detecting the voltage component of the commercial power supply. The bi-directional inverter (INV1) is controlled in accordance with a synthesis signal of a commercial current detection signal detected by the current transformer (CT) and a commercial voltage detection signal detected by the voltage transformer (PT).

Description

アクティブフィルタ装置 Active filter device
技術分野 Technical field
この発明は、 商用電源と負荷との間に挿入され、 電流補償、 力率改善などを行 うアクティブフィルタ装置に関するものであり、 特に、 装置の構成が簡易であり、 明  The present invention relates to an active filter device that is inserted between a commercial power supply and a load and performs current compensation, power factor improvement, and the like.
かつ、 応答速度に優れたアクティブフィルタ装置に関するものである。 The present invention also relates to an active filter device having excellent response speed.
1  1
 Thread
 book
背景技術 Background art
最近の家電機器、 例えば、 パソコン、 冷蔵庫、 エアコン、 照明器具などにおい ては、 その内部にインバ一タ電源が組み込まれている。 このインバータ電源が組 み込まれた機器は、 5 O H z / 6 O H Zの切り換えが不要であると力 静音、 省 電力といった特徴を有しているので、 今後、 さらに、 利用が促進されて行くもの と予想される。 一方、 このインバータ電源が組み込まれた機器は、 負荷に流れる 高調波電流によって、 負荷の力率を悪化させ、 電力の利用効率を低下させるとい つた弊害も問題視されている。 これらの問題を解決する従来技術として、 例えば、 下記特許文献 1に記載され たアクティブフィルタ装置がある。 この文献に記載されたアクティブフィルタ装 置は、 補償能力判定器、 力率改善補償電流制御回路、 無効電流補償電流制御回路、 補償電流制御回路などを備え、 補償能力判定器が、 インバータの直流側に接続さ れた直流電源装置の電圧に基づいてインバータで発生可能な補償電流の余剰補償 能力を判定し、 力率改善補償電流制御回路が、 補償能力判定器で判定された余剰 補償能力に見合った力率改善補償電流を算出し、 一方、 無効電流補償電流制御回 路が、 その余剰補償能力に見合った無効電流補償電流を算出し、 補償電流制御回 路が、 高調波補償電流と力率改善補償電流あるいは高調波補償電流と無効電流補 償電流に基づいて補償電流を算出してィンバータに制御指令を出すことで、 高調 波電流の補償や力率改善補償を行っている 特許文献 1 In recent home appliances such as personal computers, refrigerators, air conditioners, and lighting fixtures, an inverter power supply is built inside. Equipment incorporating this inverter power supply has features such as quiet power consumption and power saving if switching between 5 OH z and 6 OH Z is not necessary, so its use will be further promoted in the future. It is expected. On the other hand, devices incorporating this inverter power supply are also viewed as having problems such as the deterioration of the power factor of the load due to the harmonic current flowing through the load and the reduction of power use efficiency. As a conventional technique for solving these problems, for example, there is an active filter device described in Patent Document 1 below. The active filter device described in this document includes a compensation capability determiner, a power factor improvement compensation current control circuit, a reactive current compensation current control circuit, a compensation current control circuit, and the like. The excess compensation capability of the compensation current that can be generated by the inverter is determined based on the voltage of the DC power supply connected to the power supply, and the power factor improvement compensation current control circuit matches the excess compensation capability determined by the compensation capability determiner. The reactive current compensation current control circuit calculates the reactive current compensation current corresponding to the surplus compensation capability.The compensation current control circuit calculates the harmonic compensation current and the power factor. By calculating a compensation current based on the improvement compensation current or harmonic compensation current and the reactive current compensation current and issuing a control command to the inverter, the harmonic Patent Document 1
特開平 8 _ 1 4 0 2 6 7号公報 (第 3— 5頁、 図 1 ) ところで、 上述した従来技術のァクティブフィルタ装置では、 電源系統に流れ る基本波電流を検出する回路および高調波電流を検出する回路、 電源電圧の位相 信号と基本波電流とから運転力率を検出する回路、 補償電流を発生させる回路、 その他、 位相反転回路、 位相シフト回路、 加算器、 掛け算器等の多種多様の回路 が用いられているので、 装置構成が複雑であり、 そのため、 装置が高価であると いう欠点を有していた。 また、 補償電流を発生させるために信号波形の波形解析 が必須なので、 応答速度が遅いという問題点があった。  SUMMARY OF THE INVENTION Incidentally, in the above-described active filter device of the related art, a circuit for detecting a fundamental wave current flowing in a power supply system and a harmonic are disclosed. Circuit for detecting current, circuit for detecting operating power factor from phase signal of power supply voltage and fundamental wave current, circuit for generating compensation current, and other various types such as phase inversion circuit, phase shift circuit, adder, multiplier, etc. Since various circuits are used, the configuration of the device is complicated, and the device has a drawback that the device is expensive. In addition, since the waveform analysis of the signal waveform is indispensable to generate the compensation current, there is a problem that the response speed is slow.
このような状況に鑑み、 本発明は、 装置構成が簡単であり、 波形解析等の手段 を特に必要とせず応答速度に優れたァクティブフィルタ装置を得ることを目的と するものである。 発明の開示  In view of such a situation, an object of the present invention is to provide an active filter device which has a simple device configuration, and does not particularly require any means such as waveform analysis and has an excellent response speed. Disclosure of the invention
この発明にかかるァクティブフィルタ装置にあっては、 商用電源に接続された 負荷から発生する高調波電流を補償するための補償電流の送出 引込を行うイン バータと、 このィンバータの直流側に接続されて前記補償電流の供給源となる補 償電流供給手段と、 前記ィンバータを制御するための制御手段とを備えたァクテ イブフィルタ装置において、 前記制御手段は、 前記商用電源に流れる電流成分を 検出する商用電流検出手段と、 前記商用電源の電圧成分を検出する商用電圧検出 手段とを備え、 前記商用電流検出手段が検出した商用電流検出信号と前記商用電 圧検出手段が検出した商用電圧検出信号との合成信号に基づいて前記ィンバータ. を制御することを特徴とする。  In the active filter device according to the present invention, an inverter for transmitting and drawing a compensation current for compensating a harmonic current generated from a load connected to a commercial power supply, and an inverter connected to a DC side of the inverter. An active filter device comprising: a compensation current supply means serving as a supply source of the compensation current; and a control means for controlling the inverter, wherein the control means detects a current component flowing to the commercial power supply A commercial current detection means, and a commercial voltage detection means for detecting a voltage component of the commercial power supply, a commercial current detection signal detected by the commercial current detection means, and a commercial voltage detection signal detected by the commercial voltage detection means. The inverter is controlled based on the combined signal of the inverter.
この 明によれば、 商用電源に流れる電流成分を検出する商用電流検出手段と、 商用電源の電圧成分を検出 る商用電圧検出手段とを備えた制御手段は、 商用電 流検出手段が検出した商用電流検出信号と商用電圧検出手段が検出した商用電圧 検出信号との合成信号に基づいてィンバータを制御する。 According to the invention, a commercial current detecting means for detecting a current component flowing to a commercial power supply, The control means including commercial voltage detection means for detecting the voltage component of the commercial power supply is based on a composite signal of the commercial current detection signal detected by the commercial current detection means and the commercial voltage detection signal detected by the commercial voltage detection means. To control the inverter.
つぎの発明にかかるアクティブフィルタ装置にあっては、 前記制御手段は、 前 記インバータの直流側に接続された前記補償電流供給手段の端子電圧の変化に基 づいて、 この補償電流供給手段の充電 Ζ放電を制御することを特徴とする。 この発明によれば、 制御手段は、 インバータの直流側に接続された補償電流供 給手段の端子電圧の変化に基づいて補償電流供給手段の充電/放電を制御する。 つぎの発明にかかるアクティブフィルタ装置にあっては、 前記制御手段は、 前 記商用電流検出信号を増幅する第 1の増幅器と、 前記商用電圧検出信号を増幅す る第 2の増幅器とを備え、 前記補償電流供給手段の充電量の制御が、 前記補償電 流供給手段の端子電圧に基づいた前記第 2の増幅器の利得制御によつて行われる ことを特徴とする。  In the active filter device according to the next invention, the control means charges the compensation current supply means based on a change in terminal voltage of the compensation current supply means connected to the DC side of the inverter. ΖDischarge is controlled. According to this invention, the control means controls charging / discharging of the compensation current supply means based on a change in the terminal voltage of the compensation current supply means connected to the DC side of the inverter. In the active filter device according to the next invention, the control means includes: a first amplifier that amplifies the commercial current detection signal; and a second amplifier that amplifies the commercial voltage detection signal. The control of the charge amount of the compensation current supply means is performed by gain control of the second amplifier based on a terminal voltage of the compensation current supply means.
この発明によれば、 商用電流検出信号を増幅する第 1の増幅器と、 商用電圧検 出信号を増幅する第 2の増幅^とを備えた制御手段は、 補償電流供給手段の端子 電圧に基づいた第 2の増幅器の利得を制御することにより、 補償電流供給手段の 充電量の制御を行う。  According to the present invention, the control means including the first amplifier for amplifying the commercial current detection signal and the second amplification ^ for amplifying the commercial voltage detection signal is based on the terminal voltage of the compensation current supply means. By controlling the gain of the second amplifier, the charge amount of the compensation current supply means is controlled.
つぎの発明にかかるアクティブフィルタ装置にあっては、 前記補償電流供給手 段は、 コンデンサで構成されることを特徴とする。  In the active filter device according to the next invention, the compensation current supply means is constituted by a capacitor.
この発明によれば、 コンデンサを用いてアクティブフィルタ装置を簡易に構成 することができる。  According to the present invention, an active filter device can be easily configured using a capacitor.
つぎの発明にかかるアクティブフィルタ装置にあっては、 前記制御手段は、 前 記商用電流検出信号を増幅する第 1の増幅器と、 前記商用電圧検出信号を増幅す る第 2の増幅器とを備え、 前記ィンバータが行う前記補償電流の送出ノ引込の制 御が、 この補償電流に基づいた前記第 1の増幅器の利得制御によつて行われるこ とを特 ίϋ (とする。  In the active filter device according to the next invention, the control means includes: a first amplifier that amplifies the commercial current detection signal; and a second amplifier that amplifies the commercial voltage detection signal. It is characterized in that the control of sending out of the compensation current performed by the inverter is performed by gain control of the first amplifier based on the compensation current.
この発明によれば、 商用電流検出信号を増幅する第 1の増幅器と、 商用電圧検 出信号を増幅する第 2の増幅器とを備えた制御手段は、 補償電流に基づレ、た第 1 の増幅器の利得制御により、 ィンバータが行う補償電流の送出 Z引込の制御を行 つぎの発明にかかるアクティブフィルタ装置にあっては、 前記制御手段は、 前 記商用電流検出信号を増幅する第 1の増幅器と、 前記商用電圧検出信号を増幅す る第 2の増幅器と、 前記補償電流の電流成分を検出する補償電流検出手段とを備 え、 前記補償電流供給手段の充電量の制御が、 この補償電流供給手段の端子電圧 に基づレ、た前記第 2の増幅器の利得制御によつて行われ、 前記ィンバータが行う 前記補償電流の送出 Z引込の制御が、 前記補償電流検出手段が検出した電流成分 に基づいた前記第 1の増幅器の利得制御によつて行われることを特徴とする。 この発明によれば、 商用電流検出信号を増幅する第 1の増幅器と、 商用電圧検 出信号を増幅する第 2の増幅器とを備えた制御手段は、 電流供給手段の端子電圧 に基づレ、た第 2の増幅器の利得を制御することにより、 電流供給手段の充電量の 制御を行う。 また、 制御手段は、 補償電流に基づいた第 1の増幅器の利得制御に より、 ィンバータが行う補償電流の送出 引込の制御を行う。 According to the present invention, the first amplifier for amplifying the commercial current detection signal and the commercial voltage detection The control means including the second amplifier for amplifying the output signal controls the Z-pull-in of the compensation current, which is performed by the inverter, by controlling the gain of the first amplifier based on the compensation current. In the active filter device according to the present invention, the control means includes: a first amplifier that amplifies the commercial current detection signal; a second amplifier that amplifies the commercial voltage detection signal; and a current of the compensation current. And compensating current detecting means for detecting a component, wherein the control of the amount of charge of the compensating current supplying means is performed by controlling the gain of the second amplifier based on the terminal voltage of the compensating current supplying means. The control of the output of the compensation current and the Z-pull-in performed by the inverter is performed by gain control of the first amplifier based on the current component detected by the compensation current detection means. According to the present invention, the control means including the first amplifier for amplifying the commercial current detection signal and the second amplifier for amplifying the commercial voltage detection signal comprises: By controlling the gain of the second amplifier, the charge amount of the current supply means is controlled. Further, the control means controls transmission and pull-in of the compensation current performed by the inverter by performing gain control of the first amplifier based on the compensation current.
つぎの発明にかかるアクティブフィルタ装置にあっては、 商用電源に接続され た負荷から発生する位相遅れノ進み電流を補償するための補償電流の送出/引込 を行うィンバータと、 このィンバータの直流側に接続されて前記補償電流の供給 源となる補償電流供給手段と、 前記ィンバ一タを制御するための制御手段とを備 えたアクティブフィルタ装置において、 前記制御手段は、 前記商用電源に流れる 電流成分を検出する商用電流検出手段と、 前記商用電源の電圧成分を検出する商 用電圧検出手段とを備え、 前記商用電流検出手段が検出した商用電流検出信号と 前記商用電圧検出手段が検出した商用電圧検出信号との合成信号に基づいて前記 ィンバータを制御することを特徴とする。  In the active filter device according to the next invention, there is provided an inverter for transmitting / drawing in a compensation current for compensating for a phase lag advance current generated from a load connected to a commercial power supply, and a DC side of the inverter. In an active filter device comprising: a compensating current supply unit connected as a supply source of the compensation current; and a control unit for controlling the inverter, the control unit converts a current component flowing to the commercial power supply into A commercial current detection means for detecting the voltage component of the commercial power supply, a commercial current detection signal detected by the commercial current detection means, and a commercial voltage detection signal detected by the commercial voltage detection means. The inverter is controlled based on a combined signal with the signal.
この発明によれば、 商用電源に流れる電流成分を検出する商用電流検出手段と、 商用電源の電圧成分を検出する商用電圧検出手段とを備えた制御手段は、 商用電 流検出手段が検出した商用電流検出信号と商用電圧検出手段が検出した商用電圧 検出信号との合成信号に基づいてィンバータを制御する。 According to this invention, the control means including the commercial current detecting means for detecting the current component flowing to the commercial power supply and the commercial voltage detecting means for detecting the voltage component of the commercial power supply, Current detection signal and commercial voltage detected by commercial voltage detection means The inverter is controlled based on the combined signal with the detection signal.
つぎの発明にかかるアクティブフィルタ装置にあっては、 前記制御手段は、 前 記ィンバータの直流側に接続された前記補償電流供給手段の端子電圧の変化に基 づいて、 この補償電流供給手段の充電 z放電を制御することを特徴とする。  In the active filter device according to the next invention, the control means is configured to charge the compensation current supply means based on a change in terminal voltage of the compensation current supply means connected to the DC side of the inverter. Controlling z discharge.
この発明によれば、 制御手段は、 インバータの直流側に接続された補償電流供 給手段の端子電圧の変化に基づいて補償電流供給手段の充電 Z放電を制御する。 つぎの発明にかかるアクティブフィルタ装置にあっては、 前記制御手段は、 前 記商用電流検出信号を増幅する第 1の増幅器と、 前記商用電圧検出信号を増幅す る第 2の増幅器と、 前記補償電流の電流成分を検出する補償電流検出手段とを備 え、 前記補償電流供給手段の充電量の制御が、 この補償電流供給手段の端子電圧 に基づレ、た前記第 2の増幅^の利得制御によつて行われ、 前記ィンバータが行う 前記補償電流の送出 引込の制御が、 前記補償電流検出手段が検出した電流成分 に基づいた前記第 1の増幅器の利得制御によって行われることを特徴とする。 この発明によれば、 商用電流検出信号を増幅する第 1の増幅器と、 商用電圧検 出信号を増幅する第 2の増幅^とを えた制御手段は、 補償電流供給手段の端子 電圧に基づレ、た第 2の増幅器の利得を制御することにより、 補償電流供給手段の 充電量の制御を行う。 また、 制御手段は、 補償電流に基づいた第 1の増幅器の禾 IJ 得制御により、 ィンバータが行う補償電流の送出/引込の制御を行う。 図面の簡単な説明  According to this invention, the control means controls the charge Z discharge of the compensation current supply means based on the change in the terminal voltage of the compensation current supply means connected to the DC side of the inverter. In the active filter device according to the next invention, the control means includes: a first amplifier that amplifies the commercial current detection signal; a second amplifier that amplifies the commercial voltage detection signal; A compensating current detecting means for detecting a current component of the current, wherein a control of a charge amount of the compensating current supplying means is based on a terminal voltage of the compensating current supplying means. The compensation is performed by the inverter, and the control of the sending and drawing of the compensation current performed by the inverter is performed by a gain control of the first amplifier based on a current component detected by the compensation current detection unit. . According to the present invention, the control means including the first amplifier for amplifying the commercial current detection signal and the second amplifier for amplifying the commercial voltage detection signal is based on the terminal voltage of the compensation current supply means. In addition, by controlling the gain of the second amplifier, the charge amount of the compensation current supply means is controlled. Further, the control means controls the sending / drawing-in of the compensation current performed by the inverter by the IJ gain control of the first amplifier based on the compensation current. Brief Description of Drawings
第 1図は、 この発明の実施の形態にかかる回路構成を示す図であり、 第 2 A図 は、 アクティブフィルタ装置の主要部の電圧信号または電流信号の波形を示す図 であり、 第 2 B図は、 双方向インバータへの入力信号の波形を示す図であり、 第 3図は、 負荷に高調波を含んだ負荷電流が流れた場合に双方向インバータ I N V 1の補償電流によって商用電流が改善される様子を示す説明図であり、 第 4図は、 負荷に位相が遅れた位相遅れ電流が流れた場合に双方向インバータ I N V 1の補 償電流によつて位相遅れが改善される様子を示す説明図である。 発明を実施するための最良の形態 FIG. 1 is a diagram showing a circuit configuration according to an embodiment of the present invention. FIG. 2A is a diagram showing waveforms of a voltage signal or a current signal of a main part of the active filter device, and FIG. The figure shows the waveform of the input signal to the bidirectional inverter.The figure 3 shows that the commercial current is improved by the compensation current of the bidirectional inverter INV 1 when a load current containing harmonics flows through the load. Fig. 4 shows how the phase lag is improved by the compensation current of the bidirectional inverter INV1 when a phase lag current with a phase lag flows through the load. FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下に添付図面を参照して、 本発明にかかるアクティブフィルタ装置の好適な 実施の形態を詳細に説明する。 なお、 この実施の形態により本発明が限定される ものではない。  Hereinafter, preferred embodiments of an active filter device according to the present invention will be described in detail with reference to the accompanying drawings. The present invention is not limited by the embodiment.
実施の形態 1. Embodiment 1.
第 1図は、 この発明の実施の形態にかかる回路構成を示す図である。 同図にお レ、て、 入力端子と出力端子とをそれぞれ有したアクティブフィルタ装置 10は、 電圧トランス PT、 電流トランス CT1、 CT2、 可変利得電圧制御アンプ AG C l、 AGC2、 反転回路 PR 1、 加算回路 SUM 1、 双方向インバータ I NV 1、 ダイオード D 1およびコンデンサ C 1、 C 2を備えている。 アクティブフィ ルタ装置 10の入力端子には商用電源が接続され、 出力端子には負荷が接続され ている。  FIG. 1 is a diagram showing a circuit configuration according to an embodiment of the present invention. Referring to FIG. 1, an active filter device 10 having an input terminal and an output terminal includes a voltage transformer PT, current transformers CT1 and CT2, variable gain voltage control amplifiers AGCl and AGC2, an inverting circuit PR1 and It has an adder circuit SUM1, a bidirectional inverter I NV1, a diode D1, and capacitors C1 and C2. A commercial power supply is connected to the input terminal of the active filter device 10, and a load is connected to the output terminal.
つぎに、 実施の形態にかかるアクティブフィルタ装置 10の回路構成について 説明する。 第 1図において、 電圧トランス PTは、 一次巻線および二次卷線を備 えている。 電圧トランス PTの一次卷線は、 アクティブフィルタ装置 10内の電 源ラインに接続される。 また、 二次卷線は、 反転回路 PR 1に接続される。 電流 トランス CT1は、 アクティブフィルタ装置 10内の電源ラインの一端上で、 電 源ラインに挿入させることなく電源ラインに流れる電流を検出するため、 電源ラ イン (給電線) を挾み込んで接続される。 加算回路 SUM 1は、 入力側が電流卜 ランス C T 1に接続された可変利得電圧制御アンプ AG C 1と反転回路 P R 1に 接続された可変利得電圧制御ァンプ A G C 2とに接続され、 出力側は双方向ィン バータ I NV1と接続さ る。  Next, a circuit configuration of the active filter device 10 according to the embodiment will be described. In FIG. 1, the voltage transformer PT has a primary winding and a secondary winding. The primary winding of the voltage transformer PT is connected to a power supply line in the active filter device 10. The secondary winding is connected to the inverting circuit PR1. The current transformer CT1 is connected to one end of the power supply line in the active filter device 10 so as to detect a current flowing through the power supply line without being inserted into the power supply line. You. The summing circuit SUM 1 has its input side connected to the variable gain voltage control amplifier AGC 1 connected to the current transformer CT 1 and the variable gain voltage control amplifier AGC 2 connected to the inverting circuit PR 1, and has both output sides. Inverter I Connect to NV1.
双方向ィンバータ I N V 1は、 一対の直流側端子 DT 1、 D T 2と、 一対の交 流側端子 A T 1、 A T 2とを備えている。 双方向インバータ I N V 1の交流側端 子 AT 1は、 一方の電源ラインに接続され、 交流側端子 AT 2は、 他方の電源ラ ィンに接続される。 双方向ィンバ一タ I N V 1の直流側端子 D T 1は、 コンデン サ C 1の一端と接続され、 直流側端子 D T 2は、 コンデンサ C 1の他端 (同時に 回路グランドにも接地されている接地端) に接続される。 また、 双方向インバー タ I N V 1の直流側端子 D T 1と接続されたコンデンサ C 1の一端は、 可変利得 電圧制御アンプ A G C 2にも接続される。 双方向ィンバータ I NV 1の直流側端 子 D T 1と一方の電源ラインとを接続するライン上には、 ダイォード D 1のァノ ードと接続された電流トランス C T 2力;、 このラインを挟み込んで接続される。 ダイォード D 1の力ソードは、 可変利得電圧制御アンプ A G C 1に接続されると ともに、 コンデンサ C 2の一端にも接続される。 コンデンサ C 2の他端は、 コン デンサ C 1と同様に回路グランドに設置される。 The bidirectional inverter INV 1 has a pair of DC terminals DT 1 and DT 2 and a pair of AC terminals AT 1 and AT 2. The AC side terminal AT1 of the bidirectional inverter INV1 is connected to one power supply line, and the AC side terminal AT2 is connected to the other power supply line. The DC terminal DT 1 of the bidirectional inverter INV 1 The DC terminal DT2 is connected to the other end of the capacitor C1 (the ground terminal which is also grounded to the circuit ground). One end of the capacitor C1 connected to the DC terminal DT1 of the bidirectional inverter INV1 is also connected to the variable gain voltage control amplifier AGC2. On the line connecting the DC side terminal DT1 of the bidirectional inverter I NV1 and one power supply line, a current transformer CT2 connected to the diode D1 node; Connected by The force sword of the diode D1 is connected to the variable gain voltage control amplifier AGC1 and also to one end of the capacitor C2. The other end of the capacitor C2 is set to the circuit ground similarly to the capacitor C1.
つぎに、 第 1図に示すアクティブフィルタ装置 1 0の動作について説明する。 同図に図示した I 1、 ί 2、 I 3は、 それぞれ、 商用電源側に流れる商用電流、 双方向ィンバータ I NV 1から出力されるインバータ電流、 負荷側に流れる負荷 電流を表している。 ところで、 同図からも明らかなように、 商用電源と負荷との 間には、 商用電源を給電する電源ライン上に電流トランス C T 1が存在するのみ である。 電流トランス C T 1は、 電源ラインに挿入されることなく、 負荷に流れ る電流を検出するものであり、 商用電源と負荷との間の動作に影響を与えること はない。 したがって、 このアクティブフィルタ装置 1 0が商用電源や負荷に対し て何も作用しないとき、 すなわち、 インバータ電流 I 2が流れないときは、 商用 電流がそのまま負荷電流となる。  Next, the operation of the active filter device 10 shown in FIG. 1 will be described. I1, ί2, and I3 shown in the figure represent a commercial current flowing on the commercial power supply side, an inverter current output from the bidirectional inverter I NV1, and a load current flowing on the load side, respectively. By the way, as is clear from the figure, only the current transformer C T1 exists on the power supply line for supplying the commercial power between the commercial power and the load. The current transformer CT1 detects the current flowing through the load without being inserted into the power supply line, and does not affect the operation between the commercial power supply and the load. Therefore, when the active filter device 10 does not act on the commercial power supply or the load, that is, when the inverter current I2 does not flow, the commercial current becomes the load current as it is.
第 1図において、 電圧トランス Ρ Τは、 商用電源が供給した電源電圧 V i nを 検出し、 電流トランス C T 1は、 電源ラインに流れる商用電流 1 1を検出する。 電圧トランス P Tで検出された電圧信号は、 反転回路 P R 1で反転され、 可変利 得電圧制御アンプ A G C 2に入力される。 一方、 電流トランス C T 1で検出され た電流信号は、 そのまま可変利得電圧制御アンプ A G C 1に入力される。 これら の信号は、 可変利得電圧制御アンプ AG C 1、 A G C 2によって増幅され、 加算 回路 S UM 1で加算され、 双方向ィンバータ I NV 1への入力信号として加算回 路 S UM 1から出力される。 双方向ィンバータ I N V 1の直流側端子 D T 1、 D T 2に接続されたコンデン サ C 1は、 所定の直流電圧を保持するためのものである。 また、 コンデンサ C 1 は、 双方向ィンバータ I N V 1が電源ラインに流すィンバータ電流 I 2の供給源 である。 コンデンサ C 1では、 インバータ電流 I 2の流れる方向に応じた充電動 作と放電動作とが交互に行われる。 すなわち、 インバータ電流 I 2が第 1図に示 す向きの場合 (商用電流 I 1に対してィンバータ電流 I 2を供給するように動作 する場合) には、 コンデンサ C 1は放電動作を行う。 インバータ電流 I 2が第 1 図に示す向きと逆の場合 (商用電流 I 1からインバータ電流 I 2を引き込むよう に動作する場合) には、 コンデンサ C 1は充電動作を行う。 In FIG. 1, a voltage transformer Ρ detects a power supply voltage Vin supplied from a commercial power supply, and a current transformer CT 1 detects a commercial current 11 flowing in a power supply line. The voltage signal detected by the voltage transformer PT is inverted by the inverting circuit PR1, and is input to the variable gain voltage control amplifier AGC2. On the other hand, the current signal detected by the current transformer CT 1 is directly input to the variable gain voltage control amplifier AGC 1. These signals are amplified by the variable gain voltage control amplifiers AGC1 and AGC2, added by the addition circuit SUM1, and output from the addition circuit SUM1 as an input signal to the bidirectional inverter I NV1. . The capacitor C1 connected to the DC terminals DT1 and DT2 of the bidirectional inverter INV1 is for holding a predetermined DC voltage. Further, the capacitor C 1 is a supply source of the inverter current I 2 that the bidirectional inverter INV 1 flows through the power supply line. In the capacitor C1, a charging operation and a discharging operation are performed alternately according to the direction in which the inverter current I2 flows. That is, when the inverter current I2 is in the direction shown in Fig. 1 (when the inverter current I2 operates so as to supply the inverter current I2 to the commercial current I1), the capacitor C1 performs a discharging operation. When the inverter current I2 is opposite to the direction shown in Fig. 1 (when the inverter current I2 is drawn from the commercial current I1), the capacitor C1 performs a charging operation.
双方向ィンバータ Ί N V 1の交流側端子 A T 1、 A T 2には加算回路 S UM 1 力 ^出力される出力信号に基づいた所定の電圧が発生し、 交流側端子 A T 1から 所定のインバータ電流 I 2が流れ、 電源ラインに供給される。 第 1図から明らか なように、 商用電流 I 1、 ィンバータ電流 I 2および負荷電流 I 3との間には、 1 3 = 1 1 + 1 2の関係がある。 この式が意味するところは、 商用電源と双方向 インバータ I N V 1とが負荷に供給する電流を分配するということにある。 とこ ろで、 負荷には、 負荷自体に依存した多様な電流が流れる。 例えば、 負荷には高 調波が重畳した電流や位相遅れ 進みの電流が流れるが、 これらの高調波電流や 位相遅れ/進み電流の補償をインバータ電流 I 2が受け持つことによって、 商用 電源に流れる商用電流 I 1の波形を改善することができる。 この作用により、 商 用電源側の力率を改善したり利用効率を向上させることができるのである。 なお、 このィンバータ電流 I 2が供給される動作については後述する。  Bidirectional inverter 加 算 Adder circuit S UM 1 output at the AC side terminals AT 1 and AT 2 of NV 1 ^ A predetermined voltage is generated based on the output signal that is output, and the predetermined inverter current I from AC side terminal AT 1 2 flows and is supplied to the power line. As is evident from FIG. 1, there is a relationship of 1 3 = 1 1 + 1 2 between the commercial current I 1, the inverter current I 2 and the load current I 3. This means that the commercial power supply and the two-way inverter I N V 1 distribute the current supplied to the load. At this point, various currents flow through the load depending on the load itself. For example, a load superimposed with harmonics and a phase-lagging / leading current flows through the load.The inverter current I2 takes charge of these harmonic currents and the phase-lagging / leading current, and the The waveform of the current I1 can be improved. By this effect, the power factor on the commercial power supply side can be improved and the usage efficiency can be improved. The operation of supplying the inverter current I2 will be described later.
電流トランス C T 2は、 双方向インバータ I N V 1が供給するインバータ電流 I 2の電流を検出する。 この検出電流は、 ダイオード D 1を通じてコンデンサ C 2に充電される。 コンデンサ C 2に充電された電圧は、 可変利得電圧制御アンプ A G C 1の制御信号として用いられる。 この制御信号は、 インバータ電流 I 2の 電流垂下用制御信号として、 すなわち、 インバータ電流 I 2が双方向インバータ I N V 1が供給できる許容能力を超えた場合にィンバータ電流 I 2を急激に遮断 (電源ラインに供給しない) するためのものである。 したがって、 コンデンサ C 2に充電された電圧が所定の電圧値を越えた場合には、 可変利得電圧制御アンプ A G C 1の利得が下げられ、 加算回路 S UM 1への供給信号は小さくなる。 なお、 コンデンサ C 2に充電された電圧は、 コンデンサ C 2の容量値や、 図示しない抵 抗、 可変利得電圧制御ァンプ A G C 1の入カインピーダンスなどによつて決まる 時定数に基づき、 所定の周期ごと (例えば、 商用電源の 1周期ごと) に放電され る。 . The current transformer CT2 detects the current of the inverter current I2 supplied by the bidirectional inverter INV1. This detection current is charged to the capacitor C2 through the diode D1. The voltage charged in the capacitor C2 is used as a control signal for the variable gain voltage control amplifier AGC1. This control signal is used as a current drooping control signal for the inverter current I 2, that is, when the inverter current I 2 exceeds the allowable capacity that the bidirectional inverter INV 1 can supply, the inverter current I 2 is suddenly cut off. (Not supplied to the power line). Therefore, when the voltage charged in the capacitor C2 exceeds a predetermined voltage value, the gain of the variable gain voltage control amplifier AGC1 is reduced, and the signal supplied to the addition circuit SUM1 is reduced. The voltage charged in the capacitor C2 is determined at predetermined intervals based on a capacitance value of the capacitor C2, a time constant determined by a resistor (not shown), an input impedance of the variable gain voltage control amplifier AGC1, and the like. (Eg, every commercial power cycle). .
一方、 コンデンサ C 1に充電された電圧は、 可変利得電圧制御アンプ A G C 2 の制御信号として用いられる。 この制御信号は、 コンデンサ C 1に充電されてい る充電量の制御のために可変利得電圧制御アンプ A G C 2に供給されるものであ る。 後述するインバータ電流 I 2の動作説明で明らかにするが、 加算回路 S UM 1からの出力が負の場合にはコンデンサ C 1が充電され、 逆に、 加算回路 S UM 1からの出力が正の場合には、 コンデンサ C 1から放電電流が流れる。 したがつ て、 コンデンサ C 1の電圧が大きいときには、 可変利得電圧制御アンプ A G C '2 の利得が下がるように制御され、 逆に、 コンデンサ C 1の電圧が小さいときには、 可変利得電圧制御アンプ A G C 2の利得が上がるように制御される。 また、 可変 利得電圧制御ァンプ A G C 1の利得がコンデンサ C 2の電圧に基づいて急激に制 御されるのに対し、 可変利得電圧制御ァンプ A G C 2の利得は、 コンデンサ C 1 の端子電圧に応じて連続的に制御される。  On the other hand, the voltage charged in the capacitor C1 is used as a control signal for the variable gain voltage control amplifier AGC2. This control signal is supplied to the variable gain voltage control amplifier AGC2 for controlling the amount of charge charged in the capacitor C1. As will be clarified in the description of the operation of the inverter current I2 described later, when the output from the adding circuit SUM1 is negative, the capacitor C1 is charged, and conversely, when the output from the adding circuit SUM1 is positive. In this case, a discharge current flows from the capacitor C1. Therefore, when the voltage of the capacitor C1 is large, the gain of the variable gain voltage control amplifier AGC '2 is controlled to decrease. Conversely, when the voltage of the capacitor C1 is small, the variable gain voltage control amplifier AGC2 is controlled. Is controlled so as to increase the gain. Also, while the gain of the variable gain voltage control pump AGC1 is rapidly controlled based on the voltage of the capacitor C2, the gain of the variable gain voltage control pump AGC2 is changed according to the terminal voltage of the capacitor C1. It is controlled continuously.
第 2 Λ図は、 アクティブフィルタ装置 1 0の主要部の電圧信号または電流信号 の波形を示す図であり、 第 2 B図は、 双方向ィンバータ I N V 1への入力信号の 波形を示す図である。 第 2 A図において、 細い実線で示した部分、 すなわち信号 K 1は、 電圧トランス P Tによって検出された商用電源の電圧信号である。 また、 太レ、実線で示した部分、 すなわち信号 K 2は、 電流トランス C T 1で検出された 電流信号である。 また、 この電流信号である信号 K 2のうち、 信号 K 3の部分は、 負荷に生じた高調波電流によるものである。 一方、 破線で示した部分、 すなわち 信号 4は、 反転回路 P R 1によつて反転された反転波形である。 信号 2が可変利得電圧制御ァンプ A G C 1に入力され、 信号 4が可変利得 電圧制御ァンプ A G C 2に入力され、 可変利得電圧制御ァンプ A G C 1および可 変利得電圧制御ァンプ A G C 2がそれぞれ所定の利得に設定されると、 加算回路 S UM 1から第 2 B図に示す信号が出力される。 このとき、 双方向インバータ I N V 1の通常の機能によって、 この信号が正のときは、 同図に示す電流に比例し たインバータ電流 I 2が双方向インバータ I N V 1から電源ラインに向かって供 給される。 逆に、 この信号が負のときは、 同図に示す電流に比例したインバータ 電流. I 2が電源ラインから双方向インバータ I NV 1側に引き抜かれる。 さらに 第 2 B図を用いて詳細に説明すると、 網掛けの L 1の部分では電流が引き抜かれ、 '網掛けの L 2の部分では電流が供給される。 これらの動作に連動して、 コンデン サ C 1は、 充電または放電の動作をそれぞれ行う。 すなわち、 L 1の部分では、 電源ラインから引き抜かれたインバータ電流 I 2によってコンデンサ C 1が充電 され、 L 2の部分では、 コンデンサ C 2から放電される電流により、 電源ライン に向かうインバータ電流 I 2が供給される。 FIG. 2 is a diagram showing a waveform of a voltage signal or a current signal of a main part of the active filter device 10, and FIG. 2B is a diagram showing a waveform of an input signal to the bidirectional inverter INV1. . In FIG. 2A, a portion shown by a thin solid line, that is, a signal K1 is a voltage signal of a commercial power supply detected by the voltage transformer PT. The portion indicated by the thick line and the solid line, that is, the signal K2 is a current signal detected by the current transformer CT1. The signal K3 in the signal K2, which is the current signal, is due to the harmonic current generated in the load. On the other hand, the portion shown by the broken line, that is, the signal 4 is an inverted waveform inverted by the inverting circuit PR1. Signal 2 is input to the variable gain voltage control amplifier AGC 1 and signal 4 is input to the variable gain voltage control amplifier AGC 2 so that the variable gain voltage control amplifier AGC 1 and the variable gain voltage control amplifier AGC 2 each have a predetermined gain. When set, the signal shown in FIG. 2B is output from the adder circuit SUM1. At this time, due to the normal function of the bidirectional inverter INV1, when this signal is positive, the inverter current I2 proportional to the current shown in the figure is supplied from the bidirectional inverter INV1 toward the power supply line. You. Conversely, when this signal is negative, the inverter current .I2 proportional to the current shown in the figure is drawn from the power supply line to the bidirectional inverter INV1. More specifically, referring to FIG. 2B, the current is extracted in the shaded L1 portion, and the current is supplied in the shaded L2 portion. In conjunction with these operations, the capacitor C1 performs charging or discharging operations, respectively. That is, in the portion of L1, the capacitor C1 is charged by the inverter current I2 drawn from the power supply line, and in the portion of L2, the inverter current I2 toward the power supply line is discharged by the current discharged from the capacitor C2. Is supplied.
第 3図は、 負荷に高調波を含んだ負荷電流が流れた場合に双方向インバータ I N V 1の補償電流によって商用電流が改善される様子を示す説明図である。 同図 において、 (a ) は電源電圧 (V i n ) の波形を示し、 (b ) は (a ) の電源電 圧の反転信号の波形を示し、 (c ) は高調波を含んだ負荷電流の波形を示し、 ( d ) は双方向ィンバータ I N V 1から抽出された補償電流の波形を示し、 ( e ) は最終的な商用電流の波形を示している。  FIG. 3 is an explanatory diagram showing how the commercial current is improved by the compensation current of the bidirectional inverter I NV1 when a load current including harmonics flows through the load. In the figure, (a) shows the waveform of the power supply voltage (V in), (b) shows the waveform of the inverted signal of the power supply voltage of (a), and (c) shows the waveform of the load current including harmonics. (D) shows the waveform of the compensation current extracted from the bidirectional inverter INV1, and (e) shows the waveform of the final commercial current.
電圧トランス P Tは、 第 3図 ( a ) に示す信号を検出し、 反転回路 P R 1は、 同図 (b ) に示す信号を生成する。 一方、 電流トランス C T 1は、 同図 ( に 示す信号を検出する。 この検出信号は、 高調波を含んだ負荷電流 I 3が商用電源 側を流れた瞬間の商用電流 I 1を検出したものである。 これらの同図 (b ) およ び同図 (c ) に示す信号が、 可変利得電圧制御アンプ A G C 2および可変利得電 圧制御ァンプ A G C 1にそれぞれ入力され、 可変利得電圧制御アンプ AG C 1お よび可変利得電圧制御アンプ A G C 2のそれぞれの利得が適正に制御されること で、 上述した動作に従って、 双方向インバータ I N V 1から同図 (d ) に示す補 償電流 (インバータ電流 1 2 ) が電源ラインに供給される。 このように、 高調波 電流を含んだ負荷電流 I 3が負荷に流れ、 この高調波電流が商用電源側に流れた とき、 商用電源側の商用電流 I 1の変化が検出され、 この変化成分がィンバ一タ 電流 I 2によって補償される。 その結果、 商用電流 I 1は、 同図 ( e ) に示すよ うな正弦波形の電流が流れるようになる。 The voltage transformer PT detects the signal shown in FIG. 3 (a), and the inverting circuit PR1 generates the signal shown in FIG. 3 (b). On the other hand, the current transformer CT 1 detects the signal shown in the figure (). This detection signal is obtained by detecting the commercial current I 1 at the moment when the load current I 3 including the harmonic flows on the commercial power supply side. The signals shown in FIGS. 3B and 3C are respectively input to the variable gain voltage control amplifier AGC 2 and the variable gain voltage control amplifier AGC 1 and the variable gain voltage control amplifier AG C 1 and the gain of the variable gain voltage control amplifier AGC 2 are properly controlled. Then, according to the above-described operation, the compensation current (inverter current 12) shown in FIG. 11D is supplied from the bidirectional inverter INV1 to the power supply line. As described above, when the load current I3 including the harmonic current flows to the load and the harmonic current flows to the commercial power supply, a change in the commercial current I1 on the commercial power supply is detected, and this change component is detected. Compensated by the inverter current I2. As a result, as the commercial current I1, a current having a sinusoidal waveform as shown in FIG.
第 4図は、 負荷に位相が遅れた位相遅れ電流が流れた場合に双方向ィンバータ I NV 1の補償電流によって位相遅れが改善される様子を示す説明図である。 同 図において、 (a ) は電源電圧 (V i n ) の波形を示し、 (b ) は (a ) の電源 電圧の反転信号の波形を示し、 (c ) は遅れ電流の波形を示し、 (d ) は双方向 ィンバータ I N V 1から抽出された補償電流の波形を示し、 ( e ) は最終的な商 用電流の波形を示している。  FIG. 4 is an explanatory diagram showing how the phase lag is improved by the compensation current of the bidirectional inverter I NV1 when a phase lag current with a phase lag flows through the load. In the figure, (a) shows the waveform of the power supply voltage (V in), (b) shows the waveform of the inverted signal of the power supply voltage of (a), (c) shows the waveform of the delay current, and (d) () Shows the waveform of the compensation current extracted from the bidirectional inverter INV1, and (e) shows the waveform of the final commercial current.
この場合においても、 商用電源側に高調波電流が流れたときと全く同じ動作が 行われ、 双方向ィンバータ I NV 1の補償電流によって、 商用 源側の波形が改 善される。 この波形改善は、 双方向インバータ 1 N V 1の補償電流によって行わ れるので、 負荷に流れる電流がどのような波形の電流であっても構わない。 例え ば、 負荷に流れる電流が、 進み電流であっても、 また、 高調波電流と遅れ電流ま たは進み電流が同時に発生する場合であっても、 商用電流の波形を改善すること ができる。  Also in this case, the same operation as when a harmonic current flows on the commercial power supply side is performed, and the waveform on the commercial power supply side is improved by the compensation current of the bidirectional inverter INV1. This waveform improvement is performed by the compensation current of the bidirectional inverter 1 NV1, so that the current flowing to the load may be any waveform current. For example, the waveform of the commercial current can be improved even if the current flowing through the load is a leading current, or if the harmonic current and the lagging current or the leading current occur simultaneously.
このように、 負荷に発生した高調波電流や遅れ 進み電流が商用電源側に流れ るときに、 商用電源側に流れたこれらの電流を検出し、 これらの電流を双方向ィ ンバータ I N V 1が補償するように動作するので、 商用電源側に流れる電流信号 の高調波成分を除去するとともに、 遅れ 進み電流を補償することができ、 商用 電流の波形を改善することができる。 また、 コンデンサ C 1は、 充電または放電 を交互に行うように動作するので、 大容量のコンデンサを用いることなく回路を 実現することができる。 また、 コンデンサ C 1およびコンデンサ C 2の電圧に基 づいて、 それぞれ、 可変利得電圧制御ァンプ A G C 2および可変利得電圧制御ァ ンプ A G C 1の利得を制御するようにしているので、 双方向インバータ I N V 1 の能力に応じた適正なィンバータ電流 I 2を電源ラインに供給することができる。 以上説明したように、 この実施の形態によれば、 商用電源に接続された負荷か ら発生する高調波電流を補償するための補償電流の送出 Z引込を行うインバータ と、 ィンバータの直流側に接続されて補償電流の供給源となる補償電流供給手段 と、 ィンバータを制御するための商用電流検出手段および商用電圧検出手段を備 えた制御手段とが備えられ、 商用電流検出手段が検出した商用電流検出信号と商 用電圧検出手段が検出した商用電圧検出信号との合成信号に基づいてインバータ を制御するようにしているので、 負荷に流れる電流によって商用電源側にどのよ うな波形の電流が流れたとしても、 商用電流の波形を改善することができるとい う効果を奏する。 In this way, when the harmonic current or the lagging advance current generated in the load flows to the commercial power supply, these currents flowing to the commercial power supply are detected, and these currents are compensated by the bidirectional inverter INV 1. As a result, the harmonic component of the current signal flowing to the commercial power supply can be removed, and the lag-lead current can be compensated, and the waveform of the commercial current can be improved. Also, since the capacitor C1 operates so as to alternately charge or discharge, a circuit can be realized without using a large-capacity capacitor. Also, based on the voltages of the capacitors C1 and C2, the variable gain voltage control amplifier AGC2 and the variable gain voltage control Since the gain of the amplifier AGC 1 is controlled, an appropriate inverter current I 2 according to the capability of the bidirectional inverter INV 1 can be supplied to the power supply line. As described above, according to the present embodiment, an inverter that sends out a compensation current for compensating for a harmonic current generated from a load connected to a commercial power supply, and a Z-pull-in inverter, and is connected to the DC side of the inverter And a control means provided with a commercial current detecting means and a commercial voltage detecting means for controlling the inverter. The commercial current detecting means detects the commercial current detected by the commercial current detecting means. Since the inverter is controlled based on the combined signal of the signal and the commercial voltage detection signal detected by the commercial voltage detection means, no matter what kind of waveform current flows to the commercial power supply due to the current flowing to the load This also has the effect that the waveform of the commercial current can be improved.
