WO2005103583A1 - Method for the liquefaction of a gas involving a thermo-acoustic cooling apparatus - Google Patents

Method for the liquefaction of a gas involving a thermo-acoustic cooling apparatus Download PDF

Info

Publication number
WO2005103583A1
WO2005103583A1 PCT/FR2005/000405 FR2005000405W WO2005103583A1 WO 2005103583 A1 WO2005103583 A1 WO 2005103583A1 FR 2005000405 W FR2005000405 W FR 2005000405W WO 2005103583 A1 WO2005103583 A1 WO 2005103583A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermo
acoustic
gas
refrigerant
cooled
Prior art date
Application number
PCT/FR2005/000405
Other languages
French (fr)
Inventor
Béatrice Fischer
Original Assignee
Institut Francais Du Petrole
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Francais Du Petrole filed Critical Institut Francais Du Petrole
Priority to AU2005236214A priority Critical patent/AU2005236214B2/en
Publication of WO2005103583A1 publication Critical patent/WO2005103583A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0225Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using other external refrigeration means not provided before, e.g. heat driven absorption chillers
    • F25J1/0227Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using other external refrigeration means not provided before, e.g. heat driven absorption chillers within a refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0268Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using a dedicated refrigeration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1403Pulse-tube cycles with heat input into acoustic driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/908External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration
    • F25J2270/91External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration using pulse tube refrigeration

Definitions

  • the present invention relates to the field of liquefaction of a gas, using thermo-acoustic cooling equipment.
  • the purpose of the process according to the invention is to liquefy by cooling gases, for example neon, hydrogen, helium or natural gas.
  • natural gas is meant a gas, liquid or two-phase mixture comprising at least 50% methane, and possibly other hydrocarbons and nitrogen.
  • Natural gas is generally produced in gaseous form, and at high pressure, for example between 1 MPa and 15 MPa.
  • the liquefaction of natural gas consists in condensing the gas, then in sub-cooling it to a temperature low enough that it can remain liquid at atmospheric pressure. Then, the liquid natural gas is transported in LNG carriers.
  • LNG liquid natural gas
  • Document FR 2 778 232 proposes a liquefaction process comprising two refrigerant mixtures circulating in two closed and independent circuits. Each of the circuits operates thanks to a compressor communicating with the refrigerant mixture the power necessary to cool natural gas. Each compressor is driven by a gas turbine which is chosen from the standard ranges offered on the market. However, the power of the gas turbines currently available is limited. So the LNG production capacity of a liquefaction unit is limited by the power of gas turbines.
  • the present invention proposes to improve the process disclosed in document FR 2 778 232 in order to increase the liquefaction power while keeping the compressors standard.
  • the present invention proposes to combine a conventional liquefaction process with cooling operated by a thermo-acoustic refrigeration apparatus.
  • the present invention relates to a process for liquefying a gas, the gas being available under a pressure P1.
  • the gas undergoes the following steps: - the gas under pressure PI is condensed by heat exchange with a coolant so as to obtain a liquid under pressure PI, the coolant being vaporized during the heat exchange, and - the liquid under pressure P1 to a pressure P2,
  • the refrigerant undergoes the following steps: - the vaporized refrigerant is compressed, - the compressed refrigerant is cooled, the cooled refrigerant is expanded, the expanded refrigerant condenses the gas under PI pressure by heat exchange, And, at least one of the following two steps is carried out: before expansion, the liquid under PI pressure is sub-cooled by a first thermo-acoustic cooling device, before expansion, we - cools the coolant cooled by a second thermo-acoustic cooling device.
  • the gas can be a natural gas at a pressure between 1 MPa and 15 MPa and at a temperature between 20 ° C and 60 ° C.
  • the first thermo-acoustic cooling device can lower the temperature of the cooled liquid by a value between 1 ° C to
  • thermo-acoustic cooling devices can comprise: a heat engine supplied with heat, which generates an acoustic wave, - a resonator in which the thermo-acoustic wave is established, - a refrigerator, arranged downstream of the resonator, using the energy of the acoustic wave to produce a cold spot at low temperature.
  • the liquid under pressure PI can be sub-cooled by several thermo-acoustic cooling devices arranged in parallel.
  • the cooled refrigerant can be sub-cooled by several thermo-acoustic cooling devices arranged in parallel.
  • thermo-acoustic refrigeration equipment increases the production capacity of a conventional liquefaction process.
  • thermo-acoustic refrigeration equipment makes it possible to modify the production capacity without modifying the operation of the gas turbines supplying the energy to the refrigerant circuits.
  • Other characteristics and advantages of the invention will be better understood and will become clear on reading the description given below with reference to the drawings among which: - Figures 1, 2 and 3 show diagrammatically the process according to the invention, - Figure 4 shows a liquefaction process according to the prior art, - Figures 5, 6 and 7 schematize particular embodiments of the invention, - Figure 8 shows the principle of a thermo-acoustic cooling apparatus .
  • FIG. 1 schematically represents a process for liquefying a gas by compression and expansion of a refrigeration fluid.
  • the gas arriving through line 1 is under pressure, for example at a pressure between 1 MPa and 15 MPa.
  • the gas has been compressed by a compressor, or, in the case of natural gas, the gas is obtained under pressure at the outlet of the production well.
  • the gas flowing in the pipe 1 is cooled and liquefied under pressure in the heat exchanger 11.
  • the gas coming from the heat exchanger 11 through the pipe 2 is brought by the pipe 3 in the expansion device 13, for example a valve and / or an expansion turbine.
  • the gas is expanded to a pressure close to atmospheric pressure.
  • the fluid discharged through line 4 constitutes the liquefied gas, for example liquefied natural gas.
  • the refrigeration cycle consists of a refrigerant circulating in the organs 20, 21, 11 and 22. This cycle is simplified and can be modified and supplemented without departing from the scope of the invention.
  • Compressor 20 which can be driven by a gas turbine, provides the necessary cooling power.
  • the refrigeration fluid is compressed in the compressor 20, cooled and partially or totally condensed in the heat exchanger 21, for example by heat exchange with water or with ambient air. Then, the refrigeration fluid is sub-cooled in the exchanger 11, then evacuated through the conduit 24.
  • the refrigeration fluid obtained at the outlet of the exchanger 11 is liquid. Then, the refrigeration fluid is expanded in the expansion device 22 to be cooled, then is sent to the heat exchanger 11 to be heated and vaporized there, before being returned to the compressor 20.
  • the refrigerant can be a mixture of nitrogen and hydrocarbons such as methane, ethane and propane.
  • a thermo-acoustic refrigeration apparatus 12 cools the fluid obtained at the outlet of the exchanger 11 through the conduit 2.
  • the refrigeration apparatus operates a reduction in the temperature of the fluid by a value between 1 ° C and 20 ° C, preferably between 1 ° C and 5 ° C.
  • the thermo-acoustic refrigeration equipment is described more fully below, in relation to FIG. 8.
  • FIG. 2 represents a variant of the method according to the invention.
  • the references in Figure 2 identical to those in Figure 1 denote the same elements.
  • the process shown schematically in FIG. 2 is identical to the process shown schematically in FIG. 1, except that according to the process in FIG. 2, the thermo-acoustic refrigeration apparatus is not disposed on the duct 3.
  • the refrigeration apparatus 23 is arranged on the duct 24.
  • the thermo-acoustic refrigeration apparatus 23 cools the fluid obtained at the outlet of the exchanger 11 by the conduit 24.
  • the refrigeration apparatus 23 operates a lowering of the temperature of the fluid by a value between 1 ° C and 20 ° C, preferably between 1 ° C and 5 ° C.
  • FIG. 3 represents a variant of the method according to the invention.
  • the references in Figure 3 identical to those in Figure 1 denote the same elements.
  • the process shown schematically in FIG. 3 is identical to the process shown schematically in FIG. 1, except that according to the process in FIG. 3, an additional thermo-acoustic refrigeration apparatus 23 is placed on the duct 24.
  • the thermo-acoustic refrigeration apparatus 12 cools the fluid obtained at the outlet of the exchanger 11 through the conduit 2
  • the thermo-acoustic refrigeration apparatus 23 cools the fluid obtained at the outlet of the exchanger 11 through the conduit 24
  • Apparatuses 11 and 23 lower the temperature by between 1 ° C and 20 ° C, preferably between 1 ° C and 5 ° C.
  • FIG. 4 represents a process for liquefying natural gas according to the prior art. This process is described in particular in document FR 2 778 232.
  • the natural gas arriving through line 101 is cooled by indirect heat exchange with two refrigerant mixtures, each refrigerant mixture circulating in a closed and independent circuit.
  • Natural gas arrives via line 101, for example at a pressure between 1 MPa and 15 MPa, preferably between 4 MPa and 7 MPa and at a temperature between 20 ° C and 60 ° C.
  • Natural gas leaves the exchanger 111 through the conduit 102, for example at a temperature between - 35 ° C and - 70 ° C.
  • the second refrigerant mixture leaves completely condensed from the exchanger 111 through the conduit 124, for example at a temperature between - 35 ° C and - 70 ° C.
  • three fractions of the first refrigerant mixture in the liquid phase are successively withdrawn.
  • the fractions are expanded through the expansion valves 132, 133 and 134 at three different pressure levels, then vaporized in the exchanger 111 by heat exchange with natural gas, the second refrigerant mixture and part of the first refrigerant mixture.
  • the three vaporized fractions are sent to different stages of the compressor 130.
  • the vaporized fractions are compressed in the compressor 130, then condensed in the condenser 131 by heat exchange with an external cooling fluid, for example water or air.
  • the first refrigerant mixture from the condenser 131 is sent to the exchanger 111 through the conduit 135.
  • the pressure of the first refrigerant mixture at the outlet of the compressor 130 can be between 2 MPa and 4 MPa.
  • the temperature of the first refrigerant mixture at the outlet of the condenser 131 can be between 30 ° C and 55 ° C.
  • the first refrigerant mixture can be formed by a mixture of hydrocarbons such as a mixture of ethane and propane, but can also contain methane, butane and / or pentane.
  • the proportions in molar fraction (%) of the components of the first refrigerant mixture can be:
  • the natural gas coming from the exchanger 111 through the conduit 102 can be fractionated, that is to say that a part of the C 2+ hydrocarbons containing at least two carbon atoms is separated from the natural gas, using a device known from one skilled in the art.
  • the fractionated natural gas is sent via line 102 to the exchanger 112.
  • the collected C 2+ hydrocarbons are sent to fractionation columns comprising a deethanizer.
  • the light fraction collected at the top of the deethanizer can be mixed with the natural gas circulating in the conduit 102.
  • the liquid fraction collected at the bottom of the deethanizer is sent to a depropanizer.
  • the expansion device 122 may be a turbine, a valve or a combination of a turbine and a valve.
  • the second expanded refrigerant mixture from the expansion device 122 is sent to the exchanger 112 to be vaporized by circulating against the flow of natural gas and the second refrigerant mixture.
  • the second vaporized refrigerant mixture is compressed by the compressor 120 and then cools in the indirect heat exchanger 121 by heat exchange with an external cooling fluid, for example water or air.
  • the second refrigerant mixture from the exchanger 121 is sent into the exchanger 111 through the conduit 123.
  • the pressure of the second refrigerant mixture at the outlet of the compressor 120 can be between 2 MPa and 6 MPa.
  • the temperature of the second refrigerant mixture at the outlet of the exchanger 121 can be between 30 ° C and 55 ° C.
  • the second refrigerant mixture is not split into separate fractions, but, to optimize approach in the exchanger 112, the second refrigerant mixture can also be separated into two or three fractions, each fraction being expanded to a different pressure level, then sent to different stages of the compressor 120.
  • the second refrigerant mixture is formed by for example by a mixture of hydrocarbons and nitrogen such as a mixture of methane, ethane and nitrogen but may also contain propane and / or butane.
  • the proportions in molar fraction (%) of the components of the second refrigerant mixture can be: Nitrogen: 0% to 10%
  • Natural gas leaves liquefied from the heat exchanger 112 through line 103 at a pressure identical to the inlet pressure of natural gas , except for pressure losses.
  • the natural gas leaves the exchanger 112 at a pressure between 1 MPa and 15 MPa, preferably between 4 MPa and 7 MPa.
  • This pressurized liquefied natural gas is expanded by the expansion device 113 to a pressure close to atmospheric pressure.
  • the liquid natural gas obtained is evacuated through line 104.
  • thermo-acoustic refrigeration apparatus 105 cools the fluid obtained at the outlet of the exchanger 112 by the conduit 103.
  • the refrigeration apparatus 105 operates a cooling of the fluid of a value between 1 ° C. and 20 ° C, preferably between 1 ° C and 5 ° C.
  • thermo-acoustic refrigeration appliance 126 cools the second refrigerant mixture obtained at the outlet of the exchanger 112 by the conduit 125.
  • the refrigeration appliance 126 operates a cooling of the fluid by a value between 1 ° C and 20 ° C, preferably between 1 ° C and 5 ° C.
  • thermo-acoustic refrigeration apparatus 105 cools the fluid obtained at the outlet of the exchanger 112 by the conduit 103
  • thermo-acoustic refrigeration apparatus 126 cools the second refrigerant mixture obtained at the outlet of the exchanger 112 through the conduit 125.
  • Apparatuses 105 and 112 cool down between 1 ° C and 20 ° C, preferably between 1 ° C and 5 ° C.
  • the natural gas arrives via the pipe 101 at a flow rate of 40,000 kmol / hour (695 tonnes / hour) at the temperature of 30 ° C and at the pressure of 5 MPa.
  • the gas volume composition is 92% methane, 6% ethane, 1.5% propane and 0.5% nitrogen.
  • the gas obtained in line 103 is liquefied and cooled to the pressure of 4.85 MPa and to the temperature of - 163.5 ° C., so as to be completely liquid after expansion at storage pressure.
  • the two cascade refrigerant mixing cycles allow this temperature to be obtained.
  • the total compression power required is 194.4 MW (97.2 MW out of 120 and 130).
  • the compressors are driven by an 82 MW gas turbine and a 15.2 MW coupled motor.
  • a thermo-acoustic cooling device 105 is placed on the duct 103 before the expansion device 113.
  • This device 105 makes it possible to provide a cooling power of 2 MW, thus cooling the 695 tonnes / hour of natural gas from -160.5 ° C to -163.5 ° C.
  • the temperature of the natural gas leaving the exchanger 112 can be increased to -160.5 ° C. Consequently, the thermo-acoustic apparatus 105 makes it possible to reduce the compression power required by the two cycles of refrigerant mixture to 186.4 MW.
  • the flow rate of liquefied natural gas obtained in the conduit 104 is increased by 4.3%. Compared to the process according to FIG.
  • thermo-acoustic cooling device 126 is placed on the duct 125 before the expansion device 122.
  • This device 126 makes it possible to lower the temperature of the second cooling mixture with a value of 2.4 ° C, thanks to a heat output of 2 MW.
  • the pressure of the second refrigerant fluid at the outlet of the expansion device 122 that is to say the pressure at the inlet of the compressor 120, can be increased by 0.03 MPa. Consequently, the apparatus 126 makes it possible to reduce the compression power to 186.7 MW.
  • the same compression power is maintained as in the example illustrating the method of FIG. 4, the flow rate of liquefied natural gas obtained in the conduit 104 is increased by 4.2%.
  • thermo-acoustic cooling device 126 is placed on the duct 125 before the expansion device 122, and a thermo-acoustic cooling device 105 is placed on the conduit 103 before the expansion device 113.
  • the apparatus 126 makes it possible to lower the temperature of the second refrigerant mixture by 2.4 ° C, thanks to a calorific power of 2 MW.
  • the pressure of the second refrigerant fluid at the outlet of the expansion device 122 that is to say the pressure at the inlet of the compressor 120, can be increased by 0.03 MPa.
  • Apparatus 105 provides power 2 MW of refrigeration, thus cooling the 695 tonnes / hour of natural gas from -160.5 ° C to -163.5 ° C.
  • the temperature of the natural gas leaving the exchanger 112 can be increased to -160.5 ° C. Consequently, the thermo-acoustic devices 105 and 126 make it possible to reduce the compression power required by the two cycles of refrigerant mixing to 178.7 MW.
  • the flow rate of liquefied natural gas obtained in line 104 is increased by 8.8%. 61 tonnes / hour of additional LNG are produced compared to the process according to FIG. 4.
  • thermoacoustic liquefaction for example two modules of 2 MW, makes it possible to produce approximately 17 tonnes / hour of LNG.
  • thermoacoustic liquefaction two 2 MW modules
  • the 4 MW thermoacoustic liquefaction two 2 MW modules
  • a conventional liquefaction unit allows an additional production of 61 tonnes / hour.
  • thermo-acoustic cooling devices being installed downstream of a valve, it is easy to have several, for example in parallel, with valves also in parallel.
  • the fluid arriving through line 2 is split into several streams. Each of these flows is cooled by a thermo-acoustic cooling device. Each of the cooled flows is expanded by a valve. Finally the expanded flows are combined to form the fluid flowing in the conduit 4, that is to say the natural gas liquefied at atmospheric pressure.
  • thermo-acoustic cooling devices are relatively low.
  • the efficiency of these equipments not yet used in the field of liquefaction of natural gas, could be considerably improved as they are developed in the present process.
  • a low efficiency therefore a significant gas consumption on a small part of the liquefaction unit, by the thermo-acoustic cooling apparatus, is acceptable in a production site where the price of gas is very low.
  • This additional gas consumption is all the more acceptable since the improvement in the total yield of the process according to the invention compared to a conventional liquefaction unit compensates for the low yield of the thermo-acoustic apparatus.
  • thermo-acoustic refrigeration equipment is very low compared to the considerable price of a unit for liquefying natural gas.
  • a thermo-acoustic refrigeration device is very compact, and therefore does not increase much the large areas required for the installation of a conventional liquefaction unit: for example, a thermoacoustic device with a power of 2 MW can fit in a circle 5 m in diameter.
  • thermo-acoustic cooling apparatus The operating principle of a thermo-acoustic cooling apparatus, as used in the invention, is shown diagrammatically in FIG. 8.
  • the principle of a thermoacoustic apparatus consists in producing cold from "raw heat” ”, Using the properties of the so-called“ thermo-acoustic ”phenomena which are thermal exchange and energy conversion phenomena in the contact zones, also called thermal boundary layer, between a solid and a liquid.
  • the thermo-acoustic apparatus has three parts.
  • the heat engine 43 is used to generate an acoustic wave.
  • the heat engine 43 is supplied with primary energy in the form of heat admitted by the flow 51.
  • a large thermal gradient is created between an area heated by the flow 51 and an area cooled by a fluid at ambient temperature arriving through the conduit 63 and discharged through line 64.
  • the refrigerant can be water.
  • This thermal gradient makes it possible to generate, by thermo-acoustic phenomenon, an acoustic wave which is transmitted to the refrigerator 41 via a resonator 42.
  • the resonator 42 for example, is formed from one or more closed tubes containing, for example, medium pressure helium.
  • the acoustic wave is established within the or the tubes.
  • a refrigerator 41 is arranged downstream of the resonator 42.
  • the refrigerator 41 uses the energy of the acoustic wave to produce a cold spot at low temperature according to a thermo-acoustic conversion process.
  • the fluid to be cooled at low temperature is introduced into the refrigerator 41 through the conduit 71, then is evacuated at a lower temperature through the conduit 72.
  • the refrigerator 41 must evacuate heat using a fluid at room temperature arriving via line 61 and discharged through line 62.
  • This fluid may be water.
  • This fluid can also advantageously be a fluid obtained at a temperature close to or below 0 ° C. during the purification of natural gas, or of the refrigerant mixture of the first cycle of the liquefaction process.
  • thermo-acoustic cooling devices used in the present invention can be developed from the prototypes described in the documents cited below.
  • thermoacoustically drivenmodule tube refrigerator capable of working below 120 K

Abstract

The gas circulating in the conduit (1) is cooled and liquefied under pressure in the heat exchanger (11). The gas emanating from the heat exchanger (11) via the conduit (2) is guided by the conduit (3) into the expansion device (13). The gas is expanded until it reaches a pressure which is close to atmospheric pressure. The fluid discharged via the conduit (4) makes up the liquefied gas, e.g. liquefied natural gas. The refrigeration cycle consists of a refrigerating fluid which circulates inside the compressor (20), condenser (21), heat exchanger (11) and expansion device (229). According to the invention, a thermo-acoustic refrigeration apparatus cools the fluid obtained at the output of the heat exchanger (11) via the conduit (3), and a thermo-acoustic refrigeration apparatus (23) cools the fluid obtained at the output of the exchanger (11) via the conduit (24).

Description

PROCEDE DE LIQUEFACTION D'UN GAZ INTEGRANT UN APPAREILLAGE DE REFROIDISSEMENT THERMOACOUSTIQUEMETHOD FOR LIQUEFACTION OF A GAS INTEGRATING A THERMOACOUSTIC COOLING APPARATUS
La présente invention a trait au domaine de la liquéfaction d'un gaz, en utilisant un appareillage de refroidissement thermo-acoustique. Le procédé selon l'invention a pour but de liquéfier par refroidissement des gaz, par exemple du néon, de l'hydrogène, de l'hélium ou du gaz naturel. Par gaz naturel, on comprend un mélange gazeux, liquide ou diphasique comportant au moins 50% de méthane, et éventuellement d'autres hydrocarbures et de l'azote. Le gaz naturel est généralement produit sous forme gazeuse, et à haute pression par exemple comprise entre 1 MPa et 15 MPa. La liquéfaction du gaz naturel consiste à condenser le gaz, puis à le sous-refroidir jusqu'à une température suffisamment basse pour qu'il puisse rester liquide à la pression atmosphérique. Ensuite, le gaz naturel liquide est transporté dans des méthaniers.The present invention relates to the field of liquefaction of a gas, using thermo-acoustic cooling equipment. The purpose of the process according to the invention is to liquefy by cooling gases, for example neon, hydrogen, helium or natural gas. By natural gas is meant a gas, liquid or two-phase mixture comprising at least 50% methane, and possibly other hydrocarbons and nitrogen. Natural gas is generally produced in gaseous form, and at high pressure, for example between 1 MPa and 15 MPa. The liquefaction of natural gas consists in condensing the gas, then in sub-cooling it to a temperature low enough that it can remain liquid at atmospheric pressure. Then, the liquid natural gas is transported in LNG carriers.
Actuellement, le commerce international du gaz naturel liquide (GNL) se développe rapidement. Cependant, l'ensemble de la chaîne de production duCurrently, international trade in liquid natural gas (LNG) is growing rapidly. However, the entire production chain of
GNL requiert des investissements et un coût de fonctionnement considérables. Le document FR 2 778 232 propose un procédé de liquéfaction comportant deux mélanges réfrigérants circulant dans deux circuits fermés et indépendants. Chacun des circuits fonctionne grâce à un compresseur communicant au mélange réfrigérant la puissance nécessaire pour refroidir le gaz naturel. Chaque compresseur est entraîné par une turbine à gaz qui est choisie parmi les gammes standards proposées dans le commerce. Cependant la puissance des turbines à gaz actuellement disponibles est limitée. Donc, la capacité de production de GNL d'une unité de liquéfaction est limitée par la puissance des turbines à gaz. La présente invention propose de perfectionner le procédé divulgué par le document FR 2 778 232 afin d'augmenter la puissance de liquéfaction tout en gardant les compresseurs standards.LNG requires considerable investment and operating costs. Document FR 2 778 232 proposes a liquefaction process comprising two refrigerant mixtures circulating in two closed and independent circuits. Each of the circuits operates thanks to a compressor communicating with the refrigerant mixture the power necessary to cool natural gas. Each compressor is driven by a gas turbine which is chosen from the standard ranges offered on the market. However, the power of the gas turbines currently available is limited. So the LNG production capacity of a liquefaction unit is limited by the power of gas turbines. The present invention proposes to improve the process disclosed in document FR 2 778 232 in order to increase the liquefaction power while keeping the compressors standard.
La présente invention propose de combiner un procédé de liquéfaction classique avec un refroidissement opéré par un appareillage de réfrigération thermo-acoustique.The present invention proposes to combine a conventional liquefaction process with cooling operated by a thermo-acoustic refrigeration apparatus.
De manière générale, la présente invention concerne un procédé de liquéfaction d'un gaz, le gaz étant disponible sous une pression PI. Le gaz subit les étapes suivantes : - on condense le gaz sous pression PI par échange de chaleur avec un fluide réfrigérant de manière à obtenir un liquide sous pression PI, le fluide réfrigérant étant vaporisé durant l'échange de chaleur, et - on détend le liquide sous pression PI jusqu'à une pression P2, Le fluide réfrigérant subit les étapes suivantes : - on comprime le fluide réfrigérant vaporisé, - on refroidit le fluide réfrigérant comprimé, on détend le fluide réfrigérant refroidi, le fluide réfrigérant détendu condense le gaz sous pression PI par échange de chaleur, Et, on effectue au moins l'une des deux étapes suivantes : avant la détente, on sous-refroidit le liquide sous pression PI par un premier appareillage de refroidissement thermo-acoustique, avant la détente, on sous-refroidit le fluide réfrigérant refroidi par un deuxième appareillage de refroidissement thermo-acoustique. Selon l'invention, le gaz peut être un gaz naturel sous une pression comprise entre 1 MPa et 15 MPa et à une température comprise entre 20°C et 60°C. Le premier appareillage de refroidissement thermo-acoustique peut abaisser la température du liquide refroidi d'une valeur comprise entre 1°C àIn general, the present invention relates to a process for liquefying a gas, the gas being available under a pressure P1. The gas undergoes the following steps: - the gas under pressure PI is condensed by heat exchange with a coolant so as to obtain a liquid under pressure PI, the coolant being vaporized during the heat exchange, and - the liquid under pressure P1 to a pressure P2, The refrigerant undergoes the following steps: - the vaporized refrigerant is compressed, - the compressed refrigerant is cooled, the cooled refrigerant is expanded, the expanded refrigerant condenses the gas under PI pressure by heat exchange, And, at least one of the following two steps is carried out: before expansion, the liquid under PI pressure is sub-cooled by a first thermo-acoustic cooling device, before expansion, we - cools the coolant cooled by a second thermo-acoustic cooling device. According to the invention, the gas can be a natural gas at a pressure between 1 MPa and 15 MPa and at a temperature between 20 ° C and 60 ° C. The first thermo-acoustic cooling device can lower the temperature of the cooled liquid by a value between 1 ° C to
20°C. Le deuxième appareillage de refroidissement thermo-acoustique peut abaisser la température du fluide réfrigérant refroidi d'une valeur comprise entre 1°C à 20°C. Selon l'invention, les appareillages de refroidissement thermo- acoustique peuvent comporter : un moteur thermique alimenté en chaleur, qui génère une onde acoustique, - un résonateur dans lequel s'établit l'onde thermo-acoustique, - un réfrigérateur, disposé en aval du résonateur, utilisant l'énergie de l'onde acoustique pour produire un point froid à basse température. Selon l'invention, le liquide sous pression PI peut être sous-refroidi par plusieurs appareillages de refroidissement thermo-acoustique disposés en parallèle. Le fluide réfrigérant refroidi peut être sous-refroidi par plusieurs appareillages de refroidissement thermo-acoustique disposés en parallèle.20 ° C. The second thermo-acoustic cooling device can lower the temperature of the cooled refrigerant by between 1 ° C and 20 ° C. According to the invention, the thermo-acoustic cooling devices can comprise: a heat engine supplied with heat, which generates an acoustic wave, - a resonator in which the thermo-acoustic wave is established, - a refrigerator, arranged downstream of the resonator, using the energy of the acoustic wave to produce a cold spot at low temperature. According to the invention, the liquid under pressure PI can be sub-cooled by several thermo-acoustic cooling devices arranged in parallel. The cooled refrigerant can be sub-cooled by several thermo-acoustic cooling devices arranged in parallel.
L'appareillage de réfrigération thermo-acoustique permet d'augmenter la capacité de production d'un procédé de liquéfaction classique. De plus, l'appareillage de réfrigération thermo-acoustique permet de modifier la capacité de production sans modifier le fonctionnement des turbines à gaz fournissant l'énergie aux circuits réfrigérants. D'autres caractéristiques et avantages de l'invention seront mieux compris et apparaîtront clairement à la lecture de la description faite ci-après en se référant aux dessins parmi lesquels : - les figures 1, 2 et 3 schématisent le procédé selon l'invention, - la figure 4 représente un procédé de liquéfaction selon l'art antérieur, - les figures 5, 6 et 7 schématisent des modes particuliers de réalisation de l'invention, - la figure 8 représente le principe d'un appareillage de refroidissement thermo-acoustique.Thermo-acoustic refrigeration equipment increases the production capacity of a conventional liquefaction process. In addition, the thermo-acoustic refrigeration equipment makes it possible to modify the production capacity without modifying the operation of the gas turbines supplying the energy to the refrigerant circuits. Other characteristics and advantages of the invention will be better understood and will become clear on reading the description given below with reference to the drawings among which: - Figures 1, 2 and 3 show diagrammatically the process according to the invention, - Figure 4 shows a liquefaction process according to the prior art, - Figures 5, 6 and 7 schematize particular embodiments of the invention, - Figure 8 shows the principle of a thermo-acoustic cooling apparatus .
La figure 1 représente schématiquement un procédé de liquéfaction d'un gaz par compression et détente d'un fluide de réfrigération. Le gaz arrivant par le conduit 1 est sous pression, par exemple à une pression comprise entre 1 MPa et 15 MPa. Par exemple, le gaz a été comprimé par un compresseur, ou bien, dans le cas du gaz naturel, le gaz est obtenu sous pression en sortie du puits de production. Le gaz circulant dans le conduit 1 est refroidi et liquéfié sous pression dans l'échangeur de chaleur 11. Le gaz issu de l'échangeur de chaleur 11 par le conduit 2 est amené par le conduit 3 dans le dispositif de détente 13, par exemple une vanne et/ou une turbine de détente. Le gaz est détendu jusqu'à une pression proche de la pression atmosphérique. Le fluide évacué par le conduit 4 constitue la gaz liquéfié, par exemple le gaz naturel liquéfié. Le cycle de réfrigération est constitué d'un fluide réfrigérant circulant dans les organes 20, 21, 11 et 22. Ce cycle est simplifié et peut être modifié et complété sans sortir du cadre de l'invention. Le compresseur 20, qui peut être entraîné par une turbine à gaz, permet de fournir la puissance de réfrigération nécessaire. Le fluide de réfrigération est comprimé dans le compresseur 20, refroidi et partiellement ou totalement condensé dans l'échangeur de chaleur 21, par exemple par échange de chaleur avec de l'eau ou avec l'air ambiant. Ensuite, le fluide de réfrigération est sous-refroidi dans l'échangeur 11, puis évacué par le conduit 24. Avantageusement, le fluide de réfrigération obtenu en sortie de l'échangeur 11 est liquide. Ensuite, le fluide de réfrigération est détendu dans le dispositif de détente 22 pour être refroidi, puis est envoyé dans l'échangeur de chaleur 11 pour y être chauffé et vaporisé, avant d'être renvoyé dans le compresseur 20. Par exemple le fluide réfrigérant peut être un mélange d'azote et d'hydrocarbures tels que du méthane, de l'éthane et du propane. Selon l'invention, un appareillage de réfrigération thermo-acoustique 12 refroidit le fluide obtenu en sortie de l'échangeur 11 par le conduit 2. L'appareillage de réfrigération opère un abaissement de la température du fluide d'une valeur comprise entre 1°C et 20°C, de préférence entre 1°C et 5°C. L'appareillage de réfrigération thermo-acoustique est décrit de manière plus complète ci-dessous, en relation avec la figure 8.FIG. 1 schematically represents a process for liquefying a gas by compression and expansion of a refrigeration fluid. The gas arriving through line 1 is under pressure, for example at a pressure between 1 MPa and 15 MPa. For example, the gas has been compressed by a compressor, or, in the case of natural gas, the gas is obtained under pressure at the outlet of the production well. The gas flowing in the pipe 1 is cooled and liquefied under pressure in the heat exchanger 11. The gas coming from the heat exchanger 11 through the pipe 2 is brought by the pipe 3 in the expansion device 13, for example a valve and / or an expansion turbine. The gas is expanded to a pressure close to atmospheric pressure. The fluid discharged through line 4 constitutes the liquefied gas, for example liquefied natural gas. The refrigeration cycle consists of a refrigerant circulating in the organs 20, 21, 11 and 22. This cycle is simplified and can be modified and supplemented without departing from the scope of the invention. Compressor 20, which can be driven by a gas turbine, provides the necessary cooling power. The refrigeration fluid is compressed in the compressor 20, cooled and partially or totally condensed in the heat exchanger 21, for example by heat exchange with water or with ambient air. Then, the refrigeration fluid is sub-cooled in the exchanger 11, then evacuated through the conduit 24. Advantageously, the refrigeration fluid obtained at the outlet of the exchanger 11 is liquid. Then, the refrigeration fluid is expanded in the expansion device 22 to be cooled, then is sent to the heat exchanger 11 to be heated and vaporized there, before being returned to the compressor 20. For example the refrigerant can be a mixture of nitrogen and hydrocarbons such as methane, ethane and propane. According to the invention, a thermo-acoustic refrigeration apparatus 12 cools the fluid obtained at the outlet of the exchanger 11 through the conduit 2. The refrigeration apparatus operates a reduction in the temperature of the fluid by a value between 1 ° C and 20 ° C, preferably between 1 ° C and 5 ° C. The thermo-acoustic refrigeration equipment is described more fully below, in relation to FIG. 8.
La figure 2 représente une variante du procédé selon l'invention. Les références de la figure 2 identiques à celles de la figure 1 désignent les mêmes éléments. Le procédé schématisé par la figure 2 est identique au procédé schématisé par la figure 1, mis à part que selon le procédé de la figure 2, l'appareillage de réfrigération thermo-acoustique n'est pas disposé sur le conduit 3. En revanche, sur la figure 2 l'appareillage de réfrigération 23 est disposé sur le conduit 24. Sur la figure 2, l'appareillage de réfrigération thermo-acoustique 23 refroidit le fluide obtenu en sortie de l'échangeur 11 par le conduit 24. L'appareillage de réfrigération 23 opère un abaissement de la température du fluide d'une valeur comprise entre 1°C et 20°C, de préférence entre 1°C et 5°C.FIG. 2 represents a variant of the method according to the invention. The references in Figure 2 identical to those in Figure 1 denote the same elements. The process shown schematically in FIG. 2 is identical to the process shown schematically in FIG. 1, except that according to the process in FIG. 2, the thermo-acoustic refrigeration apparatus is not disposed on the duct 3. On the other hand, in FIG. 2, the refrigeration apparatus 23 is arranged on the duct 24. In FIG. 2, the thermo-acoustic refrigeration apparatus 23 cools the fluid obtained at the outlet of the exchanger 11 by the conduit 24. The refrigeration apparatus 23 operates a lowering of the temperature of the fluid by a value between 1 ° C and 20 ° C, preferably between 1 ° C and 5 ° C.
La figure 3 représente une variante du procédé selon l'invention. Les références de la figure 3 identiques à celles de la figure 1 désignent les mêmes éléments. Le procédé schématisé par la figure 3 est identique au procédé schématisé par la figure 1, mis à part que selon le procédé de la figure 3, un appareillage de réfrigération thermo-acoustique 23 supplémentaire est disposé sur le conduit 24. Sur la figure 3, l'appareillage de réfrigération thermo-acoustique 12 refroidit le fluide obtenu en sortie de l'échangeur 11 par le conduit 2, et l'appareillage de réfrigération thermo-acoustique 23 refroidit le fluide obtenu en sortie de l'échangeur 11 par le conduit 24. Les appareillages 11 et 23 opèrent un abaissement de température d'une valeur comprise entre 1°C et 20°C, de préférence entre 1°C et 5°C.FIG. 3 represents a variant of the method according to the invention. The references in Figure 3 identical to those in Figure 1 denote the same elements. The process shown schematically in FIG. 3 is identical to the process shown schematically in FIG. 1, except that according to the process in FIG. 3, an additional thermo-acoustic refrigeration apparatus 23 is placed on the duct 24. In FIG. 3, the thermo-acoustic refrigeration apparatus 12 cools the fluid obtained at the outlet of the exchanger 11 through the conduit 2, and the thermo-acoustic refrigeration apparatus 23 cools the fluid obtained at the outlet of the exchanger 11 through the conduit 24 Apparatuses 11 and 23 lower the temperature by between 1 ° C and 20 ° C, preferably between 1 ° C and 5 ° C.
La figure 4 représente un procédé de liquéfaction de gaz naturel selon l'art antérieur. Ce procédé est notamment décrit par le document FR 2 778 232. Selon le procédé de liquéfaction de gaz naturel schématisé par la figure 4, le gaz naturel arrivant par le conduit 101 est refroidi par échange de chaleur indirecte avec deux mélanges réfrigérants, chaque mélange réfrigérant circulant dans un circuit fermé et indépendant. Le gaz naturel arrive par le conduit 101, par exemple à une pression comprise entre 1 MPa et 15 MPa, de préférence entre 4 MPa et 7 MPa et à une température comprise entre 20°C et 60°C. Le gaz circulant dans le conduit 101, le premier mélange réfrigérant circulant dans le conduit 135 et le deuxième mélange réfrigérant circulant dans le conduit 123 entrent dans l'échangeur de chaleur 111 pour y circuler selon des directions parallèles et à co-courant. Le gaz naturel sort de l'échangeur 111 par le conduit 102, par exemple à une température comprise entre - 35°C et - 70°C. Le deuxième mélange réfrigérant sort totalement condensé de l'échangeur 111 par le conduit 124, par exemple à une température comprise entre - 35°C et - 70°C. Dans l'échangeur 111, trois fractions du premier mélange réfrigérant en phase liquide sont successivement soutirées. Les fractions sont détendues à travers les vannes de détente 132, 133 et 134 à trois niveaux de pression différents, puis vaporisées dans l'échangeur 111 par échange de chaleur avec le gaz naturel, le deuxième mélange réfrigérant et une partie du premier mélange réfrigérant. Les trois fractions vaporisées sont envoyées à différents étages du compresseur 130. Les fractions vaporisées sont comprimées dans le compresseur 130, puis condensées dans le condenseur 131 par échange de chaleur avec un fluide extérieur de refroidissement, par exemple de l'eau ou de l'air. Le premier mélange réfrigérant issu du condenseur 131 est envoyé dans l'échangeur 111 par le conduit 135. La pression du premier mélange réfrigérant à la sortie du compresseur 130 peut être comprise entre 2 MPa et 4 MPa. La température du premier mélange réfrigérant à la sortie du condenseur 131 peut être comprise entre 30°C et 55°C. Le premier mélange réfrigérant peut être formé par un mélange d'hydrocarbures tels qu'un mélange d'éthane et de propane, mais peut également contenir du méthane, du butane et/ou du pentane. Les proportions en fraction molaires (%) des composants du premier mélange réfrigérant peuvent être:FIG. 4 represents a process for liquefying natural gas according to the prior art. This process is described in particular in document FR 2 778 232. According to the natural gas liquefaction process shown diagrammatically in FIG. 4, the natural gas arriving through line 101 is cooled by indirect heat exchange with two refrigerant mixtures, each refrigerant mixture circulating in a closed and independent circuit. Natural gas arrives via line 101, for example at a pressure between 1 MPa and 15 MPa, preferably between 4 MPa and 7 MPa and at a temperature between 20 ° C and 60 ° C. The gas circulating in the conduit 101, the first refrigerant mixture circulating in the conduit 135 and the second refrigerant mixture circulating in the conduit 123 enter the heat exchanger 111 to circulate there in parallel and co-current directions. Natural gas leaves the exchanger 111 through the conduit 102, for example at a temperature between - 35 ° C and - 70 ° C. The second refrigerant mixture leaves completely condensed from the exchanger 111 through the conduit 124, for example at a temperature between - 35 ° C and - 70 ° C. In the exchanger 111, three fractions of the first refrigerant mixture in the liquid phase are successively withdrawn. The fractions are expanded through the expansion valves 132, 133 and 134 at three different pressure levels, then vaporized in the exchanger 111 by heat exchange with natural gas, the second refrigerant mixture and part of the first refrigerant mixture. The three vaporized fractions are sent to different stages of the compressor 130. The vaporized fractions are compressed in the compressor 130, then condensed in the condenser 131 by heat exchange with an external cooling fluid, for example water or air. The first refrigerant mixture from the condenser 131 is sent to the exchanger 111 through the conduit 135. The pressure of the first refrigerant mixture at the outlet of the compressor 130 can be between 2 MPa and 4 MPa. The temperature of the first refrigerant mixture at the outlet of the condenser 131 can be between 30 ° C and 55 ° C. The first refrigerant mixture can be formed by a mixture of hydrocarbons such as a mixture of ethane and propane, but can also contain methane, butane and / or pentane. The proportions in molar fraction (%) of the components of the first refrigerant mixture can be:
Ethane: 30 % à 70 % Propane: 30 % à 70 % Butane: 0 % à 10 % Le gaz naturel issu de l'échangeur 111 par le conduit 102 peut être fractionné, c'est à dire qu'une partie des hydrocarbures C2+ contenant au moins deux atomes de carbone est séparée du gaz naturel, en utilisant un dispositif connu de l'homme de l'art. Le gaz naturel fractionné est envoyé par le conduit 102 dans l'échangeur 112. Les hydrocarbures C2+ recueillis sont envoyés dans des colonnes de fractionnement comportant un deéthaniseur. La fraction légère recueillie en tête du deéthaniseur peut être mélangée avec le gaz naturel circulant dans le conduit 102. La fraction liquide recueillie en fond du deéthaniseur est envoyée à un dépropaniseur. Le gaz circulant dans le conduit 102 et le deuxième mélange réfrigérant circulant dans le conduit 124 entrent dans l'échangeur 112 pour y circuler selon des directions parallèles et à co-courant. Le deuxième mélange réfrigérant sortant de l'échangeur 112 par le conduit 125 est détendu par le dispositif de détente 122. Le dispositif de détente 122 peut être une turbine, une vanne ou une combinaison d'une turbine et d'une vanne. Le deuxième mélange réfrigérant détendu issu du dispositif de détente 122 est envoyé dans l'échangeur 112 pour être vaporisé en circulant à contre courant du gaz naturel et du deuxième mélange réfrigérant. En sortie de l'échangeur 112, le deuxième mélange réfrigérant vaporisé est comprimé par le compresseur 120 puis refroidit dans l'échangeur de chaleur indirecte 121 par échange de chaleur avec un fluide extérieur de refroidissement, par exemple de l'eau ou de l'air. Le deuxième mélange réfrigérant issu de l'échangeur 121 est envoyé dans l'échangeur 111 par le conduit 123. La pression du deuxième mélange réfrigérant en sortie du compresseur 120 peut être comprise entre 2 MPa et 6 MPa. La température du deuxième mélange réfrigérant à la sortie de l'échangeur 121 peut être comprise entre 30°C et 55°C. Dans le procédé décrit en référence à la figure 4, le deuxième mélange réfrigérant n'est pas scindé en fractions séparées, mais, pour optimiser l'approche dans l'échangeur 112, le deuxième mélange réfrigérant peut également être séparé en deux ou trois fractions, chaque fraction étant détendue à un niveau de pression différent, puis envoyée à différents étages du compresseur 120. Le deuxième mélange réfrigérant est formé par exemple par un mélange d'hydrocarbures et d'azote tels qu'un mélange de méthane, d'éthane et d'azote mais peut également contenir du propane et/ou du butane. Les proportions en fraction molaires (%) des composants du deuxième mélange réfrigérant peuvent être: Azote: 0 % à 10 %Ethane: 30% to 70% Propane: 30% to 70% Butane: 0% to 10% The natural gas coming from the exchanger 111 through the conduit 102 can be fractionated, that is to say that a part of the C 2+ hydrocarbons containing at least two carbon atoms is separated from the natural gas, using a device known from one skilled in the art. The fractionated natural gas is sent via line 102 to the exchanger 112. The collected C 2+ hydrocarbons are sent to fractionation columns comprising a deethanizer. The light fraction collected at the top of the deethanizer can be mixed with the natural gas circulating in the conduit 102. The liquid fraction collected at the bottom of the deethanizer is sent to a depropanizer. The gas circulating in the conduit 102 and the second refrigerant mixture circulating in the conduit 124 enter the exchanger 112 to circulate there in parallel and co-current directions. The second refrigerant mixture leaving the exchanger 112 through the conduit 125 is expanded by the expansion device 122. The expansion device 122 may be a turbine, a valve or a combination of a turbine and a valve. The second expanded refrigerant mixture from the expansion device 122 is sent to the exchanger 112 to be vaporized by circulating against the flow of natural gas and the second refrigerant mixture. At the outlet of the exchanger 112, the second vaporized refrigerant mixture is compressed by the compressor 120 and then cools in the indirect heat exchanger 121 by heat exchange with an external cooling fluid, for example water or air. The second refrigerant mixture from the exchanger 121 is sent into the exchanger 111 through the conduit 123. The pressure of the second refrigerant mixture at the outlet of the compressor 120 can be between 2 MPa and 6 MPa. The temperature of the second refrigerant mixture at the outlet of the exchanger 121 can be between 30 ° C and 55 ° C. In the process described with reference to Figure 4, the second refrigerant mixture is not split into separate fractions, but, to optimize approach in the exchanger 112, the second refrigerant mixture can also be separated into two or three fractions, each fraction being expanded to a different pressure level, then sent to different stages of the compressor 120. The second refrigerant mixture is formed by for example by a mixture of hydrocarbons and nitrogen such as a mixture of methane, ethane and nitrogen but may also contain propane and / or butane. The proportions in molar fraction (%) of the components of the second refrigerant mixture can be: Nitrogen: 0% to 10%
Méthane: 30 % à 70 % Ethane: 30 % à 70 % Propane: 0 % à 10 % Le gaz naturel sort liquéfié de l'échangeur de chaleur 112 par le conduit 103 à une pression identique à la pression d'entrée du gaz naturel, aux pertes de charge près. Par exemple, le gaz naturel sort de l'échangeur 112 à une pression comprise entre 1 MPa et 15 MPa, de préférence entre 4 MPa et 7 MPa. Ce gaz naturel liquéfié sous pression est détendu par le dispositif de détente 113 jusqu'à une pression proche de la pression atmosphérique. Le gaz naturel liquide obtenu est évacué par le conduit 104.Methane: 30% to 70% Ethane: 30% to 70% Propane: 0% to 10% Natural gas leaves liquefied from the heat exchanger 112 through line 103 at a pressure identical to the inlet pressure of natural gas , except for pressure losses. For example, the natural gas leaves the exchanger 112 at a pressure between 1 MPa and 15 MPa, preferably between 4 MPa and 7 MPa. This pressurized liquefied natural gas is expanded by the expansion device 113 to a pressure close to atmospheric pressure. The liquid natural gas obtained is evacuated through line 104.
Le procédé schématisé par la figure 5 représente un mode particulier de réalisation de l'invention. Le procédé schématisé par la figure 5 est identique au procédé schématisé par la figure 4, mis à part que selon le procédé de la figure 5, un appareillage de réfrigération thermo-acoustique 105 supplémentaire est disposé sur le conduit 103. Sur la figure 5, l'appareillage de réfrigération thermo-acoustique 105 refroidit le fluide obtenu en sortie de l'échangeur 112 par le conduit 103. L'appareillage de réfrigération 105 opère un refroidissement du fluide d'une valeur comprise entre 1°C et 20°C, de préférence entre 1°C et 5°C.The process shown diagrammatically in FIG. 5 represents a particular embodiment of the invention. The process shown schematically in FIG. 5 is identical to the process shown schematically in FIG. 4, except that according to the process in FIG. 5, an additional thermo-acoustic refrigeration apparatus 105 is placed on the conduit 103. In FIG. 5, the thermo-acoustic refrigeration apparatus 105 cools the fluid obtained at the outlet of the exchanger 112 by the conduit 103. The refrigeration apparatus 105 operates a cooling of the fluid of a value between 1 ° C. and 20 ° C, preferably between 1 ° C and 5 ° C.
Le procédé schématisé par la figure 6 représente un mode particulier de réalisation de l'invention. Le procédé schématisé par la figure 6 est identique au procédé schématisé par la figure 4, mis à part que selon le procédé de la figure 6, un appareillage de réfrigération thermo-acoustique 126 supplémentaire est disposé sur le conduit 125. Sur la figure 6, l'appareillage de réfrigération thermo-acoustique 126 refroidit le deuxième mélange réfrigérant obtenu en sortie de l'échangeur 112 par le conduit 125. L'appareillage de réfrigération 126 opère un refroidissement du fluide d'une valeur comprise entre 1°C et 20°C, de préférence entre 1°C et 5°C.The process shown diagrammatically in FIG. 6 represents a particular embodiment of the invention. The process shown schematically in FIG. 6 is identical to the process shown schematically in FIG. 4, except that according to the process in FIG. 6, an additional thermo-acoustic refrigeration apparatus 126 is placed on the duct 125. In FIG. 6, the thermo-acoustic refrigeration appliance 126 cools the second refrigerant mixture obtained at the outlet of the exchanger 112 by the conduit 125. The refrigeration appliance 126 operates a cooling of the fluid by a value between 1 ° C and 20 ° C, preferably between 1 ° C and 5 ° C.
Le procédé schématisé par la figure 7 représente un mode particulier de réalisation de l'invention. Le procédé schématisé par la figure 7 est identique au procédé schématisé par la figure 4, mis à part que selon le procédé de la figure 7, un appareillage de réfrigération thermo-acoustique 105 supplémentaire est disposé sur le conduit 103, et un appareillage de réfrigération thermoacoustique 126 supplémentaire est disposé sur le conduit 125. Sur la figure 7, l'appareillage de réfrigération thermo-acoustique 105 refroidit le fluide obtenu en sortie de l'échangeur 112 par le conduit 103, l'appareillage de réfrigération thermo-acoustique 126 refroidit le deuxième mélange réfrigérant obtenu en sortie de l'échangeur 112 par le conduit 125. Les appareillages 105 et 112 opèrent un refroidissement d'une valeur comprise entre 1°C et 20°C, de préférence entre 1°C et 5°C.The process shown diagrammatically in FIG. 7 represents a particular embodiment of the invention. The process shown schematically in FIG. 7 is identical to the process shown schematically in FIG. 4, except that according to the process in FIG. 7, an additional thermo-acoustic refrigeration apparatus 105 is placed on the conduit 103, and a refrigeration apparatus additional thermoacoustic 126 is disposed on the conduit 125. In FIG. 7, the thermo-acoustic refrigeration apparatus 105 cools the fluid obtained at the outlet of the exchanger 112 by the conduit 103, the thermo-acoustic refrigeration apparatus 126 cools the second refrigerant mixture obtained at the outlet of the exchanger 112 through the conduit 125. Apparatuses 105 and 112 cool down between 1 ° C and 20 ° C, preferably between 1 ° C and 5 ° C.
Le fonctionnement des procédés décrits en relation avec les figures 4, 5, 6 et 7 est illustré par les exemples numériques donnés ci-après. Pour les procédés des figures 4 à 7, le gaz naturel arrive par le conduit 101 à un débit de 40 000 Kmoles/heure (695 tonnes/heure) à la température de 30°C et à la pression de 5 MPa. La composition volumique du gaz est de 92% méthane, 6% d'éthane, 1,5% de propane et 0,5% d'azote.The operation of the methods described in relation to FIGS. 4, 5, 6 and 7 is illustrated by the numerical examples given below. For the processes of FIGS. 4 to 7, the natural gas arrives via the pipe 101 at a flow rate of 40,000 kmol / hour (695 tonnes / hour) at the temperature of 30 ° C and at the pressure of 5 MPa. The gas volume composition is 92% methane, 6% ethane, 1.5% propane and 0.5% nitrogen.
Selon le procédé schématisé par la figure 4, le gaz obtenu dans le conduit 103 est liquéfié et refroidi à la pression de 4,85 MPa et à la température de - 163,5°C, de manière à être totalement liquide après détente à la pression de stockage. Les deux cycles de mélange réfrigérant en cascade permettent d'obtenir cette température. La puissance de compression totale nécessaire est de 194,4 MW (97,2 MW sur 120 et sur 130). Par exemple, pour chaque cycle de mélange réfrigérant, les compresseurs sont entraînés par une turbine à gaz de 82 MW et un moteur attelé de 15,2 MW. Par rapport au procédé selon la figure 4, selon le procédé schématisé par la figure 5, un appareillage de refroidissement thermo-acoustique 105 est disposé sur le conduit 103 avant le dispositif de détente 113. Cet appareillage 105 permet de fournir une puissance de réfrigération de 2 MW, donc permet de refroidir les 695 tonnes/heures de gaz naturel de -160, 5°C à -163, 5°C. Ainsi, si on maintient le même débit de gaz naturel que dans l'exemple relatif à la figure 4, la température du gaz naturel en sortie de l'échangeur 112 peut être augmentée à -160, 5°C. Par conséquent, l'appareillage thermo-acoustique 105 permet de diminuer la puissance de compression nécessitée par les deux cycles de mélange réfrigérant à 186,4 MW. Alternativement, si on maintient la même puissance de compression que dans l'exemple illustrant le procédé de la figure 4, le débit de gaz naturel liquéfié obtenu dans le conduit 104 est augmenté de 4,3%. Par rapport au procédé selon la figure 4, selon le procédé schématisé par la figure 6, un appareillage de refroidissement thermo-acoustique 126 est disposé sur le conduit 125 avant le dispositif de détente 122. Cet appareillage 126 permet d'abaisser la température du deuxième mélange réfrigérant d'une valeur de 2,4°C, grâce à une puissance calorifique de 2 MW. Ainsi, si on garde le même débit de gaz naturel que dans l'exemple relatif à la figure 4, la pression du deuxième fluide réfrigérant en sortie du dispositif de détente 122, c'est à dire la pression en entrée du compresseur 120, peut être augmentée de 0,03 MPa. Par conséquent, l'appareillage 126 permet de réduire la puissance de compression à 186,7 MW. Alternativement, si on maintient la même puissance de compression que dans l'exemple illustrant le procédé de la figure 4, le débit de gaz naturel liquéfié obtenu dans le conduit 104 est augmenté de 4,2%.According to the process shown diagrammatically in FIG. 4, the gas obtained in line 103 is liquefied and cooled to the pressure of 4.85 MPa and to the temperature of - 163.5 ° C., so as to be completely liquid after expansion at storage pressure. The two cascade refrigerant mixing cycles allow this temperature to be obtained. The total compression power required is 194.4 MW (97.2 MW out of 120 and 130). For example, for each refrigerant mixing cycle, the compressors are driven by an 82 MW gas turbine and a 15.2 MW coupled motor. Compared to the process according to FIG. 4, according to the process shown diagrammatically in FIG. 5, a thermo-acoustic cooling device 105 is placed on the duct 103 before the expansion device 113. This device 105 makes it possible to provide a cooling power of 2 MW, thus cooling the 695 tonnes / hour of natural gas from -160.5 ° C to -163.5 ° C. Thus, if the same natural gas flow rate as in the example relating to FIG. 4 is maintained, the temperature of the natural gas leaving the exchanger 112 can be increased to -160.5 ° C. Consequently, the thermo-acoustic apparatus 105 makes it possible to reduce the compression power required by the two cycles of refrigerant mixture to 186.4 MW. Alternatively, if the same compression power is maintained as in the example illustrating the method of FIG. 4, the flow rate of liquefied natural gas obtained in the conduit 104 is increased by 4.3%. Compared to the process according to FIG. 4, according to the process shown diagrammatically in FIG. 6, a thermo-acoustic cooling device 126 is placed on the duct 125 before the expansion device 122. This device 126 makes it possible to lower the temperature of the second cooling mixture with a value of 2.4 ° C, thanks to a heat output of 2 MW. Thus, if the same natural gas flow rate is kept as in the example relating to FIG. 4, the pressure of the second refrigerant fluid at the outlet of the expansion device 122, that is to say the pressure at the inlet of the compressor 120, can be increased by 0.03 MPa. Consequently, the apparatus 126 makes it possible to reduce the compression power to 186.7 MW. Alternatively, if the same compression power is maintained as in the example illustrating the method of FIG. 4, the flow rate of liquefied natural gas obtained in the conduit 104 is increased by 4.2%.
Par rapport au procédé selon la figure 4, selon le procédé schématisé par la figure 7, un appareillage de refroidissement thermo-acoustique 126 est disposé sur le conduit 125 avant le dispositif de détente 122, et un appareillage de refroidissement thermo-acoustique 105 est disposé sur le conduit 103 avant le dispositif de détente 113. L'appareillage 126 permet d'abaisser la température du deuxième mélange réfrigérant de 2,4°C, grâce à une puissance calorifique de 2 MW. Ainsi, si on garde le même débit de gaz naturel que dans l'exemple relatif à la figure 4, la pression du deuxième fluide réfrigérant en sortie du dispositif de détente 122, c'est à dire la pression en entrée du compresseur 120, peut être augmentée de 0,03 MPa. L'appareillage 105 permet de fournir une puissance de réfrigération de 2 MW, donc permet de refroidir les 695 tonnes/heures de gaz naturel de -160,5°C à -163,5°C. Ainsi, la température du gaz naturel en sortie de l'échangeur 112 peut être augmentée à -160,5°C. Par conséquent, les appareillages thermo-acoustique 105 et 126 permettent de diminuer la puissance de compression nécessitée par les deux cycles de mélange réfrigérant à 178,7 MW. Alternativement, si on maintient la même puissance de compression que dans l'exemple illustrant le procédé de la figure 4, le débit de gaz naturel liquéfié obtenu dans le conduit 104 est augmenté de 8,8%. On produit 61 tonnes/heure de GNL supplémentaire par rapport au procédé selon la figure 4.Compared to the process according to FIG. 4, according to the process shown diagrammatically in FIG. 7, a thermo-acoustic cooling device 126 is placed on the duct 125 before the expansion device 122, and a thermo-acoustic cooling device 105 is placed on the conduit 103 before the expansion device 113. The apparatus 126 makes it possible to lower the temperature of the second refrigerant mixture by 2.4 ° C, thanks to a calorific power of 2 MW. Thus, if the same natural gas flow rate is kept as in the example relating to FIG. 4, the pressure of the second refrigerant fluid at the outlet of the expansion device 122, that is to say the pressure at the inlet of the compressor 120, can be increased by 0.03 MPa. Apparatus 105 provides power 2 MW of refrigeration, thus cooling the 695 tonnes / hour of natural gas from -160.5 ° C to -163.5 ° C. Thus, the temperature of the natural gas leaving the exchanger 112 can be increased to -160.5 ° C. Consequently, the thermo-acoustic devices 105 and 126 make it possible to reduce the compression power required by the two cycles of refrigerant mixing to 178.7 MW. Alternatively, if the same compression power is maintained as in the example illustrating the method of FIG. 4, the flow rate of liquefied natural gas obtained in line 104 is increased by 8.8%. 61 tonnes / hour of additional LNG are produced compared to the process according to FIG. 4.
L'exemple numérique illustrant le procédé selon la figure 7 démontre l'avantage de l'invention par rapport aux deux modes de liquéfactions qui sont la liquéfaction classique par échange de chaleur avec deux fluides réfrigérants (procédé décrit en relation avec la figure 4) et la liquéfaction thermoacoustique. En effet, une liquéfaction thermoacoustique de 4 MW, par exemple deux modules de 2 MW, permet de produire environ 17 tonnes/heure de GNL. Par contre, la liquéfaction thermoacoustique de 4 MW (deux modules de 2 MW) combinée avec une unité de liquéfaction classique permet une production supplémentaire de 61 tonnes/heure.The digital example illustrating the process according to FIG. 7 demonstrates the advantage of the invention compared to the two liquefaction modes which are the conventional liquefaction by heat exchange with two refrigerants (process described in relation to FIG. 4) and thermoacoustic liquefaction. Indeed, a thermoacoustic liquefaction of 4 MW, for example two modules of 2 MW, makes it possible to produce approximately 17 tonnes / hour of LNG. On the other hand, the 4 MW thermoacoustic liquefaction (two 2 MW modules) combined with a conventional liquefaction unit allows an additional production of 61 tonnes / hour.
Les unités de liquéfaction de gaz naturel classiques ont de bons rendements, grâce aux optimisations réalisées depuis de nombreuses années. Cependant, les tailles des turbines à gaz pouvant entraîner les compresseurs sont peu nombreuses, et la capacité de production du GNL de l'unité de liquéfaction est souvent fixée en fonction de ces turbines à gaz. De plus, les compresseurs axiaux sont peu nombreux, la taille des compresseurs centrifuges est limitée par la vitesse admissible en bout d'aube. Ces limitations rendent les capacités de production des unités de liquéfaction très peu flexible, c'est à dire qu'il est difficile de faire varier le débit de gaz naturel produit au cours du temps. De plus, les variations de température entre l'été et l'hiver peuvent engendrer une variation de capacité de production non contrôlable, qui peut poser des problèmes saisonniers d'approvisionnement des clients en GNL. Le procédé selon l'invention permet d'ajuster aisément la capacité de production d'une unité de liquéfaction d'un gaz naturel. En effet, les appareillages de refroidissement thermo-acoustique étant installés en aval d'une vanne, il est aisé d'en disposer plusieurs, par exemple en parallèle, avec des vannes également en parallèles. Par exemple, en référence à la figure 1, le fluide arrivant par le conduit 2 est scindé en plusieurs flux. Chacun de ces flux est refroidi par un appareillage de refroidissement thermo-acoustique. Chacun des flux refroidis est détendu par une vanne. Enfin les flux détendu sont réunis pour former le fluide circulant dans le conduit 4, c'est à dire le gaz naturel liquéfié à pression atmosphérique.Conventional natural gas liquefaction units have good yields, thanks to optimizations carried out over many years. However, the sizes of gas turbines capable of driving the compressors are few, and the LNG production capacity of the liquefaction unit is often fixed according to these gas turbines. In addition, the axial compressors are few, the size of the centrifugal compressors is limited by the admissible speed at the blade tip. These limitations make the production capacities of liquefaction units very inflexible, ie it is difficult to vary the flow rate of natural gas produced over time. In addition, temperature variations between summer and winter can cause a variation in uncontrollable production capacity, which can cause seasonal problems in supplying LNG customers. The method according to the invention makes it possible to easily adjust the production capacity of a unit for liquefying a natural gas. Indeed, the thermo-acoustic cooling devices being installed downstream of a valve, it is easy to have several, for example in parallel, with valves also in parallel. For example, with reference to Figure 1, the fluid arriving through line 2 is split into several streams. Each of these flows is cooled by a thermo-acoustic cooling device. Each of the cooled flows is expanded by a valve. Finally the expanded flows are combined to form the fluid flowing in the conduit 4, that is to say the natural gas liquefied at atmospheric pressure.
Actuellement, les rendements des appareillages de refroidissement thermo-acoustique sont relativement faibles. Cependant, on peut penser que le rendement de ces équipements, pas encore utilisés dans le domaine de la liquéfaction du gaz naturel, pourra être considérablement amélioré au fur et à mesure de leur développement au présent procédé. Un faible rendement, donc une consommation de gaz importante sur une petite partie de l'unité de liquéfaction, par l'appareillage de refroidissement thermo-acoustique, est acceptable dans un site de production où le prix du gaz est très peu élevé. Cette consommation supplémentaire de gaz est d'autant plus acceptable du fait que l'amélioration du rendement total du procédé selon l'invention par rapport à une unité de liquéfaction classique compense le faible rendement de l'appareillage thermo-acoustique. Par ailleurs, l'investissement financier correspondant à un appareillage de réfrigération thermo-acoustique est très peu élevé comparé au prix considérable d'une unité de liquéfaction de gaz naturel. De plus, un appareillage de réfrigération thermo-acoustique est très compact, et donc augmente peu les surfaces importantes nécessitées pour l'implantation d'un unité de liquéfaction classique : par exemple, un appareillage thermoacoustique d'une puissance de 2 MW peut tenir dans un cercle de 5 m de diamètre.Currently, the yields of thermo-acoustic cooling devices are relatively low. However, it may be thought that the efficiency of these equipments, not yet used in the field of liquefaction of natural gas, could be considerably improved as they are developed in the present process. A low efficiency, therefore a significant gas consumption on a small part of the liquefaction unit, by the thermo-acoustic cooling apparatus, is acceptable in a production site where the price of gas is very low. This additional gas consumption is all the more acceptable since the improvement in the total yield of the process according to the invention compared to a conventional liquefaction unit compensates for the low yield of the thermo-acoustic apparatus. In addition, the financial investment corresponding to thermo-acoustic refrigeration equipment is very low compared to the considerable price of a unit for liquefying natural gas. In addition, a thermo-acoustic refrigeration device is very compact, and therefore does not increase much the large areas required for the installation of a conventional liquefaction unit: for example, a thermoacoustic device with a power of 2 MW can fit in a circle 5 m in diameter.
Le principe de fonctionnement d'un appareillage de refroidissement thermo-acoustique, tel qu'utilisé dans l'invention, est représenté schéma tiquement par la figure 8. Le principe d'un appareillage thermoacoustique consiste à produire du froid à partir de « chaleur brute », en utilisant les propriétés des phénomènes dits « thermo-acoustique » qui sont des phénomènes d'échange thermique et de conversion d'énergie dans les zones de contact, également nommées couche limite thermique, entre un solide et un liquide. En général, l'appareillage thermo-acoustique comporte trois parties. Le moteur thermique 43 est utilisé pour générer une onde acoustique. Le moteur thermique 43 est alimenté en énergie primaire sous forme de chaleur admise par le flux 51. Un gradient thermique important est créé entre une zone chauffée par le flux 51 et une zone refroidie par un fluide à température ambiante arrivant par le conduit 63 et évacué par le conduit 64. Le fluide réfrigérant peut être de l'eau. Ce gradient thermique permet de générer, par phénomène thermo-acoustique, une onde acoustique qui est transmise au réfrigérateur 41 par l'intermédiaire d'un résonateur 42. Le résonateur 42, par exemple, est formé d'un ou plusieurs tubes fermés contenant, par exemple, de l'hélium à moyenne pression. L'onde acoustique s'établit au sein du, ou des tubes. Un réfrigérateur 41 est disposé en aval du résonateur 42. Le réfrigérateur 41 utilise l'énergie de l'onde acoustique pour produire un point froid à basse température selon un procédé de conversion thermo-acoustique. Le fluide à refroidir à basse température est introduit dans le réfrigérateur 41 par le conduit 71, puis est évacué à une température plus basse par le conduit 72. Le réfrigérateur 41 doit évacuer de la chaleur à l'aide d'un fluide à température ambiante arrivant par le conduit 61 et évacué par le conduit 62. Ce fluide peut être de l'eau. Ce fluide peut également être avantageusement un fluide obtenu à une température voisine ou inférieure à 0°C lors de la purification du gaz naturel, ou du mélange réfrigérant du premier cycle du procédé de liquéfaction.The operating principle of a thermo-acoustic cooling apparatus, as used in the invention, is shown diagrammatically in FIG. 8. The principle of a thermoacoustic apparatus consists in producing cold from "raw heat" ”, Using the properties of the so-called“ thermo-acoustic ”phenomena which are thermal exchange and energy conversion phenomena in the contact zones, also called thermal boundary layer, between a solid and a liquid. In general, the thermo-acoustic apparatus has three parts. The heat engine 43 is used to generate an acoustic wave. The heat engine 43 is supplied with primary energy in the form of heat admitted by the flow 51. A large thermal gradient is created between an area heated by the flow 51 and an area cooled by a fluid at ambient temperature arriving through the conduit 63 and discharged through line 64. The refrigerant can be water. This thermal gradient makes it possible to generate, by thermo-acoustic phenomenon, an acoustic wave which is transmitted to the refrigerator 41 via a resonator 42. The resonator 42, for example, is formed from one or more closed tubes containing, for example, medium pressure helium. The acoustic wave is established within the or the tubes. A refrigerator 41 is arranged downstream of the resonator 42. The refrigerator 41 uses the energy of the acoustic wave to produce a cold spot at low temperature according to a thermo-acoustic conversion process. The fluid to be cooled at low temperature is introduced into the refrigerator 41 through the conduit 71, then is evacuated at a lower temperature through the conduit 72. The refrigerator 41 must evacuate heat using a fluid at room temperature arriving via line 61 and discharged through line 62. This fluid may be water. This fluid can also advantageously be a fluid obtained at a temperature close to or below 0 ° C. during the purification of natural gas, or of the refrigerant mixture of the first cycle of the liquefaction process.
Les appareillages de refroidissement thermo-acoustique mis en œuvre dans la présente invention peuvent être développés à partir des prototypes décrits dans les documents cités ci-après.The thermo-acoustic cooling devices used in the present invention can be developed from the prototypes described in the documents cited below.
• « Thermoacoustic Natural Gas Liquéfier » de RJ. Hanold et G.W. Swift Journal US DOE et al. Natur. Gas RDD Contract. Rev. Mtg. (Bâton Rouge, LA, 4/4-6/95) Proc. 2 506-511 (April 1995) Petroleum Abstracts ABSTR. NO. 637,273 V36 N.48 (11/30/96) ISSN: 0031-6423 • « Development of a thermoacoustic natural gas liquéfaction » de G.W. Swift ( Second topical conférence on Natural Gas Utilization - AIChE Spring Meeting March 10-14, 2002)• “Thermoacoustic Natural Gas Liquéfier” by RJ. Hanold and G.W. Swift Journal US DOE et al. Natur. Gas RDD Contract. Rev. Mtg. (Baton Rouge, LA, 4 / 4-6 / 95) Proc. 2 506-511 (April 1995) Petroleum Abstracts ABSTR. NO. 637,273 V36 N.48 (11/30/96) ISSN: 0031-6423 • “Development of a thermoacoustic natural gas liquefaction” by G.W. Swift (Second topical conference on Natural Gas Utilization - AIChE Spring Meeting March 10-14, 2002)
• « A thermoacoustically driven puise tube refrigerator capable of working below 120 K » de T.Jin, G.B. Chen, Y. Shen Journal of Cryogénies v41, N°8 2001, P 595-601• “A thermoacoustically driven puise tube refrigerator capable of working below 120 K” by T. Jin, G.B. Chen, Y. Shen Journal of Cryogénies v41, N ° 8 2001, P 595-601
• US 4,953,366 . • US 4,953,366.

Claims

REVENDICATIONS
1) Procédé de liquéfaction d'un gaz, le gaz étant disponible sous une pression PI, dans lequel le gaz subit les étapes suivantes : on condense le gaz sous pression PI par échange de chaleur avec un fluide réfrigérant de manière à obtenir un liquide sous pression PI, le fluide réfrigérant étant vaporisé durant l'échange de chaleur, et on détend le liquide sous pression PI jusqu'à une pression P2, dans lequel le fluide réfrigérant subit les étapes suivantes : on comprime le fluide réfrigérant vaporisé, on refroidit le fluide réfrigérant comprimé, - on détend le fluide réfrigérant refroidi, le fluide réfrigérant détendu condense le gaz sous pression PI par échange de chaleur, dans lequel on effectue au moins l'une des deux étapes suivantes : - avant la détente, on sous-refroidit le liquide sous pression PI par un premier appareillage de refroidissement thermo-acoustique, - avant la détente, on sous-refroidit le fluide réfrigérant refroidi par un deuxième appareillage de refroidissement thermo-acoustique.1) Method for liquefying a gas, the gas being available under a pressure PI, in which the gas undergoes the following steps: the gas under pressure PI is condensed by heat exchange with a refrigerant so as to obtain a liquid under pressure PI, the refrigerant being vaporized during the heat exchange, and the liquid under pressure PI is expanded to a pressure P2, in which the refrigerant undergoes the following steps: the vaporized refrigerant is compressed, the compressed refrigerant, - the cooled refrigerant is expanded, the expanded refrigerant condenses the gas under pressure PI by heat exchange, in which at least one of the following two steps is carried out: - before expansion, it is sub-cooled the liquid under pressure PI by a first thermo-acoustic cooling device, - before expansion, the refrigerant cooled by a second is sub-cooled th thermo-acoustic cooling equipment.
2) Procédé selon la revendication 1, dans lequel le gaz est un gaz naturel sous une pression comprise entre 1 MPa et 15 MPa et à une température comprise entre 20°C et 60°C.2) Method according to claim 1, wherein the gas is a natural gas under a pressure between 1 MPa and 15 MPa and at a temperature between 20 ° C and 60 ° C.
3) Procédé selon l'une des revendications 1 et 2, dans lequel le premier appareillage de refroidissement thermo-acoustique abaisse la température du liquide refroidi d'une valeur comprise entre 1°C à 20°C. 4) Procédé selon l'une des revendications 1 à 3, dans lequel le deuxième appareillage de refroidissement thermo-acoustique abaisse la température du fluide réfrigérant refroidi d'une valeur comprise entre 1°C à 20°C.3) Method according to one of claims 1 and 2, wherein the first thermo-acoustic cooling apparatus lowers the temperature of the cooled liquid by a value between 1 ° C to 20 ° C. 4) Method according to one of claims 1 to 3, wherein the second thermo-acoustic cooling apparatus lowers the temperature of the cooled refrigerant by a value between 1 ° C to 20 ° C.
5) Procédé selon l'une des revendications 1 à 4, dans lequel les appareillages de refroidissement thermo-acoustique comportent : un moteur thermique alimenté en chaleur, qui génère une onde acoustique, - un résonateur dans lequel s'établit l'onde thermo-acoustique, un réfrigérateur, disposé en aval du résonateur, utilisant l'énergie de l'onde acoustique pour produire un point froid à basse température. 6) Procédé selon l'une des revendications 1 à 5, dans lequel le liquide sous pression PI est sous-refroidi par plusieurs appareillages de refroidissement thermo-acoustique disposés en parallèle.5) Method according to one of claims 1 to 4, wherein the thermo-acoustic cooling devices comprise: a heat engine supplied with heat, which generates an acoustic wave, - a resonator in which the thermo-acoustic wave is established. acoustic, a refrigerator, placed downstream of the resonator, using the energy of the acoustic wave to produce a cold spot at low temperature. 6) Method according to one of claims 1 to 5, wherein the pressurized liquid PI is sub-cooled by several thermo-acoustic cooling devices arranged in parallel.
7) Procédé selon l'une des revendications 1 à 6, dans lequel le fluide réfrigérant refroidi est sous-refroidi par plusieurs appareillages de refroidissement thermo-acoustique disposés en parallèle. 7) Method according to one of claims 1 to 6, wherein the cooled refrigerant is sub-cooled by several thermo-acoustic cooling devices arranged in parallel.
PCT/FR2005/000405 2004-03-23 2005-02-21 Method for the liquefaction of a gas involving a thermo-acoustic cooling apparatus WO2005103583A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2005236214A AU2005236214B2 (en) 2004-03-23 2005-02-21 Method for the liquefaction of a gas involving a thermo-acoustic cooling apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0402979A FR2868154B1 (en) 2004-03-23 2004-03-23 METHOD OF LIQUEFACTING A GAS INTEGRATING A THERMO-ACOUSTIC COOLING APPARATUS
FR0402979 2004-03-23

Publications (1)

Publication Number Publication Date
WO2005103583A1 true WO2005103583A1 (en) 2005-11-03

Family

ID=34944454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/000405 WO2005103583A1 (en) 2004-03-23 2005-02-21 Method for the liquefaction of a gas involving a thermo-acoustic cooling apparatus

Country Status (4)

Country Link
AU (1) AU2005236214B2 (en)
FR (1) FR2868154B1 (en)
MY (1) MY136422A (en)
WO (1) WO2005103583A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008018000A1 (en) * 2008-04-09 2009-10-29 Siemens Aktiengesellschaft Process and apparatus for CO2 liquefaction
WO2010062252A1 (en) * 2008-11-27 2010-06-03 Picoterm Ab Arrangement for acoustical phase conversion
US20150153100A1 (en) * 2013-12-04 2015-06-04 General Electric Company System and method for hybrid refrigeration gas liquefaction
CN115031434A (en) * 2022-05-24 2022-09-09 中国科学院理化技术研究所 Regenerative refrigeration system and regenerative refrigeration mechanism of thermoacoustic self-circulation heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3817046A (en) * 1970-11-28 1974-06-18 Chinzoda Chem Eng & Constructi Absorption-multicomponent cascade refrigeration for multi-level cooling of gas mixtures
FR2778232A1 (en) * 1998-04-29 1999-11-05 Inst Francais Du Petrole Natural gas liquefaction process
US6205812B1 (en) * 1999-12-03 2001-03-27 Praxair Technology, Inc. Cryogenic ultra cold hybrid liquefier
US6336331B1 (en) * 2000-08-01 2002-01-08 Praxair Technology, Inc. System for operating cryogenic liquid tankage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3817046A (en) * 1970-11-28 1974-06-18 Chinzoda Chem Eng & Constructi Absorption-multicomponent cascade refrigeration for multi-level cooling of gas mixtures
FR2778232A1 (en) * 1998-04-29 1999-11-05 Inst Francais Du Petrole Natural gas liquefaction process
US6205812B1 (en) * 1999-12-03 2001-03-27 Praxair Technology, Inc. Cryogenic ultra cold hybrid liquefier
US6336331B1 (en) * 2000-08-01 2002-01-08 Praxair Technology, Inc. System for operating cryogenic liquid tankage

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J.J.WOLLAN, G.W.SWIFT, S.BACKHAUS, D.L.GARDNER: "Developement of a thermoacoustic natural gas liquefier", AICHE MEETING, 11 March 2002 (2002-03-11) - 14 March 2002 (2002-03-14), NEW ORLEANS, pages 1 - 8, XP009038707 *
RADEBAUGH R: "PULSE TUBE REFRIGERATION-A NEW TYPE OF CRYOCOOLER", JAPANESE JOURNAL OF APPLIED PHYSICS, PUBLICATION OFFICE JAPANESE JOURNAL OF APPLIED PHYSICS. TOKYO, JP, vol. 26, no. SUPPL 3, 1987, pages 2076 - 2081, XP001098478, ISSN: 0021-4922 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008018000A1 (en) * 2008-04-09 2009-10-29 Siemens Aktiengesellschaft Process and apparatus for CO2 liquefaction
DE102008018000B4 (en) * 2008-04-09 2010-04-01 Siemens Aktiengesellschaft Process and apparatus for CO2 liquefaction
WO2010062252A1 (en) * 2008-11-27 2010-06-03 Picoterm Ab Arrangement for acoustical phase conversion
US20150153100A1 (en) * 2013-12-04 2015-06-04 General Electric Company System and method for hybrid refrigeration gas liquefaction
CN115031434A (en) * 2022-05-24 2022-09-09 中国科学院理化技术研究所 Regenerative refrigeration system and regenerative refrigeration mechanism of thermoacoustic self-circulation heat exchanger
CN115031434B (en) * 2022-05-24 2023-07-25 中国科学院理化技术研究所 Regenerative refrigeration system and mechanism of thermoacoustic self-circulation heat exchanger

Also Published As

Publication number Publication date
AU2005236214A1 (en) 2005-11-03
FR2868154A1 (en) 2005-09-30
FR2868154B1 (en) 2006-05-26
MY136422A (en) 2008-09-30
AU2005236214B2 (en) 2009-10-08

Similar Documents

Publication Publication Date Title
CA2744450C (en) Method for producing a stream of subcooled liquefied natural gas using a natural gas feedstream, and associated facility
FR3053771B1 (en) METHOD FOR LIQUEFACTING NATURAL GAS AND RECOVERING LIQUID EVENTS OF NATURAL GAS COMPRISING TWO NATURAL GAS SEMI-OPENING REFRIGERANT CYCLES AND A REFRIGERANT GAS REFRIGERANT CYCLE
EP0125980B1 (en) Process and apparatus for the cooling and liquefaction of at least a low boiling point gas, such as natural gas
RU2467268C2 (en) Hydrocarbon flow cooling method and device
EP1946026B1 (en) Method for treating a liquefied natural gas stream obtained by cooling using a first refrigerating cycle and related installation
FR2778232A1 (en) Natural gas liquefaction process
EP0818661B1 (en) Improved process and apparatus for cooling and liquefaction of natural gas
FR2471567A1 (en) METHOD AND SYSTEM FOR REFRIGERATING A FLUID TO BE COOLED AT LOW TEMPERATURE
FR2886719A1 (en) METHOD FOR REFRIGERATING A THERMAL LOAD
FR2977015A1 (en) METHOD FOR LIQUEFACTING NATURAL GAS WITH TRIPLE FIRM CIRCUIT OF REFRIGERATING GAS
EP2344821A2 (en) Method for producing liquid and gaseous nitrogen streams, a helium-rich gaseous stream, and a denitrogened hydrocarbon stream, and associated plant
FR2977014A1 (en) PROCESS FOR THE LIQUEFACTION OF NATURAL GAS WITH A MIXTURE OF REFRIGERANT GAS.
WO2017081374A1 (en) Method for optimising liquefaction of natural gas
WO2009153427A2 (en) Method for liquefying natural gas with pre-cooling of the coolant mixture
WO2005103583A1 (en) Method for the liquefaction of a gas involving a thermo-acoustic cooling apparatus
FR3053770A1 (en) METHOD FOR LIQUEFACTING NATURAL GAS AND RECOVERING LIQUID EVENTS OF NATURAL GAS COMPRISING A SEMI-OPENING REFRIGERANT CYCLE WITH NATURAL GAS AND TWO REFRIGERANT GAS REFRIGERANT CYCLES
WO2011114012A2 (en) Process for liquefying a natural gas with refrigerant mixtures containing at least one unsaturated hydrocarbon
FR2943125A1 (en) Liquefied natural gas producing method, involves providing natural gas, recovering part of heat from fumes produced by gas turbine, and producing vapor for vapor turbine by using recovered part of heat
WO2022253847A1 (en) Device and method for pre-cooling a stream of a target fluid to a temperature less than or equal to 90 k
FR3068771A1 (en) DEVICE AND METHOD FOR LIQUEFACTING NATURAL GAS OR BIOGAS
WO2017081375A1 (en) Method for liquefying natural gas using a closed cycle refrigeration circuit
WO2023180391A1 (en) Method for liquefying a methane-rich feed gas, and corresponding facility
FR3068772A1 (en) DEVICE AND METHOD FOR LIQUEFACTING NATURAL GAS OR BIOGAS
WO2024008434A1 (en) Fluid liquefaction method and device
FR3068770A1 (en) DEVICE AND METHOD FOR LIQUEFACTING NATURAL GAS OR BIOGAS

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: DZP2005000470

Country of ref document: DZ

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005236214

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2005236214

Country of ref document: AU

Date of ref document: 20050221

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005236214

Country of ref document: AU

122 Ep: pct application non-entry in european phase