WO2005109961A1 - Male-female electrode joint - Google Patents

Male-female electrode joint Download PDF

Info

Publication number
WO2005109961A1
WO2005109961A1 PCT/US2005/002870 US2005002870W WO2005109961A1 WO 2005109961 A1 WO2005109961 A1 WO 2005109961A1 US 2005002870 W US2005002870 W US 2005002870W WO 2005109961 A1 WO2005109961 A1 WO 2005109961A1
Authority
WO
WIPO (PCT)
Prior art keywords
ratio
electrode
male tang
male
diameter
Prior art date
Application number
PCT/US2005/002870
Other languages
French (fr)
Inventor
Robert E. Smith
Original Assignee
Ucar Carbon Company Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ucar Carbon Company Inc. filed Critical Ucar Carbon Company Inc.
Priority to BRPI0509984-6A priority Critical patent/BRPI0509984A/en
Priority to EP05722619.3A priority patent/EP1738613A4/en
Priority to MXPA06012015A priority patent/MXPA06012015A/en
Priority to CN2005800201885A priority patent/CN1977566B/en
Priority to CA2563832A priority patent/CA2563832C/en
Priority to JP2007509457A priority patent/JP2007534131A/en
Priority to KR1020067024491A priority patent/KR101049641B1/en
Publication of WO2005109961A1 publication Critical patent/WO2005109961A1/en
Priority to IN2209DEN2014 priority patent/IN2014DN02209A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/14Arrangements or methods for connecting successive electrode sections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/06Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/06Electrodes
    • H05B7/08Electrodes non-consumable
    • H05B7/085Electrodes non-consumable mainly consisting of carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to the male tang used to join graphite electrodes, and especially to a male-female joint for graphite electrodes. More particularly, the invention concerns a unique design for a male-female electrode joint, and the electrodes from which the joint is formed.
  • Electrodes are used in the steel industry to melt the metals and other ingredients used to form steel in electrothermal furnaces.
  • the heat needed to melt metals is generated by passing current through one or a plurality of electrodes, usually three, and forming an arc between the electrodes and the metal. Electrical currents in excess of 100,000 amperes are often used.
  • the resulting high temperature melts the metals and other ingredients.
  • the electrodes used in steel furnaces each consist of electrode columns, that is, a series of individual electrodes joined to form a single column. In this way, as electrodes are depleted during the thermal process, replacement electrodes can be joined to the column to maintain the length of the column extending into the furnace.
  • electrodes are joined into columns via a pin (sometimes referred to as a nipple) that functions to join the ends of adjoining electrodes.
  • the pin takes the form of opposed male threaded sections or tangs, with at least one end of the electrodes comprising female threaded sections capable of mating with the male threaded section of the pin.
  • the joined ends of the adjoining electrodes, and the pin therebetween are referred to in the art as a joint.
  • the electrodes be formed with a male threaded protrusion or tang machined into one end and a female threaded socket machined into the other end, such that the electrodes can be joined by threading the male tang of one electrode into the female socket of a second electrode, and thus form an electrode column.
  • the joined ends of two adjoining electrodes in such an embodiment is referred to in the art as a male-female joint.
  • a certain amount of transverse (i.e., across the diameter of the electrode/electrode column) thermal expansion of the pin in excess of that of the electrode may be desirable to form a firm connection between pin and electrode; however, if the transverse thermal expansion of the pin greatly exceeds that of the electrode, damage to the electrode or separation of the joint may result. Again, this can result in reduced effectiveness of the electrode column, or even destruction of the column if the damage is so severe that the electrode column fails at the joint section.
  • control of the thermal expansion of an electrode, in both the longitudinal and transverse directions is of paramount importance.
  • Still another aspect of the present invention is a graphite electrode joint, having improved resistance to stub loss, defined as the loss of the part of the electrode column lying from the arc tip to and sometimes including the joint closest to the arc tip, as compared to art-conventional graphite electrode joints which employ pins.
  • a graphite electrode for use in a male-female electrode joint, the electrode having a male tang having a ratio of male tang length to diameter of the electrode of at least about 0.60.
  • the ratio of the diameter of the male tang to the length of the male tang should be no more than about 2.5 times the ratio of the length of the male tang to the diameter of the electrode when the ratio of the length of the male tang to the electrode diameter is about 0.60.
  • the ratio of the diameter of the male tang at its base to the male tang length should vary with the ratio of male tang length to electrode diameter such that for every 0.01 higher than 0.60 the ratio of male tang length to electrode diameter is, the ratio of the diameter of the male tang at its base to the male tang length should be about 0.016 lower.
  • the inventive graphite electrode when having a ratio of male tang length to electrode diameter of 0.85 or lower, should preferably also have a ratio of the taper of the male tang, expressed in degrees, to the ratio of male tang length to electrode diameter of at least about 15. Moreover, the ratio of the taper of the male tang to the ratio of male tang length to electrode diameter varies with the ratio of male tang length to electrode diameter such that for every 0.01 lower than 0.85 the ratio of male tang length to electrode diameter is, the ratio of the taper of the male tang to the ratio of male tang length to electrode diameter should be about 1.25 higher. [0014]The invention also includes an electrode joint formed from the inventive graphite electrode and a second graphite electrode having a female threaded socket, wherein the male threaded tang engages the female threaded socket to form the joint.
  • a process for preparing the inventive graphite electrode including mixing coke and a pitch binder, to form a stock blend; extruding the stock blend to form a green stock; baking the green stock to form a carbonized stock; graphitizing the carbonized stock by maintaining the carbonized stock at a temperature of at least about 2500°C to form a graphitized stock; and machining the graphitized stock so as to form a male tang having a ratio of male tang length to diameter of the graphitized stock of at least about 0.60.
  • Fig. 1 is a partial side cross-sectional view of a male-female graphite electrode joint in accordance with the present invention.
  • Fig. 2 is a partial side cross-sectional view of a graphite electrode having a male tang for the male-female graphite electrode joint of Fig. 1.
  • Fig. 3 is a partial side cross-sectional view of a female socket for the male-female graphite electrode joint of Fig. 1.
  • Graphite electrodes can be fabricated by first combining a particulate fraction comprising calcined coke, pitch and, optionally, mesophase pitch or PAN-based carbon fibers into a stock blend. More specifically, crushed, sized and milled calcined petroleum coke is mixed with a coal-tar pitch binder to form the blend.
  • the particle size of the calcined coke is selected according to the end use of the article, and is within the skill in the art. Generally, particles up to about 25 milhmeters (mm) in average diameter are employed in the blend.
  • the particulate f action preferable includes a small particle size filler comprising coke powder.
  • the carbon fibers (when used) are preferably present at a level of about 0.5 to about 6 parts by weight of carbon fibers per 100 parts by weight of calcined coke, or at about 0.4% to about 5.5% by weight of the total mix components (excluding binder).
  • the preferred fibers have an average diameter of about 6 to about 15 microns, and a length of preferably about 4 mm to about 25 mm, and most preferably less than about 32 mm.
  • the carbon fibers used in the inventive process should preferably have a tensile strength of at least about 150,000 psi.
  • the carbon fibers are added to the stock blend as bundles, each bundle containing from about 2000 to about 20,000 fibers.
  • the fibers are added after mixing of the particulate fraction and pitch has already begun.
  • the fibers are added after at least about half the mix cycle has been completed, most preferably after at least about three-quarters of the mix cycle has been completed. For instance, if the mixing of the particulate fraction and pitch takes two hours (i.e., a mix cycle is two hours), the fibers should be added after one hour, or even ninety minutes, of mixing. Adding the fibers after the mixing has begun will help preserve fiber length (which can be reduced during the mixing process) and thereby the beneficial effects of the inclusion of fibers, which are believed to be directly related to fiber length.
  • the particulate fraction can include small particle size filler (small is used herein as compared to the particle size of the calcined coke, which generally has a diameter such that a major fraction of it passes through a 25 mm mesh screen but not a 0.25 mm mesh screen, and as compared to the fillers conventionally employed). More specifically, the small particle size filler comprises at least about 75% coke powder, by which is meant coke having a diameter such that at least about 70% and more advantageously up to about 90%, will pass through a 200 Tyler mesh screen, equivalent to 74 microns.
  • the small particle size filler can further comprise at least about 0.5% and up to about 25% of other additives like a puffing inhibitor such as iron oxide.
  • the additive should also be employed at a particle size smaller than that conventionally used.
  • the average diameter of the iron oxide particles should be such that they are smaller than about 10 microns.
  • Another additional additive which can be employed is petroleum coke powder, having an average diameter such that they are smaller than about 10 microns, added to fill porosity of the article and thus enable better control of the amount of pitch binder used.
  • the small particle size filler should comprise at least about 30%, and as high as about 50% or even 65% of the particulate fraction.
  • the body is formed (or shaped) by extrusion though a die or molded in conventional forming molds to form what is referred to as a green stock.
  • the forming, whether through extrusion or molding, is conducted at a temperature close to the softening point of the pitch, usually about 100°C or higher.
  • the die or mold can form the article in substantially final form and size, although machining of the finished article is usually needed, at the very least to provide structure such as threads.
  • the size of the green stock can vary; for electrodes the diameter can vary between about 220 mm and 700 mm.
  • the green stock is heat treated by baking at a temperature of between about 700°C and about 1100°C, more preferably between about 800°C and about 1000°C, to carbonize the pitch binder to solid pitch coke, to give the article permanency of form, high mechanical strength, good thermal conductivity, and comparatively low electrical resistance, and thus form a carbonized stock.
  • the green stock is baked in the relative absence of air to avoid oxidation. Baking should be carried out at a rate of about 1°C to about 5°C rise per hour to the final temperature.
  • the carbonized stock may be impregnated one or more times with coal tar or petroleum pitch, or other types of pitches or resins known in the industry, to deposit additional coke in any open pores of the stock. Each impregnation is then followed by an additional baking step.
  • the carbonized stock is then graphitized.
  • Graphitization is by heat treatment at a final temperature of between about 2500°C to about 3400°C for a time sufficient to cause the carbon atoms in the coke and pitch coke binder to transform from a poorly ordered state into the crystalline structure of graphite.
  • graphitization is performed by maintaining the carbonized stock at a temperature of at least about 2700° C, and more advantageously at a temperature of between about 2700°C and about 3200° C. At these high temperatures, elements other than carbon are volatilized and escape as vapors.
  • the time required for maintenance at the graphitization temperature using the process of the present invention is no more than about 18 hours, indeed, no more than about 12 hours.
  • graphitization is for about 1.5 to about 8 hours.
  • the male tang (and, by extension, the female socket) must be dimensioned such that the tang will provide the required strength in use. In order to do so, a balancing must be accomplished. More particularly, it is now been discovered that the ratio of the length of the male tang to the diameter of the electrode (referred to herein as the tang factor) is important in optimizing the performance of a male-female electrode joint. More specifically, a tang factor of at least about 0.60 is believed to be important in creating a male-female electrode joint having improved stability and commercially acceptable performance.
  • a ratio (referred to herein as the tang diameter factor) of a factor defined by the ratio of the diameter of the male tang at its base to the male tang length can be used to provide even further enhancements to the joint.
  • the tang diameter factor should be no greater than 2.5 times the tang factor for an especially effective joint with a tang factor of about 0.60.
  • the tang diameter factor should most preferably vary with the tang factor, such that when a joint with a tang factor higher than 0.60 is produced, the tang diameter factor of the joint should be lower than 2.5 times the stub factor.
  • the maximum tang diameter factor should be about 0.016 lower.
  • the tang diameter factor of the male tang of the joint should be lower than about 1.28 times the tang factor of the joint.
  • the taper factor is defined as the ratio of the taper (expressed in degrees, and illustrated in Fig. 2 as the angle designated ⁇ ) of the male tang to the tang factor.
  • the taper factor for an effective male-female joint should be at least about 15, where the tang factor is 0.85, and should also vary as joints with different tang factors are produced. For instance, for every 0.01 lower than 0.85 that the tang factor of a joint is, the minimum taper factor should be about 1.25 higher. As an example, when a joint having a tang factor of 0.60 is produced, the taper factor of the male tang of the joint should be at least about 45. [0031]When employing the tang factor of at least about 0.60, and/or the tang diameter factor or taper factor of the joint as described above, a male-female joint is produced that can achieve commercial acceptability, at least in terms of joint strength and stability.
  • FIG. 10 A typical graphite electrode joint produced in accordance with the invention is illustrated in Figs. 1-3 and denoted 10.
  • Joint 10 comprises a first electrode 100 and a second electrode 110, first electrode 100 having a male tang 20 and second electrode 110 having a female socket 30.
  • male tang 20 and female socket 30 cooperate to form joint 10 and thus connect first electrode 100 and second electrode 110 into a column. With proper dimensioning of male tang 20 (and corresponding dimensioning of female socket 30), an improved joint 10 is provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Discharge Heating (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Resistance Heating (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

A graphite electrode joint (10), where the male tang (20) has a tang factor, defined as the ratio of male tang length to electrode diameter, of at least about 0.60.

Description

DESCRIPTION MALE-FEMALE ELECTRODE JOINT
TECHNICAL FIELD
[0001]The present invention relates to the male tang used to join graphite electrodes, and especially to a male-female joint for graphite electrodes. More particularly, the invention concerns a unique design for a male-female electrode joint, and the electrodes from which the joint is formed. BACKGROUND ART
[0002] Graphite electrodes are used in the steel industry to melt the metals and other ingredients used to form steel in electrothermal furnaces. The heat needed to melt metals is generated by passing current through one or a plurality of electrodes, usually three, and forming an arc between the electrodes and the metal. Electrical currents in excess of 100,000 amperes are often used. The resulting high temperature melts the metals and other ingredients. Generally, the electrodes used in steel furnaces each consist of electrode columns, that is, a series of individual electrodes joined to form a single column. In this way, as electrodes are depleted during the thermal process, replacement electrodes can be joined to the column to maintain the length of the column extending into the furnace.
[0003] Conventionally, electrodes are joined into columns via a pin (sometimes referred to as a nipple) that functions to join the ends of adjoining electrodes. Typically, the pin takes the form of opposed male threaded sections or tangs, with at least one end of the electrodes comprising female threaded sections capable of mating with the male threaded section of the pin. Thus, when each of the opposing male threaded sections of a pin are threaded into female threaded sections in the ends of two electrodes, those electrodes become joined into an electrode column. Commonly, the joined ends of the adjoining electrodes, and the pin therebetween, are referred to in the art as a joint.
[0004]Alternatively, it has in the past been suggested that the electrodes be formed with a male threaded protrusion or tang machined into one end and a female threaded socket machined into the other end, such that the electrodes can be joined by threading the male tang of one electrode into the female socket of a second electrode, and thus form an electrode column. The joined ends of two adjoining electrodes in such an embodiment is referred to in the art as a male-female joint.
[0005] Given the extreme thermal stress that the electrode and the joint (and indeed the electrode column as a whole) undergoes, mechanical/thermal factors such as strength, thermal expansion, and crack resistance must be carefully balanced to avoid damage or destruction of the electrode column or individual electrodes. For instance, longitudinal (i.e., along the length of the electrode/electrode column) thermal expansion of the electrodes, especially at a rate different than that of the pin, can force the joint apart, reducing effectiveness of the electrode column in conducting the electrical current. A certain amount of transverse (i.e., across the diameter of the electrode/electrode column) thermal expansion of the pin in excess of that of the electrode may be desirable to form a firm connection between pin and electrode; however, if the transverse thermal expansion of the pin greatly exceeds that of the electrode, damage to the electrode or separation of the joint may result. Again, this can result in reduced effectiveness of the electrode column, or even destruction of the column if the damage is so severe that the electrode column fails at the joint section. Thus, control of the thermal expansion of an electrode, in both the longitudinal and transverse directions, is of paramount importance.
[0006]As a consequence, if the pin can be eliminated from the electrode/electrode column system, the need to balance the thermal expansion of the different system components (i.e., pin and electrode) is reduced. Prior attempts to eliminate the pin have been attempted, where a threaded electrode end or other electrode mating means have been employed. Industry acceptance has lagged, however, since it is felt that the strength of the joint is not sufficient to maintain the integrity of the electrode column without a pin.
[0007]What is desired, therefore, is a male-female electrode joint having sufficient strength and integrity to permit elimination of the pin, without a significant reduction in electrode performance. It is also highly desirable to achieve these property benefits without using high quantities of expensive materials.
DISCLOSURE OF THE INVENTION
[0008]It is an aspect of the present invention to provide a male-female joint for graphite electrodes.
[0009]It is another aspect of the present invention to provide a male-female joint for graphite electrodes which is designed to better withstand the thermal and mechanical stress on an electrode column in use, as compared to prior male-female graphite electrode joints.
[0010]It is yet another aspect of the present invention to provide a male- female joint for graphite electrodes which produces electrode column joints having improved strength and stability.
[0011]Still another aspect of the present invention is a graphite electrode joint, having improved resistance to stub loss, defined as the loss of the part of the electrode column lying from the arc tip to and sometimes including the joint closest to the arc tip, as compared to art-conventional graphite electrode joints which employ pins.
[0012] These aspects and others that will become apparent to the artisan upon review of the following description can be accomplished by providing a graphite electrode for use in a male-female electrode joint, the electrode having a male tang having a ratio of male tang length to diameter of the electrode of at least about 0.60. In the preferred embodiment of the application, the ratio of the diameter of the male tang to the length of the male tang should be no more than about 2.5 times the ratio of the length of the male tang to the diameter of the electrode when the ratio of the length of the male tang to the electrode diameter is about 0.60. Indeed, the ratio of the diameter of the male tang at its base to the male tang length should vary with the ratio of male tang length to electrode diameter such that for every 0.01 higher than 0.60 the ratio of male tang length to electrode diameter is, the ratio of the diameter of the male tang at its base to the male tang length should be about 0.016 lower.
[0013]The inventive graphite electrode, when having a ratio of male tang length to electrode diameter of 0.85 or lower, should preferably also have a ratio of the taper of the male tang, expressed in degrees, to the ratio of male tang length to electrode diameter of at least about 15. Moreover, the ratio of the taper of the male tang to the ratio of male tang length to electrode diameter varies with the ratio of male tang length to electrode diameter such that for every 0.01 lower than 0.85 the ratio of male tang length to electrode diameter is, the ratio of the taper of the male tang to the ratio of male tang length to electrode diameter should be about 1.25 higher. [0014]The invention also includes an electrode joint formed from the inventive graphite electrode and a second graphite electrode having a female threaded socket, wherein the male threaded tang engages the female threaded socket to form the joint.
[0015]A process for preparing the inventive graphite electrode is also presented, including mixing coke and a pitch binder, to form a stock blend; extruding the stock blend to form a green stock; baking the green stock to form a carbonized stock; graphitizing the carbonized stock by maintaining the carbonized stock at a temperature of at least about 2500°C to form a graphitized stock; and machining the graphitized stock so as to form a male tang having a ratio of male tang length to diameter of the graphitized stock of at least about 0.60.
[0016]It is to be understood that both the foregoing general description and the following detailed description provide embodiments of the invention and are intended to provide an overview or framework of understanding to nature and character of the invention as it is claimed. The accompanying drawings are included to provide a further understanding of the invention and are incorporated in and constitute a part of the specification. The drawings illustrate various embodiments of the invention and together with the description serve to describe the principles and operations of the invention.
[0017]Fig. 1 is a partial side cross-sectional view of a male-female graphite electrode joint in accordance with the present invention. [0018]Fig. 2 is a partial side cross-sectional view of a graphite electrode having a male tang for the male-female graphite electrode joint of Fig. 1. [0019]Fig. 3 is a partial side cross-sectional view of a female socket for the male-female graphite electrode joint of Fig. 1.
BEST MODE FOR CARRYING OUT THE INVENTION
[0020] Graphite electrodes can be fabricated by first combining a particulate fraction comprising calcined coke, pitch and, optionally, mesophase pitch or PAN-based carbon fibers into a stock blend. More specifically, crushed, sized and milled calcined petroleum coke is mixed with a coal-tar pitch binder to form the blend. The particle size of the calcined coke is selected according to the end use of the article, and is within the skill in the art. Generally, particles up to about 25 milhmeters (mm) in average diameter are employed in the blend. The particulate f action preferable includes a small particle size filler comprising coke powder. Other additives that may be incorporated into the small particle size filler include iron oxides to inhibit puffing (caused by release of sulfur from its bond with carbon inside the coke particles), coke powder and oils or other lubricants to facilitate extrusion of the blend. [0021]Most preferably, the carbon fibers (when used) are preferably present at a level of about 0.5 to about 6 parts by weight of carbon fibers per 100 parts by weight of calcined coke, or at about 0.4% to about 5.5% by weight of the total mix components (excluding binder). The preferred fibers have an average diameter of about 6 to about 15 microns, and a length of preferably about 4 mm to about 25 mm, and most preferably less than about 32 mm. The carbon fibers used in the inventive process should preferably have a tensile strength of at least about 150,000 psi. Most advantageously, the carbon fibers are added to the stock blend as bundles, each bundle containing from about 2000 to about 20,000 fibers.
[0022]Preferably, the fibers are added after mixing of the particulate fraction and pitch has already begun. Indeed, in a more preferred embodiment, the fibers are added after at least about half the mix cycle has been completed, most preferably after at least about three-quarters of the mix cycle has been completed. For instance, if the mixing of the particulate fraction and pitch takes two hours (i.e., a mix cycle is two hours), the fibers should be added after one hour, or even ninety minutes, of mixing. Adding the fibers after the mixing has begun will help preserve fiber length (which can be reduced during the mixing process) and thereby the beneficial effects of the inclusion of fibers, which are believed to be directly related to fiber length. [0023]As noted above, the particulate fraction can include small particle size filler (small is used herein as compared to the particle size of the calcined coke, which generally has a diameter such that a major fraction of it passes through a 25 mm mesh screen but not a 0.25 mm mesh screen, and as compared to the fillers conventionally employed). More specifically, the small particle size filler comprises at least about 75% coke powder, by which is meant coke having a diameter such that at least about 70% and more advantageously up to about 90%, will pass through a 200 Tyler mesh screen, equivalent to 74 microns.
[0024]The small particle size filler can further comprise at least about 0.5% and up to about 25% of other additives like a puffing inhibitor such as iron oxide. Again, the additive should also be employed at a particle size smaller than that conventionally used. For instance, when iron oxide is included, the average diameter of the iron oxide particles should be such that they are smaller than about 10 microns. Another additional additive which can be employed is petroleum coke powder, having an average diameter such that they are smaller than about 10 microns, added to fill porosity of the article and thus enable better control of the amount of pitch binder used. The small particle size filler should comprise at least about 30%, and as high as about 50% or even 65% of the particulate fraction.
[0025]After the blend of particulate fraction, pitch binder, etc. is prepared, the body is formed (or shaped) by extrusion though a die or molded in conventional forming molds to form what is referred to as a green stock. The forming, whether through extrusion or molding, is conducted at a temperature close to the softening point of the pitch, usually about 100°C or higher. The die or mold can form the article in substantially final form and size, although machining of the finished article is usually needed, at the very least to provide structure such as threads. The size of the green stock can vary; for electrodes the diameter can vary between about 220 mm and 700 mm. [0026]After extrusion, the green stock is heat treated by baking at a temperature of between about 700°C and about 1100°C, more preferably between about 800°C and about 1000°C, to carbonize the pitch binder to solid pitch coke, to give the article permanency of form, high mechanical strength, good thermal conductivity, and comparatively low electrical resistance, and thus form a carbonized stock. The green stock is baked in the relative absence of air to avoid oxidation. Baking should be carried out at a rate of about 1°C to about 5°C rise per hour to the final temperature. After baking, the carbonized stock may be impregnated one or more times with coal tar or petroleum pitch, or other types of pitches or resins known in the industry, to deposit additional coke in any open pores of the stock. Each impregnation is then followed by an additional baking step.
[0027]After baking, the carbonized stock is then graphitized. Graphitization is by heat treatment at a final temperature of between about 2500°C to about 3400°C for a time sufficient to cause the carbon atoms in the coke and pitch coke binder to transform from a poorly ordered state into the crystalline structure of graphite. Advantageously, graphitization is performed by maintaining the carbonized stock at a temperature of at least about 2700° C, and more advantageously at a temperature of between about 2700°C and about 3200° C. At these high temperatures, elements other than carbon are volatilized and escape as vapors. The time required for maintenance at the graphitization temperature using the process of the present invention is no more than about 18 hours, indeed, no more than about 12 hours. Preferably, graphitization is for about 1.5 to about 8 hours. Once graphitization is completed, the finished article can be cut to size and then machined or otherwise formed into its final configuration.
[0028]In order to provide a male-female electrode joint having improved stability in the furnace, the male tang (and, by extension, the female socket) must be dimensioned such that the tang will provide the required strength in use. In order to do so, a balancing must be accomplished. More particularly, it is now been discovered that the ratio of the length of the male tang to the diameter of the electrode (referred to herein as the tang factor) is important in optimizing the performance of a male-female electrode joint. More specifically, a tang factor of at least about 0.60 is believed to be important in creating a male-female electrode joint having improved stability and commercially acceptable performance.
[0029]The interaction of other joint characteristics can also help optimize the electrode joint. For instance, a ratio (referred to herein as the tang diameter factor) of a factor defined by the ratio of the diameter of the male tang at its base to the male tang length can be used to provide even further enhancements to the joint. The tang diameter factor should be no greater than 2.5 times the tang factor for an especially effective joint with a tang factor of about 0.60. Indeed, the tang diameter factor should most preferably vary with the tang factor, such that when a joint with a tang factor higher than 0.60 is produced, the tang diameter factor of the joint should be lower than 2.5 times the stub factor. More specifically, for every 0.01 higher than 0.60 that the tang factor of a joint is, the maximum tang diameter factor should be about 0.016 lower. As an example, when a joint having a tang factor of 0.85 is produced, the tang diameter factor of the male tang of the joint should be lower than about 1.28 times the tang factor of the joint. [0030]Another joint characteristic that can come into play in designing an effective male-female joint is referred to herein as the taper factor, which is defined as the ratio of the taper (expressed in degrees, and illustrated in Fig. 2 as the angle designated α) of the male tang to the tang factor. The taper factor for an effective male-female joint should be at least about 15, where the tang factor is 0.85, and should also vary as joints with different tang factors are produced. For instance, for every 0.01 lower than 0.85 that the tang factor of a joint is, the minimum taper factor should be about 1.25 higher. As an example, when a joint having a tang factor of 0.60 is produced, the taper factor of the male tang of the joint should be at least about 45. [0031]When employing the tang factor of at least about 0.60, and/or the tang diameter factor or taper factor of the joint as described above, a male-female joint is produced that can achieve commercial acceptability, at least in terms of joint strength and stability. A typical graphite electrode joint produced in accordance with the invention is illustrated in Figs. 1-3 and denoted 10. Joint 10 comprises a first electrode 100 and a second electrode 110, first electrode 100 having a male tang 20 and second electrode 110 having a female socket 30. As illustrated, male tang 20 and female socket 30 cooperate to form joint 10 and thus connect first electrode 100 and second electrode 110 into a column. With proper dimensioning of male tang 20 (and corresponding dimensioning of female socket 30), an improved joint 10 is provided.
[0032]It will be recognized by the skilled artisan that the optimized male tang described hereinabove will also apply to pin-joined graphite electrodes. In other words, in a pin-joined graphite electrode joint, as opposed to a male- female joint, the pin effectively has two male tangs, in the form of the two male sections of the pin. These male tangs can also be proportioned in the manner described above to optimize the functioning of a pin-joined joint, in a similar manner as the functioning of a male-female joint is optimized. [0033]The disclosures of all cited patents and publications referred to in this application are incorporated herein by reference.
[0034]The above description is intended to enable the person skilled in the art to practice the invention. It is not intended to detail all of the possible variations and modifications that will become apparent to the skilled worker upon reading the description. It is intended, however, that all such modifications and variations be included within the scope of the invention that is defined by the following claims. The claims are intended to cover the indicated elements and steps in any arrangement or sequence that is effective to meet the objectives intended for the invention, unless the context specifically indicates the contrary.

Claims

CLAIMSWhat is claimed is:
1. A graphite electrode for use in a male-female electrode joint, comprising a male tang having a ratio of male tang length to diameter of the electrode of at least about 0.60.
2. The graphite electrode of claim 1, wherein the ratio of the diameter of the male tang at its base to male tang length is no greater than about 2.5 times the ratio of male tang length to electrode diameter.
3. The graphite electrode of claim 2, wherein the ratio of the diameter of the male tang at its base to male tang length varies with the ratio of male tang length to electrode diameter such that for every 0.01 higher than 0.60 the ratio of male tang length to electrode diameter is, the ratio of the diameter of the male tang at its base to the ratio of male tang length to electrode diameter should be about 0.016 lower.
4. The graphite electrode of claim 1, wherein for an electrode having a ratio of male tang length to electrode diameter of 0.85 or lower, the ratio of the taper of the male tang to the ratio of male tang length to electrode diameter is at least about 15.
5. The graphite electrode of claim 4, wherein the ratio of the taper of the male tang to the ratio of male tang length to electrode diameter varies with the ratio of male tang length to electrode diameter such that for every 0.01 lower than 0.85 the ratio of male tang length to electrode diameter is, the ratio of the taper of the male tang to the ratio of male tang length to electrode diameter should be about 1.25 higher.
6. An electrode joint comprising a male tang having a ratio of male tang length to diameter of the electrode of at least about 0.60, and at least one graphite electrode comprising a female threaded socket, wherein the male threaded tang engages the female threaded socket to form the joint.
7. The joint of claim 6, wherein the ratio of the diameter of the male tang at its base to male tang length is no greater than about 2.5 times the ratio of male tang length to electrode diameter.
8. The joint of claim 7, wherein the ratio of the diameter of the male tang at its base to male tang length varies with the ratio of male tang length to electrode diameter such that for every 0.01 higher than 0.60 the ratio of male tang length to electrode diameter is, the ratio of the diameter of the male tang at its base to the ratio of male tang length to electrode diameter should be about 0.016 lower.
9. The joint of claim 6, wherein for a first electrode having a ratio of male tang length to electrode diameter of 0.85 or lower, the ratio of the taper of the male tang to the ratio of male tang length to electrode diameter is at least about 15.
10. The joint of claim 9, wherein the ratio of the taper of the male tang to the ratio of male tang length to electrode diameter varies with the ratio of male tang length to electrode diameter such that for every 0.01 lower than 0.85 the ratio of male tang length to electrode diameter is, the ratio of the taper of the male tang to the ratio of male tang length to electrode diameter should be about 1.25 higher.
11. A process for preparing a graphite electrode, the process comprising (a) mixing coke and a pitch binder, to form a stock blend; (b) extruding the stock blend to form a green stock; (c) baking the green stock to form a carbonized stock; (d) graphitizing the carbonized stock by maintaining the carbonized stock at a temperature of at least about 2500°C to form a graphitized stock; (e) machining the graphitized stock so as to form a male tang having a ratio of male tang length to diameter of the graphitized stock of at least about 0.60.
12. The process of claim 11, wherein the ratio of the diameter of the male tang at its base to male tang length is no greater than about 2.5 times the ratio of male tang length to electrode diameter.
13. The process of claim 12, wherein the ratio of the diameter of the male tang at its base to male tang length varies with the ratio of male tang length to electrode diameter such that for every 0.01 higher than 0.60 the ratio of male tang length to electrode diameter is, the ratio of the diameter of the male tang at its base to the ratio of male tang length to electrode diameter should be about 0.016 lower.
14. The process of claim 11, wherein for an electrode having a ratio of male tang length to electrode diameter of 0.85 or lower, the ratio of the taper of the male tang to the ratio of male tang length to electrode diameter is at least about 15.
15. The process of claim 14, wherein the ratio of the taper of the male tang to the ratio of male tang length to electrode diameter varies with the ratio of male tang length to electrode diameter such that for every 0.01 lower than 0.85 the ratio of male tang length to electrode diameter is, the ratio of the taper of the male tang to the ratio of male tang length to electrode diameter should be about 1.25 higher.
PCT/US2005/002870 2004-04-23 2005-02-01 Male-female electrode joint WO2005109961A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BRPI0509984-6A BRPI0509984A (en) 2004-04-23 2005-02-01 male-female joint for electrodes
EP05722619.3A EP1738613A4 (en) 2004-04-23 2005-02-01 Male-female electrode joint
MXPA06012015A MXPA06012015A (en) 2004-04-23 2005-02-01 Male-female electrode joint.
CN2005800201885A CN1977566B (en) 2004-04-23 2005-02-01 Male-female electrode joint
CA2563832A CA2563832C (en) 2004-04-23 2005-02-01 Male-female electrode joint
JP2007509457A JP2007534131A (en) 2004-04-23 2005-02-01 Male and female electrode joint
KR1020067024491A KR101049641B1 (en) 2004-04-23 2005-02-01 Male and female electrode coupling
IN2209DEN2014 IN2014DN02209A (en) 2004-04-23 2014-03-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/830,618 US7016394B2 (en) 2004-04-23 2004-04-23 Male-female electrode joint
US10/830,618 2004-04-23

Publications (1)

Publication Number Publication Date
WO2005109961A1 true WO2005109961A1 (en) 2005-11-17

Family

ID=35239412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/002870 WO2005109961A1 (en) 2004-04-23 2005-02-01 Male-female electrode joint

Country Status (15)

Country Link
US (2) US7016394B2 (en)
EP (1) EP1738613A4 (en)
JP (1) JP2007534131A (en)
KR (1) KR101049641B1 (en)
CN (1) CN1977566B (en)
BR (1) BRPI0509984A (en)
CA (1) CA2563832C (en)
IN (1) IN2014DN02209A (en)
MX (1) MXPA06012015A (en)
PL (1) PL210593B1 (en)
RU (1) RU2369047C2 (en)
TR (1) TR200606704T2 (en)
TW (1) TWI403016B (en)
WO (1) WO2005109961A1 (en)
ZA (1) ZA200608631B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7324576B2 (en) * 2004-01-20 2008-01-29 Graftech International Holdings Inc. Joint strengthening ring for graphite electrodes
US20070280327A1 (en) * 2004-01-20 2007-12-06 Smith Robert E Electrode joint
US7466739B2 (en) * 2004-01-20 2008-12-16 Graftech International Holdings Inc. Locking ring for graphite electrodes
US20060140244A1 (en) * 2004-12-28 2006-06-29 Artman Diane M Extended length graphite electrode
US7324577B2 (en) 2004-01-20 2008-01-29 Graftech International Holdings Inc. End-face seal for male-female electrode joints
US20050254545A1 (en) * 2004-05-12 2005-11-17 Sgl Carbon Ag Graphite electrode for electrothermic reduction furnaces, electrode column, and method of producing graphite electrodes
US20050253118A1 (en) * 2004-05-17 2005-11-17 Sgl Carbon Ag Fracture resistant electrodes for a carbothermic reduction furnace
WO2006114315A2 (en) * 2005-04-28 2006-11-02 Sgl Carbon Ag Electrode joint
PL2373121T3 (en) * 2007-04-09 2014-01-31 Graftech Int Holdings Inc Monolithic graphite electrodes of great length
US20090180512A1 (en) * 2008-01-16 2009-07-16 Michael Frastaci Compressible Electrode End Face
CN102404885A (en) * 2010-09-07 2012-04-04 孙五洲 Graphite electrode used for quartz heating pipe
CN106631084B (en) * 2016-11-18 2019-10-18 吉林炭素有限公司 A kind of graphite electrode nipple and preparation method thereof
CN109969527B (en) * 2019-05-13 2021-04-20 江苏江龙新材料科技有限公司 Combined graphite electrode
CN110752452B (en) * 2019-10-24 2021-01-15 大同新成新材料股份有限公司 Ultrahigh-power anti-tripping graphite electrode joint

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4290709A (en) * 1979-09-28 1981-09-22 Union Carbide Corporation High taper angle connecting pin for graphite electrode joints

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2527294A (en) * 1949-01-03 1950-10-24 Great Lakes Carbon Corp Carbon electrode
FR1194249A (en) * 1957-04-11 1959-11-06
US4168392A (en) * 1976-09-01 1979-09-18 The Steel Company Of Canada, Limited Composite electrode with non-consumable upper section
GB2087699B (en) * 1980-11-17 1984-07-18 Leybold Heraeus Gmbh & Co Kg Graphite electrode for use in an electric furnace
US4427744A (en) * 1982-08-19 1984-01-24 H. B. Fuller Company Heat-activated pressure sensitive adhesive for bonding label stock to plastic film, metal foil and the like
DE3324692A1 (en) * 1983-07-08 1985-01-17 Sigri Elektrographit Gmbh, 8901 Meitingen CONNECTION BETWEEN SECTIONS OF A CARBON OR GRAPHITE ELECTRODE
US4679206A (en) * 1985-05-15 1987-07-07 Union Carbide Corporation Electrode joint thread form
JPH083097B2 (en) * 1987-07-30 1996-01-17 出光興産株式会社 Method for producing aromatic compound
US4963313A (en) * 1987-11-30 1990-10-16 Boston Scientific Corporation Balloon catheter
US4998709A (en) * 1988-06-23 1991-03-12 Conoco Inc. Method of making graphite electrode nipple
US4906244A (en) * 1988-10-04 1990-03-06 Cordis Corporation Balloons for medical devices and fabrication thereof
US5017325A (en) * 1988-10-04 1991-05-21 Cordis Corporation Stretch-blow molding method for manufacturing balloons for medical devices
EP0420488B1 (en) * 1989-09-25 1993-07-21 Schneider (Usa) Inc. Multilayer extrusion as process for making angioplasty balloons
US5087394A (en) * 1989-11-09 1992-02-11 Scimed Life Systems, Inc. Method for forming an inflatable balloon for use in a catheter
US5290306A (en) * 1989-11-29 1994-03-01 Cordis Corporation Puncture resistant balloon catheter
JP2641781B2 (en) * 1990-02-23 1997-08-20 シャープ株式会社 Method of forming semiconductor element isolation region
US6004289A (en) * 1990-05-15 1999-12-21 Medtronic Ave, Inc. Multiple layer high strength balloon for dilatation catheter
US5195969A (en) * 1991-04-26 1993-03-23 Boston Scientific Corporation Co-extruded medical balloons and catheter using such balloons
US5500180A (en) * 1992-09-30 1996-03-19 C. R. Bard, Inc. Method of making a distensible dilatation balloon using a block copolymer
WO1995009667A1 (en) * 1993-10-01 1995-04-13 Boston Scientific Corporation Medical device balloons containing thermoplastic elastomers
US5587125A (en) * 1994-08-15 1996-12-24 Schneider (Usa) Inc. Non-coextrusion method of making multi-layer angioplasty balloons
JP3135821B2 (en) * 1995-06-21 2001-02-19 昭和電工株式会社 Graphite electrode connection
EP0768097B2 (en) * 1995-10-11 2016-02-17 Terumo Kabushiki Kaisha Catheter balloon and balloon catheter
US6124007A (en) * 1996-03-06 2000-09-26 Scimed Life Systems Inc Laminate catheter balloons with additive burst strength and methods for preparation of same
US20010008661A1 (en) * 1997-05-14 2001-07-19 Eugene J. Jung Jr Balloon for a dilation catheter and method for manufacturing a balloon
JPH10321364A (en) * 1997-05-23 1998-12-04 Tokai Carbon Co Ltd Graphite electrode for electric furnace
US6358227B1 (en) * 1997-09-10 2002-03-19 Scimed Life Systems, Inc. Dilatation catheter balloon made from pen based homopolymer or random copolymer
US6042930A (en) * 1997-12-24 2000-03-28 The Dow Chemical Company Plastic heat-activated adhesive labels
US5948345A (en) * 1998-01-05 1999-09-07 Medtronic, Inc. Method for making medical balloon catheter
WO1999044649A1 (en) * 1998-03-04 1999-09-10 Scimed Life Systems, Inc. Composition and process for manufacturing pbt catheter balloons
US6753379B1 (en) * 1999-11-05 2004-06-22 3M Innovative Properties Company Heat activated adhesive
US6280663B1 (en) * 2000-02-25 2001-08-28 Ucar Carbon Company Inc. Process of making pins for connecting carbon electrodes
US6863861B1 (en) * 2000-09-28 2005-03-08 Boston Scientific Scimed, Inc. Process for forming a medical device balloon
US6500022B2 (en) * 2001-03-30 2002-12-31 Ucar Carbon Company Inc. Threaded pin for carbon electrodes
EP1406473A1 (en) * 2002-10-04 2004-04-07 Sgl Carbon Ag A composite prebaked carbon electrode intended to be used in electric arc furnaces
US6951675B2 (en) * 2003-01-27 2005-10-04 Scimed Life Systems, Inc. Multilayer balloon catheter
US7103083B2 (en) * 2004-04-23 2006-09-05 Ucar Carbon Company Inc. Optimized graphite electrode pin configuration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4290709A (en) * 1979-09-28 1981-09-22 Union Carbide Corporation High taper angle connecting pin for graphite electrode joints

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Manufactured Graphite/Carbon Electrodes", NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA) STANDARDS PUBLICATION CG 1-2001, 2002, XP002991657 *

Also Published As

Publication number Publication date
TWI403016B (en) 2013-07-21
CA2563832C (en) 2015-11-24
US7301982B2 (en) 2007-11-27
PL380948A1 (en) 2007-04-02
CA2563832A1 (en) 2005-11-17
CN1977566A (en) 2007-06-06
CN1977566B (en) 2012-07-18
BRPI0509984A (en) 2007-10-16
RU2369047C2 (en) 2009-09-27
EP1738613A4 (en) 2013-06-05
IN2014DN02209A (en) 2015-07-10
JP2007534131A (en) 2007-11-22
KR20070015206A (en) 2007-02-01
ZA200608631B (en) 2008-07-30
PL210593B1 (en) 2012-02-29
RU2006141364A (en) 2008-05-27
US7016394B2 (en) 2006-03-21
MXPA06012015A (en) 2007-01-25
US20050249260A1 (en) 2005-11-10
TW200603469A (en) 2006-01-16
TR200606704T2 (en) 2007-02-21
KR101049641B1 (en) 2011-07-14
EP1738613A1 (en) 2007-01-03
US20060109885A1 (en) 2006-05-25

Similar Documents

Publication Publication Date Title
CA2563832C (en) Male-female electrode joint
US9313834B2 (en) Electrode joint locking system
US20110194582A1 (en) Optimized Graphite Electrode Pin Configuration
US20140328366A1 (en) Long Length Electrodes
US6500022B2 (en) Threaded pin for carbon electrodes
WO2006071366A2 (en) Extended length graphite electrode
US8165183B2 (en) Joint design
TW200536440A (en) Optimized graphite electrode pin configuration

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005722619

Country of ref document: EP

Ref document number: 2006/08631

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/012015

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 6107/DELNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2563832

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007509457

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067024491

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006141364

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2006/06704

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: 200580020188.5

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005722619

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067024491

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0509984

Country of ref document: BR