また、 この実施の形態によれば、 制御手段は、 インバータの直流側に接続され た補償電流供給手段の端子電圧の変化に基づいて補償電流供給手段の充電 放電 を制御するようにしているので、 補償電流供給手段の供給能力に応じた補償電流 の制御が実現できるという効果を奏する。  Further, according to this embodiment, the control means controls the charge / discharge of the compensation current supply means based on a change in the terminal voltage of the compensation current supply means connected to the DC side of the inverter. This has the effect that control of the compensation current according to the supply capability of the compensation current supply means can be realized.
また、 この実施の形態によれば、 商用電流検出信号を増幅する第 1の増幅器と、 商用電圧検出信号を増幅する第 2の増幅器とを備えた制御手段は、 電流供給手段 の端子電圧に基づいた第 2の増幅器の利得を制御することにより、 電流供給手段 の充電量の制御を行うとともに、 補償電流に基づレ、た第 1の増幅器の利得制御に より、 ィンバータが行う補償電流の送出 引込の制御を行うようにしているので、 波形解析等を行う必要がなく、 応答速度に優れるとともに、 装置が簡単かつ安価 に構成できるという効果を奏する。  Further, according to this embodiment, the control means including the first amplifier for amplifying the commercial current detection signal and the second amplifier for amplifying the commercial voltage detection signal is based on the terminal voltage of the current supply means. In addition to controlling the amount of charge of the current supply means by controlling the gain of the second amplifier, and transmitting the compensation current performed by the inverter by controlling the gain of the first amplifier based on the compensation current. Since the pull-in control is performed, there is no need to perform waveform analysis or the like, and it is possible to achieve an excellent response speed and an effect that the device can be configured simply and inexpensively.
なお、 ここでいうところの制御平段は、 電圧トランス P T、 電流トランス C T 1、 C Τ 2、 可変利得ァンプ A G C ].、 A G C 2、 反転回路 P R 1、 加算回路 S UM 1、 コンデンサ C l、 ダイオード D 1により実現される。  The control stage here is the voltage transformer PT, current transformer CT1, CΤ2, variable gain amplifier AGC]., AGC2, inverting circuit PR1, adding circuit SUM1, capacitor Cl, Implemented by diode D1.
また、 ここでいうところの、 商用電流検出手段は電流トランス C T 1に対応す る。 同様に、 商用電圧検出手段は電圧トランス P Tに対応し、 補償電流供給手段 はコンデンサ C 1に対応し、 第 1の増幅器は可変利得ァンプ A G C 2に対応し、 第 2の増幅器は可変利得ァンプ A G C 1に対 -応する。 In addition, the commercial current detection means here corresponds to the current transformer CT1. Similarly, the commercial voltage detection means corresponds to the voltage transformer PT, and the compensation current supply means Corresponds to the capacitor C1, the first amplifier corresponds to the variable gain amplifier AGC2, and the second amplifier corresponds to the variable gain amplifier AGC1.
産業上の利用可能性 Industrial applicability
以上のように、 本発明は、 商用電源と負荷との間に挿入され、 電流補償や、 力 率改善などを行うアクティブフィルタ装置として有用であり、 特に、 このような 電流補償や、 力率改善などを行う機能を簡易に構成し、 優れた応答速度性能を確 保したい場合などに適している。  INDUSTRIAL APPLICABILITY As described above, the present invention is useful as an active filter device that is inserted between a commercial power supply and a load to perform current compensation, power factor improvement, and the like. This function is suitable for simply configuring functions to perform such functions as to ensure excellent response speed performance.

Claims

請 求 の 範 囲 The scope of the claims
1 . 商用電源に接続された負荷から発生する高調波電流を補償するための補償 電流の送出 引込を行うィンバータと、 このィンバータの直流側に接続されて前 記補償電流の供給源となる補償電流供給手段と、 前記ィンバータを制御するため の制御手段とを備えたァクティブフィルタ装置において、 1. Compensation current for compensating for the harmonic current generated from the load connected to the commercial power supply. Inverter for drawing in. Compensation current connected to the DC side of this inverter and serving as the supply source of the compensation current. An active filter device comprising: a supply unit; and a control unit for controlling the inverter.
前記制御手段は、  The control means,
前記商用電源に流れる電流成分を検出する商用電流検出手段と、  Commercial current detecting means for detecting a current component flowing to the commercial power supply,
前記商用電源の電圧成分を検出する商用電圧検出手段と、  Commercial voltage detecting means for detecting a voltage component of the commercial power supply;
を備え、  With
前記商用電流検出手段が検出した商用電流検出信号と前記商用電圧検出手段が 検出した商用電圧検出信号との合成信号に基づいて前記ィンバータを制御するこ とを特徴とするアクティブフィルタ装置。 2 . 前記制御手段は、 前記インバータの直流側に接続された前記補償電流供給 手段の端子電圧の変化に基づいて、 この補償電流供給手段の充電/放電を制御す ることを特徴とする請求の範囲第 1項に記載のァクティブフィルタ装置。  An active filter device, wherein the inverter is controlled based on a composite signal of a commercial current detection signal detected by the commercial current detection means and a commercial voltage detection signal detected by the commercial voltage detection means. 2. The control means controls charging / discharging of the compensation current supply means based on a change in terminal voltage of the compensation current supply means connected to the DC side of the inverter. 2. The active filter device according to claim 1, wherein:
3 . 前記制御手段は、 3. The control means includes:
前記商用電流検出信号を増幅する第 1の増幅器と、  A first amplifier for amplifying the commercial current detection signal;
前記商用電圧検出信号を増幅する第 2の増幅器と、  A second amplifier for amplifying the commercial voltage detection signal;
を備え、  With
前記補償電流供給手段の充電量の制御が、 前記補償電流供給手段の端子電圧に 基づいた前記第 2の増幅器の利得制御によつて行われることを特徴とする請求の 範囲第 2項に記載のアクティブフィルタ装置。  3. The method according to claim 2, wherein the control of the charge amount of the compensation current supply means is performed by gain control of the second amplifier based on a terminal voltage of the compensation current supply means. Active filter device.
4 . 前記補償電流供給手段は、 コンデンサで構成されることを特徴とする請求 のの範範囲囲第第 22項項にに記記載載ののァァククテティィブブフフィィルルタタ装装置置。。 4. The compensation current supply means is composed of a capacitor. An apparatus as described in paragraph 22 below. .
55 .. 前前記記制制御御手手段段はは、、 55 .. The above-mentioned control means comprises:
前前記記商商用用電電流流検検出出信信号号をを増増幅幅すするる第第 11のの増増幅幅器器とと、、  An eleventh amplification amplifier for increasing the amplification of the commercial and commercial current detection detection signal;
前前記記商商用用電電圧圧検検出出信信号号をを増増幅幅すするる第第 22のの増増幅幅器器とと、、  A twenty-second multiplication amplifier for increasing the amplification of the commercial and commercial voltage detection detection signal;
をを備備ええ、、  Equipped with,
前前記記イインンババーータタがが行行うう前前記記補補償償電電流流のの送送出出ノノ引引込込のの制制御御がが、、 ここのの補補償償電電流流にに基基 づづいいたた前前記記第第 11のの増増幅幅器器のの利利得得制制御御にによよっってて行行わわれれるるここととをを特特徴徴ととすするる請請求求のの範範
Figure imgf000017_0001
The control of the sending and receiving of the supplementary compensation current flow of the supplementary compensation current flow is performed before the compensation battery current flow is performed by the inverter. The operation performed by the gain control of the eleventh amplification amplifier device according to the eleventh embodiment described above is a characteristic feature. Scope of the request
Figure imgf000017_0001
6 . 前記制御手段は、 6. The control means includes:
前記商用電流検出信号を増幅する第 1の増幅器と、  A first amplifier for amplifying the commercial current detection signal;
前記商用電圧検出信号を増幅する第 2の増幅器と、  A second amplifier for amplifying the commercial voltage detection signal;
前記補償電流の電流成分を検出する補償電流検出手段と、  Compensation current detection means for detecting a current component of the compensation current;
を備え、  With
前記補償電流供給手段の充電量の制御が、 この補償電流供給手段の端子電圧に 基づいた前記第 2の増幅器の利得制御によつて行われ、  The control of the charge amount of the compensation current supply means is performed by gain control of the second amplifier based on the terminal voltage of the compensation current supply means,
前記インバータが行う前記補償電流の送出 引込の制御が、 前記補償電流検出 手段が検出した電流成分に基づいた前記第 1の増幅器の利得制御によって行われ ることを特徴とする請求の範囲第 2項に記載のアクティブフィルタ装置。  3. The method according to claim 2, wherein the control of sending and drawing of the compensation current performed by the inverter is performed by a gain control of the first amplifier based on a current component detected by the compensation current detection unit. An active filter device according to item 1.
7 . 商用電源に接続された負荷から発生する位相遅れ Z進み電流を補償するた めの補償電流の送出 引込を行うインバータと、 このィンバータの直流側に接続 されて前記補償電流の供給源となる補償電流供給手段と、 前記ィンバータを制御 するための制御手段とを備えたアクティブフィルタ装置において、 7. The phase delay Z generated from the load connected to the commercial power supply, the compensation current for compensating the Z-lead current, the inverter that draws in, and the inverter that is connected to the DC side of the inverter and becomes the supply source of the compensation current An active filter device comprising: a compensation current supply unit; and a control unit for controlling the inverter.
前記制御手段は、  The control means,
前記商用電源に流れる電流成分を検出する商用電流検出手段と、 前記商用電源の電圧成分を検出する商用電圧検出手段と、 を備え、 Commercial current detecting means for detecting a current component flowing to the commercial power supply, Commercial voltage detecting means for detecting a voltage component of the commercial power supply,
前記商用電流検出手段が検出した商用電流検出信号と前記商用電圧検出手段が 検出した商用電圧検出信号との合成信号に基づレ、て前記ィンバータを制御するこ
Figure imgf000018_0001
Controlling the inverter based on a composite signal of the commercial current detection signal detected by the commercial current detection means and the commercial voltage detection signal detected by the commercial voltage detection means.
Figure imgf000018_0001
8 . 前記制御手段は、 前記インバータの直流側に接続された前記補償電流供給 手段の端子電圧の変化に基づいて、 この補償電流供給手段の充電/放電を制御す ることを特徴とする請求の範囲第 7項に記載のァクティブフィルタ装置。 8. The control means controls charging / discharging of the compensation current supply means based on a change in terminal voltage of the compensation current supply means connected to the DC side of the inverter. Item 7. The active filter device according to item 7, wherein
9 . 前記制御手段は、 9. The control means includes:
前記商用電流検出信号を増幅する第 1の増幅器と、  A first amplifier for amplifying the commercial current detection signal;
前記商用電圧検出信号を増幅する第 2の増幅器と、  A second amplifier for amplifying the commercial voltage detection signal;
前記補償電流の電流成分を検出する補償電流検出手段と、  Compensation current detection means for detecting a current component of the compensation current;
を備え、  With
前記補償電流供給手段の充電量の制御が、 この補償電流供給手段の端子電圧に 基づレ、た前記第 2の増幅器の利得制御によつて行われ、  The charge amount of the compensation current supply means is controlled by gain control of the second amplifier based on the terminal voltage of the compensation current supply means,
前記インバータが行う前記補償電流の送出/引込の制御が、 前記補償電流検出 手段が検出した電流成分に基づいた前記第 1の増幅器の利得制御によって行われ ることを特徴とする請求の範囲第 8項に記載のァクティブフィルタ装置。  The control of sending / drawing-in of the compensation current performed by the inverter is performed by gain control of the first amplifier based on a current component detected by the compensation current detection means. An active filter device according to the item.
PCT/JP2004/006816 2004-05-13 2004-05-13 Active filter WO2005112219A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/006816 WO2005112219A1 (en) 2004-05-13 2004-05-13 Active filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/006816 WO2005112219A1 (en) 2004-05-13 2004-05-13 Active filter

Publications (1)

Publication Number Publication Date
WO2005112219A1 true WO2005112219A1 (en) 2005-11-24

Family

ID=35394467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006816 WO2005112219A1 (en) 2004-05-13 2004-05-13 Active filter

Country Status (1)

Country Link
WO (1) WO2005112219A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009153696A1 (en) * 2008-06-17 2009-12-23 Philips Intellectual Property & Standards Gmbh Harmonic compensation circuit and method for an led light unit
CN101924368A (en) * 2010-09-08 2010-12-22 山东山大华天科技股份有限公司 Active power filter device and control method thereof
US20120326497A1 (en) * 2009-08-25 2012-12-27 Thales Electrical Network of an Aircraft and Method of Operation of the Electrical Network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713647A (en) * 1993-06-25 1995-01-17 Mitsubishi Electric Corp Voltage fluctuation suppressing device
JPH1014109A (en) * 1996-06-27 1998-01-16 Sansha Electric Mfg Co Ltd Active filter
JPH11275761A (en) * 1998-03-24 1999-10-08 Shizuki Electric Co Inc Active filter device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713647A (en) * 1993-06-25 1995-01-17 Mitsubishi Electric Corp Voltage fluctuation suppressing device
JPH1014109A (en) * 1996-06-27 1998-01-16 Sansha Electric Mfg Co Ltd Active filter
JPH11275761A (en) * 1998-03-24 1999-10-08 Shizuki Electric Co Inc Active filter device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009153696A1 (en) * 2008-06-17 2009-12-23 Philips Intellectual Property & Standards Gmbh Harmonic compensation circuit and method for an led light unit
CN102067405A (en) * 2008-06-17 2011-05-18 皇家飞利浦电子股份有限公司 Harmonic compensation circuit and method for an LED light unit
JP2011524621A (en) * 2008-06-17 2011-09-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Harmonic compensation circuit and method for LED lighting unit
US9088172B2 (en) 2008-06-17 2015-07-21 Koninklijke Philips N.V. Harmonic compensation circuit and method for an LED light unit
US20120326497A1 (en) * 2009-08-25 2012-12-27 Thales Electrical Network of an Aircraft and Method of Operation of the Electrical Network
US9425624B2 (en) * 2009-08-25 2016-08-23 Thales Electrical network of an aircraft and method of operation of the electrical network
CN101924368A (en) * 2010-09-08 2010-12-22 山东山大华天科技股份有限公司 Active power filter device and control method thereof

Similar Documents

Publication Publication Date Title
US8525505B2 (en) PWM controller and control method for a DC-DC voltage converter
US6215287B1 (en) Power supply apparatus
CN103731022A (en) Active power factor corrector circuit
WO2008013000A1 (en) Inverter
EP2238676B1 (en) Multi-stage switching power supply
EP2544328A2 (en) Power supply system
TW201112602A (en) Active filter device and power converter
JP2015505454A (en) Output voltage ripple compensation device for PFC converter and battery charger for electric vehicle using the same
CN108270348A (en) The direct current output low-frequency ripple suppression circuit and its control method of digital charge machine
JP4729835B2 (en) DC / DC power supply
CN110690812A (en) Current compensation method, power decoupling circuit and power converter system
JP4805170B2 (en) High frequency power supply
JP3722963B2 (en) Power converter
WO2005112219A1 (en) Active filter
JP2815572B2 (en) Parallel active filter
WO2019017373A1 (en) Active filter system and air conditioning device
JP3715277B2 (en) Active filter device
JP2004112954A (en) Power storage device
CN111830424A (en) Load state detection device
JP2007097258A (en) Active control capacitor unit
JP2003092832A (en) Controller for self-excited converter for dc transmission
EP2690776B1 (en) Power conversion device
JP4293350B2 (en) Switching power supply
JPH06216680A (en) Amplifier
JP4640789B2 (en) Power conversion circuit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase