WO2005103809A1 - Process for producing particle for display medium, particle for display medium produced by the process, and information display unit utilizing the same - Google Patents

Process for producing particle for display medium, particle for display medium produced by the process, and information display unit utilizing the same Download PDF

Info

Publication number
WO2005103809A1
WO2005103809A1 PCT/JP2005/007638 JP2005007638W WO2005103809A1 WO 2005103809 A1 WO2005103809 A1 WO 2005103809A1 JP 2005007638 W JP2005007638 W JP 2005007638W WO 2005103809 A1 WO2005103809 A1 WO 2005103809A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
display medium
display
particle
substrate
Prior art date
Application number
PCT/JP2005/007638
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuya Murata
Takao Ohuchi
Hajime Kitano
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Publication of WO2005103809A1 publication Critical patent/WO2005103809A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement

Definitions

  • the present invention relates to a method of encapsulating one or more types of display media between two opposing substrates, at least one of which is transparent, and moving the display media by an electric field generated in the substrates to transfer information such as images.
  • Method for producing display medium particles for producing display medium particles hereinafter, sometimes referred to as particles
  • the present invention relates to an information display device using particles for use.
  • a conductive particle is used without using a solution.
  • a method of incorporating a carrier and a charge transport layer into a part of a substrate has begun to be proposed (for example, Guo Lao Zhao and three others, "New Toner Display Device (1)", July 21, 1999, Japan Image Annual conference (83 times in total), "Japan Hardcopy '99", pp.249-252.
  • the arrangement of the charge transport layer and the charge generation layer complicates the structure, and it is difficult to inject charges uniformly into the conductive particles, which causes a problem of lack of stability.
  • one or more types of display media are sealed between two opposing substrates, at least one of which is transparent, and an electric field generated in the substrates is used.
  • An information display device for displaying information such as an image by moving a display medium is known.
  • the acrylic resin and the methacrylic For example, particles for display media having a particle diameter of about 50 to 50 m manufactured using a monomer such as resin or styrene resin as a material for display medium particles are used.
  • the first object of the present invention is to provide a manufacturing method for manufacturing particles for display media in which the driving voltage is reduced and the required charge amount as particles for display media is ensured. It is a second object of the present invention to provide an information display device using particles for a display medium which can reduce a driving voltage and secure a required charge amount.
  • the method for producing particles for display media of the present invention comprises enclosing at least one type of particles for display media between two opposing transparent substrates.
  • At least one kind of the particles for the display medium among the particles for the display medium is particles for the display medium produced by suspension polymerization of a particle material containing a monomer, and After incorporating a poorly soluble charge control agent by dispersion, suspending using a surfactant having both a polyoxyalkylene chain and a sulfonate functional group in one molecule as a suspension stabilizer.
  • the particles for display media of the present invention are characterized by being produced by the method for producing particles for display media described above.
  • the resin component constituting the particles for display media is selected from neutrality of a plurality of monomers including at least an acrylic monomer, a methacrylic monomer and a styrene monomer. Is obtained by polymerizing one or more monomers,
  • the glass transition temperature Tg of the resin constituting the particles for the display medium is 60 ° C. or higher, the average particle diameter of the particles for the display medium is 1 to 50 ⁇ m, and blow-off using a ferrite carrier.
  • the surface charge density of the particles for display media measured by law is 10 ⁇ lOO ⁇ C / m 2 in absolute value
  • the particles for display media is, release corona arranged at a distance of the particle surface and lmm
  • the maximum value of the particle surface potential after 0.3 seconds is a particle larger than 300 V
  • the information display device of the present invention comprises a display medium according to any one of the second to eighth inventions, wherein at least one of the two substrates is transparent. It is characterized by enclosing one or more kinds of particles for display and moving the particles for display medium by an electric field generated in the substrate to display information such as images.
  • the method for producing particles for a display medium of the present invention having the above structure, at least one type of display medium is sealed between two opposing substrates which are transparent, and generated in the substrates.
  • the particles for a display medium used in an information display device that displays information such as an image by moving a display medium by an electric field
  • at least one or more of the particles for a display medium are used for the display medium.
  • the particles are particles for a display medium produced by suspension polymerization of a particle material containing a monomer, and after a charge control agent that is hardly soluble in the monomer before polymerization is dispersed, the suspension is stabilized.
  • a surfactant having both a polyoxyalkylene chain and a sulfonate functional group in one molecule is used as a suspending agent, so particles are transferred when a monomer-soluble charge control agent is used.
  • Drive voltage increases Problems, and the charge amount required as the particles for display media that occurs when using a polymeric suspension stabilizer is never able not become problems ensured as stabilizers when suspension polymerization. Accordingly, it is possible to provide a manufacturing method for manufacturing particles for display media in which the driving voltage for moving the particles is reduced and the charge amount required for the particles for display media is secured.
  • the particles for a display medium of the present invention since the particles are produced by the method for producing particles for a display medium of the present invention, the driving voltage for moving the particles is reduced. In both cases, it is possible to provide particles for display media in which the required charge amount as particles for display media is secured.
  • the particles for a display medium according to any one of claims 2 to 8 are used as a display medium between two opposed substrates at least one of which is transparent. One or more types are enclosed, and the particles for display media are moved to display information such as images by generating them in the substrate.Therefore, the driving voltage for moving the particles is reduced and the required charge amount is increased.
  • An information display device using particles for a display medium that can ensure the above can be provided.
  • FIG. 1] (a) and (b) are diagrams showing an example of an information display panel used in the information display device of the present invention.
  • FIG. 3 (a) and (b) are diagrams showing still another example of the information display panel used in the information display device of the present invention. [FIG.
  • FIG. 4 is a diagram showing an example of a shape of a partition wall in an information display panel of the information display device of the present invention.
  • FIG. 5 is a diagram showing a procedure for measuring the surface potential of particles used in the information display device of the present invention.
  • an electric field is applied to the information display panel in which a display medium is sealed between the opposing substrates by some means.
  • a display medium charged to a low potential is attracted by Coulomb force or the like in a direction of a high potential electric field, and a display medium charged to a high potential is attracted by a Coulomb force or the like in a direction of a low potential electric field.
  • Information is displayed by changing the moving direction of these display media along the direction of the electric field. Therefore, it is necessary to design an information display panel so that the display medium can move uniformly and maintain stability during repetition or storage.
  • the particles for the display medium constituting the display medium In addition to the force attracting each other due to the Coulomb force between the particles, the force may be an electric image force with an electrode, an intermolecular force, a liquid bridging force, gravity, or the like.
  • At least two or more types of display media 3 (here, white) having different optical reflectivities and charging characteristics are also configured, each of which has at least one type of particle force.
  • the color display medium 3W and the black display medium 3B are moved perpendicularly to the substrate 2 according to the electric field applied from an electrode (not shown) arranged outside the substrate 2, and the black display medium 3B is observed. Either a black display is made by the viewer or a white display is made by making the viewer visually recognize the white display medium 3W.
  • a partition wall 4 is formed in a lattice shape between the substrate 2 and the cell to form a cell.
  • a partition in the foreground is omitted.
  • At least two or more types of display media 3 having different optical reflectances and charging characteristics are perpendicular to the substrate 2 according to the electric field generated by applying a voltage between the electrode 5 provided on the substrate 1 and the electrode 6 provided on the substrate 2.
  • the black display medium 3B is visually recognized by the observer to perform black display, or the white display medium 3W is visually recognized by the observer to perform white display.
  • partition walls 4 are formed in a lattice shape between the substrate 2 and the cells to form cells. Also, in FIG. 2 (b), a partition wall in the foreground is omitted.
  • one type of display medium 3 (here, white display medium 3W, (Shown) is moved in a direction parallel to the substrate 2 in accordance with the electric field generated by applying a voltage between the electrodes 5 and 6 provided on the substrate 1 so that the white display medium 3W is visually recognized by an observer.
  • the color of the electrode 6 or the substrate 1 is displayed by displaying the color of the electrode 6 or the substrate 1 visually by an observer.
  • grid-like partition walls 4 are provided between the substrates 1 and 2 to form cells. Also In FIG. 3 (b), the partition in front is omitted.
  • the method for producing particles for display media of the present invention one or more types of display media are sealed between two opposing substrates, at least one of which is transparent, and the display media is moved by an electric field generated in the substrates. 1 (a), (b) to 3 (a), 3 (b), which are used to display information such as images.
  • a suspension polymerization method is used!
  • At least one kind of display medium particles among the one or more kinds of display medium particles sealed between the two substrates is formed by suspension polymerization of a particle material containing a monomer.
  • the neutral component of at least a plurality of types of monomers including at least an acrylic monomer, a methacrylic monomer, and a styrene monomer is also selected as the resin component constituting the particles for display media.
  • particles for a display medium having a particle diameter of ⁇ are produced.
  • a charge control agent which is hardly soluble in the monomer before polymerization, is contained by dispersion, and then, as a stabilizer during suspension polymerization, polyoxygen is contained in one molecule.
  • Suspension is performed using a surfactant having both alkylene chain and sulfonate functional groups.
  • the drive voltage for moving the particles increases as in the case of the particles for a display medium using a monomer-soluble charge control agent. Or the amount of charge required as particles for display media cannot be secured unlike the case of particles for display media using a polymer suspension stabilizer as a stabilizer during suspension polymerization.
  • the drive voltage for moving the particles is reduced, and the particles for the display medium, in which the charge amount required for the particles for the display medium is secured, can be manufactured.
  • At least one substrate is a transparent substrate in which the color of particles can be confirmed from the outside of the information display panel, and a material having high visible light transmittance and good heat resistance is preferable. is there.
  • the substrate on the back side can be either transparent or opaque.
  • the substrate material examples include polymer sheets such as polyethylene terephthalate, polyethersulfone, polyethylene, polycarbonate, polyimide, and acrylic; flexible sheets such as metal sheets; and non-flexible inorganic sheets such as glass and quartz.
  • the thickness of the substrate is preferably 2 to 5000 ⁇ m, more preferably 5 to 2000 ⁇ m. If it is too thin, it is difficult to maintain strength and uniformity between the substrates.If it is more than 5000 / zm, it is thin. This is inconvenient when used as an information display panel.
  • the electrode 6 provided on the front substrate 2 side which is on the viewing side and needs to be transparent is formed of a transparent and patternable conductive material,
  • a transparent and patternable conductive material For example, metals such as aluminum, silver, nickel, copper, and gold; transparent conductive metal oxides such as ITO, indium oxide, conductive tin oxide, and conductive zinc oxide; polyaline, polypyrrole, and polythiophene; These conductive polymers are exemplified and appropriately selected for use.
  • Examples of the method of forming an electrode include a method of forming the above-described materials into a thin film by a sputtering method, a vacuum deposition method, a CVD (chemical vapor deposition) method, a coating method, or the like, or a method in which a conductive agent is mixed with a solvent or a synthetic resin binder. Or a method of applying.
  • the thickness of the electrode is preferably 3 to: LOOO nm, and more preferably 5 to 4 OO nm, as long as the conductivity can be ensured and the light transmittance is not hindered.
  • the material and thickness of the electrode 5 provided on the rear substrate 1 side are the same as those of the electrode 6 described above, but need not be transparent. In this case, the external voltage input may be superimposed on direct current or alternating current.
  • the shape of the partition wall 4 provided as required is optimally set as appropriate according to the type of the particle group involved in the display, and is not particularly limited, but the width of the partition wall is 2 to: LOO / zm or preferably 3
  • the height of the partition is adjusted to 10 to 500 ⁇ m, preferably 10 to 200 ⁇ m.
  • a two-rib method in which ribs are formed on each of both opposing substrates and then joined, or a one-rib method in which ribs are formed only on one side of the substrate can be considered. In the present invention, any of the methods is suitably used.
  • the cells formed by the ribs having the rib force are exemplified by a square, a triangle, a line, a circle, and a hexagon when viewed from the substrate plane direction.
  • Examples of the shape include a honeycomb shape and a mesh shape. Display side force It is better to minimize the visible area (area of the cell frame) corresponding to the partition wall cross section. Increase.
  • examples of the method for forming the partition include a mold transfer method, a screen printing method, a sand blast method, a photolithographic method, and an additive method. Of these, a photolithography method using a resist film and a mold transfer method are preferably used.
  • the display medium particles are negatively charged or positively charged colored particles, and any particles may be used as long as they move due to Coulomb force or the like.Particularly, spherical particles having a small specific gravity! is there.
  • the method for negatively or positively charging the particles is not particularly limited, and a method for charging the particles such as a corona discharge method, an electrode injection method, and a friction method is used.
  • the surface charge density of the particles measured by a blow-off method using a ferrite carrier is preferably 10 to LOO ⁇ C / m 2 in absolute value. If the absolute value of the surface charge density is lower than this range, the response speed to a change in the electric field becomes slow, and the memory property also becomes low. If the absolute value of the surface charge density is higher than this range, the image force on the electrode or the substrate is too strong, and the memory property is good, but the follow-up performance when the electric field is reversed is poor.
  • the measurement of the amount of charge and the measurement of the specific gravity of the particles necessary for obtaining the surface charge density used in the present invention were performed as follows.
  • a mixture of powder and carrier is placed in a cylindrical container having meshes at both ends, and the powder and carrier are separated by blowing high-pressure gas at one end, and only the powder is separated from the mesh opening. Blow off.
  • a charge amount equal to and opposite to the charge amount that the powder has taken out of the container remains on the carrier. All of the electric flux due to this charge is collected in a Faraday cage, and the capacitor is charged by that amount. Then, by measuring the potential at both ends of the capacitor, the charge amount Q of the powder is
  • blow-off powder charge amount measuring device TB-200 manufactured by Toshiba Chemical Corporation was used.
  • a ferrite-based carrier is used to measure the charge amount of the particles to be measured.
  • the same type of carrier is used when measuring the charge amount of each display medium particle. Specifically, Dowa Iron Powder Industry Co., Ltd.
  • the charge amount of the particles was measured using DFC100 wrinkle (Mn-Mg-containing ferrite), and was calculated as the surface charge density of the particles from the particle density determined separately.
  • the particle specific gravity was measured with a Shimadzu Corporation hydrometer and a multi-volume density meter H1305.
  • volume resistivity 1 X 10 10 ⁇ -cm or more insulating particles is preferably tool particularly volume resistivity 1 X 10 12 ⁇ 'cm or more Insulating particles are preferred. Further, particles having a slow charge decay property evaluated by the method described below are more preferable.
  • the particles to be measured are arranged on the surface of a roll-shaped measuring jig, and a voltage of 8 KV is applied to a corona discharger arranged at an interval of 1 mm from the surface of the arranged particles to perform corona discharge.
  • the generated particles are charged on the surface, and the change in the surface potential is measured and determined.
  • it is important to select and prepare the particle constituting material so that the maximum value of the surface potential after 0.3 seconds is higher than 300 V, preferably higher than 400 V.
  • the measurement of the surface potential can be performed by, for example, an apparatus (CRT2000 manufactured by QEA) shown in FIG.
  • CRT2000 manufactured by QEA an apparatus shown in FIG.
  • both ends of the shaft of the above-described needle-shaped measuring jig having the particles to be measured disposed thereon are held by chucks 21, and a small scorotron discharger 22 and a surface electrometer 23 are provided.
  • a measurement unit with a predetermined distance is placed opposite to the surface of the particle to be measured at a distance of lmm, and the measurement unit is placed on the surface of the jig for roll measurement while the jig for roll measurement is stationary.
  • a method of measuring the surface potential while giving a surface charge by moving the particle at one end to the other end at a constant speed is preferably adopted.
  • the measurement environment is temperature 25 ⁇ 3 ° C and humidity 55 ⁇ 5RH%.
  • the particles may be composed of any material as long as the charging performance and the like are satisfied.
  • a resin, a charge control agent, a coloring agent, an inorganic additive, and the like can be formed.
  • the particles those having a glass transition temperature Tg of the resin constituting the particles of 60 ° C or more are preferably used. Good.
  • the particles can contain a charge control agent, a coloring agent, an inorganic additive, and the like in the resin as a main component, as in the conventional case. Examples of resins, charge control agents, coloring agents, and other additives are described below.
  • the resin examples include urethane resin, urethane resin, acrylic resin, polyester resin, acrylic urethane resin, acrylic urethane silicone resin, acrylic urethane fluorine resin, acrylic fluorine resin, Silicone resin, acrylic silicone resin, epoxy resin, polystyrene resin, styrene acrylic resin, polyolefin resin, butyral resin, vinylidene chloride resin, melamine resin, phenol resin, fluorine resin, polycarbonate. Fat, polysulfone resin, polyether resin, polyamide resin, and the like, and two or more kinds can be mixed.
  • the charge control agent used as needed is not particularly limited.
  • the negative charge control agent include a salicylic acid metal complex, a metal-containing azo dye, Oil-soluble dyes containing metals (including metal ions and metal atoms), quaternary ammomium-based compounds, Rick's allylene conjugates, boron-containing compounds (boron benzylate complex), nitroimidazole derivatives, etc.
  • the positive charge control agent include a nig mouth dye, a triphenylmethane compound, a quaternary ammonium salt compound, a polyamine resin, and an imidazole derivative.
  • metal oxides such as ultrafine silica, ultrafine titanium oxide and ultrafine alumina, nitrogen-containing cyclic compounds such as pyridine and derivatives and salts thereof, various organic pigments, and resins containing fluorine, chlorine, nitrogen, etc. Is also used as a charge control agent.
  • colorant various kinds of organic or inorganic pigments and dyes as exemplified below can be used.
  • black colorant examples include carbon black, copper oxide, dimanganese diacid, arin black, activated carbon and the like.
  • Blue colorants include CI Pigment Blue 15: 3, CI Pigment Blue 15, dark blue, cobalt blue, alkali blue lake, Victoria blue lake, and phthalocyanine. Blue, metal-free phthalocyanine blue, partially chlorinated phthalocyanine blue, First Sky Blue, Indanthrene Blue BC and the like.
  • Red colorants include Bengala, Cadmium Red, Lead Tan, Mercury Sulfide, Cadmium, Permanent Red 4R, Linole Red, Pyrazolone Red, Watching Red, Calcium Salt, Lake Red D, Brilliant Carmine 6B, Eosin Lake, Rhodamine Lake B, Aliza Lin Lake, Brilliant Carmine 3B, CI Pigment Red 2, etc.
  • yellow colorant examples include graphite, zinc yellow, cadmium yellow, yellow iron oxide, mineral yellow, nickel yellow titanium yellow, nev no yellow, naphtho no yellow yellow S, nonzai yellow G, hanzi yellow 10G, benzidine Yellow G, Benzijin Yellow GR, Quinoline Yellow Lake, Permanent Yellow NCG, Tartrazine Lake, CI Pigment Yellow 12 and others.
  • green colorant examples include chrome green, oxidized chromium, pigment green B, CI pigment green 7, malachite green lake, and huainanorayello green G.
  • Orange colorants include red lead, molybdenum orange, permanent orange GTR, pyrazolone age range, norecan age range, indanthrene brilliant age range RK :, benzidine age range G, indanthrene brilliant age range GK, CI Pigment Age Range 3 1 mag.
  • Purple colorants include manganese violet, first violet B, methyl violet lake, and the like.
  • white colorants include zinc white, titanium oxide, antimony white, zinc sulfate, and the like.
  • Examples of the extender include norite powder, barium carbonate, clay, silica, white carbon, talc, and alumina white.
  • Various dyes such as basic, acidic, disperse and direct dyes include Nigguchi Shin, Methylene Blue, Rose Bengal, Quinoline Yellow and Ultramarine Blue.
  • inorganic additives include titanium oxide, zinc white, zinc sulfide, antimony oxide, calcium carbonate, lead white, talc, silica, calcium silicate, alumina white, cadmium yellow, cadmium red, and cadmium. Orange, titanium yellow, navy blue, ultramarine, cobalt blue, cobalt green, cobalt violet, iron oxide, carbon black, manganese black Elite black, cobalt ferrite black, copper powder, aluminum powder, and the like. These pigments and inorganic additives can be used alone or in combination. Of these, carbon black is particularly preferred as the black pigment, and titanium oxide is preferred as the white pigment.
  • the particles used in the present invention preferably have an average particle diameter d (0.5) in the range of 1 to 50 ⁇ m, and are preferably uniform. If the average particle diameter d (0.5) is larger than this range, the display lacks sharpness. If the average particle diameter d (0.5) is smaller than this range, the cohesive force between the particles becomes too large, which hinders the movement of the particles.
  • the particle size distribution Span represented by the following formula is set to less than 5, preferably less than 3.
  • d (0.5) is the numerical value of the particle diameter in which 50% of the particles are larger and 50% is smaller than this, expressed in m
  • d (0.1) is the particle in which the ratio of particles smaller than 10% is 10%.
  • the particle diameter is expressed as / zm
  • d (0.9) is the particle diameter at which 90% of the particles are 90% or less./zm.
  • the ratio of d (0.5) of the particle having the minimum diameter to d (0.5) of the particle having the maximum diameter is 50 or less, preferably 10 or less. It is important to do so. Even if the particle size distribution Span is reduced, particles with different charging characteristics move in opposite directions, so that particles with similar particle sizes can easily move in opposite directions by an equivalent amount. It is preferable that the force falls within this range.
  • the above-mentioned particle size distribution and particle size can be determined by a laser diffraction Z scattering method or the like.
  • laser light is applied to the particles to be measured, a spatial light intensity distribution pattern of the diffracted Z scattered light is generated, and since this light intensity pattern has a correspondence with the particle size, the particle size and the particle size distribution are measured. it can.
  • the particle size and the particle size distribution in the present invention are obtained from a volume-based distribution. Specifically, using a Mastersizer2000 (Malvern Instruments Ltd.) measuring machine Then, the particles are put into a nitrogen stream, and the particle size and particle size distribution can be measured by the attached analysis software (software based on volume-based distribution using Mie theory).
  • the gas in the gap surrounding the display medium between the substrates which contributes to the improvement of display stability.
  • the relative humidity at 25 ° C of the gas in the voids be 60% RH or less, preferably 50% RH or less, and more preferably 35% RH or less.
  • the gap portion is defined as a portion sandwiched between the opposing substrates 1 and 2, and the electrodes 5 and 6 (the electrodes are placed inside the substrate).
  • the type of gas in the void portion is not limited as long as it is in the humidity range described above, but dry air, dry nitrogen, dry argon, dry helium, dry carbon dioxide, dry methane and the like are preferable.
  • This gas needs to be sealed in the information display panel so that its humidity is maintained.For example, filling of the display medium, assembling of the information display panel, etc. are performed in a predetermined humidity environment. It is important to provide a sealing material and a sealing method to prevent external moisture from entering the humidity.
  • the distance between the substrates in the information display panel of the information display device of the present invention is not particularly limited as long as the display medium can be moved and the contrast can be maintained, but is usually 10 to 500 m, preferably 10 to 500 m. Adjusted to 200 ⁇ m.
  • the volume occupancy of the display medium in the space between the opposing substrates is preferably 5 to 70%, more preferably 5 to 60%. If it exceeds 70%, movement of the display medium (particles for display medium) is hindered, and if it is less than 5%, the contrast tends to be unclear.
  • Methyl methacrylate monomer (manufactured by Kanto Chemical Reagent) 95mol% And trimethylolpropane triatalylate (A-TMPT: Shin-Nakamura-Danigaku) 5 mol%, as a positively-charged monomer poorly-soluble charge control agent-Grosiny-Danied product (Bontron N07: Orient Chemical) 3 parts by weight
  • a surfactant a liquid in which 5 parts by weight of carbon black (special black 5: Degussa) as a black pigment is dispersed by a sand mill and 2 parts by weight of lauryl baroxide (Paryl L: manufactured by NOF Corporation) is dissolved is used as a surfactant.
  • Sodium polyoxyethylene alkyl ether sulfate (Latemul E-118B: manufactured by Kao) is suspended and polymerized in purified water containing 0.5% carohydrate, filtered and dried, and then classified, (MD S-2: Japan -Umatic Industrial Co., Ltd.) to obtain particles having a particle size range of 5 to 20 ⁇ m.
  • the charge amount of the obtained particles was +80 ⁇ C / r, and the maximum value of the surface potential 0.3 seconds after the surface potential measurement was 470 V.
  • the T g (glass transition temperature) of the resin component of the particles was 102 ° C.
  • the negatively-chargeable particles include a styrene monomer (manufactured by Kanto Chemical Reagents) 95mol% and trimethylolpropane triatalylate (A-TMPT: Shin-Nakamura Idanagaku) 5mol%, and a negatively charged monomer-soluble charge.
  • A-TMPT Shin-Nakamura Idanagaku
  • 5 parts by weight of an acrylic charge control agent (Ataribase FCA1001N S: manufactured by Fujikura Kasei) as a control agent and 20 parts by weight of titanium oxide (Taipeta CR-50: manufactured by Ishihara Sangyo) as a white pigment were dispersed by a sand mill.
  • a liquid in which parts by weight of lauryl peroxide (Paryl L: manufactured by Nippon Oil & Fats) are dissolved is added to 0.5% of purified water containing 0.5% sodium polyoxyethylene alkyl ether sulfate (Latemul E-118B: manufactured by Kao) as a surfactant.
  • the particles After suspending and polymerizing, and further filtering and drying, the particles are classified using a classifier (MD S-2: manufactured by Japan-Umatic Co., Ltd.) to obtain a particle size range. Particles with a range of 5-20 m were obtained.
  • the charge amount of the obtained particles was 70 CZm 2 , and the maximum value of the surface potential was 0.3 V after 0.3 seconds from the surface potential measurement.
  • the T g (glass transition temperature) of the resin component of the particles was 95 ° C.
  • the positively chargeable particles and the negatively chargeable particles were charged by frictionally charging the particles by mixing and stirring equivalent amounts of both particles.
  • the mixed particles of the positively chargeable particles and the negatively chargeable particles are placed on two substrates (one of which is a glass substrate on which an inner ITO treatment is performed, and the other of which is a copper substrate) arranged through a 100 m spacer. Is filled at a volume occupancy of 30% to form an information display panel. Configured. When each of the ITO glass substrate and the copper substrate is connected to a power source, and ⁇ a DC voltage of 250 V is applied so that the glass substrate has a low potential and the copper substrate has a high potential, the positively-charged particles become low potential poles. The negatively-charged particles flew to the high-potential pole side, and the information display panel observed through the glass substrate was displayed in black.
  • Positively-chargeable particles include a positively charged monomer-soluble monomer in 95 mol% of methyl methacrylate monomer (manufactured by Kanto Chemical Reagents) and 5 mol% of trimethylolpropane triatalylate (A-TMPT: manufactured by Shin-Nakamura Idani) After dissolving 5 parts by weight of an acrylic resin charge control agent (Ataribase FCA21PS: Fujikura Kasei) as a control agent, 5 parts by weight of a carbon black (Special Black 5: Degussa) as a black pigment is sand-milled.
  • an acrylic resin charge control agent Ataribase FCA21PS: Fujikura Kasei
  • a carbon black Special Black 5: Degussa
  • the negatively chargeable particles the same particles as those in Example 1 were used.
  • the charging of the positively chargeable particles and the negatively chargeable particles was carried out by mixing and stirring equivalent amounts of both particles to frictionally charge the particles.
  • the mixed particles of the positively chargeable particles and the negatively chargeable particles are placed on two substrates (one of which is a glass substrate on which an inner ITO treatment is performed, and the other of which is a copper substrate) arranged through a 100 m spacer.
  • a 100 m spacer was filled at a volume occupancy of 30% to form an information display panel.
  • the positively-charged particles become low potential poles.
  • the negatively-charged particles flew to the high-potential pole side, and the information display panel observed through the glass substrate was displayed in black.
  • the drive voltage in Comparative Example 1 was determined when “the voltage at which the reflectance ratio between white display and black display becomes eight times” was defined as “drive voltage”.
  • the working voltage was 230 V, which was a large driving voltage almost twice that of the first embodiment.
  • Positively-chargeable particles include a methylmetharylate monomer (manufactured by Kanto Chemical Reagents) 95 mol% and trimethylolpropane triatalylate (A-TMPT: Shin-Nakamura-Danigaku) 5 mol%. 3 parts by weight of -Grosiny conjugate (Bontron N07: manufactured by Orient Chemical) as a control agent and 5 parts by weight of carbon black (Special Black 5: manufactured by Degussa) as a black pigment are dispersed by a sand mill, and 2 parts by weight of lauryl vero is further dispersed.
  • the liquid in which oxide (Paroil L: Nippon Oil & Fat) was dissolved was suspended and polymerized in purified water containing 0.5% sodium dodecyl sulfate (Kanto Chemical Reagents) as a surfactant. Lump formed when the monomer components However, it was difficult to obtain good particles.
  • Positively-chargeable particles include a methylmetharylate monomer (manufactured by Kanto Chemical Reagents) 95 mol% and trimethylolpropane triatalylate (A-TMPT: Shin-Nakamura-Danigaku) 5 mol%. 3 parts by weight of -Grosiny conjugate (Bontron N07: manufactured by Orient Chemical) as a control agent and 5 parts by weight of carbon black (Special Black 5: manufactured by Degussa) as a black pigment are dispersed by a sand mill, and 2 parts by weight of lauryl vero is further dispersed.
  • a liquid in which quicide (Paroil L: manufactured by Nippon Oil & Fats) is dissolved is added to a purified water prepared by adding 0.5% of a polyvinyl alcohol suspension stabilizer (Bhopal PVA-420: manufactured by Kuraray) as a surfactant.
  • a classifier MDS-2: manufactured by Nippon Pneumatic Industries, Ltd.
  • the charge amount of the obtained particles was +2 CZm 2 , and the maximum value of the surface potential 0.3 seconds after the measurement of the surface potential was 25 V.
  • the Tg (glass transition temperature) of the resin component of the particles was 102 ° C.
  • the same particles as those in Example 1 were used.
  • the positively chargeable particles and the negatively chargeable particles were charged by frictionally charging the particles by mixing and stirring equivalent amounts of both particles.
  • the mixed particles of the positively chargeable particles and the negatively chargeable particles are placed on two substrates (one of which is a glass substrate on which an inner ITO treatment is performed, and the other of which is a copper substrate) arranged through a 100 m spacer.
  • a glass substrate on which an inner ITO treatment is performed and the other of which is a copper substrate
  • Each of the ITO glass substrate and the copper substrate is connected to a power source, and a DC voltage of 250 V is applied so that the ITO glass substrate has a low potential and the copper substrate has a high potential.White particles and black particles are not separated. And a good display state could not be obtained.
  • the reasons are as follows: (1) The raw material of the particles for display media produced by suspension polymerization contains a charge control agent that is hardly soluble in the above monomers, and the charge control agent that is hardly soluble remains solid. (2) Suspension using a surfactant having both polyoxyalkylene chain and sulfonate functional groups in one molecule as a stabilizer during suspension polymerization. , And the like. According to (1), the charge control agent in the particles for the display medium is microscopically localized, causing non-uniform charging. Therefore, particles for the display medium partially including components driven at a low voltage are manufactured. Will be done.
  • the information display panel and the information display device using the particles for the display medium manufactured by the manufacturing method of the present invention are used for display units of electronic devices such as notebook personal computers, PDAs, mobile phones, and handy terminals, electronic books, electronic newspapers, etc.
  • card displays for point cards, IC cards, etc. electronic advertising, electronic POP, electronic price tags, electronic shelf labels, electronic It is suitably used for musical scores, display sections of RF-ID devices, etc.

Abstract

Particles for display medium for use in an information display unit comprising two opposed substrates at least one of which is transparent and, sealed therebetween, one or more types of display mediums wherein the display mediums are moved by an electric field generated in the substrates to thereby display images and other information. There are provided particles for display medium wherein those constituting at least one type of display medium among one or more types of display mediums are produced by suspension polymerization of particle raw materials including a monomer, and wherein a hardly soluble charge control agent is dispersed in the monomer prior to polymerization and thereafter suspension is effected with the use of a surfactant having two functional groups of polyoxyalkylene chain and sulfonic salt in each molecule as a suspension stabilizer.

Description

明 細 書  Specification
表示媒体用粒子の製造方法、その製造方法によって作製した表示媒体 用粒子およびそれを用いた情報表示装置  Method for producing particles for display medium, particles for display medium produced by the production method, and information display device using the same
技術分野  Technical field
[0001] 本発明は、少なくとも一方が透明な対向する 2枚の基板の間に 1種類以上の表示 媒体を封入し、基板内に発生させた電界により表示媒体を移動させて画像等の情報 を表示する情報表示装置に用いられる表示媒体用粒子 (以下、場合によっては粒子 と記載する)を製造する表示媒体用粒子の製造方法、該製造方法によって作製した 表示媒体用粒子、および、該表示媒体用粒子を用いた情報表示装置に関するもの である。  [0001] The present invention relates to a method of encapsulating one or more types of display media between two opposing substrates, at least one of which is transparent, and moving the display media by an electric field generated in the substrates to transfer information such as images. Method for producing display medium particles for producing display medium particles (hereinafter, sometimes referred to as particles) used for an information display device to be displayed, display medium particles produced by the production method, and the display medium The present invention relates to an information display device using particles for use.
背景技術  Background art
[0002] 従来より、液晶(LCD)に代わる情報表示装置として、電気泳動方式、エレクト口クロ ミック方式、サーマル方式、 2色粒子回転方式等の技術を用いた情報表示装置が提 案されている。  [0002] Hitherto, information display devices using technologies such as an electrophoresis system, an electrochromic system, a thermal system, and a two-color particle rotation system have been proposed as information display devices replacing liquid crystal (LCD). .
[0003] これら従来技術は、 LCDと比較すると、通常の印刷物に近い広い視野角が得られ る、消費電力が小さい、メモリー機能を有している等のメリットがあることから、次世代 の安価な情報表示装置に使用可能な技術として考えられており、携帯端末用情報表 示、電子ペーパー等への展開が期待されている。特に最近では、分散粒子と着色溶 液力 成る分散液をマイクロカプセルィ匕し、これを対向する基板間に配置して成る電 気泳動方式が提案され、期待が寄せられている。  [0003] These conventional technologies have advantages such as a wide viewing angle close to ordinary printed matter, low power consumption, and a memory function as compared with LCDs. It is considered as a technology that can be used for various information display devices, and is expected to be applied to information display for mobile terminals and electronic paper. In particular, recently, an electrophoresis method in which a dispersion liquid composed of dispersed particles and a coloring solution is microencapsulated and disposed between opposed substrates has been proposed and expected.
[0004] し力しながら、電気泳動方式では、液中を粒子が泳動するために液の粘性抵抗に より応答速度が遅くなるという問題がある。さらに、低比重の溶液中に酸ィ匕チタン等の 高比重の粒子を分散させているため沈降しやすくなつており、分散状態の安定性維 持が難しぐ情報繰り返し安定性に欠けるという問題を抱えている。また、マイクロカブ セルィ匕にしても、セルサイズをマイクロカプセルレベルにして、見力け上、上述した欠 点が現れに《して 、るだけであって、本質的な問題は何ら解決されて 、な 、。  [0004] However, in the electrophoresis method, there is a problem that the response speed is reduced due to the viscous resistance of the liquid because particles migrate in the liquid. In addition, since particles of high specific gravity such as titanium oxide are dispersed in a solution of low specific gravity, sedimentation is likely to occur, and the stability of the dispersed state is difficult to maintain. Have In addition, even in the case of a micro cub, the cell size is set to the microcapsule level, and the above-mentioned drawbacks appear in the visual sense. , Na,.
[0005] 一方、溶液中での挙動を利用する電気泳動方式に対し、溶液を使わず、導電性粒 子と電荷輸送層とを基板の一部に組み入れる方式も提案され始めて 、る(例えば、 趙 国来、外 3名、 "新しいトナーディスプレイデバイス (1) "、 1999年 7月 21日、日本 画像学会年次大会(通算 83回)" Japan Hardcopy' 99"論文集、 p.249-252参照)。し かし、電荷輸送層、さらには電荷発生層を配置するために構造が複雑化するとともに 、導電性粒子に電荷を一定に注入することは難しいため、安定性に欠けるという問題 もめる。 [0005] On the other hand, in contrast to the electrophoresis method using behavior in a solution, a conductive particle is used without using a solution. A method of incorporating a carrier and a charge transport layer into a part of a substrate has begun to be proposed (for example, Guo Lao Zhao and three others, "New Toner Display Device (1)", July 21, 1999, Japan Image Annual conference (83 times in total), "Japan Hardcopy '99", pp.249-252. However, the arrangement of the charge transport layer and the charge generation layer complicates the structure, and it is difficult to inject charges uniformly into the conductive particles, which causes a problem of lack of stability.
[0006] 上述した種々の問題を解決するための一方法として、少なくとも一方が透明な対向 する 2枚の基板の間に 1種類以上の表示媒体を封入し、基板内に発生させた電界に より表示媒体を移動させて画像等の情報を表示する情報表示装置が知られている。 このような表示媒体を移動させるタイプの情報表示装置では、表示媒体を構成する 表示媒体用粒子の正負の性格付けおよび帯電量の確保が容易になることから、ァク リル系榭脂、メタクリル系榭脂、スチレン系榭脂等のモノマーを表示媒体用粒子の材 料として使用して製造した、例えば粒子径カ^〜 50 m程度の表示媒体用粒子を用 いている。  [0006] As one method for solving the above-mentioned various problems, one or more types of display media are sealed between two opposing substrates, at least one of which is transparent, and an electric field generated in the substrates is used. 2. Description of the Related Art An information display device for displaying information such as an image by moving a display medium is known. In such an information display device of the type in which the display medium is moved, since the positive and negative characteristics of the particles for the display medium constituting the display medium and the charge amount can be easily secured, the acrylic resin and the methacrylic For example, particles for display media having a particle diameter of about 50 to 50 m manufactured using a monomer such as resin or styrene resin as a material for display medium particles are used.
[0007] 上記のような表示媒体用粒子の製造方法としては、粉砕を用いる方法や懸濁重合 を用いる方法があるが、工程の簡素化、低消費エネルギー化、目的の粒子径の表示 媒体用粒子を直接的に得ると 、つた目的を達成するためには、粉砕を用いる方法よ りも懸濁重合を用いる方法の方が効果的である。その際、帯電量の制御および粒子 内の帯電の均一な分散を目的として、上記モノマーに溶解する荷電制御剤を含有さ せるのが一般的である。また、懸濁重合時の安定剤として、ポリビニルアルコール等 の高分子系懸濁安定剤を使用するのが一般的であり、その理由は、高分子系懸濁 安定剤は、一般に、低分子の界面活性剤に比べて懸濁安定性が高いからである。こ れら懸濁安定剤は、一般に、モノマー等の油系材料が液滴となった懸濁質と水等の 懸濁媒体との界面に存在することになる。  [0007] As a method for producing particles for display media as described above, there are a method using pulverization and a method using suspension polymerization. However, the process is simplified, energy consumption is reduced, and a display medium having a target particle diameter is obtained. When particles are obtained directly, a method using suspension polymerization is more effective than a method using pulverization in order to achieve the above object. At that time, it is common to include a charge control agent soluble in the monomer for the purpose of controlling the charge amount and uniformly dispersing the charge in the particles. In addition, a polymer suspension stabilizer such as polyvinyl alcohol is generally used as a stabilizer during suspension polymerization, because the polymer suspension stabilizer is generally a low molecular weight suspension stabilizer. This is because the suspension stability is higher than that of the surfactant. Generally, these suspension stabilizers are present at the interface between the suspension in which the oil-based material such as a monomer has been turned into droplets and a suspension medium such as water.
[0008] 表示媒体用粒子を製造する際にモノマー溶解性の荷電制御剤を使用した場合に は、情報表示の際に粒子を移動させるための駆動電圧が上昇する問題が生じる。そ の理由は、粒子内の帯電が平均化されてしまい低電圧で駆動できる表示媒体用粒 子が無くなることにより、低電圧で駆動できるある表示媒体用粒子に誘起されて他の 表示媒体用粒子が駆動するようになることがなくなる結果、駆動電圧を低下させる効 果が作用することがなくなってしまうからである。 [0008] In the case of using a monomer-soluble charge control agent when producing particles for a display medium, there arises a problem that a driving voltage for moving the particles during information display increases. The reason is that the charge in the particles is averaged out, and the particles for the display medium that can be driven at a low voltage are eliminated, so that the particles are induced by the particles for the display medium that can be driven at a low voltage, and other particles are generated. This is because, as a result, the particles for the display medium are not driven, so that the effect of reducing the driving voltage does not work.
[0009] また、懸濁重合時の安定剤として高分子系懸濁安定剤を使用した場合には、粒子 飛翔タイプの情報表示装置に用いる表示媒体用粒子として必要な帯電量が確保で きなくなるという問題が生じる。その理由は、懸濁重合法では、高分子系懸濁安定剤 が重合時に反応系に取り込まれて粒子界面でモノマー等と共重合してしまうためで あり、結果的に、粒子表面に残存した水酸基等の懸濁安定剤に起因する親水性官 能基力 粒子の帯電量を減少させることになるからである。  [0009] When a polymer suspension stabilizer is used as a stabilizer during suspension polymerization, the amount of charge required as particles for a display medium used in a particle flying type information display device cannot be secured. The problem arises. The reason for this is that in the suspension polymerization method, the polymer suspension stabilizer is taken into the reaction system during polymerization and copolymerizes with the monomer at the particle interface, and as a result, it remains on the particle surface. This is because the charge amount of the hydrophilic functional particles due to the suspension stabilizer such as a hydroxyl group is reduced.
発明の開示  Disclosure of the invention
[0010] 本発明は、駆動電圧が低減されるとともに表示媒体用粒子として必要な帯電量が 確保された表示媒体用粒子を製造する製造方法を提供することを第 1の目的とする 本発明は、駆動電圧を低減するとともに必要な帯電量を確保し得るようにした表示 媒体用粒子を用いた情報表示装置を提供することを第 2の目的とする。  [0010] The first object of the present invention is to provide a manufacturing method for manufacturing particles for display media in which the driving voltage is reduced and the required charge amount as particles for display media is ensured. It is a second object of the present invention to provide an information display device using particles for a display medium which can reduce a driving voltage and secure a required charge amount.
[0011] 上記第 1の目的を達成するため、本発明の表示媒体用粒子の製造方法は、少なく とも一方が透明な対向する 2枚の基板の間に 1種類以上の表示媒体用粒子を封入し 、基板内に発生させた電界により表示媒体用粒子を移動させて画像等の情報を表示 する情報表示装置に用いられる表示媒体用粒子を製造する、表示媒体用粒子の製 造方法であって、前記表示媒体用粒子の内の少なくとも 1種類以上の表示媒体用粒 子がモノマーを含む粒子原料を懸濁重合して生成される表示媒体用粒子であり、か つ、重合前の前記モノマーに難溶性の荷電制御剤を分散により含有させた後、懸濁 安定剤として 1分子中にポリオキシアルキレン鎖およびスルホン酸塩の両方の官能基 を有する界面活性剤を使用して懸濁することを特徴とする。 [0011] In order to achieve the first object, the method for producing particles for display media of the present invention comprises enclosing at least one type of particles for display media between two opposing transparent substrates. A method for producing particles for display media, wherein the particles for display media are moved by an electric field generated in a substrate to produce particles for display media used in an information display device that displays information such as an image. At least one kind of the particles for the display medium among the particles for the display medium is particles for the display medium produced by suspension polymerization of a particle material containing a monomer, and After incorporating a poorly soluble charge control agent by dispersion, suspending using a surfactant having both a polyoxyalkylene chain and a sulfonate functional group in one molecule as a suspension stabilizer. Features.
[0012] 本発明の表示媒体用粒子は、上記表示媒体用粒子の製造方法によって作製した ことを特徴とする。 [0012] The particles for display media of the present invention are characterized by being produced by the method for producing particles for display media described above.
[0013] 本発明の表示媒体用粒子において、表示媒体用粒子を構成する榭脂成分が、少 なくともアクリル系モノマー、メタクリル系モノマーおよびスチレン系モノマーを含む複 数種のモノマーの中力 選択される 1種以上のモノマーを重合して成ること、前記表 示媒体用粒子を構成する榭脂のガラス転移温度 Tgが 60°C以上であること、前記表 示媒体用粒子の平均粒子径が 1〜50 μ mであること、フェライト系キャリアを用いて ブローオフ法により測定した前記表示媒体用粒子の表面電荷密度が絶対値で 10〜 lOO ^ C/m2であること、前記表示媒体用粒子が、その粒子表面と lmmの間隔を もって配置されたコロナ放電器に、 8KVの電圧を印加してコロナ放電を発生させて 粒子表面を帯電させた場合に、 0. 3秒後における粒子表面電位の最大値が 300V より大きい粒子であること、および、前記表示媒体用粒子の色が白色であること、前 記表示媒体用粒子の色が黒色であること、が好まし!/、。 [0013] In the particles for display media of the present invention, the resin component constituting the particles for display media is selected from neutrality of a plurality of monomers including at least an acrylic monomer, a methacrylic monomer and a styrene monomer. Is obtained by polymerizing one or more monomers, The glass transition temperature Tg of the resin constituting the particles for the display medium is 60 ° C. or higher, the average particle diameter of the particles for the display medium is 1 to 50 μm, and blow-off using a ferrite carrier. the surface charge density of the particles for display media measured by law is 10~ lOO ^ C / m 2 in absolute value, the particles for display media is, release corona arranged at a distance of the particle surface and lmm When a voltage of 8 KV is applied to the electric appliance to generate a corona discharge to charge the particle surface, the maximum value of the particle surface potential after 0.3 seconds is a particle larger than 300 V, and the indication It is preferable that the medium particles have a white color and the display medium particles have a black color!
[0014] 上記第 2の目的を達成するため、本発明の情報表示装置は、少なくとも一方が透明 な対向する 2枚の基板の間に、第 2発明〜第 8発明の何れ力 1つの表示媒体用粒子 を 1種類以上封入し、基板内に発生させた電界により表示媒体用粒子を移動させて 画像等の情報を表示することを特徴とする。  [0014] In order to achieve the second object, the information display device of the present invention comprises a display medium according to any one of the second to eighth inventions, wherein at least one of the two substrates is transparent. It is characterized by enclosing one or more kinds of particles for display and moving the particles for display medium by an electric field generated in the substrate to display information such as images.
[0015] 上記構成の本発明の表示媒体用粒子の製造方法によれば、少なくとも一方が透明 な対向する 2枚の基板の間に 1種類以上の表示媒体を封入し、基板内に発生させた 電界により表示媒体を移動させて画像等の情報を表示する情報表示装置に用いら れる表示媒体用粒子を製造する際には、前記表示媒体用粒子の内の少なくとも 1種 類以上の表示媒体用粒子がモノマーを含む粒子原料を懸濁重合して生成される表 示媒体用粒子であり、かつ、重合前の前記モノマーに難溶性の荷電制御剤を分散に より含有させた後、懸濁安定剤として 1分子中にポリオキシアルキレン鎖およびスルホ ン酸塩の両方の官能基を有する界面活性剤を使用して懸濁するから、モノマー溶解 性の荷電制御剤を使用した場合の粒子を移動させるための駆動電圧が上昇する問 題、および、懸濁重合時の安定剤として高分子系懸濁安定剤を使用した場合に発生 する表示媒体用粒子として必要な帯電量が確保できなくなる問題が生じることはない 。したがって、粒子を移動させるための駆動電圧が低減されるとともに表示媒体用粒 子として必要な帯電量が確保された表示媒体用粒子を製造する製造方法を提供す ることがでさる。  According to the method for producing particles for a display medium of the present invention having the above structure, at least one type of display medium is sealed between two opposing substrates which are transparent, and generated in the substrates. When manufacturing particles for a display medium used in an information display device that displays information such as an image by moving a display medium by an electric field, at least one or more of the particles for a display medium are used for the display medium. The particles are particles for a display medium produced by suspension polymerization of a particle material containing a monomer, and after a charge control agent that is hardly soluble in the monomer before polymerization is dispersed, the suspension is stabilized. As a suspending agent, a surfactant having both a polyoxyalkylene chain and a sulfonate functional group in one molecule is used as a suspending agent, so particles are transferred when a monomer-soluble charge control agent is used. Drive voltage increases Problems, and the charge amount required as the particles for display media that occurs when using a polymeric suspension stabilizer is never able not become problems ensured as stabilizers when suspension polymerization. Accordingly, it is possible to provide a manufacturing method for manufacturing particles for display media in which the driving voltage for moving the particles is reduced and the charge amount required for the particles for display media is secured.
[0016] 本発明の表示媒体用粒子によれば、上記本発明の表示媒体用粒子の製造方法に よって製造されたものであるから、粒子を移動させるための駆動電圧が低減されると ともに表示媒体用粒子として必要な帯電量が確保された表示媒体用粒子を提供する ことができる。 According to the particles for a display medium of the present invention, since the particles are produced by the method for producing particles for a display medium of the present invention, the driving voltage for moving the particles is reduced. In both cases, it is possible to provide particles for display media in which the required charge amount as particles for display media is secured.
[0017] 本発明の情報表示装置によれば、少なくとも一方が透明な対向する 2枚の基板の 間に、表示媒体として請求項 2〜請求項 8の何れか 1項記載の表示媒体用粒子を 1 種類以上封入し、基板内に発生させたにより表示媒体用粒子を移動させて画像等の 情報を表示するようにしたから、粒子を移動させるための駆動電圧を低減するととも に必要な帯電量を確保し得るようにした表示媒体用粒子を用いた情報表示装置を提 供することができる。  According to the information display device of the present invention, the particles for a display medium according to any one of claims 2 to 8 are used as a display medium between two opposed substrates at least one of which is transparent. One or more types are enclosed, and the particles for display media are moved to display information such as images by generating them in the substrate.Therefore, the driving voltage for moving the particles is reduced and the required charge amount is increased. An information display device using particles for a display medium that can ensure the above can be provided.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 l] (a)、 (b)は本発明の情報表示装置に用いる情報表示用パネルの一例を示す 図である。  [FIG. 1] (a) and (b) are diagrams showing an example of an information display panel used in the information display device of the present invention.
[図 2] (a)、 (b)は本発明の情報表示装置に用いる情報表示用パネルの他の例を示 す図である。  2] (a) and (b) are diagrams showing another example of an information display panel used in the information display device of the present invention.
[図 3] (a)、 (b)は本発明の情報表示装置に用いる情報表示用パネルのさらに他の例 を示す図である。  3] (a) and (b) are diagrams showing still another example of the information display panel used in the information display device of the present invention. [FIG.
[図 4]本発明の情報表示装置の情報表示用パネルにおける隔壁の形状の一例を示 す図である。  FIG. 4 is a diagram showing an example of a shape of a partition wall in an information display panel of the information display device of the present invention.
[図 5]本発明の情報表示装置に用いる粒子の表面電位の測定要領を示す図である。 発明を実施するための最良の形態  FIG. 5 is a diagram showing a procedure for measuring the surface potential of particles used in the information display device of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
[0019] まず、本発明の情報表示装置に用いる、表示媒体用粒子を用いた情報表示用パ ネルの構成について説明する。本発明の情報表示用パネルでは、対向する基板間 に表示媒体を封入した情報表示用パネルに何らかの手段でその基板内に電界が付 与される。高電位の電界方向に向力つては低電位に帯電した表示媒体がクーロン力 などによって引き寄せられ、また低電位の電界方向に向力つては高電位に帯電した 表示媒体がクーロン力などによって引き寄せられ、それら表示媒体が電界方向に沿 つて移動方向を変えることにより、情報表示がなされる。従って、表示媒体が、均一に 移動し、かつ、繰り返し時あるいは保存時の安定性を維持できるように、情報表示用 パネルを設計する必要がある。ここで、表示媒体を構成する表示媒体用粒子にかか る力は、粒子同士のクーロン力により引き付けあう力の他に、電極との電気影像力、 分子間力、液架橋力、重力などが考えられる。 First, the configuration of an information display panel using particles for a display medium used in the information display device of the present invention will be described. In the information display panel of the present invention, an electric field is applied to the information display panel in which a display medium is sealed between the opposing substrates by some means. A display medium charged to a low potential is attracted by Coulomb force or the like in a direction of a high potential electric field, and a display medium charged to a high potential is attracted by a Coulomb force or the like in a direction of a low potential electric field. Information is displayed by changing the moving direction of these display media along the direction of the electric field. Therefore, it is necessary to design an information display panel so that the display medium can move uniformly and maintain stability during repetition or storage. Here, the particles for the display medium constituting the display medium In addition to the force attracting each other due to the Coulomb force between the particles, the force may be an electric image force with an electrode, an intermolecular force, a liquid bridging force, gravity, or the like.
[0020] 本発明の情報表示装置が備える情報表示用パネルの例を、図 1 (a)、 (b)〜図 3 (a )、(b)に基づき説明する。  An example of an information display panel provided in the information display device of the present invention will be described with reference to FIGS. 1 (a) and 1 (b) to 3 (a) and 3 (b).
[0021] 図 1 (a)、 (b)に示す例では、それぞれが少なくとも 1種以上の粒子力も構成される 光学的反射率および帯電特性の異なる少なくとも 2種以上の表示媒体 3 (ここでは白 色表示媒体 3Wと黒色表示媒体 3Bを示す)を、基板 2の外部に配置した電極 (図 示せず)から加えられる電界に応じて、基板 2と垂直に移動させ、黒色表示媒体 3 Bを観察者に視認させて黒色の表示を行うか、あるいは、白色表示媒体 3Wを観察者 に視認させて白色の表示を行っている。なお、図 1 (b)に示す例では、図 1 (a)に示す 例に加えて、基板 2との間に例えば格子状に隔壁 4を設けセルを形成している。ま た、図 1 (b)において、手前にある隔壁は省略している。  In the examples shown in FIGS. 1 (a) and 1 (b), at least two or more types of display media 3 (here, white) having different optical reflectivities and charging characteristics are also configured, each of which has at least one type of particle force. The color display medium 3W and the black display medium 3B are moved perpendicularly to the substrate 2 according to the electric field applied from an electrode (not shown) arranged outside the substrate 2, and the black display medium 3B is observed. Either a black display is made by the viewer or a white display is made by making the viewer visually recognize the white display medium 3W. In the example shown in FIG. 1 (b), in addition to the example shown in FIG. 1 (a), for example, a partition wall 4 is formed in a lattice shape between the substrate 2 and the cell to form a cell. In addition, in FIG. 1 (b), a partition in the foreground is omitted.
[0022] 図 2 (a)、 (b)に示す例では、それぞれが少なくとも 1種以上の粒子力も構成される 光学的反射率および帯電特性の異なる少なくとも 2種以上の表示媒体 3 (ここでは白 色表示媒体 3Wと黒色表示媒体 3Bを示す)を、基板 1に設けた電極 5と基板 2に設け た電極 6との間に電圧を印加することにより発生する電界に応じて、基板 2と垂直 に移動させ、黒色表示媒体 3Bを観察者に視認させて黒色の表示を行うか、あるいは 、白色表示媒体 3Wを観察者に視認させて白色の表示を行っている。なお、図 2 (b) に示す例では、図 2 (a)に示す例に加えて、基板 2との間に例えば格子状に隔壁 4を設けセルを形成している。また、図 2 (b)において、手前にある隔壁は省略してい る。  In the examples shown in FIGS. 2 (a) and 2 (b), at least two or more types of display media 3 having different optical reflectances and charging characteristics (here, white The color display medium 3W and the black display medium 3B) are perpendicular to the substrate 2 according to the electric field generated by applying a voltage between the electrode 5 provided on the substrate 1 and the electrode 6 provided on the substrate 2. , The black display medium 3B is visually recognized by the observer to perform black display, or the white display medium 3W is visually recognized by the observer to perform white display. In the example shown in FIG. 2 (b), in addition to the example shown in FIG. 2 (a), for example, partition walls 4 are formed in a lattice shape between the substrate 2 and the cells to form cells. Also, in FIG. 2 (b), a partition wall in the foreground is omitted.
[0023] 図 3 (a)、 (b)に示す例では、少なくとも 1種以上の粒子力も構成される光学的反射 率および帯電性を有する 1種の表示媒体 3 (ここでは白色表示媒体 3Wを示す)を、 基板 1に設けた電極 5と電極 6との間に電圧を印加することにより発生する電界に応じ て、基板 2と平行方向に移動させ、白色表示媒体 3Wを観察者に視認させて白色 の表示を行うか、あるいは、電極 6または基板 1の色を観察者に視認させて電極 6ま たは基板 1の色の表示を行っている。なお、図 3 (b)に示す例では、図 3 (a)に示す例 に加えて、基板 1、 2との間に例えば格子状の隔壁 4を設けセルを形成している。また 、図 3 (b)において、手前にある隔壁は省略している。 In the examples shown in FIGS. 3 (a) and 3 (b), one type of display medium 3 (here, white display medium 3W, (Shown) is moved in a direction parallel to the substrate 2 in accordance with the electric field generated by applying a voltage between the electrodes 5 and 6 provided on the substrate 1 so that the white display medium 3W is visually recognized by an observer. The color of the electrode 6 or the substrate 1 is displayed by displaying the color of the electrode 6 or the substrate 1 visually by an observer. In the example shown in FIG. 3 (b), in addition to the example shown in FIG. 3 (a), for example, grid-like partition walls 4 are provided between the substrates 1 and 2 to form cells. Also In FIG. 3 (b), the partition in front is omitted.
[0024] 以下、本発明の特徴となる表示媒体を構成する表示媒体用粒子の製造方法につ いて詳細に説明する。本発明の表示媒体用粒子の製造方法は、少なくとも一方が透 明な対向する 2枚の基板の間に 1種類以上の表示媒体を封入し、基板内に発生させ た電界により表示媒体を移動させて画像等の情報を表示する図 1 (a)、 (b)〜図 3 (a) 、(b)の情報表示装置に使用し得る表示媒体用粒子を製造するものであり、工程の 簡素化、低消費エネルギー化、目的の粒子径の表示媒体用粒子を直接的に得ると いった目的を達成するために懸濁重合法を用いて!/、る。  Hereinafter, a method for producing particles for a display medium constituting a display medium, which is a feature of the present invention, will be described in detail. In the method for producing particles for display media of the present invention, one or more types of display media are sealed between two opposing substrates, at least one of which is transparent, and the display media is moved by an electric field generated in the substrates. 1 (a), (b) to 3 (a), 3 (b), which are used to display information such as images. In order to achieve the objectives of reducing energy consumption and directly obtaining particles for display media having a desired particle size, a suspension polymerization method is used!
[0025] 上記 2枚の基板の間に封入する 1種類以上の表示媒体用粒子の内の少なくとも 1 種類以上の表示媒体用粒子としては、モノマーを含む粒子原料を懸濁重合して生成 される表示媒体用粒子を用いているが、この表示媒体用粒子を構成する榭脂成分と して、少なくともアクリル系モノマー、メタクリル系モノマーおよびスチレン系モノマーを 含む複数種のモノマーの中力も選択される 1種以上のモノマーを使用して、粒子径 力^〜 の表示媒体用粒子を製造する。その際、帯電量および帯電状態の制 御のために、重合前の前記モノマーに難溶性の荷電制御剤を分散により含有させた 後、懸濁重合時の安定剤として、 1分子中にポリオキシアルキレン鎖およびスルホン 酸塩の両方の官能基を有する界面活性剤を使用して懸濁する。  [0025] At least one kind of display medium particles among the one or more kinds of display medium particles sealed between the two substrates is formed by suspension polymerization of a particle material containing a monomer. Although the particles for display media are used, the neutral component of at least a plurality of types of monomers including at least an acrylic monomer, a methacrylic monomer, and a styrene monomer is also selected as the resin component constituting the particles for display media. By using at least one kind of monomer, particles for a display medium having a particle diameter of ~ are produced. At that time, in order to control the amount of charge and the state of charge, a charge control agent, which is hardly soluble in the monomer before polymerization, is contained by dispersion, and then, as a stabilizer during suspension polymerization, polyoxygen is contained in one molecule. Suspension is performed using a surfactant having both alkylene chain and sulfonate functional groups.
[0026] したがって、本発明の表示媒体用粒子の製造方法によれば、モノマー溶解性の荷 電制御剤を使用した表示媒体用粒子の場合のように粒子を移動させるための駆動 電圧が上昇したり、懸濁重合時の安定剤として高分子系懸濁安定剤を使用した表示 媒体用粒子の場合のように表示媒体用粒子として必要な帯電量が確保できなくなつ たりすることがないので、粒子を移動させるための駆動電圧が低減されるとともに表示 媒体用粒子として必要な帯電量が確保された表示媒体用粒子を製造することができ る。  Therefore, according to the method for producing particles for a display medium of the present invention, the drive voltage for moving the particles increases as in the case of the particles for a display medium using a monomer-soluble charge control agent. Or the amount of charge required as particles for display media cannot be secured unlike the case of particles for display media using a polymer suspension stabilizer as a stabilizer during suspension polymerization. The drive voltage for moving the particles is reduced, and the particles for the display medium, in which the charge amount required for the particles for the display medium is secured, can be manufactured.
[0027] 以下、本発明の対象となる情報表示装置を構成する各部材について説明する。  Hereinafter, each member constituting the information display device according to the present invention will be described.
[0028] 基板につ!ヽては、少なくとも一方の基板は情報表示用パネル外側から粒子の色が 確認できる透明な基板であり、可視光の透過率が高くかつ耐熱性の良い材料が好適 である。背面側の基板は透明でも不透明でもカゝまわない。基板材料を例示すると、ポ リエチレンテレフタレート、ポリエーテルサルフォン、ポリエチレン、ポリカーボネート、 ポリイミド、アクリルなどのポリマーシートや、金属シートのように可とう性のあるもの、お よび、ガラス、石英などの可とう性のない無機シートが挙げられる。基板の厚みは、 2 -5000 μ mが好ましぐさらに 5〜2000 μ mが好適であり、薄すぎると、強度、基板 間の間隔均一性を保ちにくくなり、 5000 /z mより厚いと、薄型情報表示用パネルとす る場合に不都合がある。 Regarding the substrate, at least one substrate is a transparent substrate in which the color of particles can be confirmed from the outside of the information display panel, and a material having high visible light transmittance and good heat resistance is preferable. is there. The substrate on the back side can be either transparent or opaque. As an example of the substrate material, Examples include polymer sheets such as polyethylene terephthalate, polyethersulfone, polyethylene, polycarbonate, polyimide, and acrylic; flexible sheets such as metal sheets; and non-flexible inorganic sheets such as glass and quartz. Can be The thickness of the substrate is preferably 2 to 5000 μm, more preferably 5 to 2000 μm.If it is too thin, it is difficult to maintain strength and uniformity between the substrates.If it is more than 5000 / zm, it is thin. This is inconvenient when used as an information display panel.
[0029] 必要に応じて設ける電極 5、 6については、視認側であり透明である必要のある前 面基板 2側に設ける電極 6は、透明かつパターン形成可能である導電性材料で形成 され、例示すると、アルミニウム、銀、ニッケル、銅、金等の金属類や、 ITO、酸化イン ジゥム、導電性酸化錫、導電性酸化亜鉛等の透明導電金属酸化物類、ポリア-リン 、ポリピロール、ポリチォフェンなどの導電性高分子類が例示され、適宜選択して用 いられる。電極の形成方法としては、上記例示の材料をスパッタリング法、真空蒸着 法、 CVD (化学蒸着)法、塗布法等で薄膜状に形成する方法や、導電剤を溶媒や合 成榭脂バインダーに混合して塗布したりする方法が用いられる。なお、電極厚みは、 導電性が確保でき光透過性に支障がなければ良ぐ 3〜: LOOOnm、好ましくは 5〜4 OOnmが好適である。背面基板 1側に設ける電極 5の材質や厚みなどは上述した電 極 6と同様であるが、透明である必要はない。なお、この場合の外部電圧入力は、直 流あるいは交流を重畳しても良!、。  [0029] As for the electrodes 5 and 6 provided as needed, the electrode 6 provided on the front substrate 2 side which is on the viewing side and needs to be transparent is formed of a transparent and patternable conductive material, For example, metals such as aluminum, silver, nickel, copper, and gold; transparent conductive metal oxides such as ITO, indium oxide, conductive tin oxide, and conductive zinc oxide; polyaline, polypyrrole, and polythiophene; These conductive polymers are exemplified and appropriately selected for use. Examples of the method of forming an electrode include a method of forming the above-described materials into a thin film by a sputtering method, a vacuum deposition method, a CVD (chemical vapor deposition) method, a coating method, or the like, or a method in which a conductive agent is mixed with a solvent or a synthetic resin binder. Or a method of applying. The thickness of the electrode is preferably 3 to: LOOO nm, and more preferably 5 to 4 OO nm, as long as the conductivity can be ensured and the light transmittance is not hindered. The material and thickness of the electrode 5 provided on the rear substrate 1 side are the same as those of the electrode 6 described above, but need not be transparent. In this case, the external voltage input may be superimposed on direct current or alternating current.
[0030] 必要に応じて設ける隔壁 4については、その形状は表示にかかわる粒子群の種類 により適宜最適設定され、一概には限定されないが、隔壁の幅は 2〜: LOO /z m 好ま しくは 3〜50 μ mに、隔壁の高さは 10〜500 μ m、好ましくは 10〜200 μ mに調整さ れる。また、隔壁を形成するにあたり、対向する両基板の各々にリブを形成した後に 接合する両リブ法、片側の基板上にのみリブを形成する片リブ法が考えられる。本発 明では、いずれの方法も好適に用いられる。  [0030] The shape of the partition wall 4 provided as required is optimally set as appropriate according to the type of the particle group involved in the display, and is not particularly limited, but the width of the partition wall is 2 to: LOO / zm or preferably 3 The height of the partition is adjusted to 10 to 500 μm, preferably 10 to 200 μm. Further, in forming the partition, a two-rib method in which ribs are formed on each of both opposing substrates and then joined, or a one-rib method in which ribs are formed only on one side of the substrate can be considered. In the present invention, any of the methods is suitably used.
[0031] これらのリブ力 なる隔壁により形成されるセルは、図 4に示すごとぐ基板平面方 向からみて四角状、三角状、ライン状、円形状、六角状が例示され、配置としては格 子状ゃハニカム状や網目状が例示される。表示側力 見える隔壁断面部分に相当 する部分 (セルの枠部の面積)はできるだけ小さくした方が良ぐ表示状態の鮮明さが 増す。ここで、隔壁の形成方法を例示すると、金型転写法、スクリーン印刷法、サンド ブラスト法、フォトリソ法、アディティブ法が挙げられる。このうち、レジストフイルムを用 Vヽるフォトリソ法や金型転写法が好適に用いられる。 As shown in FIG. 4, the cells formed by the ribs having the rib force are exemplified by a square, a triangle, a line, a circle, and a hexagon when viewed from the substrate plane direction. Examples of the shape include a honeycomb shape and a mesh shape. Display side force It is better to minimize the visible area (area of the cell frame) corresponding to the partition wall cross section. Increase. Here, examples of the method for forming the partition include a mold transfer method, a screen printing method, a sand blast method, a photolithographic method, and an additive method. Of these, a photolithography method using a resist film and a mold transfer method are preferably used.
[0032] 以下、本発明の情報表示装置で用いる表示媒体用粒子 (以下、粒子という)につい て述べる。本発明では、表示媒体用粒子は負帯電性または正帯電性の着色粒子で 、クーロン力などにより移動するものであればいずれでも良いが、特に、球形で比重 の小さ!/、粒子が好適である。  Hereinafter, particles for a display medium (hereinafter, referred to as particles) used in the information display device of the present invention will be described. In the present invention, the display medium particles are negatively charged or positively charged colored particles, and any particles may be used as long as they move due to Coulomb force or the like.Particularly, spherical particles having a small specific gravity! is there.
[0033] 粒子を負または正に帯電させる方法は、特に限定されないが、コロナ放電法、電極 注入法、摩擦法等の粒子を帯電する方法が用いられる。フェライト系キャリアを用い てブローオフ法により測定した粒子の表面電荷密度が絶対値で 10〜: LOO μ C/m2 であることが好ましい。表面電荷密度の絶対値カこの範囲より低いと、電界の変化に 対する応答速度が遅くなり、メモリ性も低くなる。表面電荷密度の絶対値力 Sこの範囲よ り高いと、電極や基板への鏡像力が強すぎ、メモリ性はよいが、電界を反転した場合 の追随性が悪くなる。 [0033] The method for negatively or positively charging the particles is not particularly limited, and a method for charging the particles such as a corona discharge method, an electrode injection method, and a friction method is used. The surface charge density of the particles measured by a blow-off method using a ferrite carrier is preferably 10 to LOO μC / m 2 in absolute value. If the absolute value of the surface charge density is lower than this range, the response speed to a change in the electric field becomes slow, and the memory property also becomes low. If the absolute value of the surface charge density is higher than this range, the image force on the electrode or the substrate is too strong, and the memory property is good, but the follow-up performance when the electric field is reversed is poor.
本発明において用いた、表面電荷密度を求めるのに必要な、帯電量の測定および 粒子比重の測定は、以下によって行った。  The measurement of the amount of charge and the measurement of the specific gravity of the particles necessary for obtaining the surface charge density used in the present invention were performed as follows.
<ブローオフ測定原理および測定方法 >  <Blow-off measurement principle and measurement method>
ブローオフ法においては、両端に網を張った円筒容器中に粉体とキャリアの混合体 を入れ、一端力 高圧ガスを吹き込んで粉体とキャリアとを分離し、網の目開きから粉 体のみをブローオフ(吹き飛ばし)する。このとき、粉体が容器外に持ち去った帯電量 と等量で逆の帯電量がキャリアに残る。そして、この電荷による電束の全てはファラデ 一ケージで集められ、この分だけコンデンサは充電される。そこでコンデンサ両端の 電位を測定することにより、粉体の電荷量 Qは、  In the blow-off method, a mixture of powder and carrier is placed in a cylindrical container having meshes at both ends, and the powder and carrier are separated by blowing high-pressure gas at one end, and only the powder is separated from the mesh opening. Blow off. At this time, a charge amount equal to and opposite to the charge amount that the powder has taken out of the container remains on the carrier. All of the electric flux due to this charge is collected in a Faraday cage, and the capacitor is charged by that amount. Then, by measuring the potential at both ends of the capacitor, the charge amount Q of the powder is
Q = CV (C ;コンデンサ容量、 V;コンデンサ両端の電圧)  Q = CV (C: capacitance of capacitor, V: voltage across capacitor)
として求められる。  Is required.
ブローオフ粉体帯電量測定装置としては東芝ケミカル社製の TB-200を用いた。本 発明では、被測定粒子の帯電量測定にフェライト系キャリアを用いるが、情報表示用 パネルに例えば正帯電性の粒子と負帯電性の粒子との 2種類の表示媒体用粒子を 組み合わせて用いる場合にそれぞれの表示媒体用粒子の帯電量を測定するときに は同一種類のキャリアを用いる。具体的には、キャリアとして同和鉄粉工業 (株)製のAs a blow-off powder charge amount measuring device, TB-200 manufactured by Toshiba Chemical Corporation was used. In the present invention, a ferrite-based carrier is used to measure the charge amount of the particles to be measured. When used in combination, the same type of carrier is used when measuring the charge amount of each display medium particle. Specifically, Dowa Iron Powder Industry Co., Ltd.
DFC100 リンクル (Mn—Mg含有フェライト系)を用いて粒子の帯電量( μ C/g)を 測定し、別途求めた粒子比重から粒子の表面電荷密度として算出した。 The charge amount of the particles (μC / g) was measured using DFC100 wrinkle (Mn-Mg-containing ferrite), and was calculated as the surface charge density of the particles from the particle density determined separately.
<粒子比重測定方法 >  <Particle specific gravity measurement method>
粒子比重は、株式会社島津製作所製比重計、マルチボリゥム密度計 H1305にて測 し 7こ。  The particle specific gravity was measured with a Shimadzu Corporation hydrometer and a multi-volume density meter H1305.
[0034] 粒子は、その帯電電荷を保持する必要があるので、体積固有抵抗が 1 X 1010 Ω -c m以上の絶縁性粒子が好ましぐ特に体積固有抵抗が 1 X 1012 Ω 'cm以上の絶縁 性粒子が好ましい。また、以下に述べる方法で評価した電荷減衰性の遅い粒子がさ らに好ましい。 [0034] particles, the so charged is necessary to hold the charge, volume resistivity 1 X 10 10 Ω -cm or more insulating particles is preferably tool particularly volume resistivity 1 X 10 12 Ω 'cm or more Insulating particles are preferred. Further, particles having a slow charge decay property evaluated by the method described below are more preferable.
[0035] すなわち、ロール状の測定用治具の表面に被測定粒子を配置し、配置した粒子表 面と lmmの間隔をもって配置されたコロナ放電器に、 8KVの電圧を印加してコロナ 放電を発生させて粒子表面を帯電させ、その表面電位の変化を測定し判定する。こ の場合、 0. 3秒後における表面電位の最大値が 300Vより大きぐ好ましくは 400Vよ り大きくなるように、粒子構成材料を選択、作製することが肝要である。  That is, the particles to be measured are arranged on the surface of a roll-shaped measuring jig, and a voltage of 8 KV is applied to a corona discharger arranged at an interval of 1 mm from the surface of the arranged particles to perform corona discharge. The generated particles are charged on the surface, and the change in the surface potential is measured and determined. In this case, it is important to select and prepare the particle constituting material so that the maximum value of the surface potential after 0.3 seconds is higher than 300 V, preferably higher than 400 V.
[0036] なお、上記表面電位の測定は、例えば図 5に示した装置(QEA社製 CRT2000)に より行うことができる。この装置の場合は、前述した、表面に被測定粒子を配置した口 ール状の測定用治具のシャフト両端部をチャック 21にて保持し、小型のスコロトロン 放電器 22と表面電位計 23とを所定間隔離して併設した計測ユニットを上記被測定 粒子表面と lmmの間隔をもって対向配置し、上記ロール状測定用治具を静止した 状態のまま、上記計測ユニットをロール状測定用治具の表面に配置した粒子の一端 力 他端まで一定速度で移動させることにより、表面電荷を与えつつその表面電位を 測定する方法が好適に採用される。なお、測定環境は温度 25± 3°C、湿度 55± 5R H%とする。  The measurement of the surface potential can be performed by, for example, an apparatus (CRT2000 manufactured by QEA) shown in FIG. In the case of this device, both ends of the shaft of the above-described needle-shaped measuring jig having the particles to be measured disposed thereon are held by chucks 21, and a small scorotron discharger 22 and a surface electrometer 23 are provided. A measurement unit with a predetermined distance is placed opposite to the surface of the particle to be measured at a distance of lmm, and the measurement unit is placed on the surface of the jig for roll measurement while the jig for roll measurement is stationary. A method of measuring the surface potential while giving a surface charge by moving the particle at one end to the other end at a constant speed is preferably adopted. The measurement environment is temperature 25 ± 3 ° C and humidity 55 ± 5RH%.
[0037] 粒子は、帯電性能等が満たされれば、いずれの材料カゝら構成されても良い。例え ば、榭脂、荷電制御剤、着色剤、無機添加剤等力も形成することができる。粒子とし ては、粒子を構成する榭脂のガラス転移温度 Tgが 60°C以上のものを用いるのが好 ましい。粒子は、その主成分となる樹脂に、従来と同様に、荷電制御剤、着色剤、無 機添加剤等を含ますことができる。以下に、榭脂、荷電制御剤、着色剤、その他添加 剤を例示する。 [0037] The particles may be composed of any material as long as the charging performance and the like are satisfied. For example, a resin, a charge control agent, a coloring agent, an inorganic additive, and the like can be formed. As the particles, those having a glass transition temperature Tg of the resin constituting the particles of 60 ° C or more are preferably used. Good. The particles can contain a charge control agent, a coloring agent, an inorganic additive, and the like in the resin as a main component, as in the conventional case. Examples of resins, charge control agents, coloring agents, and other additives are described below.
[0038] 榭脂の例としては、ウレタン榭脂、ウレァ榭脂、アクリル榭脂、ポリエステル榭脂、ァ クリルウレタン榭脂、アクリルウレタンシリコーン榭脂、アクリルウレタンフッ素榭脂、ァ クリルフッ素榭脂、シリコーン榭脂、アクリルシリコーン榭脂、エポキシ榭脂、ポリスチレ ン榭脂、スチレンアクリル榭脂、ポリオレフイン榭脂、プチラール榭脂、塩化ビニリデン 榭脂、メラミン榭脂、フエノール榭脂、フッ素榭脂、ポリカーボネート榭脂、ポリスルフォ ン榭脂、ポリエーテル榭脂、ポリアミド榭脂等が挙げられ、 2種以上混合することもで きる。特に、基板との付着力を制御する観点から、アクリルウレタン榭脂、アクリルシリ コーン榭脂、アクリルフッ素榭脂、アクリルウレタンシリコーン榭脂、アクリルウレタンフ ッ素榭脂、フッ素榭脂、シリコーン榭脂が好適である。  [0038] Examples of the resin include urethane resin, urethane resin, acrylic resin, polyester resin, acrylic urethane resin, acrylic urethane silicone resin, acrylic urethane fluorine resin, acrylic fluorine resin, Silicone resin, acrylic silicone resin, epoxy resin, polystyrene resin, styrene acrylic resin, polyolefin resin, butyral resin, vinylidene chloride resin, melamine resin, phenol resin, fluorine resin, polycarbonate. Fat, polysulfone resin, polyether resin, polyamide resin, and the like, and two or more kinds can be mixed. In particular, from the viewpoint of controlling the adhesion to the substrate, acrylic urethane resin, acrylic silicone resin, acrylic fluorine resin, acrylic urethane silicone resin, acrylic urethane fluorine resin, fluorine resin, silicone resin. Is preferred.
[0039] 本発明で用いる荷電制御剤の他に、必要に応じて用いる荷電制御剤としては、特 に制限はないが、負荷電制御剤としては例えば、サリチル酸金属錯体、含金属ァゾ 染料、含金属 (金属イオンや金属原子を含む)の油溶性染料、 4級アンモ-ゥム塩系 化合物、力リックスアレンィ匕合物、含ホウ素化合物(ベンジル酸ホウ素錯体)、二トロイ ミダゾール誘導体等が挙げられる。正荷電制御剤としては例えば、ニグ口シン染料、 トリフエニルメタン系化合物、 4級アンモ-ゥム塩系化合物、ポリアミン榭脂、イミダゾ ール誘導体等が挙げられる。その他、超微粒子シリカ、超微粒子酸化チタン、超微 粒子アルミナ等の金属酸化物、ピリジン等の含窒素環状化合物及びその誘導体や 塩、各種有機顔料、フッ素、塩素、窒素等を含んだ榭脂等も荷電制御剤として用いる ことちでさる。  [0039] In addition to the charge control agent used in the present invention, the charge control agent used as needed is not particularly limited. Examples of the negative charge control agent include a salicylic acid metal complex, a metal-containing azo dye, Oil-soluble dyes containing metals (including metal ions and metal atoms), quaternary ammomium-based compounds, Rick's allylene conjugates, boron-containing compounds (boron benzylate complex), nitroimidazole derivatives, etc. No. Examples of the positive charge control agent include a nig mouth dye, a triphenylmethane compound, a quaternary ammonium salt compound, a polyamine resin, and an imidazole derivative. In addition, metal oxides such as ultrafine silica, ultrafine titanium oxide and ultrafine alumina, nitrogen-containing cyclic compounds such as pyridine and derivatives and salts thereof, various organic pigments, and resins containing fluorine, chlorine, nitrogen, etc. Is also used as a charge control agent.
[0040] 着色剤としては、以下に例示するような、有機または無機の各種、各色の顔料、染 料が使用可能である。  [0040] As the colorant, various kinds of organic or inorganic pigments and dyes as exemplified below can be used.
[0041] 黒色着色剤としては、カーボンブラック、酸化銅、二酸ィ匕マンガン、ァ-リンブラック 、活性炭等がある。  [0041] Examples of the black colorant include carbon black, copper oxide, dimanganese diacid, arin black, activated carbon and the like.
青色着色剤としては、 C. I.ビグメントブルー 15 : 3、 C. I.ビグメントブルー 15、紺 青、コバルトブルー、アルカリブルーレーキ、ビクトリアブルーレーキ、フタロシア-ン ブルー、無金属フタロシアニンブルー、フタロシアニンブルー部分塩素化物、ファー ストスカイブルー、インダンスレンブルー BC等がある。 Blue colorants include CI Pigment Blue 15: 3, CI Pigment Blue 15, dark blue, cobalt blue, alkali blue lake, Victoria blue lake, and phthalocyanine. Blue, metal-free phthalocyanine blue, partially chlorinated phthalocyanine blue, First Sky Blue, Indanthrene Blue BC and the like.
赤色着色剤としては、ベンガラ、カドミウムレッド、鉛丹、硫化水銀、カドミウム、パー マネントレッド 4R、リノールレッド、ピラゾロンレッド、ウォッチングレッド、カルシウム塩 、レーキレッド D、ブリリアントカーミン 6B、ェォシンレーキ、ローダミンレーキ B、ァリザ リンレーキ、ブリリアントカーミン 3B、 C. I.ビグメントレッド 2等がある。  Red colorants include Bengala, Cadmium Red, Lead Tan, Mercury Sulfide, Cadmium, Permanent Red 4R, Linole Red, Pyrazolone Red, Watching Red, Calcium Salt, Lake Red D, Brilliant Carmine 6B, Eosin Lake, Rhodamine Lake B, Aliza Lin Lake, Brilliant Carmine 3B, CI Pigment Red 2, etc.
[0042] 黄色着色剤としては、黄鉛、亜鉛黄、カドミウムイェロー、黄色酸化鉄、ミネラルファ 一ストイェロー、ニッケノレチタンイェロー、ネーブノレイエロー、ナフトーノレイェロー S、 ノヽンザイェロー G、ハンザイェロー 10G、ベンジジンイェロー G、ベンジジンイェロー GR、キノリンイェローレーキ、パーマネントイェロー NCG、タートラジンレーキ、 C. I. ビグメントイエロー 12等がある。 [0042] Examples of the yellow colorant include graphite, zinc yellow, cadmium yellow, yellow iron oxide, mineral yellow, nickel yellow titanium yellow, nev no yellow, naphtho no yellow yellow S, nonzai yellow G, hanzi yellow 10G, benzidine Yellow G, Benzijin Yellow GR, Quinoline Yellow Lake, Permanent Yellow NCG, Tartrazine Lake, CI Pigment Yellow 12 and others.
緑色着色剤としては、クロムグリーン、酸ィ匕クロム、ビグメントグリーン B、 C. I.ピグメ ントグリーン 7、マラカイトグリーンレーキ、フアイナノレイェローグリーン G等がある。 橙色着色剤としては、赤色黄鉛、モリブデンオレンジ、パーマネントオレンジ GTR、 ピラゾロン才レンジ、ノ ノレカン才レンジ、インダンスレンブリリアント才レンジ RK:、ベン ジジン才レンジ G、インダンスレンブリリアント才レンジ GK、 C. I.ピグメント才レンジ 3 1等がある。  Examples of the green colorant include chrome green, oxidized chromium, pigment green B, CI pigment green 7, malachite green lake, and huainanorayello green G. Orange colorants include red lead, molybdenum orange, permanent orange GTR, pyrazolone age range, norecan age range, indanthrene brilliant age range RK :, benzidine age range G, indanthrene brilliant age range GK, CI Pigment Age Range 3 1 mag.
紫色着色剤としては、マンガン紫、ファーストバイオレット B、メチルバイオレットレー キ等がある。  Purple colorants include manganese violet, first violet B, methyl violet lake, and the like.
白色着色剤としては、亜鉛華、酸化チタン、アンチモン白、硫ィ匕亜鉛等がある。  Examples of white colorants include zinc white, titanium oxide, antimony white, zinc sulfate, and the like.
[0043] 体質顔料としては、ノ ライト粉、炭酸バリウム、クレー、シリカ、ホワイトカーボン、タル ク、アルミナホワイト等がある。また、塩基性、酸性、分散、直接染料等の各種染料と して、ニグ口シン、メチレンブルー、ローズベンガル、キノリンイェロー、ウルトラマリン ブルー等がある。 [0043] Examples of the extender include norite powder, barium carbonate, clay, silica, white carbon, talc, and alumina white. Various dyes such as basic, acidic, disperse and direct dyes include Nigguchi Shin, Methylene Blue, Rose Bengal, Quinoline Yellow and Ultramarine Blue.
[0044] 無機系添加剤の例としては、酸化チタン、亜鉛華、硫化亜鉛、酸化アンチモン、炭 酸カルシウム、鉛白、タルク、シリカ、ケィ酸カルシウム、アルミナホワイト、カドミウムィ エロー、カドミウムレッド、カドミウムオレンジ、チタンイェロー、紺青、群青、コバルトブ ルー、コバルトグリーン、コバルトバイオレット、酸化鉄、カーボンブラック、マンガンフ エライトブラック、コバルトフェライトブラック、銅粉、アルミニウム粉などが挙げられる。 これらの顔料および無機系添加剤は、単独であるいは複数組み合わせて用いるこ とができる。このうち特に黒色顔料としてカーボンブラック力 白色顔料として酸化チ タンが好ましい。 Examples of inorganic additives include titanium oxide, zinc white, zinc sulfide, antimony oxide, calcium carbonate, lead white, talc, silica, calcium silicate, alumina white, cadmium yellow, cadmium red, and cadmium. Orange, titanium yellow, navy blue, ultramarine, cobalt blue, cobalt green, cobalt violet, iron oxide, carbon black, manganese black Elite black, cobalt ferrite black, copper powder, aluminum powder, and the like. These pigments and inorganic additives can be used alone or in combination. Of these, carbon black is particularly preferred as the black pigment, and titanium oxide is preferred as the white pigment.
[0045] また、本発明で用いる粒子は、平均粒子径 d(0.5)が、 1〜50 μ mの範囲であり、均 一で揃って 、ることが好ま 、。平均粒子径 d(0.5)がこの範囲より大き 、と表示上の鮮 明さに欠け、この範囲より小さいと粒子同士の凝集力が大きくなりすぎるために粒子 の移動に支障をきたすようになる。  The particles used in the present invention preferably have an average particle diameter d (0.5) in the range of 1 to 50 μm, and are preferably uniform. If the average particle diameter d (0.5) is larger than this range, the display lacks sharpness. If the average particle diameter d (0.5) is smaller than this range, the cohesive force between the particles becomes too large, which hinders the movement of the particles.
[0046] さらに、本発明では、各粒子の粒子径分布に関して、下記式に示される粒子径分 布 Spanを 5未満、好ましくは 3未満とする。  Further, in the present invention, regarding the particle size distribution of each particle, the particle size distribution Span represented by the following formula is set to less than 5, preferably less than 3.
Span= (d(0.9)-d(0.1)) /d(0.5)  Span = (d (0.9) -d (0.1)) /d(0.5)
(但し、 d(0.5)は粒子の 50%がこれより大きぐ 50%がこれより小さいという粒子径を mで表した数値、 d(0.1)はこれ以下の粒子の比率が 10%である粒子径を/ z mで表し た数値、 d(0.9)はこれ以下の粒子が 90%である粒子径を/ z mで表した数値である。 ) Spanを 5以下の範囲に納めることにより、各粒子のサイズが揃い、均一な粒子移動 が可能となる。  (However, d (0.5) is the numerical value of the particle diameter in which 50% of the particles are larger and 50% is smaller than this, expressed in m, and d (0.1) is the particle in which the ratio of particles smaller than 10% is 10%.) The particle diameter is expressed as / zm, and d (0.9) is the particle diameter at which 90% of the particles are 90% or less./zm.) By setting the Span within the range of 5 or less, The size is uniform and uniform particle movement is possible.
[0047] さらにまた、各粒子の相関について、使用した粒子の内、最大径を有する粒子の d(0.5)に対する最小径を有する粒子の d(0.5)の比を 50以下、好ましくは 10以下とする ことが肝要である。たとえ粒子径分布 Spanを小さくしたとしても、互いに帯電特性の異 なる粒子が互いに反対方向に動くので、互いの粒子サイズが近ぐ互いの粒子が当 量ずつ反対方向に容易に移動できるようにするのが好適であり、それ力この範囲とな る。  [0047] Further, regarding the correlation of each particle, of the particles used, the ratio of d (0.5) of the particle having the minimum diameter to d (0.5) of the particle having the maximum diameter is 50 or less, preferably 10 or less. It is important to do so. Even if the particle size distribution Span is reduced, particles with different charging characteristics move in opposite directions, so that particles with similar particle sizes can easily move in opposite directions by an equivalent amount. It is preferable that the force falls within this range.
[0048] なお、上記の粒子径分布および粒子径は、レーザー回折 Z散乱法などから求める ことができる。測定対象となる粒子にレーザー光を照射すると空間的に回折 Z散乱 光の光強度分布パターンが生じ、この光強度パターンは粒子径と対応関係があるこ とから、粒子径ぉよび粒子径分布が測定できる。  [0048] The above-mentioned particle size distribution and particle size can be determined by a laser diffraction Z scattering method or the like. When laser light is applied to the particles to be measured, a spatial light intensity distribution pattern of the diffracted Z scattered light is generated, and since this light intensity pattern has a correspondence with the particle size, the particle size and the particle size distribution are measured. it can.
ここで、本発明における粒子径および粒子径分布は、体積基準分布から得られた ものである。具体的には、 Mastersizer2000(Malvern Instruments Ltd.)測定機を用い て、窒素気流中に粒子を投入し、付属の解析ソフト (Mie理論を用いた体積基準分 布を基本としたソフト)にて、粒子径および粒子径分布の測定を行なうことができる。 Here, the particle size and the particle size distribution in the present invention are obtained from a volume-based distribution. Specifically, using a Mastersizer2000 (Malvern Instruments Ltd.) measuring machine Then, the particles are put into a nitrogen stream, and the particle size and particle size distribution can be measured by the attached analysis software (software based on volume-based distribution using Mie theory).
[0049] さらに、本発明においては基板間の表示媒体を取り巻く空隙部分の気体の管理が 重要であり、表示安定性向上に寄与する。具体的には、空隙部分の気体の湿度につ いて、 25°Cにおける相対湿度を 60%RH以下、好ましくは 50%RH以下、更に好まし くは 35%RH以下とすることが重要である。 Further, in the present invention, it is important to control the gas in the gap surrounding the display medium between the substrates, which contributes to the improvement of display stability. Specifically, it is important that the relative humidity at 25 ° C of the gas in the voids be 60% RH or less, preferably 50% RH or less, and more preferably 35% RH or less. .
この空隙部分とは、図 l (a)、(b)〜図 3 (a)、(b)において、対向する基板 1、基板 2 に挟まれる部分から、電極 5、 6 (電極を基板内側に設けた場合)、表示媒体 3の占有 部分、隔壁 4の占有部分 (隔壁を設けた場合)、情報表示用パネルシール部分を除 V、た、 V、わゆる表示媒体が接する気体部分を指すものとする。  In FIGS. L (a) and (b) to FIGS. 3 (a) and 3 (b), the gap portion is defined as a portion sandwiched between the opposing substrates 1 and 2, and the electrodes 5 and 6 (the electrodes are placed inside the substrate). Excluding display medium 3, occupied portion of display medium 3, occupied portion of partition 4 (when partition is provided), excluding information display panel seal portion V,,, V, refers to gas portion in contact with so-called display medium And
空隙部分の気体は、先に述べた湿度領域であれば、その種類は問わないが、乾燥 空気、乾燥窒素、乾燥アルゴン、乾燥へリウム、乾燥二酸化炭素、乾燥メタンなどが 好適である。この気体は、その湿度が保持されるように情報表示用パネルに封入する ことが必要であり、例えば、表示媒体の充填、情報表示用パネルの組み立てなどを 所定湿度環境下にて行い、さらに、外力 の湿度侵入を防ぐシール材、シール方法 を施すことが肝要である。  The type of gas in the void portion is not limited as long as it is in the humidity range described above, but dry air, dry nitrogen, dry argon, dry helium, dry carbon dioxide, dry methane and the like are preferable. This gas needs to be sealed in the information display panel so that its humidity is maintained.For example, filling of the display medium, assembling of the information display panel, etc. are performed in a predetermined humidity environment. It is important to provide a sealing material and a sealing method to prevent external moisture from entering the humidity.
[0050] 本発明の情報表示装置の情報表示用パネルにおける基板と基板との間隔は、表 示媒体が移動できて、コントラストを維持できればよいが、通常 10〜500 m、好まし くは 10〜200 μ m〖こ調整される。 [0050] The distance between the substrates in the information display panel of the information display device of the present invention is not particularly limited as long as the display medium can be moved and the contrast can be maintained, but is usually 10 to 500 m, preferably 10 to 500 m. Adjusted to 200 μm.
対向する基板間の空間における表示媒体の体積占有率は 5〜70%が好ましぐさ らに好ましくは 5〜60%である。 70%を超える場合には表示媒体 (表示媒体用粒子) の移動の支障をきたし、 5%未満の場合にはコントラストが不明確となり易い。  The volume occupancy of the display medium in the space between the opposing substrates is preferably 5 to 70%, more preferably 5 to 60%. If it exceeds 70%, movement of the display medium (particles for display medium) is hindered, and if it is less than 5%, the contrast tends to be unclear.
実施例  Example
[0051] 以下、本発明の実施例を示して、本発明をさらに具体的に説明するが、本発明は 下記に限定されるものではない。なお、以下の実施例では、図 1 (a)、(b)〜図 3 (a)、 (b)の情報表示用パネルに使用し得る表示媒体用粒子を製造した。  Hereinafter, the present invention will be described more specifically with reference to Examples of the present invention. However, the present invention is not limited to the following. In the following examples, particles for a display medium which can be used for the information display panel shown in FIGS. 1 (a) and 1 (b) to 3 (a) and 3 (b) were manufactured.
[0052] <実施例 1 >  <Example 1>
正帯電性粒子としては、メチルメタタリレートモノマー(関東化学試薬製) 95mol% およびトリメチロールプロパントリアタリレート (A— TMPT:新中村ィ匕学製) 5mol%に 、正帯電のモノマー難溶性荷電制御剤として-グロシンィ匕合物(ボントロン N07 :オリ ェント化学製) 3重量部および、黒色顔料としてカーボンブラック (スペシャルブラック 5 :デグッサ製) 5重量部をサンドミルにより分散させ、さらに 2重量部のラウリルバーオ キサイド (パーロィル L :日本油脂製)を溶解させた液体を、界面活性剤としてポリオキ シエチレンアルキルエーテル硫酸ナトリウム(ラテムル E— 118B :花王製)を 0. 5%添 カロした精製水に懸濁および重合させ、さらに濾過および乾燥させた後、分級機 (MD S - 2 :日本-ユーマチック工業製)を用いて分級することにより、粒子径の範囲が 5〜 20 μ mの粒子を得た。得られた粒子の帯電量は + 80 μ C/r で、前記表面電位 測定の 0. 3秒後における表面電位の最大値は 470Vであった。粒子の榭脂成分の T g (ガラス転移温度)は 102°Cであった。 Methyl methacrylate monomer (manufactured by Kanto Chemical Reagent) 95mol% And trimethylolpropane triatalylate (A-TMPT: Shin-Nakamura-Danigaku) 5 mol%, as a positively-charged monomer poorly-soluble charge control agent-Grosiny-Danied product (Bontron N07: Orient Chemical) 3 parts by weight Also, as a surfactant, a liquid in which 5 parts by weight of carbon black (special black 5: Degussa) as a black pigment is dispersed by a sand mill and 2 parts by weight of lauryl baroxide (Paryl L: manufactured by NOF Corporation) is dissolved is used as a surfactant. Sodium polyoxyethylene alkyl ether sulfate (Latemul E-118B: manufactured by Kao) is suspended and polymerized in purified water containing 0.5% carohydrate, filtered and dried, and then classified, (MD S-2: Japan -Umatic Industrial Co., Ltd.) to obtain particles having a particle size range of 5 to 20 μm. The charge amount of the obtained particles was +80 μC / r, and the maximum value of the surface potential 0.3 seconds after the surface potential measurement was 470 V. The T g (glass transition temperature) of the resin component of the particles was 102 ° C.
[0053] 負帯電性粒子としては、スチレンモノマー(関東化学試薬製) 95mol%およびトリメ チロールプロパントリアタリレート (A—TMPT:新中村ィ匕学製) 5mol%に、負帯電の モノマー溶解性荷電制御剤としてアクリル系荷電制御剤(アタリベース FCA1001N S:藤倉化成製) 5重量部および、白色顔料として酸化チタン (タイペータ CR— 50:石 原産業製) 20重量部をサンドミルにより分散させ、さらに 2重量部のラウリルパーォキ サイド (パーロィル L :日本油脂製)を溶解させた液体を、界面活性剤としてポリオキシ エチレンアルキルエーテル硫酸ナトリウム(ラテムル E— 118B:花王製)を 0. 5%添 カロした精製水に懸濁および重合させ、さらに濾過および乾燥させた後、分級機 (MD S - 2 :日本-ユーマチック工業製)を用いて分級することにより、粒子径の範囲が 5〜 20 mの粒子を得た。得られた粒子の帯電量は 70 CZm2で、前記表面電位 測定の 0. 3秒後における表面電位の最大値は 450Vであった。粒子の榭脂成分の T g (ガラス転移温度)は 95°Cであった。 [0053] The negatively-chargeable particles include a styrene monomer (manufactured by Kanto Chemical Reagents) 95mol% and trimethylolpropane triatalylate (A-TMPT: Shin-Nakamura Idanagaku) 5mol%, and a negatively charged monomer-soluble charge. 5 parts by weight of an acrylic charge control agent (Ataribase FCA1001N S: manufactured by Fujikura Kasei) as a control agent and 20 parts by weight of titanium oxide (Taipeta CR-50: manufactured by Ishihara Sangyo) as a white pigment were dispersed by a sand mill. A liquid in which parts by weight of lauryl peroxide (Paryl L: manufactured by Nippon Oil & Fats) are dissolved is added to 0.5% of purified water containing 0.5% sodium polyoxyethylene alkyl ether sulfate (Latemul E-118B: manufactured by Kao) as a surfactant. After suspending and polymerizing, and further filtering and drying, the particles are classified using a classifier (MD S-2: manufactured by Japan-Umatic Co., Ltd.) to obtain a particle size range. Particles with a range of 5-20 m were obtained. The charge amount of the obtained particles was 70 CZm 2 , and the maximum value of the surface potential was 0.3 V after 0.3 seconds from the surface potential measurement. The T g (glass transition temperature) of the resin component of the particles was 95 ° C.
[0054] 上記正帯電性粒子および負帯電性粒子の帯電は、両粒子を当量混合攪拌して摩 擦帯電させることにより行った。  [0054] The positively chargeable particles and the negatively chargeable particles were charged by frictionally charging the particles by mixing and stirring equivalent amounts of both particles.
上記正帯電性粒子および負帯電性粒子の混合粒子を、 100 mのスぺーサを介 して配置された 2枚の基板 (一方が内側 ITO処理されたガラス基板であり、もう一方が 銅基板である)より成るセル中に体積占有率 30%で充填して、情報表示用パネルを 構成した。 ITOガラス基板および銅基板のそれぞれを電源に接続し、 ΙΤΟガラス基 板が低電位になるとともに銅基板が高電位になるように 250Vの直流電圧を印加する と、正帯電性粒子は低電位極側に飛翔して負帯電性粒子は高電位極側に飛翔し、 ガラス基板を通して観察される情報表示用パネルは黒色に表示された。次に、 ΙΤΟ ガラス基板が高電位になるとともに銅基板が低電位なるように逆転させた 250Vの直 流電圧を印加すると、正帯電性粒子は高電位極側に飛翔して負帯電性粒子は低電 位極側に飛翔し、ガラス基板を通して観察される情報表示用パネルは白色に表示さ れた。白色表示時および黒色表示時の反射率を測定し、白色表示時および黒色表 示時の反射率の比を求めた。さらに、印加する直流電圧の電位を変更して、上記と 同様にして黒色表示および白色表示を行い、白色表示時および黒色表示時の反射 率を測定し、白色表示時の反射率と黒色表示時の反射率との比を求めた。以上の測 定結果に基づき、「白色表示時の反射率と黒色表示時の反射率との比が 8倍になる 電圧」を「駆動電圧」と定義したときの実施例 1における駆動電圧を求めたところ、駆 動電圧は 120 Vであつた。 The mixed particles of the positively chargeable particles and the negatively chargeable particles are placed on two substrates (one of which is a glass substrate on which an inner ITO treatment is performed, and the other of which is a copper substrate) arranged through a 100 m spacer. Is filled at a volume occupancy of 30% to form an information display panel. Configured. When each of the ITO glass substrate and the copper substrate is connected to a power source, and ΙΤΟ a DC voltage of 250 V is applied so that the glass substrate has a low potential and the copper substrate has a high potential, the positively-charged particles become low potential poles. The negatively-charged particles flew to the high-potential pole side, and the information display panel observed through the glass substrate was displayed in black. Next, ΙΤΟ When a DC voltage of 250 V, which is reversed so that the glass substrate becomes high potential and the copper substrate becomes low potential, is applied, the positively charged particles fly to the high potential pole side and the negatively charged particles The information display panel that flew to the low potential pole side and was observed through the glass substrate was displayed in white. The reflectances during white display and black display were measured, and the ratio of the reflectance during white display and black display was determined. Furthermore, the potential of the DC voltage to be applied is changed, black display and white display are performed in the same manner as described above, the reflectance at white display and black display is measured, and the reflectance at white display and the black display are measured. The ratio with respect to the reflectance was determined. Based on the above measurement results, the drive voltage in Example 1 was determined when “the voltage at which the ratio of the reflectance in white display to the reflectance in black display becomes eight times” is defined as “drive voltage”. As a result, the drive voltage was 120 V.
<比較例 1 > <Comparative Example 1>
正帯電性粒子としては、メチルメタタリレートモノマー(関東化学試薬製) 95mol% およびトリメチロールプロパントリアタリレート (A— TMPT :新中村ィ匕学製) 5mol%に 、正帯電のモノマー溶解性荷電制御剤としてアクリル榭脂系荷電制御剤(アタリべ一 ス FCA21PS:藤倉化成製) 5重量部を溶解させた後、黒色顔料としてカーボンブラ ック (スペシャルブラック 5:デグッサ製) 5重量部をサンドミルにより分散させ、さらに 2 重量部のラウリルパーオキサイド (パーロィル L:日本油脂製)を溶解させた液体を、 界面活性剤としてポリオキシエチレンアルキルエーテル硫酸ナトリウム (ラテムル E— 118B :花王製)を 0. 5%添加した精製水に懸濁および重合させ、さらに濾過および 乾燥させた後、分級機 (MDS— 2 :日本-ユーマチック工業製)を用いて分級するこ とにより、粒子径の範囲が 5〜20 μ mの粒子を得た。得られた粒子の帯電量は + 82 μ θ/να で、前記表面電位測定の 0. 3秒後における表面電位の最大値は 470V であった。粒子の榭脂成分の Tg (ガラス転移温度)は 100°Cであった。  Positively-chargeable particles include a positively charged monomer-soluble monomer in 95 mol% of methyl methacrylate monomer (manufactured by Kanto Chemical Reagents) and 5 mol% of trimethylolpropane triatalylate (A-TMPT: manufactured by Shin-Nakamura Idani) After dissolving 5 parts by weight of an acrylic resin charge control agent (Ataribase FCA21PS: Fujikura Kasei) as a control agent, 5 parts by weight of a carbon black (Special Black 5: Degussa) as a black pigment is sand-milled. And a liquid in which 2 parts by weight of lauryl peroxide (Peryl L: manufactured by Nippon Oil & Fats) is dissolved. Sodium polyoxyethylene alkyl ether sulfate (Latemul E-118B: manufactured by Kao) is used as a surfactant. After suspending and polymerizing in purified water to which 5% has been added, further filtering and drying, the mixture is classified using a classifier (MDS-2: manufactured by Japan-Umatic Co., Ltd.). By and this range of particle diameter to obtain particles of 5 to 20 mu m. The charge amount of the obtained particles was +82 μθ / να, and the maximum value of the surface potential 0.3 seconds after the surface potential measurement was 470 V. The Tg (glass transition temperature) of the resin component of the particles was 100 ° C.
負帯電性粒子としては、上記実施例 1と同一のものを用いた。 [0056] 上記正帯電性粒子および負帯電性粒子の帯電は、両粒子を当量混合攪拌して摩 擦帯電させることにより行った。 As the negatively chargeable particles, the same particles as those in Example 1 were used. The charging of the positively chargeable particles and the negatively chargeable particles was carried out by mixing and stirring equivalent amounts of both particles to frictionally charge the particles.
上記正帯電性粒子および負帯電性粒子の混合粒子を、 100 mのスぺーサを介 して配置された 2枚の基板 (一方が内側 ITO処理されたガラス基板であり、もう一方が 銅基板である)より成るセル中に体積占有率 30%で充填して、情報表示用パネルを 構成した。 ITOガラス基板および銅基板のそれぞれを電源に接続し、 ITOガラス基 板が低電位になるとともに銅基板が高電位になるように 250Vの直流電圧を印加する と、正帯電性粒子は低電位極側に飛翔して負帯電性粒子は高電位極側に飛翔し、 ガラス基板を通して観察される情報表示用パネルは黒色に表示された。次に、 ITO ガラス基板が高電位になるとともに銅基板が低電位になるように逆転させた 250Vの 直流電圧を印加すると、正帯電性粒子は高電位極側に飛翔して負帯電性粒子側は 低電位極に飛翔し、ガラス基板を通して観察される情報表示用パネルは白色に表示 された。白色表示時および黒色表示時の反射率を測定し、白色表示時の反射率と 黒色表示時の反射率との比を求めた。さらに、印加する直流電圧の電位を変更して 、上記と同様にして黒色表示および白色表示を行い、白色表示時および黒色表示 時の反射率を測定し、白色表示時の反射率と黒色表示時の反射率との比を求めた。 以上の測定結果に基づき、「白色表示時および黒色表示時の反射率の比が 8倍にな る電圧」を「駆動電圧」と定義したときの比較例 1における駆動電圧を求めたところ、駆 動電圧は 230Vとなり、実施例 1の倍に近い大きな駆動電圧となってしまった。  The mixed particles of the positively chargeable particles and the negatively chargeable particles are placed on two substrates (one of which is a glass substrate on which an inner ITO treatment is performed, and the other of which is a copper substrate) arranged through a 100 m spacer. Was filled at a volume occupancy of 30% to form an information display panel. When each of the ITO glass substrate and the copper substrate is connected to a power source and a DC voltage of 250 V is applied so that the ITO glass substrate has a low potential and the copper substrate has a high potential, the positively-charged particles become low potential poles. The negatively-charged particles flew to the high-potential pole side, and the information display panel observed through the glass substrate was displayed in black. Next, when a DC voltage of 250 V, which is reversed so that the ITO glass substrate has a high potential and the copper substrate has a low potential, is applied, the positively-charged particles fly to the high-potential electrode side and move to the negatively-charged particle side. Flew to the low potential electrode, and the information display panel observed through the glass substrate was displayed in white. The reflectance in white display and black display was measured, and the ratio of the reflectance in white display to the reflectance in black display was determined. Further, the potential of the DC voltage to be applied is changed, black display and white display are performed in the same manner as described above, the reflectance at white display and black display are measured, and the reflectance at white display and the black display are measured. The ratio with respect to the reflectance was determined. Based on the above measurement results, the drive voltage in Comparative Example 1 was determined when “the voltage at which the reflectance ratio between white display and black display becomes eight times” was defined as “drive voltage”. The working voltage was 230 V, which was a large driving voltage almost twice that of the first embodiment.
[0057] <比較例 2 >  <Comparative Example 2>
正帯電性粒子としては、メチルメタタリレートモノマー(関東化学試薬製) 95mol% およびトリメチロールプロパントリアタリレート (A— TMPT:新中村ィ匕学製) 5mol%に 、正帯電のモノマー難溶性荷電制御剤として-グロシンィ匕合物(ボントロン N07 :オリ ェント化学製) 3重量部および、黒色顔料としてカーボンブラック (スペシャルブラック 5 :デグッサ製) 5重量部をサンドミルにより分散させ、さらに 2重量部のラウリルバーオ キサイド (パーロィル L:日本油脂製)を溶解させた液体を、界面活性剤としてドデシ ル硫酸ナトリウム(関東化学試薬製)を 0. 5%添加した精製水に懸濁および重合させ たところ、懸濁質であるモノマー成分が会合した場合に生じる塊状固化物が生成され てしま 、、良好な粒子を得ることができな力つた。 Positively-chargeable particles include a methylmetharylate monomer (manufactured by Kanto Chemical Reagents) 95 mol% and trimethylolpropane triatalylate (A-TMPT: Shin-Nakamura-Danigaku) 5 mol%. 3 parts by weight of -Grosiny conjugate (Bontron N07: manufactured by Orient Chemical) as a control agent and 5 parts by weight of carbon black (Special Black 5: manufactured by Degussa) as a black pigment are dispersed by a sand mill, and 2 parts by weight of lauryl vero is further dispersed. The liquid in which oxide (Paroil L: Nippon Oil & Fat) was dissolved was suspended and polymerized in purified water containing 0.5% sodium dodecyl sulfate (Kanto Chemical Reagents) as a surfactant. Lump formed when the monomer components However, it was difficult to obtain good particles.
[0058] <比較例 3 >  <Comparative Example 3>
正帯電性粒子としては、メチルメタタリレートモノマー(関東化学試薬製) 95mol% およびトリメチロールプロパントリアタリレート (A— TMPT:新中村ィ匕学製) 5mol%に 、正帯電のモノマー難溶性荷電制御剤として-グロシンィ匕合物(ボントロン N07 :オリ ェント化学製) 3重量部および、黒色顔料としてカーボンブラック (スペシャルブラック 5 :デグッサ製) 5重量部をサンドミルにより分散させ、さらに 2重量部のラウリルバーオ キサイド (パーロィル L:日本油脂製)を溶解させた液体を、界面活性剤としてポリビ- ルアルコール系懸濁安定剤(ボパール PVA— 420:クラレ製)を 0. 5%添カ卩した精製 水に懸濁および重合させ、さらに濾過および乾燥させた後、分級機 (MDS— 2 :日本 ニューマチック工業製)を用いて分級することにより、粒子径の範囲が 5〜20 mの 粒子を得た。得られた粒子の帯電量は + 2 CZm2で、前記表面電位測定の 0. 3 秒後における表面電位の最大値は 25Vであった。粒子の榭脂成分の Tg (ガラス転 移温度)は 102°Cであった。 Positively-chargeable particles include a methylmetharylate monomer (manufactured by Kanto Chemical Reagents) 95 mol% and trimethylolpropane triatalylate (A-TMPT: Shin-Nakamura-Danigaku) 5 mol%. 3 parts by weight of -Grosiny conjugate (Bontron N07: manufactured by Orient Chemical) as a control agent and 5 parts by weight of carbon black (Special Black 5: manufactured by Degussa) as a black pigment are dispersed by a sand mill, and 2 parts by weight of lauryl vero is further dispersed. A liquid in which quicide (Paroil L: manufactured by Nippon Oil & Fats) is dissolved is added to a purified water prepared by adding 0.5% of a polyvinyl alcohol suspension stabilizer (Bhopal PVA-420: manufactured by Kuraray) as a surfactant. After suspending and polymerizing, further filtering and drying, the particles are classified using a classifier (MDS-2: manufactured by Nippon Pneumatic Industries, Ltd.) to obtain a particle size range. Yielded particles of 5-20 m. The charge amount of the obtained particles was +2 CZm 2 , and the maximum value of the surface potential 0.3 seconds after the measurement of the surface potential was 25 V. The Tg (glass transition temperature) of the resin component of the particles was 102 ° C.
負帯電性粒子としては、上記実施例 1と同一のものを用いた。  As the negatively chargeable particles, the same particles as those in Example 1 were used.
[0059] 上記正帯電性粒子および負帯電性粒子の帯電は、両粒子を当量混合攪拌して摩 擦帯電させることにより行った。  [0059] The positively chargeable particles and the negatively chargeable particles were charged by frictionally charging the particles by mixing and stirring equivalent amounts of both particles.
上記正帯電性粒子および負帯電性粒子の混合粒子を、 100 mのスぺーサを介 して配置された 2枚の基板 (一方が内側 ITO処理されたガラス基板であり、もう一方が 銅基板である)より成るセル中に体積占有率 30%で充填して、情報表示用パネルを 構成した。 ITOガラス基板および銅基板のそれぞれを電源に接続し、 ITOガラス基 板が低電位になるとともに銅基板が高電位になるように 250Vの直流電圧を印加した 力 白色粒子および黒色粒子が分離されず、良好な表示状態が得られな力つた。  The mixed particles of the positively chargeable particles and the negatively chargeable particles are placed on two substrates (one of which is a glass substrate on which an inner ITO treatment is performed, and the other of which is a copper substrate) arranged through a 100 m spacer. Was filled at a volume occupancy of 30% to form an information display panel. Each of the ITO glass substrate and the copper substrate is connected to a power source, and a DC voltage of 250 V is applied so that the ITO glass substrate has a low potential and the copper substrate has a high potential.White particles and black particles are not separated. And a good display state could not be obtained.
[0060] 以上から明らかなように、実施例 1の表示媒体用粒子のみが、駆動電圧が低減され るとともに表示媒体用粒子として必要な帯電量が確保された表示媒体用粒子となつ た。  As is clear from the above, only the particles for the display medium of Example 1 became particles for the display medium in which the driving voltage was reduced and the charge amount required for the particles for the display medium was secured.
その理由としては、(1)懸濁重合により製造する表示媒体用粒子の原料に、上記モ ノマーに対して難溶性の荷電制御剤を含有させ、難溶性の荷電制御剤を固体のまま 分散、含有させたこと、(2)懸濁重合時の安定剤として、 1分子中にポリオキシアルキ レン鎖およびスルホン酸塩の両方の官能基を有する界面活性剤を使用して懸濁した こと、が挙げられる。(1)により、表示媒体用粒子内の荷電制御剤の微視的な局在化 によって帯電の不均一化が生じるので、低電圧で駆動する成分を一部に含んだ表示 媒体用粒子が製造されることになる。また、(2)により、分子中にポリオキシアルキレン 鎖を持つことによって、高分子系と同様の懸濁安定効果が得られ、かつ、構造的に 重合時の反応系には不活性であるため、重合後の粒子の十分な洗浄によって洗い 流され、製品としての粒子の帯電性を損ねなくなるのである。また、分子中にスルホン 酸塩を官能基として持つことによって、分子内の官能基に極性差が生じ、界面活性 効果が得られ、より懸濁安定性が増すのである。 The reasons are as follows: (1) The raw material of the particles for display media produced by suspension polymerization contains a charge control agent that is hardly soluble in the above monomers, and the charge control agent that is hardly soluble remains solid. (2) Suspension using a surfactant having both polyoxyalkylene chain and sulfonate functional groups in one molecule as a stabilizer during suspension polymerization. , And the like. According to (1), the charge control agent in the particles for the display medium is microscopically localized, causing non-uniform charging. Therefore, particles for the display medium partially including components driven at a low voltage are manufactured. Will be done. In addition, according to (2), by having a polyoxyalkylene chain in the molecule, a suspension stabilizing effect similar to that of a polymer system can be obtained, and it is structurally inert to the reaction system during polymerization. After the polymerization, the particles are washed away by sufficient washing, and the chargeability of the particles as a product is not impaired. In addition, by having a sulfonate as a functional group in the molecule, a polarity difference occurs in the functional group in the molecule, a surfactant effect is obtained, and the suspension stability is further increased.
産業上の利用可能性 Industrial applicability
本発明の製造方法で製造した表示媒体用粒子を用いた情報表示用パネルおよび 情報表示装置は、ノートパソコン、 PDA,携帯電話、ハンディターミナル等のモノィ ル機器の表示部、電子ブック、電子新聞等の電子ペーパー、看板、ポスター、黒板 等の掲示板、電卓、家電製品、自動車用品等の表示部、ポイントカード、 ICカード等 のカード表示部、電子広告、電子 POP、電子値札、電子棚札、電子楽譜、 RF-ID 機器の表示部などに好適に用いられる。  The information display panel and the information display device using the particles for the display medium manufactured by the manufacturing method of the present invention are used for display units of electronic devices such as notebook personal computers, PDAs, mobile phones, and handy terminals, electronic books, electronic newspapers, etc. Electronic paper, signboards, posters, blackboards and other bulletin boards, calculators, home appliances, display parts for automotive supplies, etc., card displays for point cards, IC cards, etc., electronic advertising, electronic POP, electronic price tags, electronic shelf labels, electronic It is suitably used for musical scores, display sections of RF-ID devices, etc.

Claims

請求の範囲 The scope of the claims
[1] 少なくとも一方が透明な対向する 2枚の基板の間に 1種類以上の表示媒体を封入 し、基板内に発生させた電界により表示媒体を移動させて画像等の情報を表示する 情報表示装置に用いられる表示媒体用粒子を製造する、表示媒体用粒子の製造方 法であって、  [1] At least one type of display medium is sealed between two opposing substrates, at least one of which is transparent, and information such as images is displayed by moving the display medium by an electric field generated in the substrate. A method for producing particles for display media for producing particles for display media used in an apparatus, comprising:
前記表示媒体用粒子の内の少なくとも 1種類以上の表示媒体用粒子がモノマーを 含む粒子原料を懸濁重合して生成される表示媒体用粒子であり、かつ、重合前の前 記モノマーに難溶性の荷電制御剤を分散により含有させた後、懸濁安定剤として 1 分子中にポリオキシアルキレン鎖およびスルホン酸塩の両方の官能基を有する界面 活性剤を使用して懸濁することを特徴とする表示媒体用粒子の製造方法。  At least one kind of the particles for the display medium among the particles for the display medium is a particle for the display medium produced by suspension polymerization of a particle material containing a monomer, and is hardly soluble in the monomer before polymerization. After the addition of a charge control agent by dispersion, it is suspended using a surfactant having both a polyoxyalkylene chain and a sulfonate functional group in one molecule as a suspension stabilizer. Of producing particles for display media.
[2] 請求項 1記載の表示媒体用粒子の製造方法によって作製したことを特徴とする表 示媒体用粒子。 [2] A particle for a display medium produced by the method for producing particles for a display medium according to claim 1.
[3] 前記表示媒体用粒子を構成する榭脂成分が、少なくともアクリル系モノマー、メタク リル系モノマーおよびスチレン系モノマーを含む複数種のモノマーの中力 選択され る 1種以上のモノマーを重合して成ることを特徴とする請求項 2記載の表示媒体用粒 子。  [3] The resin component constituting the particles for the display medium is formed by polymerizing at least one monomer selected from the group consisting of at least neutral monomers including acrylic monomers, methacrylic monomers and styrene monomers. 3. The particles for a display medium according to claim 2, wherein the particles are formed.
[4] 前記表示媒体用粒子を構成する榭脂のガラス転移温度 Tgが 60°C以上であること を特徴とする請求項 2または 3記載の表示媒体用粒子。  4. The particles for display media according to claim 2, wherein the resin constituting the particles for display media has a glass transition temperature Tg of 60 ° C. or higher.
[5] 前記表示媒体用粒子の平均粒子径が 1〜50 μ mであることを特徴とする請求項 2[5] The display medium according to claim 2, wherein the average particle diameter of the particles is 1 to 50 μm.
〜4の何れか 1項記載の表示媒体用粒子。 5. The particles for a display medium according to any one of items 4 to 4.
[6] フェライト系キャリアを用いてブローオフ法により測定した前記表示媒体用粒子の表 面電荷密度が絶対値で 10〜: LOO μ CZm2であることを特徴とする請求項 2〜5の何 れか 1項記載の表示媒体用粒子。 [6] The method according to any one of claims 2 to 5, wherein the surface charge density of the particles for a display medium measured by a blow-off method using a ferrite carrier is 10 to LOO μCZm 2 in absolute value. Or particles for display media according to item 1.
[7] 前記表示媒体用粒子が、その粒子表面と lmmの間隔をもって配置されたコロナ放 電器に、 8KVの電圧を印加してコロナ放電を発生させて粒子表面を帯電させた場合 に、 0. 3秒後における粒子表面電位の最大値が 300Vより大きい粒子であることを特 徴とする請求項 2〜6の何れか 1項記載の表示媒体用粒子。 [7] When the particles for the display medium are charged with a voltage of 8 KV to generate a corona discharge by applying a voltage of 8 KV to a corona discharger arranged at an interval of 1 mm from the particle surface, the particle surface is charged. The particles for a display medium according to any one of claims 2 to 6, wherein the particles have a maximum value of the particle surface potential after 3 seconds which is larger than 300V.
[8] 前記表示媒体用粒子の色が白色であることを特徴とする請求項 2〜7の何れ力 1項 記載の表示媒体用粒子。 [8] The method according to any one of claims 2 to 7, wherein the color of the particles for a display medium is white. The particles for a display medium according to the above.
[9] 前記表示媒体用粒子の色が黒色であることを特徴とする請求項 2〜7の何れか 1項 記載の表示媒体用粒子。  [9] The particles for a display medium according to any one of claims 2 to 7, wherein the color of the particles for a display medium is black.
[10] 少なくとも一方が透明な対向する 2枚の基板の間に、請求項 2〜9の何れか 1項記 載の表示媒体用粒子で構成した表示媒体を 1種類以上封入し、基板内に発生させ た電界により表示媒体を移動させて画像等の情報を表示することを特徴とする情報 表示装置。 [10] At least one type of display medium comprising the particles for display medium according to any one of claims 2 to 9 is sealed between two opposing substrates, at least one of which is transparent, and the substrate is enclosed in the substrate. An information display device characterized by displaying information such as an image by moving a display medium by the generated electric field.
PCT/JP2005/007638 2004-04-22 2005-04-21 Process for producing particle for display medium, particle for display medium produced by the process, and information display unit utilizing the same WO2005103809A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004127028 2004-04-22
JP2004-127028 2004-04-22

Publications (1)

Publication Number Publication Date
WO2005103809A1 true WO2005103809A1 (en) 2005-11-03

Family

ID=35197128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007638 WO2005103809A1 (en) 2004-04-22 2005-04-21 Process for producing particle for display medium, particle for display medium produced by the process, and information display unit utilizing the same

Country Status (1)

Country Link
WO (1) WO2005103809A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007219080A (en) * 2006-02-15 2007-08-30 Bridgestone Corp Particle for display constituting display medium and panel for information display using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029700A (en) * 2002-05-02 2004-01-29 Bridgestone Corp Image display particles and image display device using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029700A (en) * 2002-05-02 2004-01-29 Bridgestone Corp Image display particles and image display device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007219080A (en) * 2006-02-15 2007-08-30 Bridgestone Corp Particle for display constituting display medium and panel for information display using the same

Similar Documents

Publication Publication Date Title
WO2003044596A1 (en) Reversible image display sheet and image display
JP4328309B2 (en) Particles for display medium and information display panel using the same
JP2007328329A (en) Particles for display media and information display panel using the particles
JP2004029700A (en) Image display particles and image display device using the same
WO2005103809A1 (en) Process for producing particle for display medium, particle for display medium produced by the process, and information display unit utilizing the same
JP2006313334A (en) Particle for display medium and information display panel using the same
JP2004004469A (en) Particle and device for image display
JP2007298969A (en) Particles for display medium, and information display panel using the particles
JP2003091023A (en) Electrostatic image display device
JP2006235621A (en) Particle for display medium and information display device using the same
JP2006072223A (en) Particle for picture display medium and picture display device using the same
JP2003255401A (en) Device and method for picture displayer
JP2006309069A (en) Information display panel
JP4418145B2 (en) Image display device
JP2004046056A (en) Image display particle and image display device
JP2004004471A (en) Image display particle and image display using the same
JP2008102231A (en) Particle for display medium and panel for information display using the same
JP4632850B2 (en) Manufacturing method of information display panel
JP4373068B2 (en) Reversible image display board and image display device
CN100590685C (en) Particles for display media and information display panel using the particles
JP5134775B2 (en) Particles for display media and information display panels
JP2006099046A (en) Particle for display medium and information display apparatus using same
JP2007178855A (en) Particles for display medium, manufacturing method therefor, and information display panel using the same
JP2008026702A (en) Particle for display medium and panel for information display using the same
JP2006072217A (en) Particle for picture display medium and picture display device using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP