WO2005110825A1 - Sealing pump-up device and pump-up device - Google Patents

Sealing pump-up device and pump-up device Download PDF

Info

Publication number
WO2005110825A1
WO2005110825A1 PCT/JP2005/008856 JP2005008856W WO2005110825A1 WO 2005110825 A1 WO2005110825 A1 WO 2005110825A1 JP 2005008856 W JP2005008856 W JP 2005008856W WO 2005110825 A1 WO2005110825 A1 WO 2005110825A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
pump
air
cylinders
sealing
Prior art date
Application number
PCT/JP2005/008856
Other languages
French (fr)
Japanese (ja)
Inventor
Hideshi Yanagi
Kazuma Nakazawa
Ichirou Yamaguchi
Daisuke Sugio
Yuji Takeda
Shinichi Iwasaki
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004294495A external-priority patent/JP2006002747A/en
Priority claimed from JP2004294494A external-priority patent/JP2006009778A/en
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Publication of WO2005110825A1 publication Critical patent/WO2005110825A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C73/00Repairing of articles made from plastics or substances in a plastic state, e.g. of articles shaped or produced by using techniques covered by this subclass or subclass B29D
    • B29C73/16Auto-repairing or self-sealing arrangements or agents
    • B29C73/166Devices or methods for introducing sealing compositions into articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S5/00Servicing, maintaining, repairing, or refitting of vehicles
    • B60S5/04Supplying air for tyre inflation
    • B60S5/043Supplying air for tyre inflation characterised by the inflation control means or the drive of the air pressure system
    • B60S5/046Supplying air for tyre inflation characterised by the inflation control means or the drive of the air pressure system using electrical or electronical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2030/00Pneumatic or solid tyres or parts thereof

Definitions

  • the present invention provides a method for increasing the internal pressure of a pneumatic tire by supplying a pressurized air into the pneumatic tire after injecting a sealing agent for sealing the punctured pneumatic tire into the pneumatic tire. And a pump-up device for supplying pressurized air into the pneumatic tire to increase the internal pressure of the pneumatic tire.
  • a sealing / pumping-up device 10 disclosed in Patent Document 1 includes a pressure-resistant container 14 containing a sealing agent 12 and an air conditioner 15 serving as a supply source of pressurized air.
  • the air compressor 15 includes a power cable 18 having a plug 16 provided at a distal end thereof, and a pressure-resistant hose 20 which also extends a discharge locus of pressurized air.
  • the pressure-resistant container 14 is provided with a gas introduction part 22 formed as a riser tube extending to the level of the sealing agent 12 and an outlet valve 24 for discharging the sealing agent 12.
  • a hose 28 having an adapter 26 provided at the distal end is connected to 24.
  • the sealing and pump-up device 10 when a puncture occurs in the tire, the plug 16 is inserted into the cigar socket of the vehicle, and the adapter 26 is screwed to the tire valve 27.
  • the gas inlet 22 is opened by the stopper valve 23.
  • the air compressor 15 is operated, and pressurized air is introduced from the air compressor 15 into the pressure-resistant container 14 through the gas introduction unit 22.
  • the internal pressure of the gas layer above the sealing agent 12 in the pressure vessel 14 increases, and the static pressure in the gas layer increases the outlet valve 24 pressure.
  • the force is also pushed out of the sealing agent 12, and the sealing agent 12 is injected into the tire through the tire valve 27.
  • the pressurized air in the pressure-resistant container 14 is supplied to the inside of the tire through the outlet rono-lev 24, and the tire is cooled. Is expanded at a predetermined internal pressure.
  • a current breaker is usually provided in the air compressor of the sealing-pump-up device as described above, and the current breaker is provided with a motor for driving a pump in the air compressor. If an overcurrent exceeding the allowable current value flows in the power supply circuit for controlling the current supply to the motor, the power supply is shut off to protect the motor and the power supply circuit from the overcurrent.
  • a current breaker applied to this type of sealing-pump-up device a device using a fuse formed by enclosing a metal wire in a glass tube has been generally used.
  • This fuse-type current breaker is installed, for example, between the power supply circuit and the socket, and when an overcurrent flows through the fuse due to an abnormal load on the motor, the metal wire of the fuse melts. When the heat is blown out until it exceeds, the knotting force of the vehicle also cuts off the current supply to the power circuit of the air compressor.
  • Fuse-type current breakers are usually also provided between the vehicle battery and the cigar socket, and the current breakers cause the vehicle side battery and the current supply circuit to overcurrent. It also protects power. Generally, when the rated voltage of the battery is 12 V, the rated current value of the fuse on the vehicle side is set to 15 A.
  • Patent Document 1 Japanese Patent No. 3210863
  • the fuse is generally about 65% or less of the rated current value of the fuse on the vehicle side, that is, a rated current of 10A or less.
  • the one with the set current value must be used.
  • fuses on the vehicle side that have relatively high detection accuracy and responsiveness to overcurrent are used, and fuses on the air compressor side that have a rated current value exceeding 10 A (for example, If 12A or 15A) is used, the starting current when the air compressor starts operating will blow the fuse on the vehicle side, and there is no spare fuse. May cause trouble in driving the vehicle.
  • the drive current supplied to the air compressor of the sealing pump-up device is also limited to 10 A or less, and the air compressor is always operated at a low load (low power) with respect to the original maximum capacity. This must prevent the pump-up device from shortening the time for injecting sealant into the tire and reducing the pump-up time.
  • the fuse used on the air compressor side has higher detection accuracy and responsiveness to overcurrent than the fuse on the vehicle side, and has a rated current value exceeding 10A and a current of 15A or less. Since the detection accuracy and responsiveness of such a fuse vary widely among products and the value of the current flowing through the power circuit of the air compressor fluctuates greatly, the fuse on the air compressor side must be used. However, it is always difficult to blow a fuse in preference to a fuse on the vehicle. If a fuse-type current interrupter is used for the air compressor of the sealing / pump-up device, the current interrupter is activated and the current is interrupted, and the current interrupter is restored. In order to restart the operation of the air compressor, it is necessary to replace a new fuse mounted in the current breaker with a new one, and the operation is complicated.
  • An object of the present invention is to provide a sealing / pump-up device and a pump-up device which can be operated with a current having a maximum current value substantially equal to a rated current value that can be supplied by a vehicle battery, in consideration of the above fact. Is to do.
  • the tire sealing-pump-up device is configured such that a liquid sealing agent is injected into a punctured pneumatic tire, and then the pressurized air is supplied into the pneumatic tire to supply air.
  • Air pumping means for pumping air, driving means for receiving power supply to generate power for driving the sealing agent injecting means and air pumping means, and a battery connected to a battery mounted on a vehicle;
  • Power The power supply means for supplying power to the drive means, and the power supply to the drive means is cut off when an overcurrent exceeding an allowable current value flows through the power supply means. That over-current interrupting means When an overcurrent flows through the power supply means as the overcurrent cutoff means, the movable piece for power cutoff, which is a magnetic material, is actuated by electromagnetic force to supply power to the power supply means. It is characterized by using an electromagnetic current breaker for interrupting.
  • the power supply to the power supply means is cut off.
  • an electromagnetic current breaker that cuts off power supply to the power supply means by operating the movable piece for power cutoff made of magnetic material by electromagnetic force as the overcurrent cutoff means.
  • the current breaker makes it easier to set the detection accuracy and responsiveness to overcurrent to the desired levels, respectively, and the variation in the detection accuracy and responsiveness among individual products. Therefore, the rated current value of the electromagnetic current breaker is approximately equal to the rated current value of the current breaker on the vehicle side.
  • a current having a maximum current value sufficiently close to the rated current value that can be supplied by the battery of the vehicle is supplied to the driving means, Since the sealing agent injection means and the air pumping means can be operated by the power of the driving means, the operating efficiency of the sealing agent injection means and the air pumping means can be respectively increased, and the sealing agent injection time and the pump-up time for the tire can be respectively increased. It can be shortened efficiently.
  • the tire sealing 'pump-up device is characterized in that, after injecting a liquid sealing agent into a punctured pneumatic tire, pressurized air is supplied into the pneumatic tire to provide air.
  • Driving means for generating power for driving the vehicle, power supply means connected to a battery mounted on a vehicle to supply power from the battery to the driving means, and an overcurrent exceeding an allowable current value in the power supply means.
  • an overcurrent interrupting means for interrupting the power supply to the power supply means when flowing, and as an overcurrent interrupting means, an overcurrent interrupting means formed of a metal material when an overcurrent flows to the power supply means.
  • a heat-actuated current breaker that cuts off power supply to the power supply means by deforming the movable piece with Joule heat is used.
  • the power to the power supply means stage is reduced.
  • a thermal-actuated current breaker that cuts off the power supply to the power supply means by deforming the movable piece made of metal material for electric power interruption by Joule heat as the overcurrent cutoff means to cut off the supply
  • Such a heat-operated current breaker can easily set the detection accuracy and responsiveness to an overcurrent to desired levels, respectively, as compared with a fuse-type current breaker, and can provide the detection accuracy and Since the variability between individual responsive products can be reduced, the rated current value of the thermal breaker is approximately equal to the rated current value of the current breakers on both sides of the vehicle, or set to a slightly lower value.
  • the thermally activated current breaker can be reliably operated at a timing earlier than the current breaker on the vehicle side is activated.
  • a current having a maximum current value substantially equal to the rated current value that can be supplied by the battery of the vehicle is supplied to the driving means. Since the sealing agent injection means and the air pumping means can be operated by the power from the means, respectively, the operating efficiency of the sealing agent injection means and the air pumping means can be respectively increased, and the sealing agent injection time and the pump-up time for the tire can be reduced. Each can be shortened efficiently.
  • the current breaker is formed of a bimetal plate.
  • the movable piece is provided with a base end connected to a first contact and a distal end supported so as to be in contact with a second contact, to cut off power supply to the power supply means. In some cases, the movable piece is deformed in the radial direction by Joule heat and separated from the second contact.
  • the current breaker is formed in a plate shape from a metal material having a thermal expansion property. And a movable portion provided with a base portion supported in a cantilevered state and a reversing portion supported in a curved state between a base end and a distal end of the base portion. A base end of the base portion connected to a first contact and a tip end supported to contact a second contact. When the power supply to the power supply means is cut off, the inversion portion is heated by Joule heat. And the tip of the base portion is separated from the second contact force by the second contact force.
  • a sealing and pumping-up device is the sealing and pumping-up device according to any one of claims 1 to 4, wherein the power supply means is provided in a vehicle.
  • a plug member that is detachably fitted into a cigar socket and electrically connected to a battery mounted on a vehicle is provided, and the current breaker is built in or integrally provided with the plug member. I do.
  • the air pressure feeding means is attached to and detached from a tire valve of a tire.
  • An adapter member connected to the tire so that the air generation source can communicate with the tire, and a surface portion of the adapter member is covered with a rubber composition or a resin material.
  • the sealing and pumping-up device is the sealing and pumping-up device according to any one of claims 1 to 6, wherein the sealing agent injecting means includes the sealing agent container. And a suction port for sucking the sealing agent from inside the sealing agent container and discharging the sealing agent sucked from the sealing agent container in a pressurized state and connected to the pneumatic tire.
  • a plurality of cylinders formed respectively, The sealing agent container force is sucked into the cylinder through the suction port when moving in the suction direction to expand the volume in the cylinder, and is disposed so as to be reciprocally movable in each of the plurality of cylinders.
  • the number of cylinders installed is 2N (N is a natural number) and the number of cylinders is set to 2N (N is a natural number) while rotating the pistons in the suction direction and the discharge direction.
  • the pistons are arranged in series along the axial direction, and the clutches of the pistons respectively arranged in N cylinders.
  • the phase difference between the point of attachment to the Kurantasha shift of the piston disposed respectively consolidated point and the rest of the N cylinders of the Kushafuto characterized by being set to 180 °.
  • the 2N cylinders in the sealing agent injection means are arranged in series along the axial direction of the crankshaft, and the N' cylinders are arranged in the N cylinders.
  • the sealing agent injection means includes: An inlet for connecting and sucking the sealing agent from inside the sealing agent container, and an outlet for discharging the sealing agent sucked from inside the sealing agent container in a pressurized state and connected to the pneumatic tire were formed.
  • the sealant in the cylinder is And a plurality of the pistons, each of which is connected to a piston for discharging the agent from the discharge port while pressurizing the agent, is rotated by the power from the driving means, and alternately moves the piston in the suction direction and the discharge direction. Having a crankshaft to be moved,
  • the number of cylinders to be installed is 2N (N is a natural number), N of the 2N cylinders are arranged in series along the axial direction of the crankshaft, and the remaining N cylinders are Along with a circumferential direction centered on the shaft, the cylinders are arranged in series at different portions from the N cylinders, and connection points of the pistons respectively arranged in the N cylinders with the crankshaft. And a phase difference between a connection point of each of the pistons disposed in the remaining N cylinders and the crankshaft is set to 0 °.
  • N cylinders out of 2N are arranged in series along the axial direction of the crankshaft, and the remaining N cylinders are Along with a circumferential direction centered on the crankshaft, arranged in series at a portion different from the N cylinders, and a connection point between a piston and a crankshaft arranged in each of the N cylinders.
  • a pump-up device is a tire pump-up device for supplying pressurized air into a pneumatic tire to increase the internal pressure of the pneumatic tire.
  • an electromagnetic current breaker is used that operates a movable piece for power cutoff, which is a magnetic material, by electromagnetic force to cut off power supply to the power supply means. It is characterized in.
  • the maximum current value substantially equal to the rated current value that can be supplied by the battery of the vehicle.
  • This current can be supplied to the driving means, and the air pressure feeding means can be operated by the power from the driving means, respectively, so that the operation efficiency of the air pressure feeding means can be increased and the pump-up time for the tire can be shortened efficiently.
  • the pump-up device supplies pressurized air into the pneumatic tire.
  • a tire pump-up device that boosts the internal pressure of a pneumatic tire by supplying air to the pneumatic tire, and drives the air pump by receiving external power.
  • a power supply connected to a battery mounted on a vehicle to supply power to the drive, and an overcurrent exceeding an allowable current value to the power supply.
  • an overcurrent interrupting means for interrupting the power supply to the power supply means when the power supply means flows, and as an overcurrent interrupting means, when an overcurrent flows to the power supply means, a power interruption formed by a metal material is performed.
  • a heat-actuated current breaker for interrupting power supply to the power supply means by deforming a movable piece for use with Joule heat is used.
  • the value of current is supplied to the driving means, and the air pressure feeding means can be operated by the power from this driving means, so that the operation efficiency of the air pressure feeding means is increased and the pump-up time for the tires is shortened efficiently. it can.
  • a pump-up device is the pump-up device according to claim 10, wherein the current breaker includes the movable piece formed of a metal plate in a plate shape. The base end of the piece is connected to the first contact and the tip is supported so as to be in contact with the second contact.
  • the movable piece is bent by Joule heat. Characterized in that it is deformed in the direction and is separated from the second contact point.
  • a pump-up device is the pump-up device according to claim 10, wherein the current breaker is formed in a plate shape from a metal material having a thermal expansion property.
  • a movable portion provided with a base portion supported in a cantilevered state, and a reversing portion supported in a curved state between a base end and a front end of the base portion; The base end of the part is connected to the first contact and the tip is supported so as to be in contact with the second contact, and when the power supply to the power supply means is cut off, the reversing part is bent by the Joule heat.
  • the pump-up device according to claim 13 of the present invention is the pump-up device according to any one of claims 9 to 12, wherein the power supply means is fitted to and disengaged from a cigarette socket provided in a vehicle.
  • a plug member is provided so as to be fitted and electrically connected to a battery mounted on a vehicle, and the current breaker is built in or integrated with the plug member.
  • a pump-up device is the pump-up device according to any one of claims 9 to 13, wherein the air pressure feeding means is detachable from a tire valve of a tire. And an adapter member for connecting an air generation source to the tire, and a surface portion of the adapter member is covered with a rubber composition or a resin material.
  • the air pressure feeding means includes a suction port for sucking outside air and a compressed air.
  • the piston is connected to each other, and rotated by the power from the driving means, and the piston is moved alternately in the suction direction and the discharge direction.
  • a shaft
  • the number of the cylinders to be installed is 2N (N is a natural number), the 2N cylinders are arranged in series along the axial direction of the crankshaft, and the pistons respectively arranged in the N cylinders Wherein the phase difference between the connection point with the crankshaft and the connection point with the crankshaft of each of the pistons disposed in the remaining N cylinders is set to 180 °. .
  • the 2N cylinders are arranged in series along the axial direction of the crankshaft, and the pistons respectively arranged in the N cylinders are arranged.
  • N the phase difference between the connection point with the crankshaft and the connection point between the pistons arranged in the remaining N cylinders and the crankshaft.
  • a pump-up device is the pump-up device according to any one of claims 9 to 14, wherein the air pressure feeding means includes a suction port for sucking outside air and a compressed air.
  • the air pressure feeding means includes a suction port for sucking outside air and a compressed air.
  • the piston is connected to each other, and rotated by the power from the driving means, and the piston is moved alternately in the suction direction and the discharge direction.
  • a shaft
  • the number of cylinders to be installed is 2N (N is a natural number), N of the 2N cylinders are arranged in series along the axial direction of the crankshaft, and the remaining N cylinders are Along with a circumferential direction centered on the shaft, the cylinders are arranged in series at different portions from the N cylinders, and connection points of the pistons respectively arranged in the N cylinders with the crankshaft. And the remaining N cylinders, respectively.
  • the phase difference between the piston and the connection point with the crankshaft is set to 0 °.
  • N cylinders out of 2N are arranged in series along the axial direction of the crankshaft, and the remaining N cylinders are connected to the crankshaft.
  • the cylinders are arranged in series in a different direction from the N cylinders along the circumferential direction around the crankshaft, and the connection points of the pistons arranged in the N cylinders with the crankshafts and the rest are arranged.
  • operation can be performed with a current having a maximum current value substantially equal to the rated current value that can be supplied by the vehicle battery.
  • FIG. 1 is a configuration diagram showing a sealing-pump-up device according to a first embodiment of the present invention.
  • FIG. 2A is a side sectional view showing an example of a power breaker applied to the sealing′pump-up device shown in FIG. 1.
  • FIG. 2B is a side cross-sectional view showing one example of a power breaker applied to the sealing′pump-up device shown in FIG. 1.
  • FIG. 3A is a front view and a side view showing an example of an air compressor applied to the sealing and pumping-up device shown in FIG. 1.
  • FIG. 3B is a front view and a side view showing an example of an air compressor applied to the sealing and pumping-up device shown in FIG. 1.
  • FIG. 4A is a front view and a side view showing a modification of the air compressor applied to the sealing and pumping-up device shown in FIG. 1.
  • FIG. 4B is a front view and a side view showing a modified example of the air compressor applied to the sealing and pumping-up device shown in FIG. 1.
  • FIG. 5 is a configuration diagram showing a sealing 'pump-up device according to a second embodiment of the present invention.
  • FIG. 6A is a side sectional view showing an example of a power breaker applied to the sealing′pump-up device shown in FIG. 5.
  • FIG. 6B is a side sectional view showing one example of a power breaker applied to the sealing device shown in FIG. 5;
  • FIG. 7A is a side sectional view showing a modified example of the power breaker applied to the sealing′pump-up device shown in FIG. 5.
  • FIG. 7B is a side sectional view showing a modified example of the power breaker applied to the sealing′pump-up device shown in FIG. 5.
  • FIG. 8A is a perspective view showing the configuration of the power breaker shown in FIG. 7.
  • FIG. 8B is a perspective view showing the configuration of the power breaker shown in FIG. 7.
  • FIG. 9 is a configuration diagram showing a sealing-pump-up device according to a third embodiment of the present invention.
  • FIG. 10 is a configuration diagram showing an example of a conventional sealing 'pump-up device.
  • FIG. 1 shows a sealing-pump-up device according to a first embodiment of the present invention.
  • tire mounted on a vehicle such as an automobile punctures
  • the sealing / pump-up device 30 uses a sealing agent to replace the tire and the tire without replacing the wheel. It repairs and re-pressurizes (pumps up) the internal pressure to the specified pressure.
  • the sealing-pump-up device 30 includes a box-shaped casing 32 as its outer shell, and inside the casing 32, an air-conditioner presser 34 as a supply source of pressurized air. Is arranged.
  • a liquid agent container 40 accommodating a sealing agent 36 is disposed in the casing 32.
  • the liquid agent container 40 contains a sealing agent in an amount (for example, 400 g to 600 g) specified for each type of tire to be repaired by the sealing pump device 30.
  • the liquid container 40 is formed of a resin such as polyethylene or polypropylene! RU
  • liquid agent container 40 a container having a pressure resistance much lower than the pressure (specified pressure) specified as the internal pressure of a general pneumatic tire and having a special airtight structure can be used. There is no need to use.
  • the liquid agent container 40 is provided with an air receiving port 39 on the top plate and a liquid agent discharge port 38 on the bottom plate on the lower end side.
  • the air compressor 34 is provided with an air suction section 41 and an air supply section 43.
  • the air suction section 41 and the air supply section 43 have an air suction port 42.
  • the air supply port 44 is open.
  • the air compressor 34 has a compression capacity capable of compressing air at atmospheric pressure to about 0.5 MPa to 1.OMPa.
  • the air supply port 44 is connected to one end of a common pipe 46 that also provides a pressure, such as a pressure-resistant hose and a pipe, and the other end of the common pipe 46 is connected to an air switching valve 48.
  • One air switching valve 48 A three-way (3-port) solenoid valve having a suction port 49 and two discharge ports 50, 51 is used.
  • a common pipe 46 is connected to a suction port 49 of an air switching valve 48, and a discharge port 50 is connected to a first air pipe 54 having a sufficient pressure resistance such as a pressure-resistant hose or a metal pipe.
  • a first air pipe 54 having a sufficient pressure resistance such as a pressure-resistant hose or a metal pipe.
  • One end is connected to the other end, and one end of a second air pipe 56 that also has a force such as a fluid hose is connected to the other discharge port 51.
  • a predetermined safety coefficient usually 2.0 to 5.0.
  • the specified pressure of the tire 140 varies widely depending on the type of vehicle and the like, but is normally set appropriately in the range of 0.20 MPa to 0.30 MPa for passenger cars.
  • the other end of the second air pipe 56 is connected to the air receiving port 39 of the liquid agent container 40.
  • the discharge port 51 of the air switching valve 48 communicates with the air receiving port 39 of the liquid container 40 through the second air pipe 56.
  • one end of a liquid injection pipe 58 is connected to the liquid discharge port 38 of the liquid container 40 from a low-pressure fluid hose or the like.
  • the sealing / pump-up device 30 includes a gas-liquid switching valve 60 having two suction ports 61 and 62 and one discharge port 63.
  • the other end of the injection pipe 58 and the other end of the first air pipe 54 are connected to the two suction ports 61 and 62 of the gas-liquid switching valve 60, respectively.
  • One end of a joint hose 66 is connected to the discharge port 63 of the gas-liquid switching valve 60.
  • an adapter 68 that can be screwed to the tire valve 142 of the tire 140 is arranged.
  • As the joint hose 66 a joint hose having the same pressure resistance as the common pipe 46 and the first air pipe 54 is used. Specifically, it is preferable to use a pressure-resistant hose reinforced with nylon or the like as the joint hose 66.
  • the adapter 68 that receives pressure from compressed air be formed of a metal material such as stainless steel.
  • a metal material such as stainless steel.
  • the surface portion of the adapter 68 is formed of a metal material, air that has been pressurized and becomes hot flows through the adapter 68 when the tire 140 is pumped up. Worker tire adapter 68 The adapter 68, which has become hot, may cause burns when the user removes it from the bush 142.
  • the surface portion of the adapter 68 is covered with a resin material or a rubber composition having heat resistance and heat insulation, and high-temperature compressed air is supplied to the adapter 68 for a long time. Even after distribution, the surface is kept at a sufficiently low temperature (for example, below 40 ° C).
  • the adapter 68 has a hollow core portion through which compressed air flows is formed of a metal material such as stainless steel, copper, or brass, and has a coating covering the surface portion of the hollow core portion.
  • the part is formed of a resin material such as fluorine resin, nylon, polypropylene, polyethylene, ABS, or a rubber composition such as natural rubber or silicone rubber.
  • the thickness of the coating is preferably 0.2 mn! 44 mm (more preferably, lmn! ⁇ 3 mm). That is, if the thickness of the coating is less than 0.2 mm, the heat insulation will be insufficient and the surface temperature of the adapter 68 will not be sufficiently reduced, and the thickness of the coating will be less than 4 mm. This is because even if the thickness is increased, it hardly contributes to the effect of reducing the surface temperature of the adapter 68, but merely increases the size of the adapter 68.
  • the resin material forming the covering portion nylon or fluorine resin is particularly preferred from the viewpoint of heat resistance and heat insulation, and silicone rubber is particularly preferred as the rubber composition.
  • the covering portion is formed in a tube shape by using a heat-shrinkable resin material, the covering portion is covered on the outside of the core portion, and the covering portion is heated to the shrinkage temperature by hot air or the like.
  • the covering portion can be easily fixed by being brought into close contact with the core portion.
  • such a covering portion may be molded by loading a hollow core portion as an insert core into a molding mold and injecting molten resin or rubber into the molding mold.
  • the sealing / pump-up device 30 is provided with an operation panel 70 having a start / stop button 72 and a gas-liquid switching button 74 outside the casing 32, and a current breaker 76 and a power supply circuit inside the casing 32. 78 are provided.
  • a two-core power cable 80 is connected to the power circuit 78 via a current breaker 76.
  • a plug 82 is provided that is detachable from a cigar socket (not shown) installed in the vehicle. By inserting the plug 82 into the cigar socket, the plug 82 is inserted into the vehicle. powered by The supplied battery power can be supplied to the power supply circuit 78.
  • the power supply circuit 78 controls the operations of the air compressor 34 and the switching valves 48 and 60 according to the operation of the start / stop button 72 and the gas-liquid switching button 74, respectively.
  • the electromagnetic current breaker 76 includes a fixed piece 88, a movable piece 90, and an electromagnet 92 as shown in FIG.
  • the fixed piece 88 and the movable piece 90 are each formed in a plate shape from a conductive material such as iron, and the movable piece 90 is bent at the center in the longitudinal direction so as to be substantially V-shaped. It is supported so as to be swingable between a power-on position (see FIG. 2A) and a cut-off position (see FIG. 2B) around a support shaft 94 provided in the vicinity.
  • the movable piece 90 is always urged toward the energized position by an urging member (not shown) such as a torsion coil panel provided on the support shaft portion 94.
  • an urging member such as a torsion coil panel provided on the support shaft portion 94.
  • the electromagnet 92 includes a cylindrical bobbin 96 having an open end, and a coil 98 formed by winding a copper wire around the outer peripheral surface of the bobbin 96.
  • an electromagnetic pole 102 formed in a plug shape by a ferromagnetic material is press-fitted and fixed in the opening.
  • a plunger 100 formed of a magnetic material such as iron in a cylindrical shape is inserted into the bobbin 96 so as to be slidable in the axial direction, and a coiled spring is provided between the plunger 100 and the electromagnetic pole 102.
  • the member 104 is interposed in a compressed state.
  • the electromagnet 92 presses the plunger 100 against the bottom surface inside the bobbin 96 by the urging force of the spring member 104 as shown in FIG. 2A. It is held at the suction position.
  • the plunger 100 is disengaged by the electromagnetic force generated by the coil 98 as shown in FIG.
  • the suction position force also slides to the suction position on the inner peripheral side of the coil 98.
  • a magnetic path is formed between the electromagnetic pole 102 and the plunger 100 through a conductive layer (not shown) provided on the inner peripheral surface of the bobbin 96, and a strong magnetic force is generated in the electromagnetic pole 102.
  • the magnetic force acts on the other end of the movable piece 90. Due to the magnetic force from the electromagnetic pole 102, the other end of the movable piece 90 is sucked by the electromagnetic pole 102 and swings to the energized position and the cutoff position.
  • the current breaker 76 has a pair of external contacts 106 and 108 and connects one end of the winding forming the coil 98 to the fixed piece 88.
  • one external contact 106 is electrically connected to the other end of the winding of the coil 98, and the other external contact 108 is electrically connected to the movable piece 90.
  • the current breaker 76 is connected in series to one conductor of the power cable 80 via a pair of external contacts 106 and 108. This allows the vehicle battery power to be supplied to the power supply circuit 78 through the power cable 80 when the movable piece 90 is in the energized position, and the power cable 80 is non-conductive when the movable piece 90 is in the cutoff position. As a result, the power supply to the power supply circuit 78 is also shut off.
  • the electromagnetic pole 102 of the electromagnet 92 is configured as a permanent magnet, and after the movable piece 90 is attracted and adsorbed, the movable piece 90 can be held at the cut-off position even when the current to the coil 98 is cut off. ing.
  • the current breaker 76 is provided with a reset switch (not shown). When a predetermined reset operation is performed on the user reset switch S, the movable piece 90 is separated from the electromagnetic pole 102 and the energized position is set. It is possible to return to.
  • the air compressor 34 includes a drive motor 84 and an air pump 86 configured as a reciprocating two-cylinder type.
  • the air pump 86 is provided with a crankshaft 284 rotatably supported by bearings (not shown), and is provided with two cylinders 286, 288 arranged in series along the axial direction of the crankshaft 284. Have been.
  • a suction port 290 and a discharge port 292 are formed, and the suction port 290 and the discharge port 292 are provided in the suction direction and the discharge direction, respectively.
  • a suction valve 294 and a discharge valve 296 that allow fluid (air) to flow therethrough are arranged to be openable and closable.
  • the suction port 290 and the discharge port 292 of the cylinders 286 and 288 are connected to the air suction port 42 and the air supply port 44 through pipes 298 and 300, respectively.
  • the pistons 320, 322 are respectively housed in the cylinders 286, 288 so as to be able to reciprocate along the radial direction about the axis S of the crankshaft 284, respectively. ing. These pistons 320 and 322 are provided in a suction direction (arrow V direction) for expanding the internal volume of the compression chambers 287 and 289 and a discharge direction (arrow ⁇ direction) for reducing the internal volume of the compression chambers 287 and 289. ).
  • the crankshaft 284 is formed with three crank portions 302, 304, and 306 each formed in a disk shape.
  • the crank portion 302 and the crank portion 304 are connected by a crank pin 308, and the crank portion 304 and the crank portion 306 are connected by a crank pin 310.
  • the distance from the axis S to the crankpin 308 and the distance to the crankpin 310 are equal, and the phase difference between the crankpin 308 and the crankpin 310 in the rotation direction about the axis S is It is set to 180 °.
  • Two pistons 320 and 322 are connected to a crankshaft 284 via connecting rods 312 and 314.
  • the connecting rods 312, 314 are relatively rotatably connected to the pistons 320, 322 via piston pins 328 provided on the one end force pistons 320, 322, and the other end is connected to the crankshaft 284.
  • the two cylinders 286, 288 are arranged in series along the axial direction of the crankshaft 284, and the crankpin 308, which is the connection point of the piston 320 with the crankshaft 284, and the crankpin 308, Since the phase difference with the crankpin 310, which is the connection point with the crankshaft 284, is set to 180 °, when one piston 320 moves in the suction direction in the cylinder 286, the other piston 322 Moving in the discharge direction within 288 and when one piston 320 reaches one dead center in cylinder 286, the other piston 322 reaches the other dead center in cylinder 286.
  • a direct-current drive motor 84 is connected to a crankshaft 284 via a speed reducer 326 so that torque can be transmitted.
  • Drive motor 84 When the DC power is supplied by the power supply circuit 78 (see FIG. 1), the torque corresponding to the current value is transmitted to the crankshaft 284 via the speed reducer 326, and the crankshaft 284 is rotated in one direction.
  • the piston diameter is preferably set to 10 mm to 40 mm and the piston stroke force is set to mm to 30 mm.
  • the drive motor 84 for example, RS550VC7525 manufactured by Mabuchi can be used. Under these conditions, when the air pump 86 is operated using a battery (rated voltage 12V, rated current 15A) mounted on the vehicle as a power source, if the piston diameter is smaller than 10mm, the piston will have 320,322 force. When the piston diameter exceeds Omm, the driving torque required for rotating the crankshaft 284 increases, and the rotational speed of the crankshaft 284 cannot be increased. Sufficient compressed air cannot be obtained from the pistons 320 and 322.
  • the piston stroke is smaller than 3 mm, the air compression ratio in the compression chambers 287, 289 is insufficient, and the required air pressure cannot be obtained. If the piston stroke exceeds 30 mm, the crankshaft 284 Since the driving torque required at the time of rotation increases, the rotation speed of the crankshaft 284 cannot be increased, and a sufficient amount of compressed air discharged from the pistons 320 and 322 cannot be obtained.
  • the sealing agent 36 contains rubber latex such as SBR (styrene butadiene rubber) latex and rubber latex of a mixture of NB, and has a resin-based adhesive added in the form of an aqueous dispersant or an aqueous emulsion thereof.
  • rubber latex such as SBR (styrene butadiene rubber) latex and rubber latex of a mixture of NB
  • the sealing agent 36 includes a fibrous material or a whisker, such as polyester, polypropylene, and glass, or a filler (filament), which also has a strength such as calcium carbonate and bonbon black, in order to enhance the sealing property against puncture holes. 1) may be mixed, and silicate or polystyrene particles may be mixed to stabilize the sealing performance.
  • an antifreezing agent such as glycol, ethylene glycol, propylene glycol, an antifoaming agent, a pH adjuster, and an emulsifier are generally added to the sealing agent 36.
  • an antifreezing agent such as glycol, ethylene glycol, propylene glycol, an antifoaming agent, a pH adjuster, and an emulsifier are generally added to the sealing agent 36.
  • the gas-liquid switching valve 60 is a force that opens the first air piping 54. Since the suction port 61 is closed by the air switching valve 48, the gas is supplied into the first air piping 54 by the air compressor 34. Pressurized air does not flow
  • the power supply circuit 78 operates the air compressor 34 to send pressurized air into the liquid agent container 40 through the common pipe 46 and the second air pipe 56.
  • the power supply circuit 78 switches the communication destination of the discharge port 63 of the gas-liquid switching valve 60 from the suction port 62 to the suction port 61 when the operating force of the air compressor 34 has passed for a predetermined time.
  • the inside of the liquid material container 40 communicates with the inside of the tire 140 through the liquid injection pipe 58 and the joint hose 66, and the sealing agent 36 is pushed out of the liquid material container 40 by its own weight and the static pressure of the pressurized air.
  • the agent 36 is injected into the tire 140 through the injection pipe 58 and the joint hose 66.
  • the sealing agent 36 is pushed out of the liquid agent container 40 under the static pressure of the pressurized air.
  • the static pressure of the gas layer above the sealing agent 36 in the liquid agent container 40 is set according to the viscosity of the sealing agent 36, and may be considerably lower than the specified pressure of the tire 140.
  • the static air pressure in the liquid container 40 is set in the range of 0.05 MPa to 0.15 MPa according to the viscosity of the sealing agent 36, and the higher the viscosity of the sealing agent 36 in this range, Set to high pressure.
  • the completion of the injection of the predetermined amount of the sealing agent 36 may be determined by using the time of the injection starting force as a parameter. Also, a transparent window is provided in the liquid agent container 40, and through this window, the worker can use the sealing agent 36. Make sure to check the injection volume.
  • the power supply circuit 78 switches the communication destination of the discharge port 63 of the gas-liquid switching valve 60 from the suction port 62 to the suction port 61, and in synchronization with this, the air switching valve The communication destination of the 48 suction ports 49 is switched from the discharge port 51 to the discharge port 50. Accordingly, the pressurized air supplied from the air compressor 34 is started to be supplied into the tire 140 through the first air pipe 54 and the joint hose 66, and the internal pressure of the tire 140 is increased to expand the tire 140.
  • the operator confirms that the internal pressure of the tire 140 has reached the specified pressure by a pressure gauge (not shown) provided in the air compressor 34, and then presses the start / stop button 72 again. Press.
  • the power supply circuit 78 stops supplying power to the air compressor 34. The operator then removes the adapter 68 from the tire valve 142 and disconnects the joint hose 66 from the tire 140.
  • the worker Immediately after the tire 140 is completely pressurized to the specified pressure, the worker performs preliminary running over a certain distance using the tire 140 into which the sealing agent 36 has been injected. As a result, the sealing agent 36 is uniformly diffused into the tire 140, and the puncturing hole is filled with the sealing agent 36 to close the puncturing hole.
  • the operator again screwes the adapter 68 of the joint hose 66 to the tire valve 142 and operates the air compressor 34 to pressurize the tire 140 to a specified internal pressure.
  • the tire 140 can be used to travel within a predetermined upper limit speed (for example, 80 km).
  • the load of the drive motor 84 abnormally rises due to the failure of the air pump 86, or the leakage from the power supply circuit 78 If an overcurrent that exceeds the allowable current flows through the power cable 80, the overcurrent also flows through the current breaker 76 that is connected in series to the power cable 80. Therefore, if the overcurrent continues to flow through the power cable 80 for more than the predetermined response time, the current breaker 76 causes the movable piece 90 at the energized position to swing by the electromagnet 92 to the interrupted position, thereby causing the power cable 80 to swing. The knotting power of the vehicle through the power supply also cuts off the power supply to the power supply circuit 78.
  • the allowable current value (breaking current value) when the current breaker 76 cuts off the power supply to the power supply circuit 78 with the knotting force is determined by the rated current value of the current breaker (fuse) on the vehicle side.
  • 15A it is preferable to set it to 14A to 18A, and it is even more preferable to set it to 15A to 17A.
  • the current breaker 76 does not interrupt the power supply of the battery power for preferably 100 msec (more preferably, 10 msec) even when a current (starting current) of about 7 OA flows.
  • the response to overcurrent is set.
  • the power supply circuit 78 when an overcurrent flows to the power supply circuit 78 connected to the vehicle battery through the power supply cable 80, the power supply circuit 78
  • the current interrupter 76 By using an electromagnetic current breaker 76 as an overcurrent interrupting means for interrupting the power supply of the current, the current interrupter 76 has better detection accuracy and responsiveness to overcurrent than a fuse type current interrupter. Since it is easy to set a desired level and the variation in detection accuracy and responsiveness among individual products can be reduced, the rated current value of the current breaker 76 is approximately equal to the rated current value of the current breaker on the vehicle side.
  • the detection accuracy and responsiveness of the electromagnetic current breaker 76 for overcurrent should be set sufficiently higher than the current breaker on the vehicle side in advance.
  • Contact fluff when an overcurrent exceeding the allowable current value flowed in the power supply circuit 78 can be operated reliably earlier timing than the current interrupter 76 vehicle side of the current interrupter is activated.
  • the current of the maximum current value substantially equal to the rated current value that can be supplied by the battery of the vehicle is supplied to the drive motor 84 of the air conditioner 34.
  • the pump 86 can be driven by the power from the drive motor, so that the operation efficiency of the air pump 86 is increased and the injection time and the pump-up time of the sealing agent 36 into the tire 140 by the sealing and pump-up device 30 are reduced. In this case, it is not necessary to replace consumable parts such as fuses. Work can be simplified.
  • the two cylinders 286, 288 of the air pump 86 are arranged in series along the axial direction of the crankshaft 284, and the piston 320 is connected to the crankshaft 284.
  • the phase difference between the crankpin 308, which is the point, and the crankpin 310, which is the connection point between the piston 322 and the crankshaft 284, is set to 180 °, so that one piston 320 moves in the suction direction in the cylinder 286.
  • the moving direction of the piston 320 and the moving direction of the piston 322 in the air pump 86 are always opposite, and the piston 320 and the piston 322 have one dead center at the same timing. And the other reaches the dead point, so that the two pistons 320 and 322 as a whole can operate with the inertia forces always balanced, and the countershaft to cancel the inertia forces of the pistons 320 and 322 on the crankshaft 284 There is no need to provide
  • one piston 320 of the air pump 86 moves in the discharge direction, and the moving load of the piston 320 in the cylinder 286 relatively increases.
  • the remaining one piston 322 moves in the suction direction, and the moving load of the piston 322 in the cylinder 288 decreases.
  • the sealing and pumping-up device 30 According to the sealing and pumping-up device 30 according to the present embodiment, the efficiency of supplying the compressed air to the pneumatic tire is increased, and the time for injecting the sealing agent 36 into the tire 140 and the time for pumping-up are improved. Can be shortened.
  • the sealing / pump-up device 30 only the case where the air pump 86 is a two-cylinder in-line arrangement is used as the air pump 86.
  • the number of cylinders is 2N (N is (Natural number) (for example, 4 or 6 cylinders), and these cylinders are arranged in series in a row along the axial direction of the crankshaft. If the phase difference between the connection point (crank pin) and the connection point (crank pin) between the remaining N pistons and the crankshaft is set to 180 °, the N pistons can be set in the same manner as the air pump 86 of the present embodiment.
  • FIG. 4 shows an air conditioner presser 330 applicable to the sealing / pump-up device 30 (see FIG. 1) instead of the air conditioner presser 34 shown in FIG.
  • the air compressor 330 according to this modified example, the same parts as those of the air compressor 34 shown in FIG.
  • the air compressor 330 includes a drive motor 84 and an air pump 331, and the air pump 331 is configured as a reciprocating two-cylinder type.
  • the air pump 331 is provided with a crankshaft 332 rotatably supported by bearings (not shown), and is provided with two cylinders 334 and 336 extending along the radial direction of the crankshaft 332.
  • the one cylinder 334 and the other cylinder 336 are arranged at different portions along the circumferential direction around the axis S of the crankshaft 332, and the axis of the cylinder 334 and the cylinder 336 are The opening angle around the center S is 180 °.
  • compression chambers 338 and 340 are formed.
  • an inlet 342 and an outlet 344 are opened, and the inlet 342 and the outlet 344 are provided with an inlet valve 294 and an outlet valve 296, respectively.
  • pistons 346 and 348 are housed in the cylinders 334 and 336, respectively, so as to be able to reciprocate along the radial direction about the axis S of the crankshaft 332.
  • the crankshaft 332 is formed with two disk-shaped crank portions 350 and 352, and the crank portion 350 and the crank portion 352 are connected by a crank pin 358.
  • the two pistons 346, 348 are connected to the crankshaft 332 via connecting rods 354, 356.
  • the two connecting rods 354, 356 are connected at one end to the pistons 346, 348 via piston pins 360, 362 provided on the pistons 346, 348 so as to be relatively rotatable.
  • crankshaft 332 when the crankshaft 332 is rotated by the torque from the drive motor 84, the rotational motion of the crankshaft 332 is converted into reciprocating motion of the pistons 346 and 348 along the radial direction about the axis S. 346 and 348 move (reciprocate) alternately in the suction direction (arrow V direction) and discharge direction (arrow E direction) in the cylinders 334 and 336.
  • the two cylinders 334 and 336 are arranged so as to extend in the radial direction of the crankshaft 332, and the opening angle between one cylinder 334 and the other cylinder 336 is set to 180 °. And screws installed in the two cylinders 334 and 336, respectively.
  • the piston diameter (diameter) is preferably set to 10 mm to 40 mm and the piston stroke rotor S is set to 4 mm to 30 mm.
  • the external power also sucks air into the cylinders 334, 336 and the air flows in the cylinders 334, 336.
  • the discharge process of discharging from the cylinders 334 and 336 can be performed simultaneously by the same number (one) of pistons, and the inertia force of the two pistons 346 and 348 Since the apparatus can be operated in a balanced state, there is no need to provide the crankshaft 332 with a counterweight for canceling the inertial force of the pistons 346 and 348.
  • the sealing and pumping-up device 30 using the air pump 331 can also increase the efficiency of supplying compressed air to the tire 20 and efficiently inject the sealing agent 36 into the tire 20 and the pump-up time. Can be shortened to
  • N is a natural number
  • N cylinders are arranged in series in a row along the axial direction of the crankshaft, and the remaining N cylinders are centered on the axis S of the crankshaft 332.
  • the opening angle between the one cylinder 334 and the other cylinder 336 is 180 °, but the center is about the axis S of the N cylinders and the remaining N cylinders. Even when the opening angle is larger than 0 ° and smaller than 180 ° (V-shaped arrangement), the crankpin to which N pistons are connected and the crankpin to which the remaining N pistons are connected are also connected.
  • the phase difference is set to 0 °, the rotational resistance of the crankshaft for reciprocating the 2N pistons is kept substantially constant, and the countershaft can be omitted to reduce the weight of the crankshaft. Obtained as in the case.
  • FIG. 5 shows a sealing-pump-up device 110 according to a second embodiment of the present invention.
  • the same parts as those of the sealing' pump-up device 30 according to the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • the difference between the sealing and pumping-up device 110 according to the present embodiment and the sealing and pumping-up device 30 according to the first embodiment is that, as shown in FIG. It is arranged in a plug 82 that can be removed from the socket, and a bimetal type current breaker 112 is used.
  • the bimetal-type current breaker 112 includes a casing 116 and a bimetal 118 disposed in the casing 116.
  • the bimetal 118 is formed in a leaf spring shape by laminating two metal plates 120 and 122 having different thermal expansion coefficients from each other, so that the bimetal 118 is convex downward when the current breaker 112 is not operated. It is curved.
  • the casing 116 is provided with metal supporting portions 119 for supporting the vicinity of both ends of the bimetal 118 with a pair of projections.
  • the bimetal 118 has a movable contact 124 at one end and an internal contact 126 at the other end, and the movable contact 124 and the internal contact 126 are electrically connected to each other by the metal 118.
  • the casing 116 is provided with a fixed contact 128 facing the movable contact 124. When the current breaker 112 is not operated, the fixed contact 128 is provided as shown in FIG. 6A. It is supported so as to be pressed against. [0097] Further, the current breaker 112 is provided with a pair of external contacts 130 and 132 outside the casing 116, and one of the external contacts 130 is electrically connected to an internal contact 126 in the casing 116.
  • the other external contact 132 is electrically connected to a fixed contact 128 in the casing 116.
  • the current breaker 112 is connected in series to one conductor disposed in the plug 82 via its external contacts 130 and 132. Thus, when the current breaker 112 is not operated, the battery power of the vehicle can be supplied to the power supply circuit 78 through the plug 82 and the power supply cable 80.
  • the bimetal 118 is heated by Joule heat generated by the electric resistance of the bimetal 118 itself. At this time, if an overcurrent exceeding the allowable current continues to flow through the bimetal 118 for more than a predetermined response time, the thermal expansion of one metal plate 120 constituting the bimetal 118 causes the thermal expansion of the other metal plate 122 to occur. The expansion causes distortion due to expansion. As a result, the bimetal 118 is deformed from a downwardly convex shape (conducting shape) to an upwardly convex shape (cutoff shape), and separates the movable contact 124 from the fixed contact 128. .
  • the current breaker 112 is provided with a reset switch 134.
  • the reset switch 134 When the user presses the reset switch 134 after the current breaker 112 is activated, the bimetal 118 deformed into a cutoff shape by the reset switch 134 is provided. The central part is pressed downward, and the bimetal 118 is restored to the conductive shape.
  • the allowable current value (cutoff current value) when the current breaker 112 cuts off the battery power and the power supply to the power supply circuit 78 is the same as the case of the current breaker 76.
  • the rated current value of the breaker (fuse) is 15 A, it is more preferable to set it to 14 A to 18 A, and it is more preferable to set it to 15 A to 17 A.
  • the responsiveness of the current breaker 112 is such that even if a current (starting current) of about 70 A flows, the power supply with a notable power is preferably performed over 100 msec (more preferably 10 msec). The responsiveness to overcurrent is set so as not to cut off the current.
  • the sealing 'pump-up device 110 is used.
  • a metal-type current breaker is used as an overcurrent cutoff means to cut off the power supply to the power supply circuit 78.
  • the current breaker 112 can easily set the detection accuracy and the responsiveness to the overcurrent to desired levels, respectively, as compared with the fuse-type current breaker. Since the variability between responsive products can be reduced, the rated current value of the current breaker 112 is set to be approximately equal to or slightly lower than the rated current value of the current breaker on the vehicle side.
  • the allowable current value Current value
  • the current breaker 112 can be reliably operated at a timing earlier than the current breaker on the vehicle side is operated.
  • the sealing 'pump-up device 110 basically the same effects as those of the sealing' pump-up device 30 according to the first embodiment can be obtained, and the common effect can be obtained.
  • the bimetal-type current breaker 112 is easier to miniaturize than the electromagnetic current breaker 76, so that the current breaker 112 is arranged in the plug 82, which facilitates the handling and resetting operation by the user.
  • a small-sized electromagnetic current breaker 76 according to the first embodiment is used, which is disposed in the plug 82 of the sealing / pump-up device 30 in the first embodiment, or It may be provided integrally with.
  • FIGS. 7 and 8 show a hot-wire type current breaker 150 applicable to the sealing-pump-up device 110 according to the second embodiment of the present invention, instead of the current breaker 112 shown in FIG. It is shown.
  • the current breaker 150 includes a casing 152 and a movable piece 154 disposed in the casing 152.
  • the movable piece 154 is formed in a generally rectangular thin plate shape from a metal material such as iron, stainless steel, or copper.
  • Movable piece 1 The base 54 is provided with a substantially rectangular base 156 at the distal end thereof, and the elongated plate-shaped reversing part 160 and the base in the width direction of the base 156 which also have a central force in the width direction of the base 156 extending toward the base end. Both ends force An elongated plate-shaped radius arm 158 extending toward the base end side is formed physically.
  • the width of the reversing portion 160 is wider than the radius arm 158, and the extension length from the base portion 156 is shorter than the radius arm 158.
  • a thick disk-shaped movable contact 162 is fixed to the upper surface side of the base portion 156.
  • the base end of the movable piece 154 is connected to the base end side (the left side in Fig. 7) inside the casing 152, and a block-shaped support for supporting the movable piece 154 in a cantilever state.
  • a portion 164 is provided, and a conductive plate 166 penetrating the support portion 164 along the vertical direction is provided.
  • the conductive plate 166 has a lower end protruding outside the casing 152, and an external contact 130 is connected to the lower end of the conductive plate 166.
  • a block-shaped connecting portion 167 is fixed to the conductive plate 166 at an intermediate portion along the vertical direction so as to extend in the width direction and the base end side, and has a width along the upper surface of the connecting portion 167.
  • a pair of grooves 168 that are cut inward from both ends in the direction are formed.
  • the movable piece 154 has the base ends of the pair of radius arms 158 abut against the upper surface of the connection part 167 and is fitted into the groove 168.
  • the conductive plate 166 is electrically connected to the movable piece 154.
  • the casing 152 has a step-shaped stop portion 170 formed at the base end side of the connecting portion 167 to be in contact with the base end portions of the pair of radius arms 158, respectively.
  • the support portion 164 has a slit-shaped fitting groove 172 in the front surface thereof.
  • the base end of the reversing section 160 is fitted and fixed in the fitting groove 172, and the base end of the reversing section 160 is in contact with the inner end of the fitting groove 172.
  • the length of the reversing portion 160 is such that the force at the rear end of the fitting groove 172 is longer than the shortest distance L to the tip of the reversing portion 160 (see FIG. 7A) by a predetermined length.
  • the reversing portion 160 is held in one of a curved shape (a conductive shape) that is convex upward and a curved shape that is a convex shape (blocking shape) downward.
  • the current breaker 150 is provided with a metal contact plate 174 at an end of the casing 152 opposite to the conductive plate 166, and the contact plate 174 is The tip penetrates the casing 152 along the vertical direction, and is inserted into the casing 152.
  • a fixed contact portion 176 bent toward the base end (conductive plate 166) is formed on the base. The fixed contact portion 176 faces the movable contact 162 disposed at the tip of the movable piece 154 along the vertical direction.
  • An external contact 132 is connected to the lower end of the contact plate 174 extending to the outside of the casing 152.
  • a circular slide hole 178 is formed in the top plate portion of the casing 152, and a reset button 180 is slidably inserted into the slide hole 178.
  • the reset button 180 is for returning the reversing portion 160 in the cut-off shape (see FIG. 7B) to the energized shape (see FIG. 7A).
  • the reset button 180 is connected to the standby position shown by a solid line in FIG. It is slidably supported between the reset positions shown.
  • a leaf spring 184 that presses against the flange portion 182 formed on the distal end side of the reset button 180 and constantly urges the reset button 180 to the standby position is disposed.
  • the movable piece 154 is distorted along the radial direction. As a result, when an overcurrent exceeding the allowable current continues to flow through the movable piece 154 for more than a predetermined response time, the reversing portion 160 reverses the bending direction and changes from the energized shape to the cutoff shape. As shown in FIG. 7B, the movable piece 154 has the reversing portion 160 in a blocking shape, so that the radius arm 158 is bent downward and the movable contact 162 is separated from the fixed contact portion 176 of the contact plate 174.
  • the power supply to the power supply circuit 78 is also cut off by the battery power of the vehicle.
  • the reset button 180 presses the center of the reversing portion 160 deformed into the interrupting shape downward, and the reversing portion 160 is restored to the conducting shape.
  • the movable contact 162 contacts the fixed contact portion 176 of the contact plate 174.
  • the allowable current value (cutoff current value) when the current breaker 150 cuts off the battery power and the power supply to the power supply circuit 78 is the same as the case of the current breaker 112.
  • the responsiveness of the current breaker 150 is preferably set so as not to interrupt the power supply from the battery for 100 ms ec (more preferably, 10 msec). Is set.
  • the detection accuracy and responsiveness to overcurrent are set to desired levels, respectively, as compared with the fuse-type current breaker. And the variation between the individual products with high detection accuracy and responsiveness can be reduced, so that the rated current value of the current breaker 150 is almost equal to or slightly smaller than the rated current value of the current breaker on the vehicle side. ⁇ ⁇ ⁇ Even if the current is set to a lower value, if an overcurrent that exceeds the allowable current value (cutoff current value) flows through the power supply circuit 78, the current breaker 112 will be activated as compared to the current breaker on the vehicle side. Also, it can be operated quickly and reliably.
  • FIG. 9 shows a tire sealing and pumping-up device according to a second embodiment of the present invention.
  • the sealing and pumping-up device 230 like the first and second sealing 'pumping-up devices 30, 110, repairs the tire and the tire without replacing the wheel with a sealing agent when the tire is punctured.
  • the internal pressure is pumped up to a predetermined reference pressure.
  • the same components as those of the first and second sealing' pump-up devices 30 and 110 are denoted by the same reference numerals and description thereof will be omitted.
  • the sealing-pump-up device 230 includes a box-shaped casing 232 as an outer shell portion thereof.
  • a liquid supply pump 236 for supplying the sealing agent 36 is provided.
  • a discharge port 235 is provided for discharging the contained sealing agent 16 to the outside.
  • the liquid supply pump 236 has a liquid agent inlet 238 and a liquid agent supply port 240, each of which is directed to the outside.
  • the liquid agent suction port 238 is connected to a discharge port 235 of the liquid agent container 234 via a connection pipe 242.
  • the liquid supply pump 236 draws in the sealing agent 36 in the liquid agent container 234 through the connection pipe 242 during operation, and discharges the sealing agent 36 from the liquid agent supply port 240 while pressurizing the sealing agent 36.
  • the liquid supply pump 236 has a liquid material supply port 240 connected to a suction port 62 of the gas-liquid switching valve 60 via a liquid supply pipe 244.
  • the air supply port 44 of the air compressor 34 is connected to the suction port 61 of the gas-liquid switching valve 60 via the air pipe 246.
  • the liquid agent container 234 also sucks the sealing agent 36 by the liquid supply pump 236, and supplies the sealing agent 36 into the tire 140 through the joint hose 66.
  • the structure to send is adopted. For this reason, only the static pressure of the sealing agent 36 acts on the liquid container 234, and the internal pressure (positive pressure) of the tire 140 does not directly act on the liquid container 234.
  • the liquid supply pump 236 basically has the same structure as the air compressors 34 and 330 according to the first embodiment (two-cylinder reciprocating type). However, since the sealing agent 36 has the property of an incompressible fluid, the setting of the opening / closing timing of the intake valve and the exhaust valve, the stroke of the piston, the rotation speed of the crankshaft, and the like are different from those of the air compressors 34 and 330. .
  • the operator screws the adapter 68 to the tire valve 142 of the tire 140 and connects the joint hose 66 to the punctured tire 140.
  • the operator inserts the plug 82 at the tip of the power cable 80 into a socket or the like of a cigarette lighter of the vehicle, and then presses the activation Z stop button 74 of the operation panel 70.
  • the power supply circuit 78 connects the suction port 62 of the gas-liquid switching valve 60 to the discharge port 63 and operates the liquid supply pump 236 in conjunction with this.
  • the supply pump 236 draws the sealing agent 36 in the liquid agent container 234 into the cylinders 250 and 252.
  • the sealing agent 36 sucked into the cylinders 250 and 252 is supplied into the tire 140 through the liquid supply pipe 244, the gas-liquid switching valve 60 and the joint hose 66 while the pistons 266 and 268 pressurize the calorie.
  • the power supply circuit 78 stops the liquid supply pump 236 and switches the communication destination of the discharge port 63 of the gas-liquid switching valve 60 from the suction port 62 to the suction port 61. After that, the air compressor 34 is operated. Thereby, the compressed air supplied from the air compressor 34 is supplied into the tire 140 through the air pipe 246, the gas-liquid switching valve 60, and the joint hose 66, and the internal pressure of the tire 140 is increased to expand the tire 140.
  • the operator confirms that the internal pressure of the tire 140 has reached the specified pressure by a pressure gauge (not shown) provided in the air compressor 34, and then presses the start / stop button 72 again. Press.
  • the power supply circuit 78 stops supplying power to the air compressor 34.
  • the worker removes the adapter 68 from the tire valve 142, disconnects the joint hose 66 from the tire 140, performs a preliminary run as in the case of the first embodiment, and then performs sealing / pump-up as necessary.
  • the device 230 pumps up the tire 140 to the specified pressure.
  • the liquid supply pump 236 according to the embodiment of the present invention described above has basically the same structure as the air compressors 34 and 330 according to the first embodiment (the connection point between the N pistons and the crankshaft).
  • the phase difference force between the remaining N pistons and the connection point with the crankshaft is 180 ° in the case of the serial arrangement, and 0 ° in the case of the opposed arrangement, so that the air according to the first embodiment
  • one piston moves in the discharge direction, and even if the moving load of this piston in the cylinder increases relatively, at this time, the remaining one piston sucks.
  • the sealing-pump-up device 230 According to the present embodiment, the supply efficiency of the sealing agent 36 to the pneumatic tire by the liquid supply pump 236 is increased, and the injection time of the sealing agent 36 into the tire 140 is increased. In addition, the efficiency of supplying compressed air to the tire 140 by the air compressor 34 can be increased, and the pump-up time for the tire 140 can be shortened efficiently.
  • a current breaker 76 is disposed between the plug 82 and the power supply circuit 78.
  • the current The power supply to the power supply circuit 78 is cut off. Therefore, according to the sealing 'pump-up device 230 according to the present embodiment, similarly to the sealing' pump-up device 30 according to the first embodiment, the maximum current that is substantially equal to the rated current value that can be supplied by the battery of the vehicle.
  • the sealing / pump-up device 230 instead of the current breaker 76 between the plug 82 and the power supply circuit 78, the power breakers 112 and 150 in the plug 82 Either one may be arranged and the overcurrent may be interrupted by the power breakers 112 and 150.
  • one of the current breakers 76, 112 and 150 is arranged in the plug 82, and The overcurrent may be interrupted by the power interrupters 112 and 150.
  • an air compressor 330 (see FIG. 4) may be used instead of the air compressor 34 to supply compressed air to the tire 140 into which the sealing agent 36 has been injected.
  • the air compressors of Examples C and D can obtain approximately twice as much compressed air as Comparative Example 1 under both no-load and loaded conditions, and are required at this time.
  • the driving current is only about 1.5 times that of Comparative Example 1.
  • the driving current required at this time was reduced by the comparative example. It can be reduced to about 75% of 2.
  • the current value (maximum current value) of the drive current rises to nearly 20A.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)

Abstract

A current breaker operating earlier than the current breaker installed in a vehicle when an overcurrent flows is provided, and sealant injecting means and air-pressure sending means are operated on a current suppliable by a battery of the vehicle and approximately equal to the rated current value. A pump-up device (30) uses an electromagnetic current breaker (76) as overcurrent breaker means for shutting off power supply to a power supply circuit (78) when and overcurrent flows through the power supply circuit (78) connected to a battery of a vehicle. The overcurrent detection accuracy and response to overcurrent of the current breaker (76) can be set to desired levels more easily than fuse current breakers, and variation of the detection accuracy and response between products can be lessened. Therefore, even if the rated current value of the current breaker (76) is set to a value approximately equal to or slightly lower than the rated current value of the vehicle current breaker, the current breaker (76) can be infallibly operated at a timing earlier than the timing of the operation of the vehicle current breaker when an overcurrent exceeding the allowable current value flows through the power supply circuit (78).

Description

シーリング ·ポンプアップ装置及びポンプアップ装置  Sealing Pump-up device and pump-up device
技術分野  Technical field
[0001] 本発明は、パンクした空気入りタイヤをシールするためのシーリング剤を空気入りタ ィャ内へ注入した後、空気入りタイヤ内に加圧空気を供給して空気入りタイヤの内圧 を昇圧するシーリング 'ポンプアップ装置及び、空気入りタイヤ内に加圧空気を供給 して空気入りタイヤの内圧を昇圧するポンプアップ装置に関する。  [0001] The present invention provides a method for increasing the internal pressure of a pneumatic tire by supplying a pressurized air into the pneumatic tire after injecting a sealing agent for sealing the punctured pneumatic tire into the pneumatic tire. And a pump-up device for supplying pressurized air into the pneumatic tire to increase the internal pressure of the pneumatic tire.
背景技術  Background art
[0002] 近年、空気入りタイヤ(以下、単に「タイヤ」と!、う。)がパンクした際に、タイヤ及びホ ィールを交換することなぐタイヤをシーリング剤により補修して所定の指定圧まで内 圧を加圧(ポンプアップ)するタイヤのシーリング ·ポンプアップ装置が普及している。 この種のシーリング 'ポンプアップ装置としては、例えば、特許文献 1に記載されてい るものが知られている。  [0002] In recent years, when a pneumatic tire (hereinafter simply referred to as "tire") punctures, the tire and the wheel are not replaced. Tire sealing / pump-up devices that increase the pressure (pump-up) are widely used. As this type of sealing-pump-up device, for example, a device described in Patent Document 1 is known.
[0003] 特許文献 1に示されたシーリング ·ポンプアップ装置 10は、図 10に示されるように、 シーリング剤 12を収容した耐圧容器 14と、加圧空気の供給源であるエアコンプレツ サ 15とを備えている。このエアコンプレッサ 15は、先端部にプラグ 16が設けられた電 源ケーブル 18と、加圧空気の吐出ロカも延びる耐圧ホース 20とを備えている。また 耐圧容器 14には、シーリング剤 12の液面上までのびるライザ一チューブとされたガ ス導入部 22と、シーリング剤 12を吐出するための出口バルブ 24とが設けられており 、この出口バルブ 24には、先端部にアダプタ 26が設けられたホース 28が接続されて いる。  As shown in FIG. 10, a sealing / pumping-up device 10 disclosed in Patent Document 1 includes a pressure-resistant container 14 containing a sealing agent 12 and an air conditioner 15 serving as a supply source of pressurized air. And The air compressor 15 includes a power cable 18 having a plug 16 provided at a distal end thereof, and a pressure-resistant hose 20 which also extends a discharge locus of pressurized air. The pressure-resistant container 14 is provided with a gas introduction part 22 formed as a riser tube extending to the level of the sealing agent 12 and an outlet valve 24 for discharging the sealing agent 12. A hose 28 having an adapter 26 provided at the distal end is connected to 24.
[0004] 上記のシーリング 'ポンプアップ装置 10では、タイヤにパンクが発生すると、プラグ 1 6が車両のシガーソケットに嵌挿されると共に、アダプタ 26がタイヤバルブ 27にねじ 止めされた後、耐圧容器 14のガス導入部 22が栓バルブ 23により開放される。この状 態で、エアコンプレッサ 15を作動させ、ガス導入部 22を通してエアコンプレッサ 15か ら耐圧容器 14内に加圧空気を導入する。これにより、耐圧容器 14内におけるシーリ ング剤 12上の気層部分の内圧が上昇し、この気層部分の静圧により出口バルブ 24 力もシーリング剤 12が押し出され、シーリング剤 12がタイヤバルブ 27を通してタイヤ 内に注入される。この後、耐圧容器 14内のシーリング剤 12の液面レベルが出口バル ブ 24の開口まで下降すると、耐圧容器 14内の加圧空気が出ロノ レブ 24を通してタ ィャの内部に供給され、タイヤを所定の内圧で膨張させる。 [0004] In the sealing and pump-up device 10, when a puncture occurs in the tire, the plug 16 is inserted into the cigar socket of the vehicle, and the adapter 26 is screwed to the tire valve 27. The gas inlet 22 is opened by the stopper valve 23. In this state, the air compressor 15 is operated, and pressurized air is introduced from the air compressor 15 into the pressure-resistant container 14 through the gas introduction unit 22. As a result, the internal pressure of the gas layer above the sealing agent 12 in the pressure vessel 14 increases, and the static pressure in the gas layer increases the outlet valve 24 pressure. The force is also pushed out of the sealing agent 12, and the sealing agent 12 is injected into the tire through the tire valve 27. Thereafter, when the liquid level of the sealing agent 12 in the pressure-resistant container 14 drops to the opening of the outlet valve 24, the pressurized air in the pressure-resistant container 14 is supplied to the inside of the tire through the outlet rono-lev 24, and the tire is cooled. Is expanded at a predetermined internal pressure.
[0005] ところで、上記したようなシーリング 'ポンプアップ装置のエアコンプレッサには、通 常、電流遮断器が設けられており、この電流遮断器は、エアコンプレッサ内でポンプ を駆動するためのモータや、このモータへの電流供給を制御するための電源回路に 許容電流値を超える過電流が流れると、モータ、電源回路等を過電流から保護する ために電源供給を遮断する。この種のシーリング 'ポンプアップ装置に適用される電 流遮断器としては、従来、ガラス管内に金属線を封入して構成されたヒューズを用い たものが一般的に使用されている。このヒューズ式の電流遮断器は、例えば、電源回 路とソケットとの間に配設されており、モータへの異常負荷等に伴ってヒューズに過電 流が流れると、ヒューズの金属線が融点を超えるまで発熱して溶断することにより、車 載のノ ッテリー力もエアコンプレッサの電源回路への電流供給を遮断する。  [0005] By the way, a current breaker is usually provided in the air compressor of the sealing-pump-up device as described above, and the current breaker is provided with a motor for driving a pump in the air compressor. If an overcurrent exceeding the allowable current value flows in the power supply circuit for controlling the current supply to the motor, the power supply is shut off to protect the motor and the power supply circuit from the overcurrent. Conventionally, as a current breaker applied to this type of sealing-pump-up device, a device using a fuse formed by enclosing a metal wire in a glass tube has been generally used. This fuse-type current breaker is installed, for example, between the power supply circuit and the socket, and when an overcurrent flows through the fuse due to an abnormal load on the motor, the metal wire of the fuse melts. When the heat is blown out until it exceeds, the knotting force of the vehicle also cuts off the current supply to the power circuit of the air compressor.
[0006] また、車両のバッテリーとシガーソケットとの間にも、通常、ヒューズ式の電流遮断器 が配設されており、この電流遮断器により車両側のノ ッテリー、電流供給回路を過電 流力も保護している。この車両側のヒューズは、一般的にバッテリーの定格電圧が 12 Vの場合には、その定格電流値が 15Aに設定されている。  [0006] Fuse-type current breakers are usually also provided between the vehicle battery and the cigar socket, and the current breakers cause the vehicle side battery and the current supply circuit to overcurrent. It also protects power. Generally, when the rated voltage of the battery is 12 V, the rated current value of the fuse on the vehicle side is set to 15 A.
特許文献 1:特許第 3210863号公報  Patent Document 1: Japanese Patent No. 3210863
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] しかしながら、上記したようなエアコンプレッサにヒューズ式の電流遮断器を用いた 場合には、そのヒューズとして車両側のヒューズの定格電流値に対して概ね 65%以 下、すなわち 10A以下の定格電流値が設定されたものを用いなければならない。す なわち、車両側のヒューズは、過電流に対する検出精度及び応答性の比較的高いも のが用いられており、エアコンプレッサ側のヒューズとして定格電流値が 10Aを超え るようなもの(例えば、 12A又は 15A)を用いると、エアコンプレッサを運転開始した際 の起動電流により車両側のヒューズが溶断してしまい、予備のヒューズが無い場合等 には車両の運転に支障を生じさせるおそれがある。このため、シーリング 'ポンプアツ プ装置のエアコンプレッサに供給される駆動電流も 10A以下に制限されてしまい、本 来の最大能力に対してエアコンプレッサを常に低負荷 (低仕事率)の状態で運転しな ければならず、これがポンプアップ装置によるタイヤに対するシーリング剤注入時間 及びポンプアップ時間を短縮することの妨げなつている。 [0007] However, when a fuse-type current breaker is used in the air compressor as described above, the fuse is generally about 65% or less of the rated current value of the fuse on the vehicle side, that is, a rated current of 10A or less. The one with the set current value must be used. In other words, fuses on the vehicle side that have relatively high detection accuracy and responsiveness to overcurrent are used, and fuses on the air compressor side that have a rated current value exceeding 10 A (for example, If 12A or 15A) is used, the starting current when the air compressor starts operating will blow the fuse on the vehicle side, and there is no spare fuse. May cause trouble in driving the vehicle. For this reason, the drive current supplied to the air compressor of the sealing pump-up device is also limited to 10 A or less, and the air compressor is always operated at a low load (low power) with respect to the original maximum capacity. This must prevent the pump-up device from shortening the time for injecting sealant into the tire and reducing the pump-up time.
[0008] 上記のような問題を解決するため、エアコンプレッサ側に用いられるヒューズとして 車両側のヒューズよりも過電流に対する検出精度及び応答性が高ぐかつ定格電流 値が 10Aを超え、 15A以下のものを用いることも考えられる力 このようなヒューズの 検出精度及び応答性は製品個体間のバラツキも大きぐまたエアコンプレッサの電源 回路を流れる電流値の変動も大きいことから、エアコンプレッサ側のヒューズを、常に 車両側のヒューズより優先して溶断させることは困難である。またヒューズ式の電流遮 断器をシーリング ·ポンプアップ装置のェアコンプレッサに用 、た場合には、電流遮 断器が作動して電流がー且遮断されると、電流遮断器を復帰させてエアコンプレッサ を再運転するためには、電流遮断器に装填されて 、るヒューズを新 、ものに交換 する必要があり、その作業が煩瑣であるという問題もある。  [0008] In order to solve the above-described problems, the fuse used on the air compressor side has higher detection accuracy and responsiveness to overcurrent than the fuse on the vehicle side, and has a rated current value exceeding 10A and a current of 15A or less. Since the detection accuracy and responsiveness of such a fuse vary widely among products and the value of the current flowing through the power circuit of the air compressor fluctuates greatly, the fuse on the air compressor side must be used. However, it is always difficult to blow a fuse in preference to a fuse on the vehicle. If a fuse-type current interrupter is used for the air compressor of the sealing / pump-up device, the current interrupter is activated and the current is interrupted, and the current interrupter is restored. In order to restart the operation of the air compressor, it is necessary to replace a new fuse mounted in the current breaker with a new one, and the operation is complicated.
[0009] 本発明の目的は、上記事実を考慮して、車両のバッテリーにより供給可能な定格電 流値と略等しい最大電流値の電流により運転できるシーリング ·ポンプアップ装置及 びポンプアップ装置を提供することにある。  An object of the present invention is to provide a sealing / pump-up device and a pump-up device which can be operated with a current having a maximum current value substantially equal to a rated current value that can be supplied by a vehicle battery, in consideration of the above fact. Is to do.
課題を解決するための手段  Means for solving the problem
[0010] 本発明の請求項 1に係るタイヤのシーリング 'ポンプアップ装置は、パンクした空気 入りタイヤ内に液状のシーリング剤を注入した後、空気入りタイヤ内へ加圧空気を供 給して空気入りタイヤの内圧を昇圧するタイヤのシーリング ·ポンプアップ装置であつ て、シーリング剤容器内に収納されたシーリング剤を空気入りタイヤ内へ給送するシ 一リング剤注入手段と、空気入りタイヤ内に空気を圧送するエア圧送手段と、電力供 給を受けて、前記シーリング剤注入手段及びエア圧送手段を駆動するための動力を 発生する駆動手段と、車両に搭載されたバッテリーに接続されて該バッテリー力 前 記駆動手段へ電力を供給する電力供給手段と、前記電力供給手段に許容電流値を 超える過電流が流れると、前記駆動手段への電力供給を遮断する過電流遮断手段 とを有し、前記過電流遮断手段として、前記電力供給手段に過電流が流れると、磁 性材料力 なる電力遮断用の可動片を電磁力により作動させて前記電力供給手段 への電力供給を遮断する電磁式の電流遮断器を用いたことを特徴とする。 [0010] The tire sealing-pump-up device according to claim 1 of the present invention is configured such that a liquid sealing agent is injected into a punctured pneumatic tire, and then the pressurized air is supplied into the pneumatic tire to supply air. A tire sealing / pump-up device for increasing the internal pressure of a pneumatic tire, a sealing agent injecting means for feeding a sealing agent contained in a sealing agent container into the pneumatic tire, and a sealing agent injecting means. Air pumping means for pumping air, driving means for receiving power supply to generate power for driving the sealing agent injecting means and air pumping means, and a battery connected to a battery mounted on a vehicle; Power The power supply means for supplying power to the drive means, and the power supply to the drive means is cut off when an overcurrent exceeding an allowable current value flows through the power supply means. That over-current interrupting means When an overcurrent flows through the power supply means as the overcurrent cutoff means, the movable piece for power cutoff, which is a magnetic material, is actuated by electromagnetic force to supply power to the power supply means. It is characterized by using an electromagnetic current breaker for interrupting.
[0011] 本発明の請求項 1に係るタイヤのシーリング ·ポンプアップ装置では、車両のバッテ リーに接続された電力供給手段に過電流が流れると、この電力供給手段への電力供 給を遮断する過電流遮断手段として、磁性材料カゝらなる電力遮断用の可動片を電磁 力により作動させて電力供給手段への電力供給を遮断する電磁式の電流遮断器を 用いたことにより、電磁式の電流遮断器は、ヒューズ式の電流遮断器と比較して、過 電流に対する検出精度及び応答性をそれぞれ所望のレベルに設定することが容易 であり、かつ検出精度及び応答性の製品個体間のバラツキも小さくできるので、電磁 式の電流遮断器における定格電流値を車両側の電流遮断器の定格電流値と略等し [0011] In the tire sealing and pumping-up device according to claim 1 of the present invention, when an overcurrent flows through the power supply means connected to the battery of the vehicle, the power supply to the power supply means is cut off. By using an electromagnetic current breaker that cuts off power supply to the power supply means by operating the movable piece for power cutoff made of magnetic material by electromagnetic force as the overcurrent cutoff means, Compared with a fuse-type current breaker, the current breaker makes it easier to set the detection accuracy and responsiveness to overcurrent to the desired levels, respectively, and the variation in the detection accuracy and responsiveness among individual products. Therefore, the rated current value of the electromagnetic current breaker is approximately equal to the rated current value of the current breaker on the vehicle side.
V、か僅かに低 、値に設定しても、この電磁式の電流遮断器による過電流に対する検 出精度及び応答性を、予め車両側の電流遮断器よりも十分に高く設定しておけば、 電力供給手段に許容電流値を越える過電流が流れた際には、電磁式の電流遮断器 を、車両側の電流遮断器が作動するよりも早くタイミングで確実に作動させることがで きる。 Even if the value is set to V, or slightly lower, if the detection accuracy and responsiveness to overcurrent by this electromagnetic current breaker are set sufficiently higher in advance than the current breaker on the vehicle side, However, when an overcurrent exceeding the allowable current value flows into the power supply means, the electromagnetic current breaker can be reliably operated at a timing earlier than the current breaker on the vehicle side operates.
[0012] この結果、本発明の請求項 1に係るシーリング ·ポンプアップ装置によれば、車両の バッテリーにより供給可能な定格電流値に十分に近似した最大電流値の電流を駆動 手段に供給し、この駆動手段力 の動力によりシーリング剤注入手段及びエア圧送 手段をそれぞれ運転できるので、シーリング剤注入手段及びエア圧送手段の運転効 率をそれぞれ高めて、タイヤに対するシーリング剤注入時間及びポンプアップ時間を それぞれ効率的に短縮できる。  [0012] As a result, according to the sealing and pumping-up device according to claim 1 of the present invention, a current having a maximum current value sufficiently close to the rated current value that can be supplied by the battery of the vehicle is supplied to the driving means, Since the sealing agent injection means and the air pumping means can be operated by the power of the driving means, the operating efficiency of the sealing agent injection means and the air pumping means can be respectively increased, and the sealing agent injection time and the pump-up time for the tire can be respectively increased. It can be shortened efficiently.
[0013] また本発明の請求項 2に係るタイヤのシーリング 'ポンプアップ装置は、パンクした 空気入りタイヤ内に液状のシーリング剤を注入した後、空気入りタイヤ内へ加圧空気 を供給して空気入りタイヤの内圧を昇圧するタイヤのシーリング ·ポンプアップ装置で あって、シーリング剤容器内に収納されたシーリング剤を空気入りタイヤ内へ給送す るシーリング剤注入手段と、空気入りタイヤ内に空気を圧送するエア圧送手段と、外 部から電力の供給を受けて、前記シーリング剤注入手段及びエア圧送手段を駆動す るための動力を発生する駆動手段と、車両に搭載されたバッテリーに接続されて該 バッテリーから前記駆動手段へ電力を供給する電力供給手段と、前記電力供給手段 に許容電流値を超える過電流が流れると、前記電力供給手段への電力供給を遮断 する過電流遮断手段とを有し、前記過電流遮断手段として、前記電力供給手段に過 電流が流れると、金属材料により形成された電力遮断用の可動片をジュール熱によ り変形させて前記電力供給手段への電力供給を遮断する熱作動型の電流遮断器を 用いたことを特徴とする。 [0013] Further, the tire sealing 'pump-up device according to claim 2 of the present invention is characterized in that, after injecting a liquid sealing agent into a punctured pneumatic tire, pressurized air is supplied into the pneumatic tire to provide air. A sealing and pumping device for a tire that increases the internal pressure of a pneumatic tire, a sealing agent injecting means for feeding the sealing agent contained in the sealing agent container into the pneumatic tire, and air in the pneumatic tire. Means for pressure-feeding air, and power supplied from outside to drive the sealing agent injection means and the air pressure means. Driving means for generating power for driving the vehicle, power supply means connected to a battery mounted on a vehicle to supply power from the battery to the driving means, and an overcurrent exceeding an allowable current value in the power supply means. And an overcurrent interrupting means for interrupting the power supply to the power supply means when flowing, and as an overcurrent interrupting means, an overcurrent interrupting means formed of a metal material when an overcurrent flows to the power supply means. A heat-actuated current breaker that cuts off power supply to the power supply means by deforming the movable piece with Joule heat is used.
[0014] 本発明の請求項 2に係るタイヤのシーリング ·ポンプアップ装置では、車両のバッテ リーに接続された電力供給手段を通して駆動手段に過電流が流れると、この電力供 給手段段への電力供給を遮断する過電流遮断手段として、金属材料からなる電力 遮断用の可動片をジュール熱により変形させて電力供給手段への電力供給を遮断 する熱作動型の電流遮断器を用いたことにより、このような熱作動型の電流遮断器は 、ヒューズ式の電流遮断器と比較して過電流に対する検出精度及び応答性をそれぞ れ所望のレベルに設定することが容易であり、かつ検出精度及び応答性の製品個体 間のバラツキも小さくできるので、熱作動型の電流遮断器における定格電流値を車 両側の電流遮断器の定格電流値と略等し 、か僅か〖こ低 、値に設定しても、このバイ メタル式の電流遮断器による過電流に対する検出精度及び応答性を、予め車両側 の電流遮断器よりも十分に高く設定しておけば、電力供給手段に許容電流値を越え る過電流が流れた際には、熱作動型の電流遮断器を、車両側の電流遮断器が作動 するよりも早くタイミングで確実に作動させることができる。 [0014] In the tire sealing / pump-up device according to claim 2 of the present invention, when an overcurrent flows through the drive means through the power supply means connected to the battery of the vehicle, the power to the power supply means stage is reduced. By using a thermal-actuated current breaker that cuts off the power supply to the power supply means by deforming the movable piece made of metal material for electric power interruption by Joule heat as the overcurrent cutoff means to cut off the supply, Such a heat-operated current breaker can easily set the detection accuracy and responsiveness to an overcurrent to desired levels, respectively, as compared with a fuse-type current breaker, and can provide the detection accuracy and Since the variability between individual responsive products can be reduced, the rated current value of the thermal breaker is approximately equal to the rated current value of the current breakers on both sides of the vehicle, or set to a slightly lower value. hand However, if the detection accuracy and responsiveness to the overcurrent by the bimetallic current breaker are set sufficiently higher in advance than the current breaker on the vehicle side, the overcurrent exceeding the allowable current value in the power supply means can be obtained. When a current flows, the thermally activated current breaker can be reliably operated at a timing earlier than the current breaker on the vehicle side is activated.
[0015] この結果、本発明の請求項 2に係るシーリング ·ポンプアップ装置によれば、車両の バッテリーにより供給可能な定格電流値と略等しい最大電流値の電流を駆動手段に 供給し、この駆動手段からの動力によりシーリング剤注入手段及びエア圧送手段を それぞれ運転できるので、シーリング剤注入手段及びエア圧送手段の運転効率をそ れぞれ高めて、タイヤに対するシーリング剤注入時間及びポンプアップ時間をそれぞ れ効率的に短縮できる。  [0015] As a result, according to the sealing and pumping-up device according to the second aspect of the present invention, a current having a maximum current value substantially equal to the rated current value that can be supplied by the battery of the vehicle is supplied to the driving means. Since the sealing agent injection means and the air pumping means can be operated by the power from the means, respectively, the operating efficiency of the sealing agent injection means and the air pumping means can be respectively increased, and the sealing agent injection time and the pump-up time for the tire can be reduced. Each can be shortened efficiently.
[0016] また本発明の請求項 3に係るシーリング 'ポンプアップ装置は、請求項 2記載のシー リング'ポンプアップ装置において、前記電流遮断器は、バイメタルによりプレート状 に形成された前記可動片を備え、該可動片の基端部を第 1の接点に接続すると共に 先端部が第 2の接点に接するように支持し、前記電力供給手段への電力供給の遮断 時に、前記該可動片をジユール熱により橈み方向へ変形させて前記第 2の接点から 離間させることを特徴とする。 [0016] Further, in the sealing 'pump-up device according to claim 3 of the present invention, in the sealing' pump-up device according to claim 2, the current breaker is formed of a bimetal plate. The movable piece is provided with a base end connected to a first contact and a distal end supported so as to be in contact with a second contact, to cut off power supply to the power supply means. In some cases, the movable piece is deformed in the radial direction by Joule heat and separated from the second contact.
[0017] また本発明の請求項 4に係るシーリング 'ポンプアップ装置は、請求項 2記載のシー リング'ポンプアップ装置において、前記電流遮断器は、熱膨張性を有する金属材料 によりプレート状に形成されると共に、片持ち状態で支持されるベース部及び、該べ ース部の基端部と先端部との間で湾曲状態となるように支持される反転部が設けられ た前記可動片を備え、前記ベース部の基端部を第 1の接点に接続すると共に先端部 が第 2の接点に接するように支持し、前記電力供給手段への電力供給の遮断時には 、前記反転部をジュール熱により湾曲方向が反転するように変形させて前記ベース 部の先端部を前記第 2の接点力 離間させることを特徴とする。 [0017] Further, in the sealing 'pump-up device according to claim 4 of the present invention, in the sealing' pump-up device according to claim 2, the current breaker is formed in a plate shape from a metal material having a thermal expansion property. And a movable portion provided with a base portion supported in a cantilevered state and a reversing portion supported in a curved state between a base end and a distal end of the base portion. A base end of the base portion connected to a first contact and a tip end supported to contact a second contact. When the power supply to the power supply means is cut off, the inversion portion is heated by Joule heat. And the tip of the base portion is separated from the second contact force by the second contact force.
[0018] また本発明の請求項 5に係るシーリング ·ポンプアップ装置は、請求項 1乃至 4の何 れカ 1項記載のシーリング 'ポンプアップ装置において、前記電力供給手段に、車両 に設けられたシガーソケットに着脱可能に嵌挿されて車両に搭載されたバッテリーに 電気的に接続されるプラグ部材を設けると共に、該プラグ部材に前記電流遮断器を 内臓させ又は一体的に設けたことを特徴とする。  [0018] A sealing and pumping-up device according to claim 5 of the present invention is the sealing and pumping-up device according to any one of claims 1 to 4, wherein the power supply means is provided in a vehicle. A plug member that is detachably fitted into a cigar socket and electrically connected to a battery mounted on a vehicle is provided, and the current breaker is built in or integrally provided with the plug member. I do.
[0019] また本発明の請求項 6に係るシーリング ·ポンプアップ装置は、請求項 1乃至 5の何 れカ 1項記載のシーリング 'ポンプアップ装置において、前記エア圧送手段がタイヤ のタイヤバルブに着脱可能に接続され、エア発生源をタイヤに連通させるアダプタ部 材を備え、前記アダプタ部材の表面部分をゴム組成物又は榭脂材料により被覆した ことを特徴とする。  [0019] Further, in the sealing / pump-up device according to claim 6 of the present invention, in the sealing / pump-up device according to any one of claims 1 to 5, the air pressure feeding means is attached to and detached from a tire valve of a tire. An adapter member connected to the tire so that the air generation source can communicate with the tire, and a surface portion of the adapter member is covered with a rubber composition or a resin material.
[0020] また本発明の請求項 7に係るシーリング ·ポンプアップ装置は、請求項 1乃至 6の何 れカ 1項記載のシーリング 'ポンプアップ装置において、前記シーリング剤注入手段 は、前記シーリング剤容器内に接続されると共に該シーリング剤容器内からシーリン グ剤を吸入する吸入口及び、シーリング剤容器内から吸入したシーリング剤を加圧状 態で吐出すると共に空気入りタイヤへ接続される吐出口がそれぞれ形成された複数 のシリンダとを有し、 複数の前記シリンダ内にそれぞれ往復移動可能に配設され、前記シリンダ内の容 積を膨張させる吸入方向への移動時に、前記吸入口を通して前記シーリング剤容器 力 前記シリンダ内へシーリング剤を吸入させ、前記シリンダ内の容積を縮小させる 吐出方向への移動時に、前記シリンダ内のシーリング剤を加圧しつつ前記吐出口か ら吐出させるピストンと、複数の前記ピストンがそれぞれ連結され、前記駆動手段から の動力により回転すると共に、前記ピストンを前記吸入方向及び前記吐出方向へ交 互に移動させるクランクシャフトと、前記シリンダの設置数を 2N個(Nは自然数)とし、 該 2N個のシリンダを前記クランクシャフトの軸方向に沿って直列的に配置すると共に 、N個のシリンダ内にそれぞれ配設された前記ピストンの前記クランクシャフトとの連 結点と残りの N個のシリンダ内にそれぞれ配設された前記ピストンの前記クランタシャ フトとの連結点との位相差を 180° に設定したことを特徴とする。 [0020] Further, the sealing and pumping-up device according to claim 7 of the present invention is the sealing and pumping-up device according to any one of claims 1 to 6, wherein the sealing agent injecting means includes the sealing agent container. And a suction port for sucking the sealing agent from inside the sealing agent container and discharging the sealing agent sucked from the sealing agent container in a pressurized state and connected to the pneumatic tire. A plurality of cylinders formed respectively, The sealing agent container force is sucked into the cylinder through the suction port when moving in the suction direction to expand the volume in the cylinder, and is disposed so as to be reciprocally movable in each of the plurality of cylinders. A piston for discharging the sealing agent in the cylinder from the discharge port while pressurizing the sealing agent in the cylinder when moving in the discharge direction, and a plurality of the pistons are connected to each other when moving in the discharge direction. The number of cylinders installed is 2N (N is a natural number) and the number of cylinders is set to 2N (N is a natural number) while rotating the pistons in the suction direction and the discharge direction. The pistons are arranged in series along the axial direction, and the clutches of the pistons respectively arranged in N cylinders. The phase difference between the point of attachment to the Kurantasha shift of the piston disposed respectively consolidated point and the rest of the N cylinders of the Kushafuto characterized by being set to 180 °.
[0021] 本発明の請求項 7に係るシーリング 'ポンプアップ装置では、シーリング剤注入手段 における 2N個のシリンダをクランクシャフトの軸方向に沿って直列的に配置すると共 に、 N個のシリンダ内にそれぞれ配設されたピストンのクランクシャフトとの連結点と残 りの N個のシリンダ内にそれぞれ配設されたピストンのクランクシャフトとの連結点との 位相差を 180° に設定したことにより、 N個のピストンがシリンダ内で吸入方向へ移動 する際には、残りの N個のピストンがシリンダ内で吐出方向へ移動し、かつ N個のビス トンがシリンダ内で一方の死点に達した時には、残りの N個のピストンがシリンダ内で 他方の死点に達するので、液剤容器内からシリンダ内へシーリング剤を吸入する吸 入工程とシリンダ内でシーリング剤を加圧しつつシリンダ内から吐出する吐出工程と を、常に同数 (N個)のピストンにより併行して行うことができる。  [0021] In the sealing 'pump-up device according to claim 7 of the present invention, the 2N cylinders in the sealing agent injection means are arranged in series along the axial direction of the crankshaft, and the N' cylinders are arranged in the N cylinders. By setting the phase difference between the connection point of each of the arranged pistons to the crankshaft and the connection point of each of the remaining N cylinders to the pistons of the crankshafts to 180 °, N When N pistons move in the cylinder in the suction direction, the remaining N pistons move in the cylinder in the discharge direction, and when N bistons reach one dead center in the cylinder. Since the remaining N pistons reach the other dead center in the cylinder, the suction process in which the sealant is sucked into the cylinder from the liquid container and the sealant is pressurized in the cylinder And a discharge step of discharging from the cylinder can be always carried out concurrently by the piston of the same number of (N).
[0022] この結果、請求項 7に係るシーリング ·ポンプアップ装置によれば、 N個のピストンが 吐出方向へ移動して N個のピストンの移動負荷が相対的に増大しても、この時には 残りの N個のピストンが吸入方向へ移動して残りの N個のピストンの移動負荷が減少 することから、 2N個のピストンの負荷変動の影響が互いに打ち消され、これら 2N個 のピストンを往復移動させるクランクシャフトの回転抵抗を略一定に保ち、このクランク シャフトを回転させる駆動手段に流れる駆動電流も略一定に保つことができるので、 ノ ッテリーにより供給可能な定格電流値と略等しい電流を常に駆動手段に供給でき る。 As a result, according to the sealing and pumping-up device of claim 7, even if the N pistons move in the discharge direction and the moving load of the N pistons relatively increases, the remaining N pistons move in the suction direction and the moving load of the remaining N pistons decreases, so the effects of the load fluctuations of the 2N pistons cancel each other out, and these 2N pistons reciprocate. The rotational resistance of the crankshaft is kept substantially constant, and the drive current flowing through the drive means for rotating the crankshaft can be kept substantially constant. Can be supplied to The
[0023] 本発明の請求項 8に係るシーリング ·ポンプアップ装置では、請求項 1乃至 6の何れ 力 1項記載のシーリング 'ポンプアップ装置において、前記シーリング剤注入手段は、 前記シーリング剤容器内に接続されると共に該シーリング剤容器内からシーリング剤 を吸入する吸入口及び、シーリング剤容器内から吸入したシーリング剤を加圧状態 で吐出すると共に空気入りタイヤへ接続される吐出口がそれぞれ形成された複数の シリンダと、複数の前記シリンダ内にそれぞれ往復移動可能に配設され、前記シリン ダ内の容積を膨張させる吸入方向への移動時に、前記吸入口を通して前記シーリン グ剤容器カゝら前記シリンダ内へシーリング剤を吸入させ、前記シリンダ内の容積を縮 小させる吐出方向への移動時に、前記シリンダ内のシーリング剤を加圧しつつ前記 吐出口から吐出させるピストンと、複数の前記ピストンがそれぞれ連結され、前記駆 動手段からの動力により回転すると共に、前記ピストンを前記吸入方向及び前記吐 出方向へ交互に移動させるクランクシャフトとを有し、  [0023] In the sealing / pump-up device according to claim 8 of the present invention, in the sealing / pump-up device according to any one of claims 1 to 6, the sealing agent injection means includes: An inlet for connecting and sucking the sealing agent from inside the sealing agent container, and an outlet for discharging the sealing agent sucked from inside the sealing agent container in a pressurized state and connected to the pneumatic tire were formed. A plurality of cylinders; and a plurality of cylinders, each of which is reciprocally movable within the plurality of cylinders, and which moves in the suction direction to expand the volume in the cylinder, and moves through the suction port through the sealing agent container cap and the cylinder. When the sealant is sucked into the cylinder and moved in the discharge direction to reduce the volume in the cylinder, the sealant in the cylinder is And a plurality of the pistons, each of which is connected to a piston for discharging the agent from the discharge port while pressurizing the agent, is rotated by the power from the driving means, and alternately moves the piston in the suction direction and the discharge direction. Having a crankshaft to be moved,
前記シリンダの設置数を 2N個(Nは自然数)とし、 2N個のうち N個のシリンダを前 記クランクシャフトの軸方向に沿って直列的に配置し、残りの N個のシリンダを、前記 クランクシャフトを中心とする周方向に沿って前記 N個のシリンダとは異なる部位に直 列的に配置すると共に、前記 N個のシリンダ内にそれぞれ配設された前記ピストンの 前記クランクシャフトとの連結点と前記残りの N個のシリンダ内にそれぞれ配設された 前記ピストンの前記クランクシャフトとの連結点との位相差を 0° に設定したことを特 徴とする。  The number of cylinders to be installed is 2N (N is a natural number), N of the 2N cylinders are arranged in series along the axial direction of the crankshaft, and the remaining N cylinders are Along with a circumferential direction centered on the shaft, the cylinders are arranged in series at different portions from the N cylinders, and connection points of the pistons respectively arranged in the N cylinders with the crankshaft. And a phase difference between a connection point of each of the pistons disposed in the remaining N cylinders and the crankshaft is set to 0 °.
[0024] 本発明の請求項 8に係るシーリング ·ポンプアップ装置では、 2N個のうち N個のシリ ンダをクランクシャフトの軸方向に沿って直列的に配置し、残りの N個のシリンダを、 前記クランクシャフトを中心とする周方向に沿って前記 N個のシリンダとは異なる部位 に直列的に配置すると共に、前記 N個のシリンダ内にそれぞれ配設されたピストンの クランクシャフトとの連結点と前記残りの N個のシリンダ内にそれぞれ配設されたピスト ンのクランクシャフトとの連結点との位相差を 0° に設定したことにより、 N個のピストン がシリンダ内で吸入方向へ移動する際には、残りの N個のピストンがシリンダ内で吐 出方向へ移動し、かつ N個のピストンがシリンダ内で一方の死点に達した時には、残 りの N個のピストンがシリンダ内で他方の死点に達するので、液剤容器内力ゝらシリンダ 内へシーリング剤を吸入する吸入工程とシリンダ内でシーリング剤を加圧しつつシリ ンダ内から吐出する吐出工程とを、常に同数 (N個)ずつのピストンにより併行して行 うことができる。 [0024] In the sealing and pumping-up device according to claim 8 of the present invention, N cylinders out of 2N are arranged in series along the axial direction of the crankshaft, and the remaining N cylinders are Along with a circumferential direction centered on the crankshaft, arranged in series at a portion different from the N cylinders, and a connection point between a piston and a crankshaft arranged in each of the N cylinders. By setting the phase difference between the pistons arranged in the remaining N cylinders and the connection point with the crankshaft to 0 °, the N pistons move in the suction direction in the cylinders. When the remaining N pistons move in the discharge direction in the cylinder and the N pistons reach one dead center in the cylinder, the remaining Since the other N pistons reach the other dead center in the cylinder, the suction process in which the sealing agent is sucked into the cylinder using the force inside the liquid container and the discharge that discharges from the cylinder while pressurizing the sealing agent in the cylinder The process can always be performed in parallel with the same number (N) of pistons.
[0025] この結果、請求項 8に係るポンプアップ装置によれば、 N個のピストンが吐出方向へ 移動して N個のピストンの移動負荷が相対的に増大しても、この時には残りの N個の ピストンが吸入方向へ移動して残りの N個のピストンの移動負荷が減少することから、 2N個のピストンの負荷変動の影響が互いに打ち消され、これら 2N個のピストンを往 復移動させるクランクシャフトの回転抵抗を略一定に保ち、このクランクシャフトを回転 させる駆動手段に流れる駆動電流も略一定に保つことができるので、車両のバッテリ 一により供給可能な定格電流値と略等しい最大電流値の電流を常に駆動手段に供 給できる。  As a result, according to the pump-up device according to claim 8, even if the N pistons move in the discharge direction and the movement load of the N pistons relatively increases, at this time, the remaining N As the pistons move in the suction direction and the moving loads on the remaining N pistons decrease, the effects of load fluctuations on the 2N pistons cancel each other out, and the cranks that move these 2N pistons back and forth The rotation resistance of the shaft is kept substantially constant, and the drive current flowing to the drive means for rotating the crankshaft can be kept substantially constant. Therefore, the maximum current value that is substantially equal to the rated current value that can be supplied by the battery of the vehicle is obtained. Current can always be supplied to the driving means.
[0026] また本発明の請求項 9に係るポンプアップ装置は、空気入りタイヤ内へ加圧空気を 供給して空気入りタイヤの内圧を昇圧するタイヤのポンプアップ装置であって、空気 入りタイヤ内に空気を圧送するエア圧送手段と、電力の供給を受けてエア圧送手段 を駆動するための動力を発生する駆動手段と、車両に搭載されたバッテリーに接続 されて該バッテリーから前記駆動手段へ電力を供給する電力供給手段と、前記電力 供給手段に許容電流値を超える過電流が流れると、前記駆動手段への電力供給を 遮断する過電流遮断手段とを有し、前記過電流遮断手段として、前記電力供給手段 に過電流が流れると、磁性材料力 なる電力遮断用の可動片を電磁力により作動さ せて前記電力供給手段への電力供給を遮断する電磁式の電流遮断器を用いたこと を特徴とする。  [0026] Further, a pump-up device according to claim 9 of the present invention is a tire pump-up device for supplying pressurized air into a pneumatic tire to increase the internal pressure of the pneumatic tire. Means for supplying air to the vehicle, driving means for receiving power supply and generating motive power for driving the air supply means, and a power supply connected to a battery mounted on the vehicle and from the battery to the drive means. Power supply means for supplying power to the power supply means, and overcurrent cutoff means for cutting off power supply to the drive means when an overcurrent exceeding an allowable current value flows through the power supply means. When an overcurrent flows through the power supply means, an electromagnetic current breaker is used that operates a movable piece for power cutoff, which is a magnetic material, by electromagnetic force to cut off power supply to the power supply means. It is characterized in.
[0027] 本発明の請求項 9に係るポンプアップ装置によれば、請求項 1に係るシーリング 'ポ ンプアップ装置と同様の理由により、車両のバッテリーにより供給可能な定格電流値 と略等しい最大電流値の電流を駆動手段に供給し、この駆動手段からの動力により エア圧送手段をそれぞれ運転できるので、エア圧送手段の運転効率をそれぞれ高 めて、タイヤに対するポンプアップ時間を効率的に短縮できる。  According to the pump-up device according to claim 9 of the present invention, for the same reason as the sealing pump-up device according to claim 1, the maximum current value substantially equal to the rated current value that can be supplied by the battery of the vehicle. This current can be supplied to the driving means, and the air pressure feeding means can be operated by the power from the driving means, respectively, so that the operation efficiency of the air pressure feeding means can be increased and the pump-up time for the tire can be shortened efficiently.
[0028] 本発明の請求項 10に係るポンプアップ装置は、空気入りタイヤ内へ加圧空気を供 給して空気入りタイヤの内圧を昇圧するタイヤのポンプアップ装置であって、空気入 りタイヤ内に空気を圧送するエア圧送手段と、外部力 電力の供給を受けてエア圧 送手段を駆動するための動力を発生する駆動手段と、車両に搭載されたバッテリー に接続されて該バッテリー力 前記駆動手段へ電力を供給する電力供給手段と、前 記電力供給手段に許容電流値を超える過電流が流れると、前記電力供給手段への 電力供給を遮断する過電流遮断手段とを有し、前記過電流遮断手段として、前記電 力供給手段に過電流が流れると、金属材料により形成された電力遮断用の可動片を ジュール熱により変形させて前記電力供給手段への電力供給を遮断する熱作動型 の電流遮断器を用いたことを特徴とする。 [0028] The pump-up device according to claim 10 of the present invention supplies pressurized air into the pneumatic tire. A tire pump-up device that boosts the internal pressure of a pneumatic tire by supplying air to the pneumatic tire, and drives the air pump by receiving external power. A power supply connected to a battery mounted on a vehicle to supply power to the drive, and an overcurrent exceeding an allowable current value to the power supply. And an overcurrent interrupting means for interrupting the power supply to the power supply means when the power supply means flows, and as an overcurrent interrupting means, when an overcurrent flows to the power supply means, a power interruption formed by a metal material is performed. A heat-actuated current breaker for interrupting power supply to the power supply means by deforming a movable piece for use with Joule heat is used.
[0029] 本発明の請求項 10に係るポンプアップ装置によれば、請求項 2に係るシーリング' ポンプアップ装置と同様の理由により、車両のノ ッテリーにより供給可能な定格電流 値と略等しい最大電流値の電流を駆動手段に供給し、この駆動手段からの動力によ りエア圧送手段を運転できるので、エア圧送手段の運転効率を高めて、タイヤに対 するポンプアップ時間をそれぞれ効率的に短縮できる。  [0029] According to the pump-up device according to claim 10 of the present invention, for the same reason as the sealing-up pump-up device according to claim 2, the maximum current that is substantially equal to the rated current value that can be supplied by the vehicle's notebook. The value of current is supplied to the driving means, and the air pressure feeding means can be operated by the power from this driving means, so that the operation efficiency of the air pressure feeding means is increased and the pump-up time for the tires is shortened efficiently. it can.
[0030] 本発明の請求項 11に係るポンプアップ装置は、請求項 10記載のポンプアップ装 置において、前記電流遮断器は、ノ ィメタルによりプレート状に形成された前記可動 片を備え、該可動片の基端部を第 1の接点に接続すると共に先端部が第 2の接点に 接するように支持し、前記電力供給手段への電力供給の遮断時に、前記該可動片を ジュール熱により橈み方向へ変形させて前記第 2の接点から離間させることを特徴と する。  [0030] A pump-up device according to claim 11 of the present invention is the pump-up device according to claim 10, wherein the current breaker includes the movable piece formed of a metal plate in a plate shape. The base end of the piece is connected to the first contact and the tip is supported so as to be in contact with the second contact. When the power supply to the power supply means is cut off, the movable piece is bent by Joule heat. Characterized in that it is deformed in the direction and is separated from the second contact point.
[0031] 本発明の請求項 12に係るポンプアップ装置は、請求項 10記載のポンプアップ装 置において、前記電流遮断器は、熱膨張性を有する金属材料によりプレート状に形 成されると共に、片持ち状態で支持されるベース部及び、該ベース部の基端部と先 端部との間で湾曲状態となるように支持される反転部が設けられた前記可動片を備 え、前記ベース部の基端部を第 1の接点に接続すると共に先端部が第 2の接点に接 するように支持し、前記電力供給手段への電力供給の遮断時には、前記反転部をジ ユール熱により湾曲方向が反転するように変形させて前記ベース部の先端部を前記 第 2の接点力 離間させることを特徴とする。 [0032] 本発明の請求項 13に係るポンプアップ装置は、請求項 9乃至 12の何れか 1項記載 のポンプアップ装置において、前記電力供給手段に、車両に設けられたシガーソケ ットに嵌脱可能に嵌挿されて車両に搭載されたバッテリーに電気的に接続されるブラ グ部材を設けると共に、該プラグ部材に前記電流遮断器を内臓させ又は一体的に設 けたことを特徴とする。 [0031] A pump-up device according to claim 12 of the present invention is the pump-up device according to claim 10, wherein the current breaker is formed in a plate shape from a metal material having a thermal expansion property. A movable portion provided with a base portion supported in a cantilevered state, and a reversing portion supported in a curved state between a base end and a front end of the base portion; The base end of the part is connected to the first contact and the tip is supported so as to be in contact with the second contact, and when the power supply to the power supply means is cut off, the reversing part is bent by the Joule heat. It is characterized in that the base portion is deformed so that its direction is reversed so that the tip portion of the base portion is separated from the second contact force. [0032] The pump-up device according to claim 13 of the present invention is the pump-up device according to any one of claims 9 to 12, wherein the power supply means is fitted to and disengaged from a cigarette socket provided in a vehicle. A plug member is provided so as to be fitted and electrically connected to a battery mounted on a vehicle, and the current breaker is built in or integrated with the plug member.
[0033] 本発明の請求項 14に係るポンプアップ装置は、請求項 9乃至 13の何れか 1項記載 のポンプアップ装置にお!、て、前記エア圧送手段がタイヤのタイヤバルブに着脱可 能に接続され、エア発生源をタイヤに連通させるアダプタ部材を備え、前記アダプタ 部材の表面部分をゴム組成物又は榭脂材料により被覆したことを特徴とする。  [0033] A pump-up device according to claim 14 of the present invention is the pump-up device according to any one of claims 9 to 13, wherein the air pressure feeding means is detachable from a tire valve of a tire. And an adapter member for connecting an air generation source to the tire, and a surface portion of the adapter member is covered with a rubber composition or a resin material.
[0034] 本発明の請求項 15に係るポンプアップ装置は、請求項 9乃至 14の何れか 1項記載 のポンプアップ装置において、前記エア圧送手段は、外気を吸入する吸入口及び圧 縮空気を吐出すると共に空気入りタイヤへ接続される吐出口がそれぞれ形成された 複数のシリンダと、複数の前記シリンダ内にそれぞれ往復移動可能に配設され、前 記シリンダ内の容積を膨張させる吸入方向への移動時に前記吸入ロカ 前記シリン ダ内へ空気を吸入させ、前記シリンダ内の容積を縮小させる吐出方向への移動時に 前記シリンダ内の空気を圧縮しつつ前記吐出口から吐出させるピストンと、複数の前 記ピストンがそれぞれ連結され、前記駆動手段からの動力により回転すると共に、前 記ピストンを前記吸入方向及び前記吐出方向へ交互に移動させるクランクシャフトと を有し、  [0034] In a pump-up device according to claim 15 of the present invention, in the pump-up device according to any one of claims 9 to 14, the air pressure feeding means includes a suction port for sucking outside air and a compressed air. A plurality of cylinders each having a discharge port formed therein for discharging and connected to a pneumatic tire; and a plurality of cylinders each having a discharge port disposed in the plurality of cylinders so as to be able to reciprocate, in the suction direction for expanding the volume in the cylinder. A piston for sucking air into the cylinder during movement and for discharging air from the discharge port while compressing air in the cylinder during movement in a discharge direction to reduce the volume in the cylinder; The piston is connected to each other, and rotated by the power from the driving means, and the piston is moved alternately in the suction direction and the discharge direction. And a shaft,
前記シリンダの設置数を 2N個(Nは自然数)とし、該 2N個のシリンダを前記クランク シャフトの軸方向に沿って直列的に配置すると共に、 N個のシリンダ内にそれぞれ配 設された前記ピストンの前記クランクシャフトとの連結点と残りの N個のシリンダ内にそ れぞれ配設された前記ピストンの前記クランクシャフトとの連結点との位相差を 180° に設定したことを特徴とする。  The number of the cylinders to be installed is 2N (N is a natural number), the 2N cylinders are arranged in series along the axial direction of the crankshaft, and the pistons respectively arranged in the N cylinders Wherein the phase difference between the connection point with the crankshaft and the connection point with the crankshaft of each of the pistons disposed in the remaining N cylinders is set to 180 °. .
[0035] 本発明の請求項 15に係るポンプアップ装置では、 2N個のシリンダをクランクシャフ トの軸方向に沿って直列的に配置すると共に、 N個のシリンダ内にそれぞれ配設され たピストンのクランクシャフトとの連結点と残りの N個のシリンダ内にそれぞれ配設され たピストンのクランクシャフトとの連結点との位相差を 180° に設定したことにより、 N 個のピストンがシリンダ内で吸入方向へ移動する際には、残りの N個のピストンがシリ ンダ内で吐出方向へ移動し、かつ N個のピストンがシリンダ内で一方の死点に達した 時には、残りの N個のピストンがシリンダ内で他方の死点に達するので、外部からシリ ンダ内へ空気を吸入する吸入工程とシリンダ内で空気を圧縮しつつシリンダ内から 吐出する吐出工程とを、常に同数 (N個)ずつのピストンにより併行して行うことができ る。 [0035] In the pump-up device according to claim 15 of the present invention, the 2N cylinders are arranged in series along the axial direction of the crankshaft, and the pistons respectively arranged in the N cylinders are arranged. By setting the phase difference between the connection point with the crankshaft and the connection point between the pistons arranged in the remaining N cylinders and the crankshaft to 180 °, N When the N pistons move in the cylinder in the suction direction, the remaining N pistons move in the cylinder in the discharge direction, and when the N pistons reach one dead center in the cylinder, Since the remaining N pistons reach the other dead center in the cylinder, the suction process of sucking air from outside into the cylinder and the discharge process of discharging air from the cylinder while compressing air in the cylinder are: It can always be performed in parallel with the same number (N) of pistons.
[0036] この結果、請求項 15に係るポンプアップ装置によれば、 N個のピストンが吐出方向 へ移動して N個のピストンの移動負荷が相対的に増大しても、この時には残りの N個 のピストンが吸入方向へ移動して残りの N個のピストンの移動負荷が減少することか ら、 2N個のピストンの負荷変動の影響が互いに打ち消され、これら 2N個のピストンを 往復移動させるクランクシャフトの回転抵抗を略一定に保ち、このクランクシャフトを回 転させる駆動手段に流れる駆動電流も略一定に保つことができるので、車両のバッ テリーにより供給可能な定格電流値と略等しい電流を常に駆動手段に供給できる。  As a result, according to the pump-up device according to claim 15, even if the N pistons move in the discharge direction and the moving load of the N pistons relatively increases, the remaining N As the pistons move in the suction direction and the moving loads on the remaining N pistons decrease, the effects of load fluctuations on the 2N pistons cancel each other out, and the crank that reciprocates these 2N pistons The rotational resistance of the shaft is kept substantially constant, and the drive current flowing to the drive means for rotating the crankshaft can be kept substantially constant.Therefore, the current that is substantially equal to the rated current value that can be supplied by the battery of the vehicle is always obtained. It can be supplied to the driving means.
[0037] 本発明の請求項 16に係るポンプアップ装置は、請求項 9乃至 14の何れか 1項記載 のポンプアップ装置において、前記エア圧送手段は、外気を吸入する吸入口及び圧 縮空気を吐出すると共に空気入りタイヤへ接続される吐出口がそれぞれ形成された 複数のシリンダと、複数の前記シリンダ内にそれぞれ往復移動可能に配設され、前 記シリンダ内の容積を膨張させる吸入方向への移動時に前記吸入ロカ 前記シリン ダ内へ空気を吸入させ、前記シリンダ内の容積を縮小させる吐出方向への移動時に 前記シリンダ内の空気を圧縮しつつ前記吐出口から吐出させるピストンと、複数の前 記ピストンがそれぞれ連結され、前記駆動手段からの動力により回転すると共に、前 記ピストンを前記吸入方向及び前記吐出方向へ交互に移動させるクランクシャフトと を有し、  [0037] A pump-up device according to claim 16 of the present invention is the pump-up device according to any one of claims 9 to 14, wherein the air pressure feeding means includes a suction port for sucking outside air and a compressed air. A plurality of cylinders each having a discharge port formed therein for discharging and connected to a pneumatic tire; and a plurality of cylinders each having a discharge port disposed in the plurality of cylinders so as to be able to reciprocate, in the suction direction for expanding the volume in the cylinder. A piston for sucking air into the cylinder during movement and for discharging air from the discharge port while compressing air in the cylinder during movement in a discharge direction to reduce the volume in the cylinder; The piston is connected to each other, and rotated by the power from the driving means, and the piston is moved alternately in the suction direction and the discharge direction. And a shaft,
前記シリンダの設置数を 2N個(Nは自然数)とし、 2N個のうち N個のシリンダを前 記クランクシャフトの軸方向に沿って直列的に配置し、残りの N個のシリンダを、前記 クランクシャフトを中心とする周方向に沿って前記 N個のシリンダとは異なる部位に直 列的に配置すると共に、前記 N個のシリンダ内にそれぞれ配設された前記ピストンの 前記クランクシャフトとの連結点と前記残りの N個のシリンダ内にそれぞれ配設された 前記ピストンの前記クランクシャフトとの連結点との位相差を 0° に設定したことを特 徴とする。 The number of cylinders to be installed is 2N (N is a natural number), N of the 2N cylinders are arranged in series along the axial direction of the crankshaft, and the remaining N cylinders are Along with a circumferential direction centered on the shaft, the cylinders are arranged in series at different portions from the N cylinders, and connection points of the pistons respectively arranged in the N cylinders with the crankshaft. And the remaining N cylinders, respectively. The phase difference between the piston and the connection point with the crankshaft is set to 0 °.
[0038] 本発明の請求項 16に係るポンプアップ装置では、 2N個のうち N個のシリンダをクラ ンクシャフトの軸方向に沿って直列的に配置し、残りの N個のシリンダを、前記クラン クシャフトを中心とする周方向に沿って前記 N個のシリンダとは異なる部位に直列的 に配置すると共に、前記 N個のシリンダ内にそれぞれ配設されたピストンのクランクシ ャフトとの連結点と前記残りの N個のシリンダ内にそれぞれ配設されたピストンのクラ ンクシャフトとの連結点との位相差を 0° に設定したことにより、 N個のピストンがシリン ダ内で吸入方向へ移動する際には、残りの N個のピストンがシリンダ内で吐出方向へ 移動し、かつ N個のピストンがシリンダ内で一方の死点に達した時には、残りの N個 のピストンがシリンダ内で他方の死点に達するので、外部力 シリンダ内へ空気を吸 入する吸入工程とシリンダ内で空気を圧縮しつつシリンダ内から吐出する吐出工程と を、常に同数 (N個)ずつのピストンにより併行して行うことができる。  [0038] In the pump-up device according to claim 16 of the present invention, N cylinders out of 2N are arranged in series along the axial direction of the crankshaft, and the remaining N cylinders are connected to the crankshaft. The cylinders are arranged in series in a different direction from the N cylinders along the circumferential direction around the crankshaft, and the connection points of the pistons arranged in the N cylinders with the crankshafts and the rest are arranged. By setting the phase difference between the connection points of the pistons arranged in the N cylinders and the crankshaft to 0 °, when the N pistons move in the suction direction inside the cylinder, When the remaining N pistons move in the cylinder in the discharge direction and the N pistons reach one dead center in the cylinder, the remaining N pistons move in the cylinder to the other dead center. To reach , It is possible to perform the discharge step of discharging the air to the outside force the cylinder from the cylinder while compressing the air in the intake process of the cylinder of inhalation, always parallel with the same number of (N) by the piston.
[0039] この結果、請求項 16に係るポンプアップ装置によれば、 N個のピストンが吐出方向 へ移動して N個のピストンの移動負荷が相対的に増大しても、この時には残りの N個 のピストンが吸入方向へ移動して残りの N個のピストンの移動負荷が減少することか ら、 2N個のピストンの負荷変動の影響が互いに打ち消され、これら 2N個のピストンを 往復移動させるクランクシャフトの回転抵抗を略一定に保ち、このクランクシャフトを回 転させる駆動手段に流れる駆動電流も略一定に保つことができるので、車両のバッ テリーにより供給可能な定格電流値と略等しい最大電流値の電流を常に駆動手段に 供給できる。  As a result, according to the pump-up device according to claim 16, even if the N pistons move in the discharge direction and the moving load of the N pistons relatively increases, at this time, the remaining N As the pistons move in the suction direction and the moving loads on the remaining N pistons decrease, the effects of load fluctuations on the 2N pistons cancel each other out, and the crank that reciprocates these 2N pistons The rotational resistance of the shaft is kept substantially constant, and the drive current flowing through the drive means for rotating the crankshaft can be kept substantially constant.Therefore, the maximum current value that is approximately equal to the rated current value that can be supplied by the battery of the vehicle Current can always be supplied to the driving means.
発明の効果  The invention's effect
[0040] 以上説明したように、本発明のシーリング 'ポンプアップ装置及びポンプアップ装置 によれば、車両のバッテリーにより供給可能な定格電流値と略等しい最大電流値の 電流により運転できる。  [0040] As described above, according to the sealing-pump-up device and the pump-up device of the present invention, operation can be performed with a current having a maximum current value substantially equal to the rated current value that can be supplied by the vehicle battery.
図面の簡単な説明  Brief Description of Drawings
[0041] [図 1]本発明の第 1実施形態に係るシーリング 'ポンプアップ装置を示す構成図であ る。 [図 2A]図 1に示されるシーリング 'ポンプアップ装置に適用される電力遮断器の一例 を示す側面断面図である。 FIG. 1 is a configuration diagram showing a sealing-pump-up device according to a first embodiment of the present invention. FIG. 2A is a side sectional view showing an example of a power breaker applied to the sealing′pump-up device shown in FIG. 1.
[図 2B]図 1に示されるシーリング 'ポンプアップ装置に適用される電力遮断器の一例 を示す側面断面図である。  FIG. 2B is a side cross-sectional view showing one example of a power breaker applied to the sealing′pump-up device shown in FIG. 1.
[図 3A]図 1に示されるシーリング.ポンプアップ装置に適用されるエアコンプレッサの 一例を示す正面図及び側面図である。  FIG. 3A is a front view and a side view showing an example of an air compressor applied to the sealing and pumping-up device shown in FIG. 1.
[図 3B]図 1に示されるシーリング.ポンプアップ装置に適用されるエアコンプレッサの 一例を示す正面図及び側面図である。  FIG. 3B is a front view and a side view showing an example of an air compressor applied to the sealing and pumping-up device shown in FIG. 1.
[図 4A]図 1に示されるシーリング.ポンプアップ装置に適用されるエアコンプレッサの 変形例を示す正面図及び側面図である。  FIG. 4A is a front view and a side view showing a modification of the air compressor applied to the sealing and pumping-up device shown in FIG. 1.
[図 4B]図 1に示されるシーリング.ポンプアップ装置に適用されるエアコンプレッサの 変形例を示す正面図及び側面図である。  FIG. 4B is a front view and a side view showing a modified example of the air compressor applied to the sealing and pumping-up device shown in FIG. 1.
圆 5]本発明の第 2実施形態に係るシーリング 'ポンプアップ装置を示す構成図であ る。 [5] Fig. 5 is a configuration diagram showing a sealing 'pump-up device according to a second embodiment of the present invention.
[図 6A]図 5に示されるシーリング 'ポンプアップ装置に適用される電力遮断器の一例 を示す側面断面図である。  FIG. 6A is a side sectional view showing an example of a power breaker applied to the sealing′pump-up device shown in FIG. 5.
[図 6B]図 5に示されるシーリング 'ポンプアップ装置に適用される電力遮断器の一例 を示す側面断面図である。  FIG. 6B is a side sectional view showing one example of a power breaker applied to the sealing device shown in FIG. 5;
[図 7A]図 5に示されるシーリング 'ポンプアップ装置に適用される電力遮断器の変形 例を示す側面断面図である。  FIG. 7A is a side sectional view showing a modified example of the power breaker applied to the sealing′pump-up device shown in FIG. 5.
[図 7B]図 5に示されるシーリング 'ポンプアップ装置に適用される電力遮断器の変形 例を示す側面断面図である。  FIG. 7B is a side sectional view showing a modified example of the power breaker applied to the sealing′pump-up device shown in FIG. 5.
[図 8A]図 7に示される電力遮断器の構成を示す斜視図である。  FIG. 8A is a perspective view showing the configuration of the power breaker shown in FIG. 7.
[図 8B]図 7に示される電力遮断器の構成を示す斜視図である。  FIG. 8B is a perspective view showing the configuration of the power breaker shown in FIG. 7.
圆 9]本発明の第 3実施形態に係るシーリング 'ポンプアップ装置を示す構成図であ る。 [9] FIG. 9 is a configuration diagram showing a sealing-pump-up device according to a third embodiment of the present invention.
[図 10]従来のシーリング 'ポンプアップ装置の一例を示す構成図である。  FIG. 10 is a configuration diagram showing an example of a conventional sealing 'pump-up device.
発明を実施するための最良の形態 [0042] 以下、本発明の実施の形態に係るタイヤのシーリング 'ポンプアップ装置について 説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a tire sealing and pumping-up device according to an embodiment of the present invention will be described.
〔第 1の実施形態〕  [First embodiment]
(シーリング ·ポンプアップ装置の構成)  (Structure of sealing and pump-up device)
図 1には、本発明の第 1の実施形態に係るシーリング 'ポンプアップ装置が示されて いる。このシーリング ·ポンプアップ装置 30は、自動車等の車両に装着された空気入 りタイヤ(以下、単に「タイヤ」という。)がパンクした際、そのタイヤ及びホイールを交換 することなぐタイヤをシーリング剤により補修して所定の指定圧まで内圧を再加圧( ポンプアップ)するものである。  FIG. 1 shows a sealing-pump-up device according to a first embodiment of the present invention. When the pneumatic tire (hereinafter simply referred to as “tire”) mounted on a vehicle such as an automobile punctures, the sealing / pump-up device 30 uses a sealing agent to replace the tire and the tire without replacing the wheel. It repairs and re-pressurizes (pumps up) the internal pressure to the specified pressure.
[0043] 図 1に示されるように、シーリング 'ポンプアップ装置 30は、その外殻部として箱状の ケーシング 32を備えており、ケーシング 32内には、加圧空気の供給源としてエアコン プレッサ 34が配置されている。またケーシング 32内には、内部にシーリング剤 36を 収容する液剤容器 40が配置されている。この液剤容器 40内部には、シーリング'ポ ンプアップ装置 30により修理すべきタイヤの種類毎に規定された量 (例えば、 400g 〜600g)のシーリング剤が収容されている。  As shown in FIG. 1, the sealing-pump-up device 30 includes a box-shaped casing 32 as its outer shell, and inside the casing 32, an air-conditioner presser 34 as a supply source of pressurized air. Is arranged. In the casing 32, a liquid agent container 40 accommodating a sealing agent 36 is disposed. The liquid agent container 40 contains a sealing agent in an amount (for example, 400 g to 600 g) specified for each type of tire to be repaired by the sealing pump device 30.
[0044] ここで、液剤容器 40はポリエチレン、ポリプロピレン等の榭脂により成形されて!、る。  Here, the liquid container 40 is formed of a resin such as polyethylene or polypropylene! RU
液剤容器 40としては、一般的な空気入りタイヤの内圧として規定されている圧力(指 定圧)よりもカゝなり低い耐圧性を有するものを用いることができ、しかも特別な気密構 造を有するものを用いる必要もない。また液剤容器 40には、その頂板部にエア受入 口 39が設けられると共に、下端側の底板部に液剤吐出口 38が設けられている。  As the liquid agent container 40, a container having a pressure resistance much lower than the pressure (specified pressure) specified as the internal pressure of a general pneumatic tire and having a special airtight structure can be used. There is no need to use. The liquid agent container 40 is provided with an air receiving port 39 on the top plate and a liquid agent discharge port 38 on the bottom plate on the lower end side.
[0045] 図 1に示されるように、エアコンプレッサ 34には、エア吸入部 41及びエア供給部 43 が設けられており、これらのエア吸入部 41及びエア供給部 43には、エア吸入口 42 及びエア供給口 44がそれぞれ開口している。エアコンプレッサ 34は、その作動時に 、エア吸入口 42を通して外部力も空気を吸入し、この空気を所定の圧縮比で加圧し てエア供給口 44を通して外部へ吐出する。エアコンプレッサ 34は、大気圧の空気を 0. 5MPa〜l. OMPa程度まで圧縮できる圧縮能力を有している。エア供給口 44に は、耐圧ホース、パイプ等力もなる共用配管 46の一端部が接続されており、この共用 配管 46の他端部にはエア切換弁 48が接続されている。エア切換弁 48としては、 1個 の吸入ポート 49及び 2個の排出ポート 50, 51を有する三方(3ポート)電磁弁が用い られている。 As shown in FIG. 1, the air compressor 34 is provided with an air suction section 41 and an air supply section 43. The air suction section 41 and the air supply section 43 have an air suction port 42. The air supply port 44 is open. When the air compressor 34 operates, the external force also sucks air through the air suction port 42, pressurizes the air at a predetermined compression ratio, and discharges the air to the outside through the air supply port 44. The air compressor 34 has a compression capacity capable of compressing air at atmospheric pressure to about 0.5 MPa to 1.OMPa. The air supply port 44 is connected to one end of a common pipe 46 that also provides a pressure, such as a pressure-resistant hose and a pipe, and the other end of the common pipe 46 is connected to an air switching valve 48. One air switching valve 48 A three-way (3-port) solenoid valve having a suction port 49 and two discharge ports 50, 51 is used.
[0046] ここで、エア切換弁 48の吸入ポート 49に共用配管 46が接続され、一方の排出ポー ト 50には、耐圧ホース、金属パイプ等の十分な耐圧性を有する第 1エア配管 54の一 端部が接続され、また他方の排出ポート 51には、流体用ホース等力もなる第 2エア配 管 56の一端部が接続されている。共用配管 46及び第 1エア配管 54としては、タイヤ 140の指定圧に所定の安全係数 (通常、 2. 0〜5. 0)を乗じた圧力に耐え得るものを 用いる必要がある。またタイヤ 140の指定圧としては、車両の種類等に応じて広く範 囲で変化するが、乗用車では通常 0. 20MPa〜0. 30MPaの範囲内で適宜設定さ れる。  Here, a common pipe 46 is connected to a suction port 49 of an air switching valve 48, and a discharge port 50 is connected to a first air pipe 54 having a sufficient pressure resistance such as a pressure-resistant hose or a metal pipe. One end is connected to the other end, and one end of a second air pipe 56 that also has a force such as a fluid hose is connected to the other discharge port 51. As the common pipe 46 and the first air pipe 54, it is necessary to use a pipe that can withstand a pressure obtained by multiplying the specified pressure of the tire 140 by a predetermined safety coefficient (usually 2.0 to 5.0). The specified pressure of the tire 140 varies widely depending on the type of vehicle and the like, but is normally set appropriately in the range of 0.20 MPa to 0.30 MPa for passenger cars.
[0047] 第 2エア配管 56の他端部は、液剤容器 40のエア受入口 39に接続されている。これ により、エア切換弁 48の排出ポート 51は、第 2エア配管 56を通して液剤容器 40のェ ァ受入口 39に連通する。また液剤容器 40の液剤吐出口 38には、低圧流体用ホー ス等からから注液配管 58の一端部が接続されている。  The other end of the second air pipe 56 is connected to the air receiving port 39 of the liquid agent container 40. As a result, the discharge port 51 of the air switching valve 48 communicates with the air receiving port 39 of the liquid container 40 through the second air pipe 56. In addition, one end of a liquid injection pipe 58 is connected to the liquid discharge port 38 of the liquid container 40 from a low-pressure fluid hose or the like.
[0048] 図 1に示されるように、シーリング.ポンプアップ装置 30には、エア切換弁 48と同様 に、 2個の吸入ポート 61, 62及び 1個の排出ポート 63を有する気液切換弁 60が配 置されており、この気液切換弁 60における 2個の吸入ポート 61, 62には、注液配管 58の他端部及び第 1エア配管 54の他端部がそれぞれ接続されて 、る。また気液切 換弁 60の排出ポート 63にはジョイントホース 66の一端部が接続されている。ジョイン トホース 66の他端部には、タイヤ 140のタイヤバルブ 142にねじ止め可能とされたァ ダプタ 68が配置されている。ジョイントホース 66としては、共用配管 46及び第 1エア 配管 54と略等しい耐圧性を有するものが用いられる。具体的には、ジョイントホース 6 6としては、ナイロン等により繊維強化された耐圧ホースを用いることが好ましい。  As shown in FIG. 1, similarly to the air switching valve 48, the sealing / pump-up device 30 includes a gas-liquid switching valve 60 having two suction ports 61 and 62 and one discharge port 63. The other end of the injection pipe 58 and the other end of the first air pipe 54 are connected to the two suction ports 61 and 62 of the gas-liquid switching valve 60, respectively. . One end of a joint hose 66 is connected to the discharge port 63 of the gas-liquid switching valve 60. At the other end of the joint hose 66, an adapter 68 that can be screwed to the tire valve 142 of the tire 140 is arranged. As the joint hose 66, a joint hose having the same pressure resistance as the common pipe 46 and the first air pipe 54 is used. Specifically, it is preferable to use a pressure-resistant hose reinforced with nylon or the like as the joint hose 66.
[0049] ここで、アダプタ 68は、耐圧性や耐久性等を考慮すると、少なくとも圧縮空気からの 圧力を受ける部分についてはステンレス等の金属材料を素材として形成することが好 ましい。しかし、アダプタ 68の表面部分が金属材料により形成されていると、アダプタ 68内にタイヤ 140のポンプアップ時には加圧されて高温となった空気が流通すること から、タイヤ 140に対するポンプアップ完了後に、作業者がアダプタ 68をタイヤバル ブ 142から取り外す際に、高温となったアダプタ 68により作業者が火傷をするおそれ もめる。 Here, in consideration of pressure resistance, durability, and the like, it is preferable that at least a portion of the adapter 68 that receives pressure from compressed air be formed of a metal material such as stainless steel. However, if the surface portion of the adapter 68 is formed of a metal material, air that has been pressurized and becomes hot flows through the adapter 68 when the tire 140 is pumped up. Worker tire adapter 68 The adapter 68, which has become hot, may cause burns when the user removes it from the bush 142.
[0050] そこで、本実施形態では、アダプタ 68の表面部分が耐熱性及び断熱性を有する榭 脂材料又はゴム組成物により被覆されており、アダプタ 68内に高温の圧縮空気が長 時間に亘つて流通しても、その表面部分が十分に低温 (例えば、 40°C以下)に保た れるようになっている。  Therefore, in the present embodiment, the surface portion of the adapter 68 is covered with a resin material or a rubber composition having heat resistance and heat insulation, and high-temperature compressed air is supplied to the adapter 68 for a long time. Even after distribution, the surface is kept at a sufficiently low temperature (for example, below 40 ° C).
[0051] 具体的には、アダプタ 68は、例えば、圧縮空気が流通する中空コア部がステンレス 、銅、真鍮等の金属材料により形成されると共に、この中空コア部の表面部分を覆つ た被覆部がフッ素榭脂、ナイロン、ポリプロピレン、ポリエチレン、 ABS等の榭脂材料 又は、天然ゴム、シリコーンゴム等のゴム組成物により形成されている。ここで、被覆 部の厚さは、好ましくは 0. 2mn!〜 4mm (更に好ましくは lmn!〜 3mm)の範囲で設 定されている。すなわち、これは、被覆部の厚さが 0. 2mmよりも薄いと、断熱性が不 足してアダプタ 68の表面温度を十分に低下することができず、また被覆部の厚さを 4 mmよりも厚くしても、アダプタ 68の表面温度に対する低減効果に殆ど寄与せず、ァ ダプタ 68のサイズを拡大することだけになるためである。  Specifically, for example, the adapter 68 has a hollow core portion through which compressed air flows is formed of a metal material such as stainless steel, copper, or brass, and has a coating covering the surface portion of the hollow core portion. The part is formed of a resin material such as fluorine resin, nylon, polypropylene, polyethylene, ABS, or a rubber composition such as natural rubber or silicone rubber. Here, the thickness of the coating is preferably 0.2 mn! 44 mm (more preferably, lmn! 〜3 mm). That is, if the thickness of the coating is less than 0.2 mm, the heat insulation will be insufficient and the surface temperature of the adapter 68 will not be sufficiently reduced, and the thickness of the coating will be less than 4 mm. This is because even if the thickness is increased, it hardly contributes to the effect of reducing the surface temperature of the adapter 68, but merely increases the size of the adapter 68.
[0052] また被覆部を形成する榭脂材料としては、耐熱性及び断熱性の観点から、ナイロン 又はフッ素榭脂が特に好ましぐまたゴム組成物としてはシリコーンゴムが特に好まし い。また、例えば、被覆部を熱収縮性の榭脂材料によりチューブ状に形成するように すれば、この被覆部をコア部の外側に被せ、熱風等で被覆部を収縮温度まで加熱 するだけで、被覆部をコア部に密着させて簡単に固定することができる。また、このよ うな被覆部は、成形モールド内に中空コア部をインサートコアとして装填し、成形モー ルド内へ溶融榭脂又はゴムを注入することにより、モールド成形しても良い。  [0052] Further, as the resin material forming the covering portion, nylon or fluorine resin is particularly preferred from the viewpoint of heat resistance and heat insulation, and silicone rubber is particularly preferred as the rubber composition. In addition, for example, if the covering portion is formed in a tube shape by using a heat-shrinkable resin material, the covering portion is covered on the outside of the core portion, and the covering portion is heated to the shrinkage temperature by hot air or the like. The covering portion can be easily fixed by being brought into close contact with the core portion. Further, such a covering portion may be molded by loading a hollow core portion as an insert core into a molding mold and injecting molten resin or rubber into the molding mold.
[0053] シーリング ·ポンプアップ装置 30には、ケーシング 32の外側に起動/停止ボタン 72 及び気液切換ボタン 74を備えた操作パネル 70が設けられると共に、ケーシング 32 内に電流遮断器 76及び電源回路 78が設けられている。電源回路 78には、電流遮 断器 76を介して 2芯の電源ケーブル 80が接続されて!、る。この電源ケーブル 80の 先端部には、車両に設置されたシガーソケット(図示省略)に揷脱可能とされたプラグ 82が設けられており、このプラグ 82をシガーソケットに差込むことにより、車両に搭載 されたバッテリー力も電源回路 78に電源が供給可能となる。電源回路 78は、起動/ 停止ボタン 72及び気液切換ボタン 74に対する操作に応じて、エアコンプレッサ 34及 び切換弁 48, 60の動作をそれぞれ制御する。 The sealing / pump-up device 30 is provided with an operation panel 70 having a start / stop button 72 and a gas-liquid switching button 74 outside the casing 32, and a current breaker 76 and a power supply circuit inside the casing 32. 78 are provided. A two-core power cable 80 is connected to the power circuit 78 via a current breaker 76. At the end of the power cable 80, a plug 82 is provided that is detachable from a cigar socket (not shown) installed in the vehicle. By inserting the plug 82 into the cigar socket, the plug 82 is inserted into the vehicle. powered by The supplied battery power can be supplied to the power supply circuit 78. The power supply circuit 78 controls the operations of the air compressor 34 and the switching valves 48 and 60 according to the operation of the start / stop button 72 and the gas-liquid switching button 74, respectively.
[0054] 電流遮断器 76としては電磁式のものが用いられている。この電磁式の電流遮断器 76は、図 2に示されるように固定片 88、可動片 90及び電磁石 92を内臓している。固 定片 88及び可動片 90はそれぞれ鉄等の導電性材料によりプレート状に形成されて おり、可動片 90は略 V字状となるように長手方向中央部で屈曲されており、この屈曲 部付近に設けられた支軸部 94を中心として通電位置(図 2A参照)と遮断位置(図 2B 参照)との間で揺動可能に支持されている。また可動片 90は、支軸部 94に設けられ た捻りコイルパネ等の付勢部材(図示省略)により常に通電位置側へ付勢されている 。ここで、可動片 90は、通電位置に保持されている状態では、その一端部を固定片 8 8の一端部へ圧接させると共に、他端部を電磁石 92の一端部へ対向させている。  An electromagnetic type current breaker 76 is used. The electromagnetic current breaker 76 includes a fixed piece 88, a movable piece 90, and an electromagnet 92 as shown in FIG. The fixed piece 88 and the movable piece 90 are each formed in a plate shape from a conductive material such as iron, and the movable piece 90 is bent at the center in the longitudinal direction so as to be substantially V-shaped. It is supported so as to be swingable between a power-on position (see FIG. 2A) and a cut-off position (see FIG. 2B) around a support shaft 94 provided in the vicinity. The movable piece 90 is always urged toward the energized position by an urging member (not shown) such as a torsion coil panel provided on the support shaft portion 94. Here, when the movable piece 90 is held at the energized position, one end of the movable piece 90 is pressed against one end of the fixed piece 88, and the other end is opposed to one end of the electromagnet 92.
[0055] 一方、電磁石 92は、一端部が開口したシリンダ状に形成されたボビン 96と、このボ ビン 96の外周面に銅線が巻かれて構成されたコイル 98とを備えており、ボビン 96に は、その開口部に強磁性材料により栓状に形成された電磁極 102が圧入固定されて いる。またボビン 96内には、鉄等の磁性材料により円柱状に形成されたプランジャ 1 00が軸方向へスライド可能に挿入されると共に、このプランジャ 100と電磁極 102と の間にはコイル状のばね部材 104が圧縮状態で介装されている。  On the other hand, the electromagnet 92 includes a cylindrical bobbin 96 having an open end, and a coil 98 formed by winding a copper wire around the outer peripheral surface of the bobbin 96. In the opening 96, an electromagnetic pole 102 formed in a plug shape by a ferromagnetic material is press-fitted and fixed in the opening. A plunger 100 formed of a magnetic material such as iron in a cylindrical shape is inserted into the bobbin 96 so as to be slidable in the axial direction, and a coiled spring is provided between the plunger 100 and the electromagnetic pole 102. The member 104 is interposed in a compressed state.
[0056] ここで、電磁石 92は、電流遮断器 76が作動していない時には、図 2Aに示されるよ うに、プランジャ 100をばね部材 104の付勢力によりボビン 96内の底面部へ圧接す る非吸着位置に保持されている。電流遮断器 76では、許容電流値を越える過電流 が電磁石 92のコイル 98に所定の応答時間を超えて流れ続けると、図 2Bに示される ように、コイル 98により生じる電磁力によりプランジャ 100が非吸着位置力もコイル 98 の内周側の吸着位置までスライドする。これにより、電磁極 102とプランジャ 100との 間には、ボビン 96の内周面に設けられた導電層(図示省略)を通して磁路が形成さ れ、電磁極 102には強い磁力が生じ、この磁力を可動片 90の他端部へ作用させる。 この電磁極 102からの磁力により、可動片 90は、その他端部が電磁極 102により吸 着されて通電位置カゝら遮断位置へ揺動する。 [0057] 電流遮断器 76は、一対の外部接点 106, 108を備えると共に、コイル 98を形成し た卷線の一端部を固定片 88に接続している。ここで、一方の外部接点 106はコイル 98の卷線の他端部に電気的に接続され、他方の外部接点 108は可動片 90に電気 的に接続されている。電流遮断器 76は、一対の外部接点 106, 108を介して電源ケ 一ブル 80における 1本の導線に直列的に接続されている。これにより、可動片 90が 通電位置にあるときには、電源ケーブル 80を通して電源回路 78に車両のバッテリー 力も電源が供給可能になり、また可動片 90が遮断位置にあるときには、電源ケープ ル 80が非導通となり車両のノ ッテリー力も電源回路 78への電源供給が遮断される。 Here, when the current breaker 76 is not operated, the electromagnet 92 presses the plunger 100 against the bottom surface inside the bobbin 96 by the urging force of the spring member 104 as shown in FIG. 2A. It is held at the suction position. In the current breaker 76, if an overcurrent exceeding the allowable current value continues to flow through the coil 98 of the electromagnet 92 for more than a predetermined response time, the plunger 100 is disengaged by the electromagnetic force generated by the coil 98 as shown in FIG. The suction position force also slides to the suction position on the inner peripheral side of the coil 98. As a result, a magnetic path is formed between the electromagnetic pole 102 and the plunger 100 through a conductive layer (not shown) provided on the inner peripheral surface of the bobbin 96, and a strong magnetic force is generated in the electromagnetic pole 102. The magnetic force acts on the other end of the movable piece 90. Due to the magnetic force from the electromagnetic pole 102, the other end of the movable piece 90 is sucked by the electromagnetic pole 102 and swings to the energized position and the cutoff position. The current breaker 76 has a pair of external contacts 106 and 108 and connects one end of the winding forming the coil 98 to the fixed piece 88. Here, one external contact 106 is electrically connected to the other end of the winding of the coil 98, and the other external contact 108 is electrically connected to the movable piece 90. The current breaker 76 is connected in series to one conductor of the power cable 80 via a pair of external contacts 106 and 108. This allows the vehicle battery power to be supplied to the power supply circuit 78 through the power cable 80 when the movable piece 90 is in the energized position, and the power cable 80 is non-conductive when the movable piece 90 is in the cutoff position. As a result, the power supply to the power supply circuit 78 is also shut off.
[0058] 電磁石 92の電磁極 102は永久磁石として構成されており、可動片 90をー且吸着し た後、コイル 98への通電が遮断されても可動片 90を遮断位置へ保持可能とされて いる。また電流遮断器 76には、リセットスィッチ(図示省略)が設けられており、ユーザ 力 Sリセットスィッチに対して所定のリセット操作をするとで、可動片 90を電磁極 102か ら離間させて通電位置へ復帰させることが可能になっている。  [0058] The electromagnetic pole 102 of the electromagnet 92 is configured as a permanent magnet, and after the movable piece 90 is attracted and adsorbed, the movable piece 90 can be held at the cut-off position even when the current to the coil 98 is cut off. ing. The current breaker 76 is provided with a reset switch (not shown). When a predetermined reset operation is performed on the user reset switch S, the movable piece 90 is separated from the electromagnetic pole 102 and the energized position is set. It is possible to return to.
[0059] 図 3に示されるように、エアコンプレッサ 34は、駆動モータ 84及び直列 2気筒のレシ プロ型として構成されたエアポンプ 86を備えている。エアポンプ 86には、ベアリング( 図示省略)により回転可能に支持されたクランクシャフト 284が設けられると共に、この クランクシャフト 284の軸方向に沿って直列的に配置された 2個のシリンダ 286, 288 が設けられている。これらのシリンダ 286, 288内には、それぞれ円柱状の空間であ る圧縮室 287, 289力形成されて!ヽる。またシリンダ 286, 288の頂咅には、図 3Bに 示されるように吸入口 290及び吐出口 292力開口しており、これらの吸入口 290及び 吐出口 292には、それぞれ吸入方向及び吐出方向へのみ流体 (空気)を流通可能と する吸入弁 294及び吐出弁 296が開閉可能に配置されている。ここで、シリンダ 286 , 288の吸入口 290及び吐出口 292は、配管 298, 300を通してエア吸入口 42及び エア供給口 44にそれぞれ接続されている。  As shown in FIG. 3, the air compressor 34 includes a drive motor 84 and an air pump 86 configured as a reciprocating two-cylinder type. The air pump 86 is provided with a crankshaft 284 rotatably supported by bearings (not shown), and is provided with two cylinders 286, 288 arranged in series along the axial direction of the crankshaft 284. Have been. In these cylinders 286 and 288, there are formed compression chambers 287 and 289 which are cylindrical spaces, respectively. At the tops of the cylinders 286 and 288, as shown in FIG. 3B, a suction port 290 and a discharge port 292 are formed, and the suction port 290 and the discharge port 292 are provided in the suction direction and the discharge direction, respectively. A suction valve 294 and a discharge valve 296 that allow fluid (air) to flow therethrough are arranged to be openable and closable. Here, the suction port 290 and the discharge port 292 of the cylinders 286 and 288 are connected to the air suction port 42 and the air supply port 44 through pipes 298 and 300, respectively.
[0060] シリンダ 286, 288内に ίま、図 3Αに示されるように、ピストン 320, 322力 Sそれぞれク ランクシャフト 284の軸心 Sを中心とする径方向に沿って往復移動可能に収納されて いる。これらのピストン 320, 322は、圧縮室 287, 289の内容積を膨張させる吸入方 向(矢印 V方向)及び圧縮室 287, 289の内容積を縮小させる吐出方向(矢印 Ε方向 )へ交互に移動する。このとき、ピストン 320, 322が圧縮室 287, 289の前記吸入方 向へ移動すると、吸入口 290を通して圧縮室 287, 289内へ空気が吸入され、またピ ストン 320, 322が前記吐出方向へ移動すると、このピストン 320, 322により圧縮室 287, 289内の空気が圧縮されつつ吐出口 292力ら吐出される。 [0060] As shown in Fig. 3, the pistons 320, 322 are respectively housed in the cylinders 286, 288 so as to be able to reciprocate along the radial direction about the axis S of the crankshaft 284, respectively. ing. These pistons 320 and 322 are provided in a suction direction (arrow V direction) for expanding the internal volume of the compression chambers 287 and 289 and a discharge direction (arrow Ε direction) for reducing the internal volume of the compression chambers 287 and 289. ). At this time, when the pistons 320, 322 move in the suction direction of the compression chambers 287, 289, air is sucked into the compression chambers 287, 289 through the suction port 290, and the pistons 320, 322 move in the discharge direction. Then, the air in the compression chambers 287 and 289 is discharged from the discharge port 292 while being compressed by the pistons 320 and 322.
[0061] クランクシャフト 284には、それぞれ円板状に形成された 3個のクランク部 302, 304 , 306が形成されている。クランクシャフト 284では、クランク部 302とクランク部 304と の間がクランクピン 308により連結され、またクランク部 304とクランク部 306との間が クランクピン 310により連結されている。ここで、軸心 Sからクランクピン 308までの距 離とクランクピン 310までの距離は等しくなつており、また軸心 Sを中心とする回転方 向におけるクランクピン 308とクランクピン 310の位相差は 180° に設定されている。  [0061] The crankshaft 284 is formed with three crank portions 302, 304, and 306 each formed in a disk shape. In the crankshaft 284, the crank portion 302 and the crank portion 304 are connected by a crank pin 308, and the crank portion 304 and the crank portion 306 are connected by a crank pin 310. Here, the distance from the axis S to the crankpin 308 and the distance to the crankpin 310 are equal, and the phase difference between the crankpin 308 and the crankpin 310 in the rotation direction about the axis S is It is set to 180 °.
[0062] 2個のピストン 320, 322ίま、コンロッド 312, 314を介してクランクシャフト 284に連 結されている。ここで、コンロッド 312, 314は、その一端部力ピストン 320, 322に設 けられたピストンピン 328を介してピストン 320, 322に相対的に回動可能に連結され 、他端部がクランクシャフト 284におけるクランクピン 308, 310に相対的に回動可能 に連結されている。これにより、クランクシャフト 284が駆動モータ 84からのトルクによ り回転すると、このクランクシャフト 284の回転運動がクランクシャフト 284及びコンロッ ド 312, 314により軸心 Sを中心とする径方向に沿ったピストン 320, 322の往復運動 に変換され、ピストン 320, 322がシリンダ 286, 288内で吸入方向(矢印 V方向)及 び吐出方向(矢印 Ε方向)へ交互に移動 (往復移動)する。  [0062] Two pistons 320 and 322 are connected to a crankshaft 284 via connecting rods 312 and 314. Here, the connecting rods 312, 314 are relatively rotatably connected to the pistons 320, 322 via piston pins 328 provided on the one end force pistons 320, 322, and the other end is connected to the crankshaft 284. Are rotatably connected to the crankpins 308 and 310 of FIG. As a result, when the crankshaft 284 is rotated by the torque from the drive motor 84, the rotational movement of the crankshaft 284 is controlled by the crankshaft 284 and the connectors 312, 314 to move the piston along the radial direction centered on the axis S. The pistons 320, 322 are alternately moved (reciprocated) in the suction direction (arrow V direction) and discharge direction (arrow 矢 印 direction) in the cylinders 286, 288.
[0063] エアポンプ 86では、 2個のシリンダ 286, 288をクランクシャフト 284の軸方向に沿 つて直列的に配置すると共に、ピストン 320のクランクシャフト 284との連結点であるク ランクピン 308とピストン 320のクランクシャフト 284との連結点であるクランクピン 310 との位相差を 180° に設定されているので、一方のピストン 320がシリンダ 286内で 吸入方向へ移動する際には、他方のピストン 322がシリンダ 288内で吐出方向へ移 動し、かつ一方のピストン 320がシリンダ 286内で一方の死点に達した時には、他方 のピストン 322がシリンダ 286内で他方の死点に達する。  [0063] In the air pump 86, the two cylinders 286, 288 are arranged in series along the axial direction of the crankshaft 284, and the crankpin 308, which is the connection point of the piston 320 with the crankshaft 284, and the crankpin 308, Since the phase difference with the crankpin 310, which is the connection point with the crankshaft 284, is set to 180 °, when one piston 320 moves in the suction direction in the cylinder 286, the other piston 322 Moving in the discharge direction within 288 and when one piston 320 reaches one dead center in cylinder 286, the other piston 322 reaches the other dead center in cylinder 286.
[0064] 図 3Αに示されるように、エアコンプレッサ 34では、クランクシャフト 284に直流の駆 動モータ 84が減速機 326を介してトルク伝達可能に連結されて 、る。駆動モータ 84 は、電源回路 78 (図 1参照)により直流電源を供給されると、減速機 326を介して電 流値に対応するトルクをクランクシャフト 284に伝達し、クランクシャフト 284を一方向 へ回転させる。 As shown in FIG. 3A, in the air compressor 34, a direct-current drive motor 84 is connected to a crankshaft 284 via a speed reducer 326 so that torque can be transmitted. Drive motor 84 When the DC power is supplied by the power supply circuit 78 (see FIG. 1), the torque corresponding to the current value is transmitted to the crankshaft 284 via the speed reducer 326, and the crankshaft 284 is rotated in one direction.
[0065] ここで、エアポンプ 86では、好適には、ピストン径(直径)が 10mm〜40mmに設定 されると共に、ピストンストローク力 mm〜30mmに設定される。また駆動モータ 84と しては、例えば、マブチ製の RS550VC7525を用いることができる。この条件で、車 両に搭載されたバッテリー(定格電圧 12V、定格電流 15A)を電源としてエアポンプ 8 6を運転した場合には、ピストン径が 10mmよりも小さいと、ピストン 320, 322力もの 圧縮空気の吐出量として十分のものが得られず、ピストン径カ Ommを越えると、クラ ンクシャフト 284の回転時に必要となる駆動トルクが増大することから、クランクシャフ ト 284の回転速度を上げられず、ピストン 320, 322からの圧縮空気の吐出量として 十分のものが得られなくなる。またピストンストロークが 3mmよりも小さいと、圧縮室 28 7, 289内での空気の圧縮比が不足して必要な空気圧力が得られず、ピストンスト口 ークが 30mmを越えると、クランクシャフト 284の回転時に必要となる駆動トルクが増 大することから、クランクシャフト 284の回転速度を上げられず、ピストン 320, 322力 らの圧縮空気の吐出量として十分のものが得られなくなる。  [0065] Here, in the air pump 86, the piston diameter (diameter) is preferably set to 10 mm to 40 mm and the piston stroke force is set to mm to 30 mm. As the drive motor 84, for example, RS550VC7525 manufactured by Mabuchi can be used. Under these conditions, when the air pump 86 is operated using a battery (rated voltage 12V, rated current 15A) mounted on the vehicle as a power source, if the piston diameter is smaller than 10mm, the piston will have 320,322 force. When the piston diameter exceeds Omm, the driving torque required for rotating the crankshaft 284 increases, and the rotational speed of the crankshaft 284 cannot be increased. Sufficient compressed air cannot be obtained from the pistons 320 and 322. If the piston stroke is smaller than 3 mm, the air compression ratio in the compression chambers 287, 289 is insufficient, and the required air pressure cannot be obtained. If the piston stroke exceeds 30 mm, the crankshaft 284 Since the driving torque required at the time of rotation increases, the rotation speed of the crankshaft 284 cannot be increased, and a sufficient amount of compressed air discharged from the pistons 320 and 322 cannot be obtained.
[0066] 次に、上記のようなシーリング 'ポンプアップ装置 30に用いられるシーリング剤 36に ついて説明する。シーリング剤 36は、 SBR (スチレンブタジエンゴム)ラテックス、 NB の混合物のゴムラテックス等のゴムラテックスを含むとともに、その水性分散剤又は水 性乳剤の状態で加えられる榭脂系接着剤を有する。  Next, the sealing agent 36 used in the above-described sealing pump-up device 30 will be described. The sealing agent 36 contains rubber latex such as SBR (styrene butadiene rubber) latex and rubber latex of a mixture of NB, and has a resin-based adhesive added in the form of an aqueous dispersant or an aqueous emulsion thereof.
[0067] 更に、シーリング剤 36には、パンク穴に対するシール性を高めるために、ポリエステ ル、ポリプロピレン、ガラス等力もなる繊維材料又はウイスカーや、炭酸カルシウム、力 一ボンブラック等力もなる充填剤 (フイラ一)を混合しても良ぐまたシール性能を安定 化するためにケィ酸塩やポリスチレン粒子を混合してもよ 、。 [0067] Further, the sealing agent 36 includes a fibrous material or a whisker, such as polyester, polypropylene, and glass, or a filler (filament), which also has a strength such as calcium carbonate and bonbon black, in order to enhance the sealing property against puncture holes. 1) may be mixed, and silicate or polystyrene particles may be mixed to stabilize the sealing performance.
[0068] またシーリング剤 36には、上記成分以外に、グリコール、エチレンーグリコール、プ ロピレンダリコール等の凍結防止剤、消泡剤、 pH調整剤、乳化剤が一般に添加され る。 [0069] (シーリング ·ポンプアップ装置の作用) [0068] In addition to the components described above, an antifreezing agent such as glycol, ethylene glycol, propylene glycol, an antifoaming agent, a pH adjuster, and an emulsifier are generally added to the sealing agent 36. [0069] (Operation of sealing pump-up device)
次に、本実施形態に係るシーリング 'ポンプアップ装置 30を用いてパンクしたタイヤ 140を修理する作業手順を説明する。  Next, an operation procedure for repairing a punctured tire 140 using the sealing-pump-up device 30 according to the present embodiment will be described.
[0070] タイヤ 140にパンクが発生した際には、先ず、作業者は、タイヤ 140におけるタイヤ バルブ 142にアダプタ 68をねじ止めし、ジョイントホース 66をパンクしたタイヤ 140へ 接続する。このとき、エアコンプレッサ 34は停止しており、エア切換弁 48は吸入ポー ト 49が排出ポート 51に連通したポジション (加圧ポジション)になっている。一方、気 液切換弁 60は、排出ポート 63が吸入ポート 61に連通したポジションとなって注液配 管 58を閉止し、注液配管 58を通して液剤容器 40内のシーリング剤 36が自重により タイヤ 140側へ流出することを阻止している。このとき、気液切換弁 60は第 1エア配 管 54を開放している力 エア切換弁 48により吸入ポート 61が閉止されているので、 第 1エア配管 54内には、エアコンプレッサ 34により供給される加圧空気は流通しな い  [0070] When a puncture occurs in the tire 140, first, the operator screws the adapter 68 into the tire valve 142 of the tire 140 and connects the joint hose 66 to the punctured tire 140. At this time, the air compressor 34 is stopped, and the air switching valve 48 is in a position (a pressurized position) where the suction port 49 communicates with the discharge port 51. On the other hand, the gas-liquid switching valve 60 closes the injection pipe 58 when the discharge port 63 is in communication with the suction port 61, and the sealing agent 36 in the liquid agent container 40 passes through the injection pipe 58 due to the weight of the tire 140. It has been prevented from flowing out to the side. At this time, the gas-liquid switching valve 60 is a force that opens the first air piping 54. Since the suction port 61 is closed by the air switching valve 48, the gas is supplied into the first air piping 54 by the air compressor 34. Pressurized air does not flow
次いで、作業者は、電源ケーブル 80のプラグ 82を車両のシガレットライターのソケ ットへ差し込んだ後、操作パネル 70の起動/停止ボタン 72を押下する。これに連動し 、電源回路 78は、エアコンプレッサ 34を作動させて、共用配管 46及び第 2エア配管 56を通して液剤容器 40内へ加圧空気を送り込む。  Next, after inserting the plug 82 of the power cable 80 into the socket of the cigarette lighter of the vehicle, the operator presses the start / stop button 72 of the operation panel 70. In conjunction with this, the power supply circuit 78 operates the air compressor 34 to send pressurized air into the liquid agent container 40 through the common pipe 46 and the second air pipe 56.
[0071] 電源回路 78は、エアコンプレッサ 34の作動力も所定時間が経過すると、気液切換 弁 60における排出ポート 63の連通先を吸入ポート 62から吸入ポート 61に切り換える 。これにより、液剤容器 40の内部が注液配管 58及びジョイントホース 66を通してタイ ャ 140の内部に連通し、液剤容器 40内からシーリング剤 36が自重及び加圧空気の 静圧により押し出され、このシーリング剤 36が注液配管 58及びジョイントホース 66を 通ってタイヤ 140内へ注入される。これにより、シーリング剤 36は、加圧空気の静圧 を受けて液剤容器 40内から押し出される。  The power supply circuit 78 switches the communication destination of the discharge port 63 of the gas-liquid switching valve 60 from the suction port 62 to the suction port 61 when the operating force of the air compressor 34 has passed for a predetermined time. As a result, the inside of the liquid material container 40 communicates with the inside of the tire 140 through the liquid injection pipe 58 and the joint hose 66, and the sealing agent 36 is pushed out of the liquid material container 40 by its own weight and the static pressure of the pressurized air. The agent 36 is injected into the tire 140 through the injection pipe 58 and the joint hose 66. Thus, the sealing agent 36 is pushed out of the liquid agent container 40 under the static pressure of the pressurized air.
[0072] このとき、液剤容器 40におけるシーリング剤 36上の気層の静圧は、シーリング剤 36 の粘度に応じて設定され、タイヤ 140の指定圧よりもかなり低いものであっても良い。 具体的には、液剤容器 40内の空気静圧は、シーリング剤 36の粘度に応じて 0. 05 MPa〜0. 15MPaの範囲で設定され、この範囲でシーリング剤 36の粘度が高い程、 高圧に設定される。なお、シーリング剤 36の液剤容器 40からタイヤ 140内への注入 時には、液剤容器 40内の空気静圧が急激に上昇しないように、電源回路 78によりェ アコンプレッサ 34の駆動モータ 84をタイヤ 140のポンプアップ時よりも低速回転する ように制御することが好ま 、。 At this time, the static pressure of the gas layer above the sealing agent 36 in the liquid agent container 40 is set according to the viscosity of the sealing agent 36, and may be considerably lower than the specified pressure of the tire 140. Specifically, the static air pressure in the liquid container 40 is set in the range of 0.05 MPa to 0.15 MPa according to the viscosity of the sealing agent 36, and the higher the viscosity of the sealing agent 36 in this range, Set to high pressure. When the sealing agent 36 is injected from the liquid container 40 into the tire 140, the drive motor 84 of the air compressor 34 is controlled by the power supply circuit 78 so that the static air pressure in the liquid container 40 does not suddenly increase. It is preferable to control to rotate at a lower speed than at the time of pump-up.
[0073] 作業者は、液剤容器 40内からタイヤ 140内への所定量のシーリング剤 36の注入が 完了すると、操作パネル 70の気液切換ボタン 74を押下する。この所定量のシーリン グ剤 36の注入完了は、注入開始力もの時間をパラメータとして判断しても良ぐまた 液剤容器 40に透明な窓部を設けおき、この窓部を通して作業者がシーリング剤 36の 注入量を確認するようにして良 、。  When the injection of a predetermined amount of the sealing agent 36 from the inside of the liquid agent container 40 into the tire 140 is completed, the operator presses the gas-liquid switching button 74 on the operation panel 70. The completion of the injection of the predetermined amount of the sealing agent 36 may be determined by using the time of the injection starting force as a parameter. Also, a transparent window is provided in the liquid agent container 40, and through this window, the worker can use the sealing agent 36. Make sure to check the injection volume.
[0074] 気液切換ボタン 74の押下に連動し、電源回路 78は、気液切換弁 60の排出ポート 63の連通先を吸入ポート 62から吸入ポート 61に切り換え、これに同期してエア切換 弁 48の吸入ポート 49の連通先を排出ポート 51から排出ポート 50に切り換える。これ により、エアコンプレッサ 34から供給される加圧空気は、第 1エア配管 54及びジョイン トホース 66を通してタイヤ 140内へ供給開始され、タイヤ 140の内圧を上昇させてタ ィャ 140を膨張させる。  In conjunction with the pressing of the gas-liquid switching button 74, the power supply circuit 78 switches the communication destination of the discharge port 63 of the gas-liquid switching valve 60 from the suction port 62 to the suction port 61, and in synchronization with this, the air switching valve The communication destination of the 48 suction ports 49 is switched from the discharge port 51 to the discharge port 50. Accordingly, the pressurized air supplied from the air compressor 34 is started to be supplied into the tire 140 through the first air pipe 54 and the joint hose 66, and the internal pressure of the tire 140 is increased to expand the tire 140.
[0075] この後、作業者は、エアコンプレッサ 34に設けられた圧力ゲージ(図示省略)により タイヤ 140の内圧が規定圧になったことを確認したならば、起動/停止ボタン 72を再 度、押下する。これに連動し、電源回路 78はエアコンプレッサ 34への電源供給を停 止する。次いで、作業者は、アダプタ 68をタイヤバルブ 142から取り外してジョイント ホース 66をタイヤ 140から切り離す。  After that, the operator confirms that the internal pressure of the tire 140 has reached the specified pressure by a pressure gauge (not shown) provided in the air compressor 34, and then presses the start / stop button 72 again. Press. In conjunction with this, the power supply circuit 78 stops supplying power to the air compressor 34. The operator then removes the adapter 68 from the tire valve 142 and disconnects the joint hose 66 from the tire 140.
[0076] 作業者は、タイヤ 140を規定圧まで加圧完了した直後に、シーリング剤 36が注入さ れたタイヤ 140を用いて一定距離に亘つて予備走行する。これにより、タイヤ 140内 部にシーリング剤 36が均一に拡散し、シーリング剤 36がパンク穴に充填されてパン ク穴を閉塞する。予備走行完了後に、作業者は、再びジョイントホース 66のアダプタ 68をタイヤバルブ 142にねじ止めし、エアコンプレッサ 34を作動させてタイヤ 140を 規定の内圧まで加圧する。これにより、タイヤ 140のパンク修理が完了し、ジョイントホ ース 66をタイヤ 140から取り外せば、このタイヤ 140を用いて所定の上限速度(例え ば、 80km)の範囲で走行が可能になる。 [0077] またシーリング 'ポンプアップ装置 30では、エアコンプレッサ 34の運転中に何らか の原因、例えば、エアポンプ 86の故障により駆動モータ 84の負荷が異常上昇したり 、電源回路 78からの漏電等により電源ケーブル 80に許容電流を越える過電流が流 れた場合には、この過電流は電源ケーブル 80に直列的に接続された電流遮断器 7 6にも流れることになる。従って、電源ケーブル 80に過電流が所定の応答時間を超え て流れ続けると、電流遮断器 76は、通電位置にあった可動片 90が電磁石 92に遮断 位置へ揺動させることにより、電源ケーブル 80を通じた車両のノ ッテリー力も電源回 路 78への電源供給を遮断する。 Immediately after the tire 140 is completely pressurized to the specified pressure, the worker performs preliminary running over a certain distance using the tire 140 into which the sealing agent 36 has been injected. As a result, the sealing agent 36 is uniformly diffused into the tire 140, and the puncturing hole is filled with the sealing agent 36 to close the puncturing hole. After the preliminary running is completed, the operator again screwes the adapter 68 of the joint hose 66 to the tire valve 142 and operates the air compressor 34 to pressurize the tire 140 to a specified internal pressure. As a result, when the puncture repair of the tire 140 is completed and the joint hose 66 is removed from the tire 140, the tire 140 can be used to travel within a predetermined upper limit speed (for example, 80 km). In the sealing pump-up device 30, for some reason during the operation of the air compressor 34, for example, the load of the drive motor 84 abnormally rises due to the failure of the air pump 86, or the leakage from the power supply circuit 78 If an overcurrent that exceeds the allowable current flows through the power cable 80, the overcurrent also flows through the current breaker 76 that is connected in series to the power cable 80. Therefore, if the overcurrent continues to flow through the power cable 80 for more than the predetermined response time, the current breaker 76 causes the movable piece 90 at the energized position to swing by the electromagnet 92 to the interrupted position, thereby causing the power cable 80 to swing. The knotting power of the vehicle through the power supply also cuts off the power supply to the power supply circuit 78.
[0078] ここで、電流遮断器 76がノ ッテリー力も電源回路 78への電源供給を遮断する際の 許容電流値 (遮断電流値)は、車両側の電流遮断器 (ヒューズ)の定格電流値が 15A の場合には、 14A〜18Aに設定することが好ましぐ 15A〜17Aに設定することが更 に好ましい。またエアコンプレッサ 34の起動時には、起動電流として定常運転時の電 流よりも大電流が瞬間的に流れる。この起動電流を考慮して、電流遮断器 76は、約 7 OAの電流(起動電流)が流れても、好ましくは 100msec (更に、好ましくは 10msec) に亘つてバッテリー力 の電源供給を遮断しないように、過電流に対する応答性が設 定されている。  [0078] Here, the allowable current value (breaking current value) when the current breaker 76 cuts off the power supply to the power supply circuit 78 with the knotting force is determined by the rated current value of the current breaker (fuse) on the vehicle side. In the case of 15A, it is preferable to set it to 14A to 18A, and it is even more preferable to set it to 15A to 17A. When the air compressor 34 is started, a larger current than the current in the steady operation flows instantaneously as the start current. In consideration of this starting current, the current breaker 76 does not interrupt the power supply of the battery power for preferably 100 msec (more preferably, 10 msec) even when a current (starting current) of about 7 OA flows. In addition, the response to overcurrent is set.
[0079] 以上説明した本発明の第 1の実施形態に係るシーリング ·ポンプアップ装置 30では 、電源ケーブル 80を通して車両のバッテリーに接続された電源回路 78に過電流が 流れると、この電源回路 78への電力供給を遮断する過電流遮断手段として電磁式 の電流遮断器 76を用いたことにより、電流遮断器 76は、ヒューズ式の電流遮断器と 比較して過電流に対する検出精度及び応答性をそれぞれ所望のレベルに設定する ことが容易であり、かつ検出精度及び応答性の製品個体間のバラツキも小さくできる ので、電流遮断器 76における定格電流値を車両側の電流遮断器の定格電流値と略 等しいか僅かに低い値に設定しても、この電磁式の電流遮断器 76による過電流に対 する検出精度及び応答性を、予め車両側の電流遮断器よりも十分に高く設定してお けば、電源回路 78に許容電流値を越える過電流が流れた際には、電流遮断器 76を 車両側の電流遮断器が作動するよりも確実に早くタイミングで作動させることができる [0080] この結果、本実施形態に係るシーリング 'ポンプアップ装置 30によれば、車両のバ ッテリーにより供給可能な定格電流値と略等しい最大電流値の電流をエアコンプレツ サ 34の駆動モータ 84に供給し、この駆動モータからの動力によりエアポンプ 86を運 転できるので、エアポンプ 86の運転効率を高めてシーリング ·ポンプアップ装置 30に よるタイヤ 140に対するシーリング剤 36の注入時間及びポンプアップ時間をそれぞ れ効率的に短縮できるようなり、また電流遮断器 76が作動した後に復帰させる場合 にも、ヒューズ等の消耗部品を交換する必要ないので、電源供給を再開するための 電流遮断器 76の復帰作業を簡略ィ匕できる。 In the sealing / pump-up device 30 according to the first embodiment of the present invention described above, when an overcurrent flows to the power supply circuit 78 connected to the vehicle battery through the power supply cable 80, the power supply circuit 78 By using an electromagnetic current breaker 76 as an overcurrent interrupting means for interrupting the power supply of the current, the current interrupter 76 has better detection accuracy and responsiveness to overcurrent than a fuse type current interrupter. Since it is easy to set a desired level and the variation in detection accuracy and responsiveness among individual products can be reduced, the rated current value of the current breaker 76 is approximately equal to the rated current value of the current breaker on the vehicle side. Even if the value is set to be equal or slightly lower, the detection accuracy and responsiveness of the electromagnetic current breaker 76 for overcurrent should be set sufficiently higher than the current breaker on the vehicle side in advance. Contact fluff, when an overcurrent exceeding the allowable current value flowed in the power supply circuit 78 can be operated reliably earlier timing than the current interrupter 76 vehicle side of the current interrupter is activated As a result, according to the sealing-pump-up device 30 according to the present embodiment, the current of the maximum current value substantially equal to the rated current value that can be supplied by the battery of the vehicle is supplied to the drive motor 84 of the air conditioner 34. The pump 86 can be driven by the power from the drive motor, so that the operation efficiency of the air pump 86 is increased and the injection time and the pump-up time of the sealing agent 36 into the tire 140 by the sealing and pump-up device 30 are reduced. In this case, it is not necessary to replace consumable parts such as fuses. Work can be simplified.
[0081] またシーリング ·ポンプアップ装置 30では、エアポンプ 86における 2個のシリンダ 28 6, 288がクランクシャフト 284の軸方向に沿って直列的に配置されると共に、ピストン 320のクランクシャフト 284との連結点であるクランクピン 308とピストン 322のクランク シャフト 284との連結点であるクランクピン 310との位相差が 180° に設定されている ことにより、一方のピストン 320がシリンダ 286内で吸入方向へ移動する際には、他方 のピストン 322がシリンダ 288内で吐出方向へ移動し、かつ一方のピストン 320がシリ ンダ 286内で一方の死点に達した時には、他方のピストン 322がシリンダ 286内で他 方の死点に達するので、外部カもシリンダ 286, 288内へ空気を吸入する吸入工程 とシリンダ '286, 288内で空気を圧縮しつつシリンダ '286, 288内力、ら吐出する吐出 工程とを、常に 1個ずつのピストン 320, 322により併行して行うことができる。  In the sealing / pump-up device 30, the two cylinders 286, 288 of the air pump 86 are arranged in series along the axial direction of the crankshaft 284, and the piston 320 is connected to the crankshaft 284. The phase difference between the crankpin 308, which is the point, and the crankpin 310, which is the connection point between the piston 322 and the crankshaft 284, is set to 180 °, so that one piston 320 moves in the suction direction in the cylinder 286. When the other piston 322 moves in the discharge direction in the cylinder 288 and one piston 320 reaches one dead point in the cylinder 286, the other piston 322 moves in the cylinder 286 As the dead center is reached, the external force also sucks air into cylinders 286 and 288, and discharges the internal forces of cylinders 286 and 288 while compressing air in cylinders 286 and 288. Discharge process can always be performed in parallel by one piston 320, 322.
[0082] 更には、シーリング ·ポンプアップ装置 30では、エアポンプ 86におけるピストン 320 の移動方向とピストン 322の移動方向とが常に反対となると共に、ピストン 320及びピ ストン 322が同じタイミングで一方の死点及び他方の死点に達することから、 2個全体 としてのピストン 320, 322の慣性力が常に釣合った状態で運転できるので、クランク シャフト 284にピストン 320, 322の慣性力を打ち消すためのカウンタウェイトを設ける 必要がなくなる。  Further, in the sealing / pump-up device 30, the moving direction of the piston 320 and the moving direction of the piston 322 in the air pump 86 are always opposite, and the piston 320 and the piston 322 have one dead center at the same timing. And the other reaches the dead point, so that the two pistons 320 and 322 as a whole can operate with the inertia forces always balanced, and the countershaft to cancel the inertia forces of the pistons 320 and 322 on the crankshaft 284 There is no need to provide
[0083] この結果、本実施形態に係るシーリング ·ポンプアップ装置 30では、エアポンプ 86 における 1個のピストン 320が吐出方向へ移動し、このピストン 320のシリンダ 286内 での移動負荷が相対的に増大しても、この時には残りの 1個のピストン 322が吸入方 向へ移動し、このピストン 322のシリンダ 288内での移動負荷が減少することから、 2 個のピストン 320, 322の負荷変動が互いに打ち消され、これら 2個のピストン 320, 3 22を往復移動させるクランクシャフト 284の回転抵抗を略一定に保ち、このクランクシ ャフト 284を回転させる駆動モータ 84に流れる駆動電流も略一定に保つことができる ので、車両のノ ッテリーにより供給可能な定格電流値と略等しい電流を常に駆動モ ータ 84【こ 給でさる Jう【こなり、更【こクランクシャフト 284【こピストン 320, 322の 力を打ち消すためのカウンタウェイトを設ける必要がなくなるので、クランクシャフト 28 4を軽量ィ匕して駆動モータへの負荷を軽減できる。 As a result, in the sealing / pump-up device 30 according to the present embodiment, one piston 320 of the air pump 86 moves in the discharge direction, and the moving load of the piston 320 in the cylinder 286 relatively increases. However, at this time, the remaining one piston 322 moves in the suction direction, and the moving load of the piston 322 in the cylinder 288 decreases. The load fluctuations of the two pistons 320 and 322 cancel each other, and the rotational resistance of the crankshaft 284 for reciprocating the two pistons 320 and 322 is kept substantially constant, and the drive motor 84 for rotating the crankshaft 284 Since the flowing drive current can be kept almost constant, the drive motor 84 always supplies a current that is approximately the same as the rated current value that can be supplied by the vehicle's knotter. Since there is no need to provide a counterweight for canceling the force of the shafts 284 and 320, 322, the load on the drive motor can be reduced by reducing the weight of the crankshaft 284.
[0084] 従って、本実施形態に係るシーリング ·ポンプアップ装置 30によれば、空気入りタイ ャへの圧縮空気の供給効率を高めてタイヤ 140に対するシーリング剤 36の注入時 間及びポンプアップ時間を効率的に短縮できる。  Therefore, according to the sealing and pumping-up device 30 according to the present embodiment, the efficiency of supplying the compressed air to the pneumatic tire is increased, and the time for injecting the sealing agent 36 into the tire 140 and the time for pumping-up are improved. Can be shortened.
[0085] なお、本実施形態に係るシーリング ·ポンプアップ装置 30では、エアポンプ 86とし てシリンダ数が 2気筒で直列配置されたものを用いた場合についてのみ説明したが、 シリンダ数が 2N (Nは自然数)個(例えば、 4、 6気筒)であって、これらのシリンダがク ランクシャフトの軸方向に沿って 1列に直列的に配置されているエアポンプにおいて 、 N個のピストンのクランクシャフトとの連結点(クランクピン)と残りの N個のピストンの クランクシャフトとの連結点(クランクピン)との位相差を 180° に設定すれば、本実施 形態のエアポンプ 86と同様に、 N個のピストンが吐出方向へ移動する際に、残りの N 個のピストンが吸入方向へ移動することから、 2N個のピストンの負荷変動の影響を互 いに打ち消し、これら 2N個のピストンを往復移動させるクランクシャフトの回転抵抗を 略一定に保ち、かつカウンタウェイトを省略してクランクシャフトを軽量ィ匕できる、という 効果を得られる。  [0085] In the sealing / pump-up device 30 according to the present embodiment, only the case where the air pump 86 is a two-cylinder in-line arrangement is used as the air pump 86. However, the number of cylinders is 2N (N is (Natural number) (for example, 4 or 6 cylinders), and these cylinders are arranged in series in a row along the axial direction of the crankshaft. If the phase difference between the connection point (crank pin) and the connection point (crank pin) between the remaining N pistons and the crankshaft is set to 180 °, the N pistons can be set in the same manner as the air pump 86 of the present embodiment. When the piston moves in the discharge direction, the remaining N pistons move in the suction direction, thus canceling out the effects of the load fluctuations of the 2N pistons and reciprocating these 2N pistons. It is to keep the rotational resistance of the crankshaft substantially constant, and can be lightweight I spoon the crankshaft omitted counterweight, obtained an effect that.
[0086] (エアポンプの変形例)  [0086] (Modification of air pump)
次に、本発明の第 1の実施形態に係るシーリング ·ポンプアップ装置 30に適用可能 なエアコンプレッサの変形例について説明する。図 4には、図 3に示されるエアコンプ レッサ 34に代えてシーリング ·ポンプアップ装置 30 (図 1参照)に適用可能なエアコン プレッサ 330が示されている。なお、この変形例に係るエアコンプレッサ 330において 、図 3に示されるエアコンプレッサ 34と共通の部分には同一符号を付して説明を省略 する。 [0087] 図 4Aに示されるように、エアコンプレッサ 330は駆動モータ 84及びエアポンプ 331 を備えており、エアポンプ 331は対向 2気筒のレシプロ型のものとして構成されている 。エアポンプ 331には、ベアリング (図示省略)により回転可能に支持されたクランクシ ャフト 332が設けられると共に、このクランクシャフト 332の径方向に沿って延出する 2 個のシリンダ 334, 336が設けられている。ここで、一方のシリンダ 334と他方のシリン ダ 336とは、クランクシャフト 332の軸心 Sを中心とする周方向に沿って異なる部位に 配置されており、これらのシリンダ 334とシリンダ 336との軸心 Sを中心とする開き角は 180° になっている。 Next, a modified example of the air compressor applicable to the sealing / pump-up device 30 according to the first embodiment of the present invention will be described. FIG. 4 shows an air conditioner presser 330 applicable to the sealing / pump-up device 30 (see FIG. 1) instead of the air conditioner presser 34 shown in FIG. In the air compressor 330 according to this modified example, the same parts as those of the air compressor 34 shown in FIG. As shown in FIG. 4A, the air compressor 330 includes a drive motor 84 and an air pump 331, and the air pump 331 is configured as a reciprocating two-cylinder type. The air pump 331 is provided with a crankshaft 332 rotatably supported by bearings (not shown), and is provided with two cylinders 334 and 336 extending along the radial direction of the crankshaft 332. . Here, the one cylinder 334 and the other cylinder 336 are arranged at different portions along the circumferential direction around the axis S of the crankshaft 332, and the axis of the cylinder 334 and the cylinder 336 are The opening angle around the center S is 180 °.
[0088] これらのシリンダ 334, 336内には、それぞれ円柱状の空間である圧縮室 338, 34 0が形成されている。またシリンダ 334, 336の頂部には、図 4Bに示されるように、吸 入口 342及び吐出口 344が開口しており、これらの吸入口 342及び吐出口 344には 、吸入弁 294及び吐出弁 296が開閉可能に配置されている。シリンダ 334, 336内に は、図 4Aに示されるように、ピストン 346, 348がそれぞれクランクシャフト 332の軸心 Sを中心とする径方向に沿って往復移動可能に収納されている。  [0088] Within these cylinders 334 and 336, compression chambers 338 and 340, respectively, which are cylindrical spaces, are formed. At the top of the cylinders 334, 336, as shown in FIG. 4B, an inlet 342 and an outlet 344 are opened, and the inlet 342 and the outlet 344 are provided with an inlet valve 294 and an outlet valve 296, respectively. Are arranged to be openable and closable. As shown in FIG. 4A, pistons 346 and 348 are housed in the cylinders 334 and 336, respectively, so as to be able to reciprocate along the radial direction about the axis S of the crankshaft 332.
[0089] クランクシャフト 332には、それぞれ円板状に形成された 2個のクランク部 350, 352 が形成され、クランク部 350とクランク部 352との間がクランクピン 358により連結され ている。 2個のピストン 346, 348は、コンロッド 354, 356を介してクランクシャフト 332 に連結されている。ここで、 2個のコンロッド 354, 356は、その一端部がピストン 346 , 348に設けられたピストンピン 360, 362を介してピストン 346, 348に相対的に回 動可能に連結され、他端部がそれぞれクランクシャフト 332における同一のクランクピ ン 358に相対的に回動可能に連結されている。これにより、クランクシャフト 332が駆 動モータ 84からのトルクにより回転すると、このクランクシャフト 332の回転運動が軸 心 Sを中心とする径方向に沿ったピストン 346, 348の往復運動に変換され、ピストン 346, 348がシリンダ 334, 336内で吸入方向(矢印 V方向)及び吐出方向(矢印 E方 向)へ交互に移動 (往復移動)する。  [0089] The crankshaft 332 is formed with two disk-shaped crank portions 350 and 352, and the crank portion 350 and the crank portion 352 are connected by a crank pin 358. The two pistons 346, 348 are connected to the crankshaft 332 via connecting rods 354, 356. Here, the two connecting rods 354, 356 are connected at one end to the pistons 346, 348 via piston pins 360, 362 provided on the pistons 346, 348 so as to be relatively rotatable. Are rotatably connected to the same crank pin 358 of the crank shaft 332, respectively. As a result, when the crankshaft 332 is rotated by the torque from the drive motor 84, the rotational motion of the crankshaft 332 is converted into reciprocating motion of the pistons 346 and 348 along the radial direction about the axis S. 346 and 348 move (reciprocate) alternately in the suction direction (arrow V direction) and discharge direction (arrow E direction) in the cylinders 334 and 336.
[0090] このとき、エアポンプ 331では、 2個のシリンダ 334, 336をそれぞれクランクシャフト 332の径方向へ延出するように配置し、一方のシリンダ 334と他方のシリンダ 336との 開き角を 180° にすると共に、 2個のシリンダ 334, 336内にそれぞれ配設されたビス トン 346, 348をクランクシャフト 332における同一のクランクピン 358に連結したこと により、一方のピストン 346がシリンダ 334内で吸入方向へ移動する際には、他方の ピストン 348がシリンダ 336内で吐出方向へ移動し、かつ一方のピストン 346がシリン ダ 334内で一方の死点に達した時には、他方のピストン 348がシリンダ 336内で他方 の死点に達する。ここで、エアポンプ 331では、エアポンプ 86の場合と同様の理由に より、好適には、ピストン径(直径)が 10mm〜40mmに設定されると共に、ピストンス トロータカ S4mm〜30mmに設定される。 At this time, in the air pump 331, the two cylinders 334 and 336 are arranged so as to extend in the radial direction of the crankshaft 332, and the opening angle between one cylinder 334 and the other cylinder 336 is set to 180 °. And screws installed in the two cylinders 334 and 336, respectively. By connecting the tongues 346 and 348 to the same crank pin 358 of the crankshaft 332, when one piston 346 moves in the suction direction in the cylinder 334, the other piston 348 moves in the discharge direction in the cylinder 336. When moving and when one piston 346 reaches one dead center in the cylinder 334, the other piston 348 reaches the other dead center in the cylinder 336. Here, in the air pump 331, for the same reason as in the case of the air pump 86, the piston diameter (diameter) is preferably set to 10 mm to 40 mm and the piston stroke rotor S is set to 4 mm to 30 mm.
[0091] 以上説明したエアポンプ 331でも、図 2に示されるエアポンプ 86を用いた場合と同 様に、外部カもシリンダ 334, 336内へ空気を吸入する吸入工程とシリンダ 334, 33 6内で空気を圧縮しつつ、このシリンダ 334, 336内から吐出する吐出工程とを、常に 同数(1個)ずつのピストンにより併行して行うことができると共に、 2個のピストン 346, 348の慣性力が常に釣合った状態で装置を運転できるので、クランクシャフト 332に ピストン 346, 348の慣性力を打ち消すためのカウンタウェイトを設ける必要がなくな る。 [0091] In the air pump 331 described above, similarly to the case where the air pump 86 shown in Fig. 2 is used, the external power also sucks air into the cylinders 334, 336 and the air flows in the cylinders 334, 336. And the discharge process of discharging from the cylinders 334 and 336 can be performed simultaneously by the same number (one) of pistons, and the inertia force of the two pistons 346 and 348 Since the apparatus can be operated in a balanced state, there is no need to provide the crankshaft 332 with a counterweight for canceling the inertial force of the pistons 346 and 348.
[0092] 従って、このエアポンプ 331を用いたシーリング ·ポンプアップ装置 30によっても、タ ィャ 20への圧縮空気の供給効率を高めてタイヤ 20に対するシーリング剤 36の注入 時間及びポンプアップ時間を効率的に短縮できる。  [0092] Therefore, the sealing and pumping-up device 30 using the air pump 331 can also increase the efficiency of supplying compressed air to the tire 20 and efficiently inject the sealing agent 36 into the tire 20 and the pump-up time. Can be shortened to
[0093] なお、変形例に係るエアポンプ 331としては、シリンダ数が 2気筒で対向配置された ものにつ 、てのみ説明したが、シリンダ数が全体として 2N (Nは自然数)個(例えば、 4、 6気筒)であって、 N個のシリンダがクランクシャフトの軸方向に沿って 1列に直列 的に配置されると共に、残りの N個のシリンダがクランクシャフト 332の軸心 Sを中心と する周方向に沿って前記 N個のシリンダとは異なる部位に直列的に配置されたエア ポンプでも、 N個のピストンが連結されるクランクピンと残りの N個のピストンが連結さ れるクランクピンとの位相差を 0° に設定すれば、変形例に係るエアポンプ 331と同 様に、 N個のピストンが吐出方向へ移動する際に、残りの N個のピストンが吸入方向 へ移動することから、 2N個のピストンによる負荷変動の影響を互いに打ち消し、これ ら 2N個のピストンを往復移動させるクランクシャフトの回転抵抗を略一定に保ち、か つカウンタウェイトを省略してクランクシャフトを軽量ィ匕できる、という効果を得られる。 [0094] また、エアポンプ 331では、一方のシリンダ 334と他方のシリンダ 336との開き角が 180° であったが、 N個のシリンダと残りの N個のシリンダとの軸心 Sを中心とする開 き角を 0° よりも大きぐ 180° より小さくする場合 (V型配置する場合)にも、 N個のピ ストンが連結されるクランクピンと残りの N個のピストンが連結されるクランクピンとの位 相差を 0° に設定すれば、 2N個のピストンを往復移動させるクランクシャフトの回転 抵抗を略一定に保ち、かつカウンタウェイトを省略してクランクシャフトを軽量ィ匕できる 、という効果を対向配置の場合と同様に得られる。 [0093] As the air pump 331 according to the modified example, only an air pump having two cylinders and opposed to each other has been described. However, the total number of cylinders is 2N (N is a natural number) (for example, 4 , 6 cylinders), wherein N cylinders are arranged in series in a row along the axial direction of the crankshaft, and the remaining N cylinders are centered on the axis S of the crankshaft 332. Even with an air pump that is arranged in series along the circumferential direction at a location different from the N cylinders, the phase difference between the crankpin to which the N pistons are connected and the crankpin to which the remaining N pistons are connected is Is set to 0 °, as in the case of the air pump 331 according to the modification, when the N pistons move in the discharge direction, the remaining N pistons move in the suction direction. Shadow of load fluctuation due to piston The cancel each other out, keeping the rotational resistance of the crankshaft for reciprocating these 2N number of pistons substantially constant, can be lightweight I spoon the crankshaft is omitted or One counterweight, obtained an effect that. [0094] In the air pump 331, the opening angle between the one cylinder 334 and the other cylinder 336 is 180 °, but the center is about the axis S of the N cylinders and the remaining N cylinders. Even when the opening angle is larger than 0 ° and smaller than 180 ° (V-shaped arrangement), the crankpin to which N pistons are connected and the crankpin to which the remaining N pistons are connected are also connected. When the phase difference is set to 0 °, the rotational resistance of the crankshaft for reciprocating the 2N pistons is kept substantially constant, and the countershaft can be omitted to reduce the weight of the crankshaft. Obtained as in the case.
〔第 2の実施形態〕  [Second embodiment]
次に、本発明の第 2の実施形態に係るシーリング 'ポンプアップ装置 110について 説明する。図 5には、本発明の第 2の実施形態に係るシーリング 'ポンプアップ装置 1 10が示されている。なお、第 2の実施形態に係るシーリング 'ポンプアップ装置 110 において、第 1の実施形態に係るシーリング 'ポンプアップ装置 30と同一の部分には 同一符号を付して説明を省略する。  Next, a sealing-pump-up device 110 according to a second embodiment of the present invention will be described. FIG. 5 shows a sealing-pump-up device 110 according to a second embodiment of the present invention. In the sealing 'pump-up device 110 according to the second embodiment, the same parts as those of the sealing' pump-up device 30 according to the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0095] 本実施形態に係るシーリング ·ポンプアップ装置 110が第 1の実施形態に係るシー リング ·ポンプアップ装置 30と異なる点は、図 5に示されるように、電流遮断器 112が 車両のシガーソケットに揷脱可能とされたプラグ 82内に配設されている点及び、電流 遮断器 112としてバイメタル式のものを用いて 、る点である。  The difference between the sealing and pumping-up device 110 according to the present embodiment and the sealing and pumping-up device 30 according to the first embodiment is that, as shown in FIG. It is arranged in a plug 82 that can be removed from the socket, and a bimetal type current breaker 112 is used.
[0096] バイメタル式の電流遮断器 112は、図 6に示されるように、ケーシング 116及びこの ケーシング 116内に配置されたバイメタル 118を備えている。バイメタル 118は、互い に熱膨張率が異なる 2枚の金属プレート 120, 122が積層されて板ばね状に構成さ れており、電流遮断器 112の非作動時には下方へ向って凸状となるように湾曲して いる。またケーシング 116には、バイメタル 118の両端部付近をそれぞれ一対の突起 により支持するメタル支持部 119が設けられている。バイメタル 118には、その一端部 に可動接点 124が設けられると共に、他端部に内部接点 126が設けられており、可 動接点 124と内部接点 126とはノ ィメタル 118により互いに導通している。またケー シング 116には、可動接点 124に対向するように固定接点 128が設けられており、こ の固定接点 128は、電流遮断器 112の非作動時には、図 6Aに示されるように可動 接点 124に圧接するように支持されて 、る。 [0097] また電流遮断器 112には、ケーシング 116の外部に一対の外部接点 130, 132が 設けられており、一方の外部接点 130はケーシング 116内の内部接点 126に電気的 に接続され、また他方の外部接点 132はケーシング 116内の固定接点 128に電気 的に接続されている。電流遮断器 112は、その外部接点 130, 132を介してプラグ 8 2内に配設された 1本の導線に直列的に接続されている。これにより、電流遮断器 11 2の非作動時には、プラグ 82及び電源ケーブル 80を通して電源回路 78に車両のバ ッテリー力も電源が供給可能になる。 [0096] As shown in Fig. 6, the bimetal-type current breaker 112 includes a casing 116 and a bimetal 118 disposed in the casing 116. The bimetal 118 is formed in a leaf spring shape by laminating two metal plates 120 and 122 having different thermal expansion coefficients from each other, so that the bimetal 118 is convex downward when the current breaker 112 is not operated. It is curved. Further, the casing 116 is provided with metal supporting portions 119 for supporting the vicinity of both ends of the bimetal 118 with a pair of projections. The bimetal 118 has a movable contact 124 at one end and an internal contact 126 at the other end, and the movable contact 124 and the internal contact 126 are electrically connected to each other by the metal 118. The casing 116 is provided with a fixed contact 128 facing the movable contact 124. When the current breaker 112 is not operated, the fixed contact 128 is provided as shown in FIG. 6A. It is supported so as to be pressed against. [0097] Further, the current breaker 112 is provided with a pair of external contacts 130 and 132 outside the casing 116, and one of the external contacts 130 is electrically connected to an internal contact 126 in the casing 116. The other external contact 132 is electrically connected to a fixed contact 128 in the casing 116. The current breaker 112 is connected in series to one conductor disposed in the plug 82 via its external contacts 130 and 132. Thus, when the current breaker 112 is not operated, the battery power of the vehicle can be supplied to the power supply circuit 78 through the plug 82 and the power supply cable 80.
[0098] 電流遮断器 112では、バイメタル 118に電流が流れると、バイメタル 118自体の電 気抵抗により生じるジュール熱によりバイメタル 118が加熱される。このとき、ノ ィメタ ル 118に許容電流を越える過電流がバイメタル 118に所定の応答時間を超えて流れ 続けると、バイメタル 118を構成する一方の金属プレート 120の熱膨張が他方の金属 プレート 122の熱膨張により大きくなつてひずみが生じる。これにより、バイメタル 118 は、下方へ向って凸状であった形状 (通電形状)から上方へ向って凸状となる形状( 遮断形状)に変形し、その可動接点 124を固定接点 128から離間させる。従って、バ ィメタル 118が遮断形状に変形すると、プラグ 82が非導通となり車両のバッテリーか ら電源回路 78への電源供給が遮断される。また電流遮断器 112には、リセットスイツ チ 134が設けられており、電流遮断器 112が作動した後、ユーザがリセットスィッチ 1 34を押下すると、このリセットスィッチ 134により遮断形状に変形したバイメタル 118 の中央部が下方へ押圧され、バイメタル 118が通電形状に復元するようになって 、る  [0098] In the current breaker 112, when a current flows through the bimetal 118, the bimetal 118 is heated by Joule heat generated by the electric resistance of the bimetal 118 itself. At this time, if an overcurrent exceeding the allowable current continues to flow through the bimetal 118 for more than a predetermined response time, the thermal expansion of one metal plate 120 constituting the bimetal 118 causes the thermal expansion of the other metal plate 122 to occur. The expansion causes distortion due to expansion. As a result, the bimetal 118 is deformed from a downwardly convex shape (conducting shape) to an upwardly convex shape (cutoff shape), and separates the movable contact 124 from the fixed contact 128. . Therefore, when the bimetal 118 is deformed into the cutoff shape, the plug 82 becomes non-conductive and the power supply from the vehicle battery to the power supply circuit 78 is cut off. The current breaker 112 is provided with a reset switch 134. When the user presses the reset switch 134 after the current breaker 112 is activated, the bimetal 118 deformed into a cutoff shape by the reset switch 134 is provided. The central part is pressed downward, and the bimetal 118 is restored to the conductive shape.
[0099] ここで、電流遮断器 112がバッテリー力も電源回路 78への電源供給を遮断する際 の許容電流値 (遮断電流値)は、電流遮断器 76の場合と同様に、車両側の電流遮 断器 (ヒューズ)の定格電流値が 15Aの場合には、 14A〜18Aに設定することが好ま しぐ 15A〜17Aに設定することが更に好ましい。また電流遮断器 112の応答性も、 電流遮断器 76と同様に、約 70Aの電流(起動電流)が流れても、好ましくは lOOmse c (更に好ましくは 10msec)に亘つてノ ッテリー力もの電源供給を遮断しないように、 過電流に対する応答性が設定されて 、る。 [0099] Here, the allowable current value (cutoff current value) when the current breaker 112 cuts off the battery power and the power supply to the power supply circuit 78 is the same as the case of the current breaker 76. When the rated current value of the breaker (fuse) is 15 A, it is more preferable to set it to 14 A to 18 A, and it is more preferable to set it to 15 A to 17 A. Also, as with the current breaker 76, the responsiveness of the current breaker 112 is such that even if a current (starting current) of about 70 A flows, the power supply with a notable power is preferably performed over 100 msec (more preferably 10 msec). The responsiveness to overcurrent is set so as not to cut off the current.
[0100] 以上説明した本発明の第 2の実施形態に係るシーリング 'ポンプアップ装置 110で は、プラグ 82及び電源ケーブル 80を通して車両のノ ッテリーに接続された電源回路 78に過電流が流れると、この電源回路 78への電力供給を遮断する過電流遮断手段 としてノ ィメタル式の電流遮断器 112を用いたことにより、電流遮断器 112は、ヒユー ズ式の電流遮断器と比較して過電流に対する検出精度及び応答性をそれぞれ所望 のレベルに設定することが容易であり、かつ検出精度及び応答性の製品個体間のバ ラツキも小さくできるので、電流遮断器 112における定格電流値を車両側の電流遮 断器の定格電流値と略等し 、か僅か〖こ低 、値に設定しても、このバイメタル式の電 流遮断器 112による過電流に対する検出精度及び応答性を、予め車両側の電流遮 断器よりも十分に高く設定しておけば、電源回路 78に許容電流値 (遮断電流値)を 越える過電流が流れた際には、電流遮断器 112を車両側の電流遮断器が作動する よりも確実に早くタイミングで作動させることができる。 [0100] The sealing 'pump-up device 110 according to the second embodiment of the present invention described above is used. When an overcurrent flows through the power supply circuit 78 connected to the vehicle's knotter through the plug 82 and the power cable 80, a metal-type current breaker is used as an overcurrent cutoff means to cut off the power supply to the power supply circuit 78. By using the 112, the current breaker 112 can easily set the detection accuracy and the responsiveness to the overcurrent to desired levels, respectively, as compared with the fuse-type current breaker. Since the variability between responsive products can be reduced, the rated current value of the current breaker 112 is set to be approximately equal to or slightly lower than the rated current value of the current breaker on the vehicle side. However, if the detection accuracy and responsiveness to overcurrent by the bimetallic current breaker 112 are set sufficiently higher than the current breaker on the vehicle side in advance, the allowable current value ( Current value) When an excess overcurrent flows, the current breaker 112 can be reliably operated at a timing earlier than the current breaker on the vehicle side is operated.
[0101] この結果、本実施形態に係るシーリング 'ポンプアップ装置 110によれば、基本的 に第 1の実施形態に係るシーリング 'ポンプアップ装置 30と共通の効果を得られると 共に、この共通の効果に加え、バイメタル式の電流遮断器 112は電磁式の電流遮断 器 76と比較して小型化が容易なので、ユーザによる取扱い及び復帰操作が容易と なるプラグ 82内に電流遮断器 112を配置し、又はプラグ 82と一体的に電流遮断器 1 12を設けることが製造上及びレイアウト上容易になる。但し、第 1の実施形態に係る 電磁式の電流遮断器 76として小型のものを用い、これを第 1の実施形態におけるシ 一リング ·ポンプアップ装置 30におけるプラグ 82内に配置し、又はプラグ 82と一体的 に設けることようにしても良 、。  [0101] As a result, according to the sealing 'pump-up device 110 according to the present embodiment, basically the same effects as those of the sealing' pump-up device 30 according to the first embodiment can be obtained, and the common effect can be obtained. In addition to the effects, the bimetal-type current breaker 112 is easier to miniaturize than the electromagnetic current breaker 76, so that the current breaker 112 is arranged in the plug 82, which facilitates the handling and resetting operation by the user. Alternatively, it is easy to provide the current breaker 112 integrally with the plug 82 in terms of manufacturing and layout. However, a small-sized electromagnetic current breaker 76 according to the first embodiment is used, which is disposed in the plug 82 of the sealing / pump-up device 30 in the first embodiment, or It may be provided integrally with.
〔電流遮断器の変形例〕  (Modification of current breaker)
次に、本発明の第 2の実施形態に係るシーリング 'ポンプアップ装置 110に適用可 能な電流遮断器の変形例ついて説明する。図 7及び図 8には、図 6に示される電流 遮断器 112に代えて、本発明の第 2の実施形態に係るシーリング 'ポンプアップ装置 110に適用可能な熱橈み式の電流遮断器 150が示されている。  Next, a description will be given of a modified example of the current breaker applicable to the sealing-pump-up device 110 according to the second embodiment of the present invention. FIGS. 7 and 8 show a hot-wire type current breaker 150 applicable to the sealing-pump-up device 110 according to the second embodiment of the present invention, instead of the current breaker 112 shown in FIG. It is shown.
[0102] 電流遮断器 150は、図 8に示されるように、ケーシング 152及びこのケーシング 152 内に配置された可動片 154を備えている。この可動片 154は、鉄、ステンレス、銅等 の金属材料により全体として略長方形の薄肉プレート状に形成されている。可動片 1 54には、その先端部に略矩形状のベース部 156が設けられると共に、ベース部 156 の幅方向中央部力も基端側へ延出する細長い板状の反転部 160及びベース部 156 の幅方向両端部力 それぞれ基端側へ延出する細長い板状の橈みアーム 158がー 体的に形成されている。ここで、反転部 160は、その幅が橈みアーム 158よりも広くさ れると共に、ベース部 156からの延出長が橈みアーム 158よりも短くされている。また ベース部 156の上面側には肉厚円板状の可動接点 162が固着されて 、る。 [0102] As shown in FIG. 8, the current breaker 150 includes a casing 152 and a movable piece 154 disposed in the casing 152. The movable piece 154 is formed in a generally rectangular thin plate shape from a metal material such as iron, stainless steel, or copper. Movable piece 1 The base 54 is provided with a substantially rectangular base 156 at the distal end thereof, and the elongated plate-shaped reversing part 160 and the base in the width direction of the base 156 which also have a central force in the width direction of the base 156 extending toward the base end. Both ends force An elongated plate-shaped radius arm 158 extending toward the base end side is formed physically. Here, the width of the reversing portion 160 is wider than the radius arm 158, and the extension length from the base portion 156 is shorter than the radius arm 158. A thick disk-shaped movable contact 162 is fixed to the upper surface side of the base portion 156.
[0103] 電流遮断器 150には、ケーシング 152内の基端側(図 7では、左側)に可動片 154 の基端部が連結され、可動片 154を片持ち状態で支持するブロック状の支持部 164 が設けられると共に、この支持部 164を上下方向に沿って貫通する導電板 166が設 けられている。導電板 166は、その下端部をケーシング 152の外部へ突出させており 、この導電板 166の下端部には外部接点 130が接続されている。また導電板 166に は、上下方向に沿った中間部にブロック状の接続部 167が幅方向及び基端側へ延 出するように固着されると共に、この接続部 167の上面部に沿って幅方向両端部から 内側へ切り欠かれた一対の溝部 168が形成されている。可動片 154は、一対の橈み アーム 158の基端部をそれぞれ接続部 167の上面部に当接させると共に溝部 168 内へ嵌挿している。これにより、導電板 166は可動片 154と導通している。  [0103] To the current breaker 150, the base end of the movable piece 154 is connected to the base end side (the left side in Fig. 7) inside the casing 152, and a block-shaped support for supporting the movable piece 154 in a cantilever state. A portion 164 is provided, and a conductive plate 166 penetrating the support portion 164 along the vertical direction is provided. The conductive plate 166 has a lower end protruding outside the casing 152, and an external contact 130 is connected to the lower end of the conductive plate 166. A block-shaped connecting portion 167 is fixed to the conductive plate 166 at an intermediate portion along the vertical direction so as to extend in the width direction and the base end side, and has a width along the upper surface of the connecting portion 167. A pair of grooves 168 that are cut inward from both ends in the direction are formed. The movable piece 154 has the base ends of the pair of radius arms 158 abut against the upper surface of the connection part 167 and is fitted into the groove 168. Thus, the conductive plate 166 is electrically connected to the movable piece 154.
[0104] 図 7に示されるように、ケーシング 152には、接続部 167の基端側に一対の橈みァ ーム 158の基端部それぞれ当接する段差状のストツバ部 170が形成されて 、る。ま た支持部 164には、その前面部にスリット状の嵌揷溝 172が開口している。嵌揷溝 1 72内には反転部 160の基端部が嵌挿固定されており、反転部 160は、その基端部 を嵌揷溝 172の奥端部へ当接させている。ここで、反転部 160の長さは、嵌揷溝 172 の奥端部力も反転部 160の先端部までの最短距離 L (図 7A参照)よりも所定長だけ 長くなつている。これにより、反転部 160は、上方へ向って凸状となる形状 (通電形状 )及び下方へ向って凸状となる形状 (遮断形状)の何れか一方の湾曲形状に保持さ れる。  [0104] As shown in FIG. 7, the casing 152 has a step-shaped stop portion 170 formed at the base end side of the connecting portion 167 to be in contact with the base end portions of the pair of radius arms 158, respectively. You. The support portion 164 has a slit-shaped fitting groove 172 in the front surface thereof. The base end of the reversing section 160 is fitted and fixed in the fitting groove 172, and the base end of the reversing section 160 is in contact with the inner end of the fitting groove 172. Here, the length of the reversing portion 160 is such that the force at the rear end of the fitting groove 172 is longer than the shortest distance L to the tip of the reversing portion 160 (see FIG. 7A) by a predetermined length. As a result, the reversing portion 160 is held in one of a curved shape (a conductive shape) that is convex upward and a curved shape that is a convex shape (blocking shape) downward.
[0105] 図 7に示されるように、電流遮断器 150には、ケーシング 152における導電板 166と は反対側の端部に金属製の接点板 174が配設されており、この接点板 174は上下 方向に沿ってケーシング 152を貫通しており、ケーシング 152内に挿入された先端部 には、基端 (導電板 166)側へ屈曲された固定接点部 176が形成されている。この固 定接点部 176は、上下方向に沿って可動片 154の先端部に配置された可動接点 16 2に対向している。またケーシング 152の外部へ延出した接点板 174の下端部には 外部接点 132が接続されて 、る。 As shown in FIG. 7, the current breaker 150 is provided with a metal contact plate 174 at an end of the casing 152 opposite to the conductive plate 166, and the contact plate 174 is The tip penetrates the casing 152 along the vertical direction, and is inserted into the casing 152. A fixed contact portion 176 bent toward the base end (conductive plate 166) is formed on the base. The fixed contact portion 176 faces the movable contact 162 disposed at the tip of the movable piece 154 along the vertical direction. An external contact 132 is connected to the lower end of the contact plate 174 extending to the outside of the casing 152.
[0106] ケーシング 152には、その頂板部に円形のスライド穴 178が穿設されており、このス ライド穴 178内には、リセットボタン 180がスライド可能に挿入されている。このリセット ボタン 180は、遮断形状(図 7B参照)になった反転部 160を通電形状(図 7A参照) に復帰させるためのものであり、図 7Bの実線で示される待機位置と二点鎖線で示さ れるリセット位置との間でスライド可能に支持されている。またケーシング 152内には 、リセットボタン 180の先端側に形成された鍔部 182に圧接し、リセットボタン 180を常 に待機位置へ付勢するリーフスプリング 184が配置されている。  [0106] A circular slide hole 178 is formed in the top plate portion of the casing 152, and a reset button 180 is slidably inserted into the slide hole 178. The reset button 180 is for returning the reversing portion 160 in the cut-off shape (see FIG. 7B) to the energized shape (see FIG. 7A). The reset button 180 is connected to the standby position shown by a solid line in FIG. It is slidably supported between the reset positions shown. In the casing 152, a leaf spring 184 that presses against the flange portion 182 formed on the distal end side of the reset button 180 and constantly urges the reset button 180 to the standby position is disposed.
[0107] 上記のように構成された電流遮断器 150では、反転部 160が通電形状となってい る状態で、熱膨張性及び導電性を有する金属材料からなる可動片 154に電流が流 れると、可動片 154の電気抵抗により生じるジュール熱により可動片 154が加熱され る。このとき、可動片 154の一部を形成する橈みアーム 158及び反転部 160がそれ ぞれ長手方向に沿って熱膨張する。  [0107] In the current breaker 150 configured as described above, when a current flows through the movable piece 154 made of a metal material having thermal expansion and conductivity in a state where the reversing portion 160 is in a conducting shape. The movable piece 154 is heated by Joule heat generated by the electric resistance of the movable piece 154. At this time, the radius arm 158 and the reversing part 160 which form a part of the movable piece 154 thermally expand along the longitudinal direction, respectively.
[0108] ここで、長手方向に沿って橈みアーム 158が反転部 160よりも長尺とされていること から、橈みアーム 158の膨張量が橈みアーム 158の膨張量よりも大きくなつて可動片 154に橈み方向に沿ったひずみを生じさせる。これにより、可動片 154に許容電流を 越える過電流が所定の応答時間を超えて流れ続けると、反転部 160は湾曲方向が 反転し、通電形状から遮断形状に形状変化する。可動片 154は、図 7Bに示されるよ うに、反転部 160が遮断形状になることにより、橈みアーム 158が下方へ橈むと共に 、可動接点 162が接点板 174の固定接点部 176から離間する。従って、反転部 160 が遮断形状に変形すると、車両のバッテリー力も電源回路 78への電源供給が遮断さ れる。また電流遮断器 150が作動した後、ユーザがリセットボタン 180を押下すると、 このリセットボタン 180により遮断形状に変形した反転部 160の中央部が下方へ押圧 され、反転部 160が通電形状に復元して可動接点 162が接点板 174の固定接点部 176へ当接する。 [0109] ここで、電流遮断器 150がバッテリー力も電源回路 78への電源供給を遮断する際 の許容電流値 (遮断電流値)は、電流遮断器 112の場合と同様に、車両側の電流遮 断器 (ヒューズ)の定格電流値が 15Aの場合には、 14A〜18Aに設定することが好ま しぐ 15A〜17Aに設定することが更に好ましぐまた電流遮断器 150の応答性も、 電流遮断器 112と同様に、約 70Aの電流(起動電流)が流れても、好ましくは 100ms ec (更に好ましくは、 10msec)に亘つてバッテリーからの電源供給を遮断しないよう に、過電流に対する応答性が設定されている。 [0108] Here, since the radius arm 158 is longer than the reversing portion 160 along the longitudinal direction, the expansion amount of the radius arm 158 is larger than the expansion amount of the radius arm 158. The movable piece 154 is distorted along the radial direction. As a result, when an overcurrent exceeding the allowable current continues to flow through the movable piece 154 for more than a predetermined response time, the reversing portion 160 reverses the bending direction and changes from the energized shape to the cutoff shape. As shown in FIG. 7B, the movable piece 154 has the reversing portion 160 in a blocking shape, so that the radius arm 158 is bent downward and the movable contact 162 is separated from the fixed contact portion 176 of the contact plate 174. . Accordingly, when the reversing portion 160 is deformed into the cutoff shape, the power supply to the power supply circuit 78 is also cut off by the battery power of the vehicle. Also, when the user presses the reset button 180 after the current breaker 150 is operated, the reset button 180 presses the center of the reversing portion 160 deformed into the interrupting shape downward, and the reversing portion 160 is restored to the conducting shape. The movable contact 162 contacts the fixed contact portion 176 of the contact plate 174. Here, the allowable current value (cutoff current value) when the current breaker 150 cuts off the battery power and the power supply to the power supply circuit 78 is the same as the case of the current breaker 112. When the rated current value of the breaker (fuse) is 15 A, it is preferable to set it to 14 A to 18 A.It is more preferable to set it to 15 A to 17 A.The responsiveness of the current breaker 150 also As in the case of the circuit breaker 112, even when a current (starting current) of about 70 A flows, the responsiveness to an overcurrent is preferably set so as not to interrupt the power supply from the battery for 100 ms ec (more preferably, 10 msec). Is set.
[0110] 以上説明した変形例に係る電流遮断器 150でも、電流遮断器 112と同様に、ヒユー ズ式の電流遮断器と比較して過電流に対する検出精度及び応答性をそれぞれ所望 のレベルに設定することが容易であり、かつ検出精度及び応答性の製品個体間のバ ラツキも小さくできるので、電流遮断器 150における定格電流値を車両側の電流遮 断器の定格電流値と略等しいか僅か〖こ低い値に設定しても、電源回路 78に許容電 流値 (遮断電流値)を越える過電流が流れた際には、電流遮断器 112を車両側の電 流遮断器が作動するよりも確実に早くタイミングで作動させることができる。  [0110] In the current breaker 150 according to the modified example described above, similarly to the current breaker 112, the detection accuracy and responsiveness to overcurrent are set to desired levels, respectively, as compared with the fuse-type current breaker. And the variation between the individual products with high detection accuracy and responsiveness can be reduced, so that the rated current value of the current breaker 150 is almost equal to or slightly smaller than the rated current value of the current breaker on the vehicle side.し て も Even if the current is set to a lower value, if an overcurrent that exceeds the allowable current value (cutoff current value) flows through the power supply circuit 78, the current breaker 112 will be activated as compared to the current breaker on the vehicle side. Also, it can be operated quickly and reliably.
〔第 3の実施形態〕  [Third embodiment]
図 9には、本発明の第 2の実施形態に係るタイヤのシーリング 'ポンプアップ装置が 示されている。このシーリング ·ポンプアップ装置 230は、第 1及び第 2のシーリング' ポンプアップ装置 30, 110と同様に、タイヤがパンクした際、このタイヤ及びホイール を交換することなぐタイヤをシーリング剤により補修して所定の基準圧まで内圧をポ ンプアップするものである。なお、第 3の実施形態に係るシーリング 'ポンプアップ装 置 230において、第 1及び第 2のシーリング 'ポンプアップ装置 30, 110と同一の部 分には同一符号を付して説明を省略する。  FIG. 9 shows a tire sealing and pumping-up device according to a second embodiment of the present invention. The sealing and pumping-up device 230, like the first and second sealing 'pumping-up devices 30, 110, repairs the tire and the tire without replacing the wheel with a sealing agent when the tire is punctured. The internal pressure is pumped up to a predetermined reference pressure. In the sealing 'pump-up device 230 according to the third embodiment, the same components as those of the first and second sealing' pump-up devices 30 and 110 are denoted by the same reference numerals and description thereof will be omitted.
[0111] 図 9に示されるように、シーリング 'ポンプアップ装置 230は、その外殻部として箱状 のケーシング 232を備えており、ケーシング 232内には、液剤容器 234内力もタイヤ 1 40の内部へシーリング剤 36を給送するための給液ポンプ 236が配置されている。液 剤容器 234の底部付近には、収容したシーリング剤 16を外部へ吐出するため吐出 口 235力 S設けられている。  [0111] As shown in Fig. 9, the sealing-pump-up device 230 includes a box-shaped casing 232 as an outer shell portion thereof. A liquid supply pump 236 for supplying the sealing agent 36 is provided. In the vicinity of the bottom of the liquid container 234, a discharge port 235 is provided for discharging the contained sealing agent 16 to the outside.
[0112] 給液ポンプ 236には、液剤吸入口 238及び液剤供給口 240がそれぞれ外部へ向 つて開口しており、液剤吸入口 238は、接続配管 242を介して液剤容器 234の吐出 口 235に接続されている。給液ポンプ 236は、その作動時に接続配管 242を通して 液剤容器 234内のシーリング剤 36を吸入し、このシーリング剤 36を加圧しつつ液剤 供給口 240から吐出する。また給液ポンプ 236は、液剤供給口 240が給液配管 244 を介して気液切換弁 60の吸入ポート 62に接続されている。一方、エアコンプレッサ 3 4のエア供給口 44がエア配管 246を介して気液切換弁 60の吸入ポート 61に接続さ れている。 [0112] The liquid supply pump 236 has a liquid agent inlet 238 and a liquid agent supply port 240, each of which is directed to the outside. The liquid agent suction port 238 is connected to a discharge port 235 of the liquid agent container 234 via a connection pipe 242. The liquid supply pump 236 draws in the sealing agent 36 in the liquid agent container 234 through the connection pipe 242 during operation, and discharges the sealing agent 36 from the liquid agent supply port 240 while pressurizing the sealing agent 36. The liquid supply pump 236 has a liquid material supply port 240 connected to a suction port 62 of the gas-liquid switching valve 60 via a liquid supply pipe 244. On the other hand, the air supply port 44 of the air compressor 34 is connected to the suction port 61 of the gas-liquid switching valve 60 via the air pipe 246.
[0113] なお、本実施形態に係るシーリング ·ポンプアップ装置 230では、給液ポンプ 236 により液剤容器 234内力もシーリング剤 36を吸引し、このシーリング剤 36を、ジョイン トホース 66を通してタイヤ 140内へ給送する構造が採用されている。このことから、液 剤容器 234には、シーリング剤 36の静圧のみが作用し、タイヤ 140の内圧 (正圧)に ついては直接、液剤容器 234に作用することがない。この結果、液剤容器 234として は、第 1の実施形態に係る液剤容器 40よりも更に低い耐圧性を有するものを用いる ことができ、しカゝも特別な気密構造を採用する必要もな ヽ。  In the sealing / pumping-up device 230 according to this embodiment, the liquid agent container 234 also sucks the sealing agent 36 by the liquid supply pump 236, and supplies the sealing agent 36 into the tire 140 through the joint hose 66. The structure to send is adopted. For this reason, only the static pressure of the sealing agent 36 acts on the liquid container 234, and the internal pressure (positive pressure) of the tire 140 does not directly act on the liquid container 234. As a result, it is possible to use a liquid material container 234 having a lower pressure resistance than the liquid material container 40 according to the first embodiment, and it is not necessary to employ a special airtight structure.
[0114] 給液ポンプ 236は、基本的に第 1の実施形態に係るエアコンプレッサ 34, 330と同 一構造のもの(2気筒レシプロ型)が用いられている。但し、シーリング剤 36が非圧縮 性流体としての性質を有することから、吸入弁及び排気弁の開閉タイミング、ピストン のストローク、クランクシャフトの回転速度等の設定がエアコンプレッサ 34, 330とは 異なっている。  [0114] The liquid supply pump 236 basically has the same structure as the air compressors 34 and 330 according to the first embodiment (two-cylinder reciprocating type). However, since the sealing agent 36 has the property of an incompressible fluid, the setting of the opening / closing timing of the intake valve and the exhaust valve, the stroke of the piston, the rotation speed of the crankshaft, and the like are different from those of the air compressors 34 and 330. .
[0115] 次に、本実施形態に係るシーリング 'ポンプアップ装置 230を用いてパンクしたタイ ャ 140を修理する作業手順を説明する。  Next, an operation procedure for repairing the punctured tire 140 using the sealing-pump-up device 230 according to the present embodiment will be described.
[0116] タイヤ 140にパンクが発生した際には、先ず、作業者は、タイヤ 140のタイヤバルブ 142にアダプタ 68をねじ止めしてジョイントホース 66をパンクしたタイヤ 140へ接続 する。次いで、作業者は、電源ケーブル 80先端部のプラグ 82を車両のシガレットライ ターのソケット等へ差し込んだ後、操作パネル 70の起動 Z停止ボタン 74を押下する 。これに連動し、電源回路 78は、気液切換弁 60の吸入ポート 62を排出ポート 63へ 連通させると共に、これに連動して給液ポンプ 236を作動させる。これにより、給液ポ ンプ 236は液剤容器 234内のシーリング剤 36をシリンダ 250, 252内へ吸入すると 共に、シリンダ 250, 252内へ吸人したシーリング剤 36をピストン 266, 268によりカロ 圧しつつ給液配管 244、気液切換弁 60及びジョイントホース 66を通してタイヤ 140 内へ供給する。 When a puncture occurs in the tire 140, first, the operator screws the adapter 68 to the tire valve 142 of the tire 140 and connects the joint hose 66 to the punctured tire 140. Next, the operator inserts the plug 82 at the tip of the power cable 80 into a socket or the like of a cigarette lighter of the vehicle, and then presses the activation Z stop button 74 of the operation panel 70. In conjunction with this, the power supply circuit 78 connects the suction port 62 of the gas-liquid switching valve 60 to the discharge port 63 and operates the liquid supply pump 236 in conjunction with this. As a result, the supply pump 236 draws the sealing agent 36 in the liquid agent container 234 into the cylinders 250 and 252. In both cases, the sealing agent 36 sucked into the cylinders 250 and 252 is supplied into the tire 140 through the liquid supply pipe 244, the gas-liquid switching valve 60 and the joint hose 66 while the pistons 266 and 268 pressurize the calorie.
[0117] 作業者は、液剤容器 234内からタイヤ 140内への所定量のシーリング剤 36の注入 が完了すると、操作パネル 70の気液切換ボタン 74を押下する。この所定量のシーリ ング剤 36の注入完了は、注入開始からの時間をパラメータとして判断しても良ぐま た液剤容器 40に透明な窓部を設けおき、この窓部を通して作業者がシーリング剤 36 の注入量を確認するようにして良い。  [0117] When the injection of the predetermined amount of the sealing agent 36 from the inside of the liquid agent container 234 into the tire 140 is completed, the operator presses the gas-liquid switching button 74 of the operation panel 70. When the injection of the predetermined amount of the sealing agent 36 is completed, a transparent window is provided in the liquid agent container 40, which can be determined using the time from the start of the injection as a parameter. You may check the injection amount.
[0118] 気液切換ボタン 74の押下に連動し、電源回路 78は、給液ポンプ 236を停止させる と共に、気液切換弁 60の排出ポート 63の連通先を吸入ポート 62から吸入ポート 61 に切り換えた後、エアコンプレッサ 34を作動させる。これにより、エアコンプレッサ 34 から供給される圧縮空気は、エア配管 246、気液切換弁 60及びジョイントホース 66 を通してタイヤ 140内へ供給され、タイヤ 140の内圧を上昇させてタイヤ 140を膨張 させる。  [0118] In conjunction with the pressing of the gas-liquid switching button 74, the power supply circuit 78 stops the liquid supply pump 236 and switches the communication destination of the discharge port 63 of the gas-liquid switching valve 60 from the suction port 62 to the suction port 61. After that, the air compressor 34 is operated. Thereby, the compressed air supplied from the air compressor 34 is supplied into the tire 140 through the air pipe 246, the gas-liquid switching valve 60, and the joint hose 66, and the internal pressure of the tire 140 is increased to expand the tire 140.
[0119] この後、作業者は、エアコンプレッサ 34に設けられた圧力ゲージ(図示省略)により タイヤ 140の内圧が規定圧になったことを確認したならば、起動/停止ボタン 72を再 度、押下する。これに連動し、電源回路 78はエアコンプレッサ 34への電源供給を停 止する。次いで、作業者は、アダプタ 68をタイヤバルブ 142から取り外してジョイント ホース 66をタイヤ 140から切り離し、第 1の実施形態の場合と同様に、予備走行を行 つた後、必要に応じてシーリング ·ポンプアップ装置 230によりタイヤ 140を規定圧ま でポンプアップする。  [0119] Thereafter, the operator confirms that the internal pressure of the tire 140 has reached the specified pressure by a pressure gauge (not shown) provided in the air compressor 34, and then presses the start / stop button 72 again. Press. In conjunction with this, the power supply circuit 78 stops supplying power to the air compressor 34. Next, the worker removes the adapter 68 from the tire valve 142, disconnects the joint hose 66 from the tire 140, performs a preliminary run as in the case of the first embodiment, and then performs sealing / pump-up as necessary. The device 230 pumps up the tire 140 to the specified pressure.
[0120] 以上説明した本発明の実施形態に係る給液ポンプ 236では、基本的に第 1の実施 形態に係るエアコンプレッサ 34, 330と同一構造 (N個のピストンのクランクシャフトと の連結点と残りの N個のピストンのクランクシャフトとの連結点との位相差力 直列配 置の場合には 180° 、対向配置の場合には 0° )を有することから、第 1の実施形態 に係るエアコンプレッサ 34を作動させた場合と同様に、 1個のピストンが吐出方向へ 移動し、このピストンのシリンダ内での移動負荷が相対的に増大しても、この時には 残りの 1個のピストンが吸入方向へ移動し、このピストンのシリンダ内での移動負荷が 減少することから、 2個のピストン 266, 268の負荷変動が互いに打ち消され、クランク シャフトを回転させる駆動モータに流れる駆動電流も略一定に保つことができるので 、車両のバッテリーにより供給可能な定格電流値と略等しい電流を常に給液ポンプ 2 36の駆動モータに供給できるようになる。 [0120] The liquid supply pump 236 according to the embodiment of the present invention described above has basically the same structure as the air compressors 34 and 330 according to the first embodiment (the connection point between the N pistons and the crankshaft). The phase difference force between the remaining N pistons and the connection point with the crankshaft is 180 ° in the case of the serial arrangement, and 0 ° in the case of the opposed arrangement, so that the air according to the first embodiment As in the case of operating the compressor 34, one piston moves in the discharge direction, and even if the moving load of this piston in the cylinder increases relatively, at this time, the remaining one piston sucks. Direction, and the moving load of this piston in the cylinder Because of the decrease, the load fluctuations of the two pistons 266 and 268 cancel each other, and the drive current flowing to the drive motor that rotates the crankshaft can be kept substantially constant. A current substantially equal to the value can always be supplied to the drive motor of the liquid supply pump 236.
[0121] 従って、本実施形態に係るシーリング 'ポンプアップ装置 230によっても、給液ボン プ 236による空気入りタイヤへのシーリング剤 36の供給効率を高めてタイヤ 140に対 するシーリング剤 36の注入時間を効率的に短縮できると共に、エアコンプレッサ 34 によるタイヤ 140への圧縮空気の供給効率を高めてタイヤ 140に対するポンプアップ 時間を効率的に短縮できる。  [0121] Therefore, even with the sealing-pump-up device 230 according to the present embodiment, the supply efficiency of the sealing agent 36 to the pneumatic tire by the liquid supply pump 236 is increased, and the injection time of the sealing agent 36 into the tire 140 is increased. In addition, the efficiency of supplying compressed air to the tire 140 by the air compressor 34 can be increased, and the pump-up time for the tire 140 can be shortened efficiently.
[0122] またシーリング ·ポンプアップ装置 230では、プラグ 82と電源回路 78との間に電流 遮断器 76が配置されており、この電流遮断器 76により電源回路 78に過電流が流れ ると、この電源回路 78への電力供給が遮断される。従って、本実施形態に係るシーリ ング 'ポンプアップ装置 230によれば、第 1の実施形態に係るシーリング 'ポンプアツ プ装置 30と同様に、車両のバッテリーにより供給可能な定格電流値と略等しい最大 電流値の電流をエアコンプレッサ 34及び給液ポンプ 236に供給し、エアコンプレッサ 34及び給液ポンプ 236それぞれを運転できるので、エアコンプレッサ 34及び給液ポ ンプ 236の運転効率を高めてタイヤ 140に対するシーリング剤 36の注入時間及びポ ンプアップ時間をそれぞれ効率的に短縮できる。  [0122] In the sealing / pump-up device 230, a current breaker 76 is disposed between the plug 82 and the power supply circuit 78. When an overcurrent flows through the power supply circuit 78 by the current breaker 76, the current The power supply to the power supply circuit 78 is cut off. Therefore, according to the sealing 'pump-up device 230 according to the present embodiment, similarly to the sealing' pump-up device 30 according to the first embodiment, the maximum current that is substantially equal to the rated current value that can be supplied by the battery of the vehicle. Is supplied to the air compressor 34 and the liquid supply pump 236 to operate the air compressor 34 and the liquid supply pump 236, respectively, so that the operation efficiency of the air compressor 34 and the liquid supply pump 236 is increased, and the sealing agent for the tire 140 is increased. 36 injection time and pump-up time can be efficiently reduced.
[0123] なお、本実施形態に係るシーリング ·ポンプアップ装置 230においては、プラグ 82と 電源回路 78との間に電流遮断器 76の代わりに、プラグ 82内〖こ電力遮断器 112, 15 0の何れか一方を配置し、この電力遮断器 112, 150により過電流を遮断するように しても良ぐまたプラグ 82内に電流遮断器 76, 112, 150の何れか一方を配置し、こ の電力遮断器 112, 150により過電流を遮断するようにしても良い。またシーリング' ポンプアップ装置 230においては、エアコンプレッサ 34の代わりにエアコンプレッサ 3 30 (図 4参照)を用いて、シーリング剤 36が注入されたタイヤ 140へ圧縮空気を供給 しても良い。  In the sealing / pump-up device 230 according to the present embodiment, instead of the current breaker 76 between the plug 82 and the power supply circuit 78, the power breakers 112 and 150 in the plug 82 Either one may be arranged and the overcurrent may be interrupted by the power breakers 112 and 150.In addition, one of the current breakers 76, 112 and 150 is arranged in the plug 82, and The overcurrent may be interrupted by the power interrupters 112 and 150. In the sealing pump-up device 230, an air compressor 330 (see FIG. 4) may be used instead of the air compressor 34 to supply compressed air to the tire 140 into which the sealing agent 36 has been injected.
実施例 1  Example 1
[0124] 図 1に示されるようなシーリング ·ポンプアップ装置に対して電流遮断器としてヒユー ズ式 (比較例 A及び B)電磁式 (実施例 C)、バイメタル式 (実施例 D)及び熱橈み式( 実施例 E)の電流遮断器をそれぞれ適用し、それぞれの電流遮断器に通電試験を行 つた結果を以下に説明する。 [0124] As a current breaker for a sealing and pump-up device as shown in FIG. (Comparative Examples A and B) Electromagnetic (Example C), Bimetallic (Example D), and Thermal Radial (Example E) current breakers are applied, and power is supplied to each current breaker. The results of the tests are described below.
[0125] [表 1] [0125] [Table 1]
Figure imgf000040_0001
Figure imgf000040_0001
上記 [表 1]から明らかなように、定格電流値が 10Aのヒューズ式の電流遮断器 (比 較例 A)を用いた場合には、起動電流として想定した 70A通電時に電力の遮断まで に要する時間が 10msecとなり、車両側に配置された電流遮断器に対する保護性能 は確保される力 定常的にはポンプアップ装置のエアコンプレッサを 10Aの電流で 運転しなければならず、タイヤへのシーリング剤の注入時間及びポンプアップ時間が 遅延する。 As is clear from [Table 1] above, when a fuse-type current breaker with a rated current value of 10 A (Comparative Example A) is used, it is necessary to cut off the power when 70 A is energized as the starting current. Time is 10 msec, and the protection performance against the current breaker located on the vehicle side is ensured.The air compressor of the pump-up device must be constantly operated with a current of 10 A. Infusion and pump-up times are delayed.
[0126] また定格電流値が 15Aのヒューズ式の電流遮断器 (比較例 B)を用いた場合には、 起動電流として想定した 70A通電時に電力の遮断までに要する時間が 120msecと なり、車両側に配置された電流遮断器に対する保護性能が満足されない。  When a fuse-type current breaker with a rated current value of 15 A (Comparative Example B) is used, the time required to cut off the power at the time of energizing 70 A as the starting current is 120 msec, and the vehicle side The protection performance for the current breaker arranged in the above is not satisfied.
[0127] 一方、定格電流値が 15Aの電磁式の電流遮断器 (実施例 C)を用いた場合には、 起動電流として想定した 70A通電時に電力の遮断までに要する時間が 50msecとな り、車両側に配置された電流遮断器に対する保護性能は確保され、かつ定常的に約 15 Aの電流でポンプアップ装置のエアコンプレッサを安定して運転できる。  [0127] On the other hand, when an electromagnetic current breaker with a rated current value of 15A (Example C) is used, the time required to cut off the power at the time of energizing 70A as the starting current is 50msec, The protection performance against the current breaker arranged on the vehicle side is secured, and the air compressor of the pump-up device can be operated stably with a constant current of about 15 A.
[0128] また定格電流値が 15Aのバイメタル式の電流遮断器 (実施例 D)を用いた場合にも 、起動電流として想定した 70A通電時に電力の遮断までに要する時間が 50msecと なり、車両側に配置された電流遮断器に対する保護性能は確保され、かつ定常的に 約 15Aの電流でポンプアップ装置のエアコンプレッサを安定して運転できる。 [0128] Further, even when a bimetal-type current breaker having a rated current value of 15A (Example D) is used, the time required to cut off the power at the time of energizing 70A as the starting current is 50msec. Therefore, the protection performance against the current breaker arranged on the vehicle side is secured, and the air compressor of the pump-up device can be operated stably with a current of about 15A constantly.
[0129] また定格電流値が 15Aの熱橈み式の電流遮断器 (実施例 E)を用いた場合にも、 起動電流として想定した 70A通電時に電力の遮断までに要する時間が 20msecとな り、車両側に配置された電流遮断器に対する保護性能は確保され、かつ定常的に約 15 Aの電流でポンプアップ装置のエアコンプレッサを安定して運転できる。 [0129] Also, in the case of using a hot-wire type current breaker having a rated current value of 15A (Example E), the time required to cut off the electric power at the time of energizing 70A as the starting current is 20 msec. Therefore, the protection performance against the current breaker arranged on the vehicle side is secured, and the air compressor of the pump-up device can be operated stably with a current of about 15 A constantly.
実施例 2  Example 2
[0130] 従来の単気筒及び対向 2気筒のエアコンプレッサ (比較例 A及び B)、図 3に示され るエアコンプレッサ(実施例 C)及び図 4に示されるエアコンプレッサ(実施例 D)を、そ れぞれ吐出口に無負荷させず、又は圧力負荷( = 0. 25MPa)を作用させつつ運転 した結果を下記 [表 2]に記載する。  The conventional single-cylinder and opposed two-cylinder air compressors (Comparative Examples A and B), the air compressor shown in FIG. 3 (Example C), and the air compressor shown in FIG. The following Table 2 shows the results of operation without applying any load to the discharge ports or applying a pressure load (= 0.25 MPa).
[0131] [表 2]  [0131] [Table 2]
Figure imgf000041_0001
上記 [表 2]から明らかなように、実施例 C及び Dのエアコンプレッサは、無負荷及び 負荷条件下の何れでも比較例 1の約 2倍の圧縮空気が得られ、このときに必要となる 駆動電流は比較例 1の約 1. 5倍にすぎない。また実施例 C及び Dのエアコンプレツ サでは、無負荷及び負荷条件下の何れでも比較例 Bと略同等の圧縮空気が得られ にも拘わらず、このときに必要となる駆動電流を比較例 2の約 75%に抑制できる。ま た比較例 Bでは、駆動電流の電流値 (最大電流値)が 20A近くまで上昇することから 、バッテリーと駆動モータとの間に介装されたヒューズ(15A)が比較的短時間で溶断 した。
Figure imgf000041_0001
As is clear from Table 2 above, the air compressors of Examples C and D can obtain approximately twice as much compressed air as Comparative Example 1 under both no-load and loaded conditions, and are required at this time. The driving current is only about 1.5 times that of Comparative Example 1. In addition, in the air conditioners of Examples C and D, although the compressed air substantially equivalent to that of Comparative Example B was obtained under both no-load and load conditions, the driving current required at this time was reduced by the comparative example. It can be reduced to about 75% of 2. In Comparative Example B, the current value (maximum current value) of the drive current rises to nearly 20A. The fuse (15A) interposed between the battery and the drive motor blown in a relatively short time.
符号の説明 Explanation of symbols
30 シーリング 'ポンプアツ:;プ装置 30 Sealing 'pumps :; pumping equipment
34 エアコンプレッサ  34 air compressor
36 シーリング剤  36 Sealing agent
40 液剤容器  40 Liquid container
76 電流遮断器  76 Current breaker
78 電源回路  78 Power supply circuit
80 電源ケーブル  80 Power cable
82 プラグ  82 plug
84 駆動モータ  84 Drive motor
86 エアポンプ  86 air pump
110 シーリング 'ポンプアツ:; 7°装置  110 sealing 'pump at :; 7 ° device
112 電流遮断器  112 Current breaker
140 タイヤ(空気入りタイヤ)  140 tires (pneumatic tires)
150 電流遮断器  150 current breaker
230 シーリング 'ポンプアツ:; 7°装置  230 sealing 'pump at: 7 ° device
234 液剤容器 234 Liquid container
36 給液ポンプ 36 Liquid supply pump
30 エアコンプレッサ 30 air compressor
31 エアポン  31 airpon

Claims

請求の範囲 The scope of the claims
[1] パンクした空気入りタイヤ内に液状のシーリング剤を注入した後、空気入りタイヤ内 へ加圧空気を供給して空気入りタイヤの内圧を昇圧するタイヤのシーリング 'ポンプ アップ装置であって、  [1] A tire sealing pump that injects a liquid sealing agent into a punctured pneumatic tire and then supplies pressurized air into the pneumatic tire to increase the internal pressure of the pneumatic tire.
シーリング剤容器内に収納されたシーリング剤を空気入りタイヤ内へ給送するシー リング剤注入手段と、  Sealing agent injection means for feeding the sealing agent contained in the sealing agent container into the pneumatic tire;
空気入りタイヤ内に空気を圧送するエア圧送手段と、  Air pumping means for pumping air into the pneumatic tire,
電力供給を受けて、前記シーリング剤注入手段及びエア圧送手段を駆動するため の動力を発生する駆動手段と、  Driving means for receiving power supply and generating motive power for driving the sealing agent injection means and the air pressure feeding means;
車両に搭載されたバッテリーに接続されて該バッテリー力 前記駆動手段へ電力を 供給する電力供給手段と、  Power supply means connected to a battery mounted on a vehicle and supplying power to the driving means;
前記電力供給手段に許容電流値を超える過電流が流れると、前記駆動手段への 電力供給を遮断する過電流遮断手段とを有し、  An overcurrent cutoff unit that cuts off power supply to the drive unit when an overcurrent exceeding an allowable current value flows through the power supply unit;
前記過電流遮断手段として、前記電力供給手段に過電流が流れると、磁性材料か らなる電力遮断用の可動片を電磁力により作動させて前記電力供給手段への電力 供給を遮断する電磁式の電流遮断器を用いたことを特徴とするシーリング 'ポンプァ ップ装置。  The overcurrent cutoff means is an electromagnetic type that cuts off power supply to the power supply means by operating a power cutoff movable piece made of a magnetic material by electromagnetic force when an overcurrent flows through the power supply means. Sealing pump-up device characterized by using a current breaker.
[2] パンクした空気入りタイヤ内に液状のシーリング剤を注入した後、空気入りタイヤ内 へ加圧空気を供給して空気入りタイヤの内圧を昇圧するタイヤのシーリング 'ポンプ アップ装置であって、  [2] A tire sealing 'pump-up device, which injects a liquid sealing agent into a punctured pneumatic tire and then supplies pressurized air into the pneumatic tire to increase the internal pressure of the pneumatic tire.
シーリング剤容器内に収納されたシーリング剤を空気入りタイヤ内へ給送するシー リング剤注入手段と、  Sealing agent injection means for feeding the sealing agent contained in the sealing agent container into the pneumatic tire;
空気入りタイヤ内に空気を圧送するエア圧送手段と、  Air pumping means for pumping air into the pneumatic tire,
電力供給を受けて、前記シーリング剤注入手段及びエア圧送手段を駆動するため の動力を発生する駆動手段と、  Driving means for receiving power supply and generating motive power for driving the sealing agent injection means and the air pressure feeding means;
車両に搭載されたバッテリーに接続されて該バッテリー力 前記駆動手段へ電力を 供給する電力供給手段と、  Power supply means connected to a battery mounted on a vehicle and supplying power to the driving means;
前記電力供給手段に許容電流値を超える過電流が流れると、前記電力供給手段 への電力供給を遮断する過電流遮断手段とを有し、 When an overcurrent exceeding an allowable current value flows through the power supply means, the power supply means Overcurrent cutoff means for cutting off power supply to the
前記過電流遮断手段として、前記電力供給手段に過電流が流れると、金属材料に より形成された電力遮断用の可動片をジュール熱により変形させて前記電力供給手 段への電力供給を遮断する熱作動型の電流遮断器を用いたことを特徴とするシーリ ング 'ポンプアップ装置。  As the overcurrent cutoff means, when an overcurrent flows through the power supply means, the movable piece for power cutoff formed of a metal material is deformed by Joule heat to cut off the power supply to the power supply means. Sealing 'pump-up device, characterized by using a heat-actuated current breaker.
[3] 前記電流遮断器は、バイメタルによりプレート状に形成された前記可動片を備え、 該可動片の基端部を第 1の接点に接続すると共に先端部が第 2の接点に接するよう に支持し、前記電力供給手段への電力供給の遮断時に、前記該可動片をジユール 熱により橈み方向へ変形させて前記第 2の接点力 離間させることを特徴とする請求 項 2記載のシーリング 'ポンプアップ装置。  [3] The current breaker includes the movable piece formed of a bimetal in a plate shape, and connects a base end of the movable piece to a first contact and a tip of the movable piece to a second contact. 3. The sealing device according to claim 2, wherein the movable piece is deformed in a radial direction by Joule heat to separate the second contact force when the power supply to the power supply means is cut off. Pump-up device.
[4] 前記電流遮断器は、熱膨張性を有する金属材料によりプレート状に形成されると共 に、片持ち状態で支持されるベース部及び、該ベース部の基端部と先端部との間で 湾曲状態となるように支持される反転部が設けられた前記可動片を備え、前記べ一 ス部の基端部を第 1の接点に接続すると共に先端部が第 2の接点に接するように支 持し、前記電力供給手段への電力供給の遮断時には、前記反転部をジュール熱に より湾曲方向が反転するように変形させて前記ベース部の先端部を前記第 2の接点 力 離間させることを特徴とする請求項 2記載のシーリング 'ポンプアップ装置。  [4] The current breaker is formed of a metal material having a thermal expansion property in a plate shape, and has a base portion supported in a cantilevered state, and a base end portion and a tip end portion of the base portion. The movable piece provided with a reversing portion supported so as to be in a curved state between the base portion, the base end of the base portion being connected to a first contact, and the tip being in contact with a second contact. When the power supply to the power supply means is cut off, the reversing portion is deformed so that the bending direction is reversed by Joule heat, and the tip of the base portion is separated from the second contact force. 3. The sealing 'pump-up device according to claim 2, wherein
[5] 前記電力供給手段に、車両に設けられたシガーソケットに着脱可能に嵌挿されて 車両に搭載されたバッテリーに電気的に接続されるプラグ部材を設けると共に、該プ ラグ部材に前記電流遮断器を内蔵させ又は一体的に設けたことを特徴とする請求項 1乃至 4の何れ力 1項記載のシーリング 'ポンプアップ装置。  [5] The power supply means is provided with a plug member detachably fitted into a cigar socket provided in the vehicle and electrically connected to a battery mounted on the vehicle. 5. The sealing 'pump-up device according to claim 1, wherein a circuit breaker is built-in or provided integrally.
[6] 前記エア圧送手段がタイヤのタイヤバルブに着脱可能に接続され、エア発生源を タイヤに連通させるアダプタ部材を備え、  [6] The air pressure feeding means is detachably connected to a tire valve of the tire, and has an adapter member for communicating an air source to the tire,
前記アダプタ部材の表面部分をゴム組成物又は榭脂材料により被覆したことを特 徴とする請求項 1乃至 5の何れか 1項記載のシーリング 'ポンプアップ装置。  The sealing-pump-up device according to any one of claims 1 to 5, wherein a surface portion of the adapter member is coated with a rubber composition or a resin material.
[7] 前記シーリング剤注入手段は、  [7] The sealing agent injection means,
前記シーリング剤容器内に接続されると共に該シーリング剤容器内からシーリング 剤を吸入する吸入口及び、シーリング剤容器内から吸入したシーリング剤を加圧状 態で吐出すると共に空気入りタイヤへ接続される吐出口がそれぞれ形成された複数 のシリンダと、 A suction port connected to the inside of the sealing agent container and for sucking the sealing agent from inside the sealing agent container; A plurality of cylinders each having a discharge port which is discharged in a state and connected to a pneumatic tire,
複数の前記シリンダ内にそれぞれ往復移動可能に配設され、前記シリンダ内の容 積を膨張させる吸入方向への移動時に、前記吸入口を通して前記シーリング剤容器 力 前記シリンダ内へシーリング剤を吸入させ、前記シリンダ内の容積を縮小させる 吐出方向への移動時に、前記シリンダ内のシーリング剤を加圧しつつ前記吐出口か ら吐出させるピストンと、  The sealing agent container force is sucked into the cylinder through the suction port when moving in the suction direction to expand the volume in the cylinder, and is disposed so as to be reciprocally movable in each of the plurality of cylinders. A piston that discharges from the discharge port while pressurizing the sealing agent in the cylinder when moving in the discharge direction to reduce the volume in the cylinder;
複数の前記ピストンがそれぞれ連結され、前記駆動手段力 の動力により回転する と共に、前記ピストンを前記吸入方向及び前記吐出方向へ交互に移動させるクランク シャフトとを有し、  A crankshaft connected to each of the plurality of pistons, rotated by the power of the driving means, and alternately moving the pistons in the suction direction and the discharge direction;
前記シリンダの設置数を 2N個(Nは自然数)とし、該 2N個のシリンダを前記クランク シャフトの軸方向に沿って直列的に配置すると共に、  The number of the cylinders to be installed is 2N (N is a natural number), and the 2N cylinders are arranged in series along the axial direction of the crankshaft,
N個のシリンダ内にそれぞれ配設された前記ピストンの前記クランクシャフトとの連 結点と残りの N個のシリンダ内にそれぞれ配設された前記ピストンの前記クランタシャ フトとの連結点との位相差を 180° に設定したことを特徴とする請求項 1乃至 6の何 れカ 1項記載のシーリング ·ポンプアップ装置。  Phase difference between the connection points of the pistons arranged in the N cylinders with the crankshaft and the connection points of the pistons arranged in the remaining N cylinders with the cranker shaft, respectively. 7. The sealing and pumping-up device according to claim 1, wherein the pressure is set to 180 °.
前記シーリング剤注入手段は、  The sealing agent injection means,
前記シーリング剤容器内に接続されると共に該シーリング剤容器内からシーリング 剤を吸入する吸入口及び、シーリング剤容器内から吸入したシーリング剤を加圧状 態で吐出すると共に空気入りタイヤへ接続される吐出口がそれぞれ形成された複数 のシリンダと、  A suction port that is connected to the sealing agent container and sucks the sealing agent from the sealing agent container, discharges the sealing agent sucked from the sealing agent container in a pressurized state, and is connected to the pneumatic tire. A plurality of cylinders each having a discharge port,
複数の前記シリンダ内にそれぞれ往復移動可能に配設され、前記シリンダ内の容 積を膨張させる吸入方向への移動時に、前記吸入口を通して前記シーリング剤容器 力 前記シリンダ内へシーリング剤を吸入させ、前記シリンダ内の容積を縮小させる 吐出方向への移動時に、前記シリンダ内のシーリング剤を加圧しつつ前記吐出口か ら吐出させるピストンと、  The sealing agent container force is sucked into the cylinder through the suction port when moving in the suction direction to expand the volume in the cylinder, and is disposed so as to be reciprocally movable in each of the plurality of cylinders. A piston that discharges from the discharge port while pressurizing the sealing agent in the cylinder when moving in the discharge direction to reduce the volume in the cylinder;
複数の前記ピストンがそれぞれ連結され、前記駆動手段力 の動力により回転する と共に、前記ピストンを前記吸入方向及び前記吐出方向へ交互に移動させるクランク シャフトとを有し、 A plurality of pistons are connected to each other, rotate by the power of the driving means, and alternately move the pistons in the suction direction and the discharge direction. Having a shaft,
前記シリンダの設置数を 2N個(Nは自然数)とし、 2N個のうち N個のシリンダを前 記クランクシャフトの軸方向に沿って直列的に配置し、残りの N個のシリンダを、前記 クランクシャフトを中心とする周方向に沿って前記 N個のシリンダとは異なる部位に直 列的に配置すると共に、  The number of cylinders to be installed is 2N (N is a natural number), N of the 2N cylinders are arranged in series along the axial direction of the crankshaft, and the remaining N cylinders are Along the circumferential direction around the shaft, the cylinders are arranged in series at a portion different from the N cylinders,
前記 N個のシリンダ内にそれぞれ配設された前記ピストンの前記クランクシャフトと の連結点と前記残りの N個のシリンダ内にそれぞれ配設された前記ピストンの前記ク ランクシャフトとの連結点との位相差を 0° に設定したことを特徴とする請求項 1乃至 6 の何れ力 1項記載のシーリング 'ポンプアップ装置。  A connection point between the pistons disposed in the N cylinders and the crankshaft and a connection point between the pistons disposed in the remaining N cylinders and the crankshaft, respectively. The sealing 'pump-up device according to any one of claims 1 to 6, wherein the phase difference is set to 0 °.
[9] 空気入りタイヤ内へ加圧空気を供給して空気入りタイヤの内圧を昇圧するタイヤの ポンプアップ装置であって、 [9] A tire pump-up device for supplying pressurized air into the pneumatic tire to increase the internal pressure of the pneumatic tire,
空気入りタイヤ内に空気を圧送するエア圧送手段と、  Air pumping means for pumping air into the pneumatic tire,
電力の供給を受けてエア圧送手段を駆動するための動力を発生する駆動手段と、 車両に搭載されたバッテリーに接続されて該バッテリー力 前記駆動手段へ電力を 供給する電力供給手段と、  A driving unit that receives power supply and generates power for driving the air pumping unit; a power supply unit that is connected to a battery mounted on a vehicle and supplies power to the driving unit;
前記電力供給手段に許容電流値を超える過電流が流れると、前記駆動手段への 電力供給を遮断する過電流遮断手段とを有し、  An overcurrent cutoff unit that cuts off power supply to the drive unit when an overcurrent exceeding an allowable current value flows through the power supply unit;
前記過電流遮断手段として、前記電力供給手段に過電流が流れると、磁性材料か らなる電力遮断用の可動片を電磁力により作動させて前記電力供給手段への電力 供給を遮断する電磁式の電流遮断器を用いたことを特徴とするポンプアップ装置。  The overcurrent cutoff means is an electromagnetic type that cuts off power supply to the power supply means by operating a power cutoff movable piece made of a magnetic material by electromagnetic force when an overcurrent flows through the power supply means. A pump-up device using a current breaker.
[10] 空気入りタイヤ内へ加圧空気を供給して空気入りタイヤの内圧を昇圧するタイヤの ポンプアップ装置であって、 [10] A tire pump-up device for supplying pressurized air into a pneumatic tire to increase the internal pressure of the pneumatic tire,
空気入りタイヤ内に空気を圧送するエア圧送手段と、  Air pumping means for pumping air into the pneumatic tire,
外部力 電力の供給を受けてエア圧送手段を駆動するための動力を発生する駆動 手段と、  Driving means for generating power for driving the air pressure feeding means by receiving an external power;
車両に搭載されたバッテリーに接続されて該バッテリー力 前記駆動手段へ電力を 供給する電力供給手段と、  Power supply means connected to a battery mounted on a vehicle and supplying power to the driving means;
前記電力供給手段に許容電流値を超える過電流が流れると、前記電力供給手段 への電力供給を遮断する過電流遮断手段とを有し、 When an overcurrent exceeding an allowable current value flows through the power supply means, the power supply means Overcurrent cutoff means for cutting off power supply to the
前記過電流遮断手段として、前記電力供給手段に過電流が流れると、金属材料に より形成された電力遮断用の可動片をジュール熱により変形させて前記電力供給手 段への電力供給を遮断する熱作動型の電流遮断器を用いたことを特徴とするポンプ アップ装置。  As the overcurrent cutoff means, when an overcurrent flows through the power supply means, the movable piece for power cutoff formed of a metal material is deformed by Joule heat to cut off the power supply to the power supply means. A pump-up device using a heat-actuated current breaker.
[11] 前記電流遮断器は、バイメタルによりプレート状に形成された前記可動片を備え、 該可動片の基端部を第 1の接点に接続すると共に先端部が第 2の接点に接するよう に支持し、前記電力供給手段への電力供給の遮断時に、前記該可動片をジユール 熱により橈み方向へ変形させて前記第 2の接点力 離間させることを特徴とする請求 項 10記載のポンプアップ装置。  [11] The current breaker includes the movable piece formed of a bimetal in a plate shape, and connects a base end of the movable piece to a first contact and a tip end of the movable piece to a second contact. 11. The pump-up device according to claim 10, wherein the movable piece is deformed in a radial direction by Joule heat to separate the second contact force when the power supply to the power supply means is cut off. apparatus.
[12] 前記電流遮断器は、熱膨張性を有する金属材料によりプレート状に形成されると共 に、片持ち状態で支持されるベース部及び、該ベース部の基端部と先端部との間で 湾曲状態となるように支持される反転部が設けられた前記可動片を備え、前記べ一 ス部の基端部を第 1の接点に接続すると共に先端部が第 2の接点に接するように支 持し、前記電力供給手段への電力供給の遮断時には、前記反転部をジュール熱に より湾曲方向が反転するように変形させて前記ベース部の先端部を前記第 2の接点 力も離間させることを特徴とする請求項 10記載のポンプアップ装置。  [12] The current breaker is formed in a plate shape from a metal material having a thermal expansion property, and has a base portion supported in a cantilever state, and a base end portion and a tip end portion of the base portion. The movable piece provided with a reversing portion supported to be in a curved state between the base section, the base section of the base section being connected to a first contact, and the tip section being in contact with a second contact. When the power supply to the power supply means is cut off, the reversing section is deformed so that the bending direction is reversed by Joule heat, and the tip of the base section is separated from the second contact force. 11. The pump-up device according to claim 10, wherein the pump-up device is operated.
[13] 前記電力供給手段に、車両に設けられたシガーソケットに嵌脱可能に嵌挿されて 車両に搭載されたバッテリーに電気的に接続されるプラグ部材を設けると共に、該プ ラグ部材に前記電流遮断器を内臓させ又は一体的に設けたことを特徴とする請求項 9乃至 12の何れか 1項記載のポンプアップ装置。  [13] The power supply means is provided with a plug member which is removably inserted into a cigar socket provided on the vehicle and is electrically connected to a battery mounted on the vehicle. The pump-up device according to any one of claims 9 to 12, wherein a current breaker is incorporated or provided integrally.
[14] 前記エア圧送手段がタイヤのタイヤバルブに着脱可能に接続され、エア発生源を タイヤに連通させるアダプタ部材を備え、  [14] The air pressure feeding means is detachably connected to a tire valve of the tire, and includes an adapter member for communicating an air generation source to the tire.
前記アダプタ部材の表面部分をゴム組成物又は榭脂材料により被覆したことを特 徴とする請求項 9乃至 13の何れか 1項記載のポンプアップ装置。  14. The pump-up device according to claim 9, wherein a surface portion of the adapter member is covered with a rubber composition or a resin material.
[15] 前記エア圧送手段は、  [15] The air pressure feeding means,
外気を吸入する吸入口及び圧縮空気を吐出すると共に空気入りタイヤへ接続され る吐出口がそれぞれ形成された複数のシリンダと、 複数の前記シリンダ内にそれぞれ往復移動可能に配設され、前記シリンダ内の容 積を膨張させる吸入方向への移動時に前記吸入ロカ 前記シリンダ内へ空気を吸 入させ、前記シリンダ内の容積を縮小させる吐出方向への移動時に前記シリンダ内 の空気を圧縮しつつ前記吐出口から吐出させるピストンと、 A plurality of cylinders each having an inlet for inhaling outside air and an outlet for discharging compressed air and being connected to a pneumatic tire; The suction rocker is disposed in the plurality of cylinders so as to be able to reciprocate, and sucks air into the cylinder when moving in the suction direction to expand the volume in the cylinder, thereby reducing the volume in the cylinder. A piston for discharging air from the discharge port while compressing air in the cylinder when moving in the discharge direction to be performed;
複数の前記ピストンがそれぞれ連結され、前記駆動手段力 の動力により回転する と共に、前記ピストンを前記吸入方向及び前記吐出方向へ交互に移動させるクランク シャフトとを有し、  A crankshaft connected to each of the plurality of pistons, rotated by the power of the driving means, and alternately moving the pistons in the suction direction and the discharge direction;
前記シリンダの設置数を 2N個(Nは自然数)とし、該 2N個のシリンダを前記クランク シャフトの軸方向に沿って直列的に配置すると共に、  The number of the cylinders to be installed is 2N (N is a natural number), and the 2N cylinders are arranged in series along the axial direction of the crankshaft,
N個のシリンダ内にそれぞれ配設された前記ピストンの前記クランクシャフトとの連 結点と残りの N個のシリンダ内にそれぞれ配設された前記ピストンの前記クランタシャ フトとの連結点との位相差を 180° に設定したことを特徴とする請求項 9乃至 14の何 れカ 1項記載のポンプアップ装置。  Phase difference between the connection points of the pistons arranged in the N cylinders with the crankshaft and the connection points of the pistons arranged in the remaining N cylinders with the cranker shaft, respectively. The pump-up device according to any one of claims 9 to 14, wherein the pressure is set to 180 °.
前記エア圧送手段は、  The air pressure feeding means,
外気を吸入する吸入口及び圧縮空気を吐出すると共に空気入りタイヤへ接続され る吐出口がそれぞれ形成された複数のシリンダと、  A plurality of cylinders each having an inlet for inhaling outside air and an outlet for discharging compressed air and being connected to a pneumatic tire;
複数の前記シリンダ内にそれぞれ往復移動可能に配設され、前記シリンダ内の容 積を膨張させる吸入方向への移動時に前記吸入ロカ 前記シリンダ内へ空気を吸 入させ、前記シリンダ内の容積を縮小させる吐出方向への移動時に前記シリンダ内 の空気を圧縮しつつ前記吐出口から吐出させるピストンと、  The suction rocker is disposed in the plurality of cylinders so as to be able to reciprocate, and sucks air into the cylinder when moving in the suction direction to expand the volume in the cylinder, thereby reducing the volume in the cylinder. A piston for discharging air from the discharge port while compressing air in the cylinder when moving in the discharge direction to be performed;
複数の前記ピストンがそれぞれ連結され、前記駆動手段力 の動力により回転する と共に、前記ピストンを前記吸入方向及び前記吐出方向へ交互に移動させるクランク シャフトとを有し、  A crankshaft connected to each of the plurality of pistons, rotated by the power of the driving means, and alternately moving the pistons in the suction direction and the discharge direction;
前記シリンダの設置数を 2N個(Nは自然数)とし、 2N個のうち N個のシリンダを前 記クランクシャフトの軸方向に沿って直列的に配置し、残りの N個のシリンダを、前記 クランクシャフトを中心とする周方向に沿って前記 N個のシリンダとは異なる部位に直 列的に配置すると共に、  The number of cylinders to be installed is 2N (N is a natural number), N of the 2N cylinders are arranged in series along the axial direction of the crankshaft, and the remaining N cylinders are Along the circumferential direction around the shaft, the cylinders are arranged in series at a portion different from the N cylinders,
前記 N個のシリンダ内にそれぞれ配設された前記ピストンの前記クランクシャフトと の連結点と前記残りの N個のシリンダ内にそれぞれ配設された前記ピストンの前記ク ランクシャフトとの連結点との位相差を 0° に設定したことを特徴とする請求項 9乃至 1 4の何れ力 1項記載のポンプアップ装置。 The crankshafts of the pistons respectively disposed in the N cylinders; The phase difference between the connection point of the piston and the connection point of the piston disposed in each of the remaining N cylinders with the crankshaft is set to 0 °. 3. The pump-up device according to claim 1, wherein
PCT/JP2005/008856 2004-05-19 2005-05-16 Sealing pump-up device and pump-up device WO2005110825A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2004149369 2004-05-19
JP2004-149369 2004-05-19
JP2004151707 2004-05-21
JP2004-151707 2004-05-21
JP2004294495A JP2006002747A (en) 2004-05-19 2004-10-07 Sealing/pumping-up device and pumping-up device
JP2004-294495 2004-10-07
JP2004294494A JP2006009778A (en) 2004-05-21 2004-10-07 Pump-up device and sealant injection device
JP2004-294494 2004-10-07

Publications (1)

Publication Number Publication Date
WO2005110825A1 true WO2005110825A1 (en) 2005-11-24

Family

ID=35394070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008856 WO2005110825A1 (en) 2004-05-19 2005-05-16 Sealing pump-up device and pump-up device

Country Status (1)

Country Link
WO (1) WO2005110825A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144668A (en) * 2005-11-24 2007-06-14 Bridgestone Corp Puncture repairing device for tire
EP1918085A1 (en) * 2006-05-30 2008-05-07 Kabushikigaisha Katazen Method of injecting liquid solution resin into tire tube, and injection device, and tire tube filling elastic resin composition
ITTO20090657A1 (en) * 2009-08-21 2011-02-22 Tek Global Srl CONTAINER FOR A SEALANT LIQUID AND REPAIR KIT INCLUDING SUCH A CONTAINER
WO2013120261A1 (en) * 2012-02-16 2013-08-22 Jhou Wen-San Vehicle-mounted air compressor device
CN106567825A (en) * 2016-10-27 2017-04-19 高磊 Numerical control inflator pump voice guidance operation system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07193989A (en) * 1993-12-28 1995-07-28 Hino Motors Ltd Overvoltage suppressing circuit
JPH08275373A (en) * 1995-03-31 1996-10-18 Kokusan Denki Co Ltd Overcurrent protector
JPH08337105A (en) * 1995-06-12 1996-12-24 Tsuneshige Kobayashi Vehicle allowing tire to be filled with air without any touch
JPH0995111A (en) * 1995-07-24 1997-04-08 Aruma Trading Kk Injection device for tire life extending agent
JP3210863B2 (en) * 1995-07-11 2001-09-25 住友ゴム工業株式会社 Puncture sealant and tire sealing / pump-up device
JP2003109580A (en) * 2001-09-28 2003-04-11 Sanyo Electric Co Ltd Overcurrent of heating restriction element, and battery using the element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07193989A (en) * 1993-12-28 1995-07-28 Hino Motors Ltd Overvoltage suppressing circuit
JPH08275373A (en) * 1995-03-31 1996-10-18 Kokusan Denki Co Ltd Overcurrent protector
JPH08337105A (en) * 1995-06-12 1996-12-24 Tsuneshige Kobayashi Vehicle allowing tire to be filled with air without any touch
JP3210863B2 (en) * 1995-07-11 2001-09-25 住友ゴム工業株式会社 Puncture sealant and tire sealing / pump-up device
JPH0995111A (en) * 1995-07-24 1997-04-08 Aruma Trading Kk Injection device for tire life extending agent
JP2003109580A (en) * 2001-09-28 2003-04-11 Sanyo Electric Co Ltd Overcurrent of heating restriction element, and battery using the element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144668A (en) * 2005-11-24 2007-06-14 Bridgestone Corp Puncture repairing device for tire
EP1918085A1 (en) * 2006-05-30 2008-05-07 Kabushikigaisha Katazen Method of injecting liquid solution resin into tire tube, and injection device, and tire tube filling elastic resin composition
EP1918085A4 (en) * 2006-05-30 2009-07-08 Kabushikigaisha Katazen Method of injecting liquid solution resin into tire tube, and injection device, and tire tube filling elastic resin composition
ITTO20090657A1 (en) * 2009-08-21 2011-02-22 Tek Global Srl CONTAINER FOR A SEALANT LIQUID AND REPAIR KIT INCLUDING SUCH A CONTAINER
EP2286984A1 (en) * 2009-08-21 2011-02-23 TEK GLOBAL S.r.l. Sealing fluid canister and repair kit comprising such a canister
US8453684B2 (en) 2009-08-21 2013-06-04 Tek Global S.R.L. Sealing fluid canister, and repair kit comprising such a canister
WO2013120261A1 (en) * 2012-02-16 2013-08-22 Jhou Wen-San Vehicle-mounted air compressor device
CN104105590A (en) * 2012-02-16 2014-10-15 周文三 Vehicle-mounted air compressor device
CN104105590B (en) * 2012-02-16 2016-08-24 周文三 Vehicle-mounted blowing plant
CN106567825A (en) * 2016-10-27 2017-04-19 高磊 Numerical control inflator pump voice guidance operation system and method

Similar Documents

Publication Publication Date Title
WO2005110825A1 (en) Sealing pump-up device and pump-up device
KR101642178B1 (en) Scroll compressor
KR100655996B1 (en) Synchronous induction motor and electric hermetic compressor using the same
KR101986268B1 (en) Electric motor-driven compressor
CN110114573A (en) Capacity control drive
KR101509290B1 (en) Scroll compressor
KR101610986B1 (en) System for actuation in an admission valve of a gas compressor
JP6729086B2 (en) Air compressor and air compressor system
JP2009121268A (en) Check valve for compressor, compressor and pumping up device
JP6708022B2 (en) air compressor
CN112797171A (en) Anti-surge air-release valve structure of engine air system
CN111357172A (en) Motor, compressor, and refrigeration cycle device
JPH09126124A (en) Capacity control device for variable capacity compressor
KR20130057895A (en) Electric compressor
JP2006002747A (en) Sealing/pumping-up device and pumping-up device
JP2011185104A (en) Compressor
JP2006009778A (en) Pump-up device and sealant injection device
JP4074435B2 (en) Starting system for an electric motor
KR100472295B1 (en) Electromagnetic Compressor and Method of Manufacturing the Compressor
CN106163777A (en) For device inflatable articles being sealed and inflating
JP4420740B2 (en) Pump-up device
KR101747836B1 (en) Diesel engine
JP5436646B1 (en) Piston pump
KR101987686B1 (en) Pneumatic control systems and shock absorbers for automobiles
JP2006103499A (en) Pump-up device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase