WO2005111272A1 - Process for producing microparticles by plasma-induced electrolysis - Google Patents

Process for producing microparticles by plasma-induced electrolysis Download PDF

Info

Publication number
WO2005111272A1
WO2005111272A1 PCT/JP2005/006792 JP2005006792W WO2005111272A1 WO 2005111272 A1 WO2005111272 A1 WO 2005111272A1 JP 2005006792 W JP2005006792 W JP 2005006792W WO 2005111272 A1 WO2005111272 A1 WO 2005111272A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
molten salt
group
fine particles
electrolytic bath
Prior art date
Application number
PCT/JP2005/006792
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiko Ito
Takuya Goto
Hiroyuki Kawamura
Original Assignee
Iox Co., Ltd.
The Doshisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iox Co., Ltd., The Doshisha filed Critical Iox Co., Ltd.
Priority to JP2006513507A priority Critical patent/JP4688796B2/en
Publication of WO2005111272A1 publication Critical patent/WO2005111272A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C5/00Electrolytic production, recovery or refining of metal powders or porous metal masses
    • C25C5/04Electrolytic production, recovery or refining of metal powders or porous metal masses from melts

Definitions

  • the present invention relates to a method for producing metal fine particles by molten salt electrolysis and a recycling method.
  • Metal fine particles are widely used in the field of industrial materials such as magnetic recording media, photocatalysts, pigments, battery electrodes, and catalysts because they have higher functionality than bulk materials and have better processability of products. I have.
  • Patent Documents 1 and 2 As a conventional method for producing metal fine particles, a method using plasma induced by arc discharge or the like in a gas has recently attracted attention (for example, Patent Documents 1 and 2).
  • a voltage is applied between a discharge electrode arranged in close proximity and a base material as a raw material to generate plasma, and the base material is evaporated and solidified to form fine particles.
  • a voltage is applied between a plurality of discharge electrodes arranged close to each other to generate plasma, a raw material is supplied in the plasma, and the raw material is evaporated and solidified to form fine particles.
  • Patent Document 1 JP 2002-241811
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-045684
  • a main object of the present invention is to provide a method for producing fine metal fine particles and a method for recycling.
  • the present invention relates to a method for producing the following metal fine particles.
  • At least one metal selected from the group consisting of metals belonging to Group 3, 4, 5, 6, 7, 8, 9, 9, 10, 11, 12, 13, and 14 A method for producing fine metal particles, comprising: melting a metal raw material containing an oxide of the above in an electrolytic bath; and performing a molten salt electrolysis by placing a cathode near the electrolytic bath.
  • the metal raw material includes an oxide of at least one metal selected from the group consisting of titanium, zirconium, vanadium, niobium, tantalum, molybdenum, tungsten, chromium, platinum, cobalt, nickel and silicon.
  • Group consisting of metals belonging to groups 3, 4, 5, 6, 7, 8, 9, 9, 10, 11, 12, 13, and 14 at least one metal selected from the group consisting of
  • the anode containing at least one selected from the group consisting of the metal and a compound of the metal is placed in a molten salt, and the cathode is placed near the electrolytic bath to form the molten salt.
  • a method for producing metal fine particles comprising performing electrolysis.
  • the molten salt is selected from the group consisting of a metal and a metal compound as a raw material of the metal fine particles.
  • Item 4 The method according to Item 3, containing at least one of the following.
  • Item 5 The method according to any one of Items 1 to 4, wherein the molten salt electrolysis is performed by setting an electric resistance between the power supply and the anode.
  • a metal recycling method characterized by melting used metal in an electrolytic bath, installing a cathode near the electrolytic bath and performing molten salt electrolysis to obtain fine metal particles.
  • a metal recycling method comprising using used metal as an anode material, and installing a cathode near an electrolytic bath and performing molten salt electrolysis to obtain fine metal particles.
  • a metal raw material (a material serving as a raw material of metal fine particles) in a molten salt is produced as metal fine particles by installing a cathode in the vicinity of the electrolytic bath without in contact with the electrolytic bath and inducing plasma. On how to do it. That is, a metal power belonging to 3, 4, 5, 6, 7, 8, 9, 9, 10, 11, 12, 13, and 14 groups.
  • a method for producing fine metal particles comprising dissolving a metal raw material containing a metal oxide in an electrolytic bath, and performing electrolysis by inducing a plasma by setting a cathode near the electrolytic bath (hereinafter, referred to as a method of producing fine metal particles).
  • metal particles are produced by performing a plasma discharge on a metal raw material in a molten salt.
  • the present invention provides (1) a group consisting of metals belonging to groups 3, 4, 5, 6, 7, 7, 8, 9, 10, 11, 12, 13, and 14.
  • the present invention relates to a method for producing metal particles, which is characterized by performing salt electrolysis (hereinafter, may be referred to as production method 2).
  • the metal or metal compound contained in the anode is ionized and eluted into the molten salt by the molten salt electrolysis.
  • a metal and Z or a metal compound serving as a raw material of the fine particles are added to the molten salt.
  • the raw material is supplied from the anode, and the metal fine particles can be continuously produced.
  • a metal and a metal compound as raw materials of fine particles are contained in a molten salt.
  • the metal or metal compound which also eluted the anodic force is subjected to plasma discharge near the cathode to produce metal fine particles.
  • metal oxides for example, used metal oxides
  • An apparatus generally used for performing molten salt electrolysis can be used.
  • an electrolytic bath generally used in molten salt electrolysis can be used as the electrolytic bath.
  • alkali metal halide, alkaline earth metal halide, alkali metal carbonate, alkaline earth metal carbonate, alkali metal sulfate, alkaline earth metal sulfate, alkali metal nitrate, alkaline earth metal It is preferable to use a molten salt obtained alone or in combination of two or more of nitrates as a solvent for the electrolytic bath.
  • Examples of the alkali metal halide include LiF, NaF, KF, RbF, CsF, LiCl, NaCl, KC1, RbCl, CsCl, LiBr, NaBr, KBr, RbBr, CsBr, Lil, Nal, KI, Rbl, Csl. And the like.
  • Examples of the alkaline earth metal halide include MgF, CaF, SrF, BaF, MgCl, CaCl,
  • SrCl, BaCl, MgBr, CaBr, SrBr, BaBr, Mgl, Cal, Sri, Bal etc. S can be used.
  • the above compounds can be used alone or in combination of two or more.
  • the combination of these compounds, the number of compounds to be combined, the mixing ratio, and the like are not limited, and can be appropriately selected according to the type of metal to be electrolyzed.
  • metal raw material a metal compound (hereinafter, referred to as "metal raw material” or By dissolving an “ion source” and performing molten salt electrolysis, metal fine particles can be obtained.
  • metal raw material a metal compound
  • the anode contains a metal or a metal compound as a raw material of the metal fine particles
  • the addition of the metal raw material to the molten salt is optional.
  • the electrolytic bath in the present invention may contain other impurities, a solubilizing agent, an electrolytic assisting agent, and the like as long as the properties of the obtained metal fine particles are not impaired.
  • the metal fine particles obtained by the method of the present invention are selected from metals belonging to groups 3, 4, 5, 6, 6, 7, 8, 9, 10, 11, 12, 13, and 14. At least one kind of metal fine particles selected from the group consisting of: Among the above metals, titanium (Ti), zirconium (Zr), vanadium (V), niobium (Nb), tantalum (Ta), molybdenum (Mo), tungsten (W), chromium (Cr), platinum (Pt ), Cobalt (Co), nickel (Ni), and silicon (Si).
  • the production method 1 at least one of the above-mentioned metal oxides is contained in the electrolytic bath as a metal raw material as a raw material of these metal fine particles.
  • the metal raw material may be a mixture of a metal oxide or a metal or a metal compound, or a metal or metal compound. Further, other components may be included.
  • Titanium oxides include TiO, TiO, and TiO; zirconium oxides include ZrO
  • Vanadium oxides include VO, VO, V 0, V 0, V 0 etc .
  • Oxides such as MoO and MoO; tungsten oxides such as WO and WO;
  • the oxides of 232 rom include CrO, CrO, Cr 0 and the like; the oxides of platinum include PtO, PtO,
  • silicon oxide examples include SiO and SiO 2.
  • the metal oxide may be a naturally oxidized metal or a used metal used for various purposes.
  • the used metal include metals used in magnetic recording media, photocatalysts, pigments, fuel cells, catalysts, and the like. By performing molten salt electrolysis using such a metal oxide, it is possible to recycle used metal.
  • fine metal particles composed of a single metal atom can be obtained.
  • alloy fine particles can be obtained.
  • Fine metal particles (comprising a plurality of metals) can also be obtained. Therefore, metal fine particles include alloy fine particles.
  • metal compound sulfates, nitrates, phosphates, halides (such as chlorides, fluorides, bromides, and iodides) of the above metals can be used.
  • sulfates, nitrates, phosphates, halides such as chlorides, fluorides, bromides, and iodides
  • K TaF, NiCl, K TiF K TaF, NiCl, K TiF
  • the metal compounds can be used alone or in combination of two or more.
  • the shape of the metal raw material used is not limited.
  • various shapes such as a scrap shape, a lump shape, or a powder shape may be used.
  • the amount of the metal compound and the oxide of Z or metal added to the electrolytic bath is not limited, and can be appropriately selected according to the electrolysis time, the amount and size of the fine particles.
  • the metal raw material should be dissolved in an amount of about 0.0001 to 10 mol / L, preferably about 0.1 to 5.0 mol / L per solvent of the electrolytic bath.
  • the metal raw material since the metal raw material is supplied with an anodic force by electrolysis, the addition of the metal raw material to the electrolytic bath can be arbitrarily selected.
  • the metal raw material may be any one selected from the group consisting of a metal and a metal compound which are raw materials for fine particles. Therefore, in Production Method 1, a metal oxidant is indispensable as a metal raw material, but in Production Method 2, the metal raw material added to the molten salt is not limited to a metal oxidant, but may be a metal or metal. The compounds can be used widely.
  • the concentration of the metal raw material to be added to the molten salt can be reduced as compared with the case of the production method 1. .
  • fine particles of an alloy are obtained. Included in particles.
  • an electrode generally used as an anode in molten salt electrolysis can be used, and is not particularly limited.
  • carbon materials such as glass, graphite, conductive diamond and the like, tantalum, tungsten, molybdenum, platinum and the like can be used as electrodes.
  • a thin film formed of a metal such as tantalum, tungsten, molybdenum, or platinum on a dissimilar material can be used as the anode.
  • used metals can be used as anode materials.
  • it is required to suppress the generation of chlorine gas it can be suppressed by allowing the anode to contain a fine particle source metal or a compound of the metal.
  • the anode may be (1) a group of 3, 4, 5, 6, 7, 8, 8, 9, 11, 12, 13, At least one metal selected from the group consisting of metals belonging to Group 14 and Group 14; and (2) a compound of the metal; Preferred metal species are the same as the preferred metal species of the metal fine particles.
  • the compound of the metal is the same as the metal compound in the metal raw material.
  • generation of chlorine gas is suppressed because the anode contains a raw material of fine particles.
  • the combination of metal species contained in the anode is appropriately selected according to the metal species of the target fine particles.
  • the shape, size, and the like of the electrode used in the present invention are not limited.
  • As the shape of the electrode for example, a plate shape, a rod shape, a lump shape, a spring shape, a prism shape, or the like can be used.
  • the anode when performing electrolysis, is preferably immersed in an electrolytic bath so as to generally perform the electrolysis.
  • the mode in which the entire anode is immersed or a part thereof is immersed is not particularly limited.
  • an anode generally used for molten salt electrolysis and capable of generating plasma can be used, and is not particularly limited.
  • various metals such as iron, nickel, molybdenum, tantalum, and tungsten, alloys thereof, carbon materials such as glassy carbon and conductive diamond, conductive ceramics, and semiconductor ceramics can be used.
  • those formed as thin films on different materials can also be used as cathodes.
  • a high melting point metal such as tungsten or tantalum which is not easily consumed when plasma is induced.
  • the present invention it is installed near the electrolytic bath so that it is not in contact with or immersed in the electrolytic bath.
  • the installation place is not particularly limited as long as the metal fine particles are generated in the molten salt by the plasma generated by the cathode, but it is preferable that the installation place is above the liquid level of the molten salt. By doing so, cathodic plasma is induced, and fine metal particles are generated in the electrolytic bath.
  • the distance from the surface of the electrolytic bath to the lowermost part of the cathode is not limited, as long as the plasma is stably induced.
  • the electrolysis conditions in the present invention can be generally performed under the conditions for performing molten salt electrolysis, and can be appropriately selected according to the composition of the solvent, the type of target metal fine particles, and the like.
  • the voltage to be applied is preferably about 200 to 400 V in order to reduce the load on the electric circuit, for example, about 200 to 800 V.
  • the voltage can be reduced to 10 to 200 V, preferably 30 to 150 V, at a stage where the generation of plasma-induced discharge is stable.
  • the type of generated current is preferably a direct current, and the current per discharge electrode is preferably about 0.05 to 50 A, and more preferably about 0.1 to 20 A.
  • an electric resistor in order to stably induce plasma, it is preferable to secure electric discharge stability by inserting an electric resistor between the power supply and the electrode.
  • the electrical resistance can be inserted on the cathode side, the anode side or both.
  • the type of the electric resistance is not limited as long as it is a resistor having a capacity to withstand the current during electrolysis.
  • a cement resistor, an enamel resistor, a non-combustible fixed wire resistor, or the like can be used. Fixed resistors are more preferred.
  • the value of the resistance is usually about 1 ⁇ to 51 ⁇ , preferably 3 ⁇ to 31 ⁇ .
  • the temperature of the electrolytic bath is also not limited, and can be appropriately selected according to the melting point of the solvent, the melting point of the ion source, and the like. For example, it is about 250 to 700 ° C, preferably about 400 to 500 ° C.
  • the electrolysis is generally performed under atmospheric pressure, but may be performed under increased or reduced pressure.
  • examples of the inert gas which is preferably performed in an inert gas atmosphere include nitrogen, argon, and neon, and argon is preferable.
  • the electrolysis time is also not limited, and is appropriately selected according to the type, particle size, and the like of the target metal particles. Can. For example, it is about 0.1 to 10 hours, preferably about 1 to 5 hours.
  • metal fine particles having an arbitrary particle size of about 100 ⁇ m or less, preferably in the range of about lnm to 100 ⁇ m are obtained. be able to.
  • very small metal particles of nano size can be obtained.
  • the size of the metal fine particles can be reduced by shortening the electrolysis time or the time until the recovery of the electrolytic power, reducing the concentration of the ion source in the electrolytic bath, or keeping the temperature of the electrolytic bath low during the electrolysis. Can be smaller.
  • the following mechanism is considered as a mechanism for obtaining metal fine particles by the method of the present invention.
  • the present invention is not limited to this mechanism.
  • a cation M n + serving as a raw material of fine particles in a solvent is generated according to the following equation (1), and a reduction reaction of an alkali metal ion L + present in the solvent (formula (1)) According to (2)), it is reduced to an atomic substance as represented by equation (3).
  • atomic-level clusters are formed by collisions between atomic substances in a solvent, and furthermore, collisions between atomic-level clusters are sequentially repeated, so that fine particles of several nm or several / zm are thought to grow. .
  • M represents a metal contained in an oxide or the like
  • MA represents an oxide or the like.
  • the obtained metal particles can be recovered in the following manner.
  • the present invention is not limited to these.
  • electrolytic bath power A molten salt containing metal particles can be taken out, cooled and solidified, preferably in an inert gas atmosphere.
  • the type of the inert gas is as described above.
  • the solidified electrolytic solution may be crushed and immersed in the cleaning solution! ⁇ .
  • the means for pulverization is not limited, and may be, for example, a hammer, a mixer, or the like.
  • the device for performing the ultrasonic treatment is not limited, and a commercially available device can be used.
  • the condition of the ultrasonic wave is not limited.For example, the ultrasonic treatment may be performed at a frequency of about 10 to 100 kHz, about 20 to 60 kHz, for about 100 to 300 minutes per 100 g of the solidified electrolyte, preferably about 150 to 200 minutes. ⁇ .
  • the metal particles of the present invention can be obtained by washing and centrifuging.
  • the condition of the centrifugation is not limited as long as the metal fine particles obtained in the present invention and the solidified electrolyte are separated, and can be appropriately selected.
  • the speed can be about 1000 to 5000 rpm, preferably about 1500 to 3000 rpm, and about 10 minutes to 2 hours, preferably about 30 minutes to 1.5 hours.
  • the washing method is not limited as long as the metal fine particles obtained in the present invention can be subjected to ultrasonic wave, centrifugal separation, and the like.
  • water an aqueous solution in which a reducing agent generally used for electroless plating is dissolved, or the like can be used.
  • a reducing agent such as dimethylamine borane and trimethylamine borane
  • borohydride compounds such as potassium borohydride and sodium borohydride
  • formaldehyde and the like can be used. These concentrations are not limited.
  • ultrasonic treatment and centrifugation of the precipitate may be repeated. By repeating the process, metal fine particles can be obtained with high efficiency from the solidified electrolytic solution.
  • the particle size of the obtained metal particles can be determined by a conventional method such as observation with an electron microscope.
  • the particle size distribution can also be determined by a conventional method such as dynamic light scattering measurement.
  • the oxygen content in the metal fine particles can also be determined by a conventional method such as, for example, an electroinert gas melting infrared absorption method.
  • the recycling method of the present invention utilizes the above-described method for producing fine metal particles, and uses a used metal or metal compound as a metal raw material. That is, the used metal or metal compound is added to the molten salt as a metal raw material, or is held at the anode. As a result, fine metal particles corresponding to the metal species of the used metal or metal compound are generated, so that the used metal or metal compound can be reused.
  • a holder (3) for installing a high-purity aluminum crucible (2) as an electrolytic cell in an electric furnace (1) capable of heating at about 500 ° C is provided.
  • the inert gas is circulated at atmospheric pressure through the inlet pipe (4) and the exhaust pipe (5).
  • the alkali metal halide is melted and used as a solvent (6) for the electrolytic bath.
  • the temperature of the solvent is measured with a thermocouple (7) and set to a predetermined temperature.
  • an ion source serving as a raw material of the metal fine particles is added to the solvent.
  • a power supply device (10) is installed between the discharge electrode (8) placed on the solvent and the electrode (9) placed in the solvent, and a voltage is applied to connect the solvent and the discharge electrode. Plasma is induced in between.
  • the electrode (9) in the solvent may have a portion capable of holding the substance (11) containing the raw material of the metal fine particles. By doing so, it is possible to stably or continuously supply an ion source serving as a raw material of metal fine particles during electrolysis.
  • the ion source may be held in a solvent other than the electrode.
  • the method for producing metal fine particles of the present invention is particularly excellent in that not only the metal but also an oxide of the metal can be used as a raw material of the metal fine particles. Further, by controlling parameters such as electrolyte composition, electrolyte temperature, and electrolysis time in molten salt electrolysis, the particle size, particle size distribution, and the like of the fine particles can be easily controlled.
  • the present invention does not require expensive equipment and equipment, and does not require advanced knowledge or advanced technology, and can produce desired fine metal particles. Therefore, the production cost of metal particles is greatly reduced. You. Also, the electrolytic bath does not contain harmful substances and can be reused.
  • the form of the metal raw material used as the raw material of the metal fine particles it is possible to produce the metal fine particles by using a scrap or lump-shaped raw material.
  • an ion source is supplied by anodic dissolution or chemical dissolution of the substance by holding the substance containing the raw material of the microparticles to be produced in the electrode part disposed in the solvent in the electrolytic bath or in the solvent. it can.
  • the state force such as scrap can again produce a material necessary for the device, the method of the present invention is very excellent as a metal recycling method.
  • FIG. 1 is a conceptual diagram of an apparatus for performing molten salt electrolysis.
  • FIG. 2 (a) shows a scanning electron micrograph of the tantalum fine particles obtained in Example 1, and FIG. 2 (b) shows the analysis result of the white rectangular portion of (a) by an X-ray microanalyzer.
  • FIG. 3 (a) shows a scanning electron micrograph of the tantalum fine particles obtained in Example 3, and (b) shows the result of X-ray diffraction of the tantalum fine particles.
  • LiCl—KCl (58.5: 41.5mol%; 100g in total) mixed in a eutectic composition was vacuum-dried at 180 ° C for several days in the solvent (electrolytic bath) and then melted at 450 ° C in an argon atmosphere. I used something.
  • Heptafluorotantalum potassium (K TaF) was used as the tantalum source.
  • a tungsten wire was placed on a solvent as a discharge electrode (cathode), and tantalum condenser scrap (pin scrap) was placed in the solvent as an anode.
  • a cylindrical tantalum metal electrode holding the garnish was 0.5% by weight of the entire scrap was disposed.
  • Under an argon atmosphere maintain the solvent temperature at 450 ° C, apply 250 V between the discharge electrode and the electrode in the solvent, induce a plus and minus between the discharge electrode and the solvent, and Electrolysis was performed.
  • the solvent containing the fine particles is cooled and solidified to room temperature under an argon atmosphere, subjected to ultrasonic treatment for several hours in a 2M aqueous hydrazine solution until the solidified solvent is dissolved, and then left for about 10 minutes.
  • the sonication and the centrifugation operation were repeated.
  • the centrifugation operation was performed at 2000 rpm, and the first time was about 10 minutes, the second time was about 30 minutes, and the third time was about 60 minutes.
  • the K TaF force equivalent to 0.1 mol% added in a solvent is also the theoretical value of fine particles obtained by electrolysis.
  • the mass is 0.32 g, and the fine particles collected for force analysis alone exceed 0.4 g, and it can be said that tantalum fine particles were formed from pin scraps or a tantalum ion source obtained by melting from a tantalum metal electrode. It was confirmed that the present invention can be used as a resource recycling type process using scrap as a raw material.
  • Metal compounds other than tantalum include nickel (using NiCl as an ion source), titanium (using
  • K TiF as an ion source silver (AgCl as an ion source), zirconium (ion
  • a cylindrical graphite electrode holding 1.502 g of tantalum condenser scrap (pin scraps) in a solvent was placed as the anode, and the current value was set to 0.80 A.
  • the experiment was performed in the same manner as in Example 1 except that the electrolysis was performed for 1.7 hours. X-ray diffraction of the obtained fine particles confirmed that they were tantalum fine particles with a lattice constant of about 3% wider.
  • NiCl nickel ion source
  • K TiF titanium ion source
  • AgCl silver
  • K ZrF zirconium ion source
  • VC1 vanadium ion source
  • NbF niobium ion source
  • K MoO molecular oxygen species
  • K WO tungsten
  • the metal fine particles are formed only by the electrode that holds the scrap without previously including the ion source in the solvent, and the present invention is further described as a resource recycling process using scrap as a raw material. Confirmed to be valid.
  • the present invention is useful in the field of producing fine metal particles and the field of recycling metal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

There are provided: a process for producing metal microparticles, characterized in that an oxide of metal species (metal belonging to Group 3, Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10, Group 11, Group 12, Group 13 or Group 14) of metal microparticles is melted in an electrolytic bath and that a molten salt electrolysis is carried out with a negative electrode disposed in the vicinity of the electrolytic bath; a process for producing metal microparticles, characterized in that a molten salt electrolysis is carried out with a positive electrode containing the metal species disposed in a molten salt and with a negative electrode disposed in the vicinity of an electrolytic bath, or a method of recycling used metal by the use of these production processes; a method of recycling a metal, characterized in that a molten salt electrolysis is carried out with used metal melted into an electrolytic bath and with a negative electrode disposed in the vicinity of the electrolytic bath to thereby obtain metal microparticles; and a method of recycling a metal, characterized in that a molten salt electrolysis is carried out with used metal utilized as a positive electrode material and with a negative electrode disposed in the vicinity of an electrolytic bath to thereby obtain metal microparticles.

Description

プラズマ誘起電解による微粒子の製造方法  Method for producing fine particles by plasma-induced electrolysis
技術分野  Technical field
[0001] 本発明は、溶融塩電解による金属微粒子の製造方法及びリサイクル方法に関する 背景技術  The present invention relates to a method for producing metal fine particles by molten salt electrolysis and a recycling method.
[0002] 金属微粒子は、バルク材よりも機能性が高ぐまた、製品加工性が良いことから、磁 気記録媒体、光触媒、顔料、電池電極、触媒などの工業材料分野において幅広く利 用されている。  [0002] Metal fine particles are widely used in the field of industrial materials such as magnetic recording media, photocatalysts, pigments, battery electrodes, and catalysts because they have higher functionality than bulk materials and have better processability of products. I have.
[0003] 従来の金属微粒子製造法としては、近年、気体中でアーク放電等により誘起された プラズマを用いる方法が注目されて 、る(例えば、特許文献 1及び 2)。この技術では 、近接して配置させた放電用電極と原料となる母材との間に電圧を印加してプラズマ を発生させ、該母材を蒸発させた後に凝固させることにより微粒子を形成させる。また は、近接して配置した複数の放電用電極間に電圧を印加してプラズマを発生させ、 該プラズマ中に原料を供給し、該原料を蒸発させた後に凝固させることにより微粒子 を形成させる。  [0003] As a conventional method for producing metal fine particles, a method using plasma induced by arc discharge or the like in a gas has recently attracted attention (for example, Patent Documents 1 and 2). In this technique, a voltage is applied between a discharge electrode arranged in close proximity and a base material as a raw material to generate plasma, and the base material is evaporated and solidified to form fine particles. Alternatively, a voltage is applied between a plurality of discharge electrodes arranged close to each other to generate plasma, a raw material is supplied in the plasma, and the raw material is evaporated and solidified to form fine particles.
[0004] し力しながら、気体中でアーク放電により誘起されるプラズマを利用した従来の製造 法では、数 kVの放電開始電圧および数気圧のガス雰囲気を維持することが必要で あり、また、プラズマ電流値は 100〜200Aにも達するため、高価な装置 ·設備、それに 伴う高度な技術を必要とする。また、高温による装置の変質および破壊の恐れもあり 、必ずしも技術的 ·経済的に効率の良いものではない。更には、この技術では、一般 的には高純度の原料を必要とし、スクラップ等が原料として利用されることはない。  [0004] However, in the conventional manufacturing method using plasma induced by arc discharge in a gas, it is necessary to maintain a discharge starting voltage of several kV and a gas atmosphere of several atmospheres. Since the plasma current value reaches 100-200A, it requires expensive equipment and facilities, and advanced technology associated with it. In addition, there is a risk that the equipment may be deteriorated or destroyed due to high temperatures, and it is not always technically and economically efficient. Furthermore, this technique generally requires a high-purity raw material, and scrap or the like is not used as a raw material.
[0005] 従って、安全な条件または安価な装置で容易に金属微粒子を生成させる方法が望 まれている。また、純粋な金属化合物だけでなぐスクラップ状、塊状の金属化合物、 種々の工業的な目的で使用された (酸化された)金属化合物からも金属微粒子を得 ることができれば、金属の再利用が可能となり、地球環境の点からも非常に望ましい 特許文献 1 :特開 2002— 241811公報 [0005] Therefore, there is a demand for a method for easily generating metal fine particles under safe conditions or an inexpensive device. In addition, if metal particles can be obtained from scrap-like or massive metal compounds that can be used only with pure metal compounds, and (oxidized) metal compounds that have been used for various industrial purposes, metal can be reused. Possible and highly desirable in terms of the global environment Patent Document 1: JP 2002-241811
特許文献 2:特開 2002— 045684公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2002-045684
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明の主な目的は、微細な金属微粒子を製造する方法及びリサイクルする方法 を提供することである。 [0006] A main object of the present invention is to provide a method for producing fine metal fine particles and a method for recycling.
課題を解決するための手段  Means for solving the problem
[0007] 本発明者は、鋭意検討を重ねた結果、金属微粒子の原料を溶融塩中又は陽極中 に含有させて溶融塩電解を行うことにより、上記目的を達成できることを見出し、本発 明を完成するに至った。 [0007] As a result of diligent studies, the present inventors have found that the above object can be achieved by incorporating a raw material of metal fine particles in a molten salt or an anode and performing molten salt electrolysis, and have achieved the present invention. It was completed.
[0008] 即ち、本発明は、下記の金属微粒子を製造方法に関する。 [0008] That is, the present invention relates to a method for producing the following metal fine particles.
項 1.  Item 1.
3族、 4族、 5族、 6族、 7族、 8族、 9族、 10族、 11族、 12族、 13族及び 14族に属する金 属からなる群から選ばれる少なくとも 1種の金属の酸化物を含む金属原料を電解浴 中に溶融し、陰極を電解浴近傍に設置して溶融塩電解を行うことを特徴とする金属 微粒子の製造方法。  At least one metal selected from the group consisting of metals belonging to Group 3, 4, 5, 6, 7, 8, 9, 9, 10, 11, 12, 13, and 14 A method for producing fine metal particles, comprising: melting a metal raw material containing an oxide of the above in an electrolytic bath; and performing a molten salt electrolysis by placing a cathode near the electrolytic bath.
項 2.  Section 2.
金属原料が、チタン、ジルコニウム、バナジウム、ニオブ、タンタル、モリブデン、タン ダステン、クロム、白金、コバルト、ニッケル及びケィ素力 なる群力 選ばれる少なく とも 1種の金属の酸化物を含むことを特徴とする項 1に記載の方法。  The metal raw material includes an oxide of at least one metal selected from the group consisting of titanium, zirconium, vanadium, niobium, tantalum, molybdenum, tungsten, chromium, platinum, cobalt, nickel and silicon. The method according to item 1 to be performed.
項 3.  Section 3.
3族、 4族、 5族、 6族、 7族、 8族、 9族、 10族、 11族、 12族、 13族及び 14族に属する金 属からなる群力 選ばれる少なくとも 1種の金属の金属微粒子の製造方法であって、 該金属及び該金属の化合物からなる群から選択される少なくとも 1種を含有する陽極 を溶融塩中に設置し、陰極を電解浴近傍に設置して溶融塩電解を行うことを特徴と する金属微粒子の製造方法。  Group consisting of metals belonging to groups 3, 4, 5, 6, 7, 8, 9, 9, 10, 11, 12, 13, and 14 at least one metal selected from the group consisting of Wherein the anode containing at least one selected from the group consisting of the metal and a compound of the metal is placed in a molten salt, and the cathode is placed near the electrolytic bath to form the molten salt. A method for producing metal fine particles, comprising performing electrolysis.
項 4.  Section 4.
溶融塩が、金属微粒子の原料となる金属及び金属化合物からなる群から選択され る少なくとも 1種を含有する、項 3に記載の方法。 The molten salt is selected from the group consisting of a metal and a metal compound as a raw material of the metal fine particles. Item 4. The method according to Item 3, containing at least one of the following.
項 5. Section 5.
電源と陽極との間に電気抵抗を設置して溶融塩電解を行うことを特徴とする項 1〜4 のいずれかに記載の方法。 Item 5. The method according to any one of Items 1 to 4, wherein the molten salt electrolysis is performed by setting an electric resistance between the power supply and the anode.
項 6. Section 6.
使用済みの金属を電解浴中に溶融し、陰極を電解浴近傍に設置して溶融塩電解 を行うことにより金属微粒子を得ることを特徴とする、金属のリサイクル方法。  A metal recycling method characterized by melting used metal in an electrolytic bath, installing a cathode near the electrolytic bath and performing molten salt electrolysis to obtain fine metal particles.
項 7. Section 7.
使用済みの金属を陽極材料として使用し、陰極を電解浴近傍に設置して溶融塩電 解を行うことにより金属微粒子を得ることを特徴とする、金属のリサイクル方法。 本 発明は、陰極を電解浴に接触させずに、電解浴の近傍に設置しプラズマを誘起させ ることによって溶融塩中の金属原料 (金属微粒子の原料となる物質)を金属微粒子と して製造する方法に関する。すなわち、 3族、 4族、 5族、 6族、 7族、 8族、 9族、 10族、 11族、 12族、 13族及び 14族に属する金属力 なる群力 選ばれる少なくとも 1種の金 属の酸化物を含む金属原料を電解浴中に溶解し、陰極を電解浴近傍に設置してプ ラズマを誘起させることにより電解を行うことを特徴とする金属微粒子の製造方法 (以 下、製造方法 1と称することがある)に関する。本方法では、溶融塩中の金属原料に プラズマ放電することにより金属微粒子を製造する。  A metal recycling method comprising using used metal as an anode material, and installing a cathode near an electrolytic bath and performing molten salt electrolysis to obtain fine metal particles. According to the present invention, a metal raw material (a material serving as a raw material of metal fine particles) in a molten salt is produced as metal fine particles by installing a cathode in the vicinity of the electrolytic bath without in contact with the electrolytic bath and inducing plasma. On how to do it. That is, a metal power belonging to 3, 4, 5, 6, 7, 8, 9, 9, 10, 11, 12, 13, and 14 groups. A method for producing fine metal particles, comprising dissolving a metal raw material containing a metal oxide in an electrolytic bath, and performing electrolysis by inducing a plasma by setting a cathode near the electrolytic bath (hereinafter, referred to as a method of producing fine metal particles). Manufacturing method 1). In this method, metal particles are produced by performing a plasma discharge on a metal raw material in a molten salt.
さらに本発明は、(1)3族、 4族、 5族、 6族、 7族、 8族、 9族、 10族、 11族、 12族、 13族 及び 14族に属する金属からなる群から選ばれる少なくとも 1種の金属;並びに (2)該金 属の化合物;からなる群から選択される少なくとも 1種を含有する陽極を溶融塩中に 設置し、陰極を電解浴近傍に設置して溶融塩電解を行うことを特徴とする金属微粒 子の製造方法 (以下、製造方法 2と称することがある)に関する。本方法では、溶融塩 電解によって、陽極に含有される金属又は金属の化合物がイオン化して溶融塩中に 溶出する。そして、溶融塩中に微粒子の原料となる金属及び Z又は金属化合物 (金 属酸ィ匕物に限定されな 、)を添加して 、る場合にぉ 、ては、これらの原料は陰極付 近で金属微粒子となって消費されるが、陽極から原料が供給され、連続的に金属微 粒子を製造できる。或 、は溶融塩中に微粒子の原料となる金属及び金属化合物が 添加して 、な 、場合には、陽極力も溶出した金属又は金属の化合物が陰極付近で プラズマ放電を受けて金属微粒子が製造される。 Further, the present invention provides (1) a group consisting of metals belonging to groups 3, 4, 5, 6, 7, 7, 8, 9, 10, 11, 12, 13, and 14. An anode containing at least one selected from the group consisting of at least one metal selected from the group consisting of: (2) a compound of the metal; and an anode containing at least one selected from the group consisting of: The present invention relates to a method for producing metal particles, which is characterized by performing salt electrolysis (hereinafter, may be referred to as production method 2). In this method, the metal or metal compound contained in the anode is ionized and eluted into the molten salt by the molten salt electrolysis. Then, a metal and Z or a metal compound (not limited to metal oxide) serving as a raw material of the fine particles are added to the molten salt. However, the raw material is supplied from the anode, and the metal fine particles can be continuously produced. Alternatively, a metal and a metal compound as raw materials of fine particles are contained in a molten salt. In addition, in some cases, the metal or metal compound which also eluted the anodic force is subjected to plasma discharge near the cathode to produce metal fine particles.
[0010] これらの製造方法において、金属の酸化物(例えば使用済み金属酸化物)を原料 として使用し金属微粒子を得る場合には、経済性やリサイクルの点において非常に 優れている。  [0010] In these production methods, when metal oxides (for example, used metal oxides) are used as raw materials to obtain fine metal particles, they are extremely excellent in terms of economy and recycling.
[0011] 本発明の方法を以下に説明する。本発明において溶融塩電解を行うための装置は [0011] The method of the present invention will be described below. In the present invention, an apparatus for performing molten salt electrolysis is
、一般に溶融塩電解を行う際に使用される装置を使用することができる。 An apparatus generally used for performing molten salt electrolysis can be used.
[0012] 電解浴  [0012] Electrolytic bath
本発明において、電解浴としては、一般に溶融塩電解において使用する電解浴が 使用できる。例えば、アルカリ金属のハロゲンィ匕物、アルカリ土類金属のハロゲンィ匕 物、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩、アルカリ金属硫酸塩、アルカリ 土類金属硫酸塩、アルカリ金属硝酸塩、アルカリ土類金属硝酸塩などを、単独で又 は 2種以上組み合わせて得られる溶融塩を、電解浴の溶媒として使用するのが好ま しい。  In the present invention, an electrolytic bath generally used in molten salt electrolysis can be used as the electrolytic bath. For example, alkali metal halide, alkaline earth metal halide, alkali metal carbonate, alkaline earth metal carbonate, alkali metal sulfate, alkaline earth metal sulfate, alkali metal nitrate, alkaline earth metal It is preferable to use a molten salt obtained alone or in combination of two or more of nitrates as a solvent for the electrolytic bath.
[0013] アルカリ金属のハロゲン化物としては、 LiF、 NaF、 KF、 RbF、 CsF、 LiCl、 NaCl、 KC1 、 RbCl、 CsCl、 LiBr、 NaBr、 KBr、 RbBr、 CsBr、 Lil、 Nal、 KI、 Rbl、 Csl等が使用でき、 アルカリ土類金属のハロゲン化物としては、 MgF、 CaF、 SrF、 BaF、 MgCl、 CaCl、  [0013] Examples of the alkali metal halide include LiF, NaF, KF, RbF, CsF, LiCl, NaCl, KC1, RbCl, CsCl, LiBr, NaBr, KBr, RbBr, CsBr, Lil, Nal, KI, Rbl, Csl. And the like. Examples of the alkaline earth metal halide include MgF, CaF, SrF, BaF, MgCl, CaCl,
2 2 2 2 2 2 2 2 2 2 2 2
SrCl、 BaCl、 MgBr、 CaBr、 SrBr、 BaBr、 Mgl、 Cal、 Sri、 Bal等力 S使用できる。 SrCl, BaCl, MgBr, CaBr, SrBr, BaBr, Mgl, Cal, Sri, Bal etc. S can be used.
2 2 2 2 2 2 2 2 2 2  2 2 2 2 2 2 2 2 2 2
[0014] 上記化合物は単独で使用することもできるし、二種以上を組み合わせて使用するこ ともできる。これらの化合物の組み合わせ、組み合わせる化合物の数、混合比等も限 定されず、電気分解される金属の種類等に応じて適宜選択することができる。本発明 においては、 KC1及び/又は LiClを溶融させたもの(LiCl: KCl=35mol%〜100mol%程 度: 65mol%〜0mol%程度、好ましくは 55mol%〜65mol%程度: 45mol%〜35mol%程度)、 NaCl及び KC1を溶融させたもの(NaCl: KCl=30mol%〜70mol%程度: 70mol%〜30mol% 程度、好ましくは 45mol%〜55mol%程度: 55mol%〜45mol%程度)、 LiCl、 KC1及び CsCl を溶融させたもの(LiCl:KCl:CsCl=57.5:13.3:29.2mol%の共融組成が好ましいが、組 成比がそれぞれ 20%程度変化したものでもよ ヽ)が好ま U、。  [0014] The above compounds can be used alone or in combination of two or more. The combination of these compounds, the number of compounds to be combined, the mixing ratio, and the like are not limited, and can be appropriately selected according to the type of metal to be electrolyzed. In the present invention, KCl and / or LiCl melted (LiCl: KCl = about 35 mol% to 100 mol%: about 65 mol% to 0 mol%, preferably about 55 mol% to 65 mol%: about 45 mol% to 35 mol% ), Molten NaCl and KC1 (NaCl: KCl = about 30 mol% to 70 mol%: about 70 mol% to 30 mol%, preferably about 45 mol% to 55 mol%: about 55 mol% to 45 mol%), LiCl, KC1 and It is preferable to use a material in which CsCl is melted (a eutectic composition of LiCl: KCl: CsCl = 57.5: 13.3: 29.2 mol% is preferable, but a composition ratio of each of which is changed by about 20% is also preferable).
[0015] このような溶媒中に、金属微粒子の原料となる金属化合物(以下、「金属原料」又は 「イオン源」ということがある)を溶解し、溶融塩電解を行うことにより、金属微粒子を得 ることができる。また、陽極に金属微粒子の原料となる金属又は金属化合物を含有さ せている場合には、溶融塩への金属原料の添カ卩は任意となる。 [0015] In such a solvent, a metal compound (hereinafter, referred to as "metal raw material" or By dissolving an “ion source” and performing molten salt electrolysis, metal fine particles can be obtained. When the anode contains a metal or a metal compound as a raw material of the metal fine particles, the addition of the metal raw material to the molten salt is optional.
[0016] また、本発明における電解浴には、得られる金属微粒子の性質を損なわない限り、 その他の不純物、溶解補助剤、電解補助剤等を含んでいてもよい。  Further, the electrolytic bath in the present invention may contain other impurities, a solubilizing agent, an electrolytic assisting agent, and the like as long as the properties of the obtained metal fine particles are not impaired.
[0017] 金属原料 (イオン源)  [0017] Metal raw material (ion source)
本発明の方法によって得られる金属微粒子は、 3族、 4族、 5族、 6族、 7族、 8族、 9族 、 10族、 11族、 12族、 13族及び 14族に属する金属からなる群から選ばれる少なくとも 一種の金属の微粒子である。前記金属の中でも、チタン (Ti)、ジルコニウム (Zr)、バ ナジゥム(V)、ニオブ(Nb)、タンタノレ (Ta)、モリブデン(Mo)、タングステン(W)、クロ ム(Cr)、白金(Pt)、コバルト(Co)及びニッケル (Ni)、ケィ素(Si)からなる群から選ば れる少なくとも一種がより好ましい。  The metal fine particles obtained by the method of the present invention are selected from metals belonging to groups 3, 4, 5, 6, 6, 7, 8, 9, 10, 11, 12, 13, and 14. At least one kind of metal fine particles selected from the group consisting of: Among the above metals, titanium (Ti), zirconium (Zr), vanadium (V), niobium (Nb), tantalum (Ta), molybdenum (Mo), tungsten (W), chromium (Cr), platinum (Pt ), Cobalt (Co), nickel (Ni), and silicon (Si).
[0018] 従って、製造方法 1にお!/、ては、これらの金属微粒子の原料となる金属原料として 上記金属の酸化物の少なくとも 1種が電解浴中に含まれる。金属原料は、上記金属 の酸ィ匕物力 なるものでもよぐ金属の酸ィ匕物と金属又は金属化合物との混合物であ つてもよい。さらには、他の成分を含んでいてもよい。  Therefore, in the production method 1, at least one of the above-mentioned metal oxides is contained in the electrolytic bath as a metal raw material as a raw material of these metal fine particles. The metal raw material may be a mixture of a metal oxide or a metal or a metal compound, or a metal or metal compound. Further, other components may be included.
[0019] チタンの酸化物としては、 TiO、 TiO、 Ti O等;ジルコニウムの酸化物としては、 ZrO  [0019] Titanium oxides include TiO, TiO, and TiO; zirconium oxides include ZrO
2 2 3  2 2 3
等;バナジウムの酸化物としては、 VO、 VO、 V 0、 V 0、 V 0等;ニオブの酸化物 Etc .; Vanadium oxides include VO, VO, V 0, V 0, V 0 etc .; Niobium oxide
2 2 2 3 2 4 3 5 2 2 2 3 2 4 3 5
としては、 NbO、 NbO、 Nb 0等;タンタルの酸化物としては TaO、 Ta O等;モリブデ  NbO, NbO, Nb 0, etc .; tantalum oxide as TaO, TaO, etc .; molybdenum
2 2 5 2 5  2 2 5 2 5
ンの酸化物としては MoO、 MoO等;タングステンの酸化物としては WO、 WO等;ク  Oxides such as MoO and MoO; tungsten oxides such as WO and WO;
2 3 2 3 ロムの酸化物としては、 CrO、 CrO、 Cr 0等;白金の酸化物としては PtO、 Pt O、  The oxides of 232 rom include CrO, CrO, Cr 0 and the like; the oxides of platinum include PtO, PtO,
2 2 3 3 4 2 2 3 3 4
PtO等;コバルトの酸化物としては、 CoO、 Co O等;ニッケルの酸化物としては、 NiOPtO, etc .; oxides of cobalt, CoO, Co O, etc .; oxides of nickel, NiO
2 3 4 2 3 4
、Ni O (0.003<x< 0.17);ケィ素の酸化物としては SiO、 SiO 等が挙げられる。  , Ni O (0.003 <x <0.17); Examples of silicon oxide include SiO and SiO 2.
l-x 2  l-x 2
[0020] 金属の酸化物としては、金属が自然に酸化されたものや、種々の用途に使用され た使用済みの金属であってもよい。使用済みの金属としては、例えば、磁気記録媒 体、光触媒、顔料、燃料電池、触媒等において使用された金属などが使用できる。こ のような金属の酸ィ匕物を使用して溶融塩電解を行うことにより、使用済み金属をリサイ クノレすることがでさる。 [0021] 使用する金属原料の金属の種類が一種の場合は、単一の金属原子からなる金属 微粒子を得ることができ、使用する金属原料の金属の種類が二種以上の場合は、合 金の (複数の金属からなる)金属微粒子を得ることもできる。したがって、金属微粒子 には合金微粒子も包含される。 [0020] The metal oxide may be a naturally oxidized metal or a used metal used for various purposes. Examples of the used metal include metals used in magnetic recording media, photocatalysts, pigments, fuel cells, catalysts, and the like. By performing molten salt electrolysis using such a metal oxide, it is possible to recycle used metal. When one kind of metal is used as the metal raw material, fine metal particles composed of a single metal atom can be obtained. When two or more kinds of metal are used as the metal raw material, alloy fine particles can be obtained. Fine metal particles (comprising a plurality of metals) can also be obtained. Therefore, metal fine particles include alloy fine particles.
[0022] 金属化合物としては、上記金属の硫酸塩、硝酸塩、リン酸塩、ハロゲン化物 (塩ィ匕 物、フッ化物、臭化物、ヨウ化物等)等が使用できる。例えば、 K TaF、 NiCl、 K TiF  As the metal compound, sulfates, nitrates, phosphates, halides (such as chlorides, fluorides, bromides, and iodides) of the above metals can be used. For example, K TaF, NiCl, K TiF
2 7 2 2 6 2 7 2 2 6
、 AgCl、 K TaF、 VC1、 K NbF、 K MoO、 K WO、 CrCl、 K PtCl、 CoCl、 K SiF力 ^ , AgCl, K TaF, VC1, K NbF, K MoO, K WO, CrCl, K PtCl, CoCl, K SiF force ^
2 6 2 2 7 2 4 2 4 2 2 6 2 2 6 例示される。当該金属化合物は、単独で使用することもでき、また二種以上を併用す ることちでさる。  2 6 2 2 7 2 4 2 4 2 2 6 2 2 6 The metal compounds can be used alone or in combination of two or more.
[0023] 本発明の方法では、使用する金属原料の形状も限定されない。例えば、粉末状で もよぐスクラップ状、塊状等種々の形状でもよい。また、種々の用途に使用した後、 金属の部分を取り出してそのまま使用することも可能である。  In the method of the present invention, the shape of the metal raw material used is not limited. For example, various shapes such as a scrap shape, a lump shape, or a powder shape may be used. Moreover, after using for various purposes, it is also possible to take out the metal part and use it as it is.
[0024] 上述した金属化合物及び Z又は金属の酸化物を電解浴に添加する量は限定され ず、電解時間、微粒子の量及び大きさに応じて適宜選択することができる。例えば、 電解浴の溶媒あたり金属原料が 0.0001〜10mol/L程度、好ましくは 0.1〜5.0mol /L 程度となるように溶解させればょ ヽ。  [0024] The amount of the metal compound and the oxide of Z or metal added to the electrolytic bath is not limited, and can be appropriately selected according to the electrolysis time, the amount and size of the fine particles. For example, the metal raw material should be dissolved in an amount of about 0.0001 to 10 mol / L, preferably about 0.1 to 5.0 mol / L per solvent of the electrolytic bath.
[0025] 本発明の製造方法 2においては、金属原料は電解によって陽極力 供給されること から、電解浴に金属原料を添加することは任意に選択できる。電解浴に金属原料を 添加する場合、金属原料は、微粒子の原料となる金属及び金属化合物からなる群か ら選ばれる 1種であればよい。したがって、製造方法 1においては、金属原料として金 属酸ィ匕物が必須であるが、製造方法 2においては溶融塩に添加される金属原料は 金属酸ィ匕物に限定されず、金属又は金属化合物を広く使用できる。また、製造方法 2にお ヽては、陽極から金属原料が供給されることから溶融塩中に添加する金属原 料濃度を、製造方法 1の場合と比較して、低減することが可能である。なお、陽極から 供給される金属原料の金属の種類と溶融塩中に添加される金属原料の金属の種類 とが相違する場合には合金の微粒子が得られ、該微粒子は、本発明における金属微 粒子に包含される。  [0025] In the production method 2 of the present invention, since the metal raw material is supplied with an anodic force by electrolysis, the addition of the metal raw material to the electrolytic bath can be arbitrarily selected. When a metal raw material is added to the electrolytic bath, the metal raw material may be any one selected from the group consisting of a metal and a metal compound which are raw materials for fine particles. Therefore, in Production Method 1, a metal oxidant is indispensable as a metal raw material, but in Production Method 2, the metal raw material added to the molten salt is not limited to a metal oxidant, but may be a metal or metal. The compounds can be used widely. Further, in the production method 2, since the metal raw material is supplied from the anode, the concentration of the metal raw material to be added to the molten salt can be reduced as compared with the case of the production method 1. . In the case where the type of metal of the metal source supplied from the anode is different from the type of metal of the metal source added to the molten salt, fine particles of an alloy are obtained. Included in particles.
[0026] (1)陽極 [0026] (1) Anode
本発明の製造方法 1において、陽極としては、一般に溶融塩電解において陽極とし て使用する電極が使用でき、特に限定されるものではない。例えば、グラッシ一力一 ボンやグラフアイト、導電性ダイヤモンド等の炭素材料、タンタル、タングステン、モリ ブデン、白金等を電極として使用できる。また、タンタル、タングステン、モリブデン、 白金等の金属を異種材料上に薄膜状に形成したものも陽極として使用できる。また、 使用済みの金属を陽極材料として使用することもできる。また、塩素ガスの発生を抑 制することが求められる場合には、陽極に微粒子原料金属又は該金属の化合物を 含有させることによって抑制できる。  In the production method 1 of the present invention, as the anode, an electrode generally used as an anode in molten salt electrolysis can be used, and is not particularly limited. For example, carbon materials such as glass, graphite, conductive diamond and the like, tantalum, tungsten, molybdenum, platinum and the like can be used as electrodes. Also, a thin film formed of a metal such as tantalum, tungsten, molybdenum, or platinum on a dissimilar material can be used as the anode. In addition, used metals can be used as anode materials. In addition, when it is required to suppress the generation of chlorine gas, it can be suppressed by allowing the anode to contain a fine particle source metal or a compound of the metal.
[0027] また、本発明の製造方法 2において、陽極は、(1)3族、 4族、 5族、 6族、 7族、 8族、 9 族、 10族、 11族、 12族、 13族及び 14族に属する金属からなる群から選ばれる少なくと も 1種の金属;並びに (2)該金属の化合物;力 なる群力 選択される少なくとも 1種を 含有する。好ましい金属種は、金属微粒子の好ましい金属種と同じである。金属の化 合物は、金属原料における金属化合物と同じである。本製造方法では、陽極が微粒 子の原料を含有することから塩素ガスの発生が抑制される。なお、陽極に 2種以上の 金属種を使用する場合、卑な金属が微粒子となるため、目的とする微粒子の金属種 に応じて、陽極に含まれる金属種の組み合わせは適宜選択される。  [0027] In the production method 2 of the present invention, the anode may be (1) a group of 3, 4, 5, 6, 7, 8, 8, 9, 11, 12, 13, At least one metal selected from the group consisting of metals belonging to Group 14 and Group 14; and (2) a compound of the metal; Preferred metal species are the same as the preferred metal species of the metal fine particles. The compound of the metal is the same as the metal compound in the metal raw material. In the present production method, generation of chlorine gas is suppressed because the anode contains a raw material of fine particles. When two or more metal species are used for the anode, since the base metal is fine particles, the combination of metal species contained in the anode is appropriately selected according to the metal species of the target fine particles.
[0028] 本発明において使用する電極の形状、サイズ等も限定されない。電極の形状として は、例えば、板状、棒状、塊状、ばね状、角柱状等が使用できる。  [0028] The shape, size, and the like of the electrode used in the present invention are not limited. As the shape of the electrode, for example, a plate shape, a rod shape, a lump shape, a spring shape, a prism shape, or the like can be used.
[0029] 本発明にお 、て電気分解を行う場合には、一般に電気分解を行うように、陽極は電 解浴に浸漬させておくのがよい。陽極全体が浸漬されていても一部分が浸漬されて いてもよぐその態様は特に限定されない。  In the present invention, when performing electrolysis, the anode is preferably immersed in an electrolytic bath so as to generally perform the electrolysis. The mode in which the entire anode is immersed or a part thereof is immersed is not particularly limited.
[0030] (2)陰極  (0030) Cathode
陰極としても、一般に溶融塩電解に使用され、プラズマを発生させることができる陰 極が使用でき、特には限定されない。例えば、鉄、ニッケル、モリブデン、タンタル、タ ングステン等の各種金属、それらの合金、グラッシ一カーボンや導電性ダイヤモンド 等の炭素材料、導電性セラミックス、半導体性セラミックス等を用いることができる。ま た、これらを異種材料の上に薄膜状に形成したものも陰極として使用することができ る。それらの中でも、プラズマ誘起時に消耗されにくいタングステン、タンタル等の高 融点金属を使用するのが好ましい。 As the cathode, an anode generally used for molten salt electrolysis and capable of generating plasma can be used, and is not particularly limited. For example, various metals such as iron, nickel, molybdenum, tantalum, and tungsten, alloys thereof, carbon materials such as glassy carbon and conductive diamond, conductive ceramics, and semiconductor ceramics can be used. In addition, those formed as thin films on different materials can also be used as cathodes. The Among them, it is preferable to use a high melting point metal such as tungsten or tantalum which is not easily consumed when plasma is induced.
[0031] 本発明においては、電解浴近傍に設置され、電解浴に接触または浸漬させないよ うにする。設置場所は陰極の発生するプラズマによって溶融塩中に金属微粒子が生 成する場所であれば特に限定されないが、溶融塩液面の上部に設置することが好ま しい。そうすることにより、陰極力 プラズマが誘起され、電解浴中に金属の微粒子が 生成する。電解浴の表面カゝら陰極の最下部までの距離は限定されず、プラズマが安 定して誘起される距離であればょ 、。  [0031] In the present invention, it is installed near the electrolytic bath so that it is not in contact with or immersed in the electrolytic bath. The installation place is not particularly limited as long as the metal fine particles are generated in the molten salt by the plasma generated by the cathode, but it is preferable that the installation place is above the liquid level of the molten salt. By doing so, cathodic plasma is induced, and fine metal particles are generated in the electrolytic bath. The distance from the surface of the electrolytic bath to the lowermost part of the cathode is not limited, as long as the plasma is stably induced.
[0032] プラズマ誘起放電電解  [0032] Plasma-induced discharge electrolysis
本発明における電解の条件も、一般に溶融塩電解を行う条件で行うことができ、溶 媒の組成、目的とする金属微粒子の種類等に応じて適宜選択することができる。例 えば、印加する電圧は、 200〜800V程度が例示できる力 電気回路への負担軽減の ために 200〜400V程度が好ましい。ただし、プラズマ誘起放電の発生が安定した段 階で、 10〜200V、好ましくは 30〜150Vまで下げることができる。発生電流の種類は直 流電流が好ましぐ放電極 1本あたりの電流は、 0.05〜50A程度、好ましくは、 0.1〜 20A程度が良い。  The electrolysis conditions in the present invention can be generally performed under the conditions for performing molten salt electrolysis, and can be appropriately selected according to the composition of the solvent, the type of target metal fine particles, and the like. For example, the voltage to be applied is preferably about 200 to 400 V in order to reduce the load on the electric circuit, for example, about 200 to 800 V. However, the voltage can be reduced to 10 to 200 V, preferably 30 to 150 V, at a stage where the generation of plasma-induced discharge is stable. The type of generated current is preferably a direct current, and the current per discharge electrode is preferably about 0.05 to 50 A, and more preferably about 0.1 to 20 A.
[0033] 本発明において、安定してプラズマを誘起させるために、電源と電極の間に電気抵 抗を挿入するなどして、放電の安定性を確保するのが好ましい。電気抵抗は、陰極 側、陽極側又はその両方に挿入することができる。当該電気抵抗の種類は、電解時 の電流に耐えうる容量を持つ抵抗器であれば限定されず、例えば、セメント抵抗器、 ホーロー抵抗器、不燃性捲線固定抵抗器等が使用でき、不燃性捲線固定抵抗器が より好ましい。抵抗の値は、通常 1 Ω〜51ίΩ程度、好ましくは 3 Ω〜31ί Ωである。  [0033] In the present invention, in order to stably induce plasma, it is preferable to secure electric discharge stability by inserting an electric resistor between the power supply and the electrode. The electrical resistance can be inserted on the cathode side, the anode side or both. The type of the electric resistance is not limited as long as it is a resistor having a capacity to withstand the current during electrolysis.For example, a cement resistor, an enamel resistor, a non-combustible fixed wire resistor, or the like can be used. Fixed resistors are more preferred. The value of the resistance is usually about 1 Ω to 51ίΩ, preferably 3 Ω to 31ίΩ.
[0034] 電解浴の温度も限定されず、溶媒の融点、イオン源の融点等に応じて適宜選択す ることができる。例えば、 250〜700°C程度、好ましくは 400〜500°C程度である。  [0034] The temperature of the electrolytic bath is also not limited, and can be appropriately selected according to the melting point of the solvent, the melting point of the ion source, and the like. For example, it is about 250 to 700 ° C, preferably about 400 to 500 ° C.
[0035] 電解は通常、大気圧下で行うが、加圧下、減圧下でも可能である。また、電解は不 活性ガス雰囲気下で行うことが好ましぐ不活性ガスとしては、窒素、アルゴン、ネオ ン等が例示でき、アルゴンが好ましい。  [0035] The electrolysis is generally performed under atmospheric pressure, but may be performed under increased or reduced pressure. In addition, examples of the inert gas which is preferably performed in an inert gas atmosphere include nitrogen, argon, and neon, and argon is preferable.
[0036] 電解時間も限定されず、目的とする金属粒子の種類、粒径等に応じて適宜選択す ることができる。例えば、 0.1〜10時間程度、好ましくは 1〜5時間程度である。 [0036] The electrolysis time is also not limited, and is appropriately selected according to the type, particle size, and the like of the target metal particles. Can. For example, it is about 0.1 to 10 hours, preferably about 1 to 5 hours.
[0037] 本発明では、添加するイオン源の濃度、電解時間等を調節することによって、 100 μ m程度以下、好ましくは lnm〜100 μ m程度の範囲において任意の粒径の金属微 粒子を得ることができる。特に、本発明では、ナノサイズの非常に小さな金属微粒子 を得ることができる。例えば、電解時間や、電解力 回収までの時間を短くしたり、電 解浴中のイオン源の濃度を低くしたり、電解時の電解浴の温度を低く保つ等すれば 、金属微粒子のサイズを小さくすることができる。  In the present invention, by adjusting the concentration of the ion source to be added, the electrolysis time, and the like, metal fine particles having an arbitrary particle size of about 100 μm or less, preferably in the range of about lnm to 100 μm are obtained. be able to. In particular, in the present invention, very small metal particles of nano size can be obtained. For example, the size of the metal fine particles can be reduced by shortening the electrolysis time or the time until the recovery of the electrolytic power, reducing the concentration of the ion source in the electrolytic bath, or keeping the temperature of the electrolytic bath low during the electrolysis. Can be smaller.
[0038] 本発明の方法により、金属微粒子が得られる機序としては次のことが考えられる力 本発明はこの機序に限定されない。放電電極を陰極としてプラズマ誘起電解を行う 場合、溶媒中の微粒子の原料となる陽イオン Mn+は下記の式(1)にしたがって生成し 、溶媒中に存在するアルカリ金属イオン L+の還元反応 (式(2) )に伴って式 (3)で表さ れるように、原子状物質にまで還元される。 The following mechanism is considered as a mechanism for obtaining metal fine particles by the method of the present invention. The present invention is not limited to this mechanism. When plasma-induced electrolysis is performed using the discharge electrode as a cathode, a cation M n + serving as a raw material of fine particles in a solvent is generated according to the following equation (1), and a reduction reaction of an alkali metal ion L + present in the solvent (formula (1)) According to (2)), it is reduced to an atomic substance as represented by equation (3).
[0039] M→Mn++ne" (1) [0039] M → M n + + ne "(1)
L+ + e—→L (2)  L + + e— → L (2)
nL+Mn+→nL++M (3) nL + M n + → nL + + M (3)
続いて溶媒中で原子状物質同士の衝突により原子レベルのクラスターが形成され 、さらには原子レベルのクラスター同士の衝突が順次繰り返されることにより、数 nm又 は数/ z mの微粒子まで成長すると考えられる。  Subsequently, atomic-level clusters are formed by collisions between atomic substances in a solvent, and furthermore, collisions between atomic-level clusters are sequentially repeated, so that fine particles of several nm or several / zm are thought to grow. .
[0040] 溶媒中の電極部分に保持した酸ィ匕物等の陽極溶解、あるいは溶媒中に保持した 酸ィ匕物等の化学的溶解により微粒子の原料となる陽イオン Mn+を供給する場合には、 下記の式 (4)又は(5)に従って、陽イオン Mn+が溶媒中で生成する。 [0040] When the cation Mn + serving as the raw material of the fine particles is supplied by anodic dissolution of the oxidized product held at the electrode portion in the solvent or by chemical dissolution of the oxidized product held in the solvent, According to the following formula (4) or (5), a cation M n + is generated in a solvent.
[0041] M→Mn++ne" (4) [0041] M → M n + + ne "(4)
M A→xMy++yAx" (5) MA → xM y + + yA x "(5)
x y  x y
(ただし、 Mは酸化物等に含まれる金属、 M Aは酸化物等を表す。 )  (However, M represents a metal contained in an oxide or the like, and MA represents an oxide or the like.)
溶媒中に存在する微粒子の原料となる陽イオンが 2種類 (M nl+、 M n2+)存在し、それ There are two types of cations ( Mnl + and Mn2 + ) that serve as raw materials for fine particles in the solvent.
1 2  1 2
ぞれのイオンが同時に還元されることにより、下記の式 (6)に従って化合物 (合金)を 形成することも可能である。イオン種が 3種類以上の場合も同様である。  By simultaneously reducing the respective ions, it is also possible to form a compound (alloy) according to the following formula (6). The same applies when there are three or more ion species.
[0042] M nl++M n2++ (n +n ) e"→M M (6) 余厲微粒早の回収 [0042] M nl + + M n2 + + (n + n) e "→ MM (6) Recovery of extra fine particles
得られた金属粒子は、以下のようにして回収することができる力 これらに限定され るものではない。  The obtained metal particles can be recovered in the following manner. The present invention is not limited to these.
[0043] 例えば、電解浴力 金属粒子を含む溶融塩を取り出し、好ましくは、不活性ガス雰 囲気下で冷却し、固化させることができる。不活性ガスの種類は上述した通りである。 不活性ガス雰囲気下で行うことにより、金属微粒子の酸ィ匕が防止できる。  For example, electrolytic bath power A molten salt containing metal particles can be taken out, cooled and solidified, preferably in an inert gas atmosphere. The type of the inert gas is as described above. By performing the treatment in an inert gas atmosphere, oxidation of the metal fine particles can be prevented.
[0044] 次 、で、固化した電解液を粉砕して洗浄溶液に浸漬すればよ!ヽ。粉砕の手段も限 定されず、例えば、ハンマー、ミキサー等で行ってもよいが、より効率良く細かに粉砕 できる点力 超音波処理が好まし 、。超音波処理を行うための装置は限定されず、 市販の装置を使用することができる。超音波の条件としても限定されず、例えば、 10 〜100kHz程度、 20〜60kHz程度の周波数で、固化した電解液 100gあたり 100〜300 分程度、好ましくは 150〜200分程度超音波処理すればょ ヽ。  Next, the solidified electrolytic solution may be crushed and immersed in the cleaning solution!ヽ. The means for pulverization is not limited, and may be, for example, a hammer, a mixer, or the like. The device for performing the ultrasonic treatment is not limited, and a commercially available device can be used. The condition of the ultrasonic wave is not limited.For example, the ultrasonic treatment may be performed at a frequency of about 10 to 100 kHz, about 20 to 60 kHz, for about 100 to 300 minutes per 100 g of the solidified electrolyte, preferably about 150 to 200 minutes.ヽ.
[0045] 超音波処理の後、洗浄し、遠心分離を行うことにより、本発明の金属微粒子を得る ことができる。遠心分離の条件は、本発明で得られた金属微粒子と固化した電解液と が分離される限り限定されず、適宜選択することができる。例えば、 1000〜5000rpm 程度、好ましくは 1500〜3000rpm程度で、 10分〜 2時間程度、好ましくは 30分〜 1.5時 間程度とすることができる。  After the ultrasonic treatment, the metal particles of the present invention can be obtained by washing and centrifuging. The condition of the centrifugation is not limited as long as the metal fine particles obtained in the present invention and the solidified electrolyte are separated, and can be appropriately selected. For example, the speed can be about 1000 to 5000 rpm, preferably about 1500 to 3000 rpm, and about 10 minutes to 2 hours, preferably about 30 minutes to 1.5 hours.
[0046] 洗浄方法としては、本発明で得られる金属微粒子を超音波、遠心分離等することが できれば限定されない。例えば、水、一般に無電解めつきに使用される還元剤を溶 解した水溶液等を使用することができる。還元剤としては、ジメチルァミンボラン、トリメ チルァミンボラン等のボランーァミンコンプレックス;水素化ホウ素カリウム、水素化ホ ゥ素ナトリウム等の水素化ホウ素化合物;ホルムアルデヒド等を使用することができる 。これらの濃度は限定されない。  The washing method is not limited as long as the metal fine particles obtained in the present invention can be subjected to ultrasonic wave, centrifugal separation, and the like. For example, water, an aqueous solution in which a reducing agent generally used for electroless plating is dissolved, or the like can be used. As the reducing agent, borane-amine complexes such as dimethylamine borane and trimethylamine borane; borohydride compounds such as potassium borohydride and sodium borohydride; formaldehyde and the like can be used. These concentrations are not limited.
[0047] 必要に応じて、沈殿物の超音波処理と遠心分離の処理を繰り返し行っても良い。繰 り返し行うことにより、固化した電解液から、高い効率で金属微粒子を得ることができ る。  [0047] If necessary, ultrasonic treatment and centrifugation of the precipitate may be repeated. By repeating the process, metal fine particles can be obtained with high efficiency from the solidified electrolytic solution.
[0048] 得られた金属粒子の粒径は、例えば、電子顕微鏡観察等の常法により行うことがで きる。粒度分布も、例えば、動的光散乱測定法等の常法により行うことができる。さら に、金属微粒子における酸素含有量も、例えば、電不活性ガス融解 赤外線吸収 法等の常法により行うことができる。 [0048] The particle size of the obtained metal particles can be determined by a conventional method such as observation with an electron microscope. The particle size distribution can also be determined by a conventional method such as dynamic light scattering measurement. More Furthermore, the oxygen content in the metal fine particles can also be determined by a conventional method such as, for example, an electroinert gas melting infrared absorption method.
[0049] 得られた金属微粒子に対し、洗浄溶液中に非イオン性界面活性剤、アルコール等 を含む分散剤等を更に添加したものを使用することも可能である。金属微粒子は、使 用する際に適当な液で洗浄し、所望の目的に使用すればよい。  [0049] It is also possible to use those obtained by further adding a dispersant or the like containing a nonionic surfactant, alcohol or the like to the cleaning solution to the obtained metal fine particles. The metal fine particles may be washed with an appropriate liquid when used, and used for a desired purpose.
[0050] リサイクル方法  [0050] Recycling method
本発明のリサイクル方法は、上記の金属微粒子の製造方法を利用したものであつ て、金属原料として使用済みの金属又は金属化合物を利用する。すなわち、使用済 みの金属又は金属化合物を溶融塩中に金属原料として添加するか、陽極に保持さ せる。これによつて、使用済み金属又は金属化合物の金属種に応じた金属微粒子が 生成するため、使用済み金属又は金属化合物を再利用することができる。  The recycling method of the present invention utilizes the above-described method for producing fine metal particles, and uses a used metal or metal compound as a metal raw material. That is, the used metal or metal compound is added to the molten salt as a metal raw material, or is held at the anode. As a result, fine metal particles corresponding to the metal species of the used metal or metal compound are generated, so that the used metal or metal compound can be reused.
[0051] 以下、図 1を参照して、本発明の好ましい態様の一例について説明する。  Hereinafter, an example of a preferred embodiment of the present invention will be described with reference to FIG.
例えば、 500°C程度の加温を可能とする電気炉(1)内に、電解槽としての高純度アル ミナ製のるつぼ(2)を設置するためのホルダー (3)を備え、該ホルダー内に不活性ガ スを大気圧で導入管 (4)、排気管(5)を通じて循環させる。るつぼ内にてアルカリ金 属ハロゲンィ匕物等を溶融させて電解浴の溶媒 (6)とする。溶媒の温度は熱電対 (7) で測定し、所定の温度に設定する。  For example, a holder (3) for installing a high-purity aluminum crucible (2) as an electrolytic cell in an electric furnace (1) capable of heating at about 500 ° C is provided. The inert gas is circulated at atmospheric pressure through the inlet pipe (4) and the exhaust pipe (5). In a crucible, the alkali metal halide is melted and used as a solvent (6) for the electrolytic bath. The temperature of the solvent is measured with a thermocouple (7) and set to a predetermined temperature.
[0052] 不活性ガスを循環させた状態で溶媒中に金属微粒子の原料となるイオン源を添カロ する。次いで、該溶媒上に配置した放電用電極 (8)と溶媒中に配置した電極(9)との 間に電源装置(10)を設置し、電圧を印加して、溶媒と放電用電極との間にプラズマ を誘起させる。  [0052] In a state where the inert gas is circulated, an ion source serving as a raw material of the metal fine particles is added to the solvent. Next, a power supply device (10) is installed between the discharge electrode (8) placed on the solvent and the electrode (9) placed in the solvent, and a voltage is applied to connect the solvent and the discharge electrode. Plasma is induced in between.
[0053] イオン源を添加する代わりに、溶媒中の電極 (9)は、金属微粒子の原料を含む物 質(11)を保持できる部分を備えていてもよい。そうすることにより、電解時に金属微 粒子の原料となるイオン源を安定してまたは連続的に供給することができる。イオン 源は、電極以外の溶媒中に保持してもよい。  [0053] Instead of adding the ion source, the electrode (9) in the solvent may have a portion capable of holding the substance (11) containing the raw material of the metal fine particles. By doing so, it is possible to stably or continuously supply an ion source serving as a raw material of metal fine particles during electrolysis. The ion source may be held in a solvent other than the electrode.
[0054] プラズマを誘起させる際には、電源装置と電極の間に電気抵抗(12)などを挿入す ると、安定してプラズマが誘起でき、電解が促進されることにより効率良く金属微粒子 が形成されるので、好ましい。 発明の効果 When plasma is induced, by inserting an electric resistance (12) or the like between the power supply device and the electrode, the plasma can be induced stably, and the electrolysis is promoted, so that the metal fine particles can be efficiently produced. It is preferable because it is formed. The invention's effect
[0055] 本発明の金属微粒子の製造方法によれば、金属微粒子の原料として、当該金属だ けでなく、当該金属の酸化物を使用することができる点において特に優れている。ま た、溶融塩電解における電解質組成、電解質温度、電解時間等のパラメータを制御 することにより、微粒子の粒径、粒径分布等を容易に制御することができる。  [0055] The method for producing metal fine particles of the present invention is particularly excellent in that not only the metal but also an oxide of the metal can be used as a raw material of the metal fine particles. Further, by controlling parameters such as electrolyte composition, electrolyte temperature, and electrolysis time in molten salt electrolysis, the particle size, particle size distribution, and the like of the fine particles can be easily controlled.
[0056] 本発明では高価な装置'設備も、高度な知識や高度な技術も必要とせず、所望の 微細な金属微粒子を製造することが可能なため、金属微粒子の製造コストが大きく低 減される。また、電解浴も有害物質を含まず、再利用することも可能である。  [0056] The present invention does not require expensive equipment and equipment, and does not require advanced knowledge or advanced technology, and can produce desired fine metal particles. Therefore, the production cost of metal particles is greatly reduced. You. Also, the electrolytic bath does not contain harmful substances and can be reused.
[0057] さらに、金属微粒子の原料となる金属原料の形態として、スクラップ、塊状の原料を 使用しても金属微粒子の製造が可能である。例えば、電解浴中の溶媒中に配置した 電極部分に、あるいは溶媒中に、製造する微粒子の原料を含有する物質を保持する ことで、イオン源を陽極溶解、あるいは該物質の化学的溶解により供給できる。すな わち、スクラップ等の状態力も再びデバイスに必要な材料を製造することが可能なの で、本願発明の方法は、金属のリサイクル方法としても非常に優れている。  Further, as the form of the metal raw material used as the raw material of the metal fine particles, it is possible to produce the metal fine particles by using a scrap or lump-shaped raw material. For example, an ion source is supplied by anodic dissolution or chemical dissolution of the substance by holding the substance containing the raw material of the microparticles to be produced in the electrode part disposed in the solvent in the electrolytic bath or in the solvent. it can. In other words, since the state force such as scrap can again produce a material necessary for the device, the method of the present invention is very excellent as a metal recycling method.
図面の簡単な説明  Brief Description of Drawings
[0058] [図 1]溶融塩電解を行うための装置の概念図である。 FIG. 1 is a conceptual diagram of an apparatus for performing molten salt electrolysis.
[図 2] (a)は、実施例 1で得られたタンタル微粒子の走査電子顕微鏡写真を示し、 (b) は、 (a)の白矩形部分に対する X線マイクロアナライザーによる分析結果を示す。  FIG. 2 (a) shows a scanning electron micrograph of the tantalum fine particles obtained in Example 1, and FIG. 2 (b) shows the analysis result of the white rectangular portion of (a) by an X-ray microanalyzer.
[図 3] (a)は、実施例 3で得られたタンタル微粒子の走査電子顕微鏡写真を示し、 (b) は、そのタンタル微粒子の X線回折の結果を示す。  [FIG. 3] (a) shows a scanning electron micrograph of the tantalum fine particles obtained in Example 3, and (b) shows the result of X-ray diffraction of the tantalum fine particles.
符号の説明  Explanation of symbols
[0059] 1 電気炉 [0059] 1 Electric furnace
2 るつぼ  2 Crucible
3 ホルダー  3 Holder
4 導入管  4 Introduction pipe
5 排気管  5 Exhaust pipe
6 溶媒  6 Solvent
7 熱電対 8 電極 7 Thermocouple 8 electrodes
9 電極  9 electrodes
10 電源装置  10 Power supply
11 原料保持部  11 Raw material holding section
12 電気抵抗  12 Electric resistance
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0060] 以下、実施例を示し、本発明の特徴を一層明確にする。本発明はこれら実施例に 限定されるものではない。 Hereinafter, examples will be shown to further clarify the features of the present invention. The present invention is not limited to these examples.
実施例  Example
[0061] 実施例 1 Example 1
溶媒 (電解浴)には、共晶組成に混合した LiCl— KCl (58.5:41.5mol%;合計 100g)を 数日間 180°Cで真空乾燥させた後、アルゴン雰囲気中 450°Cで溶融させたものを用 いた。タンタル源には、ヘプタフルォロタンタルカリウム(K TaF )を用い、 0.1mol%とな  LiCl—KCl (58.5: 41.5mol%; 100g in total) mixed in a eutectic composition was vacuum-dried at 180 ° C for several days in the solvent (electrolytic bath) and then melted at 450 ° C in an argon atmosphere. I used something. Heptafluorotantalum potassium (K TaF) was used as the tantalum source.
2 7  2 7
るように添力!]した。  So help! ]did.
[0062] 放電用電極(陰極)としてタングステン線を溶媒上に配置し、陽極として溶媒中にタ ンタルコンデンサースクラップ (ピン屑) 2.001g (酸ィ匕物は Ta 0、表面は完全に酸化さ  [0062] A tungsten wire was placed on a solvent as a discharge electrode (cathode), and tantalum condenser scrap (pin scrap) was placed in the solvent as an anode.
2 5  twenty five
れて 、るがスクラップ全体に対する酸ィ匕物の割合は 0.5重量 %程度)を保持した筒状 のタンタル金属電極を配置した。アルゴン雰囲気下で溶媒温度を 450°Cに維持し、放 電用電極と溶媒中の電極との間に 250Vを印加し、放電用電極と溶媒との間にプラス、 マを誘起させ、 5時間電解を行った。  However, a cylindrical tantalum metal electrode holding the garnish was 0.5% by weight of the entire scrap was disposed. Under an argon atmosphere, maintain the solvent temperature at 450 ° C, apply 250 V between the discharge electrode and the electrode in the solvent, induce a plus and minus between the discharge electrode and the solvent, and Electrolysis was performed.
[0063] プラズマ誘起電解後、アルゴン雰囲気下で微粒子を含む溶媒を室温まで冷却-固 化し、固化した溶媒が溶けるまで 2Mのヒドラジン水溶液中で超音波処理を数時間行 つた後、 10分程度の超音波処理と遠心分離操作を繰り返し行った。遠心分離操作は 2000rpmで行い、 1回目約 10分、 2回目約 30分、 3回目約 60分とした。  [0063] After the plasma-induced electrolysis, the solvent containing the fine particles is cooled and solidified to room temperature under an argon atmosphere, subjected to ultrasonic treatment for several hours in a 2M aqueous hydrazine solution until the solidified solvent is dissolved, and then left for about 10 minutes. The sonication and the centrifugation operation were repeated. The centrifugation operation was performed at 2000 rpm, and the first time was about 10 minutes, the second time was about 30 minutes, and the third time was about 60 minutes.
[0064] その結果、黒色のタンタル微粒子が回収された。微粒子を走査電子顕微鏡で観察 すると、 02 (a)に示すようにナノメートルオーダーの微粒子が得られたことが確認さ れた。続いて、得られた微粒子(図 2 (a)の白矩形部分)に対して X線マイクロアナライ ザ一測定を行った結果、タンタル微粒子が形成されて ヽることが確認された(図 2 (b) ) o As a result, black tantalum fine particles were collected. Observation of the fine particles with a scanning electron microscope confirmed that fine particles on the order of nanometers were obtained, as shown in 02 (a). Subsequently, an X-ray microanalyzer measurement was performed on the obtained fine particles (white rectangular portion in FIG. 2 (a)), and it was confirmed that tantalum fine particles were formed (FIG. 2). (b) ) o
[0065] また、溶媒中に配置した筒状のタンタル金属電極中のピン屑の質量が電解後に 0.996gに減少して 、ることから、該ピン屑中に含まれるタンタル金属又は酸ィ匕タンタ ルが電解時に溶解していたことが確認された。一方、筒状のタンタル金属電極の消 耗は 0.325gであった。  [0065] Further, since the mass of the pin dust in the cylindrical tantalum metal electrode arranged in the solvent is reduced to 0.996 g after the electrolysis, the tantalum metal or the tantalum metal contained in the pin scrap is reduced. Was dissolved during electrolysis. On the other hand, the consumption of the cylindrical tantalum metal electrode was 0.325 g.
[0066] 溶媒中に添カ卩した 0.1mol%相当の K TaF力も電解により得られる微粒子の理論的  [0066] The K TaF force equivalent to 0.1 mol% added in a solvent is also the theoretical value of fine particles obtained by electrolysis.
2 7  2 7
質量は 0.32gである力 分析のために回収した微粒子だけでも 0.4gを越えており、ピン 屑あるいはタンタル金属電極から溶解して得られたタンタルイオン源からもタンタル微 粒子が形成したと言え、本発明がスクラップを原料とする資源循環型のプロセスとし て利用可能なことが確認された。  The mass is 0.32 g, and the fine particles collected for force analysis alone exceed 0.4 g, and it can be said that tantalum fine particles were formed from pin scraps or a tantalum ion source obtained by melting from a tantalum metal electrode. It was confirmed that the present invention can be used as a resource recycling type process using scrap as a raw material.
[0067] ¾細12 [0067] Detail 12
タンタル以外の金属化合物として、ニッケル (イオン源として NiClを使用)、チタン(  Metal compounds other than tantalum include nickel (using NiCl as an ion source), titanium (using
2  2
イオン源として K TiFを使用)、銀 (イオン源として AgClを使用)、ジルコニウム (イオン  K TiF as an ion source), silver (AgCl as an ion source), zirconium (ion
2 6  2 6
源として K ZrFを使用)、バナジウム (イオン源として VC1を使用)、ニオブ (イオン源と  K ZrF as source), vanadium (using VC1 as ion source), niobium (with ion source)
2 6 2  2 6 2
して K NbFを使用)、モリブデン (イオン源として K MoOを使用)、タングステン (ィォ Using KNbF), molybdenum (using KMoO as ion source), and tungsten (using
2 7 2 4 2 7 2 4
ン源として K WOを使用)、クロム (イオン源として CrClを使用)、白金 (イオン源として  K WO), chromium (using CrCl as ion source), platinum (as ion source)
2 4 2  2 4 2
K PtClを使用)、コバルト (イオン源として CoClを使用)をそれぞれ使用し、さら〖こ、タ K PtCl) and cobalt (CoCl is used as ion source).
2 6 2 2 6 2
ンタルコンデンサースクラップ (ピン屑)の代わりに、上記金属化合物の金属種のスク ラップ (ピン屑)を用いて、実施例 1と同様に実験を行ったところ、それぞれのナノォー ダ一の金属微粒子が得られた。  An experiment was conducted in the same manner as in Example 1 except that scrap (pin scrap) of the above-mentioned metal compound was used in place of the scrap (pin scrap) of the metal capacitor. As a result, metal particles of the same nanoorder were obtained. Was done.
[0068] 実施例 3  Example 3
イオン源としてヘプタフルォロタンタルカリウムを含まな ヽ条件で、陽極として溶媒 中にタンタルコンデンサースクラップ (ピン屑)を 1.502g保持した筒状のグラフアイト製 電極を配置し、電流値を 0.80Aとして 1.7時間の電解を行った以外は実施例 1と同様 に実験を行った。得られた微粒子に対し X線回折を行うと格子定数が約 3%広がったタ ンタル微粒子であることが確認された。  Under conditions that do not contain heptafluorotantalum potassium as the ion source, a cylindrical graphite electrode holding 1.502 g of tantalum condenser scrap (pin scraps) in a solvent was placed as the anode, and the current value was set to 0.80 A. The experiment was performed in the same manner as in Example 1 except that the electrolysis was performed for 1.7 hours. X-ray diffraction of the obtained fine particles confirmed that they were tantalum fine particles with a lattice constant of about 3% wider.
[0069] 溶媒中に配置した筒状のグラフアイト製電極中のピン屑の質量が電解後に 0.903g に減少しており、該ピン屑力も溶解して得られたタンタルイオン源のみ力もタンタル微 粒子が形成されたことが確認された。本実施例では溶媒中に予めイオン源を含まず に、かつ、スクラップのみを保持した電極カゝらタンタル微粒子が形成されており、本発 明がスクラップのみを原料とする資源循環型のプロセスとしてさらに有効であることが 確認された。 [0069] The mass of pin debris in the cylindrical graphite electrode placed in the solvent was reduced to 0.903 g after electrolysis, and the power of only the tantalum ion source obtained by dissolving the pin debris also reduced the tantalum fineness. It was confirmed that particles were formed. In this embodiment, tantalum fine particles are formed in the solvent without containing an ion source in advance and only the scrap is held, and the present invention is a resource circulation type process using only scrap as a raw material. It was confirmed that it was more effective.
[0070] 実施例 4  Example 4
イオン源として、 NiCl (ニッケルのイオン源)、 K TiF (チタンのイオン源)、 AgCl (銀  NiCl (nickel ion source), K TiF (titanium ion source), AgCl (silver)
2 2 6  2 2 6
のイオン源)、 K ZrF (ジルコニウムのイオン源)、 VC1 (バナジウムのイオン源)、 K  Ion source), K ZrF (zirconium ion source), VC1 (vanadium ion source), K
2 6 2 2 2 6 2 2
NbF (ニオブのイオン源)、 K MoO (モリブデンのイオン源)、 K WO (タングステンのNbF (niobium ion source), K MoO (molybdenum ion source), K WO (tungsten
7 2 4 2 4 7 2 4 2 4
イオン源)、 CrCl (クロムのイオン源)、 K PtCl (白金のイオン源)、 CoCl (コバルトのィ  Ion source), CrCl (chromium ion source), K PtCl (platinum ion source), CoCl (cobalt ion source)
2 2 6 2  2 2 6 2
オン源)をそれぞれ使用せずに、実施例 2と同様に実験を行ったところ、それぞれの ナノオーダーの金属微粒子が得られた。  When an experiment was performed in the same manner as in Example 2 without using each of the (on sources), metal fine particles of each nano-order were obtained.
[0071] 本実施例では溶媒中に予めイオン源を含まずにスクラップを保持した電極のみで、 上記金属の微粒子が形成されており、本発明がスクラップを原料とする資源循環型 のプロセスとしてさらに有効であることが確認された。 In the present embodiment, the metal fine particles are formed only by the electrode that holds the scrap without previously including the ion source in the solvent, and the present invention is further described as a resource recycling process using scrap as a raw material. Confirmed to be valid.
産業上の利用可能性  Industrial applicability
[0072] 本発明は金属微粒子の製造分野、金属のリサイクル分野に有用である。 The present invention is useful in the field of producing fine metal particles and the field of recycling metal.

Claims

請求の範囲 The scope of the claims
[1] 3族、 4族、 5族、 6族、 7族、 8族、 9族、 10族、 11族、 12族、 13族及び 14族に属する金 属からなる群から選ばれる少なくとも 1種の金属の酸化物を含む金属原料を電解浴 中に溶融し、陰極を電解浴近傍に設置して溶融塩電解を行うことを特徴とする金属 微粒子の製造方法。  [1] At least one selected from the group consisting of metals belonging to groups 3, 4, 5, 6, 7, 8, 9, 9, 10, 11, 12, 13, and 14 A method for producing fine metal particles, comprising melting a metal raw material containing an oxide of a metal in an electrolytic bath, and placing a cathode near the electrolytic bath to perform molten salt electrolysis.
[2] 金属原料が、チタン、ジルコニウム、バナジウム、ニオブ、タンタル、モリブデン、タン ダステン、クロム、白金、コバルト、ニッケル及びケィ素力 なる群力 選ばれる少なく とも 1種の金属の酸化物を含むことを特徴とする請求項 1に記載の方法。  [2] The metal raw material includes at least one oxide of a metal selected from the group consisting of titanium, zirconium, vanadium, niobium, tantalum, molybdenum, tungsten, chromium, platinum, cobalt, nickel and silicon. The method according to claim 1, wherein:
[3] 3族、 4族、 5族、 6族、 7族、 8族、 9族、 10族、 11族、 12族、 13族及び 14族に属する金 属からなる群力 選ばれる少なくとも 1種の金属の金属微粒子の製造方法であって、 該金属及び該金属の化合物からなる群から選択される少なくとも 1種を含有する陽極 を溶融塩中に設置し、陰極を電解浴近傍に設置して溶融塩電解を行うことを特徴と する金属微粒子の製造方法。  [3] A group consisting of metals belonging to groups 3, 4, 5, 6, 7, 8, 8, 9, 10, 11, 12, 13 and 14 At least one selected from metals Kind Code: A1 A method for producing metal fine particles of a metal, wherein an anode containing at least one selected from the group consisting of the metal and a compound of the metal is provided in a molten salt, and the cathode is provided near an electrolytic bath. A method for producing metal fine particles, characterized in that molten salt electrolysis is carried out.
[4] 溶融塩が、金属微粒子の原料となる金属及び金属化合物からなる群から選択され る少なくとも 1種を含有する、請求項 3に記載の方法。  4. The method according to claim 3, wherein the molten salt contains at least one selected from the group consisting of a metal and a metal compound serving as a raw material of the metal fine particles.
[5] 電源と陽極との間に電気抵抗を設置して溶融塩電解を行うことを特徴とする請求項 1 〜4の!、ずれかに記載の方法。  [5] The method according to any one of [1] to [4], wherein molten salt electrolysis is performed by setting an electric resistance between the power supply and the anode.
[6] 使用済みの金属を電解浴中に溶融し、陰極を電解浴近傍に設置して溶融塩電解 を行うことにより金属微粒子を得ることを特徴とする、金属のリサイクル方法。  [6] A method for recycling metals, comprising melting used metals in an electrolytic bath, placing a cathode near the electrolytic bath, and performing molten salt electrolysis to obtain fine metal particles.
[7] 使用済みの金属を陽極材料として使用し、陰極を電解浴近傍に設置して溶融塩電 解を行うことにより金属微粒子を得ることを特徴とする、金属のリサイクル方法。  [7] A method for recycling metal, comprising using used metal as an anode material, placing a cathode near an electrolytic bath and performing molten salt electrolysis to obtain fine metal particles.
PCT/JP2005/006792 2004-04-06 2005-04-06 Process for producing microparticles by plasma-induced electrolysis WO2005111272A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006513507A JP4688796B2 (en) 2004-04-06 2005-04-06 Method for producing fine particles by plasma-induced electrolysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-112105 2004-04-06
JP2004112105 2004-04-06

Publications (1)

Publication Number Publication Date
WO2005111272A1 true WO2005111272A1 (en) 2005-11-24

Family

ID=35394179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006792 WO2005111272A1 (en) 2004-04-06 2005-04-06 Process for producing microparticles by plasma-induced electrolysis

Country Status (2)

Country Link
JP (1) JP4688796B2 (en)
WO (1) WO2005111272A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084890A (en) * 2005-09-22 2007-04-05 Kyoto Univ Oxygen generating device and oxygen generating method in molten salt
JP2008106309A (en) * 2006-10-26 2008-05-08 Doshisha Method for producing particulate by plasma-induced electrolysis, and device therefor
JP2009215569A (en) * 2008-03-07 2009-09-24 Doshisha Method for producing alloy powder using molten salt reaction bath
WO2013065511A1 (en) * 2011-11-04 2013-05-10 住友電気工業株式会社 Molten salt electrolysis metal fabrication method and apparatus for use in same
JP2013117063A (en) * 2011-11-04 2013-06-13 Sumitomo Electric Ind Ltd Method of producing metal by molten salt electrolysis
JP2013147731A (en) * 2011-12-22 2013-08-01 Sumitomo Electric Ind Ltd Molten salt electrolysis metal fabrication method
JP2016191153A (en) * 2010-11-02 2016-11-10 学校法人同志社 Silicon nanoparticle production method
US10309022B2 (en) 2011-08-10 2019-06-04 Sumitomo Electric Industries, Ltd. Element recovery method and element recovery apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105274576B (en) * 2014-05-28 2017-12-22 奥勇新材料科技(上海)有限公司 A kind of method that continuous reduction prepares metal in fused-salt medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130205A (en) * 1982-01-29 1983-08-03 Natl Res Inst For Metals Electrode device in producing device for fine metallic particles
JPS63500187A (en) * 1986-01-06 1988-01-21 ペシネ Method for producing transition metal powder by electrolysis in a molten salt bath

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569304A (en) * 1979-07-06 1981-01-30 Natl Res Inst For Metals Manufacture of fine metal particle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130205A (en) * 1982-01-29 1983-08-03 Natl Res Inst For Metals Electrode device in producing device for fine metallic particles
JPS63500187A (en) * 1986-01-06 1988-01-21 ペシネ Method for producing transition metal powder by electrolysis in a molten salt bath

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084890A (en) * 2005-09-22 2007-04-05 Kyoto Univ Oxygen generating device and oxygen generating method in molten salt
JP2008106309A (en) * 2006-10-26 2008-05-08 Doshisha Method for producing particulate by plasma-induced electrolysis, and device therefor
JP2009215569A (en) * 2008-03-07 2009-09-24 Doshisha Method for producing alloy powder using molten salt reaction bath
JP2016191153A (en) * 2010-11-02 2016-11-10 学校法人同志社 Silicon nanoparticle production method
US9562296B2 (en) 2010-11-02 2017-02-07 I'msep Co., Ltd. Production method for silicon nanoparticles
JP2018135602A (en) * 2010-11-02 2018-08-30 学校法人同志社 Method for manufacturing silicon nanoparticle
US10309022B2 (en) 2011-08-10 2019-06-04 Sumitomo Electric Industries, Ltd. Element recovery method and element recovery apparatus
WO2013065511A1 (en) * 2011-11-04 2013-05-10 住友電気工業株式会社 Molten salt electrolysis metal fabrication method and apparatus for use in same
JP2013117063A (en) * 2011-11-04 2013-06-13 Sumitomo Electric Ind Ltd Method of producing metal by molten salt electrolysis
JP2013147731A (en) * 2011-12-22 2013-08-01 Sumitomo Electric Ind Ltd Molten salt electrolysis metal fabrication method

Also Published As

Publication number Publication date
JPWO2005111272A1 (en) 2008-03-27
JP4688796B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
WO2005111272A1 (en) Process for producing microparticles by plasma-induced electrolysis
JP6576496B2 (en) Method for producing silicon nanoparticles
JP5080704B2 (en) Removal of oxygen from metal oxides and solid solutions by electrolysis in molten salt
CN1650051B (en) Reduction of metal oxides in an electrolytic cell
JP5504515B2 (en) Rare earth metal recovery method
WO2020011155A1 (en) Electrochemical method for high temperature molten salt electrolysis in humid atmosphere
Nikolaev et al. Electrowinning of Aluminum and Scandium from KF-AlF3-Sc2O3 Melts for the Synthesis of Al-Sc Master Alloys
Ning et al. Anodic dissolution of titanium oxycarbide TiCxO1-x with different O/C ratio
Li et al. Preparation of zirconium metal by electrolysis
JP4802323B2 (en) Oxygen generating apparatus and oxygen generating method in molten salt
CN109853001B (en) Device and method for preparing metal or alloy powder by directly reducing metal compound
Ren et al. Electrolysis synthesis of carbides and carbon dioxide capture in molten salts
CN104213154B (en) Utilize the method that magnesia is raw material electrolytic preparation magnesium alloy
JP7097572B2 (en) Manufacturing method of metallic titanium
Li et al. Direct electrosynthesis of Fe-TiC composite from natural ilmenite in molten calcium chloride
Kwon et al. Electroreduction of indium tin oxide in a CaF2–NaF–CaO molten salt at the solid oxide membrane anode system
Zhou et al. The feasibility of electrolytic preparation of Fe-Ni-Cr alloy in molten oxides system
Sun et al. Phase control of Co-Sn alloys through direct electro-deoxidation of Co3O4/SnO2 in LiCl-KCl molten salt
WO2020185166A1 (en) An electrochemical method of reducing metal oxide
Wang et al. Electrochemical Dissolution Process of Tungsten Carbide in Low Temperature Molten Salt System
RU2683162C2 (en) METHOD FOR PRODUCTION OF W-Ni-Fe PSEUDO-ALLOY POWDER BY METHOD OF ELECTRIC EROSION DISPERSION IN DISTILLED WATER
RU2639797C1 (en) Method of producing carbide powder
JP4755567B2 (en) Method and apparatus for producing fine particles by plasma induced electrolysis
Fray (Max Bredig Award in Molten Salt and Ionic Liquid Chemistry) Exploring Novel Uses of Molten Salts
Zaykov et al. Electrochemical synthesis of an iridium powder with a large specific surface area

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006513507

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase