WO2005109993A2 - Photographing device and digital camera - Google Patents

Photographing device and digital camera Download PDF

Info

Publication number
WO2005109993A2
WO2005109993A2 PCT/JP2005/007828 JP2005007828W WO2005109993A2 WO 2005109993 A2 WO2005109993 A2 WO 2005109993A2 JP 2005007828 W JP2005007828 W JP 2005007828W WO 2005109993 A2 WO2005109993 A2 WO 2005109993A2
Authority
WO
WIPO (PCT)
Prior art keywords
correction unit
correction
shake
unit
movement operation
Prior art date
Application number
PCT/JP2005/007828
Other languages
French (fr)
Japanese (ja)
Other versions
WO2005109993A3 (en
Inventor
Tsuyoshi Togawa
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Publication of WO2005109993A2 publication Critical patent/WO2005109993A2/en
Publication of WO2005109993A3 publication Critical patent/WO2005109993A3/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position

Definitions

  • the present invention relates to a photographing device and a digital camera equipped with the photographing device, and more particularly to an image blur correction technology of the photographing device.
  • An image shake (camera shake) correction device in a photographing apparatus detects information related to the swing of the photographing apparatus using an angular velocity sensor, and moves a part of the optical system based on the information.
  • the most important purpose of the image blur correction function is to suppress image blur at the time of exposure, and at the start of exposure, the correction optical system should be located near the center of the correction area so that it can move sufficiently in each direction. Is desirable.
  • Japanese Patent No. 2752073 discloses a centering process for moving the correction optical system to near the center of the region prior to the start of exposure as an initial setting according to a shooting start operation during the correction operation. A method for performing the correction operation stroke is disclosed.
  • Japanese Patent No. 2820254 discloses a centering process that performs a centering process immediately before an exposure start operation, but avoids exposure in a state where image blurring has occurred in a subject that originally has no image blurring.
  • the technology for prohibiting the parallel operation of exposure and exposure has been disclosed.
  • Japanese Patent Application Laid-Open Nos. 9-329820 and 2003-91027 disclose configurations for performing shake correction in a finder optical system.
  • a shake detection unit that detects a relative shake between the subject and the imaging device
  • a first correction unit that corrects image shake based on a signal from the shake detection unit
  • a second correction unit that is separated from the first correction unit
  • An imaging device having
  • a photographing device in which a first moving operation for driving the first correction unit to a predetermined position and a second moving operation for driving the second correction unit to a predetermined position are independently executed. is there.
  • a shake detection unit that detects a relative shake between the subject and the imaging system
  • a first correction unit that performs shake correction of the imaging system based on the signal of the shake detection unit force
  • a second correction unit that performs shake correction of the observation system based on the signal of the shake detection unit force.
  • a photographing apparatus that also serves as at least a part of optical elements in the imaging system and the observation system,
  • An imaging device in which a parallel operation of a first movement operation for driving the first correction unit to a predetermined position and a second movement operation is prohibited.
  • An observation system having an optical element for observing a subject
  • An imaging system that has an optical element, and forms an image of the subject by using at least a part of the optical element also as an optical element of the observation system;
  • a shake detection unit that detects a relative shake between the subject and the imaging system, a first correction unit that performs shake correction of the imaging system based on a signal of the shake detection unit force, and the shake detection
  • a second correction unit that performs shake correction of the observation system based on a signal from the unit, a first movement operation that drives the first correction unit to a predetermined position, and moves the second correction unit to a predetermined position.
  • a control unit that controls not to perform the second movement operation that drives the control unit in parallel.
  • An image sensor that forms an image of a subject
  • a shake detection unit that detects a relative shake between a subject and the image sensor, a first correction unit that corrects image shake of an imaging system based on a signal from the shake detection unit, A second correction unit that is provided separately from the first correction unit and corrects image shake of an observation system that observes the subject;
  • a control unit that controls the first movement unit to drive the first correction unit to a predetermined position and the second movement operation to drive the second correction unit to a predetermined position so as to be executed independently.
  • FIG. 1 is a perspective view schematically showing an external configuration of a digital camera according to a first embodiment of the present invention, with a part thereof being seen through.
  • FIG. 2 is a block diagram showing a schematic configuration of the camera in FIG. 1.
  • FIG. 3 is a diagram showing a configuration of an optical finder unit 40.
  • FIG. 4 is a perspective view showing a configuration of an imaging section position drive unit 34.
  • FIG. 5 is a diagram for explaining processing that leads to imaging of a framing taka of a camera in a modification of the first embodiment.
  • FIG. 6 is a perspective view schematically showing the external configuration of a digital single-lens reflex camera according to a second embodiment of the present invention by partially seeing through.
  • FIG. 7 is a block diagram showing a schematic configuration of the camera in FIG. 6.
  • FIG. 8 is a cross-sectional view showing an example of the configuration of the variable mirror 160.
  • FIG. 9A shows an example of the electrode arrangement of the variable mirror 160, and is a diagram showing the electrode arrangement on the mirror 162 side.
  • FIG. 9B shows an example of the electrode arrangement of the variable mirror 160, and is a diagram showing the electrode arrangement on the lower substrate 164 side.
  • FIG. 10 is a diagram for explaining processing leading to framing image capture by a camera according to the second embodiment.
  • FIG. 11 is a schematic view of an optical element of a digital single-lens reflex camera according to a third embodiment of the present invention.
  • FIG. 1 is a perspective view schematically showing an external configuration of a digital camera according to a first embodiment of the present invention, with a part thereof being seen through.
  • the digital camera 10 includes a camera body 12 and a lens frame module 14.
  • the lens frame module 14 is mounted on the front surface of the camera body 12, and has a first group lens 16, a second group lens 18, a third group lens 20, and a fourth group lens 2 having a zoom function described later. It is configured to have 2 etc.
  • the mirror frame module 14 is for guiding a luminous flux from a not-shown subject to a CCD 36 which is an imaging device.
  • a shirt button 32 corresponding to the shirt release switch is provided on the upper surface of the camera body 12.
  • a CCD 36 is arranged inside the camera body 12 on the extension of the optical axis of each lens of the lens frame module 14. Therefore, the object image transmitted through the lens frame module 14 is formed on the CCD 36.
  • the lens frame module 14 also has a force directed toward the center of the imaging surface of the CCD 36.
  • the optical axis corresponds to the Y axis shown in FIG.
  • the Z axis is defined in a direction going vertically upward through the intersection of the optical axis center and the CCD 36, and the direction perpendicular to each of the Y axis and the Z axis passing through the intersection of the optical axis center and the CCD 36.
  • the X axis is defined.
  • an imaging unit position drive unit 34 for controlling the position of the CCD 36 in the X-axis direction and the Y direction, and a blur detection for detecting vibration generated in the camera body 12.
  • Angular velocity sensors 38a and 38b as means, an optical finder unit 40 used to confirm a subject during framing, and a force are arranged.
  • a liquid crystal monitor 42 is provided on the back surface of the camera body 12.
  • optical finder unit 40 The details of the optical finder unit 40 will be described later.
  • FIG. 2 is a block diagram showing a schematic configuration of the digital camera in FIG.
  • the above-described lens frame module 14 includes a first group lens 16, a second group lens 18, a third group lens 20, a fourth group lens 22, and an aperture 24.
  • a shirt 28 is provided in the camera body 12 behind the lens frame module 14.
  • the first group lens 1 The luminous flux transmitted through the sixth and second lens groups 18 passes through the stop 24, passes through the third and fourth lens groups 20 and 22, passes through a shutter 28, and is a CCD (Charge Coupled Device) as an imaging means. Led to 36).
  • CCD Charge Coupled Device
  • the CCD 36 is fixed to an imaging unit position drive unit 34, which is a first correction unit.
  • the imaging unit position control unit 62 controls the imaging unit position drive unit 34 to perform position control in the X and Z directions shown in FIG.
  • the controller 50 controls the overall control operation of the camera.
  • the controller 50 includes the above-described angular velocity sensors 38a and 38b, a zoom control unit A52, a zoom control unit B54, an aperture control unit 56, a focus control unit 58, a shirt control unit 60, and an imaging position control unit 62.
  • PC personal computer
  • the zoom control unit A52 controls the second group lens 18 based on an instruction from the controller 50
  • the zoom control unit B54 controls the third group lens 20 and the fourth group based on an instruction from the controller 50. It controls the lens 22. The angle of view is adjusted by these controls.
  • the aperture control unit 56 controls the aperture 24 based on an instruction from the controller 50.
  • the focus control unit 58 drives the fourth group lens 22 based on an instruction from the controller 50 to perform focus adjustment.
  • the shirt control unit 60 controls the timing of the shirt 28 based on an instruction from the controller 50.
  • the imaging unit position control unit 62 shifts the position control of the CCD 36 based on the instruction from the controller 50, as described above. This shift amount is controlled based on the output signals from the angular velocity sensors 38a and 38b, information on the focal length, the distance to the subject, and the like.
  • the current position force of the CCD 36 is also calculated as the movement target position. After determining whether the target position is within the movable area of the CCD 36 or outside the movable area, each control is performed.
  • the CCD 36 sets an upper limit of a current to be supplied to a voice coil motor (VCM) 128, 136 described later by a power supply unit (not shown). It is moved toward the movement target position by the normal drive with the current amount I determined by the capability of the motor.
  • VCM voice coil motor
  • a control program for controlling the entire digital camera is stored in advance in an internal ROM.
  • the memory 64 also includes a RAM, which is used as a working storage area when the controller 50 executes the control program.
  • the control circuit 90 controls the CCD 36 and the imaging processing unit 92 in accordance with an instruction from the controller 50.
  • the imaging processing unit 92 includes a CDS (Correlated Double Sampling), an AGC (Automatic Gain Control), an ADC (Analog to Digital Converter). ). Then, the imaging processing section 92 performs a predetermined process on the analog signal output from the CCD 36, and converts the processed analog signal into a digital signal.
  • the signal processing unit 94 performs processing such as white balance and ⁇ correction on the captured image data output from the imaging processing unit 92 and the image data output from the compression / Z expansion processing unit 96. is there.
  • the signal processing unit 94 also includes an AE (Automatic Exposure) detection circuit and an AF (Automatic Focus) detection circuit.
  • the compression Z decompression processing section 96 performs compression processing and decompression processing of image data, and performs compression processing on the image data output from the signal processing section 94 and decompression on the image data output from the card IZF98. Perform processing.
  • jPEG joint Photographic Experts Group
  • the card IZF 98 is for transmitting and receiving data between the digital camera 10 and the memory card 100, and writes and reads image data.
  • the memory card 100 is a semiconductor recording medium for recording data, and is detachable from the digital single-lens reflex camera 10.
  • the memory 104 records a digital signal (image data) output from the signal processing unit 94, and a DAC (Digital to Analog converter) 106 outputs the digital signal (image data) from the signal processing unit 74. Converts digital signals to analog signals.
  • the liquid crystal display monitor 28 performs image display based on the analog signal output from the DAC 106.
  • the liquid crystal display monitor 42 is provided on the back side of the camera body 12 as described above, and the photographer can take a picture while looking at the liquid crystal display monitor 42.
  • the interface (IZF) unit 110 includes a controller 50 and a personal computer (PC) 1
  • USB UniversalSerial
  • the personal computer 112 is used to write focus sensitivity correction data of the CCD 36 into the memory 64 in the manufacturing stage of the digital camera, and does not constitute the digital camera 10. ,.
  • FIG. 3 is a diagram showing a configuration of the optical finder unit 40 described above.
  • the incident light flux transmitted through the objective lens 72 is transmitted through the half mirror 74 and guided to the eyepiece 76.
  • the light that has passed through the frame 78 is reflected by the mirror 80 and the half mirror 74 and reaches the eyepiece 76.
  • a frame is added to the finder image.
  • a coil 84 is fixed to the objective lens 72, and together with the permanent magnet 86, constitutes a VCM (Voice Coil Motor). When the coil 84 is energized,
  • the objective lens 72 is moved in the X-axis direction and the Z-axis direction, so that the image blur of the finder can be corrected.
  • FIG. 4 is a perspective view showing a configuration of the above-described imaging unit position drive unit 34.
  • a shaft 122 and a Z slider 126 guided by the shaft 124 are slidably supported in the Z-axis direction shown in FIG. It is configured so that it can be driven by the generated thrust.
  • an X slider 134 guided by the shaft 130 and the shaft 132 is provided.
  • a CCD 36 is mounted on the X slider 134, and the CCD 36 is configured to be movable in two directions, ie, an X-axis direction and a Z-axis direction.
  • Dl, D2, D3, and D4 shown in Fig. 5 represent synchronization bars, and indicate that operations of a plurality of systems sandwiched between these synchronization bars are performed in parallel. .
  • the flag B is set to “0” (Sal), and then the output signals from the angular velocity sensors 38a and 38b are sampled (Sa2). Then, a target moving amount is calculated based on the output signals from the angular velocity sensors 38a and 38b, the focal length, and information on the distance to the subject (Sa3). Further, the objective lens 72 of the optical finder unit 40 is moved by the calculated movement amount (Sa4).
  • the content set in the flag B is determined next (Sa6). If the flag B is set to "0", the AE and AF operations are performed (Sa7). Next, after the flag B is set to "1" (Sa8), the second release (full press of the shirt button 32) is determined (Sa9).
  • a target moving amount is calculated based on the output signals from the angular velocity sensors 38a and 38b, the focal length, and information on the distance to the subject (Sbl 1). Then, the CCD 36 is driven (shifted) by this movement amount (Sbl2).
  • the correction start preparation of the imaging system is performed during the observation operation, and the correction start preparation of the observation system is performed during the imaging. It is possible to greatly reduce delays in starting operation and discomfort at the start of operation.
  • FIG. 6 is a perspective view schematically showing an external configuration of a digital single-lens reflex camera according to a second embodiment of the present invention, with a part thereof being seen through.
  • the digital single-lens reflex camera 140 includes a camera main body 142 and a lens frame module 144.
  • the lens frame module 144 is detachably mounted on the front surface of the camera body 142, and includes a first-group lens 16 to a fourth-group lens 22 having a zoom function described later, and the like. .
  • the mirror frame module 144 is for guiding a luminous flux from a subject (not shown) to the CCD 36 which is an imaging device.
  • a shirt button 32 corresponding to a shirt release switch is provided on the upper surface of the camera body 142.
  • a movable mirror 146 and a CCD 36 are arranged inside the camera body 142 so as to extend the optical axis of the lens frame module 144.
  • the lens frame module 144 also has a force directed toward the center of the imaging surface of the CCD 36.
  • the optical axis corresponds to the Y axis shown in FIG. 6, and passes through the intersection between the optical axis center and the CCD 36 and extends vertically upward.
  • a Z-axis is defined in the force direction, and an X-axis is defined in a direction perpendicular to each of the Y-axis and the Z-axis passing through the intersection of the optical axis center and the CCD 36.
  • angular velocity sensors 38a and 38b as shake detecting means for detecting vibration generated in the camera body 142 are arranged.
  • the camera body 142 A liquid crystal monitor 42 is provided on the back of the camera.
  • the movable mirror 146 When the movable mirror 146 is descending into the photographing optical path as shown in FIG. 6, the light beam reflected by the movable mirror 146 forms an image on the focusing screen 148. Then, the subject image formed on the focusing screen 148 is reflected by the Dahmirror 150, further reflected by the variable mirror 160, and reaches the eyepiece 152. Thereby, the photographer can check the subject image.
  • variable mirror 160 The detailed configuration of the variable mirror 160 will be described later.
  • the movable mirror 160 when the movable mirror 160 is raised and retracted from the photographing optical path, the light beam transmitted through the lens frame module 144 forms an image on the CCD 36.
  • FIG. 7 is a block diagram showing a schematic configuration of the digital single-lens reflex camera of FIG.
  • the above-described lens frame module 144 includes a first-group lens 16, a second-group lens 18, a third-group lens 20, a fourth-group lens 22, and an aperture 24.
  • the mirror angle controller 156 connected to the controller 50 controls the angle of the variable mirror 160, which will be described in detail later.
  • variable mirror 160 Next, the configuration of the variable mirror 160 will be described with reference to FIG. 8 and FIG.
  • FIG. 8 is a cross-sectional view illustrating an example of the configuration of the variable mirror 160
  • FIG. 9A is a view illustrating an example of the electrode arrangement of the variable mirror 160
  • FIG. FIG. 4 shows an example of the electrode arrangement of the variable mirror 160, and is a diagram showing the electrode arrangement on the lower substrate 164 side.
  • the variable mirror 160 shown in FIGS. 8 and 9 is manufactured using a so-called MEMS (Micro Electro Mechanical System) technology.
  • MEMS Micro Electro Mechanical System
  • variable mirror 160 as the second correction means includes a mirror 162, a lower substrate 164 disposed opposite to the mirror 162, and mirrors at both ends.
  • the mirrors 162, 166, 168, 170, 172 connected to the base plate 162 and the lower substrate 164, and a pivot 174 for supporting a substantially center of the mirror 162 are provided.
  • the mirror 162 has an upper electrode 178 and an external lead electrode 180.
  • a reflecting portion (mirror surface) 1 is provided on the surface of the mirror 162. 82 are provided.
  • the upper electrode 178 is sandwiched between the thin films 184 and 184, and is provided in parallel with the reflection surface of the reflection section 182.
  • the upper electrode 178 is formed in a substantially rectangular shape as shown in FIG. 9A.
  • the external lead electrode 180 is used for electrical connection between the upper electrode 178 and the outside, and its surface is exposed.
  • the lower electrodes 190, 192, 194, and 196 provided on the lower substrate 164 are sandwiched between the thin films 208, and are provided at positions facing the upper electrode 178. That is, the lower substrate 164 is provided with four lower electrodes 190 to 196 and four external lead electrodes 198, 200, 202, 204 on the semiconductor substrate 206.
  • the outer lead electrodes 198 to 204 are used for electrical connection between the lower electrodes 190 to 196 and the outside, and their surfaces are exposed.
  • the four panels 166 to 172 described above are arranged between the mirror 162 and the lower substrate 164.
  • the mirror 162 and the lower substrate 164 are connected via these panels 166 to 172.
  • a pivot 174 is formed corresponding to the center position of the four panels 166 to 172, that is, the center position of the four lower electrodes 190 to 196. That is, the center of gravity of the mirror 162 is pressed by the tensile force of the panels 166 to 172. This makes it possible to tilt the mirror 162 about the pivot 174.
  • variable mirror 160 having the above-described configuration, the potential difference between the upper electrode 178 and the lower electrodes 190 to 196 is changed, so that the mirror 162 with respect to the lower substrate 164 is generated by electrostatic force. Can be changed.
  • the light beam reflected by the movable mirror 146 reaches the eyepiece 152 after being reflected by the variable mirror 160 via the focusing screen 148 and the roof mirror 150. Therefore, by changing the tilt of the mirror 162, the subject image viewed through the eyepiece 152 can be moved, and image blur correction in the finder can be realized.
  • Dll, D12, D13, and D14 shown in FIG. 10 represent synchronization bars, and indicate that operations of a plurality of systems sandwiched between these synchronization bars are performed in parallel. I have.
  • “0” is set to the flag B (Sa31), and then the output signals from the angular velocity sensors 38a and 38b are sampled (Sa32). Then, a target moving amount is calculated based on the output signals from the angular velocity sensors 38a and 38b, the focal length, and information on the distance to the subject (Sa33). Further, the mirror 162 of the variable mirror 160 is tilted by the angle calculated in Sa33 (Sa34).
  • the movable mirror 146 is moved up so as to be retracted from the photographing optical path (S22). Then, the operation immediately between the synchronization bars D13 and D14 is started.
  • the shirt 28 is released (Sb40).
  • output signals from the angular velocity sensors 38a and 38b are sampled (Sb41).
  • a target moving amount is calculated based on the output signals from the angular velocity sensors 38a and 38b, the focal length, and information on the distance to the subject (Sb42).
  • the CCD 36 is driven (shifted) by this movement amount (Sb43).
  • a power-saving actuator using electrostatic force is used in an observation system. By using it, a dramatic improvement in battery life can be expected.
  • the correction start preparation of the imaging system is performed during the observation operation, and the correction start preparation of the observation system is performed during the imaging operation.
  • the centering operation of the observation system is performed in a state where the optical path to the finder is blocked by the optical path switching by the movable mirror. None ,.
  • the time required for switching between observation and imaging is inevitably generated. Therefore, the centering operation is performed within this time. Is also good.
  • the processing until the movable mirror raising force is also lowered is performed in parallel by the observation correction system and the imaging correction system.
  • the observation is performed after the processing of the imaging correction system is performed. It is also possible to perform the processing of the observation correction system.
  • FIG. 11 is a schematic diagram of an optical element of a digital single-lens reflex camera according to a third embodiment of the present invention.
  • the third embodiment will be described with reference to FIG.
  • the configuration of the camera according to the third embodiment is basically the same as that shown in FIGS. 1 to 10. Therefore, only different configurations will be described, and the other same parts will be described. Are given the same reference numerals, and their illustration and description are omitted.
  • the digital single-lens reflex camera 210 includes a camera body 212 and a camera body 2
  • the lens frame module 214 is detachably mounted on the front surface of the lens frame 12.
  • the mirror frame module 214 has a photographing lens 216.
  • the light beam transmitted through the photographing lens 216 is guided to a movable mirror 220 in the camera body 212.
  • the movable mirror 220 in the camera body 212 is provided so as to be movable in and out of the imaging optical path.
  • the photographing light beam from the photographing lens 216 is reflected by the movable mirror 220 and forms an image on the forcible screen 222.
  • the photographing light beam is a prism integrated with the first field lens 224.
  • the light After passing through 226, the light is reflected by the mirror A228 and then passes through the relay lens 230. Further, the light flux is transmitted through the second field lens 236 after being reflected by the mirror B1234, is reflected by the mirror C238, and reaches the eyepiece lens 240.
  • the imaging light flux transmitted through the imaging lens 216 is captured by the CCD 242.
  • a method of decentering (shifting) the relay lens 230 in a plane perpendicular to the optical axis or a method of tilting the relay lens 230 with respect to the optical axis (tilt) may be used. Just do it.
  • the shifting or tilting of the relay lens 230 can be realized by a general driving means, and thus the description is omitted here.

Abstract

A photographing device and a digital camera. In the digital camera, a relative deflection between an object and a digital single-lens reflex camera (10) is detected by angular velocity sensors (38a, 38b) in a camera body (12) through a mirror frame module (14). Based on signals from the angular velocity sensors (38a, 38b), the deflection of an imaging system is corrected by an imaging part position drive unit (34). Also, based on the signals from the angular velocity sensors (38a, 38b), the deflection of a monitoring system is corrected by an optical finder unit (40). Then, a first moving operation for correcting the deflection of the imaging system and a second moving operation for correcting the deflection of the monitoring system are performed independently of each other.

Description

明 細 書  Specification
撮影装置及びデジタルカメラ  Photographing device and digital camera
技術分野  Technical field
[0001] 本発明は撮影装置及び該撮影装置を搭載したデジタルカメラに関し、特に撮影装 置の像振れ補正技術に関するものである。  The present invention relates to a photographing device and a digital camera equipped with the photographing device, and more particularly to an image blur correction technology of the photographing device.
背景技術  Background art
[0002] 撮影装置に於ける像振れ (手振れ)補正装置としては、角速度センサを用いて撮影 装置の揺動に関する情報を検出し、その情報に基いて、光学系の一部を移動させる ことで光軸をずらし、像振れ補正を行うものが知られている。  [0002] An image shake (camera shake) correction device in a photographing apparatus detects information related to the swing of the photographing apparatus using an angular velocity sensor, and moves a part of the optical system based on the information. 2. Description of the Related Art There is known a device that performs image blur correction by shifting an optical axis.
[0003] 像振れ補正機能の最も重要な目的は、露光時の像振れを抑制することであり、露 光開始時には補正光学系が各方向へ充分移動できるよう、補正領域の中央付近に あることが望ましい。 [0003] The most important purpose of the image blur correction function is to suppress image blur at the time of exposure, and at the start of exposure, the correction optical system should be located near the center of the correction area so that it can move sufficiently in each direction. Is desirable.
[0004] そのため、特許第 2752073号公報には、補正動作中、撮影開始動作に応じて初 期設定するものとして、露光開始に先行して補正光学系を領域中央近傍に移動させ るセンタリング処理を行い、補正動作ストロークを確保する方法が開示されている。  [0004] Therefore, Japanese Patent No. 2752073 discloses a centering process for moving the correction optical system to near the center of the region prior to the start of exposure as an initial setting according to a shooting start operation during the correction operation. A method for performing the correction operation stroke is disclosed.
[0005] また、特許第 2820254号公報には、露光開始動作の直前にセンタリング処理を行 うも、本来像振れしていない被写体に像振れが生じた状態での露光を避けるベぐセ ンタリング処理と露光との並行動作を禁止する処理にっ 、ての技術が開示されて ヽ る。  [0005] Also, Japanese Patent No. 2820254 discloses a centering process that performs a centering process immediately before an exposure start operation, but avoids exposure in a state where image blurring has occurred in a subject that originally has no image blurring. The technology for prohibiting the parallel operation of exposure and exposure has been disclosed.
[0006] 一方、特開平 9— 329820号公報及び特開 2003— 91027号公報には、ファイン ダ光学系に於 、て振れ補正を行う構成が開示されて 、る。  [0006] On the other hand, Japanese Patent Application Laid-Open Nos. 9-329820 and 2003-91027 disclose configurations for performing shake correction in a finder optical system.
発明の開示  Disclosure of the invention
[0007] したがって本発明は、タイムラグが小さぐ振れ補正系の各方向への移動領域が確 保された撮影装置及びデジタルカメラを提供することを目的とする。  [0007] Accordingly, it is an object of the present invention to provide a photographing apparatus and a digital camera in which a movement area in each direction of a shake correction system with a small time lag is secured.
[0008] すなわち本発明の特徴は、  [0008] That is, the features of the present invention are as follows:
被写体と撮像装置との間の相対的な振れを検出する振れ検出部と、  A shake detection unit that detects a relative shake between the subject and the imaging device,
前記振れ検出部からの信号を基に像振れを補正する第 1の補正部と、 前記第 1の補正部とは離れて存在する第 2の補正部と、 A first correction unit that corrects image shake based on a signal from the shake detection unit, A second correction unit that is separated from the first correction unit,
を有する撮影装置であって、  An imaging device having
前記第 1の補正部を所定位置まで駆動する第 1の移動動作と、前記第 2の補正部 を所定位置まで駆動する第 2の移動動作とが、それぞれ独立して実行される撮影装 置である。  A photographing device in which a first moving operation for driving the first correction unit to a predetermined position and a second moving operation for driving the second correction unit to a predetermined position are independently executed. is there.
[0009] また、本発明の特徴は、 [0009] The features of the present invention include:
被写体と撮像系との間の相対的な振れを検出する振れ検出部と、  A shake detection unit that detects a relative shake between the subject and the imaging system,
前記振れ検出部力 の信号を基に撮像系の振れ補正を行う第 1の補正部と、 前記振れ検出部力 の信号を基に観察系の振れ補正を行う第 2の補正部と、 を備えて、前記撮像系と前記観察系に於ける光学要素の少なくとも一部を兼用する 撮影装置に於いて、  A first correction unit that performs shake correction of the imaging system based on the signal of the shake detection unit force, and a second correction unit that performs shake correction of the observation system based on the signal of the shake detection unit force. A photographing apparatus that also serves as at least a part of optical elements in the imaging system and the observation system,
前記第 1の補正部を所定位置まで駆動する第 1の移動動作と、前記第 2の移動動 作との並行動作を禁止した撮影装置である。  An imaging device in which a parallel operation of a first movement operation for driving the first correction unit to a predetermined position and a second movement operation is prohibited.
[0010] 更に、本発明の特徴は、 [0010] Further, the features of the present invention are as follows:
光学要素を有して被写体を観察する観察系と、  An observation system having an optical element for observing a subject,
光学要素を有するもので、該光学要素の少なくとも一部を前記観察系の光学要素 と兼用して前記被写体の像を結像する撮像系と、  An imaging system that has an optical element, and forms an image of the subject by using at least a part of the optical element also as an optical element of the observation system;
前記被写体と前記撮像系との間の相対的な振れを検出する振れ検出部と、 前記振れ検出部力 の信号を基に前記撮像系の振れ補正を行う第 1の補正部と、 前記振れ検出部からの信号を基に前記観察系の振れ補正を行う第 2の補正部と、 前記第 1の補正部を所定位置まで駆動する第 1の移動動作と、前記第 2の補正部 を所定位置まで駆動する第 2の移動動作とを並行して行わないよう制御する制御部と を具備した撮影装置である。  A shake detection unit that detects a relative shake between the subject and the imaging system, a first correction unit that performs shake correction of the imaging system based on a signal of the shake detection unit force, and the shake detection A second correction unit that performs shake correction of the observation system based on a signal from the unit, a first movement operation that drives the first correction unit to a predetermined position, and moves the second correction unit to a predetermined position. And a control unit that controls not to perform the second movement operation that drives the control unit in parallel.
[0011] また、本発明の特徴は、 [0011] The features of the present invention include:
被写体の像を結像する撮像素子と、  An image sensor that forms an image of a subject;
被写体と前記撮像素子との間の相対的な振れを検出する振れ検出部と、 前記振れ検出部からの信号を基に撮像系の像振れを補正する第 1の補正部と、 前記第 1の補正部とは別に設けられるもので、前記被写体を観察する観察系の像 振れを補正する第 2の補正部と、 A shake detection unit that detects a relative shake between a subject and the image sensor, a first correction unit that corrects image shake of an imaging system based on a signal from the shake detection unit, A second correction unit that is provided separately from the first correction unit and corrects image shake of an observation system that observes the subject;
前記第 1の補正部を所定位置まで駆動する第 1の移動動作と、前記第 2の補正部 を所定位置まで駆動する第 2の移動動作とをそれぞれ独立して実行するように制御 する制御部と、  A control unit that controls the first movement unit to drive the first correction unit to a predetermined position and the second movement operation to drive the second correction unit to a predetermined position so as to be executed independently. When,
を具備するデジタルカメラである。  It is a digital camera provided with.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]図 1は、本発明の第 1の実施形態に係るデジタルカメラの外観構成を、一部を 透視して模式的に示した斜視図である。  [FIG. 1] FIG. 1 is a perspective view schematically showing an external configuration of a digital camera according to a first embodiment of the present invention, with a part thereof being seen through.
[図 2]図 2は、図 1のカメラの概略構成を示すブロック図である。  FIG. 2 is a block diagram showing a schematic configuration of the camera in FIG. 1.
[図 3]図 3は、光学ファインダユニット 40の構成を示した図である。  FIG. 3 is a diagram showing a configuration of an optical finder unit 40.
[図 4]図 4は、撮像部位置駆動ユニット 34の構成を示した斜視図である。  FIG. 4 is a perspective view showing a configuration of an imaging section position drive unit 34.
[図 5]図 5は、第 1の実施形態の変形例に於けるカメラのフレーミンダカも撮像に至る 処理について説明する図である。  [FIG. 5] FIG. 5 is a diagram for explaining processing that leads to imaging of a framing taka of a camera in a modification of the first embodiment.
[図 6]図 6は、本発明の第 2の実施形態に係るデジタル一眼レフカメラの外観構成を、 一部を透視して模式的に示した斜視図である。  [FIG. 6] FIG. 6 is a perspective view schematically showing the external configuration of a digital single-lens reflex camera according to a second embodiment of the present invention by partially seeing through.
[図 7]図 7は、図 6のカメラの概略構成を示すブロック図である。  FIG. 7 is a block diagram showing a schematic configuration of the camera in FIG. 6.
[図 8]図 8は、可変ミラー 160の構成の一例を示した断面図である。  FIG. 8 is a cross-sectional view showing an example of the configuration of the variable mirror 160.
[図 9A]図 9Aは、可変ミラー 160の電極配置の一例を示したもので、ミラー 162側の 電極配置を示した図である。  FIG. 9A shows an example of the electrode arrangement of the variable mirror 160, and is a diagram showing the electrode arrangement on the mirror 162 side.
[図 9B]図 9Bは、可変ミラー 160の電極配置の一例を示したもので、下部基板 164側 の電極配置を示した図である。  [FIG. 9B] FIG. 9B shows an example of the electrode arrangement of the variable mirror 160, and is a diagram showing the electrode arrangement on the lower substrate 164 side.
[図 10]図 10は、第 2の実施形態に於けるカメラのフレーミンダカ 撮像に至る処理に ついて説明する図である。  [FIG. 10] FIG. 10 is a diagram for explaining processing leading to framing image capture by a camera according to the second embodiment.
[図 11]図 11は、本発明の第 3の実施形態に係るデジタル一眼レフカメラの光学要素 の模式図である。  FIG. 11 is a schematic view of an optical element of a digital single-lens reflex camera according to a third embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、図面を参照して本発明の実施形態を説明する。 [0014] (第 1の実施形態) Hereinafter, an embodiment of the present invention will be described with reference to the drawings. (First Embodiment)
図 1は、本発明の第 1の実施形態に係るデジタルカメラの外観構成を、一部を透視 して模式的に示した斜視図である。  FIG. 1 is a perspective view schematically showing an external configuration of a digital camera according to a first embodiment of the present invention, with a part thereof being seen through.
[0015] 図 1に於いて、このデジタルカメラ 10は、カメラ本体 12と、鏡枠モジュール 14とを有 して構成される。 In FIG. 1, the digital camera 10 includes a camera body 12 and a lens frame module 14.
[0016] 前記鏡枠モジュール 14は、カメラ本体 12の前面部に装着されているもので、後述 するズーム機能を有した 1群レンズ 16、 2群レンズ 18、 3群レンズ 20及び 4群レンズ 2 2等を有して構成される。前記鏡枠モジュール 14は、図示されない被写体からの撮 影光束を撮像装置である CCD36に導くためのものである。  The lens frame module 14 is mounted on the front surface of the camera body 12, and has a first group lens 16, a second group lens 18, a third group lens 20, and a fourth group lens 2 having a zoom function described later. It is configured to have 2 etc. The mirror frame module 14 is for guiding a luminous flux from a not-shown subject to a CCD 36 which is an imaging device.
[0017] カメラ本体 12の上面部には、シャツタレリーズスィッチに対応したシャツタ釦 32が設 けられている。  On the upper surface of the camera body 12, a shirt button 32 corresponding to the shirt release switch is provided.
[0018] そして、カメラ本体 12の内部には、前記鏡枠モジュール 14の各レンズの光軸の延 長上に、 CCD36とが配置されている。したがって、鏡枠モジュール 14を透過した被 写体像は、 CCD36上に結像される。  A CCD 36 is arranged inside the camera body 12 on the extension of the optical axis of each lens of the lens frame module 14. Therefore, the object image transmitted through the lens frame module 14 is formed on the CCD 36.
[0019] 尚、鏡枠モジュール 14力も CCD36の撮像面中央に向力 光軸は、図 1に示される Y軸に対応する。そして、この光軸中心と CCD36との交点を通り、鉛直上方に向かう 方向に Z軸が定められ、光軸中心と CCD36との交点を通り前記 Y軸、 Z軸のそれぞ れに垂直な方向に X軸が定められる。 The lens frame module 14 also has a force directed toward the center of the imaging surface of the CCD 36. The optical axis corresponds to the Y axis shown in FIG. Then, the Z axis is defined in a direction going vertically upward through the intersection of the optical axis center and the CCD 36, and the direction perpendicular to each of the Y axis and the Z axis passing through the intersection of the optical axis center and the CCD 36. The X axis is defined.
[0020] また、カメラ本体 12内には、前記 CCD36を X軸方向及び Y方向に位置制御するた めの撮像部位置駆動ユニット 34と、該カメラ本体 12に生じる振動を検出するための ブレ検出手段である角速度センサ 38a及び 38bと、フレーミング時の被写体の確認 に用いられる光学ファインダユニット 40と力 それぞれ配置されている。更に、カメラ 本体 12の背面部には、液晶モニタ 42が設けられている。 Further, in the camera body 12, an imaging unit position drive unit 34 for controlling the position of the CCD 36 in the X-axis direction and the Y direction, and a blur detection for detecting vibration generated in the camera body 12. Angular velocity sensors 38a and 38b as means, an optical finder unit 40 used to confirm a subject during framing, and a force are arranged. Further, a liquid crystal monitor 42 is provided on the back surface of the camera body 12.
[0021] 尚、前記光学ファインダユニット 40の詳細については、後述する。 The details of the optical finder unit 40 will be described later.
[0022] 図 2は、図 1のデジタルカメラの概略構成を示すブロック図である。 FIG. 2 is a block diagram showing a schematic configuration of the digital camera in FIG.
[0023] 図 2に於いて、前述した鏡枠モジュール 14は、 1群レンズ 16、 2群レンズ 18、 3群レ ンズ 20、 4群レンズ 22及び絞り 24とを有して構成される。そして、前記鏡枠モジユー ル 14の後方でカメラ本体 12内には、シャツタ 28が設けられている。前記 1群レンズ 1 6及び 2群レンズ 18を透過した光束は、絞り 24を通った後に 3群レンズ 20及び 4群レ ンズ 22を透過し、シャツタ 28を通って撮像手段である CCD (Charge Coupled De vice:撮像素子) 36に導かれる。 In FIG. 2, the above-described lens frame module 14 includes a first group lens 16, a second group lens 18, a third group lens 20, a fourth group lens 22, and an aperture 24. A shirt 28 is provided in the camera body 12 behind the lens frame module 14. The first group lens 1 The luminous flux transmitted through the sixth and second lens groups 18 passes through the stop 24, passes through the third and fourth lens groups 20 and 22, passes through a shutter 28, and is a CCD (Charge Coupled Device) as an imaging means. Led to 36).
[0024] 前記 CCD36は、第 1の補正手段である撮像部位置駆動ユニット 34に固着されて いる。コントローラ 50の指示により、撮像部位置制御部 62が撮像部位置駆動ユニット 34を制御して、図 1に示される X方向及び Z方向に対する位置制御を行う。  [0024] The CCD 36 is fixed to an imaging unit position drive unit 34, which is a first correction unit. In accordance with an instruction from the controller 50, the imaging unit position control unit 62 controls the imaging unit position drive unit 34 to perform position control in the X and Z directions shown in FIG.
[0025] コントローラ 50は、このカメラ全体の制御動作を司るものである。このコントローラ 50 には、前述した角速度センサ 38a及び 38bと、ズーム制御部 A52、ズーム制御部 B5 4と、絞り制御部 56と、フォーカス制御部 58と、シャツタ制御部 60と、撮像位置制御 部 62と、メモリ 64と、制御回路 90と、信号処理部 92と、メモリ 94と、 iZF (Interface: インターフェース)部 110を介して外部のパーソナルコンピュータ(PC) 112とが接続 されている。  [0025] The controller 50 controls the overall control operation of the camera. The controller 50 includes the above-described angular velocity sensors 38a and 38b, a zoom control unit A52, a zoom control unit B54, an aperture control unit 56, a focus control unit 58, a shirt control unit 60, and an imaging position control unit 62. , A memory 64, a control circuit 90, a signal processing unit 92, a memory 94, and an external personal computer (PC) 112 via an iZF (Interface) unit 110.
[0026] ズーム制御部 A52は、コントローラ 50からの指示に基づいて、前記 2群レンズ 18を 制御するものであり、ズーム制御部 B54はコントローラ 50からの指示に基づいて 3群 レンズ 20及び 4群レンズ 22を制御するものである。これらの制御によって、画角調節 が行われる。  The zoom control unit A52 controls the second group lens 18 based on an instruction from the controller 50, and the zoom control unit B54 controls the third group lens 20 and the fourth group based on an instruction from the controller 50. It controls the lens 22. The angle of view is adjusted by these controls.
[0027] 絞り制御部 56は、コントローラ 50の指示に基づいて絞り 24を制御するものである。  The aperture control unit 56 controls the aperture 24 based on an instruction from the controller 50.
フォーカス制御部 58は、コントローラ 50からの指示に基づいて 4群レンズ 22を駆動し 、焦点調節を行うものである。  The focus control unit 58 drives the fourth group lens 22 based on an instruction from the controller 50 to perform focus adjustment.
[0028] また、シャツタ制御部 60は、コントローラ 50からの指示に基づいてシャツタ 28のタイ ミングを制御するものである。撮像部位置制御部 62は、前述したように、コントローラ 50からの指示に基づいて CCD36の位置制御をシフトさせる。このシフト量は、角速 度センサ 38a及び 38bからの出力信号、焦点距離及び被写体までの距離情報等を 基に制御されるもので、 CCD36の現在位置力も移動目標位置が演算され、この移 動目標位置が CCD36の可動領域内力、或いは可動領域外かが判定された上で、 各別の制御がなされる。  Further, the shirt control unit 60 controls the timing of the shirt 28 based on an instruction from the controller 50. The imaging unit position control unit 62 shifts the position control of the CCD 36 based on the instruction from the controller 50, as described above. This shift amount is controlled based on the output signals from the angular velocity sensors 38a and 38b, information on the focal length, the distance to the subject, and the like. The current position force of the CCD 36 is also calculated as the movement target position. After determining whether the target position is within the movable area of the CCD 36 or outside the movable area, each control is performed.
[0029] 具体的には、移動目標位置が前記可動領域内の場合には、 CCD36は、後述する ボイスコイルモータ (VCM) 128、 136に供給する電流の上限を電源部(図示せず) の能力等によって決定される電流量 Iとした通常駆動によって、移動目標位置に向け て移動される。 Specifically, when the movement target position is within the movable region, the CCD 36 sets an upper limit of a current to be supplied to a voice coil motor (VCM) 128, 136 described later by a power supply unit (not shown). It is moved toward the movement target position by the normal drive with the current amount I determined by the capability of the motor.
[0030] 一方、移動目標位置が可動領域外の場合には、 CCD36は、 VCM128、 136に供 給する電流の上限を I' (=1/2)に制限した推力制限駆動によって、移動目標位置 に向けて移動される。  On the other hand, when the movement target position is out of the movable range, the CCD 36 controls the movement target position by thrust limiting drive in which the upper limit of the current supplied to the VCMs 128 and 136 is limited to I ′ (= 1/2). Moved towards.
[0031] メモリ 64には、デジタルカメラ全体の制御を行うための制御プログラム力 その内部 の ROMに予め記憶されている。また、メモリ 64内には RAMも含まれており、コント口 ーラ 50が制御プログラムを実行するときの作業用記憶領域として使用される。  [0031] In the memory 64, a control program for controlling the entire digital camera is stored in advance in an internal ROM. The memory 64 also includes a RAM, which is used as a working storage area when the controller 50 executes the control program.
[0032] 制御回路 90は、コントローラ 50の指示によって CCD36及び撮像処理部 92の制御 を行うためのものである。撮像処理部 92は、図示されないが CDS (Correlated Do uble Sampling :相関二重サンプリング回路)、 AGC (Automatic Gain Contro 1:オートゲインコントロール回路)、 ADC (Analog to Digital Converter:アナ口 グ—デジタル変換器)等を含んで構成される。そして、前記撮像処理部 92では、 CC D36から出力されたアナログ信号に対して所定の処理が行われ、処理後のアナログ 信号がデジタル信号に変換される。  The control circuit 90 controls the CCD 36 and the imaging processing unit 92 in accordance with an instruction from the controller 50. Although not shown, the imaging processing unit 92 includes a CDS (Correlated Double Sampling), an AGC (Automatic Gain Control), an ADC (Analog to Digital Converter). ). Then, the imaging processing section 92 performs a predetermined process on the analog signal output from the CCD 36, and converts the processed analog signal into a digital signal.
[0033] 信号処理部 94は、撮像処理部 92から出力される撮影画像データや、圧縮 Z伸張 処理部 96から出力される画像データに対して、ホワイトバランスや γ補正等の処理を 施すものである。また、 AE (Automatic Exposure :自動露光)検波回路や AF ( A utomatic Focus :自動合焦)検波回路も、信号処理部 94に含まれる。  The signal processing unit 94 performs processing such as white balance and γ correction on the captured image data output from the imaging processing unit 92 and the image data output from the compression / Z expansion processing unit 96. is there. The signal processing unit 94 also includes an AE (Automatic Exposure) detection circuit and an AF (Automatic Focus) detection circuit.
[0034] 圧縮 Z伸張処理部 96は、画像データの圧縮処理及び伸張処理を行うものであり、 信号処理部 94から出力された画像データに対する圧縮処理、カード IZF98から出 力された画像データに対する伸張処理を行う。画像データの圧縮処理及び伸張処 理には、例え ¾jPEG (joint Photographic Experts Group)方式が用いられる  The compression Z decompression processing section 96 performs compression processing and decompression processing of image data, and performs compression processing on the image data output from the signal processing section 94 and decompression on the image data output from the card IZF98. Perform processing. For example, jPEG (joint Photographic Experts Group) method is used for compression and decompression of image data.
[0035] カード IZF98は、本デジタルカメラ 10とメモリカード 100との間でデータの送受を行 うためのものであり、画像データの書き込みや読み出しの処理を行う。メモリカード 10 0は、データの記録用の半導体記録媒体であり、本デジタル一眼レフカメラ 10に対し て着脱可能である。 [0036] メモリ 104には、信号処理部 94から出力されたデジタル信号 (画像データ)が記録 され、 DAC (Digital to Analog converter:デジタル—アナログ変^ 106で は、信号処理部 74から出力されたデジタル信号をアナログ信号に変換する。 The card IZF 98 is for transmitting and receiving data between the digital camera 10 and the memory card 100, and writes and reads image data. The memory card 100 is a semiconductor recording medium for recording data, and is detachable from the digital single-lens reflex camera 10. [0036] The memory 104 records a digital signal (image data) output from the signal processing unit 94, and a DAC (Digital to Analog converter) 106 outputs the digital signal (image data) from the signal processing unit 74. Converts digital signals to analog signals.
[0037] 液晶表示モニタ 28は、前記 DAC106から出力されたアナログ信号に基づいて画 像表示を行うものである。この液晶表示モニタ 42は、前述したように、カメラ本体 12の 背面側に設けられており、撮影者はこの液晶表示モニタ 42を見ながら撮影を行うこと が可能である。  The liquid crystal display monitor 28 performs image display based on the analog signal output from the DAC 106. The liquid crystal display monitor 42 is provided on the back side of the camera body 12 as described above, and the photographer can take a picture while looking at the liquid crystal display monitor 42.
[0038] インターフェース(IZF)部 110は、コントローラ 50とパーソナルコンピュータ(PC) 1 [0038] The interface (IZF) unit 110 includes a controller 50 and a personal computer (PC) 1
12との間でデータの送受を行うためのものであり、例えば USB (UniversalSerial12 to send and receive data, for example, USB (UniversalSerial
Bus (登録商標))用のインターフェース回路が用いられる。 Bus (registered trademark)) interface circuit is used.
[0039] パーソナルコンピュータ 112は、本デジタルカメラの製造段階に於ける、 CCD36の フォーカス感度補正用データのメモリ 64への書き込み等に使用されるものであり、本 デジタルカメラ 10を構成するものではな 、。 The personal computer 112 is used to write focus sensitivity correction data of the CCD 36 into the memory 64 in the manufacturing stage of the digital camera, and does not constitute the digital camera 10. ,.
[0040] 図 3は、前述した光学ファインダユニット 40の構成を示した図である。 FIG. 3 is a diagram showing a configuration of the optical finder unit 40 described above.
[0041] 図 3に於いて、対物レンズ 72を透過した入射される光束は、ハーフミラー 74を透過 して、接眼レンズ 76に導かれる。一方、フレーム枠 78を通過した光は、ミラー 80及び ハーフミラー 74によって反射され、接眼レンズ 76に到達する。これによつて、ファイン ダ像にフレーム枠が付加される。 In FIG. 3, the incident light flux transmitted through the objective lens 72 is transmitted through the half mirror 74 and guided to the eyepiece 76. On the other hand, the light that has passed through the frame 78 is reflected by the mirror 80 and the half mirror 74 and reaches the eyepiece 76. As a result, a frame is added to the finder image.
[0042] 前記対物レンズ 72にはコイル 84が固着されており、永久磁石 86と併せて VCM (V oice Coil Motor)を構成している。このコイル 84への通電によって、図 1に於けるA coil 84 is fixed to the objective lens 72, and together with the permanent magnet 86, constitutes a VCM (Voice Coil Motor). When the coil 84 is energized,
X軸方向及び Z軸方向に対物レンズ 72が移動されて、ファインダの像振れを補正す ることが可能となっている。 The objective lens 72 is moved in the X-axis direction and the Z-axis direction, so that the image blur of the finder can be corrected.
[0043] 図 4は、前述した撮像部位置駆動ユニット 34の構成を示した斜視図である。 FIG. 4 is a perspective view showing a configuration of the above-described imaging unit position drive unit 34.
[0044] 図 4に於いて、ベース 120上には、シャフト 122、シャフト 124にガイドされた Zスライ ダ 126が、図 1に示される Z軸方向に摺動自在に支持されており、 VCM128の発生 する推力によって駆動できるよう構成されて 、る。 In FIG. 4, on a base 120, a shaft 122 and a Z slider 126 guided by the shaft 124 are slidably supported in the Z-axis direction shown in FIG. It is configured so that it can be driven by the generated thrust.
[0045] また、 Zスライダ 126上には、シャフト 130、シャフト 132にガイドされた Xスライダ 134On the Z slider 126, an X slider 134 guided by the shaft 130 and the shaft 132 is provided.
1S 同 X軸方向に摺動自在に支持されており、 VCM136の発生する推力によって駆 動できるよう構成されている。 1S Same as above, slidably supported in the X-axis direction, and driven by the thrust generated by VCM136. It is configured to be able to move.
[0046] この Xスライダ 134上には CCD36が載置されており、該 CCD36は X軸方向、 Z軸 方向の 2方向に移動が可能な構成となっている。  A CCD 36 is mounted on the X slider 134, and the CCD 36 is configured to be movable in two directions, ie, an X-axis direction and a Z-axis direction.
[0047] 次に、第 1の実施形態に於けるカメラのフレーミンダカも撮像に至る処理について、 図 5を参照して説明する。 Next, a process of capturing an image of a camera framing in the first embodiment will be described with reference to FIG.
[0048] 尚、図 5に於いて示される Dl、 D2、 D3、 D4は同期バーを表しており、これらの同 期バーに挟まれた複数系統の動作が並行処理されることを示している。 [0048] Note that Dl, D2, D3, and D4 shown in Fig. 5 represent synchronization bars, and indicate that operations of a plurality of systems sandwiched between these synchronization bars are performed in parallel. .
[0049] カメラの像振れ補正機能がオン (ON)にされると(SI)、直ちに同期バー Dl、 D2に 挟まれた動作が開始される。 When the image blur correction function of the camera is turned on (ON) (SI), the operation immediately between the synchronization bars Dl and D2 is started.
[0050] 先ず、フラグ Bに" 0"がセットされ(Sal)、次に角速度センサ 38a及び 38bからの出 力信号がサンプリングされる(Sa2)。そして、角速度センサ 38a及び 38bからの出力 信号、焦点距離、被写体までの距離情報を基に、目標となる移動量が演算される(S a3)。更に、光学ファインダユニット 40の対物レンズ 72が、演算された移動量だけ移 動される(Sa4)。 First, the flag B is set to “0” (Sal), and then the output signals from the angular velocity sensors 38a and 38b are sampled (Sa2). Then, a target moving amount is calculated based on the output signals from the angular velocity sensors 38a and 38b, the focal length, and information on the distance to the subject (Sa3). Further, the objective lens 72 of the optical finder unit 40 is moved by the calculated movement amount (Sa4).
[0051] ここで、ファーストレリーズ (シャツタ釦 32の半押し)が実行されているか否かが判定 される(Sa5)。その結果、実行されていない場合には、前記 Sa2からの処理が繰り返 される。  Here, it is determined whether or not the first release (half-press of the shirt button 32) has been performed (Sa5). As a result, if not executed, the processing from Sa2 is repeated.
[0052] 一方、ファーストレリーズが実行されている場合は、次にフラグ Bにセットされた内容 の判定が行われる(Sa6)。ここで、フラグ Bに" 0"がセットされている場合は、 AE、 AF 動作が実行される(Sa7)。次いで、フラグ Bに" 1"がセット(Sa8)された上で、セカン ドレリーズ (シャツタ釦 32の全押し)の判定が行われる(Sa9)。  On the other hand, when the first release is being executed, the content set in the flag B is determined next (Sa6). If the flag B is set to "0", the AE and AF operations are performed (Sa7). Next, after the flag B is set to "1" (Sa8), the second release (full press of the shirt button 32) is determined (Sa9).
[0053] 一方、前記 Sa6にて、フラグ Bに" 0"がセットされていない場合には、直接、セカンド レリーズ (シャツタ釦 32の全押し)の判定に移行する(Sa9)。ここで、セカンドレリーズ が実行されていない場合は、前記 Sa2からの処理が繰り返される。一方、セカンドレリ ーズが実行されている場合には、同期バー Dl、 D2によって挟まれた動作が完了す る。  On the other hand, if the flag B is not set to “0” at Sa6, the process directly proceeds to the determination of the second release (full press of the shirt button 32) (Sa9). Here, if the second release has not been executed, the processing from Sa2 is repeated. On the other hand, when the second release is being executed, the operation sandwiched by the synchronization bars Dl and D2 is completed.
[0054] 次に、前記 Sal〜Sa9に至る一連の動作と並行処理される動作について説明する [0055] 先ず、撮像部位置駆動ユニット 34に搭載された CCD36が、中央の初期位置に存 在するか否かが判定される(Sbl)。ここで、前記 CCD36が中央の初期位置に存在 しないと判定された場合には、 CCD36がセンタリング(中央の初期位置まで移動動 作)される(Sb2)。その後、前記 Sblに移行して、再度前記 CCD36の位置が判定さ れる。 Next, an operation performed in parallel with a series of operations from Sal to Sa9 will be described. First, it is determined whether or not the CCD 36 mounted on the imaging unit position drive unit 34 is at the center initial position (Sbl). If it is determined that the CCD 36 is not located at the center initial position, the CCD 36 is centered (moves to the center initial position) (Sb2). Thereafter, the flow shifts to Sbl, and the position of the CCD 36 is determined again.
[0056] そして、前記 CCD36が中央の初期位置に存在すると判定されたならば、同期バー If it is determined that the CCD 36 is located at the center initial position, the synchronization bar
Dl、 D2によって挟まれた動作が完了する。 The operation sandwiched by Dl and D2 is completed.
[0057] 一方、前記 Sblにて、中央の初期位置に存在すると判定された場合には、 CCDS[0057] On the other hand, if it is determined in Sbl that it is located at the center initial position, the CCDS
36が移動されること無しに、同期バー Dl、 D2によって挟まれた動作が完了する。 The operation sandwiched by the synchronization bars Dl and D2 is completed without the 36 being moved.
[0058] 次に、シャツタ 28が開放されると(S2)、直ちに同期バー D3、 D4に挟まれた動作が 開始される。 Next, when the shirt 28 is released (S2), the operation sandwiched between the synchronization bars D3 and D4 is started immediately.
[0059] 先ず、角速度センサ 38a及び 38bからの出力信号がサンプリングされる(SblO)。  First, output signals from the angular velocity sensors 38a and 38b are sampled (SblO).
更に、角速度センサ 38a及び 38bからの出力信号、焦点距離、被写体までの距離情 報を基に、目標となる移動量が演算される(Sbl 1)。そして、この移動量だけ CCD36 が駆動 (シフト)される(Sbl2)。  Further, a target moving amount is calculated based on the output signals from the angular velocity sensors 38a and 38b, the focal length, and information on the distance to the subject (Sbl 1). Then, the CCD 36 is driven (shifted) by this movement amount (Sbl2).
[0060] その後、所望の露光時間が完了したか否かが判定される(Sbl 3)。ここで、露光時 間が完了していないと判定された場合には、前記 SblOからの処理が繰り返される。 一方、 Sbl3にて露光時間が完了したと判定された場合には、同期バー D3、 D4によ つて挟まれた動作が完了する。  Thereafter, it is determined whether or not a desired exposure time has been completed (Sbl 3). Here, if it is determined that the exposure time has not been completed, the processing from SblO is repeated. On the other hand, when it is determined in Sbl3 that the exposure time has been completed, the operation sandwiched by the synchronization bars D3 and D4 is completed.
[0061] 次に、前記 SblO〜Sbl3に至る一連の動作と並行処理される動作について説明 する。  Next, an operation performed in parallel with a series of operations from SblO to Sbl3 will be described.
[0062] 先ず、光学ファインダユニット 40の対物レンズ 72が中央の初期位置に存在するか 否かが判定される(SalO)。ここで、中央の初期位置に存在しないと判定された場合 には、対物レンズ 72のセンタリング動作が実行された (Sai l)後、前記 SalOに移行 して、再度対物レンズ 72の位置が判定される。  First, it is determined whether or not the objective lens 72 of the optical finder unit 40 is at the center initial position (SalO). Here, if it is determined that the objective lens 72 does not exist at the center initial position, the centering operation of the objective lens 72 is performed (Sail), and then the process proceeds to SalO to determine the position of the objective lens 72 again. You.
[0063] 一方、前記 SalOにて、中央の初期位置に存在すると判定された場合には、対物レ ンズ 72が移動されること無ぐそれぞれ同期バー D3、 D4によって挟まれた動作が完 了する。 [0064] そして、直ちにシャツタ 28が遮蔽されて(S3)、撮影動作が完了する。 On the other hand, if it is determined in SalO that the objective lens 72 is located at the center initial position, the operation sandwiched by the synchronization bars D3 and D4 is completed without moving the objective lens 72. . Then, the shirt 28 is immediately shielded (S3), and the photographing operation is completed.
[0065] このように、第 1の実施形態によれば、観察動作を行っている際に撮像系の補正開 始準備が行われ、また撮像中に観察系の補正開始準備が行われるため、動作開始 の遅延や動作開始時の違和感を、大幅に軽減することが可能となる。  As described above, according to the first embodiment, the correction start preparation of the imaging system is performed during the observation operation, and the correction start preparation of the observation system is performed during the imaging. It is possible to greatly reduce delays in starting operation and discomfort at the start of operation.
[0066] (第 2の実施形態)  (Second Embodiment)
次に、本発明の第 2の実施形態について説明する。  Next, a second embodiment of the present invention will be described.
[0067] 尚、この第 2の実施形態に於ける一眼レフカメラの構成及び動作は、基本的に図 1 乃至図 5に示された第 1の実施形態と同様であり、同一の部分には同一の参照番号 またはステップ番号を付してその図示及び説明は省略し、異なる部分についてのみ 説明する。  Note that the configuration and operation of the single-lens reflex camera in the second embodiment are basically the same as those in the first embodiment shown in FIGS. The same reference numerals or step numbers are assigned and the illustration and description thereof are omitted, and only different parts will be described.
[0068] 図 6は、本発明の第 2の実施形態に係るデジタル一眼レフカメラの外観構成を、一 部を透視して模式的に示した斜視図である。  FIG. 6 is a perspective view schematically showing an external configuration of a digital single-lens reflex camera according to a second embodiment of the present invention, with a part thereof being seen through.
[0069] 図 6に於いて、このデジタル一眼レフカメラ 140は、カメラ本体 142と、鏡枠モジユー ル 144とを有して構成される。 In FIG. 6, the digital single-lens reflex camera 140 includes a camera main body 142 and a lens frame module 144.
[0070] 前記鏡枠モジュール 144は、カメラ本体 142の前面部に着脱可能に装着されるも ので、後述するズーム機能を有した 1群レンズ 16乃至 4群レンズ 22等を有して構成さ れる。この鏡枠モジュール 144は、図示されない被写体からの撮影光束を撮像装置 である CCD36に導くためのものである。 The lens frame module 144 is detachably mounted on the front surface of the camera body 142, and includes a first-group lens 16 to a fourth-group lens 22 having a zoom function described later, and the like. . The mirror frame module 144 is for guiding a luminous flux from a subject (not shown) to the CCD 36 which is an imaging device.
[0071] カメラ本体 142の上面部には、シャツタレリーズスィッチに対応したシャツタ釦 32が 設けられている。 On the upper surface of the camera body 142, a shirt button 32 corresponding to a shirt release switch is provided.
[0072] そして、カメラ本体 142の内部には、前記鏡枠モジュール 144の光軸の延長上に、 可動ミラー 146と CCD36とが配置されている。  A movable mirror 146 and a CCD 36 are arranged inside the camera body 142 so as to extend the optical axis of the lens frame module 144.
[0073] 尚、鏡枠モジュール 144力も CCD36の撮像面中央に向力 光軸は、図 6に示され る Y軸に対応し、この光軸中心と CCD36との交点を通り、鉛直上方に向力 方向に Z 軸、光軸中心と CCD36との交点を通り前記 Y軸、 Z軸のそれぞれに垂直な方向に X 軸が、それぞれ定められる。 The lens frame module 144 also has a force directed toward the center of the imaging surface of the CCD 36. The optical axis corresponds to the Y axis shown in FIG. 6, and passes through the intersection between the optical axis center and the CCD 36 and extends vertically upward. A Z-axis is defined in the force direction, and an X-axis is defined in a direction perpendicular to each of the Y-axis and the Z-axis passing through the intersection of the optical axis center and the CCD 36.
[0074] また、カメラ本体 142内には、該カメラ本体 142に生じる振動を検出するためのブレ 検出手段である角速度センサ 38a及び 38bが配置されている。更に、カメラ本体 142 の背面部には、液晶モニタ 42が設けられている。 Further, in the camera body 142, angular velocity sensors 38a and 38b as shake detecting means for detecting vibration generated in the camera body 142 are arranged. In addition, the camera body 142 A liquid crystal monitor 42 is provided on the back of the camera.
[0075] 前記可動ミラー 146が、図 6に示されるように撮影光路内に下降している場合には、 可動ミラー 146によって反射された光束は、フォーカシングスクリーン 148上に結像さ れる。そして、このフォーカシングスクリーン 148上に結像された被写体像は、ダハミ ラー 150によって反射され、可変ミラー 160で更に反射された後に接眼レンズ 152に 到達する。これにより、撮影者は被写体像を確認することができる。  When the movable mirror 146 is descending into the photographing optical path as shown in FIG. 6, the light beam reflected by the movable mirror 146 forms an image on the focusing screen 148. Then, the subject image formed on the focusing screen 148 is reflected by the Dahmirror 150, further reflected by the variable mirror 160, and reaches the eyepiece 152. Thereby, the photographer can check the subject image.
[0076] 尚、可変ミラー 160の詳細な構成については後述する。  The detailed configuration of the variable mirror 160 will be described later.
[0077] 一方、図示されないが、可動ミラー 160が上昇して撮影光路より退避している場合 には、鏡枠モジュール 144を透過した光束は CCD36上に結像される。  On the other hand, although not shown, when the movable mirror 160 is raised and retracted from the photographing optical path, the light beam transmitted through the lens frame module 144 forms an image on the CCD 36.
[0078] 図 7は、図 6のデジタル一眼レフカメラの概略構成を示すブロック図である。 FIG. 7 is a block diagram showing a schematic configuration of the digital single-lens reflex camera of FIG.
[0079] 図 7に於いて、前述した鏡枠モジュール 144は、 1群レンズ 16、 2群レンズ 18、 3群 レンズ 20、 4群レンズ 22及び絞り 24とを有して構成される。そして、コントローラ 50に 接続されたミラー角度制御部 156は、詳細を後述する可変ミラー 160の角度を制御 するためのものである。 In FIG. 7, the above-described lens frame module 144 includes a first-group lens 16, a second-group lens 18, a third-group lens 20, a fourth-group lens 22, and an aperture 24. The mirror angle controller 156 connected to the controller 50 controls the angle of the variable mirror 160, which will be described in detail later.
[0080] 尚、この一眼レフカメラのその他の部分の構成及び動作は、基本的に図 2に示され た第 1の実施形態のデジタルカメラと同様であり、同一の部分には同一の参照番号を 付してその図示及び説明は省略する。  [0080] The configuration and operation of other parts of this single-lens reflex camera are basically the same as those of the digital camera of the first embodiment shown in FIG. 2, and the same parts are denoted by the same reference numerals. And their illustration and description are omitted.
[0081] 次に、図 8及び図 9を参照して、可変ミラー 160の構成について説明する。  Next, the configuration of the variable mirror 160 will be described with reference to FIG. 8 and FIG.
[0082] 図 8は可変ミラー 160の構成の一例を示した断面図、図 9Aは可変ミラー 160の電 極配置の一例を示したもので、ミラー 162側の電極配置を示した図、図 9Bは可変ミラ 一 160の電極配置の一例を示したもので、下部基板 164側の電極配置を示した図で ある。尚、図 8及び図 9に示された可変ミラー 160は、いわゆる MEMS (Micro Elec tro Mechanical System)技術を用 、て作製される。  FIG. 8 is a cross-sectional view illustrating an example of the configuration of the variable mirror 160, and FIG. 9A is a view illustrating an example of the electrode arrangement of the variable mirror 160. FIG. FIG. 4 shows an example of the electrode arrangement of the variable mirror 160, and is a diagram showing the electrode arrangement on the lower substrate 164 side. The variable mirror 160 shown in FIGS. 8 and 9 is manufactured using a so-called MEMS (Micro Electro Mechanical System) technology.
[0083] 図 8及び図 9に示されるように、第 2の補正手段である可変ミラー 160は、ミラー 162 と、該ミラー 162に対向して配置された下部基板 164と、その両端がそれぞれミラー 1 62と下咅基板 164に接続されたノ ネ 166、 168、 170、 172と、ミラー 162の略中央 を支持するピボット 174とを備えている。前記ミラー 162は、上部電極 178及び外部リ ード電極 180を有している。そして、前記ミラー 162の表面には、反射部(ミラー面) 1 82が設けられている。 As shown in FIG. 8 and FIG. 9, the variable mirror 160 as the second correction means includes a mirror 162, a lower substrate 164 disposed opposite to the mirror 162, and mirrors at both ends. The mirrors 162, 166, 168, 170, 172 connected to the base plate 162 and the lower substrate 164, and a pivot 174 for supporting a substantially center of the mirror 162 are provided. The mirror 162 has an upper electrode 178 and an external lead electrode 180. A reflecting portion (mirror surface) 1 is provided on the surface of the mirror 162. 82 are provided.
[0084] 上部電極 178は、薄膜 184、 184に挟まれており、前記反射部 182の反射面に平 行に設けられている。また、上部電極 178は、図 9Aに示されるように、ほぼ矩形状に 形成されている。外部リード電極 180は、上部電極 178と外部との電気的接続に用 いられるものであり、その表面は露出されている。  The upper electrode 178 is sandwiched between the thin films 184 and 184, and is provided in parallel with the reflection surface of the reflection section 182. The upper electrode 178 is formed in a substantially rectangular shape as shown in FIG. 9A. The external lead electrode 180 is used for electrical connection between the upper electrode 178 and the outside, and its surface is exposed.
[0085] 前記下部基板 164に設けられた下部電極 190、 192、 194、 196は、薄膜 208に挟 まれるもので、上部電極 178に対向する位置に設けられている。すなわち、下部基板 164は、半導体基板 206上に、 4つの下部電極 190〜196及び 4つの外部リード電 極 198、 200、 202、 204力 ^設けられたものである。外咅リード電極 198〜204は、下 部電極 190〜196と外部との電気的接続に用いられるものであり、その表面は露出 している。  The lower electrodes 190, 192, 194, and 196 provided on the lower substrate 164 are sandwiched between the thin films 208, and are provided at positions facing the upper electrode 178. That is, the lower substrate 164 is provided with four lower electrodes 190 to 196 and four external lead electrodes 198, 200, 202, 204 on the semiconductor substrate 206. The outer lead electrodes 198 to 204 are used for electrical connection between the lower electrodes 190 to 196 and the outside, and their surfaces are exposed.
[0086] 前記ミラー 162と下部基板 164との間には、前述した 4つのパネ 166〜172が配置 されている。ミラー 162と下部基板 164とは、これらのパネ 166〜172を介して連結さ れている。  [0086] The four panels 166 to 172 described above are arranged between the mirror 162 and the lower substrate 164. The mirror 162 and the lower substrate 164 are connected via these panels 166 to 172.
[0087] また、 4つのパネ 166〜172の中心位置、すなわち 4つの下部電極 190〜196の中 心位置に対応して、ピボット 174が形成されている。つまり、パネ 166〜172の引張力 によって、ミラー 162の重心位置が押圧されている。これにより、ピボット 174を中心に ミラー 162を傾ける (ティルト)ことが可能となる。  [0087] A pivot 174 is formed corresponding to the center position of the four panels 166 to 172, that is, the center position of the four lower electrodes 190 to 196. That is, the center of gravity of the mirror 162 is pressed by the tensile force of the panels 166 to 172. This makes it possible to tilt the mirror 162 about the pivot 174.
[0088] 以上のような構成の可変ミラー 160に於いて、上部電極 178と下部電極 190〜196 との間に与えられる各電位差が変化されることにより、静電気力によって下部基板 16 4に対するミラー 162の傾きを変化させることができる。  In the variable mirror 160 having the above-described configuration, the potential difference between the upper electrode 178 and the lower electrodes 190 to 196 is changed, so that the mirror 162 with respect to the lower substrate 164 is generated by electrostatic force. Can be changed.
[0089] 前述したように、可動ミラー 146によって反射された光束は、フォーカシングスクリー ン 148、ダハミラー 150を介し、可変ミラー 160で反射された後に接眼レンズ 152に 到達する。したがって、ミラー 162の傾きを変化させることによって、接眼レンズ 152を 通して見た被写体像を移動させることが可能となり、ファインダでの像振れ補正を実 現することができる。  As described above, the light beam reflected by the movable mirror 146 reaches the eyepiece 152 after being reflected by the variable mirror 160 via the focusing screen 148 and the roof mirror 150. Therefore, by changing the tilt of the mirror 162, the subject image viewed through the eyepiece 152 can be moved, and image blur correction in the finder can be realized.
[0090] 次に、第 2の実施形態に於けるカメラのフレーミンダカも撮像に至る処理について、 図 10を参照して説明する。 [0091] 尚、図 10に於いて示される Dl l、 D12、 D13、 D14は同期バーを表しており、これ らの同期バーに挟まれた複数系統の動作が並行処理されることを示している。 Next, a description will be given, with reference to FIG. 10, of a process in which a camera framing image is captured by the camera according to the second embodiment. [0091] Note that Dll, D12, D13, and D14 shown in FIG. 10 represent synchronization bars, and indicate that operations of a plurality of systems sandwiched between these synchronization bars are performed in parallel. I have.
[0092] カメラの像振れ補正機能がオン (ON)にされると(S21)、直ちに同期バー Dl l、 D 12に挟まれた動作が開始される。  When the image blur correction function of the camera is turned on (ON) (S21), the operation immediately between the synchronization bars Dll and D12 is started.
[0093] 先ず、フラグ Bに" 0"がセットされ(Sa31)、次に角速度センサ 38a及び 38bからの 出力信号がサンプリングされる(Sa32)。そして、角速度センサ 38a及び 38bからの 出力信号、焦点距離、被写体までの距離情報を基に、目標となる移動量が演算され る(Sa33)。更に、可変ミラー 160のミラー 162が、前記 Sa33にて演算された角度だ けティルトされる(Sa34)。  First, “0” is set to the flag B (Sa31), and then the output signals from the angular velocity sensors 38a and 38b are sampled (Sa32). Then, a target moving amount is calculated based on the output signals from the angular velocity sensors 38a and 38b, the focal length, and information on the distance to the subject (Sa33). Further, the mirror 162 of the variable mirror 160 is tilted by the angle calculated in Sa33 (Sa34).
[0094] ここで、ファーストレリーズ (シャツタ釦 32の半押し)が実行されているか否かが判定 される(Sa35)。その結果、実行されていない場合には、前記 Sa32からの処理が繰り 返される。  [0094] Here, it is determined whether or not the first release (half-press of the shirt button 32) has been performed (Sa35). As a result, if not executed, the processing from Sa32 is repeated.
[0095] 一方、ファーストレリーズが実行されている場合は、次にフラグ Bにセットされた内容 の判定が行われる(Sa36)。ここで、フラグ Bに" 0"がセットされている場合は、 AE、 A F動作が実行される(Sa37)。次いで、フラグ Bに" 1"がセット(Sa38)された上で、セ カンドレリーズ (シャツタ釦 32の全押し)の判定が行われる(Sa39)。  [0095] On the other hand, when the first release is being executed, the content set in the flag B is determined next (Sa36). If "0" is set in the flag B, the AE and AF operations are executed (Sa37). Next, after the flag B is set to "1" (Sa38), the second release (full press of the shirt button 32) is determined (Sa39).
[0096] 一方、前記 Sa36にて、フラグ Bに" 0"がセットされていない場合には、直接、セカン ドレリーズ (シャツタ釦 32の全押し)の判定に移行する(Sa39)。ここで、セカンドレリ ーズが実行されて ヽな 、場合は前記 Sa32からの処理が繰り返され、セカンドレリー ズが実行されている場合には、同期バー Dl l、 D12によって挟まれた動作が完了す る。  On the other hand, if “0” is not set to the flag B in Sa36, the flow directly proceeds to the determination of the second release (full press of the shirt button 32) (Sa39). Here, if the second release is not performed, the process from Sa32 is repeated.If the second release is performed, the operation sandwiched by the synchronization bars Dll and D12 is completed. You.
[0097] 次に、前記 Sa31〜Sa39に至る一連の動作と並行処理される動作について説明す る。  [0097] Next, an operation that is performed in parallel with a series of operations from Sa31 to Sa39 will be described.
[0098] 先ず、撮像部位置駆動ユニット 34に搭載された CCD36が、中央の初期位置に存 在するか否かが判定される(Sb31)。ここで、前記 CCD36が中央の初期位置に存在 しないと判定された場合には、 CCD36がセンタリング(中央の初期位置まで移動動 作)される(Sb32)。その後、前記 Sb31に移行して、再度前記 CCD36の位置が判 定される。 [0099] そして、前記 CCD36が中央の初期位置に存在すると判定されたならば、同期バー Dl l、 D12によって挟まれた動作が完了する。 First, it is determined whether or not the CCD 36 mounted on the imaging unit position drive unit 34 is at the center initial position (Sb31). If it is determined that the CCD 36 does not exist at the center initial position, the CCD 36 is centered (moves to the center initial position) (Sb32). Thereafter, the flow shifts to Sb31, where the position of the CCD 36 is determined again. If it is determined that the CCD 36 is at the center initial position, the operation sandwiched by the synchronization bars Dll and D12 is completed.
[0100] 一方、前記 Sbl l〖こて、中央の初期位置に存在すると判定された場合には、 CCD3 6が移動されること無しに、同期バー Dl l、 D12によって挟まれた動作が完了する。  [0100] On the other hand, if it is determined that the Sbl l is located at the center initial position, the operation sandwiched by the synchronization bars Dl l and D12 is completed without moving the CCD 36. .
[0101] 次に、可動ミラー 146が撮影光路より退避させるベく上昇される(S22)。すると、直 ちに同期バー D13、 D14に挟まれた動作が開始される。  Next, the movable mirror 146 is moved up so as to be retracted from the photographing optical path (S22). Then, the operation immediately between the synchronization bars D13 and D14 is started.
[0102] 先ず、シャツタ 28が開放(Sb40)される。次いで、角速度センサ 38a及び 38bから の出力信号がサンプリングされる(Sb41)。更に、角速度センサ 38a及び 38bからの 出力信号、焦点距離、被写体までの距離情報を基に、目標となる移動量が演算され る(Sb42)。そして、この移動量だけ CCD36が駆動(シフト)される(Sb43)。  [0102] First, the shirt 28 is released (Sb40). Next, output signals from the angular velocity sensors 38a and 38b are sampled (Sb41). Further, a target moving amount is calculated based on the output signals from the angular velocity sensors 38a and 38b, the focal length, and information on the distance to the subject (Sb42). Then, the CCD 36 is driven (shifted) by this movement amount (Sb43).
[0103] その後、所望の露光時間が完了したか否かが判定される(Sb44)。ここで、露光時 間が完了していないと判定された場合には、前記 Sb41からの処理が繰り返される。 一方、 Sb44にて露光時間が完了したと判定された場合には、続けてシャツタ 28が遮 蔽された (Sb45)後、同期バー D13、 D14によって挟まれた動作が完了する。  After that, it is determined whether or not the desired exposure time has been completed (Sb44). Here, if it is determined that the exposure time has not been completed, the processing from Sb41 is repeated. On the other hand, if it is determined in Sb44 that the exposure time has been completed, the shutter 28 is subsequently shielded (Sb45), and then the operation sandwiched by the synchronization bars D13 and D14 is completed.
[0104] 次に、前記 Sb40〜Sb45に至る一連の動作と並行処理される動作について説明 する。  Next, a series of operations from Sb40 to Sb45 and operations that are performed in parallel will be described.
[0105] 先ず、可変ミラー 160のミラー 162が、中央の初期位置に存在するか否かが判定さ れる(Sa40)。ここで、中央の初期位置に存在しないと判定された場合には、ミラー 1 62のセンタリング動作が実行された (Sa41)後、前記 Sai lに移行して、再度ミラー 1 62の位置が判定される。  First, it is determined whether or not the mirror 162 of the variable mirror 160 is located at the center initial position (Sa40). Here, if it is determined that the mirror is not located at the initial position at the center, the centering operation of the mirror 162 is performed (Sa41), and thereafter, the process proceeds to Sail, and the position of the mirror 162 is determined again. You.
[0106] 一方、前記 Sa40にて、中央の初期位置に存在すると判定された場合には、ミラー 1 62が駆動されること無しに、それぞれ同期バー D13、 D14によって挟まれた動作が 完了する。  [0106] On the other hand, if it is determined in Sa40 that the mirror exists at the center initial position, the operation sandwiched by the synchronization bars D13 and D14 is completed without driving the mirror 162.
[0107] そして、可動ミラー 146が撮影光路内に下降された (S23)後に、撮影動作が完了 する。  [0107] Then, after the movable mirror 146 is lowered into the photographing optical path (S23), the photographing operation is completed.
[0108] 実際の撮影シーンに於いては、フレーミングゃシャツタチャンスの待ち時間等に多く の時間が費やされ、実際に露光が行われる時間は微々たるものである。そのため、 本実施形態のように、静電気力を利用した省消費電力ァクチユエータが、観察系に 用いられることにより、電池寿命の飛躍的な向上を期待することができる。 In an actual shooting scene, a lot of time is spent in the waiting time for framing and shirt tasks, and the actual exposure time is insignificant. Therefore, as in the present embodiment, a power-saving actuator using electrostatic force is used in an observation system. By using it, a dramatic improvement in battery life can be expected.
[0109] また、本構成によれば、観察動作を行っている際に撮像系の補正開始準備が行わ れ、また撮像中に観察系の補正開始準備が行われるため、動作開始の遅延や動作 開始時の違和感を、大幅に軽減することができるという利点がある。  Further, according to this configuration, the correction start preparation of the imaging system is performed during the observation operation, and the correction start preparation of the observation system is performed during the imaging operation. There is an advantage that discomfort at the start can be greatly reduced.
[0110] 更に、本実施形態では、可動ミラーによる光路切り替えにより、ファインダへの光路 が遮蔽されている状態で観察系のセンタリング動作が実行されるため、センタリング 動作による違和感を撮影者に与えることが無 、。  [0110] Further, in the present embodiment, the centering operation of the observation system is performed in a state where the optical path to the finder is blocked by the optical path switching by the movable mirror. Nothing ,.
[0111] 尚、本実施形態のように、可動ミラーによる光路切り替えを行う構成では、観察と撮 像の切り替えに要する時間が必然的に発生するため、この時間内にセンタリング動 作を実行させても良い。  In the configuration in which the optical path is switched by the movable mirror as in the present embodiment, the time required for switching between observation and imaging is inevitably generated. Therefore, the centering operation is performed within this time. Is also good.
[0112] また、前述した第 2の実施形態では、可動ミラー上昇力も下降までの処理を、観察 補正系と撮像補正系で並行に行っていたが、撮像補正系の処理が行われた後に観 察補正系の処理を行うようにすることも可能である。  [0112] In the second embodiment described above, the processing until the movable mirror raising force is also lowered is performed in parallel by the observation correction system and the imaging correction system. However, the observation is performed after the processing of the imaging correction system is performed. It is also possible to perform the processing of the observation correction system.
[0113] (第 3の実施形態) (Third Embodiment)
次に、本発明の第 3の実施形態について説明する。  Next, a third embodiment of the present invention will be described.
[0114] 図 11は、本発明の第 3の実施形態に係るデジタル一眼レフカメラの光学要素の模 式図である。以下、図 11を参照して第 3の実施形態を説明する。 FIG. 11 is a schematic diagram of an optical element of a digital single-lens reflex camera according to a third embodiment of the present invention. Hereinafter, the third embodiment will be described with reference to FIG.
[0115] 尚、この第 3の実施形態に於けるカメラの構成は、基本的に図 1乃至図 10に示され たものと同様であるので、異なる構成についてのみ説明し、その他の同一の部分に は同一の参照番号を付して、その図示及び説明は省略する。 The configuration of the camera according to the third embodiment is basically the same as that shown in FIGS. 1 to 10. Therefore, only different configurations will be described, and the other same parts will be described. Are given the same reference numerals, and their illustration and description are omitted.
[0116] 図 11〖こ於いて、デジタル一眼レフカメラ 210は、カメラ本体 212と、このカメラ本体 2[0116] In FIG. 11, the digital single-lens reflex camera 210 includes a camera body 212 and a camera body 2
12の前面部に着脱可能に装着された鏡枠モジュール 214とから構成されている。 The lens frame module 214 is detachably mounted on the front surface of the lens frame 12.
[0117] 鏡枠モジュール 214は、撮影レンズ 216を有している。この撮影レンズ 216を透過 した光束は、カメラ本体 212内の可動ミラー 220へ導かれる。 [0117] The mirror frame module 214 has a photographing lens 216. The light beam transmitted through the photographing lens 216 is guided to a movable mirror 220 in the camera body 212.
[0118] カメラ本体 212内の可動ミラー 220は、撮影光路内と撮影光路外に移動可能に設 けられている。可動ミラー 220が、図示されるように撮影光路内に下降している場合 には、撮影レンズ 216からの撮影光束は、可動ミラー 220によって反射されて、フォ 一力シンダスクリーン 222上に結像される。 [0119] そして、前記撮影光束は、第 1フィールドレンズ 224と一体的に構成されたプリズム[0118] The movable mirror 220 in the camera body 212 is provided so as to be movable in and out of the imaging optical path. When the movable mirror 220 is lowered into the photographing optical path as shown in the figure, the photographing light beam from the photographing lens 216 is reflected by the movable mirror 220 and forms an image on the forcible screen 222. You. [0119] Then, the photographing light beam is a prism integrated with the first field lens 224.
226を経て、ミラー A228によって反射された後、リレーレンズ 230を透過する。更に、 前記光束は、ミラー B1234で反射された後に第 2フィールドレンズ 236を透過し、ミラ 一 C238で反射されて接眼レンズ 240に到達する。 After passing through 226, the light is reflected by the mirror A228 and then passes through the relay lens 230. Further, the light flux is transmitted through the second field lens 236 after being reflected by the mirror B1234, is reflected by the mirror C238, and reaches the eyepiece lens 240.
[0120] 一方、図示されな 、が、可動ミラー 220が撮影光路外に退避して 、る場合は、撮影 レンズ 216を透過した撮影光束は、 CCD242に取り込まれる。 On the other hand, although not shown, when the movable mirror 220 is retracted outside the imaging optical path, the imaging light flux transmitted through the imaging lens 216 is captured by the CCD 242.
[0121] 手振れ補正を行うには、リレーレンズ 230を光軸に対して垂直な平面内で偏心 (シ フト)させる力 或いはリレーレンズ 230を光軸に対して傾ける(ティルト)等の方法をと れば良い。これらのリレーレンズ 230のシフト、或いはティルトは、一般的な駆動手段 によって実現可能であるので、ここでは説明を省略する。 [0121] In order to perform camera shake correction, a method of decentering (shifting) the relay lens 230 in a plane perpendicular to the optical axis or a method of tilting the relay lens 230 with respect to the optical axis (tilt) may be used. Just do it. The shifting or tilting of the relay lens 230 can be realized by a general driving means, and thus the description is omitted here.
[0122] この第 3の実施形態に於ける動作の流れに関しては、前述した第 2の実施形態と同 じであるので、説明は省略する。 [0122] The flow of operation in the third embodiment is the same as that in the above-described second embodiment, and a description thereof will not be repeated.
[0123] 以上、この発明の実施形態について説明したが、この発明は前述した実施形態に 限定されるものではなぐこの発明の要旨を逸脱しない範囲で種々の変形実施が可 能であるのは勿論である。 [0123] Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made without departing from the spirit of the present invention. It is.
産業上の利用可能性  Industrial applicability
[0124] 本装置を用いることによって、タイムラグが小さぐ振れ補正系の各方向への移動領 域を確保することができる。 [0124] By using the present apparatus, it is possible to secure a movement area in each direction of the shake correction system with a small time lag.

Claims

請求の範囲 The scope of the claims
[1] 被写体と撮像装置との間の相対的な振れを検出する振れ検出部 (38a, 38b)と、 前記振れ検出部(38a, 38b)からの信号を基に像振れを補正する第 1の補正部(3 4)と、  [1] A shake detecting unit (38a, 38b) for detecting a relative shake between a subject and an imaging device, and a first for correcting image shake based on a signal from the shake detecting unit (38a, 38b). Correction section (3 4),
前記第 1の補正部(34)とは離れて存在する第 2の補正部 (40)と、  A second correction unit (40) that is separate from the first correction unit (34);
を有する撮影装置であって、  An imaging device having
前記第 1の補正部 (34)を所定位置まで駆動する第 1の移動動作と、前記第 2の補 正部 (40)を所定位置まで駆動する第 2の移動動作とが、それぞれ独立して実行され ることを特徴とする撮影装置。  A first movement operation for driving the first correction unit (34) to a predetermined position and a second movement operation for driving the second correction unit (40) to a predetermined position are independently performed. An imaging device characterized by being executed.
[2] 前記第 1の移動動作により移動される前記所定位置は、前記第 1の補正部(34)の 補正領域に於ける略中央部であることを特徴とする請求項 1に記載の撮影装置。 [2] The imaging device according to claim 1, wherein the predetermined position moved by the first movement operation is a substantially central part in a correction area of the first correction unit (34). apparatus.
[3] 前記第 2の移動動作により移動される前記所定位置は、前記第 2の補正部 (40)の 補正領域に於ける略中央部であることを特徴とする請求項 2に記載の撮影装置。 [3] The imaging device according to claim 2, wherein the predetermined position moved by the second movement operation is a substantially central portion in a correction area of the second correction unit (40). apparatus.
[4] 前記第 1の移動動作と前記第 2の移動動作との並行動作を禁止したことを特徴とす る請求項 3に記載の撮影装置。 4. The imaging device according to claim 3, wherein a parallel operation of the first moving operation and the second moving operation is prohibited.
[5] 前記第 1の補正部(34)と前記第 2の補正部 (40)のうち、一方の補正部が補正動 作を実行している間に他方の補正部が前記移動動作を実行することを特徴とする請 求項 4に記載の撮影装置。 [5] While one of the first correction unit (34) and the second correction unit (40) performs the correction operation, the other correction unit performs the movement operation. The photographing apparatus according to claim 4, wherein the photographing apparatus performs the operation.
[6] 前記第 1の補正部(34)は撮像に係る振れ補正動作を、前記第 2の補正部 (40)は 観察に係る振れ補正動作を、それぞれ行うことを特徴とする請求項 5に記載の撮影 装置。 [6] The method according to claim 5, wherein the first correction unit (34) performs a shake correction operation related to imaging, and the second correction unit (40) performs a shake correction operation related to observation. The imaging device as described.
[7] 被写体と撮像系との間の相対的な振れを検出する振れ検出部(38a, 38b)と、 前記振れ検出部(38a, 38b)からの信号を基に撮像系の振れ補正を行う第 1の補 正部(34)と、  [7] A shake detection unit (38a, 38b) for detecting a relative shake between the subject and the imaging system, and performs shake correction of the imaging system based on a signal from the shake detection unit (38a, 38b). A first amendment (34),
前記振れ検出部(38a, 38b)からの信号を基に観察系の振れ補正を行う第 2の補 正部(160)と、  A second correction unit (160) for correcting a vibration of an observation system based on a signal from the shake detection unit (38a, 38b);
を備えて、前記撮像系と前記観察系に於ける光学要素の少なくとも一部を兼用する 撮影装置に於いて、 前記第 1の補正部 (34)を所定位置まで駆動する第 1の移動動作と、前記第 2の移 動動作との並行動作を禁止したことを特徴とする撮影装置。 A photographing apparatus comprising at least a part of an optical element in the image pickup system and the observation system. An imaging device, wherein a parallel operation of a first movement operation for driving the first correction unit (34) to a predetermined position and the second movement operation is prohibited.
[8] 前記第 1の移動動作に係る所定位置は、前記第 1の補正部(34)の補正領域に於 ける略中央部であることを特徴とする請求項 7に記載の撮影装置。 [8] The photographing apparatus according to claim 7, wherein the predetermined position related to the first movement operation is a substantially central part in a correction area of the first correction unit (34).
[9] 前記第 2の移動動作に係る所定位置は、前記第 2の補正部(160)の補正領域に於 ける略中央部であることを特徴とする請求項 8に記載の撮影装置。 9. The photographing apparatus according to claim 8, wherein the predetermined position related to the second movement operation is a substantially central part in a correction area of the second correction unit (160).
[10] 前記第 1の補正部(34)と前記第 2の補正部(160)のうち、一方が補正動作を実行 して ヽる間に、他方が移動動作を実行することを特徴とする請求項 9に記載の撮影装 置。 [10] One of the first correction unit (34) and the second correction unit (160) performs a correction operation while the other performs a movement operation. The imaging device according to claim 9.
[11] 前記観察系と前記撮像系とを構成する光学要素は可動ミラー(146)を含み、該可 動ミラー(146)によって光路を選択的に切り替えることを特徴とする請求項 10に記載 の撮影装置。  [11] The optical element according to claim 10, wherein the optical elements constituting the observation system and the imaging system include a movable mirror (146), and the optical path is selectively switched by the movable mirror (146). Shooting equipment.
[12] 前記可動ミラー(146)による光路の切り替えにより、前記撮像系に光束が導かれる 状態に於 、て、前記第 2の移動動作を実行することを特徴とする請求項 11に記載の 撮影装置。  12. The imaging device according to claim 11, wherein the second movement operation is performed in a state where a light beam is guided to the imaging system by switching an optical path by the movable mirror (146). apparatus.
[13] 前記可動ミラー(146)による光路の切り替えにより、前記観察系に光束が導かれる 状態に於いて、前記第 1の移動動作を実行することを特徴とする請求項 12に記載の 撮影装置。  13. The imaging apparatus according to claim 12, wherein the first movement operation is performed in a state where a light beam is guided to the observation system by switching an optical path by the movable mirror (146). .
[14] 前記可動ミラー(146)による光路の切り替えと並行して、前記第 1の移動動作と前 記第 2の移動動作との少なくとも一方を実行することを特徴とする請求項 13に記載の 撮影装置。  14. The apparatus according to claim 13, wherein at least one of the first moving operation and the second moving operation is performed in parallel with switching of an optical path by the movable mirror (146). Shooting equipment.
[15] 前記観察系と前記撮像系とを構成する光学要素は、ハーフミラー(74)を含むことを 特徴とする、請求項 10に記載の撮影装置。  15. The imaging device according to claim 10, wherein the optical elements constituting the observation system and the imaging system include a half mirror (74).
[16] 被写体と撮像装置との間の相対的な振れを検出する振れ検出部 (38a, 38b)と、 前記振れ検出部(38a, 38b)からの信号を基に撮像系の像振れを補正する第 1の 補正部(34)と、 [16] A shake detection unit (38a, 38b) for detecting a relative shake between the subject and the imaging device, and correcting an image shake of the imaging system based on a signal from the shake detection unit (38a, 38b). A first correction unit (34)
前記第 1の補正部(34)とは別に設けられるもので、前記被写体を観察する観察系 の像振れを補正する第 2の補正部(160)と、 前記第 1の補正部 (34)を所定位置まで駆動する第 1の移動動作と、前記第 2の補 正部(160)を所定位置まで駆動する第 2の移動動作とをそれぞれ独立して実行する ように制御する制御部(50)と、 A second correction unit (160) that is provided separately from the first correction unit (34) and corrects image blur of an observation system that observes the subject; A first movement operation for driving the first correction unit (34) to a predetermined position and a second movement operation for driving the second correction unit (160) to a predetermined position are executed independently of each other. A control unit (50) for controlling
を具備することを特徴とする撮影装置。  An imaging device, comprising:
[17] 光学要素を有して被写体を観察する観察系(152)と、 [17] An observation system (152) having an optical element for observing a subject,
光学要素を有するもので、該光学要素の少なくとも一部を前記観察系(152)の光 学要素と兼用して前記被写体の像を結像する撮像系(36)と、  An imaging system (36) having an optical element, wherein at least a part of the optical element is also used as an optical element of the observation system (152) to form an image of the subject;
前記被写体と前記撮像系(36)との間の相対的な振れを検出する振れ検出部(38 a, 38b)と、  A shake detector (38a, 38b) for detecting a relative shake between the subject and the imaging system (36),
前記振れ検出部(38a, 38b)からの信号を基に前記撮像系の振れ補正を行う第 1 の補正部(34)と、  A first correction unit (34) for performing shake correction of the imaging system based on signals from the shake detection units (38a, 38b);
前記振れ検出部(38a, 38b)からの信号を基に前記観察系(40)の振れ補正を行 う第 2の補正部(160)と、  A second correction unit (160) for correcting a shake of the observation system (40) based on a signal from the shake detection unit (38a, 38b);
前記第 1の補正部 (34)を所定位置まで駆動する第 1の移動動作と、前記第 2の補 正部(160)を所定位置まで駆動する第 2の移動動作とを並行して行わないよう制御 する制御部(50)と、  The first movement operation for driving the first correction unit (34) to a predetermined position and the second movement operation for driving the second correction unit (160) to a predetermined position are not performed in parallel. Control unit (50) that controls
を具備したことを特徴とする撮影装置。  An imaging device, comprising:
[18] 被写体の像を結像する撮像素子 (36)と、 [18] An image sensor (36) for forming an image of a subject,
被写体と前記撮像素子 (36)との間の相対的な振れを検出する振れ検出部(38a, 38b)と、  A shake detector (38a, 38b) for detecting a relative shake between a subject and the image sensor (36),
前記振れ検出部(38a, 38b)からの信号を基に撮像系の像振れを補正する第 1の 補正部(34)と、  A first correction unit (34) for correcting image blur of an imaging system based on a signal from the shake detection unit (38a, 38b);
前記第 1の補正部(34)とは別に設けられるもので、前記被写体を観察する観察系 の像振れを補正する第 2の補正部(160)と、  A second correction unit (160) that is provided separately from the first correction unit (34) and corrects image blur of an observation system that observes the subject;
前記第 1の補正部 (34)を所定位置まで駆動する第 1の移動動作と、前記第 2の補 正部(160)を所定位置まで駆動する第 2の移動動作とをそれぞれ独立して実行する ように制御する制御部(50)と、  A first movement operation for driving the first correction unit (34) to a predetermined position and a second movement operation for driving the second correction unit (160) to a predetermined position are executed independently of each other. A control unit (50) for controlling
を具備することを特徴とするデジタルカメラ。  A digital camera, comprising:
PCT/JP2005/007828 2004-04-30 2005-04-25 Photographing device and digital camera WO2005109993A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-136424 2004-04-30
JP2004136424A JP2005316309A (en) 2004-04-30 2004-04-30 Photographing device and digital camera

Publications (2)

Publication Number Publication Date
WO2005109993A2 true WO2005109993A2 (en) 2005-11-24
WO2005109993A3 WO2005109993A3 (en) 2006-04-06

Family

ID=35394568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007828 WO2005109993A2 (en) 2004-04-30 2005-04-25 Photographing device and digital camera

Country Status (2)

Country Link
JP (1) JP2005316309A (en)
WO (1) WO2005109993A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187810A (en) * 2006-01-12 2007-07-26 Olympus Corp Microscope observation apparatus
JP2008065340A (en) * 2007-09-28 2008-03-21 Olympus Corp Microscopic observation device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4890040B2 (en) * 2006-02-06 2012-03-07 Hoya株式会社 Image blur correction device
CN113489889A (en) * 2021-08-03 2021-10-08 Oppo广东移动通信有限公司 Dual anti-shake system, method, electronic device, and computer-readable storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000105396A (en) * 1998-09-29 2000-04-11 Canon Inc Device provided with image blur correcting function
JP2002296633A (en) * 2001-03-30 2002-10-09 Ricoh Co Ltd Image pickup apparatus and method for correcting hand shake of the same
JP2003091027A (en) * 2001-09-19 2003-03-28 Ricoh Co Ltd Photographing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3424441B2 (en) * 1996-06-11 2003-07-07 ミノルタ株式会社 Camera with image stabilization function
JPH10133245A (en) * 1996-10-31 1998-05-22 Nikon Corp Camera shake correcting device
JPH10254016A (en) * 1997-03-14 1998-09-25 Nikon Corp Shake correction device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000105396A (en) * 1998-09-29 2000-04-11 Canon Inc Device provided with image blur correcting function
JP2002296633A (en) * 2001-03-30 2002-10-09 Ricoh Co Ltd Image pickup apparatus and method for correcting hand shake of the same
JP2003091027A (en) * 2001-09-19 2003-03-28 Ricoh Co Ltd Photographing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187810A (en) * 2006-01-12 2007-07-26 Olympus Corp Microscope observation apparatus
JP2008065340A (en) * 2007-09-28 2008-03-21 Olympus Corp Microscopic observation device

Also Published As

Publication number Publication date
JP2005316309A (en) 2005-11-10
WO2005109993A3 (en) 2006-04-06

Similar Documents

Publication Publication Date Title
US7969499B2 (en) Lens barrel and image pickup apparatus
US7940306B2 (en) Camera capable of displaying moving image and control method of the same
EP2054766B1 (en) Image blur correction device and imaging apparatus equipped therewith
JP5458570B2 (en) Optical device, optical device manufacturing method, optical device adjustment method, and imaging device
WO2007083545A1 (en) Imaging device
JP5967544B2 (en) Lens barrel, imaging device, and camera
JP2005221602A (en) Image pickup device
JP2007114585A (en) Image blur correcting device and imaging apparatus
JP2007065041A (en) Imaging apparatus
KR20100059555A (en) Digital camera and controlling method thereof
JP2011160067A (en) Camera shake correcting device and method, camera module, and cellular phone
JP2008051927A (en) Image blur correction device and imaging apparatus
JPWO2012081142A1 (en) Lens barrel, imaging device, and camera
WO2005109993A2 (en) Photographing device and digital camera
JP2006079009A (en) Focal plane shutter and imaging apparatus
JP2008271372A (en) Imaging apparatus
JP2007005912A (en) Electronic imaging apparatus
JP5293947B2 (en) Imaging device
JP2011064820A (en) Vibration-proof unit and imaging device
JP2007140204A (en) Shake correction device
JP2006126667A (en) Camera system, camera, and interchangeable lens
WO2005109992A2 (en) Photographing device and single-lens reflex camera
JP2007127959A (en) Photographing apparatus
JP5458521B2 (en) Lens barrel, lens barrel adjustment method, optical device, and optical device adjustment method
JP2007094023A (en) Focus adjustment method of focus lens and imaging apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase