WO2005106611A1 - Stromregelventil - Google Patents

Stromregelventil Download PDF

Info

Publication number
WO2005106611A1
WO2005106611A1 PCT/EP2005/002013 EP2005002013W WO2005106611A1 WO 2005106611 A1 WO2005106611 A1 WO 2005106611A1 EP 2005002013 W EP2005002013 W EP 2005002013W WO 2005106611 A1 WO2005106611 A1 WO 2005106611A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
control valve
flow control
pressure compensator
orifice
Prior art date
Application number
PCT/EP2005/002013
Other languages
English (en)
French (fr)
Inventor
Rainer Imhof
Original Assignee
Bosch Rexroth Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Rexroth Ag filed Critical Bosch Rexroth Ag
Publication of WO2005106611A1 publication Critical patent/WO2005106611A1/de

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/005Control of flow characterised by the use of auxiliary non-electric power combined with the use of electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/01Control of flow without auxiliary power
    • G05D7/0126Control of flow without auxiliary power the sensing element being a piston or plunger associated with one or more springs
    • G05D7/0133Control of flow without auxiliary power the sensing element being a piston or plunger associated with one or more springs within the flow-path
    • G05D7/014Control of flow without auxiliary power the sensing element being a piston or plunger associated with one or more springs within the flow-path using sliding elements

Definitions

  • the invention relates to a flow control valve according to the preamble of claim 1.
  • Flow control valves of this type are used to keep a set volume flow constant regardless of pressure fluctuations. This is achieved in that an adjustable orifice plate is assigned a pressure compensator which is acted upon in the opening direction by the force of a spring and a pressure downstream of the orifice plate and in the closing direction by the pressure upstream of the orifice plate.
  • the pressure compensator can be connected upstream or downstream of the variable orifice plate.
  • a flow control valve is known in US Pat. No. 5,878,766, in which a metering orifice slide is guided axially displaceably in a valve housing.
  • the metering orifice slide is designed as a hollow piston and has a jacket bore star that determines the metering orifice cross section with a control edge fixed to the housing. This can be changed using an adjusting screw.
  • a pressure compensator piston is guided, via which a radial output connection of the flow control valve can be opened or closed.
  • the pressure compensator piston is acted upon in the closing direction by a pressure upstream of the metering orifice cross section, that is to say by the pressure at the inlet connection of the flow control valve and in the opening direction by the force of a control spring and a pressure downstream of the metering orifice cross section.
  • the rule spring is housed in a rear control room and engages a radial collar of the pressure compensator piston.
  • the pressure upstream of the orifice cross section is tapped via an axial bore in the pressure compensator piston and is present in the rear spring chamber for the control spring.
  • the invention has for its object to provide a flow control valve that is compact and in which the pressure medium or control oil flow paths are made as short as possible.
  • a pressure compensator piston is guided along a region between an end face on the input side and one or more jacket openings of the metering orifice slide, which together with a control edge fixed to the housing form the metering orifice cross section.
  • the pressure compensator piston is guided in the solution according to the invention in the region of the input-side end section of the orifice piston, so that an annular end face of the pressure compensator piston which is effective in the closing direction is immediate, that is to say without deflection within the valve housing and without flow through the orifice slide with the pressure at the inlet connection of the flow control valve.
  • Such a flow control valve can be made much more compact than the known solution, the direct action on the annular end face effective in the closing direction having an improved response behavior due to the control oil flow path being considerably shortened compared to the known solution.
  • a control spring which acts on the pressure compensator piston in the opening direction acts on a rear end face which is subjected to the pressure downstream of the adjustable measuring orifice.
  • the end section of the pressure compensator piston protrudes in the basic position beyond the end section of the metering orifice slide.
  • the rear end face of the pressure compensator piston can be provided with a recess into which an end section of the control spring is immersed.
  • the pressure medium flow guidance is further improved if the control spring is formed on an annular web which, radially outside the control spring, has one or more axially parallel bores via which an annular space of the housing adjoining the variable orifice cross section is connected to the output connection.
  • the flow control valve can be designed as a 2 or 3-way flow control valve. In the latter case, a connection to a tank connection of the flow control valve is opened via the pressure compensator piston in order to discharge an excess pressure medium volume flow to the tank.
  • Pressure-balance piston at its input-side end section has a plurality of casing bores which form a control edge on the pressure-balance side, via which the tank connection can be opened or closed.
  • jacket bores are designed in such a way that when the pressure compensator piston is turned by 180 °, the tank connection is shut off in every position of the pressure compensator piston - i.e. by turning the pressure compensator piston, a 3-way flow control valve can be used as a 2-way flow control valve.
  • the insertion of the pressure compensator piston is particularly easy if it is preloaded against a circlip inserted in the valve housing.
  • the metering orifice slide is actuated by means of a proportional magnet.
  • the flow control valve can be designed to be normally open or normally closed.
  • FIG. 1 shows a sectional illustration of a 2-way flow control valve arrangement according to the invention, which is designed to be closed when de-energized; 2 shows a section through a 3-way flow control valve (closed when de-energized) FIG. 3 shows a 2-way flow control valve which is designed to be open when de-energized, and FIG. 4 shows a section through a 3-way flow valve (de-energized -open) .
  • Figure 1 shows a longitudinal section through a 2-way flow control valve 1, which is designed in cartridge design.
  • the flow control valve 1 has a variable orifice 2 and a pressure compensator 4 connected downstream thereof, which together form a flow regulator, via which the pressure drop across the orifice plate can be kept constant regardless of the load pressure, temperature fluctuations and pressure fluctuations at the inlet and pressure fluctuations at the inlet connection A.
  • the flow control valve 1 has a two-part housing with a valve sleeve 6, which is in a mounting bush
  • valve blocks or the like are screwed.
  • the valve sleeve 6 has a valve bore 10 in which a metering orifice slide 12 is guided so as to be axially displaceable.
  • the end section of the valve bore 10 which is on the left in FIG. 1 is expanded radially to form a guide section 14 and an annular groove 16 is formed in the valve bore 10 at a distance to the right thereof, so that an annular web 18 between the guide section 14 and the annular groove 16 remains.
  • the measuring orifice slide 12 guided along the valve bore 10 has at its right end section a radially projecting spring plate section 20, on which a compression spring 22 engages, which is supported on the adjacent annular end face of the valve sleeve 6.
  • a compression spring 22 engages, which is supported on the adjacent annular end face of the valve sleeve 6.
  • the orifice plate 12 is biased with its right end face in Figure 1 against a stop shoulder 24 of a screwed into the mounting bush 8 housing 26 of a proportional magnet.
  • This has an actuating plunger 28 which engages on the end face of the spring plate section 20 of the orifice slide 12.
  • the measuring orifice slide 12 has an interior space 29 which opens via a channel 30 into the spring chamber 32 encompassed by the housing 26 of the proportional magnet and by the fastening bushing 8. In order to ensure rapid pressure equalization, the spring plate section 20 is penetrated by bores 34.
  • the jacket of the orifice slide valve 12 is penetrated by a plurality of jacket openings 36 distributed around the circumference, which in the basic position shown are closed by the part of the peripheral wall of the valve bore 10 which adjoins the annular groove 16 on the right.
  • a pressure compensator piston 38 is axially displaceably guided in the area between the left end section of the orifice plate 12 in FIG. 1 and the radially widened guide section 14 of the valve sleeve 6. With its ring end face 44 on the left in FIG. 1, this is against one of the control springs 40 supported on the ring web 18 Preloaded retaining ring 42, which is inserted into the guide section 14 of the valve sleeve 6.
  • a recess 46 is formed into which an end section of the control spring 40 is immersed, so that the axial length of the flow control valve 1 is shorter than in a version in which the control spring 40 is located directly on the rear Face 48 attacks.
  • the axial length of the pressure compensator piston 38 is selected so that the end face 48 in the basic position opens a radial bore star 50 forming the radial outlet connection B almost completely.
  • the end face 48 thus forms a pressure compensator control edge 52 which determines the opening cross section of the radial bore star 50.
  • the pressure space 54 which extends between the end face 48 of the pressure compensator piston 38 and the annular web 18, is connected to the annular groove 16 via axial bores 56 of the annular web 18.
  • the pressure compensator piston 38 extends to the left in its illustrated basic position beyond the end section of the metering orifice slide 12. Both the adjacent face 58 of the orifice plate 12 and the ring face 44 of the pressure compensator piston 38 are acted upon directly by the pressure at the inlet port A.
  • the 2-way flow control valve 1 is shown in FIG. 1 in the basic position when the proportional magnet is de-energized. In this basic position, the jacket openings 36 are blocked, ie the flow control valve is designed to be normally closed in the basic position.
  • the proportional magnet is actuated and extended according to the actuating plunger 28 to the left (FIG.
  • the jacket openings 36 are opened by a control edge 60 fixed to the housing and formed by the annular groove 16, so that pressure medium can flow into the annular groove 16 via the working port A through the interior 29, the jacket openings 36 and the measuring orifice cross-section opened by the control edge 60 , From there, the pressure medium enters the pressure chamber 54 via the axial bores 56 and can flow out via the radial bore star 50 and the outlet connection B.
  • the annular end face 44 of the pressure compensator 38 is acted upon by the pressure at the inlet connection A in the closing direction, ie in the direction of a reduction in the flow cross section of the radial bore star 50, and the rear end face 48 by the pressure downstream of the metering orifice cross section (jacket openings 36) in the sense of increasing the outflow cross section.
  • the force of the control spring 40 acts in the same direction.
  • the pressure compensator adjusts itself to an equilibrium position in which the pressure drop over the measuring orifice cross section is kept essentially constant.
  • the pressure at the inlet port A also acts in the spring chamber 32 via the interior 29 and the channel 30, so that the two end faces of the metering orifice slide 12 are pressure-balanced.
  • Figure 2 is a longitudinal section of a 3-way
  • Flow control valve 1 shown Its basic structure largely corresponds to the embodiment shown in FIG. 1. The main differences from this one are to the left ( Figure 2) elongated valve sleeve 6, on which an additional tank connection T is formed. Furthermore, the pressure compensator piston 38 is also extended compared to the previously described exemplary embodiment.
  • the valve sleeve 6 has in the extended section 62 a tank bore star 64, which forms a tank connection T of the flow control valve 1.
  • a tank bore star 64 which forms a tank connection T of the flow control valve 1.
  • an additional seal 70 is provided compared to the embodiment shown in Figure 1.
  • the pressure compensator piston 38 is correspondingly extended and is biased against the locking ring 42 by the control spring 40 immersed in the recess 46.
  • the jacket of the pressure compensator piston 48 is provided with tank bores 66 distributed around the circumference, which form a tank control edge 68, via which the pressure compensator piston 38 moves axially to the right (FIG. 2 ) the tank bore star 64 can be opened.
  • this opening cross section is closed.
  • the 3-way flow control valve 1 shown in FIG. 2 is also designed to be closed when de-energized.
  • the proportional magnet not shown, is energized, so that the actuating plunger 28 extends and the orifice slide 12 into an open position moves in which the jacket openings 36 are opened via the control edge 60 fixed to the housing.
  • the pressure compensator piston 38 sets itself into a control position in which the pressure drop is kept constant over the open orifice cross section. In this control position, which only requires a comparatively small stroke, the opening cross section of the tank bore star 64 is opened via the tank control edge 68, so that excess pressure medium can flow out to the tank T.
  • the excess pressure medium volume flow is regulated off essentially by opening the connection to the tank T; the change in the discharge cross-section of the radial bore star 50, which is opened or closed by the pressure compensator control edge 52, plays a subordinate role in such a 3-way flow control valve arrangement.
  • the pressure compensator 4 is not connected in series but in parallel to the measuring orifice 2.
  • the 3-way flow control valve 1 shown in FIG. 2 can be converted very easily into a 2-way flow control valve by removing the locking ring 42 and reinserting the pressure compensator piston 38 by 180 °.
  • the tank bore star 64 is always closed by the outer peripheral wall of the metering orifice piston 38, so that the tank connection T is shut off regardless of the control position of the pressure compensator piston 38 and is therefore ineffective. Since the control spring 40 then engages the ring end face 44, a recess 46 is also provided on this.
  • such a use of the flow control valve shown in FIG. 2 as a 2-way flow control valve has the disadvantage that the overall length is longer than in an exemplary embodiment according to FIG. 1.
  • the 3-way flow control valve 1 can also be used as a priority valve, the Priority consumer is connected to the output port B.
  • FIG. 3 shows a variant in which the 2-way flow control valve 1 is designed to be open (de-energized) when the proportional solenoid is not energized.
  • the jacket openings 36 of the normally open version are offset to the left compared to the exemplary embodiment shown in Figure 1 on the metering orifice slide 12, so that the metering orifice cross section in the basic position through the control edge 60 fixed to the housing Maximum value is set.
  • the actuating plunger 28 is extended, the measuring orifice slide 12 is moved to the left, so that the measuring orifice cross section is closed by the control edge 60 fixed to the housing.
  • a 3-way flow control valve 1 is shown in a normally open design.
  • the main only difference from the embodiment of a 3-way flow control valve 1 shown in FIG. 2 is that - similar to the exemplary embodiment described above - the jacket breakthroughs 36 of the metering orifice slide 12 are shifted to the right compared to the normally closed variant in FIG. 2, so that in the basic position shown, the connection to port B is opened by the control edge 60.
  • the jacket openings 36 are controlled by the control edge 60. Otherwise corresponds to the structure and Function of this currentless-open version of that from FIG. 2, so that further versions are unnecessary.
  • a flow control valve with a variable measuring orifice to which a pressure compensator is assigned.
  • This has a pressure compensator piston, which is guided in sections on a metering orifice and in a valve housing. This is acted upon by the force of a control spring and the pressure downstream of the measuring orifice in the opening direction and by the pressure upstream of the measuring orifice in the closing direction.
  • the metering orifice slide has a jacket opening which, together with a control edge fixed to the housing, determines the metering orifice cross section.
  • the pressure compensator piston is guided at a front end section of the metering orifice slide in the region between the jacket opening and an end face on the input side, so that an annular end face of the pressure compensator piston can be acted upon directly with the pressure at the input connection.
  • control edge 58 front side 60 control edge 62 extended section 64 tank bore star Tank hole, tank control edge seal

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Safety Valves (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

Offenbart ist ein Stromregelventil mit einer verän­derlichen Messblende (2) der eine Druckwaage (4) zugeordnet ist. Diese hat einen Druckwaagenkolben (38) der abschnittsweise auf einem Messblendenschieber (12) und in einem Ventilgehäuse (16, 8) geführt ist. Dieser ist von der Kraft einer Regelfeder (40) und dem Druck stromabwärts der Messblende (2) in Öffnungsrichtung und vom Druck stromaufwrts der Messblende (2) in Schliessrichtung beaufschlagt. Der Messblendenschieber (12) hat einen Manteldurchbruch (36) der gemeinsam mit einer gehäusefesten Steuerkante (60) den Messblendenquerschnitt bestimmt. Erfindungsgemäss ist der Druckwaagenkolben (38) an einem vorderen Endabschnitt des Messblendenschiebers im Bereich zwischen dem Manteldurchbruch (30) und einer eingangsseitigen Stirnfläche (58) geführt, so dass eine Ringstirnfläche (44) des Druckwaa­genkolbens direkt mit dem Druck am Eingangsanschluss beaufschlagbar ist.

Description

Beschreibung Stroraregelventil
Die Erfindung betrifft ein Stromregelventil gemäß dem Oberbegriff des Patentanspruchs 1. Derartige Stromregelventile werden verwendet, um einen eingestellten Volumenstrom unabhängig von Druckschwankungen konstant zu halten. Dies wird dadurch erreicht, dass einer einstellbaren Meßblende eine Druckwaage zugeordnet ist, die in Öffnungsrichtung von der Kraft einer Feder sowie einen Druck stromabwärts der Meßblende und in Schließrichtung vom Druck stromaufwärts der Meßblende beaufschlagt ist. Prinzipiell kann die Druckwaage dabei der veränderlichen Meßblende vor- oder nachgeschaltet werden.
In der US 5,878,766 ist ein Stromregelventil bekannt, bei dem ein Meßblendenschieber axial verschiebbar in einem Ventilgehäuse geführt ist. Der Meßblendenschieber ist als Hohlkolben ausgeführt und hat eine Mantelboh- rungsstern, der mit einer gehäusefesten Steuerkante den Meßblendenquerschnitt bestimmt. Dieser läßt sich mittels einer Versteilschraube verändern. Auf dem Meßblendenschieber und entlang des Innenumfangs einer Ventilbohrung des Ventilgehäuses ist ein Druckwaagenkolben geführt, über den ein radialer Ausgangsanschluß des Stromregelventils auf- bzw. zusteuerbar ist. Der Druckwaagenkolben ist in Schließrichtung von einem Druck stromaufwärts des Meßblendenquerschnitts, d.h. vom Druck am Eingangsanschluß des Stromregelventils und in Öffnungsrichtung von der Kraft einer Regelfeder sowie einem Druck stromabwärts des Meßblendenquerschnitts beaufschlagt. Die Regelfeder ist in einem rückwärtigen Steuerraum aufgenommen und greift an einem Radialbund des Druckwaagenkolbens an. Der Druck stromaufwärts des Meßblendenquerschnitts wird über eine Axialbohrung des Druckwaagenkolbens abgegriffen und liegt im rückwärtigen Federraum für die Regelfeder an. Eine derartige Konstruktion benötigt zum einen einen erheblichen Bauraum in Radialrichtung, da die Regelfeder den Aussenumfang des Druckwaagenkolbens umgreift und daher entsprechender Raum im Ventilgehäuse vorgesehen werden muß. Desweiteren ist die Druckmittelführung des Stromregelventils relativ komplex, da der auf den Druckwaagenkolben in Schließrichtung wirksame Druck durch den Meßblendenkolben hindurch in den vergleichsweise großen Federraum für die Regelfeder gemeldet werden muß.
Demgegenüber liegt der Erfindung die Aufgabe zugrunde, ein Stromregelventil zu schaffen, das kompakt gebaut und bei dem die Druckmittel- oder Steuerölströmungswege möglichst kurz ausgebildet sind.
Diese Aufgabe wird durch ein Stromregelventil mit den Merkmalen des Patentanspruchs 1 gelöst.
Erfindungsgemäß ist ein Druckwaagenkolben entlang ei- nes Bereichs zwischen einer eingangsseitigen Stirnfläche und einem oder mehreren Manteldurchbrüchen des Meßblendenschiebers geführt, die gemeinsam mit einer gehäusefesten Steuerkante den Meßblendenquerschnitt ausbilden. Mit anderen Worten gesagt, der Druckwaagenkolben ist bei der erfindungsgemäßen Lösung im Bereich des eingangsseitigen Endabschnitts des Meßblendenkolbens geführt, so dass eine in Schließrichtung wirksame Ringstirnfläche des Druckwaagenkolbens unmittelbar, d.h. ohne ümlenkung innerhalb des Ventilgehäuses und ohne Durchströmung des Meßblenden- Schiebers mit dem Druck am Eingangsanschluß des Stromregelventils beaufschlagt ist. Ein derartiges Stromregelventil läßt sich wesentlich kompakter als die bekannte Lösung ausführen, wobei die direkte Beaufschlagung der in Schließrichtung wirksamen Ringstirnfläche aufgrund des gegenüber der bekannten Lösung erheblich verkürzten Steuerölströmungspfad ein verbessertes Ansprechverhalten aufweist.
Erfindungsgemäß wird es bevorzugt, wenn eine den Druckwaagenkolben in Öffnungsrichtung beaufschlagende Regelfeder an einer rückwärtigen Stirnfläche angreift, die mit dem Druck stromabwärts der verstellbaren Meßblende beaufschlagt ist. Bei einem besonders bevorzugten Ausführungsbeispiel ragt der Endabschnitt des Druckwaagenkolbens in der Grundposition über den Endabschnitt des Meßblendenschiebers hinaus . Zur Verkürzung der Baulänge des Stromregelventils kann die rückwärtige Stirnfläche des Druckwaagenkolbens mit einer Ausdrehung versehen werden, in die eine Endabschnitt der Regelfeder eintaucht. Die Druckmittelströmungsführung ist weiter verbessert, wenn die Regelfeder an einem Ringsteg ausgebildet ist, der radial ausserhalb der Regelfeder einen oder mehrere achsparallel verlaufende Bohrungen aufweist, über die ein sich an den veränderlichen Meßblendenquerschnitt anschließender Ringraum des Gehäuses mit dem Ausgangsanschluß verbunden ist. Durch eine derartige Lösung muß Druckmittel nicht mehr über die Windungen der Regelfeder hinwegströmen, so dass der Druckverlust in diesem Bereich verringert ist. Das Stromregelventil kann als 2- oder 3-Wege-Stromregelventil ausgeführt sein. Im letztgenannten Fall wird über den Druckwaagenkolben eine Verbindung zu einem Tankanschluß des Stromregelventils aufgesteuert, um einen überschüssigen Druckmittelvolumenstrom zum Tank abzuleiten.
Bei einem bevorzugten Ausführungsbeispiel hat der
Druckwaagenkolben an seinem eingangsseitigen Endabschnitt eine Vielzahl von Mantelbohrungen, die eine druckwaagen- seitige Steuerkante ausbilden, über die der Tankanschluß auf- bzw. zusteuerbar ist.
Diese Mantelbohrungen sind so ausgebildet, dass bei Drehen des Druckwaagenkolbens um 180° der Tankanschluß in jeder Stellposition des Druckwaagenkolbens abgesperrt ist - d.h., durch Drehen des Druckwaagenkolbens kann aus einem 3-Wege-Stromregelventil ein 2-Wege-Stromregelventil ausgeführt sein.
Das Einsetzen des Druckwaagenkolbens ist besonders einfach, wenn dieser gegen einen in das Ventilgehäuse eingesetzten Sicherungsring vorgespannt ist. Bei einem besonders bevorzugten Ausführungsbeispiel wird der Meßblendenschieber mittels eines Porportionalma- gneten betätigt.
Das Stromregelventil kann stromlos-offen oder stromlos-geschlossen ausgeführt sein.
Sonstige vorteilhafte Weiterbildungen der Erfindung sind Gegenstand weiterer ünteransprüche. Im folgenden werden bevorzugte Ausführungsbeispiele der Erfindung anhand schematischer Zeichnungen näher erläutert. Es zeigen: Figur 1 eine Schnittdarstellung einer erfindungsgemäßen 2-Wege-Stromregelventilanordnung, die stromlos-geschlossen ausgeführt ist; Figur 2 einen Schnitt durch ein 3-Wege-Stromregelven- til (stromlos-geschlossen) Figur 3 ein 2-Wege-Stromregelventil, das stromlos-of- fen ausgeführt ist, und Figur 4 einen Schnitt durch ein 3-Wege-Stromventil (stromlos-offen) .
Figur 1 zeigt einen Längsschnitt durch ein 2-Wege- Stromregelventil 1, das in Patronenbauweise ausgeführt ist. Das Stromregelventil 1 hat eine veränderliche Meßblende 2 sowie eine dieser nachgeschaltete Druckwaage 4, die gemeinsam einen Stromregler bilden, über den der Druckabfall über der Meßblende unabhängig vom Lastdruck, von Temperaturschwankungen und Druckschwankungen am Eingang und Druckschwankungen am Eingangsanschluß A konstant gehalten werden kann.
Das Stromregelventil 1 hat ein zweiteiliges Gehäuse mit einer Ventilbüchse 6, die in eine Befestigungsbuchse
8 dichtend eingesetzt ist. Letztere kann zum Befestigen des Stromregelventils 1 in eine Ventilbohrung eines
Ventilblocks oder dergleichen eingeschraubt werden. Die Ventilbüchse 6 hat eine Ventilbohrung 10, in der ein Meßblendenschieber 12 axial verschiebbar geführt ist. Der in Figur 1 linke Endabschnitt der Ventilbohrung 10 ist radial zu einem Führungsabschnitt 14 erweitert und im Abstand rechts von diesem ist eine Ringnut 16 in der Ventilbohrung 10 ausgebildet, so dass ein Ringsteg 18 zwischen dem Führungsabschnitt 14 und der Ringnut 16 stehen bleibt.
Der entlang der Ventilbohrung 10 geführte Meßblenden- Schieber 12 hat an seinem rechten Endabschnitt einen radial vorspringenden Federtellerabschnitt 20, an dem eine Druckfeder 22 angreift, die an der benachbarten Ringstirnfläche der Ventilbüchse 6 abgestützt ist. Über diese Druckfeder 22 wird der Meßblendenschieber 12 mit seiner in Figur 1 rechten Stirnfläche gegen eine Anschlagschulter 24 eines in die Befestigungsbuchse 8 eingeschraubten Gehäuses 26 eines Proportionalmagneten vorgespannt. Dieser hat einen Betätigungsstössel 28, der an der Stirnfläche des Federtellerabschnitts 20 des Meßblendenschiebers 12 angreift.
Der Meßblendenschieber 12 hat einen Innenraum 29, der über einen Kanal 30 in dem vom Gehäuse 26 des Proportionalmagneten und von der Befestigungsbuchse 8 umgriffenen Federraum 32 mündet. Um einen schnellen Druckausgleich zu gewährleisten, ist der Federtellerabschnitt 20 von Bohrungen 34 durchsetzt.
Im Bereich des Innenraums 29 ist der Mantel des Meß- blendenschiebers 12 von mehreren am Umfang verteilten Manteldurchbrüchen 36 durchsetzt, die in der dargestellten Grundposition von dem sich rechts an die Ringnut 16 anschließenden Teil der Umfangswandung der Ventilbohrung 10 verschlossen sind.
Im Bereich zwischen dem in Figur 1 linken Endabschnitt des Meßblendenschiebers 12 und dem radial erweiterten Führungsabschnitt 14 der Ventilbüchse 6 ist ein Druckwaagenkolben 38 axial verschiebbar geführt. Dieser ist mit seiner in Figur 1 linken Ringstirnfläche 44 über eine am Ringsteg 18 abgestützte Regelfeder 40 gegen einen Sicherungsring 42 vorgespannt, der in den Führungsabschnitt 14 der Ventilbüchse 6 eingesetzt ist.
An dem in Figur 1 rechten Endabschnitt des Druckwaa- genkolbens 38 ist eine Ausdrehung 46 ausgebildet, in die ein Endabschnitt der Regelfeder 40 eintaucht, so dass die Axiallänge des Stromregelventils 1 kürzer ist als bei einer Version, bei der die Regelfeder 40 direkt an der rückwärtigen Stirnfläche 48 angreift. Die Axiallänge des Druckwaagenkolbens 38 ist so gewählt, dass die Stirnfläche 48 in der Grundposition einen den radialen Ausgangsanschluß B bildenden Radialbohrungsstern 50 nahezu vollständig öffnet. Die Stirnfläche 48 bildet somit eine Druckwaagensteuerkante 52, die den Öffnungsquerschnitt des Radialbohrungssterns 50 bestimmt.
Der sich zwischen der Stirnfläche 48 des Druckwaagenkolbens 38 und dem Ringsteg 18 erstreckende Druckraum 54 ist über Axialbohrungen 56 des Ringstegs 18 mit der Ringnut 16 verbunden.
Wie der Figur 1 entnehmbar ist, erstreckt sich der Druckwaagenkolben 38 in seiner dargestellten Grundposition nach links über den Endabschnitt des Meßblenden- Schiebers 12 hinaus. Sowohl die benachbarte Stirnseite 58 des Meßblendenschiebers 12 als auch die Ringstirnfläche 44 des Druckwaagenkolbens 38 sind direkt vom Druck am Eingangsanschluß A beaufschlagt. Das 2-Wege-Stromregelventil 1 ist in Figur 1 in der Grundposition bei unbestromtem Proportionalmagneten dargestellt. In dieser Grundposition sind die Manteldurchbrüche 36 versperrt, d.h. das Stromregelventil ist in der Grundposition stromlos-geschlossen ausgeführt. Zur Regelung eines Druckmittelvolumenstroms vom Eingangsanschluß A zum Ausgangsanschluß B wird der Proportionalmagnet angesteuert und entsprechend der Betätigungsstössel 28 nach links (Figur 1) ausgefahren, so dass der Meßblendenschieber 12 gegen die Kraft der Druckfeder 22 mitgenommen wird. Nach Überfahren einer kleinen Überdeckung werden die Manteldurchbrüche 36 durch eine durch die Ringnut 16 gebildete gehäusefeste Steuerkante 60 aufgesteuert, so dass Druckmittel über den Arbeitsanschluß A durch den Innenraum 29, die Manteldurchbrüche 36 und den von der Steuerkante 60 aufgesteuerten Meßblendenquersσhnitt in die Ringnut 16 einströmen kann. Von dort tritt das Druckmittel über die Axialbohrungen 56 in den Druckraum 54 ein und kann über den Radialbohrungsstern 50 und den Ausgangsanschluß B abströmen. Dabei ist die Ringstirnfläche 44 der Druckwaage 38 vom Druck am Eingangsanschluß A in Schließrichtung, d.h. in Richtung einer Verkleinerung des Strömungsquerschnitts des Radialbohrungssterns 50 und die rückwärtige Stirnfläche 48 durch den Druck stromabwärts des Meßblendenquerschnitts (Manteldurchbrüche 36) im Sinne einer Vergrößerung des Abströmquerschnittes beaufschlagt. In gleicher Richtung wirkt die Kraft der Regelfeder 40. Die Druckwaage stellt sich in eine Gleichgewichtsposition ein, in der der Druckabfall über dem Meßblendenquerschnitt im wesentlichen konstant gehalten wird. Der Druck am Eingangsanschluss A wirkt über den Innenraum 29 und den Kanal 30 auch im Federräum 32, so dass die beiden Stirnflächen des Meßblendenschiebers 12 druckausgeglichen sind.
In Figur 2 ist ein Längsschnitt eines 3-Wege-
Stromregelventils 1 dargestellt. Dessen Grundaufbau entspricht weitestgehend dem in Figur 1 dargestellten Ausführungsbeispiel. Die wesentlichen Unterschiede zu diesem bestehen in einer nach links (Figur 2) verlängerten Ventilbüchse 6, an der ein zusätzlicher Tankanschluß T ausgebildet ist. Desweiteren ist auch der Druckwaagenkolben 38 gegenüber dem vorbeschriebenen Ausführungsbeispiel verlängert.
Die Ventilbüchse 6 hat in dem verlängerten Abschnitt 62 einen Tankbohrungsstern 64, der einen Tankanschluß T des Stromregelventils 1 ausbildet. Zur besseren Abdichtung der verlängerten Ventilbüchse 6 ist gegenüber dem in Figur 1 dargestellten Ausführungsbeispiel eine zusätzliche Dichtung 70 vorgesehen. Der Druckwaagenkolben 38 ist entsprechend verlängert und ist über die in die Ausdrehung 46 eintauchende Regelfeder 40 gegen den Sicherungsring 42 vorgespannt.
In der dargestellten Grundposition des Druckwaagenkolbens 38 ist im Bereich zwischen der Ringstirnfläche 44 und dem Tankbohrungsstern 64 der Mantel des Druckwaagenkolbens 48 mit am Umfang verteilten Tankbohrungen 66 versehen, die eine Tanksteuerkante 68 ausbilden, über die bei einer Axialverschiebung des Druckwaagenkolbens 38 nach rechts (Figur 2) der Tankbohrungsstern 64 aufsteuerbar ist. In der dargestellten Grundposition ist dieser Öffnungsquerschnitt geschlossen.
Im übrigen entspricht das in Figur 2 dargestellten
Ausführungsbeispiel dem vorbeschriebenen
Ausführungsbeispiel, so dass weitere Erläuterungen entbehrlich sind.
Das in Figur 2 dargestellte 3-Wege-Stromregelventil 1 ist ebenfalls stromlos-geschlossen ausgeführt. Zum Ermöglichen eines Druckmittelvolumenstroms zum Ausgangsanschluß B wird der nicht dargestellte Proportionalmagnet bestromt, so dass der Betätigungsstössel 28 ausfährt und den Meßblendenschieber 12 in eine Öffnungsposition verfährt, in der über die gehäusefeste Steuerkante 60 die Manteldurchbrüche 36 aufgesteuert werden. Der Druckwaagenkolben 38 stellt sich in eine Regelposition ein, in der der Druckabfall über dem aufgesteuerten Meßblendenquerschnitt konstant gehalten wird. In dieser Regelposition, die nur einen vergleichsweise geringen Hub erfordert, wird über die Tanksteuerkante 68 der Öffnungsquerschnitt des Tankbohrungssterns 64 aufgesteuert, so dass überschüssiges Druckmittel zum Tank T hin abströmen kann. D.h., der überschüssige Druckmittelvolumenstrom wird im wesentlichen über das Aufsteuern der Verbindung zum Tank T hin abgeregelt, die Veränderung des Ablaufquerschnitts des von der Druckwaagensteuerkante 52 auf- oder zugesteuerten Radialbohrungssterns 50 spielt bei einer derartigen 3- Wege-Stromregelventilanordnung eine untergeordnete Rolle. Im Prinzip ist bei einer derartigen Schaltung die Druckwaage 4 nicht in Reihe sondern parallel zur Meßblende 2 geschaltet.
Das in Figur 2 dargestellte 3-Wege-Stromregelventil 1 läßt sich sehr einfach in ein 2-Wege-Stromregelventil umbauen, indem der Sicherungsring 42 entfernt und der Druckwaagenkolben 38 um 180° verdreht dazu wieder eingesetzt wird. Dadurch ist der Tankbohrungsstern 64 stets von der Aussenumfangswandung des Meßblendenkolbens 38 verschlossen, so dass der Tankanschluß T unabhängig von der Regelposition des Druckwaagenkolbens 38 abgesperrt und somit unwirksam ist. Da die Regelfeder 40 dann an der Ringstirnfläche 44 angreift, ist an dieser ebenfalls eine Ausdrehung 46 vorgesehen. Eine derartige Verwendung des in Figur 2 dargestellten Stromregelventils als 2-Wege-Stromregelventil hat jedoch den Nachteil, dass die Baulänge größer ist als bei einem Ausführungsbeispiel gemäß Figur 1. Das 3-Wege-Stromregelventil 1 kann auch als Prioritätsventil verwendet werden, wobei der Prioritätsverbraucher an den Ausgangsanschluss B angeschlossen wird.
Die beiden vorbeschriebenen Ausführungsbeispiele sind stromlos-geschlossen ausgeführt. Figur 3 zeigt eine Variante, bei der das 2-Wege-Stromregelventil 1 bei unbestromtem Proportionalmagneten geöffnet (stromlosoffen) ausgeführt ist. Der einzige Unterschied zu der Variante in Figur 1 besteht darin, dass die Manteldurchbrüche 36 der stromlos-offen Version gegenüber dem in Figur 1 dargestellten Ausführungsbeispiel am Meßblendenschieber 12 nach links versetzt sind, so daß der Meßblendenquerschnitt in der Grundposition durch die gehäusefeste Steuerkante 60 auf einen Maximalwert einge- stellt ist. Beim Ausfahren des Betätigungsstössels 28 wird der Meßblendenschieber 12 nach links verschoben, so dass der Meßblendenquerschnitt durch die gehäusefeste Steuerkante 60 zugesteuert wird. Hinsichtlich der Funktion und des sonstigen Aufbaus des Ausführungsbeispiels gemäß Figur 3 wird auf die Ausführungen in Figur 1 verwiesen.
In Figur 4 ist ein 3-Wege-Stromregelventil 1 in stromlos-offen-Ausführung dargestellt. Der wesentliche einzige Unterschied zu der in Figur 2 dargestellten Ausführung eines 3-Wege-Stromregelventils 1 besteht darin, dass - ähnlich wie beim vorbeschriebenen Ausführungsbeispiel - die Manteldruchbrüche 36 des Messblendenschiebers 12 gegenüber der stromlos- geschlossen-Variante in Figur 2 nach rechts verschoben sind, so dass in der dargestellten Grundposition die Verbindung zum Anschluss B durch die Steuerkante 60 aufgesteuert ist. Bei Axialverschiebung des Messblendenschiebers 12 nach links werden die Manteldurchbrüche 36 durch die Steuerkante 60 zugesteuert. Im übrigen entspricht der Aufbau und die Funktion dieser stromlos-offen-Ausführung derjenigen aus Figur 2, so dass weitere Ausführungen entbehrlich sind.
Selbstverständlich kann anstelle einer elektromagne- tischen Verstellung des Meßblendenschiebers auch eine andere Lösung, wie beispielsweise eine Stellschraube verwendet werden.
Offenbart ist ein Stromregelventil mit einer verän- derlichen Meßblende, der eine Druckwaage zugeordnet ist. Diese hat einem Druckwaagenkolben, der abschnittsweise auf einem Meßblendenschieber und in einem Ventilgehäuse geführt ist. Dieser ist von der Kraft einer Regelfeder und dem Druck stromabwärts der Meßblende in Öffnungsrichtung und vom Druck stromaufwärts der Meßblende in Schließrichtung beaufschlagt. Der Meßblendenschieber hat einen Manteldurchbruch, der gemeinsam mit einer gehäusefesten Steuerkante den Meßblendenquerschnitt bestimmt. Erfindungsgemäß ist der Druckwaagenkolben an einem vorderen Endabschnitt des Meßblendenschiebers im Bereich zwischen dem Manteldurchbruch und einer eingangsseitigen Stirnfläche geführt, so dass eine Ringstirnfläche des Druckwaagenkolbens direkt mit dem Druck am Eingangsanschluß beaufschlagbar ist.
Bezugszeichenliste
1 Stromregelventil
2 Messblende
4 Druckwaage
6 Ventilbüchse
8 Befestigungsbuchse
10 Ventilbohrung
12 Messblendenschieber
14 Führungsabschnitt
16 Ringnut
18 Ringsteg
20 Federtellerabschnitt
22 Druckfeder
24 Anschlagschulter
26 Gehäuse Proportionalmagnet
28 Betätigungsstössel
29 Innenraum
30 Kanal
32 Federraum
34 Bohrung
36 Manteldurchbruch
38 Druckwaagenkolben
40 Regelfeder
42 Sicherungsring
44 Ringstirnfläche
46 Ausdrehung
48 Stirnfläche
50 Radialbohrungsstern
52 Druckwaagensteuerkante
54 Druckraum
56 Axialbohrung
58 Stirnseite 60 Steuerkante 62 verlängerter Abschnitt 64 Tankbohrungsstern Tankbohrung Tanksteuerkante Dichtung

Claims

Patentansprüche
1. Stromregelventil mit einer veränderlichen Meßblende (2), der eine Druckwaage (4) zugeordnet ist, deren den Meßblendenschieber (12) umgreifender und in einem Ventilgehäuse (6, 8) mit einem Eingangsanschluß (A) und einem Ausgangsanschluß (B) geführter Druckwaagenkolben (38) von einer Regelfeder (40) und dem Druck stromabwärts der Meßblende (2) in Öffnungsrichtung und vom Druck stromaufwärts der Meßblende (2) in Schließrichtung beaufschlagt ist, wobei der Meßblendenschieber (12) zumindest einen Manteldurchbruch (36) hat, der gemeinsam mit einer gehäusefesten Steuerkante (60) einen Meßblendenquerschnitt bestimmt, dadurch gekennzeichnet, dass der Druckwaagenkolben (38) im Bereich zwischen dem Manteldurchbruch (36) und einer eingangsseitigen Stirnseite (58) des Meßblendenschiebers (12) geführt ist, und dass eine Ringstirnfläche (44) des Druckwaagenkolbens (38) direkt mit dem Druck am Eingangsanschluß (A) beaufschlagt ist.
2. Stromregelventil nach Patentanspruch 1, wobei die Regelfeder (40) den Aussenumfang des Meßblendenschieber (12) umgreift und an einer in Öffnungsrichtung wirksamen rückwärtigen Stirnfläche (48) des Druckwaagenkolbens (38) angreift.
3. Stromregelventil nach Patentanspruch 1 oder 2, wobei sich der Druckwaagenkolben (38) in der Grundstellung axial über den Meßblendenschieber (12) hinaus erstreckt.
4. Stromregelventil nach Patentanspruch 2, wobei der Druckwaagenkolben (38) an der rückwärtigen Stirnflä- ehe (48) eine Ausdrehung (46) hat, in die ein Endabschnitt der Regelfeder (40) eintaucht, deren anderer Endabschnitt an einer Gehäuseschulter (18) abgestützt ist.
5. Stromregelventil nach Patentanspruch 4, wobei die Gehäuseschulter an einem Ringsteg (18) ausgebildet ist, der eine radial ausserhalb der Regelfeder (40) liegende Axialbohrung (56) aufweist, über die ein sich an den Meßblendenquerschnitt anschließender Ringraum (16) des Gehäuses mit dem Ausgangsanschluß (B) verbindbar ist.
6. Stromregelventil nach einem der vorhergehenden Pa- tentansprüche, wobei am Gehäuse (6, 8) ein radialer Tankanschluß (T) ausgebildet ist, der von einer Tanksteuerkante (68) aufsteuerbar ist, um überschüssigen Druckmittelvolumenstrom zu einem Tank (T) hin abzuführen.
7. Stromregelventil nach Patentanspruch 3 und 6, wobei die Tanksteuerkante (68) durch einen Tankbohrungsstern (64) des Druckwaagenkolbens (38) gebildet ist, die im Bereich des über den Meßblendenschieber (12) hinausstehenden Endabschnitt des Druckwaagenkolbens (38) ausgebildet sind.
8. Stromregelventil nach Patentanspruch 6 oder 7, wobei der Druckwaagenkolben (38) um 180° verdreht einsetz- bar ist, um den Tankanschluß (T) ständig abzusperren.
9. Stromregelventil nach einem der vorhergehenden Patentansprüche, wobei der Druckwaagenkolben (38) in seiner Grundstellung gegen einen in das Gehäuse (6, 8) eingesetzten Sicherungsring (42) vorgespannt ist.
10. Stromregelventil nach einem der vorhergehenden Patentansprüche, wobei der Meßblendenschieber (12) mittels eines Proportionalmagneten verstellbar ist.
11. Stromregelventil nach Patentanspruch 10, wobei dieses in stromlos-offen oder stromlos-geschlossen Ausführung ausgebildet ist.
PCT/EP2005/002013 2004-04-20 2005-02-25 Stromregelventil WO2005106611A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004019748.2 2004-04-20
DE200410019748 DE102004019748A1 (de) 2004-04-20 2004-04-20 Stromregelventil

Publications (1)

Publication Number Publication Date
WO2005106611A1 true WO2005106611A1 (de) 2005-11-10

Family

ID=34961146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/002013 WO2005106611A1 (de) 2004-04-20 2005-02-25 Stromregelventil

Country Status (2)

Country Link
DE (1) DE102004019748A1 (de)
WO (1) WO2005106611A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH699508A1 (de) * 2008-09-04 2010-03-15 Bucher Hydraulics Ag Stromregelventil mit Proportional-Drosselventil und nachgeschalteter Druckwaage.

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006034366A1 (de) 2006-02-24 2007-08-30 Robert Bosch Gmbh Wege- oder Stromventil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4630640A (en) * 1985-06-10 1986-12-23 Sun Hydraulics Corp. Pressure compensated restrictive flow regulator cartridge
US5878766A (en) * 1997-10-20 1999-03-09 Vickers, Incorporated Pressure compensated flow control valve
US5996615A (en) * 1995-10-24 1999-12-07 Mannesmann Rexroth Ag Flow-control valve
EP0987444A2 (de) * 1998-09-18 2000-03-22 HydraForce, Inc. Proportionales Durchflussregelventil mit Vorrang und Rückflussregelung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4630640A (en) * 1985-06-10 1986-12-23 Sun Hydraulics Corp. Pressure compensated restrictive flow regulator cartridge
US5996615A (en) * 1995-10-24 1999-12-07 Mannesmann Rexroth Ag Flow-control valve
US5878766A (en) * 1997-10-20 1999-03-09 Vickers, Incorporated Pressure compensated flow control valve
EP0987444A2 (de) * 1998-09-18 2000-03-22 HydraForce, Inc. Proportionales Durchflussregelventil mit Vorrang und Rückflussregelung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH699508A1 (de) * 2008-09-04 2010-03-15 Bucher Hydraulics Ag Stromregelventil mit Proportional-Drosselventil und nachgeschalteter Druckwaage.

Also Published As

Publication number Publication date
DE102004019748A1 (de) 2005-11-17

Similar Documents

Publication Publication Date Title
EP2960561B1 (de) Hydraulikventil
EP1826649A2 (de) Wege- oder Stromventil
EP2348376B1 (de) Stromregelventil mit Dämpfungskammer
DE102009019554B3 (de) Proportional-Drosselventil
DE19855187A1 (de) Verfahren und Steueranordnung zur Ansteuerung eines hydraulischen Verbrauchers
DE102006049584A1 (de) LUDV-Ventilanordnung
EP1875084A1 (de) Wegeventil und damit ausgeführte ls-steueranordnung
EP3114355B1 (de) Ventilvorrichtung
WO2005106611A1 (de) Stromregelventil
DE102007013152A1 (de) Druckventil
EP3118497B1 (de) Hydraulisches wegeventil
EP1497559A1 (de) Hydraulische steueranordnung in load-sensing technik
EP2337980B1 (de) Wegeventil
DE102016116848A1 (de) Druckminderventil
DE10333236A1 (de) Steuerventil zur Steuerung eines Volumenstromes, insbesondere zur Steuerung eines Kühlmittelstromes zur Kühlung der Kupplung eines Doppelkupplungsgetriebes eines Kraftfahrzeuges
EP1452744B1 (de) Hydraulische Steueranordnung
DE102019127184A1 (de) Ventilbaugruppe sowie Hochdruckregler
DE3106532C2 (de)
DE102013206975A1 (de) Hydraulische Steuervorrichtung mit einseitiger Schieberansteuerung
EP3309644A1 (de) Ventilvorrichtung sowie druckregelsystem mit einer solchen ventilvorrichtung
DE2827128A1 (de) Kompaktes, vorgesteuertes druckbegrenzungsventil
DE102009037733A1 (de) Regelventilanordnung und Verstellpumpe
DE102007052602A1 (de) Vorgesteuertes Wegeventil
DE10245836B4 (de) LS-Wegeventilanordnung
DE3228430A1 (de) Stetig verstellbares 2-wege-einbauventil

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase