WO2005105437A1 - Multi-layer structure and process for production thereof - Google Patents

Multi-layer structure and process for production thereof Download PDF

Info

Publication number
WO2005105437A1
WO2005105437A1 PCT/JP2005/008018 JP2005008018W WO2005105437A1 WO 2005105437 A1 WO2005105437 A1 WO 2005105437A1 JP 2005008018 W JP2005008018 W JP 2005008018W WO 2005105437 A1 WO2005105437 A1 WO 2005105437A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thermoplastic resin
multilayer structure
group
weight
Prior art date
Application number
PCT/JP2005/008018
Other languages
French (fr)
Japanese (ja)
Inventor
Nahoto Hayashi
Hiroyuki Shindome
Tomoyuki Watanabe
Naoki Kataoka
Original Assignee
Kuraray Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd. filed Critical Kuraray Co., Ltd.
Priority to JP2006512811A priority Critical patent/JPWO2005105437A1/en
Priority to US11/587,981 priority patent/US20080003390A1/en
Publication of WO2005105437A1 publication Critical patent/WO2005105437A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • C08L23/0861Saponified vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond

Definitions

  • the present invention relates to a multilayer structure including an ethylene-vinyl alcohol copolymer layer and a method for producing the same.
  • Ethylene bulcohol copolymer (hereinafter sometimes abbreviated as EVOH) has excellent gas barrier properties, and is used for packaging contents such as foods and pharmaceuticals, where maintaining the quality is important. Used as a material. In recent years, thanks to its excellent gasoline barrier properties, it has been widely used for fuel tanks. In particular, a laminate with a thermoplastic resin having excellent moisture-proof properties and mechanical properties such as polyolefin resin is preferably used because it can cover the weak points of EVOH.
  • regrind such as scraps of the product when the shape is a sheet or film, burrs for the end or defective, bottles for the bottle, punching scraps for the cup etc. (Scrap) inevitably occurs, and its reuse is required in terms of cost and resource saving.
  • the layer structure of a general automotive gasoline tank composed of a high-density polyethylene, a barrier layer, an adhesive layer, and a regrind composition layer is (outer layer) regrind + high-density polyethylene layer Z adhesive layer Z rear layer Z Adhesive layer Z regrind + high-density polyethylene layer (inner layer), (outer layer) high-density polyethylene layer Z regrind composition layer Z adhesive layer Z barrier layer Z adhesive layer Z high-density polyethylene layer (inner layer) and the like.
  • a block copolymer specific to the regrind composition is used. Also known are methods of mixing body-graft polymers (for example, carboxylic acid-modified polyolefin) (see Patent Documents 3 and 4) and methods of mixing an antioxidant and a metal compound (see Patent Document 5). It is.
  • thermoplastic resin having a boronic acid group or a boron-containing group that can be converted to a boronic acid group in the presence of water is used as an adhesive layer, and a regrind composition is prepared.
  • a method for reducing appearance abnormality and gel bumps Patent Document 6
  • the appearance abnormality of the regrind composition is reduced, but when the thermoplastic resin having the boron-containing group is used as the adhesive layer, the adhesive strength with the EVOH layer is too strong, and thus the carboxylic acid-modified polyolefin is used.
  • the film surface appearance and moldability of the multilayer structure will be adversely affected as compared with the case of using such as the adhesive layer.
  • the adhesive strength is too high, which may have an adverse effect on the parison's formability (draw-down property).
  • the use of the thermoplastic resin for the adhesive layer may lead to an increase in cost, the use of a carboxylic acid-modified polyolefin for the adhesive layer is preferred in terms of moldability and cost.
  • the EVOH in the regrind composition may be melt-kneaded. Stagnation and deterioration, resulting in the formation of black deposits (burns) inside the extruder, and the attachment of gel-like substances (e.g. In fact, it is often difficult to perform molding continuously for a long time.
  • Patent Document 1 JP-A-51-95478
  • Patent Document 2 JP-A-59-101338
  • Patent Document 3 JP-A-5-147177
  • Patent Document 4 JP-A-8-27332
  • Patent Document 5 JP-A-9-302170
  • Patent Document 6 JP-A-7-329252
  • the present invention has been made to solve the above problems, and has as its object to obtain a multilayer structure excellent in impact resistance, gas barrier properties, and appearance. It is another object of the present invention to provide a method for producing a multilayer structure which can effectively utilize a regrind and has excellent thermal stability and melt moldability.
  • It consists of a thermoplastic resin (D) having one functional group, and has a layer of ethylene-butyl alcohol copolymer (A), thermoplastic resin (C) or resin composition (E).
  • the thermoplastic resin (D) is a polyolefin having at least one functional group selected from the group consisting of a boronic acid group and a boron-containing group that can be converted to a boronic acid group in the presence of water, and particularly preferably from 0.85 to Polyethylene having a density of 0.94 gZcm 3 is preferable.
  • An extruded product, a blow molded product, a thermoformed product and a fuel container comprising the multilayer structure are It is a preferred embodiment of the present invention.
  • a resin composition (E) It is preferable that a multilayer structure having a layer is obtained. It is also preferable to add 0.1 to 30 parts by weight of the thermoplastic resin (D) to the total of 100 parts by weight of the regrind and the thermoplastic resin (D) added thereto and melt-knead the mixture. It is. Coextrusion or coinjection molding is also preferred.
  • the carboxylic acid-modified polyolefin (B) contained in the regrind composition is thermally degraded when the number of times of recovery is increased, and the compatibility with the EVOH (A) in the regrind composition gradually decreases.
  • the dispersibility of EVOH (A) was poor.
  • aggregation and thermal degradation of EVO H (A) in the regrind composition occurred.
  • the thermoplastic resin (D) having a boron-containing functional group is added to the regrind, the dispersibility of the EVOH (A) in the regrind composition does not deteriorate even if the number of collections is increased.
  • thermoplastic resin (D) having a boron-containing functional group in the regrind composition prevents a decrease in the dispersibility of EVOH (A) in the regrind composition due to the thermal deterioration of the rubonic acid-modified polyolefin (B). It is estimated that Therefore, the effect of improving the recoverability by adding the thermoplastic resin (D) having a boron-containing functional group to the regrind is more remarkably exhibited by increasing the number of times of recovery.
  • the multilayer structure of the present invention is excellent in impact resistance, gas nolia property and appearance.
  • regrind of a multilayer structure having an ethylene vinyl alcohol copolymer (A) layer, a carboxylic acid-modified polyolefin (B) layer and a thermoplastic resin (C) layer is recovered and used, a boron-containing material is used.
  • thermoplastic resin (D) having a group with regrind the melt moldability and thermal stability of the regrind composition are improved, and the impact strength of the multilayer structure is dramatically improved. improves.
  • EVOH (A) used in the present invention those obtained by saponifying an ethylene-butyl ester copolymer are preferable.
  • a fatty acid butyl ester such as butyl propionate or burivalate can be used as a typical example of the butyl acetate.
  • the ethylene content of the EVOH (A) is required to be 5 to 60 mol 0/0.
  • the lower limit of the ethylene content is preferably at least 15 mol%, more preferably at least 20 mol%.
  • the upper limit of the ethylene content is preferably 55 mol% or less, more preferably 50 mol% or less. If the ethylene content of EVOH is less than 5 mol%, the melt moldability of the resin composition containing EVOH deteriorates. On the other hand, when the ethylene content exceeds 60 mol%, the barrier properties of the resin composition containing EVOH are insufficient.
  • the saponification degree of the bullet ester component of EVOH (A) is 85% or more.
  • the degree of saponification is preferably at least 90%, more preferably at least 99%. If the degree of saponification is less than 85%, the resin composition containing EVOH will have insufficient nolia properties and thermal stability.
  • EVOH (A) a known method of copolymerizing ethylene with one or more vinyl esters and saponifying the resulting ethylene-vinyl acetate copolymer can be employed. . At this time, 0.003 to 0.2 mol% of the bullsilani conjugate can be contained as the third copolymer component.
  • vinylsilane-based compound examples include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri (j8-methoxy-ethoxy) silane, and y-methallyloxypropylmethoxysilane. Of these, burtrimethoxysilane and burtriethoxysilane are preferably used. Furthermore, other monomers, for example, ⁇ -olefins such as propylene and butylene; (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate and the like, as long as the object of the present invention is not impaired. Unsaturated carboxylic acids and esters thereof; and butylpyrrolidones such as ⁇ -pyrrolidone; and the like.
  • EVOH ( ⁇ ) may be a mixture of two or more different types of EVOH! /.
  • the ethylene content and the degree of saponification of VOH (A) shall be average values calculated from the blending weight ratio.
  • EVOH (A) may contain a boron compound as long as the object of the present invention is not impaired.
  • the boron compound include boric acids, borate esters, borates, borohydrides, and the like.
  • the boric acids include orthoboric acid, metaboric acid, tetraboric acid, etc.
  • the boric acid esters include triethyl borate, trimethyl borate, and the like. Examples thereof include alkali metal salts and alkaline earth metal salts of boric acids, and borax. Of these compounds, orthoboric acid is preferred.
  • the content of the boron compound is preferably from 20 to 2000 ppm, more preferably from 50 to LOOO ppm in terms of boron element.
  • the content of the boron compound is in a strong range, torque fluctuation is suppressed during heating and melting of EVOH. If the content of the boron compound is less than 20 ppm, the effect of improving the suppression of torque fluctuation may be insufficient, and if it exceeds 2000 ppm, EVOH may be gelled and may immediately have poor moldability.
  • an alkali metal salt may be added to EVOH (A) to improve interlayer adhesion. This is preferable because it is effective for improving the above-mentioned properties.
  • the content of the alkali metal salt is preferably from 5 to 5000 ppm, more preferably from 20 to LOOO ppm, and still more preferably from 30 to 500 ppm, in terms of an anorekadi metal element.
  • the alkali metal include lithium, sodium, and potassium, and examples of the alkali metal salt include an aliphatic carboxylate, an aromatic carboxylate, a phosphate, and a metal complex.
  • sodium acetate, potassium acetate, sodium phosphate, lithium phosphate, sodium stearate, potassium stearate, and sodium ethylenediaminetetraacetate examples include sodium acetate, potassium acetate, sodium phosphate, lithium phosphate, sodium stearate, potassium stearate, and sodium ethylenediaminetetraacetate. Of these, sodium acetate, potassium acetate and sodium phosphate are preferred.
  • a phosphorus compound to EVOH (A), since the melt moldability and thermal stability of EVOH (A) can be improved.
  • the content of the phosphorus compound is preferably 2 to 200 ppm, more preferably 3 to 150 ppm, and still more preferably 5 to 10 ppm in terms of gin element.
  • the content of the phosphorus conjugate is less than 2 ppm or more than 200 ppm, there may be a problem in the melt formability and thermal stability of EVOH. In particular, when performing melt molding for a long time, problems such as generation of gel-like bubbles and coloring are likely to occur.
  • the type of the phosphorus compound to be incorporated into the EVOH (A) is not particularly limited, and for example, various acids such as phosphoric acid and phosphorous acid, and salts thereof can be used.
  • the phosphate may be added in any form of a primary phosphate, a secondary phosphate, or a tertiary phosphate, and the cation species which may be added is not particularly limited. And alkaline earth metal salts. Among these, it is preferable to add the phosphorous conjugate in the form of sodium dihydrogen phosphate, potassium dihydrogen phosphate, disodium hydrogen phosphate, and dipotassium hydrogen phosphate.
  • a heat stabilizer, an ultraviolet absorber, an antioxidant, a colorant, and a plasticizer such as glycerin or glycerin monostearate are blended with EVOH (A) within a range not to impair the object of the present invention. You can also. Further, the addition of a metal salt of a higher aliphatic carboxylic acid, a talcite compound, or the like is effective from the viewpoint of preventing deterioration of EVOH (A) due to heat.
  • Examples of the metal salt of a higher aliphatic carboxylic acid include metal salts of higher fatty acids having 8 to 22 carbon atoms. Specifically, lauric acid, stearic acid, myristic acid and the like can be mentioned. Examples of the metal include sodium, potassium, magnesium, calcium, zinc, norium, aluminum and the like. Of these, magnesium, calcium and barium are preferred.
  • 2x + 3y-2z 2 g represents Ca or Zn
  • A represents CO or HPO
  • x, y, z, a are positive numbers
  • Hydrate talcite conjugate which is a double salt.
  • Particularly preferred examples include the following hydrated mouth talcite conjugates.
  • hydrated tars such as [MgZn] Al (OH) (CO) .0.45HO described in JP-A-1-308439 may be used.
  • Solid solutions can also be used.
  • the content of the metal salt of these higher aliphatic carboxylic acids or the talcite compound of Hideguchi is preferably 0.01 to 3 parts by weight, more preferably 0 to 100 parts by weight of EVOH (A). 05 to 2.5 parts by weight.
  • the melt flow rate (MFR) of EVOH (A) (at 190 ° C. under a load of 2160 g) is preferably from 0.1 to 50 g / 10 min, more preferably from 0.3 to 40 g / 10 min. , And more preferably, 0.5 to 30 g / l 0 minutes.
  • MFR melt flow rate
  • EVOH with a melting point near 190 ° C or exceeding 190 ° C measure at multiple temperatures above the melting point under a load of 216 Og, and use the semilog graph to plot the reciprocal of absolute temperature on the horizontal axis and the log of MFR on the vertical axis. Plot it on the axis and extrapolate to 190 ° C as the MFR.
  • carboxylic acid-modified polyolefin (B) used in the present invention in particular, a copolymer (X-olefin and an unsaturated carboxylic acid or an anhydride thereof) is preferably used.
  • a copolymer X-olefin and an unsaturated carboxylic acid or an anhydride thereof
  • Polyolefins in which all or part of the radicals are present in the form of metal salts can also be used.
  • polystyrene resin examples include polyethylene (eg, high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and ultra-low-density polyethylene (VLDPE). )), Polypropylene, copolymerized polypropylene, ethylene-butyl acetate copolymer, ethylene (meth) acrylate copolymer, and various other polyolefins.
  • HDPE high-density polyethylene
  • LDPE low-density polyethylene
  • LLDPE linear low-density polyethylene
  • VLDPE ultra-low-density polyethylene
  • Examples of the unsaturated carboxylic acid as a copolymer component include acrylic acid, methacrylic acid, ethacrylic acid, maleic acid, monomethyl maleate, monoethyl maleate, itaconic acid and the like, and among these, acrylic acid And methacrylic acid are preferred.
  • the content of the unsaturated carboxylic acid is preferably 0.5 to 20 mol 0/0, more preferably ⁇ This is 3 to 12 mol% is preferably from 2 to 15 mole 0/0, further.
  • Examples of the unsaturated carboxylic anhydride include itaconic anhydride and maleic anhydride. Of these, maleic anhydride is preferable.
  • Examples of the metal ion in the metal salt of the carboxylic acid-modified polyolefin include an alkali metal such as lithium, sodium and potassium; an alkaline earth metal such as magnesium and calcium; and a transition metal such as zinc.
  • the degree of neutralization of the carboxylic acid-modified polyolefin in the metal salt is preferably 100% or less, more preferably 90% or less, even more preferably 70% or less, preferably 5% or more, more preferably Is at least 10%, even more preferably at least 30%.
  • the carboxylic acid-modified polyolefin ( ⁇ ) may contain a monomer other than the above as a copolymer component.
  • Other monomers include vinyl esters such as vinyl acetate and vinyl propionate; methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, ⁇ -butyl acrylate, 2-ethylhexyl acrylate, Unsaturated carboxylic acid esters such as methyl methacrylate, isobutyl methacrylate and getyl maleate; carbon monoxide and the like.
  • the melt flow rate (MFR) (190 ° C, under a load of 2160 g) of the carboxylic acid-modified polyolefin ( ⁇ ) is preferably not less than 0.05 OlgZlO min, more preferably not less than 0.05 gZ min. Yes And still more preferably 0.1 lgZlO or more. Further, the MFR is preferably not more than 50 gZlO, more preferably not more than 30 gZlO, even more preferably not more than lOgZlO.
  • These carboxylic acid-modified polyolefins can be used alone or as a mixture of two or more.
  • thermoplastic resin (C) having a solubility parameter of 11 or less used in the present invention, for example, polyolefin resin, styrene resin, polychlorinated vinyl resin And the like.
  • polyolefin resin include ⁇ -olefin homopolymers such as high-density polyethylene, low-density polyethylene, polypropylene, and polybutene-1; ⁇ -olefins selected from ethylene, propylene, butene-11, hexene-1 and the like.
  • Styrene resins include polystyrene, acrylo-tolyl-butadiene-styrene copolymer resin (ABS), acrylonitrile-styrene copolymer resin (AS), styrene isobutylene block copolymer, and styrene butadiene copolymer. And a styrene isoprene block copolymer.
  • thermoplastic resins (C) can be used alone or as a mixture of two or more.
  • the thermoplastic resin (C) is at least one selected from the group consisting of a carboxylic acid-modified polyolefin (B), a boronic acid group, and a boron-containing group capable of converting to a boronic acid group in the presence of water.
  • thermoplastic resin (C) not only has a good balance of various physical properties, but also has a wide variety of commercially available products, is easily available, and is inexpensive. It is suitable as the main component in (E). In addition, since these thermoplastic resins (C) are used as the main material layers of many multilayer structures for the same reason, they are inevitable when the multilayer structures are collected and reused. Included in the regrind. For example, in the case of fuel container applications, from the viewpoint of impact resistance, polyolefin resin, which is one of the above thermoplastic resins (C), is often used in the outermost layer. Also contains the polyolefin resin.
  • the thermoplastic resin (C) is preferably used as a substantially unmodified polyolefin. Fins. Substantially unmodified means that a functional group containing an element other than carbon and hydrogen is actively introduced.
  • the melt flow rate (MFR) of the thermoplastic resin (C) is preferably at least 0.0 OlgZlO min, more preferably at least 0.02 gZ min. .
  • the MFR is preferably not more than 5 gZlO, more preferably not more than 2 gZlO.
  • high-density polyethylene used in fuel containers is required to have high impact resistance, so it should have a low MFR and preferably 0.3 gZlO or less. It is more preferable that: In the case of using such a high-viscosity resin, it is often difficult to recover and use the resin.
  • These thermoplastic resins (C) can be used alone or as a mixture of two or more.
  • thermoplastic resin (D) having a boron-containing functional group used in the present invention the boronic acid group is represented by the following formula (I).
  • the boron-containing group capable of converting to a boronic acid group in the presence of water refers to a compound capable of undergoing hydrolysis in the presence of water to be converted to a boronic acid group represented by the above formula (I).
  • a boron-containing group More specifically, water alone, a mixture of water and an organic solvent (toluene, xylene, acetone, etc.), a mixture of a 5% boric acid aqueous solution and the above organic solvent, etc., as a solvent, at room temperature to 150 ° C.
  • Such a functional group include a boronic ester group represented by the following formula (II), a boronic anhydride group represented by the following formula ( ⁇ ), and a boronic acid base group represented by the following formula (IV) And the like.
  • X and X are the same or different and each represent a hydrogen atom, an aliphatic hydrocarbon group (carbon
  • X and X are not both hydrogen atoms.
  • R, R and R are above
  • examples of the substituent which the aliphatic hydrocarbon group, alicyclic hydrocarbon group and aromatic hydrocarbon group can have include, for example, a carboxyl group and a halogen atom.
  • boronic ester group represented by the general formula (II) include a dimethyl ester boronate group, a getyl boronate group, a dipropyl boronate group, and a diboronic acid group.
  • Sopropyl ester group dibutyl boronate group, dihexyl boronate group, dicyclohexyl boronate group, ethylene glycol ester boronate group, propylene glycol ester boronate group, 1,3 propanediol ester boronate group 1,3-butanediol boronate ester, neopentylglycolester boronate, catechol ester boronate, glycerol ester boronate, trimethylolethane ester boronate, trimethylolpropane boronate, And a boronic acid diethanolamine ester group.
  • Examples of the boronate group represented by the general formula (IV) include an alkali metal base of boronic acid. Specific examples include sodium boronate base and potassium boronate base.
  • a boronic acid cyclic ester group is preferable from the viewpoint of thermal stability.
  • the boronic acid cyclic ester group include a boronic acid cyclic ester group containing a 5- or 6-membered ring. Specific examples include a boronic acid ethylene glycol ester group, a boronic acid propylene glycol ester group, a boronic acid 1,3 propanediol ester group, a boronic acid 1,3 butanediol ester group, and a boronic acid glycerin ester group.
  • the content of the boron-containing functional group is not particularly limited, but is preferably 0.001 to 2 meqZg (mmolZg) based on the weight of the thermoplastic resin (D).
  • the content is more preferably 0.04meqZg or more, and still more preferably 0.04meqZg or more.
  • gel may be generated in the resin composition (E). More preferably, it is 0.5 meqZg or less, and still more preferably, it is 0.2 meqZg or less.
  • the boron-containing functional group is bonded to the main chain, side chain or terminal of the thermoplastic resin by a boron carbon bond.
  • a form in which the functional group is bonded to a side chain or a terminal is preferable, and a form in which the functional group is bonded to a terminal is more preferable.
  • one end or both ends Means.
  • the carbon in the boron-carbon bond is derived from a thermoplastic resin base polymer described later or from a boron compound reacted with the base polymer.
  • thermoplastic resin (D) having a boron-containing functional group examples include polyethylene (ultra low density, low density, medium density, and high density), ethylene vinyl acetate copolymer, and ethylene acrylate ester.
  • Polyolefin resin such as a copolymer with ⁇ -olefin such as otaten; graft-modified polyolefin such as maleic anhydride and glycidyl methacrylate; styrene resin such as polystyrene and styrene-acrylonitrile copolymer; styrene Monohydrogenated butadiene block copolymer, styrene Hydrogenated is
  • thermoplastic resin (D) having a boron-containing functional group When a propylene-based polymer is used as the thermoplastic resin (D) having a boron-containing functional group, the hot water resistance is improved. Extremely useful. When an ethylene-based polymer or a styrene-hydrogenated gen-block copolymer resin is used as the thermoplastic resin (D), the impact resistance is improved. For example, it is useful as a packaging material for bottles, tubes, cups, and pallets. On the other hand, for fuel containers such as gasoline tanks, it is necessary to use an ethylene polymer with good fuel resistance as the thermoplastic resin (D). Is preferred. In particular, it is preferable because it gives a multilayered structure having a density of 0.85-0.94 gZcm 3 and excellent strength and impact resistance of polyethylene.
  • the impact resistance higher density of the polyethylene is low is improved, and further preferably is at 0. 92gZcm 3 or less is more preferred instrument 0. 91gZcm 3 below.
  • the density of the polyethylene when it is less than 0. 85gZcm 3 there is a possibility that the handling is difficult, it is 0. 87 g / cm 3 or more is more preferred instrument 0. 88gZcm 3 or more Is more preferred.
  • thermoplastic resin (D) having a boron-containing functional group used in the present invention Next, a typical method for producing the thermoplastic resin (D) having a boron-containing functional group used in the present invention will be described.
  • thermoplastic resin containing an olefinic double bond is reacted with a borane complex and a trialkyl borate under a nitrogen atmosphere to contain a boronic acid alkyl ester group.
  • the olefinic double bond is introduced into a terminal by, for example, disproportionation at the time of termination of radical polymerization, or is introduced into a main chain or a side chain by a side reaction during polymerization.
  • the polyolefin resin described above is capable of easily introducing an olefinic double bond by thermal decomposition under oxygen-free conditions, copolymerization of a gen compound, and the like.
  • the coalesced resin is preferred in that by controlling the hydrogenation reaction, an olefinic double bond can be appropriately left.
  • the content of double bonds in the thermoplastic resin as a raw material is preferably 0.01 to 2 meq / g, and 0.02 to: LmeqZg is more preferable.
  • the borane complex is preferably a borane-tetrahydrofuran complex, a borane-dimethylsulfide complex, a borane-pyridine complex, a borane-trimethylamine complex, a borane-triethylamine complex, or the like. Among these, borane-dimethylsulfide complex, borane-trimethylamine complex and borane-triethylamine complex are more preferable.
  • the amount of the borane complex to be charged is in the range of 1 to 3 equivalents to 10 equivalents to the olefinic double bond of the thermoplastic resin. preferable.
  • the trialkyl borate is preferably a lower alkyl borate such as trimethyl borate, triethyl borate, propyl borate and tributyl borate.
  • the amount of the trialkyl borate to be charged is preferably in the range of 1 to: LOO equivalent to the olefinic double bond of the thermoplastic resin.
  • the solvent need not be particularly used, but when used, a saturated hydrocarbon solvent such as hexane, heptane, octane, decane, dodecane, cyclohexane, ethylcyclohexane, and decalin is preferable.
  • the reaction temperature is usually in the range of room temperature to 300 ° C, and the reaction is carried out at a temperature in this range, preferably 100 to 250 ° C, for 1 minute to 10 hours, preferably 5 minutes to 5 hours. Good.
  • the boronic acid dialkyl ester group introduced into the thermoplastic resin by the above reaction can be hydrolyzed to a boronic acid group by a known method.
  • an arbitrary boronic ester group can be obtained by transesterification with alcohols by a known method. Furthermore, it can be dehydrated and condensed by heating to form a boronic anhydride group. Further, it can be further reacted with a metal hydroxide or a metal alcoholate by a known method to obtain a boronate group.
  • Such conversion of the boron-containing functional group is usually performed using an organic solvent such as toluene, xylene, acetone, or ethyl acetate.
  • organic solvent such as toluene, xylene, acetone, or ethyl acetate.
  • alcohols include monoalcohols such as methanol, ethanol, and butanol; ethylene glycol, propylene glycol, 1,3 propanediol, 1,3 butanediol, neopentyl glycol, glycerin, trimethylolmethane, pentaerythritol, dipentane And polyhydric alcohols such as erythritol.
  • the metal hydroxide include hydroxides of alkali metals such as sodium and potassium.
  • examples of the metal alcoholate include those which are powerful with the above-mentioned metals and the above-mentioned alcohols. These are not limited to those in which the deviation is also exemplified. These are generally used in an amount of 1 to: LOO equivalent based on the boronic acid dialkyl ester group.
  • Second method a known thermoplastic resin containing a carboxyl group, and a boronic acid or an amino group containing an amino group such as ethylene glycol ester of m-aminophenylbenzeneboronic acid and m-aminophenylboronic acid.
  • the boronic acid ester contained is reacted with a known method.
  • a condensing agent such as carbodiimide may be used.
  • the boron-containing functional group thus introduced into the thermoplastic resin can be converted into another boron-containing functional group by the above-described method.
  • thermoplastic resin containing a carboxyl group examples include those having a terminal carboxyl group such as semi-aromatic polyester resin and aliphatic polyester resin, polyolefin resin, styrene resin, and ) Acrylic ester resin, halogenated butyl resin, etc., into which a monomer unit having a carboxyl group such as acrylic acid, methacrylic acid, maleic anhydride, etc. is introduced by copolymerization, and the above-mentioned olefinic double bond Examples thereof include, but are not limited to, those in which maleic anhydride or the like is introduced into a thermoplastic resin containing
  • the resin composition (E) contained in the multilayer structure of the present invention comprises EVOH (A), carboxylic acid-modified polyolefin (B), and a heat-resistant resin having a solubility parameter of 11 or less (Fedors formula force calculation).
  • the contents of the above raw materials in the resin composition (E) are as follows: EVOH (A) 1 to 40% by weight, carboxylic acid-modified polyolefin (B) 0.1 to 39.1% by weight, thermoplasticity. It is preferred that the resin (C) is 59.8 to 98.8% by weight and the thermoplastic resin (D) having a boron-containing group is 0.1 to 39.1% by weight.
  • the mixing ratio of each component (A) to (D) is a ratio when the total weight of (A) to (D) is 100% by weight.
  • the mixing ratio of each component (A) to (D) is determined in consideration of the balance of various physical properties, availability, and price as described above.
  • the compounding ratio of (A) to (C) depends on the performance required for the multilayer structure. In many cases, the mixing ratio is in the above range.
  • the content of EVOH (A) in the resin composition (E) is preferably 1 to 40% by weight! / ⁇ .
  • the content of EVOH (A) is more preferably at least 2% by weight, More preferably, it is at least 3% by weight.
  • the content of EVOH (A) is more preferably 30% by weight or less, further preferably 20% by weight or less, and particularly preferably 10% by weight or less.
  • the content of the carboxylic acid-modified polyolefin (B) in the resin composition (E) is preferably 0.1 to 39.1% by weight.
  • the content of carboxy phosphate-modified polyolefin (B) is more preferably 0.3 wt 0/0 or more, and even more preferably 1 wt% or more.
  • the resulting multilayer structure may have insufficient impact resistance.
  • the content of the carboxylic acid-modified polyolefin (B) is more preferably 20% by weight or less, and still more preferably 10% by weight or less.
  • the content of the thermoplastic resin (C) having a solubility parameter of 11 or less is 59.8 to 98.8% by weight. Preferably, there is. Since the main component of the resin composition (E) is the thermoplastic resin (C), the resin composition (E) can be used in the same manner as the thermoplastic resin (C).
  • the content of the thermoplastic resin (C) is more preferably at least 75% by weight, even more preferably at least 89.4% by weight.
  • the content of the thermoplastic resin (C) exceeds 98.8% by weight, there is a problem in thermal stability even without blending the thermoplastic resin (D) having a boron-containing group. In some cases, the necessity of employing the present invention is reduced.
  • the content of the thermoplastic resin (C) is more preferably 96.4% by weight or less, and still more preferably 95% by weight or less.
  • Thermoplastic having at least one functional group selected from the group consisting of a boronic acid group and a boron-containing group capable of converting to a boronic acid group in the presence of water in the resin composition (E).
  • the content of the resin (D) is preferably 0.1 to 39.1% by weight. If the content of the thermoplastic resin (D) is less than 0.1% by weight, the compatibility of the components (A), (B) and (C) in the resin composition (E) May be insufficient, resulting in insufficient impact resistance, thermal stability, and appearance. In addition, when regrind is used to produce thermoplastic resin (D), continuous Extrusion molding may be difficult.
  • the content of the thermoplastic resin (D) is more preferably at least 0.3% by weight, even more preferably at least 1% by weight, particularly preferably at least 3% by weight. In particular, when regrind is repeated and reused, the content of the thermoplastic resin (D) is preferably higher. On the other hand, when the content of the thermoplastic resin (D) exceeds 39.1% by weight, the cost increases.
  • the content of the thermoplastic resin (D) is more preferably 20% by weight or less, and still more preferably 10% by weight or less.
  • the resin composition (E) is prepared by mixing the above-mentioned predetermined amounts of the components (A) to (D) using a conventional melt kneading apparatus such as a Banbury mixer, a single screw or twin screw extruder. It can be easily obtained by melt-kneading.
  • the melt-kneading apparatus is not particularly limited. An extruder having a high degree of kneading is preferably used in order to uniformly blend 1S.
  • an antioxidant a plasticizer, a heat stabilizer, an ultraviolet absorber, an antistatic agent, a lubricant, a coloring agent, a filler, or another resin may be added as long as the effects of the present invention are not impaired.
  • all or a part of the individual components (A) to (C) may be used as a product generated in the production of a multilayer structure composed of layers containing the components (A) to (C). It is preferable to use it by replacing it with regrind such as dust, burrs, edges or defective products because the collected material can be reused effectively.
  • the regrind is not limited to the one containing only the components (A) to (C).
  • the thermoplastic resin having a boron-containing group (D), and the thermoplastic resin capable of forming a multilayer structure as described later. May contain fat. Since the size of the regrind is usually irregular V, it is preferable to grind it to an appropriate size and use force.
  • the thermoplastic resin (D) having a boron-containing group is separately mixed with the above-mentioned regrind and melt-kneaded, the compatibility of the components (A) to (C) is dramatically improved, It becomes easy to continuously produce the regrind composition.
  • the regrind obtained from the multilayer structure having the EVOH (A) layer, the carboxylic acid-modified polyolefin (B) layer, and the thermoplastic resin (C) layer further includes a thermoplastic resin having a boron-containing group. It is preferable that the resin (D) is added and melt-kneaded to form a resin composition (E) layer.
  • thermoplastic resin (D) having a boron-containing group is used as a recovery aid to be added when using regrind.
  • a resin composition (E ) It is more preferable that a multilayer structure having a layer is obtained. In this case, re-grinding is performed again using the multilayer structure having the resin composition (E) layer obtained by adding the thermoplastic resin (D) having a boron-containing group to the regrind and melt-kneading the raw material.
  • thermoplastic resin (D) having a boron-containing group is added and melted. It is preferred to knead.
  • the content of the thermoplastic resin (D) is less than 0.1% by weight, the compatibility of the components (A), (B) and (C) in the resin composition (E) And the impact resistance, thermal stability, and appearance may be insufficient.
  • the thermoplastic resin (D) is produced by using the regrind, it may be difficult to continuously extrude the resin or to repeatedly reuse the regrind.
  • the addition amount of the thermoplastic resin (D) is more preferably at least 0.3 part by weight, still more preferably at least 1 part by weight, particularly preferably at least 3 parts by weight. On the other hand, when the addition amount of the thermoplastic resin (D) exceeds 39.1% by weight, the cost increases.
  • the addition amount of the thermoplastic resin (D) is more preferably 20% by weight or less, and still more preferably 10% by weight or less.
  • the component (C) is further mixed separately to form a resin composition (E ) Is also preferred.
  • a resin composition (E) having physical properties comparable to that of the component (C) itself is often obtained, for example, as a main material layer of a multilayer structure described later. Can also be used.
  • the multilayer structure of the present invention contains ethylene in addition to the layer comprising the resin composition (E).
  • the EVOH (A) layer and the thermoplastic resin (C) layer or the resin composition (E) layer are laminated via the carboxylic acid-modified polyolefin (B) layer.
  • the carboxylic acid-modified polyolefin (B) layer is used as an adhesive layer used between the (A) layer and the (C) or (E) layer.
  • the carboxylic acid-modified polyolefin (B) has excellent adhesive properties, and also has excellent melt moldability when forming a multilayer structure, which is preferable in terms of cost.
  • the multilayer structure of the present invention in addition to the EVOH (A) layer, the carboxylic acid-modified polyolefin (B) layer, the thermoplastic resin (C) layer and the resin composition (E) layer, polyester (polyethylene terephthalate) , Polybutylene terephthalate, etc.), polyamide, polycarbonate, polychlorinated vinyl, polychlorinated bilidene, polyurethane, polyacetal and the like.
  • the layer configuration of the multilayer structure is not particularly limited, but for example, a four-layer configuration such as A / B / E / C, A / B / C / E; E / BZAZB / C, E / 5-layer configuration such as B / A / B / E, A / B / E / B ZC; 6-layer configuration such as C / B / A / B / E / C, EZBZAZBZEZC; E / B / A / B / A / B / C, CZEZBZAZBZEZC, etc .;
  • the EVOH (A) layer the EVOH constituting each layer may be the same or different!
  • a method for producing the multilayer structure of the present invention known methods can be employed, and methods such as extrusion coating, co-extrusion molding, and co-injection molding can be used. Of these, co-extrusion molding or co-injection molding is preferably employed. After once obtaining a multilayer sheet or multilayer film by these methods, it is also possible to further perform co-stretching, pressure-stretching, thermoforming and the like.
  • coextrusion molding is preferable because the process is simple, a laminate having a complicated layer structure can be relatively easily produced, and the production cost can be suppressed.
  • co-injection molding is not suitable for manufacturing a complex layer structure, but has a short production cycle and productivity. Is advantageous.
  • the process of thermoforming is complicated, it is possible to use a long-shaped container or the like which is difficult to manufacture by co-extrusion.
  • the molding method is appropriately selected according to the shape, use, and the like of the obtained molded product.
  • Examples of the shape of the multilayer structure include sheets, films, cups, bottles, tubes, tanks, and the like, but are not limited thereto.
  • the multilayer structure has various uses, and examples thereof include packaging materials or containers for foods, medicines, medical instruments, clothing, etc., and tubes and tanks for fuel (gasoline and the like). Of these, the most important fuel containers are described below.
  • the layer configuration when the multilayer structure is a fuel container is not particularly limited.
  • (in) CZBZAZBZE (out), (in) CZBZA / B / E / C (outside), (inside) C / E / B / A / B / E / C (outside) are typical examples.
  • the layer structure of (inner) C / B / A / B / E / C (outer) should be adopted from the viewpoint of rigidity, impact resistance, moldability, drawdown resistance, fuel resistance, etc. Is particularly preferred.
  • the thickness of each layer of the fuel container is not particularly limited. However, in consideration of the fuel barrier properties of the fuel container, mechanical strength, cost merit, etc., the thickness of the EVOH (A) layer is preferably the total layer thickness. Is at least 0.1%, more preferably at least 0.5%, even more preferably at least 1%.
  • the thickness of the EVOH (A) layer is preferably 20% or less of the total layer thickness, more preferably 15% or less, and even more preferably 10% or less.
  • the total thickness of each EVOH (A) layer is defined as the thickness of the EVOH (A) layer. If the thickness of the EV OH (A) layer is less than 0.1% of the total layer thickness, the fuel barrier properties of the fuel container may be insufficient, and if it exceeds 20%, the cost may be relatively high. The mechanical strength may be insufficient.
  • the fuel container is preferably formed by co-extrusion blow molding. Specifically, a parison is formed by melt extrusion, the parison is sandwiched between a pair of blow molding dies, the parison is cut, and the opposing cut portions are fused, and then the parison is cut. Is expanded into the above-mentioned mold to form a fuel container. However, when the container becomes large such as a fuel tank for automobiles, the parison is sandwiched by the mold and crimped while the mold is pressed. In many cases, the part that is not part of the container and the surface force of the container is cut off at a desired height using a cutter or the like.
  • the fuel container can also be obtained by a method in which a multilayer sheet is separately thermoformed up and down, and these two molded articles are fused by heat welding or the like. In the case of this production method, it is possible to produce a tank having a long shape, which is difficult to produce especially by co-extrusion blow molding or the like.
  • MFR Melt flow rate
  • a modified polyethylene (d-1: modified by BEAG HDPE) having a temperature of ° C, a load of 2160 g) and a density of 0.952 gZcm 3 was obtained.
  • ultra-low density polyethylene having boronic acid ethylene glycol ester group at the end In a separable flask equipped with a cooler, stirrer and dropping funnel, ultra-low-density polyethylene ⁇ MFR15gZlO content (190 ° C, load 2160g), density 0.9900gZcm 3. A terminal double bond amount of 0.055meqZg ⁇ and 1000 g of decalin were charged, degassed by reducing the pressure at room temperature, and then replaced with nitrogen. To this were added 78 g of trimethyl borate and 5.8 g of borane-triethylamine complex. After reacting at 200 ° C.
  • a distillation apparatus was attached, and 100 ml of methanol was slowly added dropwise. After the completion of the dropwise addition of methanol, low-boiling impurities such as methanol, trimethyl borate, and triethylamine were distilled off under reduced pressure. Further, 31 g of ethylene glycol was added, and the mixture was stirred for 10 minutes, reprecipitated in acetone, and dried to obtain a boronic acid ethylene glycol ester group content of 0.050meqZg, an MFR of 15 gZlO (190.C, a load of 2160 g), and a density of 0. 900 g Zcm 3 of modified polyethylene (d-2: BEAG modified VLDPE) was obtained. The amount of the boronic acid ethylene glycol ester group (BAEG) in the modified polyethylene was determined in the same manner as in Synthesis Example 1.
  • BAEG boronic acid ethylene glycol ester group
  • ⁇ MFR 0.994 8 10 minutes (190, load 2160g) ⁇ 8 parts by weight and 86 parts by weight of Bassel's high density polyethylene “Lupolen (registered trademark) 426 1AG” ⁇ MFR0.03 gZlO content (190.C, load 2160 g), density 0.945 gZcm 3 ⁇ of a twin screw type
  • the mixture was put into a vented extruder and extruded at 220 ° C. under a nitrogen atmosphere, and pelletized to obtain a resin composition pellet.
  • a test piece was prepared from the obtained pellet by injection molding using a single screw extruder, and the Izod impact strength was measured at ⁇ 40 ° C. according to ASTM method D256.
  • the impact strength measuring instrument was placed in a thermostatic chamber adjusted to 40 ° C, and the measurement sample was stored in the thermostatic chamber at least overnight before measurement, and then the impact strength was measured at 40 ° C.
  • a pellet of the resin composition was obtained in the same manner as in Reference Example 4 except that the amount of the resin used was changed as shown in Table 1, and then the film appearance evaluation, impact strength measurement, and retained resin amount measurement were performed. went. The results are summarized in Table 1.
  • thermoplastic resin having a boron-containing functional group was added to a resin composition comprising EVOH (A), carboxylic acid-modified polyolefin (B), and thermoplastic resin (C).
  • the addition of D) improved the appearance of the molded product, improved the impact strength, and further reduced the amount of retained resin. The effect becomes more remarkable as the amount of the thermoplastic resin (D) increases. It is considered that the addition of the thermoplastic resin (D) having a boron-containing functional group greatly contributes to the compatibility and thermal stability of each component.
  • a sheet having a layer structure of ⁇ 420 / ⁇ was prepared.
  • the obtained multilayer sheet was pulverized to an appropriate size so that it could be put into an extruder.
  • 10 parts by weight of the modified polyethylene (d-1: BEAG-modified HDPE) obtained in Synthesis Example 1 was dry-blended to 90 parts by weight of the pulverized material to obtain a raw material for a recovery layer (Regl).
  • a sheet having a layer configuration of HDPEZReglZADZEVOHZADZHDPE 110Z400Z20Z30Z20 / 420 m was prepared using the multilayer extrusion apparatus shown below.
  • the obtained multilayer sheet was pulverized in the same manner as above, and 90 parts by weight of the pulverized material was dry-blended with 10 parts by weight of the modified polyethylene (d-1) to obtain a raw material for the next recovery layer (Reg2). After repeating this operation five times, the screw used for the fifth extrusion of the recovery layer (Reg5) was taken out from the extruder, and the state of adhesion of the resin was visually observed. It was within the removable range. In addition, pelletization was performed at 210 ° C using the raw material of the fifth recovery layer (Reg5), and the state of formation of the toner adhering around the strand one hour later was visually observed. No outbreak was observed.
  • the shift screw is also a screw without a kneading part called full flight.
  • n is an integer of 1 to 5
  • modified polyethylene (d-1) was not mixed with the pulverized multilayer sheet.
  • a multi-layer sheet containing was prepared.
  • the screw used for the fifth extrusion of the recovery layer (Reg5) was removed from the extruder, and the state of resin adhesion was visually observed. The amount of adhesion was large, and considerable time and labor was required to remove the resin. Cost me.
  • using the raw material of the fifth recovery layer (Reg5) At 0 ° C., the pelleting was performed.
  • thermoplastic resin (D) having a boron-containing group greatly improves the thermal stability of the regrind composition.
  • a sheet having a layer structure of ⁇ 420 / ⁇ was prepared.
  • the obtained multilayer sheet was pulverized to an appropriate size so that it could be put into an extruder.
  • 5 parts by weight of the modified polyethylene (d-2: BEAG-modified VLDPE) obtained in Synthesis Example 2 was dry-blended with 95 parts by weight of the pulverized product to obtain a raw material for a recovery layer (Regl).
  • a sheet having a layer configuration of HDPEZReglZADZEVOHZADZHDPE 110Z400 Z20Z30Z20Z420 / Zm was prepared using the same multilayer extrusion apparatus as in Example 1 under the same conditions.
  • the obtained multilayer sheet was pulverized in the same manner as described above, and 95 parts by weight of the pulverized product was dry blended with 5 parts by weight of a modified polyethylene (d-2) to obtain a raw material for the next recovery layer (Reg2).
  • d-2 a modified polyethylene
  • the appearance and impact strength of the multilayer sheet prepared using Reg5 were evaluated.
  • the appearance of the multilayer sheet was evaluated by visual observation.
  • the fifth recovery layer (Reg 5) was pulverized, and then pelletized at 210 ° C. One hour later, the particles adhering around the strand were removed. The degree of occurrence was visually observed. No occurrence of force was observed.
  • Example 2 A test was conducted in the same manner as in Example 2 except that the operation of dry blending 10 parts by weight of modified polyethylene (d-2: BEAG modified VLDPE) with 90 parts by weight of the pulverized material to form a multilayer sheet was repeated. Tests were performed and evaluated. The results are summarized in Table 2.
  • Example 2 Same as Example 2 except that the procedure of dry blending 5 parts by weight of the modified polyethylene obtained in Synthesis Example 1 (d-1: BEAG-modified HDPE) with 95 parts by weight of the pulverized material to form a multilayer sheet was repeated. A test was performed and evaluated. The results are summarized in Table 2.
  • Example 2 was repeated except that the operation of dry-blending 5 parts by weight of maleic anhydride-modified polyethylene “ADMA-1 (registered trademark) GT6J” manufactured by Mitsui-Danigaku Co., Ltd. to 95 parts by weight of the pulverized product to form a multilayer sheet was repeated. The test was performed and evaluated in the same manner, and the results are summarized in Table 2.
  • ADMA-1 registered trademark
  • Example 2 A test was performed and evaluated in the same manner as in Example 2 except that the operation of forming a multilayer sheet was repeated without adding anything to the pulverized material. The results are summarized in Table 2.
  • thermoplastic resin (D) with a low density and polyethylene as the base polymer, which is more excellent in impact resistance. Giving a sheet is easy.
  • Molding machine 4 types 7-layer direct blow molding machine manufactured by Suzuki Iron Works
  • HDPE extrusion temperature 190 ° C
  • AD extrusion temperature 180 ° C

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Wrappers (AREA)

Abstract

A multi-layer structure comprising a layer of an ethylene/vinyl alcohol copolymer (A), a layer of a carboxylic acid-modified polyolefin (B), a layer of a thermoplastic resin (C) having a solubility parameter of 11 or below, and a layer of a resin composition (E), characterized in that the resin composition (E) consists of the components (A), (B) and (C) and a thermoplastic resin (D) having at least one functional group selected from the group consisting of boron acid groups and boron-containing groups convertible into boron acid groups in the presence of water and that the layer of an ethylene/vinyl alcohol copolymer (A) and the layer of a thermoplastic resin (C) or a resin composition (E) are laminated through the layer of a carboxylic acid-modified polyolefin (B). The multi-layer structure permits effective reuse of the regrinds and is excellent in impact resistance and gas barrier properties.

Description

明 細 書  Specification
多層構造体及びその製造方法  Multilayer structure and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、エチレン ビニルアルコール共重合体層を含む多層構造体及びその 製造方法に関する。  The present invention relates to a multilayer structure including an ethylene-vinyl alcohol copolymer layer and a method for producing the same.
背景技術  Background art
[0002] エチレン ビュルアルコール共重合体(以下 EVOHと略記することがある)は、優 れたガスバリア性を有しており、食品や医薬品等、品質の保持が重要視される内容 物を包装する材料として用いられている。また近年では、その優れたガソリンバリア性 を生力して、燃料タンクにも広く用いられるようになつている。特に、ポリオレフイン系 榭脂等の防湿性、機械的特性に優れる熱可塑性榭脂との積層体は、 EVOHの弱点 をカバーできるので好適に用いられている。このような多層構造体を製造する際、そ の形状がシート、フィルム等の場合は製品のクズ、端部又は不良品、ボトル等の場合 はバリ、カップ等の場合は打ち抜きクズ等のリグラインド (スクラップ)が必然的に発生 し、その再利用がコスト及び省資源の見地力 必要とされて 、る。  [0002] Ethylene bulcohol copolymer (hereinafter sometimes abbreviated as EVOH) has excellent gas barrier properties, and is used for packaging contents such as foods and pharmaceuticals, where maintaining the quality is important. Used as a material. In recent years, thanks to its excellent gasoline barrier properties, it has been widely used for fuel tanks. In particular, a laminate with a thermoplastic resin having excellent moisture-proof properties and mechanical properties such as polyolefin resin is preferably used because it can cover the weak points of EVOH. When manufacturing such a multilayered structure, regrind such as scraps of the product when the shape is a sheet or film, burrs for the end or defective, bottles for the bottle, punching scraps for the cup etc. (Scrap) inevitably occurs, and its reuse is required in terms of cost and resource saving.
[0003] このリグラインドを有効に再利用するために、ポリオレフイン系榭脂を主体とする榭 脂層にリグラインドを混合して利用する方法 (特許文献 1参照)、熱可塑性ポリオレフ イン層と EVOH層との間にリグラインド組成物層を介在させる方法 (特許文献 2参照) 等が提案されている。例えば、高密度ポリエチレン、バリア層、接着層及びリグライン ド組成物層からなる一般的な自動車用ガソリンタンクの層構成としては、(外層)リグラ インド +高密度ポリエチレン層 Z接着層 Zノ リア層 Z接着層 Zリグラインド +高密度 ポリエチレン層(内層)、(外層)高密度ポリエチレン層 Zリグラインド組成物層 Z接着 層 Zバリア層 Z接着層 Z高密度ポリエチレン層(内層)等が例示される。  [0003] In order to effectively reuse this regrind, a method is used in which a resin layer mainly composed of polyolefin resin is mixed with regrind (see Patent Document 1), and a thermoplastic polyolefin layer and EVOH are used. A method of interposing a regrind composition layer between the layers (see Patent Document 2) and the like have been proposed. For example, the layer structure of a general automotive gasoline tank composed of a high-density polyethylene, a barrier layer, an adhesive layer, and a regrind composition layer is (outer layer) regrind + high-density polyethylene layer Z adhesive layer Z rear layer Z Adhesive layer Z regrind + high-density polyethylene layer (inner layer), (outer layer) high-density polyethylene layer Z regrind composition layer Z adhesive layer Z barrier layer Z adhesive layer Z high-density polyethylene layer (inner layer) and the like.
[0004] また、リグラインド組成物層の界面剥離、層の乱れ及び波打模様の発生を抑制し、 耐衝撃性に優れた積層体を得るために、リグラインド組成物に特定のブロック共重合 体ゃグラフト重合体 (例えばカルボン酸変性ポリオレフイン)を混合する方法 (特許文 献 3、 4参照)、酸ィ匕防止剤及び金属化合物を混合する方法 (特許文献 5参照)も知ら れている。 [0004] In addition, in order to suppress interfacial peeling of the regrind composition layer, disorder of the layer, and generation of a wavy pattern, and to obtain a laminate having excellent impact resistance, a block copolymer specific to the regrind composition is used. Also known are methods of mixing body-graft polymers (for example, carboxylic acid-modified polyolefin) (see Patent Documents 3 and 4) and methods of mixing an antioxidant and a metal compound (see Patent Document 5). It is.
[0005] し力しながら、上記の各種方法を採用してもなお、ポリオレフイン系榭脂と EVOHと を含むリグラインド組成物を溶融押出成形する際には、特にリグラインド組成物中の E VOHが滞留して劣化する傾向があり、その結果、押出機内部に黒色状付着物 (焦 げ)が発生したり、ダイリップにゲル状物質(目ャ二)等が付着して、リグラインド組成 物の押出成形を連続で行うことは困難な場合が多いのが実情である。  [0005] In spite of the various methods described above, when a regrind composition containing a polyolefin resin and EVOH is melt-extruded, the E VOH in the regrind composition is particularly high. The extruder tends to accumulate and deteriorate, resulting in the formation of black deposits (burns) inside the extruder and the attachment of gel-like substances (e.g. In many cases, it is difficult to continuously carry out extrusion molding of the resin.
[0006] また、上記問題点を改善する方法として、ボロン酸基または水の存在下でボロン酸 基に転化しうるホウ素含有基を有する熱可塑性榭脂を接着層として用い、リグラインド 組成物の外観異常やゲル 'ブッなどを低減する方法 (特許文献 6)が知られている。こ の方法によると、リグラインド組成物の外観異常が低減するが、当該ホウ素含有基を 有する熱可塑性榭脂を接着層として用いると、 EVOH層との接着強度が強すぎる為 、カルボン酸変性ポリオレフイン等を接着層に用いる場合に比べ、多層構造体の膜 面外観や成形性に悪影響を与えることが懸念される。特に燃料容器などの大型多層 容器をブロー成形する場合、接着強度が向上しすぎるためにパリソンの成形性 (ドロ 一ダウン性)に悪影響を与える可能性は否めない。また、上記熱可塑性榭脂を接着 層に使用することでコストアップに繋がる可能性もあるので、カルボン酸変性ポリオレ フィンを接着剤層に用いた方が成形性、コストの面で好ま 、。  [0006] As a method for solving the above problem, a thermoplastic resin having a boronic acid group or a boron-containing group that can be converted to a boronic acid group in the presence of water is used as an adhesive layer, and a regrind composition is prepared. There is known a method for reducing appearance abnormality and gel bumps (Patent Document 6). According to this method, the appearance abnormality of the regrind composition is reduced, but when the thermoplastic resin having the boron-containing group is used as the adhesive layer, the adhesive strength with the EVOH layer is too strong, and thus the carboxylic acid-modified polyolefin is used. There is a concern that the film surface appearance and moldability of the multilayer structure will be adversely affected as compared with the case of using such as the adhesive layer. In particular, when blow molding large multi-layer containers such as fuel containers, it is undeniable that the adhesive strength is too high, which may have an adverse effect on the parison's formability (draw-down property). In addition, since the use of the thermoplastic resin for the adhesive layer may lead to an increase in cost, the use of a carboxylic acid-modified polyolefin for the adhesive layer is preferred in terms of moldability and cost.
[0007] し力しながら、上述のように、カルボン酸変性ポリオレフイン層を有する多層構造体 を回収した際に得られるリグラインド組成物を溶融混練する場合には、リグラインド組 成物中の EVOHが滞留して劣化する傾向があり、その結果、押出機内部に黒色付 着物 (焦げ)が発生したり、ダイリップにゲル状物質(目ャ二)等が付着して、リグライン ド組成物の押出成形を長時間連続して行うことは困難な場合が多いのが実情である  [0007] As described above, when the regrind composition obtained when the multilayer structure having the carboxylic acid-modified polyolefin layer is recovered is melt-kneaded as described above, the EVOH in the regrind composition may be melt-kneaded. Stagnation and deterioration, resulting in the formation of black deposits (burns) inside the extruder, and the attachment of gel-like substances (e.g. In fact, it is often difficult to perform molding continuously for a long time.
[0008] 特許文献 1 :特開昭 51— 95478号公報 Patent Document 1: JP-A-51-95478
特許文献 2:特開昭 59— 101338号公報  Patent Document 2: JP-A-59-101338
特許文献 3 :特開平 5— 147177号公報  Patent Document 3: JP-A-5-147177
特許文献 4:特開平 8— 27332号公報  Patent Document 4: JP-A-8-27332
特許文献 5:特開平 9 - 302170号公報 特許文献 6:特開平 7— 329252号公報 Patent Document 5: JP-A-9-302170 Patent Document 6: JP-A-7-329252
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は、上記課題を解決するためになされたものであり、耐衝撃性、ガスバリア 性及び外観に優れた多層構造体を得ることを目的とするものである。また、リグライン ドを有効に利用することができ、熱安定性及び溶融成形性に優れた多層構造体の製 造方法を提供することを目的とするものである。 [0009] The present invention has been made to solve the above problems, and has as its object to obtain a multilayer structure excellent in impact resistance, gas barrier properties, and appearance. It is another object of the present invention to provide a method for producing a multilayer structure which can effectively utilize a regrind and has excellent thermal stability and melt moldability.
課題を解決するための手段  Means for solving the problem
[0010] 上記課題は、エチレン含量 5〜60モル0 /0、ケン化度 85%以上のエチレン ビュル アルコール共重合体 (A)層、カルボン酸変性ポリオレフイン (B)層、 11以下の溶解 性パラメータ (Fedorsの式力も算出)を有する熱可塑性榭脂 (C)層、及び榭脂組成 物 (E)層を有する多層構造体であって;前記榭脂組成物 (E)が、エチレン ビニル アルコール共重合体 (A)、カルボン酸変性ポリオレフイン (B)、熱可塑性榭脂 (C)及 びボロン酸基及び水の存在下でボロン酸基に転化し得るホウ素含有基からなる群よ り選ばれる少なくとも一つの官能基を有する熱可塑性榭脂 (D)からなり、かつェチレ ン—ビュルアルコール共重合体 (A)層と、熱可塑性榭脂 (C)層又は榭脂組成物 (E) 層と力 カルボン酸変性ポリオレフイン (B)層を介して積層されてなることを特徴とす る多層構造体を提供することによって解決される。 [0010] The above problems, an ethylene content of 5 to 60 mole 0/0, 85% or more of ethylene Bulle alcohol copolymer saponification degree (A) layer, a carboxylic acid-modified polyolefin (B) layer, 11 the following solubility parameter A multi-layered structure having a thermoplastic resin (C) layer having a (Fedors formula force) and a resin composition (E) layer; wherein the resin composition (E) is an ethylene-vinyl alcohol copolymer. At least one selected from the group consisting of a polymer (A), a carboxylic acid-modified polyolefin (B), a thermoplastic resin (C), and a boron-containing group that can be converted to a boronic acid group in the presence of a boronic acid group and water. It consists of a thermoplastic resin (D) having one functional group, and has a layer of ethylene-butyl alcohol copolymer (A), thermoplastic resin (C) or resin composition (E). Multi-layer structure characterized by lamination via carboxylic acid-modified polyolefin (B) layer Solved by providing the body.
[0011] このとき、前記榭脂組成物(E) 1S エチレン—ビュルアルコール共重合体 (A) 1〜4 0重量%、カルボン酸変性ポリオレフイン (B) 0. 1〜39. 1重量%、熱可塑性榭脂(C ) 59. 8〜98. 8重量%、及び熱可塑性榭脂(D) 0. 1〜39. 1重量%カもなることが 好適である。前記熱可塑性榭脂 (C)が実質的に未変性のポリオレフインであることも 好適である。前記熱可塑性榭脂(D)のホウ素含有基の含有量が 0. 001〜2meq/g であることも好適である。前記熱可塑性榭脂(D)が、ボロン酸基及び水の存在下でボ ロン酸基に転化し得るホウ素含有基からなる群より選ばれる少なくとも一つの官能基 を有するポリオレフイン、特に 0. 85〜0. 94gZcm3の密度を有するポリエチレンであ ることち好適である。 At this time, the resin composition (E) 1S ethylene-butyl alcohol copolymer (A) 1 to 40% by weight, the carboxylic acid-modified polyolefin (B) 0.1 to 39.1% by weight, It is preferred that the thermoplastic resin (C) is 59.8 to 98.8% by weight and the thermoplastic resin (D) is 0.1 to 39.1% by weight. It is also preferable that the thermoplastic resin (C) is a substantially unmodified polyolefin. It is also preferable that the content of the boron-containing group in the thermoplastic resin (D) is 0.001 to 2 meq / g. The thermoplastic resin (D) is a polyolefin having at least one functional group selected from the group consisting of a boronic acid group and a boron-containing group that can be converted to a boronic acid group in the presence of water, and particularly preferably from 0.85 to Polyethylene having a density of 0.94 gZcm 3 is preferable.
[0012] 上記多層構造体からなる押出成形品、ブロー成形品、熱成形品及び燃料容器が、 本発明の好適な実施態様である。 [0012] An extruded product, a blow molded product, a thermoformed product and a fuel container comprising the multilayer structure are It is a preferred embodiment of the present invention.
[0013] また上記課題は、エチレン ビニルアルコール共重合体 (A)層、カルボン酸変性 ポリオレフイン (B)層及び熱可塑性榭脂 (C)層を有する多層構造体から得られたリグ ラインドに、さらに熱可塑性榭脂 (D)を加えて溶融混練して、前記榭脂組成物 (E)層 を形成することを特徴とする上記多層構造体の製造方法を提供することによつても解 決される。  [0013] Further, the above-mentioned problem is further addressed by a regrind obtained from a multilayer structure having an ethylene-vinyl alcohol copolymer (A) layer, a carboxylic acid-modified polyolefin (B) layer and a thermoplastic resin (C) layer. It is also solved by providing a method for producing the above-mentioned multilayer structure, characterized in that a thermoplastic resin (D) is added and melt-kneaded to form the resin composition (E) layer. You.
[0014] このとき、前記リグラインド力 エチレン ビュルアルコール共重合体 (A)層、カル ボン酸変性ポリオレフイン (B)層、熱可塑性榭脂(C)層に加えて、さらに榭脂組成物 (E)層を有する多層構造体力も得られたものであることが好適である。また、前記リグ ラインドとそれに加えられる熱可塑性榭脂(D)との合計 100重量部に対して、熱可塑 性榭脂(D)を 0. 1〜30重量部加えて溶融混練することも好適である。共押出成形又 は共射出成形することも好適である。  [0014] At this time, in addition to the above-mentioned regrind force ethylene-butyl alcohol copolymer (A) layer, carboxylic acid-modified polyolefin (B) layer, and thermoplastic resin (C) layer, a resin composition (E) ) It is preferable that a multilayer structure having a layer is obtained. It is also preferable to add 0.1 to 30 parts by weight of the thermoplastic resin (D) to the total of 100 parts by weight of the regrind and the thermoplastic resin (D) added thereto and melt-knead the mixture. It is. Coextrusion or coinjection molding is also preferred.
[0015] エチレン ビニルアルコール共重合体 (A)層、カルボン酸変性ポリオレフイン(B) 層及び熱可塑性榭脂 (C)層を有する多層構造体のリグラインドを回収使用する際に 、ボロン酸基及び水の存在下でボロン酸基に転化し得るホウ素含有基からなる群より 選ばれる少なくとも一つの官能基を有する熱可塑性榭脂 (D)をリグラインドに対して 加えて溶融混練することにより、得られる榭脂組成物 (E)中の、 EVOH (A)、カルボ ン酸変性ポリオレフイン (B)及び熱可塑性榭脂 (C)の相容性が向上し、耐衝撃性及 び熱安定性が飛躍的に改善される。この理由は定かではないが、溶融混練時に熱 可塑性榭脂 (D)のホウ素含有官能基と EVOH (A)の水酸基がエステル交換反応に より結合するためと推定される。  [0015] When the regrind of the multilayer structure having the ethylene-vinyl alcohol copolymer (A) layer, the carboxylic acid-modified polyolefin (B) layer and the thermoplastic resin (C) layer is recovered and used, boronic acid groups and A thermoplastic resin (D) having at least one functional group selected from the group consisting of boron-containing groups that can be converted to a boronic acid group in the presence of water is added to the regrind and melt-kneaded. Improves the compatibility of EVOH (A), carboxylic acid-modified polyolefin (B) and thermoplastic resin (C) in the resin composition (E) to be used, and improves the impact resistance and thermal stability Is improved. The reason for this is not clear, but it is presumed that the boron-containing functional group of the thermoplastic resin (D) and the hydroxyl group of the EVOH (A) are bonded by transesterification during melt kneading.
[0016] 従来、リグラインド組成物中に含まれるカルボン酸変性ポリオレフイン (B)は回収回 数を増やすと熱劣化し、次第にリグラインド組成物中の EVOH (A)との相容性が低 下し、 EVOH (A)の分散性が悪ィ匕していた。その結果、リグラインド組成物中の EVO H (A)の凝集 ·熱劣化を来たしていた。ところが、ホウ素含有官能基を有する熱可塑 性榭脂 (D)をリグラインドに添加すると、回収回数を増やしても、リグラインド組成物中 の EVOH (A)の分散性が悪ィ匕することなぐリグラインド組成物中の EVOH (A)の凝 集 ·熱劣化が抑制されることが見出された。この理由は必ずしも明らかではないが、力 ルボン酸変性ポリオレフイン (B)の熱劣化による、リグラインド組成物中の EVOH (A) の分散性低下を、リグラインド組成物中のホウ素含有官能基を有する熱可塑性榭脂 ( D)が防いでいるためと推定される。したがって、ホウ素含有官能基を有する熱可塑 性榭脂 (D)をリグラインドに添加することによる回収性向上の効果は、回収の回数を 増やすことによって、より顕著に発揮される。 [0016] Conventionally, the carboxylic acid-modified polyolefin (B) contained in the regrind composition is thermally degraded when the number of times of recovery is increased, and the compatibility with the EVOH (A) in the regrind composition gradually decreases. However, the dispersibility of EVOH (A) was poor. As a result, aggregation and thermal degradation of EVO H (A) in the regrind composition occurred. However, when the thermoplastic resin (D) having a boron-containing functional group is added to the regrind, the dispersibility of the EVOH (A) in the regrind composition does not deteriorate even if the number of collections is increased. It was found that the aggregation and thermal degradation of EVOH (A) in the regrind composition were suppressed. The reason is not always clear, The thermoplastic resin (D) having a boron-containing functional group in the regrind composition prevents a decrease in the dispersibility of EVOH (A) in the regrind composition due to the thermal deterioration of the rubonic acid-modified polyolefin (B). It is estimated that Therefore, the effect of improving the recoverability by adding the thermoplastic resin (D) having a boron-containing functional group to the regrind is more remarkably exhibited by increasing the number of times of recovery.
発明の効果  The invention's effect
[0017] 本発明の多層構造体は耐衝撃性、ガスノリア性及び外観に優れて 、る。また、ェ チレン ビニルアルコール共重合体 (A)層、カルボン酸変性ポリオレフイン(B)層及 び熱可塑性榭脂 (C)層を有する多層構造体のリグラインドを回収使用する際に、ホウ 素含有基を有する熱可塑性榭脂 (D)をリグラインドに対して配合することにより、リグ ラインド組成物の溶融成形性及び熱安定性が改善されるとともに、多層構造体の衝 撃強度が飛躍的に向上する。  [0017] The multilayer structure of the present invention is excellent in impact resistance, gas nolia property and appearance. In addition, when regrind of a multilayer structure having an ethylene vinyl alcohol copolymer (A) layer, a carboxylic acid-modified polyolefin (B) layer and a thermoplastic resin (C) layer is recovered and used, a boron-containing material is used. By blending thermoplastic resin (D) having a group with regrind, the melt moldability and thermal stability of the regrind composition are improved, and the impact strength of the multilayer structure is dramatically improved. improves.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下に本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明に用いられる EVOH (A)としては、エチレン—ビュルエステル共重合体をけ ん化して得られるものが好まし 、。ビュルエステルとしては酢酸ビュルが代表的なも のとして挙げられる力 プロピオン酸ビュル、ビバリン酸ビュル等の脂肪酸ビュルエス テルを使用することもできる。  As the EVOH (A) used in the present invention, those obtained by saponifying an ethylene-butyl ester copolymer are preferable. As the butyl ester, a fatty acid butyl ester such as butyl propionate or burivalate can be used as a typical example of the butyl acetate.
[0019] EVOH (A)のエチレン含量は 5〜60モル0 /0であることが必要である。エチレン含量 の下限は好適には 15モル%以上であり、より好適には 20モル%以上である。また、 エチレン含量の上限は好適には 55モル%以下であり、より好適には 50モル%以下 である。 EVOHのエチレン含量が 5モル%未満の場合、 EVOHを含む榭脂組成物 の溶融成形性が悪化する。一方、エチレン含量が 60モル%を超える場合、 EVOH を含む榭脂組成物のバリア性が不足する。 [0019] The ethylene content of the EVOH (A) is required to be 5 to 60 mol 0/0. The lower limit of the ethylene content is preferably at least 15 mol%, more preferably at least 20 mol%. The upper limit of the ethylene content is preferably 55 mol% or less, more preferably 50 mol% or less. If the ethylene content of EVOH is less than 5 mol%, the melt moldability of the resin composition containing EVOH deteriorates. On the other hand, when the ethylene content exceeds 60 mol%, the barrier properties of the resin composition containing EVOH are insufficient.
[0020] EVOH (A)のビュルエステル成分のけん化度は 85%以上であることが必要である 。けん化度は、好適には 90%以上であり、より好適には 99%以上である。けん化度 が 85%未満の場合、 EVOHを含む榭脂組成物のノリア性及び熱安定性が不充分と なる。 [0021] EVOH (A)の製造にあたっては、エチレンと 1種類又は 2種類以上のビニルエステ ルを共重合し、得られたエチレン 酢酸ビニル共重合体をけん化する公知の方法を 採用することができる。このとき、第 3の共重合成分としてビュルシランィ匕合物 0. 000 2〜0. 2モル%を含有することができる。ビニルシラン系化合物としては、例えば、ビ -ルトリメトキシシラン、ビュルトリエトキシシラン、ビュルトリ(j8—メトキシ一エトキシ) シラン、 y—メタタリルォキシプロピルメトキシシラン等が挙げられる。これらの中でも、 ビュルトリメトキシシラン及びビュルトリエトキシシランが好適に用いられる。さらに、本 発明の目的が阻害されない範囲で、他の単量体、例えば、プロピレン、ブチレン等の α—ォレフィン類;(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸ェチル 等の不飽和カルボン酸及びそのエステル; Ν—ビュルピロリドン等のビュルピロリドン 類;等を共重合することもできる。 [0020] It is necessary that the saponification degree of the bullet ester component of EVOH (A) is 85% or more. The degree of saponification is preferably at least 90%, more preferably at least 99%. If the degree of saponification is less than 85%, the resin composition containing EVOH will have insufficient nolia properties and thermal stability. In the production of EVOH (A), a known method of copolymerizing ethylene with one or more vinyl esters and saponifying the resulting ethylene-vinyl acetate copolymer can be employed. . At this time, 0.003 to 0.2 mol% of the bullsilani conjugate can be contained as the third copolymer component. Examples of the vinylsilane-based compound include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri (j8-methoxy-ethoxy) silane, and y-methallyloxypropylmethoxysilane. Of these, burtrimethoxysilane and burtriethoxysilane are preferably used. Furthermore, other monomers, for example, α-olefins such as propylene and butylene; (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate and the like, as long as the object of the present invention is not impaired. Unsaturated carboxylic acids and esters thereof; and butylpyrrolidones such as Ν-pyrrolidone; and the like.
[0022] EVOH (Α)は、異なる 2種類以上の EVOHの混合物であってもよ!/、。この場合、 Ε VOH (A)のエチレン含量及びけん化度は、配合重量比から算出される平均値とす る。 [0022] EVOH (Α) may be a mixture of two or more different types of EVOH! /. In this case, エ チ レ ン The ethylene content and the degree of saponification of VOH (A) shall be average values calculated from the blending weight ratio.
[0023] EVOH (A)は、本発明の目的を阻害しな 、範囲でホウ素化合物を含有して ヽても よい。ホウ素化合物としては、ホウ酸類、ホウ酸エステル、ホウ酸塩、水素化ホウ素類 等が挙げられる。具体的には、ホウ酸類としては、オルトホウ酸、メタホウ酸、四ホウ酸 等が挙げられ、ホウ酸エステルとしてはホウ酸トリエチル、ホウ酸トリメチル等が挙げら れ、ホウ酸塩としては上記の各種ホウ酸類のアルカリ金属塩、アルカリ土類金属塩、 さらにはホウ砂等が挙げられる。これらの化合物の中でもオルトホウ酸が好ましい。  [0023] EVOH (A) may contain a boron compound as long as the object of the present invention is not impaired. Examples of the boron compound include boric acids, borate esters, borates, borohydrides, and the like. Specifically, the boric acids include orthoboric acid, metaboric acid, tetraboric acid, etc., the boric acid esters include triethyl borate, trimethyl borate, and the like. Examples thereof include alkali metal salts and alkaline earth metal salts of boric acids, and borax. Of these compounds, orthoboric acid is preferred.
[0024] ホウ素化合物をブレンドする場合、ホウ素化合物の含有量は好適にはホウ素元素 換算で 20〜2000ppm、より好適には 50〜: LOOOppmである。ホウ素化合物の含有 量が力かる範囲にある場合、 EVOHの加熱溶融時にトルク変動が抑制される。ホウ 素化合物の含有量が 20ppm未満の場合、トルク変動の抑制の改善効果が不十分と なるおそれがあり、 2000ppmを超える場合、 EVOHがゲルイ匕しやすぐ成形性不良 となるおそれがある。  When a boron compound is blended, the content of the boron compound is preferably from 20 to 2000 ppm, more preferably from 50 to LOOO ppm in terms of boron element. When the content of the boron compound is in a strong range, torque fluctuation is suppressed during heating and melting of EVOH. If the content of the boron compound is less than 20 ppm, the effect of improving the suppression of torque fluctuation may be insufficient, and if it exceeds 2000 ppm, EVOH may be gelled and may immediately have poor moldability.
[0025] また、後述するように EVOH (A)を単独で多層構造体を構成するひとつの層として 使用する場合は、 EVOH (A)に対し、アルカリ金属塩を含有させることも層間接着性 等の改善のために効果的であることから好ましい。アルカリ金属塩の含有量は好適に はァノレカジ金属元素換算で 5〜5000ppm、より好適には 20〜: LOOOppm、さらにより 好適には 30〜500ppmである。アルカリ金属としては、リチウム、ナトリウム、カリウム 等が挙げられ、アルカリ金属塩としては、脂肪族カルボン酸塩、芳香族カルボン酸塩 、リン酸塩、金属錯体等が挙げられる。具体的には、酢酸ナトリウム、酢酸カリウム、リ ン酸ナトリウム、リン酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、エチレン ジァミン四酢酸ナトリウム塩等が挙げられる。これらの中でも、酢酸ナトリウム、酢酸力 リウム及びリン酸ナトリウムが好適である。 [0025] Further, when EVOH (A) is used alone as one layer constituting a multilayer structure, as described later, an alkali metal salt may be added to EVOH (A) to improve interlayer adhesion. This is preferable because it is effective for improving the above-mentioned properties. The content of the alkali metal salt is preferably from 5 to 5000 ppm, more preferably from 20 to LOOO ppm, and still more preferably from 30 to 500 ppm, in terms of an anorekadi metal element. Examples of the alkali metal include lithium, sodium, and potassium, and examples of the alkali metal salt include an aliphatic carboxylate, an aromatic carboxylate, a phosphate, and a metal complex. Specific examples include sodium acetate, potassium acetate, sodium phosphate, lithium phosphate, sodium stearate, potassium stearate, and sodium ethylenediaminetetraacetate. Of these, sodium acetate, potassium acetate and sodium phosphate are preferred.
[0026] また、 EVOH (A)に対しリン化合物を配合することも、 EVOH (A)の溶融成形性及 び熱安定性を改善することができるので好ましい。リン化合物の含有量は、好適には ジン元素換算で 2〜200ppm、より好適には 3〜150ppm、さらにより好適には 5〜10 Oppmである。リンィ匕合物の含有量が 2ppm未満の場合及び 200ppmを超える場合 は、 EVOHの溶融成形性や熱安定性に問題を生じることがある。特に、長時間にわ たる溶融成形を行う際、ゲル状ブッの発生や着色の問題が発生しやすくなる。  [0026] It is also preferable to add a phosphorus compound to EVOH (A), since the melt moldability and thermal stability of EVOH (A) can be improved. The content of the phosphorus compound is preferably 2 to 200 ppm, more preferably 3 to 150 ppm, and still more preferably 5 to 10 ppm in terms of gin element. When the content of the phosphorus conjugate is less than 2 ppm or more than 200 ppm, there may be a problem in the melt formability and thermal stability of EVOH. In particular, when performing melt molding for a long time, problems such as generation of gel-like bubbles and coloring are likely to occur.
[0027] EVOH (A)中に配合するリン化合物の種類は特に限定されるものではないが、例 えばリン酸、亜リン酸等の各種の酸やその塩等を用いることができる。リン酸塩として は第 1リン酸塩、第 2リン酸塩、第 3リン酸塩のいずれの形で添加してもよぐそのカチ オン種も特に限定されるものではないが、アルカリ金属塩、アルカリ土類金属塩であ ることが好ましい。これらの中でも、リン酸二水素ナトリウム、リン酸二水素カリウム、リン 酸水素ニナトリウム、リン酸水素二カリウムの形でリンィ匕合物を添加することが好まし い。  [0027] The type of the phosphorus compound to be incorporated into the EVOH (A) is not particularly limited, and for example, various acids such as phosphoric acid and phosphorous acid, and salts thereof can be used. The phosphate may be added in any form of a primary phosphate, a secondary phosphate, or a tertiary phosphate, and the cation species which may be added is not particularly limited. And alkaline earth metal salts. Among these, it is preferable to add the phosphorous conjugate in the form of sodium dihydrogen phosphate, potassium dihydrogen phosphate, disodium hydrogen phosphate, and dipotassium hydrogen phosphate.
[0028] さらに、本発明の目的を阻害しな ヽ範囲で、 EVOH (A)に熱安定剤、紫外線吸収 剤、酸化防止剤、着色剤、グリセリンやグリセリンモノステアレート等の可塑剤をプレン ドすることもできる。また、高級脂肪族カルボン酸の金属塩又はノ、イド口タルサイトイ匕 合物等を添加することは、 EVOH (A)の熱による劣化を防ぐと!、う観点から有効であ る。  [0028] Furthermore, a heat stabilizer, an ultraviolet absorber, an antioxidant, a colorant, and a plasticizer such as glycerin or glycerin monostearate are blended with EVOH (A) within a range not to impair the object of the present invention. You can also. Further, the addition of a metal salt of a higher aliphatic carboxylic acid, a talcite compound, or the like is effective from the viewpoint of preventing deterioration of EVOH (A) due to heat.
[0029] 高級脂肪族カルボン酸の金属塩としては、炭素数 8〜22の高級脂肪酸の金属塩 が挙げられる。具体的には、ラウリン酸、ステアリン酸、ミリスチン酸等が挙げられる。 金属としては、ナトリウム、カリウム、マグネシウム、カルシウム、亜鉛、ノ リウム、アルミ -ゥム等が挙げられる。このうちマグネシウム、カルシウム及びバリウムが好適である。 [0029] Examples of the metal salt of a higher aliphatic carboxylic acid include metal salts of higher fatty acids having 8 to 22 carbon atoms. Specifically, lauric acid, stearic acid, myristic acid and the like can be mentioned. Examples of the metal include sodium, potassium, magnesium, calcium, zinc, norium, aluminum and the like. Of these, magnesium, calcium and barium are preferred.
[0030] ハイド口タルサイト化合物としては、特に、 M Al (OH) (A) ·aH O (MはM [0030] As a hydrated talcite compound, in particular, M Al (OH) (A) · aH O (M is M
2x+3y-2z 2 g、 Ca又は Znを表し、 Aは CO又は HPOを表し、 x、 y、 z、 aは正数である)で示され  2x + 3y-2z 2 g, represents Ca or Zn, A represents CO or HPO, and x, y, z, a are positive numbers)
3 4  3 4
る複塩であるハイド口タルサイトイ匕合物を挙げることができる。特に好適なものとして以 下のハイド口タルサイトイ匕合物が例示される。  Hydrate talcite conjugate which is a double salt. Particularly preferred examples include the following hydrated mouth talcite conjugates.
[0031] Mg Al (OH) CO ·4Η O  [0031] Mg Al (OH) CO · 4Η O
6 2 16 3 2  6 2 16 3 2
Mg Al (OH) CO - 5H O  Mg Al (OH) CO-5H O
8 2 20 3 2  8 2 20 3 2
Mg Al (OH) CO -4H O  Mg Al (OH) CO -4H O
5 2 14 3 2  5 2 14 3 2
Mg Al (OH) (CO ) -4H O  Mg Al (OH) (CO) -4H O
10 2 22 3 2 2  10 2 22 3 2 2
Mg Al (OH) HPO -4H O  Mg Al (OH) HPO -4H O
6 2 16 4 2  6 2 16 4 2
Ca Al (OH) CO -4H O  Ca Al (OH) CO -4H O
6 2 16 3 2  6 2 16 3 2
Zn Al (OH) CO -4H O  Zn Al (OH) CO -4H O
6 6 16 3 2  6 6 16 3 2
Mg Al (OH) CO - 3. 5H O  Mg Al (OH) CO-3.5H O
4.5 2 13 3 2  4.5 2 13 3 2
[0032] また、上記に例示したィ匕合物以外にも、特開平 1— 308439号に記載されている [ Mg Zn ] Al (OH) (CO ) ·0. 45H Oのようなハイド口タルサイト系 [0032] Further, in addition to the above-mentioned examples, hydrated tars such as [MgZn] Al (OH) (CO) .0.45HO described in JP-A-1-308439 may be used. Site system
0. 75 0. 25 0. 67 0. 33 2 3 0. 167 2 0.75 0.25 0.67 0.33 2 3 0.167 2
固溶体を用いることもできる。  Solid solutions can also be used.
[0033] これらの高級脂肪族カルボン酸の金属塩又はハイド口タルサイトィヒ合物の含有量は 、 EVOH (A) 100重量部に対して好適には0. 01〜3重量部、より好適には 0. 05〜 2. 5重量部である。  [0033] The content of the metal salt of these higher aliphatic carboxylic acids or the talcite compound of Hideguchi is preferably 0.01 to 3 parts by weight, more preferably 0 to 100 parts by weight of EVOH (A). 05 to 2.5 parts by weight.
[0034] EVOH (A)のメルトフローレート(MFR) (190°C、 2160g荷重下)は好適には 0. 1 〜50g/10分、より好適【こ ίま 0. 3〜40g/10分、さら【こより好適【こ ίま 0. 5〜30g/l 0分である。ただし、融点が 190°C付近又は 190°Cを超える EVOHにおいては、 216 Og荷重下、融点以上の複数の温度で測定し、片対数グラフで絶対温度の逆数を横 軸、 MFRの対数を縦軸にプロットし、 190°Cに外挿した値を MFRとする。  The melt flow rate (MFR) of EVOH (A) (at 190 ° C. under a load of 2160 g) is preferably from 0.1 to 50 g / 10 min, more preferably from 0.3 to 40 g / 10 min. , And more preferably, 0.5 to 30 g / l 0 minutes. However, for EVOH with a melting point near 190 ° C or exceeding 190 ° C, measure at multiple temperatures above the melting point under a load of 216 Og, and use the semilog graph to plot the reciprocal of absolute temperature on the horizontal axis and the log of MFR on the vertical axis. Plot it on the axis and extrapolate to 190 ° C as the MFR.
[0035] 本発明に用いられるカルボン酸変性ポリオレフイン (B)としては、特に (Xーォレフィ ンと不飽和カルボン酸又はその無水物とからなる共重合体が好適に使用される力 こ れ以外にも、分子中にカルボキシル基を有するポリオレフイン、含有されるカルボキシ ル基の全部又は一部が金属塩の形で存在しているポリオレフインも使用可能である。 カルボン酸変性ポリオレフイン(B)のベースとなるポリオレフインとしては、ポリエチレ ン (例えば、高密度ポリエチレン (HDPE)、低密度ポリエチレン (LDPE)、直鎖状低 密度ポリエチレン(LLDPE)、超低密度ポリエチレン (VLDPE)等)、ポリプロピレン、 共重合ポリプロピレン、エチレン 酢酸ビュル共重合体、エチレン (メタ)アクリル酸 エステル共重合体等の各種ポリオレフインが挙げられる。 As the carboxylic acid-modified polyolefin (B) used in the present invention, in particular, a copolymer (X-olefin and an unsaturated carboxylic acid or an anhydride thereof) is preferably used. , Polyolefin having a carboxyl group in the molecule, carboxy contained therein Polyolefins in which all or part of the radicals are present in the form of metal salts can also be used. Examples of the polyolefin as a base of the carboxylic acid-modified polyolefin (B) include polyethylene (eg, high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and ultra-low-density polyethylene (VLDPE). )), Polypropylene, copolymerized polypropylene, ethylene-butyl acetate copolymer, ethylene (meth) acrylate copolymer, and various other polyolefins.
[0036] 共重合成分である不飽和カルボン酸としては、アクリル酸、メタアクリル酸、エタァク リル酸、マレイン酸、マレイン酸モノメチル、マレイン酸モノエチル、ィタコン酸等が例 示され、これらの中でもアクリル酸及びメタアクリル酸が好ましい。不飽和カルボン酸 の含有量は、好適には 0. 5〜20モル0 /0、より好適〖こは 2〜15モル0 /0、さらにより好適 には 3〜12モル%である。また、不飽和カルボン酸無水物としては、無水ィタコン酸、 無水マレイン酸等が例示され、これらの中でも無水マレイン酸が好ましい。不飽和力 ノレボン酸無水物の含有量 ίま、好適に ίま 0. 0001〜5モノレ0 /0、より好適に ίま 0. 0005 〜3モル0 /0、さらにより好適には 0. 001〜1モル0 /0である。 [0036] Examples of the unsaturated carboxylic acid as a copolymer component include acrylic acid, methacrylic acid, ethacrylic acid, maleic acid, monomethyl maleate, monoethyl maleate, itaconic acid and the like, and among these, acrylic acid And methacrylic acid are preferred. The content of the unsaturated carboxylic acid is preferably 0.5 to 20 mol 0/0, more preferably 〖This is 3 to 12 mol% is preferably from 2 to 15 mole 0/0, further. Examples of the unsaturated carboxylic anhydride include itaconic anhydride and maleic anhydride. Of these, maleic anhydride is preferable. Content ί unsaturated force Norebon acid anhydride or suitably ί or 0.0001 to 5 Monore 0/0, more preferably ί or 0.0005 to 3 mole 0/0, even more preferably 0.001 it is to 1 mol 0/0.
[0037] カルボン酸変性ポリオレフインの金属塩における金属イオンとしては、リチウム、ナト リウム、カリウム等のアルカリ金属;マグネシウム、カルシウム等のアルカリ土類金属; 亜鉛等の遷移金属;等が例示される。カルボン酸変性ポリオレフインの金属塩におけ る中和度は、好適には 100%以下、より好適には 90%以下、さらにより好適には 70 %以下であり、好適には 5%以上、より好適には 10%以上、さらにより好適には 30% 以上である。  Examples of the metal ion in the metal salt of the carboxylic acid-modified polyolefin include an alkali metal such as lithium, sodium and potassium; an alkaline earth metal such as magnesium and calcium; and a transition metal such as zinc. The degree of neutralization of the carboxylic acid-modified polyolefin in the metal salt is preferably 100% or less, more preferably 90% or less, even more preferably 70% or less, preferably 5% or more, more preferably Is at least 10%, even more preferably at least 30%.
[0038] また、カルボン酸変性ポリオレフイン (Β)は、上記以外の単量体を共重合成分として 含んでいてもよい。他の単量体としては、酢酸ビニル、プロピオン酸ビュル等のビ- ルエステル;アクリル酸メチル、アクリル酸ェチル、アクリル酸イソプロピル、アクリル酸 イソブチル、アクリル酸 η—ブチル、アクリル酸 2—ェチルへキシル、メタアクリル酸メ チル、メタアクリル酸イソブチル、マレイン酸ジェチル等の不飽和カルボン酸エステル ;一酸化炭素等が例示される。  [0038] The carboxylic acid-modified polyolefin (Β) may contain a monomer other than the above as a copolymer component. Other monomers include vinyl esters such as vinyl acetate and vinyl propionate; methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, η-butyl acrylate, 2-ethylhexyl acrylate, Unsaturated carboxylic acid esters such as methyl methacrylate, isobutyl methacrylate and getyl maleate; carbon monoxide and the like.
[0039] カルボン酸変性ポリオレフイン(Β)のメルトフローレート(MFR) (190°C、 2160g荷 重下)は、好適には 0. OlgZlO分以上であり、より好適には 0. 05gZ分以上であり 、さらにより好適には 0. lgZlO分以上である。また、 MFRは好適には 50gZlO分 以下、より好適には 30gZlO分以下、さらにより好適には lOgZlO分以下である。こ れらのカルボン酸変性ポリオレフインは、単独で用いることもできるし、 2種以上を混 合して用いることもできる。 [0039] The melt flow rate (MFR) (190 ° C, under a load of 2160 g) of the carboxylic acid-modified polyolefin (Β) is preferably not less than 0.05 OlgZlO min, more preferably not less than 0.05 gZ min. Yes And still more preferably 0.1 lgZlO or more. Further, the MFR is preferably not more than 50 gZlO, more preferably not more than 30 gZlO, even more preferably not more than lOgZlO. These carboxylic acid-modified polyolefins can be used alone or as a mixture of two or more.
[0040] 本発明に用いられる、 11以下の溶解性パラメータ (Fedorsの式力も算出)を有する 熱可塑性榭脂 (C)としては、例えばポリオレフイン系榭脂、スチレン系榭脂、ポリ塩化 ビュル系榭脂等が挙げられる。ポリオレフイン系榭脂としては、高密度ポリエチレン、 低密度ポリエチレン、ポリプロピレン、ポリブテン— 1等の α ォレフィンの単独重合 体;エチレン、プロピレン、ブテン一 1、へキセン 1等から選ばれた α—ォレフィン同 士の共重合体;上記 α—ォレフィンとジォレフイン、塩化ビュル、酢酸ビュル等のビ- ル化合物、アクリル酸エステル、メタクリル酸エステル等の不飽和カルボン酸エステル 等との共重合体;等が挙げられる。また、スチレン系榭脂としては、ポリスチレン、ァク リロ-トリル—ブタジエン—スチレン共重合榭脂(ABS)、アクリロニトリル—スチレン共 重合榭脂 (AS)、スチレン イソブチレンブロック共重合体、スチレン ブタジエン共 重合体、スチレン イソプレンブロック共重合体等が挙げられる。これらの熱可塑性 榭脂(C)は、単独で用いることもできるし、 2種以上を混合して用いることもできる。こ こで、熱可塑性榭脂 (C)は、カルボン酸変性ポリオレフイン (B)、ボロン酸基及び水 の存在下でボロン酸基に転ィ匕し得るホウ素含有基力 なる群より選ばれる少なくとも 一つの官能基を有する熱可塑性榭脂 (D)以外の榭脂であって、上記溶解性パラメ ータを有するものである。  As the thermoplastic resin (C) having a solubility parameter of 11 or less (Fedors formula force is used) used in the present invention, for example, polyolefin resin, styrene resin, polychlorinated vinyl resin And the like. Examples of the polyolefin resin include α-olefin homopolymers such as high-density polyethylene, low-density polyethylene, polypropylene, and polybutene-1; α-olefins selected from ethylene, propylene, butene-11, hexene-1 and the like. And copolymers of the above-mentioned α-olefin with vinyl compounds such as diolefin, vinyl chloride and vinyl acetate, and unsaturated carboxylic esters such as acrylic acid esters and methacrylic acid esters. Styrene resins include polystyrene, acrylo-tolyl-butadiene-styrene copolymer resin (ABS), acrylonitrile-styrene copolymer resin (AS), styrene isobutylene block copolymer, and styrene butadiene copolymer. And a styrene isoprene block copolymer. These thermoplastic resins (C) can be used alone or as a mixture of two or more. Here, the thermoplastic resin (C) is at least one selected from the group consisting of a carboxylic acid-modified polyolefin (B), a boronic acid group, and a boron-containing group capable of converting to a boronic acid group in the presence of water. A resin other than the thermoplastic resin (D) having two functional groups, having the above-mentioned solubility parameter.
[0041] 熱可塑性榭脂 (C)は、各種物性のバランスが良好であるのみならず、市販品の種 類が豊富で容易に入手可能であり、し力も安価であるので、榭脂組成物 (E)中の主 成分として好適である。また、これらの熱可塑性榭脂(C)は、同様の理由で多くの多 層構造体の主材層として使用されているので、該多層構造体を回収して再利用する 際には必然的にリグラインドに含まれる。例えば、燃料容器の用途においては、耐衝 撃性の観点から最外層に上記の熱可塑性榭脂 (C)のひとつであるポリオレフイン系 榭脂が使用されることが多ぐ回収されたリグラインドにも該ポリオレフイン系榭脂が含 まれる。熱可塑性榭脂 (C)として好適に使用されるのは、実質的に未変性のポリオレ フィンである。実質的に未変性とは、炭素、水素以外の元素を含む官能基が積極的 に導入されて 、な 、と 、うことである。 [0041] The thermoplastic resin (C) not only has a good balance of various physical properties, but also has a wide variety of commercially available products, is easily available, and is inexpensive. It is suitable as the main component in (E). In addition, since these thermoplastic resins (C) are used as the main material layers of many multilayer structures for the same reason, they are inevitable when the multilayer structures are collected and reused. Included in the regrind. For example, in the case of fuel container applications, from the viewpoint of impact resistance, polyolefin resin, which is one of the above thermoplastic resins (C), is often used in the outermost layer. Also contains the polyolefin resin. The thermoplastic resin (C) is preferably used as a substantially unmodified polyolefin. Fins. Substantially unmodified means that a functional group containing an element other than carbon and hydrogen is actively introduced.
[0042] 熱可塑性榭脂 (C)のメルトフローレート(MFR) (190°C、 2160g荷重下)は、好適 には 0. OlgZlO分以上であり、より好適には 0. 02gZ分以上である。また、 MFRは 好適には 5gZlO分以下、より好適には 2gZlO分以下である。特に、燃料容器に用 いられる高密度ポリエチレンは、高度な耐衝撃性が要求されるので、 MFRが低いこ と力 子ましく、 0. 3gZlO分以下であることが好ましぐ 0. lgZlO分以下であることが より好ましい。このような高粘度の榭脂を使用する場合には、回収使用が困難になる 場合が多いので、特に本発明を採用する利益が大きい。これらの熱可塑性榭脂 (C) は、単独で用いることもできるし、 2種以上を混合して用いることもできる。  [0042] The melt flow rate (MFR) of the thermoplastic resin (C) (at 190 ° C under a load of 2160 g) is preferably at least 0.0 OlgZlO min, more preferably at least 0.02 gZ min. . The MFR is preferably not more than 5 gZlO, more preferably not more than 2 gZlO. In particular, high-density polyethylene used in fuel containers is required to have high impact resistance, so it should have a low MFR and preferably 0.3 gZlO or less. It is more preferable that: In the case of using such a high-viscosity resin, it is often difficult to recover and use the resin. These thermoplastic resins (C) can be used alone or as a mixture of two or more.
[0043] 本発明に用いられる、ホウ素含有官能基を有する熱可塑性榭脂 (D)において、ボ ロン酸基とは、下記式 (I)で示されるものである。  [0043] In the thermoplastic resin (D) having a boron-containing functional group used in the present invention, the boronic acid group is represented by the following formula (I).
[0044] [化 1]  [0044] [Formula 1]
Figure imgf000012_0001
Figure imgf000012_0001
[0045] また、水の存在下でボロン酸基に転ィ匕し得るホウ素含有基とは、水の存在下で加水 分解を受けて上記式 (I)で示されるボロン酸基に転化し得るホウ素含有基を指す。よ り具体的には、水単独、水と有機溶媒(トルエン、キシレン、アセトン等)との混合物、 5%ホウ酸水溶液と前記有機溶媒との混合物等を溶媒とし、室温〜 150°Cの条件下 に 10分〜 2時間加水分解したときに、ボロン酸基に転化し得る官能基を意味する。こ のような官能基の代表例としては、下記式 (II)で示されるボロン酸エステル基、下記 式 (ΠΙ)で示されるボロン酸無水物基、下記式 (IV)で示されるボロン酸塩基等が挙げ られる。 [0046] [化 2] [0045] Further, the boron-containing group capable of converting to a boronic acid group in the presence of water refers to a compound capable of undergoing hydrolysis in the presence of water to be converted to a boronic acid group represented by the above formula (I). Refers to a boron-containing group. More specifically, water alone, a mixture of water and an organic solvent (toluene, xylene, acetone, etc.), a mixture of a 5% boric acid aqueous solution and the above organic solvent, etc., as a solvent, at room temperature to 150 ° C. A functional group that can be converted to a boronic acid group when hydrolyzed for 10 minutes to 2 hours below. Representative examples of such a functional group include a boronic ester group represented by the following formula (II), a boronic anhydride group represented by the following formula (ΠΙ), and a boronic acid base group represented by the following formula (IV) And the like. [0046]
Figure imgf000013_0001
Figure imgf000013_0001
[0047] [化 3] [0047]
Figure imgf000013_0002
Figure imgf000013_0002
[0048] [化 4] [0048]
Figure imgf000013_0003
Figure imgf000013_0003
[0049] {式中、 X及び Xは同一又は異なり、それぞれ水素原子、脂肪族炭化水素基 (炭 [Wherein X and X are the same or different and each represent a hydrogen atom, an aliphatic hydrocarbon group (carbon
1 2  1 2
素数 1〜20の直鎖状、または分岐状アルキル基、またはアルケニル基等)、脂環式 炭化水素基 (シクロアルキル基、シクロアルケニル基等)、及び、芳香族炭化水素基 ( フエニル基、ビフエニル基等)を表し、ここで脂肪族炭化水素基、脂環式炭化水素基 及び芳香族炭化水素基は置換基を有していてもよぐまた、 Xと Xは結合していても  A linear or branched alkyl group or alkenyl group having a prime number of 1 to 20), an alicyclic hydrocarbon group (cycloalkyl group, cycloalkenyl group, etc.), and an aromatic hydrocarbon group (phenyl group, biphenyl) Wherein an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group may have a substituent, and X and X may be bonded to each other.
1 2  1 2
よぐただし、 X及び Xがともに水素原子であることはない。また R、 R及び Rは上  However, X and X are not both hydrogen atoms. R, R and R are above
1 2 1 2 3 記 X及び Xと同様の水素原子、脂肪族炭化水素基、脂環式炭化水素基及び芳香 1 2 1 2 3 X and the same hydrogen atom, aliphatic hydrocarbon group, alicyclic hydrocarbon group and aromatic as X
1 2 1 2
族炭化水素基を表し、 Mはアルカリ金属を表す。 }上記式において、脂肪族炭化水 素基、脂環式炭化水素基及び芳香族炭化水素基が有することができる置換基の例 としては、例えばカルボキシル基、ハロゲン原子等を挙げることができる。  Represents a group hydrocarbon group, and M represents an alkali metal. } In the above formula, examples of the substituent which the aliphatic hydrocarbon group, alicyclic hydrocarbon group and aromatic hydrocarbon group can have include, for example, a carboxyl group and a halogen atom.
[0050] 一般式(II)で示されるボロン酸エステル基の具体例としては、ボロン酸ジメチルエス テル基、ボロン酸ジェチルエステル基、ボロン酸ジプロピルエステル基、ボロン酸ジィ ソプロピルエステル基、ボロン酸ジブチルエステル基、ボロン酸ジへキシルエステル 基、ボロン酸ジシクロへキシルエステル基、ボロン酸エチレングリコールエステル基、 ボロン酸プロピレングリコールエステル基、ボロン酸 1, 3 プロパンジオールエステル 基、ボロン酸 1, 3 ブタンジオールエステル基、ボロン酸ネオペンチルグリコールェ ステル基、ボロン酸カテコールエステル基、ボロン酸グリセリンエステル基、ボロン酸ト リメチロールェタンエステル基、ボロン酸トリメチロールプロパンエステル基、ボロン酸 ジエタノールァミンエステル基等が挙げられる。 [0050] Specific examples of the boronic ester group represented by the general formula (II) include a dimethyl ester boronate group, a getyl boronate group, a dipropyl boronate group, and a diboronic acid group. Sopropyl ester group, dibutyl boronate group, dihexyl boronate group, dicyclohexyl boronate group, ethylene glycol ester boronate group, propylene glycol ester boronate group, 1,3 propanediol ester boronate group 1,3-butanediol boronate ester, neopentylglycolester boronate, catechol ester boronate, glycerol ester boronate, trimethylolethane ester boronate, trimethylolpropane boronate, And a boronic acid diethanolamine ester group.
[0051] また、一般式 (IV)で示されるボロン酸塩基としては、ボロン酸のアルカリ金属塩基等 が挙げられる。具体的には、ボロン酸ナトリウム塩基、ボロン酸カリウム塩基等が挙げ られる。 [0051] Examples of the boronate group represented by the general formula (IV) include an alkali metal base of boronic acid. Specific examples include sodium boronate base and potassium boronate base.
[0052] このようなホウ素含有官能基のうち、熱安定性の観点からボロン酸環状エステル基 が好ましい。ボロン酸環状エステル基としては、例えば 5員環または 6員環を含有する ボロン酸環状エステル基が挙げられる。具体的には、ボロン酸エチレングリコールェ ステル基、ボロン酸プロピレングリコールエステル基、ボロン酸 1, 3 プロパンジォー ルエステル基、ボロン酸 1, 3 ブタンジオールエステル基、ボロン酸グリセリンエステ ル基等が挙げられる  [0052] Among such boron-containing functional groups, a boronic acid cyclic ester group is preferable from the viewpoint of thermal stability. Examples of the boronic acid cyclic ester group include a boronic acid cyclic ester group containing a 5- or 6-membered ring. Specific examples include a boronic acid ethylene glycol ester group, a boronic acid propylene glycol ester group, a boronic acid 1,3 propanediol ester group, a boronic acid 1,3 butanediol ester group, and a boronic acid glycerin ester group.
[0053] ホウ素含有官能基の含有量は特に制限されないが、熱可塑性榭脂 (D)の重量に 対して 0. 001〜2meqZg (mmolZg)であることが好ましい。ホウ素含有官能基の 含有量が 0. OOlmeqZg未満の場合には、相容性の改善効果が不十分になるおそ れがある。そのため、リグラインド組成物の溶融成形性及び熱安定性が不十分になる おそれがあるとともに、多層構造体の衝撃強度が不十分になるおそれもある。前記含 有量は、より好適には 0. OlmeqZg以上であり、さらに好適には 0. 04meqZg以上 である。一方、ホウ素含有官能基の含有量が 2meqZgを超える場合には、榭脂組成 物(E)にゲルが発生するおそれがある。より好適には 0. 5meqZg以下であり、さらに 好適には 0. 2meqZg以下である。  The content of the boron-containing functional group is not particularly limited, but is preferably 0.001 to 2 meqZg (mmolZg) based on the weight of the thermoplastic resin (D). When the content of the boron-containing functional group is less than 0.001mZg, the effect of improving the compatibility may be insufficient. Therefore, the melt moldability and thermal stability of the regrind composition may be insufficient, and the impact strength of the multilayer structure may be insufficient. The content is more preferably 0.04meqZg or more, and still more preferably 0.04meqZg or more. On the other hand, when the content of the boron-containing functional group exceeds 2 meqZg, gel may be generated in the resin composition (E). More preferably, it is 0.5 meqZg or less, and still more preferably, it is 0.2 meqZg or less.
[0054] ホウ素含有官能基はホウ素 炭素結合により該熱可塑性榭脂の主鎖、側鎖又は末 端に結合して 、る。このうち該官能基が側鎖又は末端に結合して 、る形態が好適で あり、末端に結合している形態がより好適である。ここで末端とは片末端又は両末端 を意味する。またホウ素 炭素結合における炭素は、後述する熱可塑性榭脂のベー スポリマーに由来するもの、又はベースポリマーに反応させるホウ素化合物に由来す るものである。 [0054] The boron-containing functional group is bonded to the main chain, side chain or terminal of the thermoplastic resin by a boron carbon bond. Among them, a form in which the functional group is bonded to a side chain or a terminal is preferable, and a form in which the functional group is bonded to a terminal is more preferable. Here, one end or both ends Means. The carbon in the boron-carbon bond is derived from a thermoplastic resin base polymer described later or from a boron compound reacted with the base polymer.
[0055] ホウ素含有官能基を有する熱可塑性榭脂 (D)の具体例としては、ポリエチレン (超 低密度、低密度、中密度、高密度)、エチレン 酢酸ビニル共重合体、エチレンーァ クリル酸エステル共重合体、エチレン アクリル酸共重合体の金属塩(Na, Κ, Zn系 アイオノマー)、ポリプロピレン、エチレン プロピレン共重合体、エチレンと 1ーブテ ン、イソブテン、 3—メチルペンテン、 1一へキセン、 1—オタテン等の α—ォレフインと の共重合体等のポリオレフイン榭脂;前記ポリオレフインの無水マレイン酸、グリシジ ルメタタリレート等のグラフト変性物;ポリスチレン、スチレン一アクリロニトリル共重合 体等のスチレン系榭脂;スチレン一水添ブタジエンブロック共重合体、スチレン 水 添イソプレン共重合体、スチレン一水添ブタジエン スチレンブロック共重合体、スチ レン一水添イソプレン スチレンブロック共重合体等のスチレン一水添ジェンブロック 共重合体榭脂;ポリメチルアタリレート、ポリェチルアタリレート、ポリメチルメタクリレー ト等の (メタ)アクリル酸エステル系榭脂;ポリ塩ィ匕ビュル、フッ化ビ-リデン等のハロゲ ン化ビュル系榭脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート等の半芳 香族ポリエステル榭脂;ポリバレロラタトン、ポリ力プロラタトン、ポリエチレンサクシネー ト、ポリブチレンサクシネート等の脂肪族ポリエステル榭脂等が挙げられる。これらの 1 種のみを使用してもよいし、 2種以上を混合して使用してもよい。これらの中でも、ポリ ォレフィン及びスチレン一水添ジェンブロック共重合体が好ましく使用され、ポリオレ フィンが特に好ましく使用される。  [0055] Specific examples of the thermoplastic resin (D) having a boron-containing functional group include polyethylene (ultra low density, low density, medium density, and high density), ethylene vinyl acetate copolymer, and ethylene acrylate ester. Polymer, metal salt of ethylene acrylic acid copolymer (Na, Κ, Zn ionomer), polypropylene, ethylene propylene copolymer, ethylene and 1-butene, isobutene, 3-methylpentene, 1-hexene, 1- Polyolefin resin such as a copolymer with α-olefin such as otaten; graft-modified polyolefin such as maleic anhydride and glycidyl methacrylate; styrene resin such as polystyrene and styrene-acrylonitrile copolymer; styrene Monohydrogenated butadiene block copolymer, styrene Hydrogenated isoprene copolymer, styrene Monohydrogenated butadiene Styrene mono-hydrogenated isoprene Styrene mono-hydrogenated isoprene Styrene mono-hydrogenated gen block copolymer resin such as styrene block copolymer; Polymethyl acrylate, polyethyl acrylate, polymethyl methacrylate (Meth) acrylic acid ester resins; halogenated butyl resins such as polychlorinated butyl and bi-lidene fluoride; semi-aromatic polyester resins such as polyethylene terephthalate and polybutylene terephthalate; polyvalerolatone And aliphatic polyester resins such as polyproprolataton, polyethylene succinate and polybutylene succinate. One of these may be used alone, or two or more thereof may be used in combination. Among them, polyolefin and styrene monohydrogenated diblock copolymer are preferably used, and polyolefin is particularly preferably used.
[0056] ホウ素含有官能基を有する熱可塑性榭脂 (D)としてプロピレン系重合体を使用す る場合は、耐熱水性が改善されるため、耐熱水性の要求される分野、例えばレトルト 用包装材料として極めて有用である。また、熱可塑性榭脂 (D)としてエチレン系重合 体又はスチレン一水添ジェンブロック共重合体榭脂を使用する場合は、耐衝撃性が 改善されるため、耐衝撃性が要求される分野、例えば、ボトル、チューブ、カップ、パ ゥチ等の包装材料として有用である。一方、ガソリンタンク等の燃料容器用途におい ては、燃料耐性が良好なエチレン系重合体を熱可塑性榭脂 (D)として使用すること が好ましい。特に、 0. 85-0. 94gZcm3の密度を有するポリエチレン力 耐衝撃性 に優れた多層構造体を与えることから好ましい。当該ポリエチレンの密度が低いほど 耐衝撃性が改善される傾向があるので、 0. 92gZcm3以下であることがより好ましぐ 0. 91gZcm3以下であることがさらに好ましい。一方、当該ポリエチレンの密度が 0. 85gZcm3未満である場合には、ハンドリングが困難になるおそれがあり、 0. 87g/c m3以上であることがより好ましぐ 0. 88gZcm3以上であることがさらに好ましい。 When a propylene-based polymer is used as the thermoplastic resin (D) having a boron-containing functional group, the hot water resistance is improved. Extremely useful. When an ethylene-based polymer or a styrene-hydrogenated gen-block copolymer resin is used as the thermoplastic resin (D), the impact resistance is improved. For example, it is useful as a packaging material for bottles, tubes, cups, and pallets. On the other hand, for fuel containers such as gasoline tanks, it is necessary to use an ethylene polymer with good fuel resistance as the thermoplastic resin (D). Is preferred. In particular, it is preferable because it gives a multilayered structure having a density of 0.85-0.94 gZcm 3 and excellent strength and impact resistance of polyethylene. Since there is a tendency that the impact resistance higher density of the polyethylene is low is improved, and further preferably is at 0. 92gZcm 3 or less is more preferred instrument 0. 91gZcm 3 below. On the other hand, the density of the polyethylene when it is less than 0. 85gZcm 3, there is a possibility that the handling is difficult, it is 0. 87 g / cm 3 or more is more preferred instrument 0. 88gZcm 3 or more Is more preferred.
[0057] 次に、本発明に用いられるホウ素含有官能基を有する熱可塑性榭脂 (D)の代表的 製法について述べる。 Next, a typical method for producing the thermoplastic resin (D) having a boron-containing functional group used in the present invention will be described.
[0058] 第一の方法:ォレフィン性二重結合を含有する熱可塑性榭脂に、窒素雰囲気下で 、ボラン錯体及びホウ酸トリアルキルエステルを反応させることによってボロン酸ジァ ルキルエステル基を含有する熱可塑性榭脂を得た後、必要に応じて水またはアルコ 一ル類を反応させる方法。このようにして、該熱可塑性榭脂のォレフイン性二重結合 にホウ素含有官能基が付加反応により導入される。  [0058] First method: A thermoplastic resin containing an olefinic double bond is reacted with a borane complex and a trialkyl borate under a nitrogen atmosphere to contain a boronic acid alkyl ester group. A method of reacting water or alcohols as necessary after obtaining a thermoplastic resin. In this way, a boron-containing functional group is introduced into the thermoplastic double bond of the thermoplastic resin by an addition reaction.
[0059] ォレフィン性二重結合は、例えばラジカル重合の停止の際の不均化により末端に 導入され、または重合中の副反応により主鎖や側鎖の中に導入される。特に、前記し たポリオレフイン榭脂は、無酸素条件下での熱分解やジェン化合物の共重合等によ りォレフイン性二重結合を容易に導入できる点で、またスチレン一水添ジェンブロック 共重合体榭脂は水添反応を制御することによりォレフィン性二重結合を適度に残存 させることができる点で好ま 、。  [0059] The olefinic double bond is introduced into a terminal by, for example, disproportionation at the time of termination of radical polymerization, or is introduced into a main chain or a side chain by a side reaction during polymerization. In particular, the polyolefin resin described above is capable of easily introducing an olefinic double bond by thermal decomposition under oxygen-free conditions, copolymerization of a gen compound, and the like. The coalesced resin is preferred in that by controlling the hydrogenation reaction, an olefinic double bond can be appropriately left.
[0060] 原料となる熱可塑性榭脂の二重結合の含有量は、 0. 01〜2meq/gであることが 好ましぐ 0. 02〜: LmeqZgがより好ましい。このような原料を用いることにより、導入 されるホウ素含有官能基の量を制御することが容易になる。また、導入後に残存する ォレフィン性二重結合の量の制御も同時に可能となる。  [0060] The content of double bonds in the thermoplastic resin as a raw material is preferably 0.01 to 2 meq / g, and 0.02 to: LmeqZg is more preferable. By using such a raw material, it becomes easy to control the amount of the boron-containing functional group to be introduced. In addition, the amount of the olefinic double bond remaining after the introduction can be controlled at the same time.
[0061] ボラン錯体としては、ボラン一テトラヒドロフラン錯体、ボラン一ジメチルスルフイド錯 体、ボラン一ピリジン錯体、ボラン一トリメチルアミン錯体、ボラン一トリェチルアミン錯 体等が好ましい。これらの中でも、ボラン一ジメチルスルフイド錯体、ボラン一トリメチ ルアミン錯体及びボラン—トリェチルアミン錯体がより好ま U、。ボラン錯体の仕込み 量は、熱可塑性榭脂のォレフイン性二重結合に対して 1Z3当量〜 10当量の範囲が 好ましい。 The borane complex is preferably a borane-tetrahydrofuran complex, a borane-dimethylsulfide complex, a borane-pyridine complex, a borane-trimethylamine complex, a borane-triethylamine complex, or the like. Among these, borane-dimethylsulfide complex, borane-trimethylamine complex and borane-triethylamine complex are more preferable. The amount of the borane complex to be charged is in the range of 1 to 3 equivalents to 10 equivalents to the olefinic double bond of the thermoplastic resin. preferable.
[0062] ホウ酸トリアルキルエステルとしては、トリメチルボレート、トリエチルボレート、トリプロ ピルボレート、トリブチルボレート等のホウ酸低級アルキルエステルが好ましい。ホウ 酸トリアルキルエステルの仕込み量は、熱可塑性榭脂のォレフイン性二重結合に対 して 1〜: LOO当量の範囲が好ましい。溶媒は特に使用する必要はないが、使用する 場合は、へキサン、ヘプタン、オクタン、デカン、ドデカン、シクロへキサン、ェチルシ クロへキサン、デカリン等の飽和炭化水素系溶媒が好ましい。反応温度は通常、室 温〜 300°Cの範囲であり、 100〜250°Cが好ましぐこの範囲の温度で、 1分〜 10時 間、好ましくは 5分〜 5時間反応を行うのがよい。  [0062] The trialkyl borate is preferably a lower alkyl borate such as trimethyl borate, triethyl borate, propyl borate and tributyl borate. The amount of the trialkyl borate to be charged is preferably in the range of 1 to: LOO equivalent to the olefinic double bond of the thermoplastic resin. The solvent need not be particularly used, but when used, a saturated hydrocarbon solvent such as hexane, heptane, octane, decane, dodecane, cyclohexane, ethylcyclohexane, and decalin is preferable. The reaction temperature is usually in the range of room temperature to 300 ° C, and the reaction is carried out at a temperature in this range, preferably 100 to 250 ° C, for 1 minute to 10 hours, preferably 5 minutes to 5 hours. Good.
[0063] 上記の反応によって熱可塑性榭脂に導入されたボロン酸ジアルキルエステル基は 、公知の方法により加水分解させてボロン酸基とすることができる。また、やはり公知 の方法によりアルコール類とエステル交換反応させて任意のボロン酸エステル基とす ることができる。さらに、加熱により脱水縮合させてボロン酸無水物基とすることができ る。そしてさらに、公知の方法により金属水酸化物または金属アルコラートと反応させ てボロン酸塩基とすることができる。  [0063] The boronic acid dialkyl ester group introduced into the thermoplastic resin by the above reaction can be hydrolyzed to a boronic acid group by a known method. Also, an arbitrary boronic ester group can be obtained by transesterification with alcohols by a known method. Furthermore, it can be dehydrated and condensed by heating to form a boronic anhydride group. Further, it can be further reacted with a metal hydroxide or a metal alcoholate by a known method to obtain a boronate group.
[0064] このようなホウ素含有官能基の変換は、通常、トルエン、キシレン、アセトン、酢酸ェ チル等の有機溶媒を用いて行われる。アルコール類としては、メタノール、エタノール 、ブタノール等のモノアルコール類;エチレングリコール、プロピレングリコール、 1, 3 プロパンジオール、 1, 3 ブタンジオール,ネオペンチルグリコール、グリセリン、ト リメチロールメタン、ペンタエリスリトール、ジペンタエリスリトール等の多価アルコール 類等が挙げられる。また、金属水酸化物としては、ナトリウム、カリウム等のアルカリ金 属の水酸ィ匕物等が挙げられる。さらに、金属アルコラートとしては、前記した金属と前 記したアルコールと力 なるものが挙げられる。これらは 、ずれも例示したものに限定 されるものではない。これらの使用量は、通常ボロン酸ジアルキルエステル基に対し て 1〜: LOO当量である。  [0064] Such conversion of the boron-containing functional group is usually performed using an organic solvent such as toluene, xylene, acetone, or ethyl acetate. Examples of alcohols include monoalcohols such as methanol, ethanol, and butanol; ethylene glycol, propylene glycol, 1,3 propanediol, 1,3 butanediol, neopentyl glycol, glycerin, trimethylolmethane, pentaerythritol, dipentane And polyhydric alcohols such as erythritol. Examples of the metal hydroxide include hydroxides of alkali metals such as sodium and potassium. Further, examples of the metal alcoholate include those which are powerful with the above-mentioned metals and the above-mentioned alcohols. These are not limited to those in which the deviation is also exemplified. These are generally used in an amount of 1 to: LOO equivalent based on the boronic acid dialkyl ester group.
[0065] 第二の方法:公知のカルボキシル基を含有する熱可塑性榭脂と、 m—ァミノフエ- ルベンゼンボロン酸、 m—ァミノフエ-ルボロン酸エチレングリコールエステル等のァ ミノ基含有ボロン酸またはアミノ基含有ボロン酸エステルとを、公知の方法によってァ ミド化反応させる方法。この時、カルポジイミド等の縮合剤を用いてもよい。このよう〖こ して熱可塑性榭脂に導入されたホウ素含有官能基は、前記の方法により他のホウ素 含有官能基に変換することができる。 Second method: a known thermoplastic resin containing a carboxyl group, and a boronic acid or an amino group containing an amino group such as ethylene glycol ester of m-aminophenylbenzeneboronic acid and m-aminophenylboronic acid. The boronic acid ester contained is reacted with a known method. A method for amidation reaction. At this time, a condensing agent such as carbodiimide may be used. The boron-containing functional group thus introduced into the thermoplastic resin can be converted into another boron-containing functional group by the above-described method.
[0066] カルボキシル基を含有する熱可塑性榭脂としては、半芳香族ポリエステル榭脂、脂 肪族ポリエステル榭脂等の末端にカルボキシル基を含有するもの、ポリオレフイン榭 脂、スチレン系榭脂、(メタ)アクリル酸エステル系榭脂、ハロゲン化ビュル系榭脂等 にアクリル酸、メタクリル酸、無水マレイン酸等のカルボキシル基を有する単量体単位 を共重合により導入したもの、前記したォレフィン性二重結合を含有する熱可塑性榭 脂に、無水マレイン酸等を付加反応により導入したもの等が挙げられるが、これらに 限定されるものではない。  Examples of the thermoplastic resin containing a carboxyl group include those having a terminal carboxyl group such as semi-aromatic polyester resin and aliphatic polyester resin, polyolefin resin, styrene resin, and ) Acrylic ester resin, halogenated butyl resin, etc., into which a monomer unit having a carboxyl group such as acrylic acid, methacrylic acid, maleic anhydride, etc. is introduced by copolymerization, and the above-mentioned olefinic double bond Examples thereof include, but are not limited to, those in which maleic anhydride or the like is introduced into a thermoplastic resin containing
[0067] 本発明の多層構造体に含まれる榭脂組成物 (E)は、 EVOH (A)、カルボン酸変性 ポリオレフイン (B)、 11以下の溶解性パラメータ (Fedorsの式力 算出)を有する熱 可塑性榭脂 (C)、及びボロン酸基及び水の存在下でボロン酸基に転ィ匕し得るホウ素 含有基からなる群より選ばれる少なくとも一つの官能基を有する熱可塑性榭脂 (D) からなる。 [0067] The resin composition (E) contained in the multilayer structure of the present invention comprises EVOH (A), carboxylic acid-modified polyolefin (B), and a heat-resistant resin having a solubility parameter of 11 or less (Fedors formula force calculation). A thermoplastic resin (C) and a thermoplastic resin (D) having at least one functional group selected from the group consisting of a boronic acid group and a boron-containing group capable of converting to a boronic acid group in the presence of water. Become.
[0068] 榭脂組成物(E)中の上記各原料の含有量は、 EVOH (A) 1〜40重量%、カルボ ン酸変性ポリオレフイン(B) 0. 1〜39. 1重量%、熱可塑性榭脂(C) 59. 8〜98. 8 重量%、及びホウ素含有基を有する熱可塑性榭脂 (D) 0. 1〜39. 1重量%であるこ とが好ましい。ここで、 (A)〜(D)各成分の配合割合は、(A)〜(D)の合計重量を 10 0重量%とした場合の割合である。(A)〜(D)各成分の配合割合は、前述のとおり各 種物性のバランス、入手の容易さ及び価格の点を考慮して決定される。特に、榭脂 組成物 (E)を多層構造体のリグラインドを用いて得る場合には、 (A)〜(C)の配合割 合は多層構造体に要求される性能によって左右される力 一般的に上記の範囲の配 合割合となる場合が多い。  [0068] The contents of the above raw materials in the resin composition (E) are as follows: EVOH (A) 1 to 40% by weight, carboxylic acid-modified polyolefin (B) 0.1 to 39.1% by weight, thermoplasticity. It is preferred that the resin (C) is 59.8 to 98.8% by weight and the thermoplastic resin (D) having a boron-containing group is 0.1 to 39.1% by weight. Here, the mixing ratio of each component (A) to (D) is a ratio when the total weight of (A) to (D) is 100% by weight. The mixing ratio of each component (A) to (D) is determined in consideration of the balance of various physical properties, availability, and price as described above. In particular, when the resin composition (E) is obtained by using the regrind of the multilayer structure, the compounding ratio of (A) to (C) depends on the performance required for the multilayer structure. In many cases, the mixing ratio is in the above range.
[0069] 榭脂組成物(E)中の EVOH (A)の含有量は、 1〜40重量%であることが好まし!/ヽ 。 EVOH (A)の含有量が 1重量%未満の場合には、ホウ素含有基を有する熱可塑 性榭脂 (D)を配合しなくても熱安定性に問題を有さない場合もあり、本発明を採用す る必要性が低下する。 EVOH (A)の含有量は、より好適には 2重量%以上であり、さ らに好適には 3重量%以上である。一方、 EVOH (A)の含有量が 40重量%を超える 場合には、耐衝撃性が不十分になるおそれがある。 EVOH (A)の含有量は、より好 適には 30重量%以下であり、さらに好適には 20重量%以下であり、特に好適には 1 0重量%以下である。 [0069] The content of EVOH (A) in the resin composition (E) is preferably 1 to 40% by weight! / ヽ. When the content of EVOH (A) is less than 1% by weight, there may be no problem in thermal stability even if the thermoplastic resin (D) having a boron-containing group is not blended. The need to employ the invention is reduced. The content of EVOH (A) is more preferably at least 2% by weight, More preferably, it is at least 3% by weight. On the other hand, when the content of EVOH (A) exceeds 40% by weight, impact resistance may be insufficient. The content of EVOH (A) is more preferably 30% by weight or less, further preferably 20% by weight or less, and particularly preferably 10% by weight or less.
[0070] 榭脂組成物(E)中のカルボン酸変性ポリオレフイン(B)の含有量は、 0. 1〜39. 1 重量%であることが好ましい。カルボン酸変性ポリオレフイン (B)の含有量が 0. 1重 量%未満の場合には、ホウ素含有基を有する熱可塑性榭脂 (D)を配合しなくても熱 安定性に問題を有さない場合もあり、本発明を採用する必要性が低下する。カルボ ン酸変性ポリオレフイン (B)の含有量は、より好適には 0. 3重量0 /0以上であり、さらに 好適には 1重量%以上である。一方、カルボン酸変性ポリオレフイン (B)の含有量が 39. 1重量%を超える場合には、得られる多層構造体の耐衝撃性が不十分になるお それがある。カルボン酸変性ポリオレフイン (B)の含有量は、より好適には 20重量% 以下であり、さらに好適には 10重量%以下である。 [0070] The content of the carboxylic acid-modified polyolefin (B) in the resin composition (E) is preferably 0.1 to 39.1% by weight. When the content of the carboxylic acid-modified polyolefin (B) is less than 0.1% by weight, there is no problem in thermal stability even without blending the thermoplastic resin (D) having a boron-containing group. In some cases, the need to employ the present invention is reduced. The content of carboxy phosphate-modified polyolefin (B) is more preferably 0.3 wt 0/0 or more, and even more preferably 1 wt% or more. On the other hand, when the content of the carboxylic acid-modified polyolefin (B) exceeds 39.1% by weight, the resulting multilayer structure may have insufficient impact resistance. The content of the carboxylic acid-modified polyolefin (B) is more preferably 20% by weight or less, and still more preferably 10% by weight or less.
[0071] 榭脂組成物 (E)中の、 11以下の溶解性パラメータ (Fedorsの式力も算出)を有する 熱可塑性榭脂(C)の含有量は、 59. 8〜98. 8重量%であることが好ましい。榭脂組 成物 (E)の主成分が熱可塑性榭脂 (C)であることによって、榭脂組成物 (E)を熱可 塑性榭脂 (C)と同じように使用することができる。熱可塑性榭脂 (C)の含有量は、より 好適には 75重量%以上であり、さらに好適には 89. 4重量%以上である。一方、熱 可塑性榭脂 (C)の含有量が 98. 8重量%を超える場合には、ホウ素含有基を有する 熱可塑性榭脂 (D)を配合しなくても熱安定性に問題を有さない場合もあり、本発明を 採用する必要性が低下する。熱可塑性榭脂 (C)の含有量は、より好適には 96. 4重 量%以下であり、さらに好適には 95重量%以下である。  [0071] In the resin composition (E), the content of the thermoplastic resin (C) having a solubility parameter of 11 or less (also calculating the Fedors equation force) is 59.8 to 98.8% by weight. Preferably, there is. Since the main component of the resin composition (E) is the thermoplastic resin (C), the resin composition (E) can be used in the same manner as the thermoplastic resin (C). The content of the thermoplastic resin (C) is more preferably at least 75% by weight, even more preferably at least 89.4% by weight. On the other hand, when the content of the thermoplastic resin (C) exceeds 98.8% by weight, there is a problem in thermal stability even without blending the thermoplastic resin (D) having a boron-containing group. In some cases, the necessity of employing the present invention is reduced. The content of the thermoplastic resin (C) is more preferably 96.4% by weight or less, and still more preferably 95% by weight or less.
[0072] 榭脂組成物 (E)中の、ボロン酸基及び水の存在下でボロン酸基に転ィ匕し得るホウ 素含有基からなる群より選ばれる少なくとも一つの官能基を有する熱可塑性榭脂 (D )の含有量は、 0. 1〜39. 1重量%であることが好ましい。熱可塑性榭脂(D)の含有 量が 0. 1重量%未満の場合には、榭脂組成物 (E)中における、(A)、(B)及び (C) の各成分の相容性が不十分となり、耐衝撃性、熱安定性、外観が不十分になるおそ れがある。また、リグラインドを使用して熱可塑性榭脂 (D)を製造する場合に、連続的 に押出成形することが困難になるおそれもある。熱可塑性榭脂 (D)の含有量は、より 好適には 0. 3重量%以上であり、さらに好適には 1重量%以上、特に好適には 3重 量%以上である。特に、リグラインドを繰り返して再使用するような場合には、熱可塑 性榭脂 (D)の含有量が高い方が好ましい。一方、熱可塑性榭脂 (D)の含有量が 39 . 1重量%を超える場合には、コストが高くなる。熱可塑性榭脂 (D)の含有量は、より 好適には 20重量%以下であり、さらに好適には 10重量%以下である。 [0072] Thermoplastic having at least one functional group selected from the group consisting of a boronic acid group and a boron-containing group capable of converting to a boronic acid group in the presence of water in the resin composition (E). The content of the resin (D) is preferably 0.1 to 39.1% by weight. If the content of the thermoplastic resin (D) is less than 0.1% by weight, the compatibility of the components (A), (B) and (C) in the resin composition (E) May be insufficient, resulting in insufficient impact resistance, thermal stability, and appearance. In addition, when regrind is used to produce thermoplastic resin (D), continuous Extrusion molding may be difficult. The content of the thermoplastic resin (D) is more preferably at least 0.3% by weight, even more preferably at least 1% by weight, particularly preferably at least 3% by weight. In particular, when regrind is repeated and reused, the content of the thermoplastic resin (D) is preferably higher. On the other hand, when the content of the thermoplastic resin (D) exceeds 39.1% by weight, the cost increases. The content of the thermoplastic resin (D) is more preferably 20% by weight or less, and still more preferably 10% by weight or less.
[0073] 榭脂組成物 (E)は、上記の所定量の各成分 (A)〜(D)を、バンバリ一ミキサー、単 軸又は二軸スクリュー押出機等の通常の溶融混練装置を使用して溶融混練すること により、容易に得ることができる。溶融混練装置としては特に限定されるものではない 1S 均一にブレンドするために混練度の高い押出機を使用することが好ましい。また 、ゲル、ブッの発生、混入を防ぐために、ホッパー口を窒素ガスでシールし、低温で 押出しすることが好ましい。この時、発明の効果が阻害されない範囲で、酸化防止剤 、可塑剤、熱安定剤、紫外線吸収剤、帯電防止剤、滑剤、着色剤、フィラー、または 他の榭脂を配合してもよい。  [0073] The resin composition (E) is prepared by mixing the above-mentioned predetermined amounts of the components (A) to (D) using a conventional melt kneading apparatus such as a Banbury mixer, a single screw or twin screw extruder. It can be easily obtained by melt-kneading. The melt-kneading apparatus is not particularly limited. An extruder having a high degree of kneading is preferably used in order to uniformly blend 1S. In addition, in order to prevent the generation and mixing of gels and bubbles, it is preferable to seal the hopper port with nitrogen gas and extrude at a low temperature. At this time, an antioxidant, a plasticizer, a heat stabilizer, an ultraviolet absorber, an antistatic agent, a lubricant, a coloring agent, a filler, or another resin may be added as long as the effects of the present invention are not impaired.
[0074] この場合において、個々の成分 (A)〜(C)の全部又は一部を、(A)〜(C)の各成 分を含有する層からなる多層構造体の製造において発生する製品のクズ、バリ、端 部又は不良品等のリグラインドで置き換えて使用すると、回収物を有効に再利用でき るので好ましい。リグラインドは成分 (A)〜(C)のみを含むものに限定されるものでは なぐホウ素含有基を有する熱可塑性榭脂 (D)を始め、後述するような多層構造体を 構成し得る熱可塑性榭脂を含んで 、てもよ 、。リグラインドは通常その大きさが不揃 V、であるので、適当な大きさに粉砕して力も使用することが好ま 、。  [0074] In this case, all or a part of the individual components (A) to (C) may be used as a product generated in the production of a multilayer structure composed of layers containing the components (A) to (C). It is preferable to use it by replacing it with regrind such as dust, burrs, edges or defective products because the collected material can be reused effectively. The regrind is not limited to the one containing only the components (A) to (C). The thermoplastic resin having a boron-containing group (D), and the thermoplastic resin capable of forming a multilayer structure as described later. May contain fat. Since the size of the regrind is usually irregular V, it is preferable to grind it to an appropriate size and use force.
[0075] 上記のようなリグラインドにホウ素含有基を有する熱可塑性榭脂 (D)を別途混合し て溶融混練すると、成分 (A)〜(C)の相容性が飛躍的に向上し、リグラインド組成物 の製造を連続して行うことが容易になる。具体的には、 EVOH (A)層、カルボン酸変 性ポリオレフイン (B)層及び熱可塑性榭脂 (C)層を有する多層構造体から得られたリ グラインドに、さらにホウ素含有基を有する熱可塑性榭脂 (D)を加えて溶融混練して 、榭脂組成物 (E)層を形成することが好適である。すなわち、リグラインド使用時に添 加する回収助剤としてホウ素含有基を有する熱可塑性榭脂 (D)を使用するのである [0076] そしてそのとき、前記リグラインド力 EVOH (A)層、カルボン酸変性ポリオレフイン (B)層、熱可塑性榭脂 (C)層に加えて、さらにホウ素含有基を有する榭脂組成物 (E )層を有する多層構造体力も得られたものであることがより好ましい。この場合は、リグ ラインドにホウ素含有基を有する熱可塑性榭脂 (D)を加えて溶融混練して得られた 榭脂組成物 (E)層を有する多層構造体を原料として、再度リグラインドを得て、それ に熱可塑性榭脂 (D)を加えて溶融混練して得られた榭脂組成物 (E)層を有する多 層構造体を製造する場合に対応する。すなわち、再度のスクラップ回収操作を行う場 合に対応するものである。通常、リグラインド組成物層を有する多層構造体を工業的 に連続製造する場合には、リグラインドの使用は何度も繰り返される力 そのような場 合であっても、熱安定性良く溶融成形することが可能である。 When the thermoplastic resin (D) having a boron-containing group is separately mixed with the above-mentioned regrind and melt-kneaded, the compatibility of the components (A) to (C) is dramatically improved, It becomes easy to continuously produce the regrind composition. Specifically, the regrind obtained from the multilayer structure having the EVOH (A) layer, the carboxylic acid-modified polyolefin (B) layer, and the thermoplastic resin (C) layer further includes a thermoplastic resin having a boron-containing group. It is preferable that the resin (D) is added and melt-kneaded to form a resin composition (E) layer. That is, a thermoplastic resin (D) having a boron-containing group is used as a recovery aid to be added when using regrind. At that time, in addition to the regrind force EVOH (A) layer, the carboxylic acid-modified polyolefin (B) layer, and the thermoplastic resin (C) layer, a resin composition (E ) It is more preferable that a multilayer structure having a layer is obtained. In this case, re-grinding is performed again using the multilayer structure having the resin composition (E) layer obtained by adding the thermoplastic resin (D) having a boron-containing group to the regrind and melt-kneading the raw material. This corresponds to the case of producing a multilayer structure having a resin composition (E) layer obtained by adding a thermoplastic resin (D) to the mixture and melt-kneading the resultant. That is, it corresponds to the case where the scrap collecting operation is performed again. Usually, when a multilayer structure having a regrind composition layer is continuously produced on an industrial scale, the use of regrind is a force that is repeated many times. It is possible to do.
[0077] 前記リグラインドとそれに加えられる熱可塑性榭脂 (D)との合計 100重量部に対し て、ホウ素含有基を有する熱可塑性榭脂 (D)を 0. 1〜30重量部加えて溶融混練す ることが好適である。熱可塑性榭脂 (D)の含有量が 0. 1重量%未満の場合には、榭 脂組成物 (E)中における、 (A)、 (B)及び (C)の各成分の相容性が不十分となり、耐 衝撃性、熱安定性、外観が不十分になるおそれがある。また、リグラインドを使用して 熱可塑性榭脂 (D)を製造する場合に、連続的に押出成形することやリグラインドを繰 り返して再使用することが困難になるおそれもある。熱可塑性榭脂 (D)の添加量は、 より好適には 0. 3重量部以上であり、さらに好適には 1重量部以上、特に好適には 3 重量部以上である。一方、熱可塑性榭脂(D)の添加量が 39. 1重量%を超える場合 には、コストが高くなる。熱可塑性榭脂(D)の添加量は、より好適には 20重量%以下 であり、さらに好適には 10重量%以下である。  [0077] To a total of 100 parts by weight of the regrind and the thermoplastic resin (D) added thereto, 0.1 to 30 parts by weight of a thermoplastic resin (D) having a boron-containing group is added and melted. It is preferred to knead. When the content of the thermoplastic resin (D) is less than 0.1% by weight, the compatibility of the components (A), (B) and (C) in the resin composition (E) And the impact resistance, thermal stability, and appearance may be insufficient. In addition, when the thermoplastic resin (D) is produced by using the regrind, it may be difficult to continuously extrude the resin or to repeatedly reuse the regrind. The addition amount of the thermoplastic resin (D) is more preferably at least 0.3 part by weight, still more preferably at least 1 part by weight, particularly preferably at least 3 parts by weight. On the other hand, when the addition amount of the thermoplastic resin (D) exceeds 39.1% by weight, the cost increases. The addition amount of the thermoplastic resin (D) is more preferably 20% by weight or less, and still more preferably 10% by weight or less.
[0078] また、成分 (A)〜 (C)を含むリグラインド、ホウ素含有基を有する熱可塑性榭脂 (D) に加えて、さらに成分 (C)を別途混合して榭脂組成物 (E)を得ることも好適である。こ うすること〖こよって、成分 (C)そのものと比較しても遜色のない物性を示す榭脂組成 物 (E)が得られる場合が多ぐ例えば、後述する多層構造体の主材層としても使用可 能である。  [0078] In addition to the regrind containing the components (A) to (C) and the thermoplastic resin (D) having a boron-containing group, the component (C) is further mixed separately to form a resin composition (E ) Is also preferred. By doing so, a resin composition (E) having physical properties comparable to that of the component (C) itself is often obtained, for example, as a main material layer of a multilayer structure described later. Can also be used.
[0079] 本発明の多層構造体は、上記の榭脂組成物 (E)からなる層に加えて、エチレン含 量 5〜60モル0 /0、ケン化度 85%以上のエチレン ビュルアルコール共重合体 (A) 層、カルボン酸変性ポリオレフイン (B)層、及び 1 1以下の溶解性パラメータ(Fedors の式から算出)を有する熱可塑性榭脂 (C)層を有する。しかも、 EVOH (A)層と、熱 可塑性榭脂 (C)層又は榭脂組成物 (E)層とが、カルボン酸変性ポリオレフイン (B)層 を介して積層されている。すなわち、カルボン酸変性ポリオレフイン (B)層を、(A)層 と、(C)層又は (E)層との間に使用される接着剤層として使用するものである。カルボ ン酸変性ポリオレフイン (B)は、接着剤としての性能に優れ、コスト面でも好ましぐ多 層構造体を成形する際の溶融成形性にも優れて ヽる。 [0079] The multilayer structure of the present invention contains ethylene in addition to the layer comprising the resin composition (E). The amount 5 to 60 mole 0/0 calculated, 85% or more of ethylene Bulle alcohol copolymer saponification degree (A) layer, a carboxylic acid-modified polyolefin (B) layer, and 1 1 from the following equation of solubility parameter (Fedors ) Having a thermoplastic resin (C) layer. Moreover, the EVOH (A) layer and the thermoplastic resin (C) layer or the resin composition (E) layer are laminated via the carboxylic acid-modified polyolefin (B) layer. That is, the carboxylic acid-modified polyolefin (B) layer is used as an adhesive layer used between the (A) layer and the (C) or (E) layer. The carboxylic acid-modified polyolefin (B) has excellent adhesive properties, and also has excellent melt moldability when forming a multilayer structure, which is preferable in terms of cost.
[0080] 本名発明の多層構造体において、 EVOH (A)層、カルボン酸変性ポリオレフイン( B)層、熱可塑性榭脂 (C)層及び榭脂組成物 (E)層の他、ポリエステル (ポリエチレン テレフタレート、ポリブチレンテレフタレート等)、ポリアミド、ポリカーボネート、ポリ塩 化ビュル、ポリ塩ィ匕ビユリデン、ポリウレタン、ポリアセタール等が挙げられる。  [0080] In the multilayer structure of the present invention, in addition to the EVOH (A) layer, the carboxylic acid-modified polyolefin (B) layer, the thermoplastic resin (C) layer and the resin composition (E) layer, polyester (polyethylene terephthalate) , Polybutylene terephthalate, etc.), polyamide, polycarbonate, polychlorinated vinyl, polychlorinated bilidene, polyurethane, polyacetal and the like.
[0081] 多層構造体の層構成は特に限定されるものではないが、例えば、 A/B/E/C, A/B/C/E等の 4層構成; E/BZAZB/C、 E/B/A/B/E, A/B/E/B ZC等の 5層構成; C/B/A/B/E/C, EZBZAZBZEZC等の 6層構成; E /B/A/B/A/B/C, CZEZBZAZBZEZC等の 7層構成;等が挙げられる 。同種の層、例えば EVOH (A)層を 2層以上含む多層構造体においては、各層を構 成する EVOHは同じであっても異なって!/、てもよ!/、。他の成分層にお ヽても同様で ある。また、上記の層構成にさらに別の成分力もなる層を設けることも可能である。こ れらの中でも、 5以上の層を有する多層構造体は実用性が高ぐ各種用途に使用で きるので好ましい。  [0081] The layer configuration of the multilayer structure is not particularly limited, but for example, a four-layer configuration such as A / B / E / C, A / B / C / E; E / BZAZB / C, E / 5-layer configuration such as B / A / B / E, A / B / E / B ZC; 6-layer configuration such as C / B / A / B / E / C, EZBZAZBZEZC; E / B / A / B / A / B / C, CZEZBZAZBZEZC, etc .; In a multilayer structure including two or more layers of the same kind, for example, the EVOH (A) layer, the EVOH constituting each layer may be the same or different! /, Or! /. The same applies to other component layers. Further, it is also possible to provide a layer having another component force in the above-mentioned layer constitution. Among these, a multilayer structure having five or more layers is preferable because it can be used for various purposes with high practicality.
[0082] 本発明の多層構造体の製造方法としては、公知の方法が採用可能であり、押出コ 一ティング、共押出成形、共射出成形等の方法を用いることができる。なかでも、共 押出成形又は共射出成形が好ましく採用される。これらの方法で一旦多層シート又 は多層フィルムを得た後、さらに共延伸、圧延伸、熱成形等を施すことも可能である。  As a method for producing the multilayer structure of the present invention, known methods can be employed, and methods such as extrusion coating, co-extrusion molding, and co-injection molding can be used. Of these, co-extrusion molding or co-injection molding is preferably employed. After once obtaining a multilayer sheet or multilayer film by these methods, it is also possible to further perform co-stretching, pressure-stretching, thermoforming and the like.
[0083] これらの中でも、共押出成形は、工程が簡略で、複雑な層構成の積層体も比較的 容易に製造可能であり、かつ製造コストを抑えられる面力 好ましい。一方、共射出 成形は複雑な層構成の製造には不向きであるが、製造サイクルが短ぐ生産性の面 で有利である。さらに、熱成形は、工程は複雑ではあるが、共押出成形では製造が 困難な長い形状の容器等も可能である。成形方法は、得られる成形物の形状、用途 等に応じて適宜選択される。 [0083] Among these, coextrusion molding is preferable because the process is simple, a laminate having a complicated layer structure can be relatively easily produced, and the production cost can be suppressed. On the other hand, co-injection molding is not suitable for manufacturing a complex layer structure, but has a short production cycle and productivity. Is advantageous. In addition, although the process of thermoforming is complicated, it is possible to use a long-shaped container or the like which is difficult to manufacture by co-extrusion. The molding method is appropriately selected according to the shape, use, and the like of the obtained molded product.
[0084] 多層構造体の形状としては、シート、フィルムの他、カップ、ボトル、チューブ、タンク 等が例示されるが、これらに限定されるものではない。また、多層構造体の用途も様 々であるが、例えば食品、医薬、医療器材、衣料等の包装材料又は容器、燃料 (ガソ リン等)用のチューブ、タンク等が挙げられる。これらの中でも、特に重要な燃料容器 について以下に説明する。  [0084] Examples of the shape of the multilayer structure include sheets, films, cups, bottles, tubes, tanks, and the like, but are not limited thereto. The multilayer structure has various uses, and examples thereof include packaging materials or containers for foods, medicines, medical instruments, clothing, etc., and tubes and tanks for fuel (gasoline and the like). Of these, the most important fuel containers are described below.
[0085] 多層構造体が燃料容器である場合の層構成は、特に限定されるものではないが、 成形性及びコスト等を考慮した場合、(内) CZBZAZBZE (外)、(内) CZBZA /B/E/C (外)、(内) C/E/B/A/B/E/C (外)等が代表的なものとして挙 げられる。これらの中でも、剛性、耐衝撃性、成形性、耐ドローダウン性、耐燃料性等 の観点から、(内) C/B/A/B/E/C (外)の層構成を採用することが特に好まし い。  [0085] The layer configuration when the multilayer structure is a fuel container is not particularly limited. However, in consideration of moldability and cost, (in) CZBZAZBZE (out), (in) CZBZA / B / E / C (outside), (inside) C / E / B / A / B / E / C (outside) are typical examples. Among them, the layer structure of (inner) C / B / A / B / E / C (outer) should be adopted from the viewpoint of rigidity, impact resistance, moldability, drawdown resistance, fuel resistance, etc. Is particularly preferred.
[0086] 燃料容器の各層の厚みは特に限定されな ヽが、燃料容器の燃料バリア性、機械強 度及びコストメリット等を考慮して、 EVOH (A)層の厚みは好適には全層厚みの 0. 1 %以上であり、より好適には 0. 5%以上であり、さらにより好適には 1%以上である。 また、 EVOH (A)層の厚みは好適には全層厚みの 20%以下であり、より好適には 1 5%以下であり、さらにより好適には 10%以下である。ここで、 EVOH (A)層が複数 層存在する場合は、各 EVOH (A)層の合計厚みを EVOH (A)層の厚みとする。 EV OH (A)層の厚みが全層厚みの 0. 1%に満たない場合は、燃料容器の燃料バリア 性が不足するおそれがあり、 20%を超える場合は、コスト的に割高になる他、機械強 度が不充分となるおそれがある。  [0086] The thickness of each layer of the fuel container is not particularly limited. However, in consideration of the fuel barrier properties of the fuel container, mechanical strength, cost merit, etc., the thickness of the EVOH (A) layer is preferably the total layer thickness. Is at least 0.1%, more preferably at least 0.5%, even more preferably at least 1%. The thickness of the EVOH (A) layer is preferably 20% or less of the total layer thickness, more preferably 15% or less, and even more preferably 10% or less. Here, when there are a plurality of EVOH (A) layers, the total thickness of each EVOH (A) layer is defined as the thickness of the EVOH (A) layer. If the thickness of the EV OH (A) layer is less than 0.1% of the total layer thickness, the fuel barrier properties of the fuel container may be insufficient, and if it exceeds 20%, the cost may be relatively high. The mechanical strength may be insufficient.
[0087] 燃料容器は、好適には共押出ブロー成形により成形される。具体的には、溶融押 出によりパリソンを形成し、このパリソンを一対のブロー成形用金型で挟持し、パリソン の喰切を行うと共に対抗する喰切部を融着させ、ついで喰切が行われたパリソンを前 記金型内で膨張させることにより燃料容器の形に成形する。ただし、自動車用燃料タ ンク等、容器が大きくなる場合は金型によりパリソンを挟持し、圧着を行う一方、金型 で喰切は行わず、容器表面力もからはみ出た部分を、カッター等を使用して所望の 高さで切断することが多い。 [0087] The fuel container is preferably formed by co-extrusion blow molding. Specifically, a parison is formed by melt extrusion, the parison is sandwiched between a pair of blow molding dies, the parison is cut, and the opposing cut portions are fused, and then the parison is cut. Is expanded into the above-mentioned mold to form a fuel container. However, when the container becomes large such as a fuel tank for automobiles, the parison is sandwiched by the mold and crimped while the mold is pressed. In many cases, the part that is not part of the container and the surface force of the container is cut off at a desired height using a cutter or the like.
[0088] 燃料容器は、多層シートを上下別々に熱成形し、これら 2つの成形体を熱溶着等に より融着する方法によって得ることもできる。この製造方法の場合、特に共押出ブロー 成形等では作りにくい長 、形状のタンクの作成が可能である。  [0088] The fuel container can also be obtained by a method in which a multilayer sheet is separately thermoformed up and down, and these two molded articles are fused by heat welding or the like. In the case of this production method, it is possible to produce a tank having a long shape, which is difficult to produce especially by co-extrusion blow molding or the like.
実施例  Example
[0089] 以下、実施例により本発明をさらに詳しく説明するが、これらの実施例によって本発 明は何ら限定されるものではない。なお、以下の合成例及び実施例において特に断 りのない限り、比率は重量比を、「%」は「重量%」を意味する。メルトフローレート (M FR)は、断りのない限り 190°C、荷重 2160gで測定した値である。極限粘度は、フエ ノール 85重量%及び水 15重量%の混合溶媒を用いた溶液で 30°Cで測定された値 である。  Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples. In the following Synthesis Examples and Examples, unless otherwise specified, the ratio means a weight ratio, and “%” means “% by weight”. Melt flow rate (MFR) is a value measured at 190 ° C and a load of 2160 g unless otherwise noted. Intrinsic viscosity is the value measured at 30 ° C in a solution using a mixed solvent of 85% by weight of phenol and 15% by weight of water.
[0090] 合成例 1  [0090] Synthesis example 1
末端にボロン酸エチレングリコールエステル基を有する高密度ポリエチレンの合成: 冷却器、撹拌機及び滴下ロート付きセパラブルフラスコに、高密度ポリエチレン {M FRO. 3gZlO分(190°C、荷重 2160g)、密度 0. 952gZcm3、末端二重結合量 0. 048meq/g (mmol/g) } 1000gゝデカリン 2500gを仕込み、室温で減圧することに より脱気を行った後、窒素置換を行った。これにホウ酸トリメチル 78g、ボラン—トリエ チルアミン錯体 5. 8gを添加し、 200°Cで 4時間反応後、蒸留器具を取り付けさらにメ タノール 100mlをゆっくり滴下した。メタノール滴下終了後、減圧蒸留により、メタノー ル、ホウ酸トリメチル、トリェチルァミン等の低沸点の不純物を留去した。さらにェチレ ングリコール 31gを添加し、 10分間撹拌後、アセトンに再沈して乾燥することにより、 ボロン酸エチレングリコールエステル基量 0. 027meq/g (mmol/g) , MFRO. 3g ZlO分(190°C、荷重 2160g)、密度 0. 952gZcm3の変性ポリエチレン(d— 1 : BE AG変性 HDPE)を得た。変性ポリエチレン中のボロン酸エチレングリコールエステル 基(BAEG)の量は、重パラキシレン:重クロ口ホルム:エチレングリコール =8 : 2 : 0. 0 2の比率の混合液を溶媒として溶液を調整し、 270MHz ^— NMRにより定量した [0091] 合成例 2 Synthesis of high-density polyethylene having a boronic acid ethylene glycol ester group at its end: In a separable flask equipped with a condenser, stirrer, and dropping funnel, high-density polyethylene {M FRO. 3gZlO content (190 ° C, load 2160g), density 0 952 gZcm 3 , terminal double bond amount 0.048 meq / g (mmol / g)} 1000 g ゝ decalin 2500 g was charged, degassing was performed at room temperature under reduced pressure, and then nitrogen substitution was performed. To this were added 78 g of trimethyl borate and 5.8 g of borane-triethylamine complex. After reacting at 200 ° C. for 4 hours, a distillation apparatus was attached, and 100 ml of methanol was slowly added dropwise. After the completion of the dropwise addition of methanol, low boiling impurities such as methanol, trimethyl borate, and triethylamine were distilled off by distillation under reduced pressure. Further, 31 g of ethylene glycol was added, and the mixture was stirred for 10 minutes, then reprecipitated in acetone and dried to obtain 0.027 meq / g (mmol / g) of boronic acid ethylene glycol ester, 3 g of MFRO. A modified polyethylene (d-1: modified by BEAG HDPE) having a temperature of ° C, a load of 2160 g) and a density of 0.952 gZcm 3 was obtained. The amount of the boronic acid ethylene glycol ester group (BAEG) in the modified polyethylene was adjusted by using a mixed solution having a ratio of heavy para-xylene: polyethylene form: ethylene glycol = 8: 2: 0.02 as a solvent, 270MHz ^ — Quantified by NMR [0091] Synthesis example 2
末端にボロン酸エチレングリコールエステル基を有する超低密度ポリエチレンの合成 冷却器、撹拌機及び滴下ロート付きセパラブルフラスコに、超低密度ポリエチレン { MFR15gZlO分(190°C、荷重 2160g)、密度 0. 900gZcm3、末端二重結合量 0 . 055meqZg} 1000g、デカリン 2500gを仕込み、室温で減圧することにより脱気を 行った後、窒素置換を行った。これにホウ酸トリメチル 78g、ボラン—トリェチルァミン 錯体 5. 8gを添加し、 200°Cで 4時間反応後、蒸留器具を取り付けさらにメタノール 1 OOmlをゆっくり滴下した。メタノール滴下終了後、減圧蒸留により、メタノール、ホウ 酸トリメチル、トリェチルァミン等の低沸点の不純物を留去した。さらにエチレングリコ ール 31gを添加し、 10分間撹拌後、アセトンに再沈して乾燥することにより、ボロン酸 エチレングリコールエステル基量 0. 050meqZg、 MFR15gZlO分(190。C、荷重 2160g)、密度 0. 900gZcm3の変性ポリエチレン(d— 2 : BEAG変性 VLDPE)を 得た。変性ポリエチレン中のボロン酸エチレングリコールエステル基(BAEG)の量は 、合成例 1と同様の方法で定量した。 Synthesis of ultra-low density polyethylene having boronic acid ethylene glycol ester group at the end In a separable flask equipped with a cooler, stirrer and dropping funnel, ultra-low-density polyethylene {MFR15gZlO content (190 ° C, load 2160g), density 0.9900gZcm 3. A terminal double bond amount of 0.055meqZg} and 1000 g of decalin were charged, degassed by reducing the pressure at room temperature, and then replaced with nitrogen. To this were added 78 g of trimethyl borate and 5.8 g of borane-triethylamine complex. After reacting at 200 ° C. for 4 hours, a distillation apparatus was attached, and 100 ml of methanol was slowly added dropwise. After the completion of the dropwise addition of methanol, low-boiling impurities such as methanol, trimethyl borate, and triethylamine were distilled off under reduced pressure. Further, 31 g of ethylene glycol was added, and the mixture was stirred for 10 minutes, reprecipitated in acetone, and dried to obtain a boronic acid ethylene glycol ester group content of 0.050meqZg, an MFR of 15 gZlO (190.C, a load of 2160 g), and a density of 0. 900 g Zcm 3 of modified polyethylene (d-2: BEAG modified VLDPE) was obtained. The amount of the boronic acid ethylene glycol ester group (BAEG) in the modified polyethylene was determined in the same manner as in Synthesis Example 1.
[0092] 参考例 1 [0092] Reference Example 1
合成例 1で得られた変性ポリエチレン (d— 1 : BEAG変性 HDPE) 1重量部、株式 会社クラレ製 EVOH「ェバール (登録商標)—F101」(エチレン含量 32モル0 /0、けん 化度 99. 5%、極限粘度 1. ldlZg) 5重量部、三井ィヒ学株式会社製無水マレイン酸 変性ポリエチレン「アドマー(登録商標) GT6」{MFR: 0. 948 10分(190で、荷重 2160g) }8重量部、及び Bassel社製高密度ポリエチレン「Lupolen (登録商標) 426 1AG」{MFR0. 03gZlO分(190。C、荷重 2160g)、密度 0. 945gZcm3}86重量 部を、二軸スクリュータイプのベント式押出機に投入し、窒素雰囲気下 220°Cで押出 しペレツトイ匕を行い榭脂組成物のペレットを得た。 The resulting modified polyethylene in Synthesis Example 1 (d-1: BEAG modified HDPE) 1 part by weight, the stock company Kuraray Co. EVOH "Ebaru (R) -F101" (ethylene content 32 mol 0/0, saponification degree 99. 5%, intrinsic viscosity 1. ldlZg) 5 parts by weight, maleic anhydride-modified polyethylene "Admer (registered trademark) GT6" manufactured by Mitsui Ichigaku Co., Ltd. {MFR: 0.994 8 10 minutes (190, load 2160g)} 8 parts by weight and 86 parts by weight of Bassel's high density polyethylene “Lupolen (registered trademark) 426 1AG” {MFR0.03 gZlO content (190.C, load 2160 g), density 0.945 gZcm 3 } of a twin screw type The mixture was put into a vented extruder and extruded at 220 ° C. under a nitrogen atmosphere, and pelletized to obtain a resin composition pellet.
[0093] フィルム外観評価 [0093] Film appearance evaluation
得られたペレットを用いて、以下に示す装置を使用してフィルムを作成し、その外観 を評価した。  Using the pellets obtained, a film was prepared using the apparatus described below, and the appearance was evaluated.
使用機械:東洋精機社製二軸押出し機 スクリュー: 20mm φ、フノレフライト Machine used: Twin screw extruder manufactured by Toyo Seiki Screw: 20mm φ, Funore flight
押出し温度: 190/260/260/260°C  Extrusion temperature: 190/260/260/260 ° C
フィルム厚み: 100 /z m  Film thickness: 100 / z m
[0094] 衝撃強度測定 [0094] Impact strength measurement
得られたペレットを用いて、単軸押出機を使用して射出成形にて試験片を作成し、 ASTM法 D256に準拠して― 40°Cにてアイゾット衝撃強度を測定した。衝撃強度測 定機器を 40°Cに調整した恒温室に入れ、測定サンプルを測定前に一晩以上当該 恒温室に保管した後、 40°Cにて衝撃強度を測定した。  A test piece was prepared from the obtained pellet by injection molding using a single screw extruder, and the Izod impact strength was measured at −40 ° C. according to ASTM method D256. The impact strength measuring instrument was placed in a thermostatic chamber adjusted to 40 ° C, and the measurement sample was stored in the thermostatic chamber at least overnight before measurement, and then the impact strength was measured at 40 ° C.
[0095] 滞留榭脂量 [0095] Retained grease amount
得られたペレットを用いて、以下に示す装置を使用して押出し試験を行った。 60分 混練後に三井ィ匕学株式会社製「ミラソン 102」(LDPE)を添加し、 45分間上記榭脂 を用いて混練を行った。この際、試験ペレットはローター上部力もパージアウトしてき た。 LDPEを搔き出した後にローター表面に付着していた樹脂の重量を測定した。 使用機械:東洋精機社製押出し機ブラベンダー  An extrusion test was performed using the obtained pellets using the following apparatus. After kneading for 60 minutes, “Mirason 102” (LDPE) manufactured by Mitsui Igeraku Co., Ltd. was added, and kneading was performed for 45 minutes using the above resin. At this time, the test pellet also purged out the rotor upper force. After extracting the LDPE, the weight of the resin adhering to the rotor surface was measured. Machine used: Toyo Seiki extruder Brabender
押出し温度: 220°C  Extrusion temperature: 220 ° C
回転速度: 50rpm  Rotation speed: 50rpm
窒素雰囲気下、 60分混練  Kneading under nitrogen atmosphere for 60 minutes
以上の結果をまとめて表 1に示す。  Table 1 summarizes the above results.
[0096] 参考例 2、 3 [0096] Reference Examples 2 and 3
使用する榭脂の量を表 1に示すように変更した以外は、参考例 1と同様にして榭脂 組成物のペレットを得、次いで、フィルム外観評価、衝撃強度測定及び滞留榭脂量 測定を行った。結果をまとめて表 1に示す。  Pellets of the resin composition were obtained in the same manner as in Reference Example 1 except that the amount of the resin used was changed as shown in Table 1, and then the film appearance evaluation, impact strength measurement and retained resin amount measurement were performed. went. The results are summarized in Table 1.
[0097] 参考例 4 [0097] Reference Example 4
株式会社クラレ製 EVOH「ェバール (登録商標)—F101」(エチレン含量 32モル0 /0 、けん化度 99. 5%、極限粘度 1. ldlZg) 5重量部、三井化学株式会社製無水マレ イン酸変性ポリエチレン「アドマー(登録商標) GT6」 8重量部、及び Bassel社製高密 度ポリエチレン「Lupolen (登録商標) 4261AG」87重量部を、二軸スクリュータイプ のベント式押出機に投入し、窒素雰囲気下 220°Cで押出しペレツトイ匕を行い榭脂組 成物のペレットを得た。得られたペレットを使用し、実施例 1と同様にしてフィルム外観 評価、衝撃強度測定及び滞留榭脂量測定を行った。結果をまとめて表 1に示す。 Produced by Kuraray Co., Ltd. EVOH "Ebaru (R) -F101" (ethylene content 32 mol 0/0, saponification degree 99.5%, intrinsic viscosity 1. ldlZg) 5 parts by weight, manufactured by Mitsui Chemicals, Inc. maleic anhydride-modified 8 parts by weight of polyethylene "Admer (registered trademark) GT6" and 87 parts by weight of high density polyethylene "Lupolen (registered trademark) 4261AG" manufactured by Bassel are charged into a twin-screw type vented extruder, and subjected to a nitrogen atmosphere. Extrude at ° C and perform a plastic towel A product pellet was obtained. Using the obtained pellets, evaluation of film appearance, measurement of impact strength, and measurement of retained resin were performed in the same manner as in Example 1. The results are summarized in Table 1.
[0098] 参考例 5〜7 [0098] Reference Examples 5 to 7
使用する榭脂の量を表 1に示すように変更した以外は、参考例 4と同様にして榭脂 組成物のペレットを得、次いで、フィルム外観評価、衝撃強度測定及び滞留榭脂量 測定を行った。結果をまとめて表 1に示す。  A pellet of the resin composition was obtained in the same manner as in Reference Example 4 except that the amount of the resin used was changed as shown in Table 1, and then the film appearance evaluation, impact strength measurement, and retained resin amount measurement were performed. went. The results are summarized in Table 1.
[0099] [表 1] [0099] [Table 1]
Figure imgf000027_0001
Figure imgf000027_0001
[0100] 表 1からわかるように、 EVOH (A)、カルボン酸変性ポリオレフイン(B)及び熱可塑 性榭脂 (C)からなる榭脂組成物に、ホウ素含有官能基を有する熱可塑性榭脂 (D)を 配合することによって、成形品の外観が良好になり、衝撃強度が向上し、さらに滞留 榭脂量が減少することがわ力つた。その効果は熱可塑性榭脂 (D)の添加量が大きく なるほど顕著である。ホウ素含有官能基を有する熱可塑性榭脂 (D)の添加が、各成 分の相容性ゃ熱安定性に大きく寄与していると考えられる。  [0100] As can be seen from Table 1, a thermoplastic resin having a boron-containing functional group was added to a resin composition comprising EVOH (A), carboxylic acid-modified polyolefin (B), and thermoplastic resin (C). The addition of D) improved the appearance of the molded product, improved the impact strength, and further reduced the amount of retained resin. The effect becomes more remarkable as the amount of the thermoplastic resin (D) increases. It is considered that the addition of the thermoplastic resin (D) having a boron-containing functional group greatly contributes to the compatibility and thermal stability of each component.
[0101] 実施例 1  [0101] Example 1
株式会社クラレ製 EVOH「ェバール (登録商標)—F101」(エチレン含量 32モル0 /0 、けん化度 99. 5%、極限粘度 1. ldl/g) (EVOH)、三井ィ匕学株式会社製無水マ レイン酸変性ポリエチレン「アドマー(登録商標) GT6」(AD)、及び Bassel社製高密 度ポリエチレン「Lupolen (登録商標) 4261 AG」(HDPE)を用い、下記に示す多層 押出装置を使用して HDPEZADZEVOHZADZHDPE = 510/20/30/20Produced by Kuraray Co., Ltd. EVOH "Ebaru (R) -F101" (ethylene content 32 mol 0/0, saponification degree 99.5%, an intrinsic viscosity 1. ldl / g) (EVOH), Mitsui I匕学Co. anhydride Using the maleic acid-modified polyethylene “Admer (registered trademark) GT6” (AD) and the high-density polyethylene “Lupolen (registered trademark) 4261 AG” (HDPE) manufactured by Bassel, the following multilayers were used. HDPEZADZEVOHZADZHDPE using extruder = 510/20/30/20
Ζ420 /ζ πιの層構成のシートを作成した。次に、得られた多層シートを、押出機に投 入できるよう適当な大きさに粉砕した。この粉砕物 90重量部に合成例 1で得られた変 性ポリエチレン(d— 1 :BEAG変性 HDPE) 10重量部をドライブレンドし、回収層(Re gl)の原料とした。この原料と上記の各榭脂を用い、下記に示す多層押出装置を使 用して HDPEZReglZADZEVOHZADZHDPE= 110Z400Z20Z30Z2 0/420 mの層構成のシートを作成した。得られた多層シートを先と同様に粉砕し 、この粉砕物 90重量部に変性ポリエチレン (d— 1) 10重量部をドライブレンドし、次 の回収層(Reg2)の原料とした。この操作を 5回繰り返したのち、 5回目の回収層(Re g5)の押出に用いたスクリューを押出機力 取り出し、榭脂の付着の状態を目視にて 観察したところ、非常に少なぐ容易に除去可能な範囲であった。また、 5回目の回収 層(Reg5)の原料を用いて、 210°Cにてペレット化を行い、 1時間後のストランドの回 りに付着したメャ二の発生具合を目視にて観察したが、 目ャ二の発生は認められな かった。 A sheet having a layer structure of Ζ420 / ζπι was prepared. Next, the obtained multilayer sheet was pulverized to an appropriate size so that it could be put into an extruder. 10 parts by weight of the modified polyethylene (d-1: BEAG-modified HDPE) obtained in Synthesis Example 1 was dry-blended to 90 parts by weight of the pulverized material to obtain a raw material for a recovery layer (Regl). Using this raw material and each of the above resins, a sheet having a layer configuration of HDPEZReglZADZEVOHZADZHDPE = 110Z400Z20Z30Z20 / 420 m was prepared using the multilayer extrusion apparatus shown below. The obtained multilayer sheet was pulverized in the same manner as above, and 90 parts by weight of the pulverized material was dry-blended with 10 parts by weight of the modified polyethylene (d-1) to obtain a raw material for the next recovery layer (Reg2). After repeating this operation five times, the screw used for the fifth extrusion of the recovery layer (Reg5) was taken out from the extruder, and the state of adhesion of the resin was visually observed. It was within the removable range. In addition, pelletization was performed at 210 ° C using the raw material of the fifth recovery layer (Reg5), and the state of formation of the toner adhering around the strand one hour later was visually observed. No outbreak was observed.
[0102] 多層押出装置の構成:  [0102] Configuration of multilayer extrusion device:
押出機 1 HDPE用 スクリュー径: 25mm 温度: 190°C  Extruder 1 HDPE Screw diameter: 25mm Temperature: 190 ° C
押出機 2 HDPE用又は Reg用 スクリュー径: 40mm 温度: 210°C  Extruder 2 For HDPE or Reg Screw diameter: 40mm Temperature: 210 ° C
押出機 3 AD用 スクリュー径: 20mm 温度: 190°C  Extruder 3 For AD Screw diameter: 20mm Temperature: 190 ° C
押出機 4 EVOH用 スクリュー径: 20mm 温度: 210°C  Extruder 4 For EVOH Screw diameter: 20mm Temperature: 210 ° C
押出機 5 AD用 スクリュー径: 20mm 温度: 190°C  Extruder 5 AD Screw diameter: 20mm Temperature: 190 ° C
押出機 6 HDPE用 スクリュー径: 40mm 温度: 210°C  Extruder 6 HDPE Screw diameter: 40mm Temperature: 210 ° C
V、ずれのスクリューもフルフライトと呼ばれる混練部の無 、スクリューである。  V, the shift screw is also a screw without a kneading part called full flight.
[0103] 比較例 1  [0103] Comparative Example 1
回収層(Regn、 nは 1〜5の整数)の原料として、多層シートの粉砕物に変性ポリェ チレン (d—1)を混合しな力つたこと以外は、実施例 1と同様にして回収層を含む多 層シートを作成した。 5回目の回収層(Reg5)の押出に用いたスクリューを押出機か ら取り出し、榭脂の付着の状態を目視にて観察したところ、付着が多ぐ榭脂の除去 に相当な時間と手間を要した。また、 5回目の回収層(Reg5)の原料を用いて、 210 °Cにて、ペレツトイ匕を行ったが、目ャ二の発生が顕著であった。回収の回数を増やす ことでカルボン酸変性ポリオレフインの熱安定性が悪化し、回収層中の EVOHの分 散性が悪化した為と推定される。すなわち、ホウ素含有基を有する熱可塑性榭脂 (D )を加えることによって、リグラインド組成物の熱安定性が大きく改善されることが明ら カゝになった。 As a raw material for the recovery layer (Regn, n is an integer of 1 to 5), the same procedure as in Example 1 was carried out except that modified polyethylene (d-1) was not mixed with the pulverized multilayer sheet. A multi-layer sheet containing was prepared. The screw used for the fifth extrusion of the recovery layer (Reg5) was removed from the extruder, and the state of resin adhesion was visually observed. The amount of adhesion was large, and considerable time and labor was required to remove the resin. Cost me. In addition, using the raw material of the fifth recovery layer (Reg5), At 0 ° C., the pelleting was performed. It is presumed that the thermal stability of the carboxylic acid-modified polyolefin deteriorated by increasing the number of times of recovery, and the dispersion of EVOH in the recovery layer deteriorated. That is, it has become clear that the addition of the thermoplastic resin (D) having a boron-containing group greatly improves the thermal stability of the regrind composition.
[0104] 実施例 2 [0104] Example 2
株式会社クラレ製 EVOH「ェバール (登録商標)—F101」(エチレン含量 32モル0 /0 、けん化度 99. 5%、極限粘度 1. ldl/g) (EVOH)、三井ィ匕学株式会社製無水マ レイン酸変性ポリエチレン「アドマー(登録商標) GT6」(AD)、及び Bassel社製高密 度ポリエチレン「Lupolen (登録商標) 4261 AG」(HDPE)を用いて下記に示す多層 押出装置を使用して HDPEZADZEVOHZADZHDPE = 510/20/30/20Produced by Kuraray Co., Ltd. EVOH "Ebaru (R) -F101" (ethylene content 32 mol 0/0, saponification degree 99.5%, an intrinsic viscosity 1. ldl / g) (EVOH), Mitsui I匕学Co. anhydride Using the maleic acid-modified polyethylene “Admer (registered trademark) GT6” (AD) and the high-density polyethylene “Lupolen (registered trademark) 4261 AG” (HDPE) manufactured by Bassel, using the multilayer extrusion equipment shown below, HDPEZADZEVOHZADZHDPE = 510/20/30/20
Ζ420 /ζ πιの層構成のシートを作成した。次に、得られた多層シートを、押出機に投 入出来るよう適当な大きさに粉砕した。この粉砕物 95重量部に合成例 2で得られた 変性ポリエチレン (d— 2: BEAG変性 VLDPE) 5重量部をドライブレンドし、回収層( Regl)の原料とした。この原料と上記の各榭脂を用い、実施例 1と同じ多層押出装置 を使用し、同じ条件でHDPEZReglZADZEVOHZADZHDPE= 110Z400 Z20Z30Z20Z420/Z mの層構成のシートを作成した。得られた多層シートを先と 同様に粉砕し、この粉砕物 95重量部に変性ポリエチレン (d— 2) 5重量部をドライブ レンドし、次の回収層(Reg2)の原料とした。この操作を 5回繰り返した後の Reg5を 用いて作成した多層シートの外観、衝撃強度を評価した。多層シートの外観は、目視 観察により評価した。また、衝撃強度は、得られた多層シートから、 ASTM-D1829 ダンべノレカッターでテストピースを作成し、 40°C、 MD方向、 n= 10にて TIS (引張 り衝撃強度)を測定した。さらに、上記操作を 5回繰り返した後、 5回目の回収層 (Reg 5)を粉砕した後、 210°Cにて、ペレット化を行い、 1時間後のストランドの回りに付着し たメャ二の発生具合を目視にて観察した力 目ャ二の発生は認められなかった。 A sheet having a layer structure of Ζ420 / ζπι was prepared. Next, the obtained multilayer sheet was pulverized to an appropriate size so that it could be put into an extruder. 5 parts by weight of the modified polyethylene (d-2: BEAG-modified VLDPE) obtained in Synthesis Example 2 was dry-blended with 95 parts by weight of the pulverized product to obtain a raw material for a recovery layer (Regl). Using this raw material and each of the above resins, a sheet having a layer configuration of HDPEZReglZADZEVOHZADZHDPE = 110Z400 Z20Z30Z20Z420 / Zm was prepared using the same multilayer extrusion apparatus as in Example 1 under the same conditions. The obtained multilayer sheet was pulverized in the same manner as described above, and 95 parts by weight of the pulverized product was dry blended with 5 parts by weight of a modified polyethylene (d-2) to obtain a raw material for the next recovery layer (Reg2). After repeating this operation five times, the appearance and impact strength of the multilayer sheet prepared using Reg5 were evaluated. The appearance of the multilayer sheet was evaluated by visual observation. For the impact strength, a test piece was prepared from the obtained multilayer sheet using an ASTM-D1829 dampening cutter, and the TIS (tensile impact strength) was measured at 40 ° C. in the MD direction at n = 10. After the above operation was repeated 5 times, the fifth recovery layer (Reg 5) was pulverized, and then pelletized at 210 ° C. One hour later, the particles adhering around the strand were removed. The degree of occurrence was visually observed. No occurrence of force was observed.
[0105] 実施例 3 [0105] Example 3
粉砕物 90重量部に、変性ポリエチレン (d— 2 : BEAG変性 VLDPE) 10重量部をド ライブレンドして多層シートを成形する操作を繰り返した以外は実施例 2と同様に試 験を行い、評価した。結果を表 2にまとめて示す。 A test was conducted in the same manner as in Example 2 except that the operation of dry blending 10 parts by weight of modified polyethylene (d-2: BEAG modified VLDPE) with 90 parts by weight of the pulverized material to form a multilayer sheet was repeated. Tests were performed and evaluated. The results are summarized in Table 2.
[0106] 実施例 4 Example 4
粉砕物 95重量部に合成例 1で得られた変性ポリエチレン (d— 1: BEAG変性 HDP E) 5重量部をドライブレンドして多層シートを成形する操作を繰り返した以外は実施 例 2と同様に試験を行い、評価した。結果を表 2にまとめて示す。  Same as Example 2 except that the procedure of dry blending 5 parts by weight of the modified polyethylene obtained in Synthesis Example 1 (d-1: BEAG-modified HDPE) with 95 parts by weight of the pulverized material to form a multilayer sheet was repeated. A test was performed and evaluated. The results are summarized in Table 2.
[0107] 比較例 2 [0107] Comparative Example 2
粉砕物 95重量部に三井ィ匕学株式会社製無水マレイン酸変性ポリエチレン「アドマ 一(登録商標) GT6J 5重量部をドライブレンドして多層シートを成形する操作を繰り 返した以外は実施例 2と同様に試験を行い、評価した。結果を表 2にまとめて示す。  Example 2 was repeated except that the operation of dry-blending 5 parts by weight of maleic anhydride-modified polyethylene “ADMA-1 (registered trademark) GT6J” manufactured by Mitsui-Danigaku Co., Ltd. to 95 parts by weight of the pulverized product to form a multilayer sheet was repeated. The test was performed and evaluated in the same manner, and the results are summarized in Table 2.
[0108] 比較例 3 [0108] Comparative Example 3
粉砕物に対して何も加えずに多層シートを成形する操作を繰り返した以外は実施 例 2と同様に試験を行い、評価した。結果を表 2にまとめて示す。  A test was performed and evaluated in the same manner as in Example 2 except that the operation of forming a multilayer sheet was repeated without adding anything to the pulverized material. The results are summarized in Table 2.
[0109] [表 2] [0109] [Table 2]
Figure imgf000030_0001
Figure imgf000030_0001
[0110] 表 2からわかるように、 EVOH (A)、カルボン酸変性ポリオレフイン(B)及び熱可塑 性榭脂 (C)を含有するリグラインドに対して、ホウ素含有官能基を有する熱可塑性榭 脂(D)を配合した実施例 2〜4においては、熱安定性が改善されてペレツトイ匕時の目 ャ二の発生が抑制され、得られるシートの外観及び耐衝撃性にも優れることがわかる 。一方、ホウ素含有官能基を有する熱可塑性榭脂 (D)の代わりにカルボン酸変性ポ リエチレンを配合した比較例 2では目ャ-発生が顕著になるとともに、得られる多層シ ートの外観及び耐衝撃性も悪ィ匕した。また、リグラインドに対して何も配合しない比較 例 3では、得られる多層シートの外観及び耐衝撃性がさらに悪ィ匕した。また、実施例 2 と実施例 4との比較からわ力るように、密度の低!、ポリエチレンをベースポリマーとす る熱可塑性榭脂 (D)を使用するほうが、耐衝撃性に優れた多層シートを与えることが ゎカゝる。 [0110] As can be seen from Table 2, the regrind containing EVOH (A), carboxylic acid-modified polyolefin (B), and thermoplastic resin (C) was compared with the thermoplastic resin having a boron-containing functional group. In Examples 2 to 4 in which (D) was blended, it can be seen that the thermal stability was improved, the occurrence of burnout during pelletizing was suppressed, and the appearance and impact resistance of the resulting sheet were also excellent. On the other hand, in Comparative Example 2 in which a carboxylic acid-modified polyethylene was blended in place of the thermoplastic resin (D) having a boron-containing functional group, the occurrence of cracks became remarkable, and the resulting multi-layered resin was obtained. The appearance and impact resistance of the sheet were also poor. In Comparative Example 3 in which nothing was added to the regrind, the appearance and impact resistance of the obtained multilayer sheet were further deteriorated. Also, as can be seen from the comparison between Example 2 and Example 4, it is better to use thermoplastic resin (D) with a low density and polyethylene as the base polymer, which is more excellent in impact resistance. Giving a sheet is easy.
[0111] 実施例 5 [0111] Example 5
実施例 2で得られた Reg5を用い、下記の条件で共押出ブロー成形して、 750mlサ ィズの HDPEZReg5ZADZEVOHZADZHDPE構成の多層ボトルを作成した oボトル同部中央付近の層構成は、 110Z400Z20Z30Z20Z420 mであった 。得られた多層ボトルの外観を目視で評価したところ外観は良好であった。また、該 ボトルの平面中央部をサンプリングし、 ASTM— D1829ダンベルカッターでテストピ ースを作成し、 40°C、 MD方向、 n= 10にて TIS (引張り衝撃強度)を測定したとこ ろ 1 lOkjZm2であり、良好な耐衝撃性を示した。 Using Reg5 obtained in Example 2, co-extrusion blow molding was performed under the following conditions to prepare a multilayer bottle of HDPEZReg5ZADZEVOHZADZHDPE having a size of 750 ml. Was When the appearance of the obtained multilayer bottle was visually evaluated, the appearance was good. The center of the bottle was sampled, and a test piece was prepared using an ASTM D1829 dumbbell cutter. TIS (tensile impact strength) was measured at 40 ° C in the MD direction at n = 10. 2 , indicating good impact resistance.
[0112] 共押出ブロー成形条件 [0112] Co-extrusion blow molding conditions
成形機:鈴木鉄工所製 4種 7層ダイレクトブロー成形機  Molding machine: 4 types 7-layer direct blow molding machine manufactured by Suzuki Iron Works
HDPE押出温度: 190°C  HDPE extrusion temperature: 190 ° C
Reg5押出温度: 190°C  Reg5 extrusion temperature: 190 ° C
AD押出温度: 180°C  AD extrusion temperature: 180 ° C
EVOH押出温度: 205°C  EVOH extrusion temperature: 205 ° C
金型温度: 80°C  Mold temperature: 80 ° C
[0113] 比較例 4 [0113] Comparative Example 4
比較例 3で得られた Reg5を用いて、実施例 5と同様に多層ボトル作成を製造し、評 価を行った。得られた多層ボトルの外観を目視で評価したところ膜面ムラが多発して いた。また、該ボトルの平面中央部をサンプリングし、 ASTM— D1829ダンベルカツ ターでテストピースを作成し、 -40°C、 MD方向、 n= 10にて TIS (引張り衝撃強度) を測定したところ 50kjZm2であり、耐衝撃性が不十分であった。 Using Reg5 obtained in Comparative Example 3, a multilayer bottle was prepared and evaluated in the same manner as in Example 5. When the appearance of the obtained multilayer bottle was visually evaluated, unevenness of the film surface occurred frequently. Moreover, sampling the flat central portion of the bottle, ASTM- D1829 dumbbell cutlet coater at creating a test piece, -40 ° C, MD direction, n = 10 was measured TIS (tensile impact strength) at 50KjZm 2 And the impact resistance was insufficient.

Claims

請求の範囲 The scope of the claims
[1] エチレン含量 5〜60モル0 /0、ケン化度 85%以上のエチレン ビュルアルコール共 重合体 (A)層、カルボン酸変性ポリオレフイン (B)層、 11以下の溶解性パラメータ (F edorsの式力 算出)を有する熱可塑性榭脂 (C)層、及び榭脂組成物 (E)層を有す る多層構造体であって; [1] an ethylene content of 5 to 60 mole 0/0, 85% or more of ethylene Bulle alcohol copolymer saponification degree polymer (A) layer, a carboxylic acid-modified polyolefin (B) layer, the following solubility parameters (in F edors 11 A multi-layered structure having a thermoplastic resin (C) layer having the formula force calculation) and a resin composition (E) layer;
前記榭脂組成物 (E)力 エチレン ビニルアルコール共重合体 (A)、カルボン酸変 性ポリオレフイン (B)、熱可塑性榭脂 (C)及びボロン酸基及び水の存在下でボロン酸 基に転化し得るホウ素含有基からなる群より選ばれる少なくとも一つの官能基を有す る熱可塑性榭脂(D)からなり、かつ  The above resin composition (E) power Ethylene vinyl alcohol copolymer (A), carboxylic acid-modified polyolefin (B), thermoplastic resin (C) and conversion to boronic acid group in the presence of boronic acid group and water A thermoplastic resin (D) having at least one functional group selected from the group consisting of boron-containing groups, and
エチレン ビュルアルコール共重合体 (A)層と、熱可塑性榭脂 (C)層又は榭脂組成 物 (E)層とが、カルボン酸変性ポリオレフイン (B)層を介して積層されてなることを特 徴とする多層構造体。  It is characterized in that an ethylene butyl alcohol copolymer (A) layer and a thermoplastic resin (C) layer or a resin composition (E) layer are laminated via a carboxylic acid-modified polyolefin (B) layer. Characteristic multilayer structure.
[2] 前記榭脂組成物 (E)力 エチレン—ビュルアルコール共重合体 (A) 1〜40重量%、 カルボン酸変性ポリオレフイン(B) 0. 1〜39. 1重量%、熱可塑性榭脂(C) 59. 8〜 98. 8重量%、及び熱可塑性榭脂(D) 0. 1〜39. 1重量%からなる請求項 1記載の 多層構造体。  [2] The resin composition (E) power ethylene-butyl alcohol copolymer (A) 1 to 40% by weight, carboxylic acid-modified polyolefin (B) 0.1 to 39.1% by weight, thermoplastic resin ( The multilayer structure according to claim 1, comprising 59.8 to 98.8% by weight of C) and 0.1 to 39.1% by weight of the thermoplastic resin (D).
[3] 前記熱可塑性榭脂 (C)が実質的に未変性のポリオレフインである請求項 1又は 2記 載の多層構造体。  3. The multilayer structure according to claim 1, wherein the thermoplastic resin (C) is a substantially unmodified polyolefin.
[4] 前記熱可塑性榭脂(D)のホウ素含有基の含有量が 0. 001〜2meqZgである請求 項 1〜3のいずれか記載の多層構造体。  [4] The multilayer structure according to any one of claims 1 to 3, wherein the content of the boron-containing group in the thermoplastic resin (D) is 0.001 to 2 meqZg.
[5] 前記熱可塑性榭脂 (D)力 ボロン酸基及び水の存在下でボロン酸基に転ィ匕し得るホ ゥ素含有基力 なる群より選ばれる少なくとも一つの官能基を有するポリオレフインで ある請求項 1〜4のいずれか記載の多層構造体。 [5] The thermoplastic resin (D) power is a polyolefin having at least one functional group selected from the group consisting of a boron-containing group capable of converting to a boronic acid group in the presence of a boronic acid group and water. The multilayer structure according to any one of claims 1 to 4.
[6] 前記熱可塑性榭脂 (D)力 0. 85-0. 94gZcm3の密度を有するポリエチレンであ る請求項 5記載の多層構造体。 6. The multilayer structure according to claim 5, wherein the thermoplastic resin (D) is polyethylene having a density of 0.85 to 0.94 gZcm 3 .
[7] 請求項 1〜6のいずれか記載の多層構造体力 なる押出成形品。 [7] An extruded product comprising the multilayer structure according to any one of claims 1 to 6.
[8] 請求項 1〜6の!、ずれか記載の多層構造体からなるブロー成形品。 [8] Claims 1 to 6! A blow-molded article comprising a multilayer structure according to any one of claims.
[9] 請求項 1〜6の 、ずれか記載の多層構造体力 なる熱成形品。 [9] The thermoformed product according to any one of claims 1 to 6, which has a multilayered structure.
[10] 請求項 1〜6のいずれか記載の多層構造体力 なる燃料容器。 [10] A fuel container having a multilayer structure according to any one of claims 1 to 6.
[11] エチレン ビュルアルコール共重合体 (A)層、カルボン酸変性ポリオレフイン(B)層 及び熱可塑性榭脂 (C)層を有する多層構造体から得られたリグラインドに、さらに熱 可塑性榭脂 (D)を加えて溶融混練して、前記榭脂組成物 (E)層を形成することを特 徴とする請求項 1〜6のいずれか記載の多層構造体の製造方法。  [11] The regrind obtained from the multilayer structure having the ethylene butyl alcohol copolymer (A) layer, the carboxylic acid-modified polyolefin (B) layer, and the thermoplastic resin (C) layer is further added to the thermoplastic resin ( The method for producing a multilayer structure according to any one of claims 1 to 6, wherein D) is added and melt-kneaded to form the resin composition (E) layer.
[12] 前記リグラインド力 エチレン ビニルアルコール共重合体 (A)層、カルボン酸変性 ポリオレフイン (B)層、熱可塑性榭脂(C)層に加えて、さらに榭脂組成物 (E)層を有 する多層構造体力 得られたものである請求項 11記載の多層構造体の製造方法。  [12] In addition to the regrind force ethylene-vinyl alcohol copolymer (A) layer, carboxylic acid-modified polyolefin (B) layer, and thermoplastic resin (C) layer, a resin composition (E) layer is further provided. 12. The method for producing a multilayer structure according to claim 11, which is obtained.
[13] 前記リグラインドとそれに加えられる熱可塑性榭脂 (D)との合計 100重量部に対して 、熱可塑性榭脂(D)を 0. 1〜30重量部加えて溶融混練する請求項 11又は 12記載 の多層構造体の製造方法。  [13] The thermoplastic resin (D) is added in an amount of 0.1 to 30 parts by weight to the total of 100 parts by weight of the regrind and the thermoplastic resin (D) added thereto, and the mixture is melt-kneaded. 13. The method for producing a multilayer structure according to item 12.
[14] 共押出成形又は共射出成形する請求項 11〜13のいずれか記載の多層構造体の 製造方法。  [14] The method for producing a multilayer structure according to any one of claims 11 to 13, wherein coextrusion molding or coinjection molding is performed.
PCT/JP2005/008018 2004-04-28 2005-04-27 Multi-layer structure and process for production thereof WO2005105437A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006512811A JPWO2005105437A1 (en) 2004-04-28 2005-04-27 Multilayer structure and manufacturing method thereof
US11/587,981 US20080003390A1 (en) 2005-04-27 2005-04-27 Multi-Layer Structure and Process for Production Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004132850 2004-04-28
JP2004-132850 2004-04-28

Publications (1)

Publication Number Publication Date
WO2005105437A1 true WO2005105437A1 (en) 2005-11-10

Family

ID=35241518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008018 WO2005105437A1 (en) 2004-04-28 2005-04-27 Multi-layer structure and process for production thereof

Country Status (2)

Country Link
JP (1) JPWO2005105437A1 (en)
WO (1) WO2005105437A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2014713A1 (en) * 2006-04-25 2009-01-14 The Nippon Synthetic Chemical Industry Co., Ltd. Resin composition and multilayer structure making use of the same
JP2009006858A (en) * 2007-06-28 2009-01-15 Fts:Kk Fuel tank for automobile
WO2013146962A1 (en) * 2012-03-28 2013-10-03 株式会社クラレ Blow molded container, fuel container, and method for producing blow molded container
WO2015041258A1 (en) * 2013-09-20 2015-03-26 株式会社クラレ Heat-molded container and method for manufacturing same
WO2015050211A1 (en) * 2013-10-03 2015-04-09 株式会社クラレ Resin composition, multilayer structure, and thermoformed container comprising same
WO2015050221A1 (en) * 2013-10-02 2015-04-09 株式会社クラレ Blow molded container, fuel container, blow molded bottle container, and method for producing blow molded container
JP2015071711A (en) * 2013-10-03 2015-04-16 株式会社クラレ Resin composition, multilayer structure, and thermoformed container comprising the same
JP2015071710A (en) * 2013-10-03 2015-04-16 株式会社クラレ Resin composition, multilayer structure and thermoforming container formed of the same
JP2015071709A (en) * 2013-10-03 2015-04-16 株式会社クラレ Resin composition, multilayer structure and thermoforming container formed of the same
JP2015071439A (en) * 2013-10-02 2015-04-16 株式会社クラレ Blow-molding container and manufacturing method of blow-molding container
JP2015071689A (en) * 2013-10-02 2015-04-16 株式会社クラレ Blow molded container and method for producing blow molded container
JP2015083377A (en) * 2013-09-20 2015-04-30 株式会社クラレ Thermoformed container and production method thereof
JP2015083376A (en) * 2013-09-20 2015-04-30 株式会社クラレ Thermoformed container and production method thereof
US9163131B2 (en) 2012-03-28 2015-10-20 Kuraray Co., Ltd. Resin composition containing ethylene-vinyl alcohol copolymer
JP2016027983A (en) * 2014-07-11 2016-02-25 株式会社クラレ Blow-molded container, fuel container, and blow-molded container manufacturing method
JP2016028966A (en) * 2014-07-11 2016-03-03 株式会社クラレ Thermo-formed container and manufacturing method thereof
WO2018003904A1 (en) * 2016-06-30 2018-01-04 株式会社クラレ Fuel container
JP2018141169A (en) * 2018-05-25 2018-09-13 株式会社クラレ Resin composition, multilayer structure, thermoforming container and method for producing the same
JP2018141170A (en) * 2018-05-25 2018-09-13 株式会社クラレ Resin composition, multilayer structure, thermoforming container and method for producing the same
JP2018141171A (en) * 2018-05-25 2018-09-13 株式会社クラレ Resin composition, multilayer structure, thermoforming container and method for producing the same
EP3434468A1 (en) * 2017-07-24 2019-01-30 Kuraray Co., Ltd. Fuel container and production method therefor
WO2019235222A1 (en) * 2018-06-08 2019-12-12 日本クロージャー株式会社 Resin composition for injection molding
JP2019214695A (en) * 2018-06-08 2019-12-19 日本クロージャー株式会社 Injection molding
CN111918917A (en) * 2018-03-29 2020-11-10 陶氏环球技术有限责任公司 Resin for use as tie layer in multilayer structure and multilayer structure comprising same
US12017434B2 (en) 2020-04-24 2024-06-25 Kuraray Co., Ltd. Multilayer structure, method for producing same, sheet for preventing diffusion of hazardous substances, landfill geomembrane, and multilayer pipe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340783A (en) * 1993-03-15 1994-12-13 Kuraray Co Ltd Resin composition
JPH07300123A (en) * 1994-04-28 1995-11-14 Kuraray Co Ltd Container and use thereof
JP2003159770A (en) * 2002-10-02 2003-06-03 Kuraray Co Ltd Laminate structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340783A (en) * 1993-03-15 1994-12-13 Kuraray Co Ltd Resin composition
JPH07300123A (en) * 1994-04-28 1995-11-14 Kuraray Co Ltd Container and use thereof
JP2003159770A (en) * 2002-10-02 2003-06-03 Kuraray Co Ltd Laminate structure

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2014713A1 (en) * 2006-04-25 2009-01-14 The Nippon Synthetic Chemical Industry Co., Ltd. Resin composition and multilayer structure making use of the same
EP2014713A4 (en) * 2006-04-25 2009-07-08 Nippon Synthetic Chem Ind Resin composition and multilayer structure making use of the same
JP2009006858A (en) * 2007-06-28 2009-01-15 Fts:Kk Fuel tank for automobile
US9862517B2 (en) 2012-03-28 2018-01-09 Kuraray Co., Ltd. Blow molded container, fuel container, and method for producing blow molded container
JPWO2013146962A1 (en) * 2012-03-28 2015-12-14 株式会社クラレ Blow molded container, fuel container, and blow molded container manufacturing method
US9453094B2 (en) 2012-03-28 2016-09-27 Kuraray Co., Ltd. Resin composition containing ethylene-vinyl alcohol copolymer
WO2013146962A1 (en) * 2012-03-28 2013-10-03 株式会社クラレ Blow molded container, fuel container, and method for producing blow molded container
US9163131B2 (en) 2012-03-28 2015-10-20 Kuraray Co., Ltd. Resin composition containing ethylene-vinyl alcohol copolymer
WO2015041258A1 (en) * 2013-09-20 2015-03-26 株式会社クラレ Heat-molded container and method for manufacturing same
US10287416B2 (en) 2013-09-20 2019-05-14 Kuraray Co., Ltd. Thermoformed container and production method thereof
CN105722760B (en) * 2013-09-20 2017-12-15 株式会社可乐丽 Thermoformed containers and its manufacture method
US20160229987A1 (en) 2013-09-20 2016-08-11 Kuraray Co., Ltd. Thermoformed container and production method thereof
CN105722760A (en) * 2013-09-20 2016-06-29 株式会社可乐丽 Heat-molded container and method for manufacturing same
JP2015083377A (en) * 2013-09-20 2015-04-30 株式会社クラレ Thermoformed container and production method thereof
JP2015083376A (en) * 2013-09-20 2015-04-30 株式会社クラレ Thermoformed container and production method thereof
JP2015071689A (en) * 2013-10-02 2015-04-16 株式会社クラレ Blow molded container and method for producing blow molded container
JP2015071439A (en) * 2013-10-02 2015-04-16 株式会社クラレ Blow-molding container and manufacturing method of blow-molding container
US9579840B2 (en) 2013-10-02 2017-02-28 Kuraray Co., Ltd. Blow-molded container, fuel container, blow-molded bottle container, and production method of blow-molded container
WO2015050221A1 (en) * 2013-10-02 2015-04-09 株式会社クラレ Blow molded container, fuel container, blow molded bottle container, and method for producing blow molded container
US10207482B2 (en) 2013-10-03 2019-02-19 Kuraray Co., Ltd. Resin composition, multilayer structure, and thermoformed container including the same
JP2015071709A (en) * 2013-10-03 2015-04-16 株式会社クラレ Resin composition, multilayer structure and thermoforming container formed of the same
JP2015071710A (en) * 2013-10-03 2015-04-16 株式会社クラレ Resin composition, multilayer structure and thermoforming container formed of the same
JP2015071711A (en) * 2013-10-03 2015-04-16 株式会社クラレ Resin composition, multilayer structure, and thermoformed container comprising the same
WO2015050211A1 (en) * 2013-10-03 2015-04-09 株式会社クラレ Resin composition, multilayer structure, and thermoformed container comprising same
JP2016028966A (en) * 2014-07-11 2016-03-03 株式会社クラレ Thermo-formed container and manufacturing method thereof
JP2016027983A (en) * 2014-07-11 2016-02-25 株式会社クラレ Blow-molded container, fuel container, and blow-molded container manufacturing method
JP2020023365A (en) * 2014-07-11 2020-02-13 株式会社クラレ Thermoformed container and manufacturing method thereof
WO2018003904A1 (en) * 2016-06-30 2018-01-04 株式会社クラレ Fuel container
JPWO2018003904A1 (en) * 2016-06-30 2019-02-14 株式会社クラレ Fuel container
US11279117B2 (en) 2016-06-30 2022-03-22 Kuraray Co., Ltd. Fuel container
CN109415133A (en) * 2016-06-30 2019-03-01 株式会社可乐丽 Fuel container
CN109415133B (en) * 2016-06-30 2019-09-17 株式会社可乐丽 Fuel container
EP3434468A1 (en) * 2017-07-24 2019-01-30 Kuraray Co., Ltd. Fuel container and production method therefor
EP3660089A4 (en) * 2017-07-24 2021-05-19 Kuraray Co., Ltd. Resin composition, method for producing same and multi-layered structure using same
CN111918917A (en) * 2018-03-29 2020-11-10 陶氏环球技术有限责任公司 Resin for use as tie layer in multilayer structure and multilayer structure comprising same
JP2018141169A (en) * 2018-05-25 2018-09-13 株式会社クラレ Resin composition, multilayer structure, thermoforming container and method for producing the same
JP2018141170A (en) * 2018-05-25 2018-09-13 株式会社クラレ Resin composition, multilayer structure, thermoforming container and method for producing the same
JP2018141171A (en) * 2018-05-25 2018-09-13 株式会社クラレ Resin composition, multilayer structure, thermoforming container and method for producing the same
JP2019214695A (en) * 2018-06-08 2019-12-19 日本クロージャー株式会社 Injection molding
WO2019235222A1 (en) * 2018-06-08 2019-12-12 日本クロージャー株式会社 Resin composition for injection molding
KR20210018346A (en) * 2018-06-08 2021-02-17 니혼 클로져 가부시키가이샤 Resin composition for injection molding
EP3805310A4 (en) * 2018-06-08 2022-03-09 Nippon Closures Co., Ltd. Resin composition for injection molding
US11459450B2 (en) 2018-06-08 2022-10-04 Nippon Closures Co., Ltd. Resin composition for injection forming
KR102649170B1 (en) * 2018-06-08 2024-03-18 니혼 클로져 가부시키가이샤 Resin composition for injection molding
US12017434B2 (en) 2020-04-24 2024-06-25 Kuraray Co., Ltd. Multilayer structure, method for producing same, sheet for preventing diffusion of hazardous substances, landfill geomembrane, and multilayer pipe

Also Published As

Publication number Publication date
JPWO2005105437A1 (en) 2008-03-13

Similar Documents

Publication Publication Date Title
WO2005105437A1 (en) Multi-layer structure and process for production thereof
US20080003390A1 (en) Multi-Layer Structure and Process for Production Thereof
EP0616010B1 (en) Resin composition
WO2000051907A1 (en) Fuel container
JP5306476B2 (en) Recovery aid and method for producing the same
WO2018124295A1 (en) Resin composition and use of same
JP5284109B2 (en) Resin composition and multilayer structure
JP3686240B2 (en) Resin composition and multilayer structure
JP5497673B2 (en) Resin composition and method for producing the same
JP5629310B2 (en) Multilayer structure and manufacturing method thereof
JP3574500B2 (en) Resin composition and multilayer structure
JP3055851B2 (en) Resin composition
JP3265299B2 (en) Fuel container with excellent gasoline barrier properties
JP4653812B2 (en) Multilayer structure and manufacturing method thereof
JP2015071711A (en) Resin composition, multilayer structure, and thermoformed container comprising the same
JP3400131B2 (en) Resin composition and use thereof
CA2148722C (en) Resin composition and multilayered structure comprising the same
JP3618373B2 (en) Multilayer structures and molded products
JP2001200124A (en) Fuel container
JP3474277B2 (en) Heat shrinkable film
JP2002241619A (en) Resin composition excellent in gasolin-barrier property
JP2006008739A (en) Adhesive resin material
JP2002052658A (en) Multilayered molded part for fuel container excellent in gasoline barrier properties
JP2001347842A (en) Fuel container excellent in gasoline barrier property
KR100471698B1 (en) Resin composition and multilayered structure

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512811

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11587981

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11587981

Country of ref document: US