EP0818661B1 - Improved process and apparatus for cooling and liquefaction of natural gas - Google Patents
Improved process and apparatus for cooling and liquefaction of natural gas Download PDFInfo
- Publication number
- EP0818661B1 EP0818661B1 EP97401367A EP97401367A EP0818661B1 EP 0818661 B1 EP0818661 B1 EP 0818661B1 EP 97401367 A EP97401367 A EP 97401367A EP 97401367 A EP97401367 A EP 97401367A EP 0818661 B1 EP0818661 B1 EP 0818661B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat exchange
- fraction
- cooled
- exchange means
- refrigerating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 29
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims description 72
- 239000003345 natural gas Substances 0.000 title claims description 35
- 239000007788 liquid Substances 0.000 claims abstract description 86
- 230000006835 compression Effects 0.000 claims abstract description 70
- 238000007906 compression Methods 0.000 claims abstract description 70
- 239000000203 mixture Substances 0.000 claims abstract description 70
- 238000000926 separation method Methods 0.000 claims abstract description 16
- 239000012530 fluid Substances 0.000 claims description 41
- 238000009434 installation Methods 0.000 claims description 39
- 238000004821 distillation Methods 0.000 claims description 32
- 238000001035 drying Methods 0.000 claims description 13
- 238000005057 refrigeration Methods 0.000 claims description 7
- 239000012809 cooling fluid Substances 0.000 claims description 3
- 238000004064 recycling Methods 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims 2
- 239000002826 coolant Substances 0.000 abstract description 9
- 238000009833 condensation Methods 0.000 abstract description 4
- 230000005494 condensation Effects 0.000 abstract description 4
- 239000003507 refrigerant Substances 0.000 description 34
- 239000007789 gas Substances 0.000 description 16
- 239000012071 phase Substances 0.000 description 11
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 9
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000003949 liquefied natural gas Substances 0.000 description 5
- 239000012808 vapor phase Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 241000287107 Passer Species 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000001273 butane Substances 0.000 description 3
- 229940082150 encore Drugs 0.000 description 3
- 235000021183 entrée Nutrition 0.000 description 3
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VOPWNXZWBYDODV-UHFFFAOYSA-N Chlorodifluoromethane Chemical compound FC(F)Cl VOPWNXZWBYDODV-UHFFFAOYSA-N 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- 230000004323 axial length Effects 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 239000013529 heat transfer fluid Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 101100536354 Drosophila melanogaster tant gene Proteins 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- -1 among others Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0042—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
- F25J1/0055—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/008—Hydrocarbons
- F25J1/0092—Mixtures of hydrocarbons comprising possibly also minor amounts of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0211—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
- F25J1/0212—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0211—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
- F25J1/0214—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0211—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
- F25J1/0214—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
- F25J1/0215—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0262—Details of the cold heat exchange system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0262—Details of the cold heat exchange system
- F25J1/0264—Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
- F25J1/0265—Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
- F25J1/0268—Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using a dedicated refrigeration means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0291—Refrigerant compression by combined gas compression and liquid pumping
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0292—Refrigerant compression by cold or cryogenic suction of the refrigerant gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/64—Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S62/00—Refrigeration
- Y10S62/912—External refrigeration system
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S62/00—Refrigeration
- Y10S62/912—External refrigeration system
- Y10S62/913—Liquified gas
Definitions
- the present invention relates to a method and an installation for cooling a fluid and applies in particular to the liquefaction of natural gas.
- WO-A-94 24500 describes a process in which compresses in at least two stages, in an installation of the integral incorporated waterfall type, a refrigerant mixture composed of constituents of different volatilities, and, after at least each of the intermediate stages of compression (i.e.
- the refrigerant mixture is partially condensed, at least some of the condensed fractions as well as the high pressure gas fraction being cooled, expanded (or expanded) and linked to heat exchange with the fluid to be cooled, then compressed again, the gas from the penultimate compression stage being by elsewhere distilled in a distillation apparatus which cools the head with a liquid having a temperature below a so-called “reference” temperature, or “ambient”, to form on the one hand the liquid condensate of this penultimate compression stage and, on the other hand, a vapor phase which is sent to the last stage of compression.
- this same publication provides for partially cool and condense the overhead vapor the distillation apparatus, by heat exchange (in a heat exchange unit with two plate heat exchangers arranged in series) with at least said fractions relaxed, to obtain a vapor phase and a phase liquid, and cool the camera head distillation with the liquid phase thus obtained, the phase vapor constituting said phase which is sent to the last compression stage.
- the refrigerant mixture which we already have spoken, should be considered to consist of a certain number of fluids including, among others, nitrogen and hydrocarbons such as methane, ethylene, ethane, propane, butane, pentane, etc ...
- ambient temperature the thermodynamic reference temperature corresponding to coolant temperature (water or air in particular) available on the process use site and used in the cycle, increased by the temperature difference that we fix, by construction, at the exit of the devices refrigerants of the installation (compressor, exchanger, ). In practice, this difference will be around 1 ° C to 20 ° C, and preferably around 3 ° C to 15 ° C.
- the mechanical energy necessary for the operation of second means of cooling should, according to calculations, be less than 10% of the total mechanical energy necessary for the entire installation, allowing for example to drive these second means by a motor electric from the launch engine of the turbine to gas from the refrigerant compression unit, then used as a generator.
- natural gas production liquefied could be increased by more than 10% compared to the two-stage compression solution of WO-A-94 24500.
- the invention also relates to an installation for cooling according to claim 18, in particular for gas liquefaction natural, which can be used for the implementation of process presented above.
- Natural gas liquefaction facility represented in the figures, and in particular in FIG. 1, includes in particular a cycle compression unit 1 to two compression stages 1A, 1C, each stage discharging by via a line 2A, 2C in a condenser or refrigerant, respectively 3A, 3C, cooled with water or air, the available fluid used having typically a temperature of the order of + 25 ° C to + 35 ° C; separation means identified as a whole 4, interposed between the two compression stages 1A and 1C of so as to supply the high pressure stage 1C with a steam fraction from these separation means; a first heat exchange unit 5 comprising two heat exchangers in series, namely an exchanger "hot” 6 and a "cold” exchanger 7; a separator pot intermediate 8; and a storage of liquefied natural gas (LNG) 10.
- a cycle compression unit 1 to two compression stages 1A, 1C, each stage discharging by via a line 2A, 2C in a condenser or refrigerant, respectively
- the separation means 4 can be consisting either of a distillation apparatus 12, the upper head 12a is cooled by a liquid from a separator 13 ( Figures 1 to 5 and 7), or by two separator pots 14, 15, the vapor fraction of the distillation apparatus 12 or the first separator 14 circulating in the associated separator (respectively 13, 15) before being admitted to the input of the compression stage high pressure 1C.
- the output of the condenser 3A communicates with the lower part of tank 12b of the column distillation 12 and the bottom of the separator 13 is connected by gravity or by pump, via a siphon 16 and an adjustment valve 17, at the head 12a of the column 12.
- the gas liquefaction installation natural further includes, on the different modes of realization of Figures 1 to 7, a second exchange unit thermal 18 constituting a second refrigerant group, independent of the first, 5.
- auxiliary circuit 19 it can go to the hottest part of the exchanger 18 which is then used to cool from + 40 ° C to + 20 ° C approximately the heat transfer fluid which circulates there, this fluid (if it does not not natural gas) that can be used to refrigerate a other part of the installation, for example natural gas crude intended to be dried before processing in installation.
- the fluid circulating in each of the cooling circuits above is cooled by indirect heat exchange with a coolant, such as a "pure" fluid, or mixture binary or ternary, circulating in a closed circuit in the regenerating cycle 21 or 21 '.
- a coolant such as a "pure" fluid, or mixture binary or ternary
- the circuit regeneration 21 comes as a refrigeration cycle with two compression stages, including a lower stage 1D pressure (of the order of 2.5 to 3.5 bars) and a stage of 1E high pressure compression (operating at approximately 6 to 8 bars), possibly a refrigerant 22, and a condenser 23 condensing the mixture in circulation.
- This mixture can in particular comprise about 60% butane and about 40% propane.
- a "pure” fluid can however be used, as an alternative.
- the mixture leaving the high pressure stage 1E is fully condensed in condenser 23, such so it's a liquid mixture that's allowed to the hot upper end (around 40 ° C) of the exchanger 18.
- the refrigerant mixture in gaseous state, can be cooled in the refrigerant 22, before being admitted at the inlet of the high pressure stage 1E, mixed with the part of the binary mixture that we recovered in 25, relaxed to a intermediate cycle pressure at 32, reintroduced into exchanger 18 for axial circulation about half the length of the exchanger, from so as to be vaporized in the axial passages 33, the vaporized mixture emerging axially through the dome higher "hot" 28b before being mixed in 35 with the part of the mixture in the gaseous state from stage 1D.
- Exchangers 6, 7 and 18 are preferably plate exchangers, these plates preferably being equipped with fins (or waves). These exchangers which are for example metallic plates and aluminum fins.
- two exchangers 6, 7 can be brazed or welded coaxially butt end, in series, for a counter-current circulation of fluids put in heat exchange relation, and can have the same length.
- the refrigerant mixture consisting of hydrocarbons in C1 to C6 and nitrogen, leaves in the gaseous state from vertex 6a (so-called "hot” end) of the exchanger 6 (via the passages 42) and arrives via the recycling line 46, at the suction of the first compression stage 1A.
- This gas mixture is then compressed to a first intermediate pressure Pi, typically of the order from 12 to 20 bars, then cooled to + 30 ° C to + ° 40 ° C approximately in 3A, with partial condensation, and separated in a vapor fraction and a liquid fraction in the device distillation 12.
- a first intermediate pressure Pi typically of the order from 12 to 20 bars
- the tank liquid in column 12 (recovered in 12b) constitutes a first suitable coolant to provide essential refrigeration of the exchanger hot 6, after cooling in the exchanger 18.
- this tank liquid is allowed (to around 30 ° C to 40 ° C) towards the "hot" end 28b of the exchanger 18 in which it circulates, as far as its "cold” end 28a, to come out at around 47 of 8 ° C, this cooled liquid fraction then being introduced at approximately the same temperature at the location an intermediate lateral entry 48, substantially mid-length of the hot exchanger 6, to come out of again laterally towards its "cold" end 6b, at around -20 ° C to -40 ° C, be relaxed (or undergo a expansion) at low cycle pressure (2.5 to 3.5 bar) in an expansion valve 50 and be reintroduced under two-phase form, always at the cold end 6b of the same exchanger, via the inlet side box 52 and a suitable dispensing device, to be vaporized in the low pressure passages 42 of the exchanger.
- the temperature reached may even (possibly) be lower than the temperature of the "coolant" available on site.
- the liquid phase recovered at the base of the separator 13 returns, via the siphon 16 and of the adjustment valve 17, at the head of the column 12 for the cool, while the vapor phase of the separator is compressed at the high pressure of the cycle (of the order of 40 to 45 bar) at 1C and then reduced to + 30 ° C to + 40 ° C in the 3C refrigerant.
- the temperature of the head of column 12 will therefore be lower than said temperature "ambient", or even at the temperature of the "fluid cooling "available on the site, even if we would have could imagine that this temperature is higher, in particular by removing the 3A refrigerant and operating as in EP-A-117 793, that is to say with a direct passage from compression stage 1A at the entrance to the distiller 12.
- the vapor fraction from separator 8 is, meanwhile, cooled, condensed and sub-cooled (up to around -160 ° C) from the hot end to the cold end of the exchanger 7 and the liquid thus obtained is expanded at the low pressure of the cycle in an expansion valve 71 and reintroduced into the exchanger 7, parallel to the axis 5a, at through the lower "cold" dome 7b, to be vaporized in the cold part of the low pressure passages 41, then combined with two-phase fluids (mainly liquids) relaxed admitted by intermediate entry 70, for a return to line 46.
- two-phase fluids mainly liquids
- Processed natural gas for example arriving at a temperature of the order of 20 ° C. after drying, via a pipe 73 is, in part, admitted directly into the apparatus 75 for removing hydrocarbons in C2 + and, for its remaining part, admitted laterally in 77, substantially mid-length of exchanger 6, to be cooled to towards the cold end 6b in passages 79, before come out laterally towards this end, at 81, this portion cooled (approximately -20 ° C to -40 ° C) then being admitted in unit 75.
- the remaining mixture leaving at 83 is then admitted in 85, near the "hot” dome 7a of the exchanger "cold” 7, to circulate near its end cold 7b, in passages 87 while being liquefied and sub-cooled to come out in 89, around -160 ° C, before being stored, in liquid form (LNG), at 10, after being relaxed.
- LNG liquid form
- the expanders provided on the circulation paths of liquids may particular be used to drive pumps (not shown), the one providing the most power being that arranged in parallel with valve 69, the valves do not preferably for fine adjustment or trigger (expansion) of the liquid in question, in the event of failure of the (turbo-) corresponding expander.
- circuit 21 ' there will preferably be a ternary mixture, for example composed of ethane, butane and propane.
- the mixture under its vapor form is (totally) condensed in the 23 'condenser to be admitted 24' towards the end hot 28b of the exchanger 18 in which it circulates longitudinally (parallel to axis 18a) up to the cold end 28a, near which it emerges laterally in 26 'around 8 ° C to 10 ° C to be slackened by valve 27 up to around 2.5 to 3.5 bar.
- the refrigerant mixture thus cooled and relaxed is then reinjected through the cold dome 28a, parallel to axis 18a, against the current of the others circulation passages, in vaporization passages 33 'to exit coaxially through the "hot" dome 28b and always be introduced in vapor form around 30 ° C to 40 ° C at the inlet of compressor 1E '.
- the 21 'circuit which we also find in Figure 6, is simpler than circuit 21 but has an energy handicap of around 15 to 20% per compared to this circuit, i.e. approximately 1.5 to 2% over the cycle complete installation.
- the gas (via 99a) and liquid (via 99b) are then injected separately into the passages return of the cycle, spraying at low pressure.
- the vapor fraction is injected laterally at the cut 40, while that the liquid fraction is injected slightly more downstream, near the cold end 6b of the exchanger 6, via the lateral injection path 101 leading to 42.
- Comparable treatment of the liquid fraction from cycle separator 8 and expanded in the valve expansion 69 after having circulated in passages 65, to be sub-cooled, is performed in the third cycle separator 103.
- the gaseous and liquid from this separator are injected separately by separate injections, 105 and 107 respectively, substantially at the same intermediate level of the passages vaporization cold 41 of the exchanger 7, that is to say therefore further upstream of the return passages of the mixture refrigerant vaporized at low pressure as arrivals injection of steam and liquid fractions arriving from 99a and 99b.
- this gas After having passed in the passages 79 ' up to the cold end 6b of the exchanger 6, this gas natural thus sub-cooled leaves 81 'from exchanger 6 to pass into the exchanger 7, via an injection 109, before exiting through an intermediate outlet 111, after have been sub-cooled in passages 113, to a temperature of about -40 ° C to -60 ° C, the gas thus sub-cooled passing through the separation installation 75, its fraction which leaves in 83 then being reinjected laterally at 115 in the intermediate part of the exchanger 7 to circulate in cold passages 117 to around -160 ° C and thus be liquefied, before exit at 89 ', substantially at the exit 89 of the previous figures, then go through the valve expansion 119 (which could also be an expander) and finally be stored in the storage unit 10, after relaxation.
- the valve expansion 119 which could also be an expander
- part of the gas can be delivered to the separation unit 75, via the line 82, without passing there through the exchanger 7.
- the 21 "circuit of the refrigerant used in the exchanger 18 includes a circuit additional 121, connected in parallel, at input, between outlet 25 and the expansion valve 32 and, at the outlet, between condenser 22 (or low pressure condenser outlet 1D) and the mixing connection 35.
- the circuit 121 thus connected comprises a additional exchanger 123 in which circulates between its cold end 123a and its warmer end 123b, the binary liquefied refrigerant mixture leaving 25 and relaxed in 125 in an expansion valve, before being sprayed in passages 127, between the cold ends and hot heat exchanger 123, against the flow of a relatively wet natural gas (before drying), allowed in 129 and therefore circulating in the opposite direction to the vaporized fluid in 127, inside passages 131, before being introduced into a desiccation unit (not shown), then possibly to be introduced at the entry "GN" 73 to leave either in line 20 or directly to the separation installation 75.
- a partition of the lengths of the passages has also used to cool, in the part the less cold from exchanger 18 (passages 137), the mixture compressed two-phase leaving the 3A condenser, before admit it as a low input 12c from the distillation 12 (around 10 ° C to 15 ° C below "ambient" temperature), the complementary part of passages 137 (marked 137 ') located in the more heat exchanger 18 used to cool the liquid tank recovered in 12b, before admitting it into the entry lateral injection 48 of the exchanger 6.
- the traffic in the passages 137 of the partially condensed two-phase mixture and tablet provides an entry temperature into the first part 12 of the separation means 4 which can therefore be different from (less than) the "temperature ambient ", or even at the temperature of the cooling available on site.
- the circulation of high pressure steam fraction in passages 135 allows to obtain in 61 an inlet temperature of this fraction steam in exchanger 6, of the order of 25 ° C to 30 ° C that we can adapt and which can in particular be lower than the inlet temperature in 61 of the installation of FIG. 1, typically of the order of 40 ° C, that is to say close to the so-called “ambient” temperature (or the temperature of the "coolant").
- figure 5 corresponds to that of the figure 1 (the forecast of an expander 91 in parallel with the expansion valve 69 being optional).
- the liquid fraction recovered around 8 ° C in the lower part of the second separator 15 is transmitted towards the intermediate input 48, and a priori directly, without going through the exchanger 18.
- this liquid fraction from separator 15 meets the duct 145 used for the liquid fraction recovered from separator 14, after circulation substantially between the "hot” ends 28b and "cold” 28a of the exchanger 18, in the passages of indirect cooling 147.
- Adjustment valves respectively 149 and 151, allow to adapt the flow rate of liquid fractions from separators 14 and 15, respectively.
- the circulation of the liquid fraction of the separator 14 in the passages 147 allows passage its temperature of around 40 ° C around 8 ° C, temperature at which the liquid fraction of the separator 15 is recovered, due to its circulation in the passages 153 of exchanger 18, substantially in the same indirect heat exchange conditions as the fraction liquid flowing through passages 147.
- figure 7 differs from that of Figure 1 only (except the prediction of expander 91 in parallel with the valve trigger 69) because of the forecast not of two but of three compression stages on the compression unit of cycle 1 '.
- this intermediate compression stage and its accessories allows to separate in 155 in a vapor fraction and a liquid fraction the refrigerant mixture compressed into 1A and partially condensed into 3A, with cooling up to a temperature of + 30 ° C to + 40 ° C.
- the vapor phase from separator 155 is compressed at a second intermediate pressure Pi typically of the order of 12 to 20 bar, in 1B, while the liquid fraction recovered from the same separator 155 is carried by pump 157 at the same pressure Pi and injected in line 2B (or possibly leaving the partial condenser 3B).
- separators 9 and 103 this could also be applied in any other case.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Compounds Of Unknown Constitution (AREA)
Abstract
Description
La présente invention est relative a un procédé et une installation pour refroidir un fuide et s'applique en particulier à la liquéfaction du gaz naturel.The present invention relates to a method and an installation for cooling a fluid and applies in particular to the liquefaction of natural gas.
WO-A-94 24500 décrit un procédé dans lequel on comprime en au moins deux stades, dans une installation du type à cascade incorporée intégrale, un mélange frigorigène composé de constituants de volatilités différentes, et, après au moins chacun des stades intermédiaires de compression (c'est-à-dire des stades précédant le dernier étage haute pression) on condense partiellement le mélange frigorigène, certaines au moins des fractions condensées ainsi que la fraction gazeuse haute pression étant refroidies, détendues (ou expansées) et mises en relation d'échange de chaleur avec le fluide à refroidir, puis comprimées de nouveau, le gaz issu de l'avant-dernier étage de compression étant par ailleurs distillé dans un appareil de distillation dont on refroidit la tête avec un liquide ayant une température inférieure à une température dite "de référence", ou "ambiante", pour former d'une part le condensat liquide de cet avant-dernier étage de compression et, d'autre part, une phase vapeur qui est envoyée au dernier stade de compression.WO-A-94 24500 describes a process in which compresses in at least two stages, in an installation of the integral incorporated waterfall type, a refrigerant mixture composed of constituents of different volatilities, and, after at least each of the intermediate stages of compression (i.e. stadiums preceding the last upper story pressure) the refrigerant mixture is partially condensed, at least some of the condensed fractions as well as the high pressure gas fraction being cooled, expanded (or expanded) and linked to heat exchange with the fluid to be cooled, then compressed again, the gas from the penultimate compression stage being by elsewhere distilled in a distillation apparatus which cools the head with a liquid having a temperature below a so-called "reference" temperature, or "ambient", to form on the one hand the liquid condensate of this penultimate compression stage and, on the other hand, a vapor phase which is sent to the last stage of compression.
De préférence, cette même publication prévoit de refroidir et de condenser partiellement la vapeur de tête de l'appareil de distillation, par échange de chaleur (dans une unité d'échange thermique à deux échangeurs à plaques disposés en série) avec au moins lesdites fractions détendues, pour obtenir une phase vapeur et une phase liquide, et de refroidir la tête de l'appareil de distillation avec la phase liquide ainsi obtenue, la phase vapeur constituant ladite phase qui est envoyée au dernier étage de compression.Preferably, this same publication provides for partially cool and condense the overhead vapor the distillation apparatus, by heat exchange (in a heat exchange unit with two plate heat exchangers arranged in series) with at least said fractions relaxed, to obtain a vapor phase and a phase liquid, and cool the camera head distillation with the liquid phase thus obtained, the phase vapor constituting said phase which is sent to the last compression stage.
On notera que dans la présente description, comme dans WO-A-94 24500, les pressions dont il est question sont des pressions absolues.Note that in the present description, as in WO-A-94 24500, the pressures in question are absolute pressures.
Par ailleurs, le mélange frigorigène dont on a déjà parlé, doit être considéré comme constitué d'un certain nombre de fluides dont, en autres, l'azote et des hydrocarbures comme le méthane, l'éthylène, l'éthane, le propane, le butane, le pentane, etc...In addition, the refrigerant mixture which we already have spoken, should be considered to consist of a certain number of fluids including, among others, nitrogen and hydrocarbons such as methane, ethylene, ethane, propane, butane, pentane, etc ...
On définira par ailleurs la "température ambiante" comme la température de référence thermodynamique correspondant à la température du fluide de refroidissement (eau ou air notamment) disponible sur le site d'utilisation du procédé et utilisé dans le cycle, augmentée de l'écart de température que l'on se fixe, par construction, à la sortie des appareils réfrigérants de l'installation (compresseur, échangeur,...). En pratique, cet écart sera d'environ 1°C à 20°C, et de préférence de l'ordre de 3°C à 15°C.We will also define "ambient temperature" as the thermodynamic reference temperature corresponding to coolant temperature (water or air in particular) available on the process use site and used in the cycle, increased by the temperature difference that we fix, by construction, at the exit of the devices refrigerants of the installation (compressor, exchanger, ...). In practice, this difference will be around 1 ° C to 20 ° C, and preferably around 3 ° C to 15 ° C.
On notera également dès à présent que si on utilise un appareil de distillation, on aura avantage à refroidir sa tête avec un fluide (liquide) de telle sorte que :
- ledit fluide (liquide) destiné au refroidissement de cette tête soit lui-même refroidi à une température inférieure à ladite température "de référence" ou "ambiante" (voire même inférieure à la température du fluide de refroidissement utilisé sur le site dans les échangeurs),
- et que la différence de température entre cette température "ambiante" et la température du fluide (liquide) destiné au refroidissement de la tête du distillateur soit comprise entre environ 20°C et 55°C, et typiquement de 30°C à 45°C.
- said fluid (liquid) intended for cooling this head is itself cooled to a temperature below said "reference" or "ambient" temperature (or even lower than the temperature of the cooling fluid used on site in the exchangers) ,
- and that the temperature difference between this "ambient" temperature and the temperature of the fluid (liquid) intended for cooling the head of the still is between approximately 20 ° C and 55 ° C, and typically from 30 ° C to 45 ° C .
Pour intéressant que soient le procédé et l'installation de WO-A-94 24500, il s'est toutefois avéré que l'on peut encore obtenir un gain d'énergie mécanique globale utilisée pour le refroidissement recherché et améliorer l'efficacité thermodynamique de cette opération de refroidissement, tout particulièrement s'il s'agit de liquéfier le gaz naturel, ceci avec une fiabilité et une rentabilité d'installation potentiellement meilleures.As interesting as the process and the installation are WO-A-94 24500, it turned out, however, that one can still get a gain in overall mechanical energy used for the desired cooling and improve efficiency thermodynamics of this cooling operation, everything particularly if it is a question of liquefying natural gas, this with installation reliability and profitability potentially better.
La solution proposée dans l'invention pour tendre vers
ces objectifs consiste en un procédé présentant les étapes
suivantes :
L'énergie mécanique nécessaire au fonctionnement des seconds moyens de refroidissement devrait, d'après les calculs, être inférieure à 10 % de l'énergie mécanique totale nécessaire à l'ensemble de l'installation, ceci permettant par exemple d'entraíner ces seconds moyens par un moteur électrique à partir du moteur de lancement de la turbine à gaz de l'unité de compression du mélange frigorigène, utilisée alors en génératrice.The mechanical energy necessary for the operation of second means of cooling should, according to calculations, be less than 10% of the total mechanical energy necessary for the entire installation, allowing for example to drive these second means by a motor electric from the launch engine of the turbine to gas from the refrigerant compression unit, then used as a generator.
Par ailleurs, avec un tel procédé appliqué à la liquéfaction de gaz naturel, la production de gaz naturel liquéfié pourrait être augmentée de plus de 10 % par rapport à la solution à deux étages de compression de WO-A-94 24500.Furthermore, with such a method applied to the natural gas liquefaction, natural gas production liquefied could be increased by more than 10% compared to the two-stage compression solution of WO-A-94 24500.
Du fait de l'adjonction des deuxièmes moyens de refroidissement, par rapport à la solution de WO-A-94 24500, le coût d'investissement en matériel pour une production de GNL donnée, sera probablement augmenté. Par contre, le gain en tuyauterie peut être non négligeable.Due to the addition of the second means of cooling, compared to the solution of WO-A-94 24500, the cost of investment in equipment for a production of LNG given, will likely be increased. However, the gain in piping can be significant.
A noter également que la technologie de l'échangeur chaud des premiers moyens de refroidissement est également simplifiée. L'invention permet en effet de délester partiellement de leur travail thermique, une partie desdits premiers moyens d'échange thermique, ceci permettant d'optimiser d'autres éléments du cycle.Also note that the technology of the exchanger warm of the first cooling means is also simplified. The invention makes it possible to offload partially from their thermal work, part of said first means of heat exchange, allowing optimize other elements of the cycle.
Si une colonne de distillation est utilisée, une première optimisation du refroidissement de sa tête va par ailleurs être possible, en comparaison de ce qui est prévu dans WO-A-94 24500.If a distillation column is used, a first optimization of the cooling of his head goes by elsewhere be possible, compared to what is expected in WO-A-94 24500.
Pour cela, on conseille, lors des étapes b), c), d) et e) précitées :
- de séparer dans ledit appareil de distillation le mélange comprimé,
- de condenser dans lesdits seconds moyens d'échange thermique la fraction vapeur issue de cet appareil de distillation, pour obtenir une fraction vapeur condensée,
- de faire passer dans un séparateur la fraction vapeur condensée, pour obtenir ladite fraction vapeur résultante et ladite fraction liquide résultante,
- d'envoyer la fraction vapeur résultante dans le dernier étage de compression,
- et de renvoyer la fraction liquide résultante dans la tête de colonne de l'appareil de distillation, pour la refroidir.
- to separate the compressed mixture in said distillation apparatus,
- to condense in said second heat exchange means the vapor fraction from this distillation apparatus, to obtain a condensed vapor fraction,
- passing the condensed vapor fraction through a separator to obtain said resulting vapor fraction and said resulting liquid fraction,
- to send the resulting vapor fraction to the last compression stage,
- and returning the resulting liquid fraction to the column head of the distillation apparatus, to cool it.
A noter qu'en place de l'appareil de distillation, un autre séparateur peut être utilisé.Note that in place of the distillation apparatus, a another separator can be used.
Dans ce cas :
- on sépare le mélange comprimé dans un premier séparateur,
- on condense la fraction vapeur issue dudit premier séparateur dans les seconds moyens d'échange thermique, pour obtenir la fraction vapeur condensée,
- on fait passer dans un second séparateur ladite fraction vapeur condensée, pour obtenir la fraction vapeur et la fraction liquide résultantes,
- on envoie la fraction vapeur résultante dans ledit dernier étage de compression,
- et on envoie la fraction liquide résultante vers lesdits premiers moyens d'échange thermique.
- the compressed mixture is separated in a first separator,
- the vapor fraction from said first separator is condensed in the second heat exchange means, to obtain the condensed vapor fraction,
- said condensed vapor fraction is passed through a second separator to obtain the resulting vapor fraction and liquid fraction,
- the resulting vapor fraction is sent to said last compression stage,
- and the resulting liquid fraction is sent to said first heat exchange means.
De préférence, dans un cas comme dans l'autre, on conseille par ailleurs :
- de faire circuler la fraction liquide issue de l'appareil de distillation ou du premier séparateur dans les seconds moyens d'échange thermique, sensiblement entre les extrémités chaude et froide desdits moyens d'échange thermique,
- et d'admettre la fraction liquide refroidie, en partie intermédiaire d'un premier échangeur chaud parmi deux échangeurs de chaleur disposés en série, l'un chaud, l'autre froid, appartenant auxdits premiers moyens d'échange thermique.
- circulating the liquid fraction from the distillation apparatus or the first separator in the second heat exchange means, substantially between the hot and cold ends of said heat exchange means,
- and admitting the cooled liquid fraction, in the intermediate part of a first hot exchanger among two heat exchangers arranged in series, one hot, the other cold, belonging to said first heat exchange means.
Outre ce qui précède, le procédé de l'invention peut par ailleurs comprendre une ou plusieurs des caractéristiques suivantes :
- à l'extérieur des seconds moyens d'échange thermique, on fait circuler le fluide réfrigérant dans un cycle de réfrigération en circuit fermé, soit à un étage unique de compression, soit à deux étages successifs de compression, avec, en sortie du réfrigérant final (23 sur la figure 1), une condensation totale du fluide réfrigérant;
- si le fluide à refroidir est du gaz naturel, avant d'admettre ce gaz naturel dans lesdits premiers moyens d'échange thermique, on le fait circuler d'abord dans lesdits seconds moyens d'échange thermique et, avant ou après sa circulation dans ces seconds moyens, on fait passer le gaz naturel dans une unité de dessiccation ;
- entre les étapes e) et f) précitées, on refroidit la fraction vapeur haute pression après le dernier étage de compression, et on la fait circuler dans les seconds moyens d'échange thermique, pour la refroidir encore par échange de chaleur avec le fluide réfrigérant avant de l'envoyer dans les premiers moyens d'échange thermique,
- en sortie du dernier étage de compression de ladite unité de compression, on refroidit la fraction vapeur haute pression et on l'envoie dans une entrée intermédiaire d'un premier échangeur chaud, parmi deux échangeurs disposés en série, l'un chaud, l'autre froid, constituant lesdits premiers moyens d'échange thermique ;
- entre les étapes a) et b) susmentionnées, on fait circuler le mélange comprimé dans les seconds moyens d'échange thermique ;
- on fait circuler isolément un fluide caloporteur dans les seconds moyens d'échange thermique ;
- dans l'hypothèse où le gaz à refroidir est du gaz
naturel,
- avant de faire circuler ce gaz naturel dans les premiers moyens d'échange thermique, on lui fait subir une dessiccation,
- et, après dessiccation, le gaz naturel sec passe, à l'intérieur des premiers moyens d'échange thermique, d'abord dans une première partie d'un premier échangeur chaud parmi deux échangeurs disposés en série, l'un chaud, l'autre froid, appartenant auxdits premiers moyens d'échange thermique, puis dans une partie dudit second échangeur de ces premiers moyens d'échange thermique, avant de passer dans une unité de fractionnement extérieure auxdits premiers moyens d'échange thermique.
- outside the second heat exchange means, the refrigerant is circulated in a refrigeration cycle in a closed circuit, either at a single compression stage, or at two successive compression stages, with, at the outlet of the final refrigerant (23 in FIG. 1), total condensation of the refrigerant;
- if the fluid to be cooled is natural gas, before admitting this natural gas into said first heat exchange means, it is first circulated in said second heat exchange means and, before or after its circulation in these second means, the natural gas is passed through a drying unit;
- between steps e) and f) above, the high pressure steam fraction is cooled after the last compression stage, and it is circulated in the second heat exchange means, to cool it further by heat exchange with the refrigerant before sending it to the first heat exchange means,
- at the outlet of the last compression stage of said compression unit, the high-pressure steam fraction is cooled and sent to an intermediate inlet of a first hot exchanger, from two exchangers arranged in series, one hot, the other cold, constituting said first heat exchange means;
- between steps a) and b) above, the compressed mixture is circulated in the second heat exchange means;
- a heat transfer fluid is circulated in isolation in the second heat exchange means;
- assuming that the gas to be cooled is natural gas,
- before circulating this natural gas in the first heat exchange means, it is subjected to drying,
- and, after drying, the dry natural gas passes, inside the first heat exchange means, first in a first part of a first hot exchanger among two exchangers arranged in series, one hot, the other cold, belonging to said first heat exchange means, then in part of said second exchanger of these first heat exchange means, before passing into a fractionation unit external to said first heat exchange means.
A noter encore qu'il peut ne pas y avoir d'appareil
réfrigérant entre la sortie du compresseur de l'avant dernier
étage et l'entrée de l'appareil de séparation (distillateur
en particulier), et qu'ainsi on ne condense pas le mélange
frigorigène comprimé avant de le séparer dans l'étape b).
Ainsi, on réalisera alors le procédé
sur la base alors de l'art
antérieur EP-A 117 793 avec, dans ce cas, circulation de la
fraction liquide issue de la séparation du mélange comprimé
dans des moyens d'échange thermique (repérés 4A, 10, dans EP-A-117
793) distincts desdits "premiers moyens d'échange
thermique" (repérés 11, 15 dans EP'793), avant d'y circuler
elle-même.Note again that there may not be a device
refrigerant between the compressor output of the penultimate
floor and the entrance to the separation device (still
in particular), and so that the mixture is not condensed
compressed refrigerant before separating it in step b).
So, we will then carry out the process
then on the basis of art
previous EP-
L'invention a également pour objet une installation de
refroidissement selon la revendication 18, en particulier de liquéfaction de gaz
naturel, qui peut être utilisée pour la mise en oeuvre du
procédé présenté ci-avant.The invention also relates to an installation for
cooling according to
Ainsi est-il prévu que lesdits moyens de refroidissement de l'installation de l'invention comprennent :
- des seconds moyens d'échange thermique comportant des premiers passages et des seconds passages indépendants des premiers pour y faire circuler respectivement ladite fraction vapeur et ladite fraction liquide en échange de chaleur avec le fluide réfrigérant, et
- un fluide réfrigérant circulant dans un circuit fermé.
- second heat exchange means comprising first passages and second passages independent of the first for circulating therein respectively said vapor fraction and said liquid fraction in exchange for heat with the refrigerant, and
- a refrigerant circulating in a closed circuit.
Cette caractéristique et d'autres apparaissent dans les
revendications 18 à 27 ci-après.This characteristic and others appear in the
Une description plus détaillée de l'invention va
maintenant être donnée, en référence aux dessins annexés,
dans lesquels :
L'installation de liquéfaction de gaz naturel
représentée aux figures, et notamment sur la figure 1,
comprend en particulier une unité de compression de cycle 1 à
deux étages de compression 1A, 1C, chaque étage refoulant par
l'intermédiaire d'une conduite 2A, 2C dans un condenseur ou
réfrigérant, respectivement 3A, 3C, refroidis
à l'eau ou à l'air, le fluide disponible utilisé ayant
typiquement une température de l'ordre de +25°C à +35°C ;
des moyens de séparation repérés dans leur ensemble 4,
interposés entre les deux étages de compression 1A et 1C de
manière à alimenter l'étage haute pression 1C avec une
fraction vapeur issue de ces moyens de séparation ; une
première unité 5 d'échange thermique comprenant deux
échangeurs de chaleur en série, à savoir un échangeur
"chaud" 6 et un échangeur "froid" 7 ; un pot séparateur
intermédiaire 8 ; et un stockage de gaz naturel liquéfié
(GNL) 10.Natural gas liquefaction facility
represented in the figures, and in particular in FIG. 1,
includes in particular a
Les moyens de séparation 4 peuvent être
constitués soit par un appareil de distillation 12 dont la
partie supérieure de tête 12a est refroidie par un liquide
provenant d'un séparateur 13 (figures 1 à 5 et 7), ou par
deux pots séparateurs 14, 15, la fraction vapeur de
l'appareil de distillation 12 ou du premier séparateur 14
circulant dans le séparateur associé (respectivement 13,
15) avant d'être admise en entrée de l'étage de compression
haute pression 1C.The separation means 4 can be
consisting either of a
Dans l'hypothèse de l'utilisation d'une colonne
de distillation 12, la sortie du condenseur 3A communique
avec la partie inférieure de cuve 12b de la colonne de
distillation 12 et la partie inférieure du séparateur 13
est reliée par gravité ou par pompe, via un siphon 16 et
une vanne de réglage 17, à la tête 12a de la colonne 12.Assuming the use of a
Conformément à une caractéristique importante de l'invention, l'installation de liquéfaction de gaz naturel comprend en outre, sur les différents modes de réalisation des figures 1 à 7, une seconde unité d'échange thermique 18 constituant un second groupe frigorigène, indépendant du premier, 5.In accordance with an important characteristic of the invention, the gas liquefaction installation natural further includes, on the different modes of realization of Figures 1 to 7, a second exchange unit thermal 18 constituting a second refrigerant group, independent of the first, 5.
Ce second groupe frigorigène a en particulier pour rôle, en combinaison ou en alternative :
- de refroidir la fraction vapeur issue des
premiers moyens de séparation 12
ou 14, avant qu'elle passe dans les seconds moyens de séparation 13, 15, - de refroidir la fraction liquide issue
desdits premiers moyens de séparation 12, 14, avant de
l'envoyer dans le
premier 6, des deux échangeurs de la première unité d'échange thermique 5, - d'assurer un refroidissement d'un circuit
auxiliaire 19 (figures 1,2
et 4 à 7) dans lequel circule soit du pentane, soit du gaz naturel avant décarbonatation et dessiccation (c'est-à-dire relativement humide), - ou encore,
par le circuit 20 de la figure 3, de refroidir du gaz naturel déjà sec mais non encore fractionné, avant de l'envoyer dans la première unité d'échange thermique 5 pour le liquéfier, avec élimination intermédiaire d'hydrocarbures en C2+, dans l'unité de fractionnement 75.
- to cool the vapor fraction from the first separation means 12 or 14, before it passes into the second separation means 13, 15,
- cooling the liquid fraction from said first separation means 12, 14, before sending it into the first 6, from the two exchangers of the first
heat exchange unit 5, - to provide cooling of an auxiliary circuit 19 (FIGS. 1, 2 and 4 to 7) in which either pentane or natural gas circulates before decarbonation and drying (that is to say relatively wet),
- or, by
circuit 20 of FIG. 3, to cool natural gas already dry but not yet fractionated, before sending it into the firstheat exchange unit 5 to liquefy it, with intermediate elimination of hydrocarbons in C2 + , in thefractionation unit 75.
Concernant le circuit auxiliaire 19, il peut
passer dans la partie la plus chaude de l'échangeur 18 qui
est alors utilisée pour refroidir de +40°C à +20°C environ
le fluide caloporteur qui y circule, ce fluide (s'il ne
s'agit pas de gaz naturel) pouvant servir à réfrigérer une
autre partie de l'installation, par exemple du gaz naturel
brut destiné à être séché avant son traitement dans
l'installation.Regarding the
Dans l'échangeur thermique 18, le fluide
circulant dans chacun des circuits de refroidissement
précité est refroidi par échange de chaleur indirect avec
un fluide réfrigérant, tel qu'un fluide "pur", ou mélange
binaire ou ternaire, circulant en circuit fermé dans le
cycle régénérant 21 ou 21'.In the
Sur les figures 1, 3, 4, 5 et 7, le circuit de
régénération 21 se présente comme un cycle de réfrigération
à deux étages de compression, comprenant un étage basse
pression 1D (de l'ordre de 2,5 à 3,5 bars) et un étage de
compression haute pression 1E (fonctionnant à environ 6 à 8
bars), éventuellement un réfrigérant 22, et un condenseur
23 condensant le mélange en circulation.In Figures 1, 3, 4, 5 and 7, the
Ce mélange peut en particulier comprendre environ 60 % de butane et environ 40 % de propane. Un fluide "pur" peut toutefois être utilisé, en alternative.This mixture can in particular comprise about 60% butane and about 40% propane. A "pure" fluid can however be used, as an alternative.
Le mélange qui sort de l'étage haute pression
1E est totalement condensé dans le condenseur 23, de telle
sorte que c'est un mélange liquide qui est admis à
l'extrémité supérieure chaude (environ 40°C) de l'échangeur
18.The mixture leaving the
Sensiblement à la moitié de la longueur axiale
(axe 18a) de l'échangeur, une partie du mélange refroidi
jusqu'aux environs de 20°C est sortie en 25, tandis que la
partie restante continue à circuler jusque vers l'extrémité
inférieure froide de l'échangeur, pour ressortir en 26 aux
environs de 8°C et être détendue en 27 à la basse pression
du cycle avant d'être réintroduite axialement à travers le
dôme inférieur froid 28a de l'échangeur dans des passages
29 où le mélange liquide basse pression est vaporisé avant
de ressortir latéralement en 31 sensiblement à mi-longueur
axiale de l'échangeur et être admis dans l'étage basse
pression 1D.Substantially half the axial length
(
En sortie de l'étage de compression 1D, le
mélange réfrigérant, à l'état gazeux, peut être refroidi
dans le réfrigérant 22, avant d'être admis en entrée de
l'étage haute pression 1E, en mélange avec la partie du
mélange binaire que l'on a récupéré en 25, détendu à une
pression de cycle intermédiaire en 32,
réintroduit dans l'échangeur 18 pour une circulation axiale
sur environ la moitié de la longueur de l'échangeur, de
manière à être vaporisé dans les passages axiaux 33, le
mélange vaporisé ressortant axialement à travers le dôme
supérieur "chaud" 28b avant d'être donc mélangé en 35 à la
partie du mélange à l'état gazeux issue de l'étage 1D.At the output of the 1D compression stage, the
refrigerant mixture, in gaseous state, can be cooled
in the refrigerant 22, before being admitted at the inlet of
the
Les échangeurs 6, 7 et 18 sont de préférence
des échangeurs à plaques, ces plaques étant de préférence
équipées d'ailettes (ou ondes). Ces échangeurs qui sont
métalliques peuvent être par exemple à plaques et à
ailettes en aluminium.
Concernant spécifiquement les deux échangeurs
6, 7, ils peuvent être brasés ou soudés coaxialement bout à
bout, en série, pour une circulation à contre-courant des
fluides mis en relation d'échange thermique, et peuvent
avoir la même longueur.Specifically concerning the two
Ils présentent en outre des passages entre les plaques nécessaires au fonctionnement qui va être décrit ci-après.They also have passages between the plates necessary for the operation which will be described below.
Avant cela, on notera toutefois qu'à l'endroit
de la liaison bout à bout 40 "sur dômes" entre l'échangeur
"froid" 7 et l'échangeur "chaud" 6, les passages de retour,
41 pour l'échangeur 7 et 42 pour l'échangeur 6 (dans
lesquels le mélange frigorigène circule à contre-courant de
la circulation dans les autres passages de ces échangeurs)
communiquent entre eux directement dans la zone
intermédiaire 40, ainsi que cela avait déjà été prévu dans
WO-A-94 24500.Before that, it will be noted however that at the place
end-to-
A noter qu'un tel passage direct en 40 entre le
dôme supérieur 7a de l'échangeur 7 et le dôme inférieur 6b
de l'échangeur 6, sur au moins l'essentiel de la section
des deux échangeurs, ne peut être réalisée qu'en évitant
une redistribution diphasique à la coupure 40, comme
d'ailleurs dans WO-A-94 24500.Note that such a direct passage at 40 between the
Avec une installation telle que présentée ci-avant,
le mélange frigorigène constitué d'hydrocarbures en
C1 à C6 et d'azote, sort à l'état gazeux du sommet 6a
(extrémité dite "chaude") de l'échangeur 6 (via les
passages 42) et parvient, via la conduite de recyclage 46,
à l'aspiration du premier étage de compression 1A.With an installation as presented above,
the refrigerant mixture consisting of hydrocarbons in
C1 to C6 and nitrogen, leaves in the gaseous state from
Ce mélange gazeux est alors comprimé à une
première pression intermédiaire Pi, typiquement de l'ordre
de 12 à 20 bars, puis est refroidi vers +30°C à +°40°C
environ en 3A, avec condensation partielle, et séparé en
une fraction vapeur et une fraction liquide dans l'appareil
de distillation 12.This gas mixture is then compressed to a
first intermediate pressure Pi, typically of the order
from 12 to 20 bars, then cooled to + 30 ° C to + ° 40 ° C
approximately in 3A, with partial condensation, and separated in
a vapor fraction and a liquid fraction in the
Le liquide de cuve de la colonne 12 (récupéré
en 12b) constitue un premier liquide réfrigérant adapté
pour assurer l'essentiel de la réfrigération de l'échangeur
chaud 6, après refroidissement dans l'échangeur 18. The tank liquid in column 12 (recovered
in 12b) constitutes a first suitable coolant
to provide essential refrigeration of the exchanger
hot 6, after cooling in the
Pour cela, ce liquide de cuve est admis (aux
environs de 30°C à 40°C) vers l'extrémité "chaude" 28b de
l'échangeur 18 dans lequel il circule, jusque vers son
extrémité "froide" 28a, pour ressortir en 47 aux environs
de 8°C, cette fraction liquide refroidie étant ensuite
introduite sensiblement à la même température à l'endroit
d'une entrée latérale intermédiaire 48, sensiblement à mi-longueur
de l'échangeur chaud 6, pour en ressortir à
nouveau latéralement vers son extrémité "froide" 6b, aux
environs de -20°C à -40°C, être détendue (ou subir une
expansion) à la basse pression du cycle (2,5 à 3,5 bar)
dans une vanne de détente 50 et être réintroduite sous
forme diphasique, toujours au bout froid 6b du même
échangeur, via la boíte latérale d'entrée 52 et un
dispositif de distribution approprié, pour être vaporisée
dans les passages basse pression 42 de l'échangeur.For this, this tank liquid is allowed (to
around 30 ° C to 40 ° C) towards the "hot"
La vapeur de tête de la colonne de distillation
12, récupérée en sortie de la tête 12a, circule quant à
elle, comme illustré aux figures 1 à 5 et 7, entre
sensiblement les extrémités chaude 28b et froide 28a de
l'échangeur 18, avec entrée et sortie vers les deux
extrémités en 53 et 55 respectivement, de manière à être
refroidie et partiellement condensée dans les passages 57
de l'échangeur jusqu'à une température intermédiaire
inférieure à ladite température "ambiante", par exemple de
+5°C à +10°C, puis introduite dans le pot séparateur 13. En
pratique, la température atteinte pourra même
(éventuellement) être inférieure à la température du
"fluide de refroidissement" disponible sur le site.Overhead steam from the
La phase liquide récupérée à la base du
séparateur 13 retourne, par l'intermédiaire du siphon 16 et
de la vanne de réglage 17, en tête de la colonne 12 pour la
refroidir, tandis que la phase vapeur du séparateur est
comprimée à la haute pression du cycle (de l'ordre de 40 à
45 bar) en 1C puis est ramenée vers +30°C à +40°C dans le
réfrigérant 3C. Dans ce cas, la température de la tête de
la colonne 12 sera donc inférieure à ladite température
"ambiante", voire à à la température du "fluide de
refroidissement" disponible sur le site, même si on aurait
pu imaginer que cette température soit supérieure,
notamment en supprimant le réfrigérant 3A et en
fonctionnant comme dans EP-A-117 793, c'est-à-dire avec un
passage direct de l'étage de compression 1A à l'entrée dans
le distilateur 12.The liquid phase recovered at the base of the
Cette fraction vapeur haute pression refroidie
dans le dispositif réfrigérant 3C sensiblement jusqu'à la
température dite "ambiante" (à l'écart de température fixé
dans la définition de la page 2 près), est ensuite à
nouveau refroidie du bout chaud 6a jusque vers le bout
froid 6b (donc d'environ 30°C à -30°C) dans les passages
haute pression 59 de l'échangeur 6, avec entrée et sortie
respectivement en 61 et 63, puis séparée en fractions
liquide et vapeur, en 8.This cooled high pressure steam fraction
in the 3C refrigeration device substantially up to the
so-called "ambient" temperature (at a fixed temperature difference
in the definition on page 2), is next to
again cooled from the
A noter que le contrôle de la température et de
la pression (+5°C à +10°C, 12 à 20 bar) du liquide de
refroidissement de la tête de la colonne 12 permet
d'obtenir un gaz monophasique à la fois en sortie de 3C et
en 40, juste en sortie de l'échangeur 7.Note that the temperature and
the pressure (+ 5 ° C to + 10 ° C, 12 to 20 bar) of the
cooling of the head of the
La réfrigération de cet échangeur froid 7 est
obtenue au moyen du fluide haute pression, de la manière
suivante :
La fraction vapeur issue du séparateur 8 est,
quant à elle, refroidie, condensée et sous-refroidie
(jusqu'aux environs de -160°C) du bout chaud au bout froid
de l'échangeur 7 et le liquide ainsi obtenu est détendu à
la basse pression du cycle dans une vanne de détente 71 et
réintroduit dans l'échangeur 7, parallèlement à l'axe 5a, à
travers le dôme inférieur "froid" 7b, pour être vaporisé
dans la partie froide des passages basse pression 41, puis
réuni aux fluides diphasiques (essentiellement liquides)
détendus admis par l'entrée intermédiaire 70, pour un
retour vers la conduite 46.The vapor fraction from
Le gaz naturel traité, arrivant par exemple à
une température de l'ordre de 20°C après dessiccation, via
une conduite 73 est, pour partie, admis directement dans
l'appareil 75 d'élimination d'hydrocarbures en C2+ et, pour
sa partie restante, admis latéralement en 77, sensiblement
à mi-longueur de l'échangeur 6, pour être refroidi jusque
vers l'extrémité froide 6b dans des passages 79, avant de
ressortir latéralement vers cette extrémité, en 81, cette
portion refroidie (environ -20°C à -40°C) étant ensuite
admise dans l'unité 75.Processed natural gas, for example arriving at
a temperature of the order of 20 ° C. after drying, via
a
Dans l'unité 75, on extrait du gaz naturel qui y est admis :
- les produits qui risqueraient de cristalliser lors de la liquéfaction (c'est-à-dire essentiellement les C6+),
- les produits en C2 à C5 nécessaires au maintien de la composition au gaz de cycle,
- et éventuellement les quantités de produits à extraire pour que le gaz naturel liquéfié soit conforme aux spécifications requises par les utilisateurs,
- et on produit la majeure partie du "fuel gaz" nécessaire à la production d'énergie mécanique de l'installation, directement à la pression requise.
- the products which might crystallize during liquefaction (i.e. essentially C6 +),
- the products in C2 to C5 necessary for maintaining the cycle gas composition,
- and possibly the quantities of products to be extracted so that the liquefied natural gas meets the specifications required by users,
- and most of the "fuel gas" necessary for the production of mechanical energy from the installation is produced directly at the required pressure.
Le mélange restant sortant en 83 est ensuite
admis en 85, à proximité du dôme "chaud" 7a de l'échangeur
"froid" 7, pour circuler jusqu'à proximité de son extrémité
froide 7b, dans des passages 87 en étant liquéfié et sous-refroidi
pour ressortir en 89, aux environs de -160°C,
avant d'être stocké, sous forme de liquide (GNL), en 10,
après avoir été détendu.The remaining mixture leaving at 83 is then
admitted in 85, near the "hot"
A noter que de préférence l'essentiel (environ
90 %) du flux de gaz naturel (GN) décarbonaté et sec admis
par la conduite 73 circulera dans les passages 79, seul au
plus environ 10 % étant donc admis directement dans
l'installation de séparation 75.Note that preferably the essential (approximately
90%) of the decarbonated and dry natural gas (GN) flow admitted
through
Avec une telle disposition et grâce en
particulier au délestage obtenu de l'échangeur 6 par
rapport à ce qui est décrit dans WO-A-94 24500, il est
prévu un gain d'environ 10 % d'énergie globale, ainsi
qu'une décharge de l'échangeur 6 d'environ la moitié de son
travail thermique, 40 à 50 % de gaz naturel pouvant être
traité en plus dans un tel échangeur de taille définie.With such a disposition and thanks in
particular to the load shedding obtained from the
comme cela a été représenté sur les figures 1,
2 et 4, il peut être souhaitable de détendre une partie des
liquides froids dans des turbines à liquide ou "expanders"
91 prévus en parallèle des vannes de détente 69 et/ou 71.as shown in Figures 1,
2 and 4, it may be desirable to relax some of the
cold liquids in liquid turbines or "expanders"
91 provided in parallel with
A noter qu'en pratique, on montera n échangeurs
6 et 7, en parallèle, ainsi que n' échangeurs 18 également
en parallèle.Note that in practice, we will install
A noter par ailleurs que les expandeurs prévus
sur les chemins de circulation des liquides pourront en
particulier être utilisés pour entraíner des pompes (non
représentées), celui qui fournit le plus de puissance étant
celui disposé en parallèle de la vanne 69, les vannes ne
servant de préférence qu'au réglage fin ou à la détente
(expansion) du liquide considéré, en cas de défaillance du
(turbo-) expandeur correspondant.Note also that the expanders provided
on the circulation paths of liquids may
particular be used to drive pumps (not
shown), the one providing the most power being
that arranged in parallel with
Sur la figure 2, les éléments communs avec la figure 1 ont été repérés de la même manière (de même pour les autres figures).In Figure 2, the common elements with the Figure 1 have been identified in the same way (similarly for the other figures).
La différence principale entre les figures 1 et
2 consiste en l'agencement du circuit fermé 21' du liquide
réfrigérant, en circulation dans la deuxième unité
d'échange thermique 18.The main difference between Figures 1 and
2 consists of the arrangement of the closed circuit 21 'of the liquid
refrigerant, circulating in the second
En effet, sur cette figure 2, il s'agit d'un
cycle à un étage de compression 1E' comprenant donc un seul
compresseur haute pression (de l'ordre de 6,5 à 7,5 bars).Indeed, in this figure 2, it is a
cycle with a
Dans le circuit 21', circulera de préférence un mélange ternaire, par exemple composé d'éthane, de butane et de propane.In circuit 21 ', there will preferably be a ternary mixture, for example composed of ethane, butane and propane.
En sortie du compresseur 1E', le mélange sous
sa forme vapeur est (totalement) condensé dans le
condenseur 23' pour être admis en 24' vers l'extrémité
chaude 28b de l'échangeur 18 dans lequel il circule
longitudinalement (parallèlement à l'axe 18a) jusque vers
l'extrémité froide 28a, à proximité de laquelle il ressort
latéralement en 26' aux environs de 8°C à 10°C pour être
détendu par la vanne 27 jusque vers 2,5 à 3,5 bar.At the outlet of
Le mélange réfrigérant ainsi refroidi et
détendu est alors réinjecté à travers le dôme froid 28a,
parallèlement à l'axe 18a, à contre-courant des autres
passages de circulation, dans les passages de vaporisation
33' pour ressortir coaxialement à travers le dôme "chaud"
28b et être introduit toujours sous forme vapeur aux
environs de 30°C à 40°C en entrée du compresseur 1E'.The refrigerant mixture thus cooled and
relaxed is then reinjected through the
A noter que l'utilisation d'un mélange ternaire
permet d'obtenir un gradient de température plus important
que le mélange binaire utilisé dans le circuit 21 des
figures 1, 4, 5 et 7.Note that the use of a ternary mixture
provides a larger temperature gradient
that the binary mixture used in
Le circuit 21', que l'on retrouve d'ailleurs
sur la figure 6, est plus simple que le circuit 21 mais
présente un handicap énergétique d'environ 15 à 20 % par
rapport à ce circuit, soit environ 1,5 à 2 % sur le cycle
complet de l'installation.The 21 'circuit, which we also find
in Figure 6, is simpler than
Sur la figure 3, le mélange frigorigène de
cycle de l'installation, dans sa fraction liquide issue du
liquide de cuve de l'appareil de distillation 12, après
refroidissement sensiblement entre les extrémités chaude
28b et froide 28a de l'échangeur 18 dans les passages
correspondant 93, puis sous-refroidissement dans une partie
froide de l'échangeur "chaud" 6 dans les passages 95 de cet
échangeur, subit une expansion dans une vanne d'expansion
97, avant d'être envoyé dans le séparateur 9.In Figure 3, the refrigerant mixture of
installation cycle, in its liquid fraction from
tank liquid from the
Les fractions gazeuse (via 99a) et liquide (via 99b) sont ensuite injectées séparément dans les passages retour du cycle, en vaporisation à basse pression.The gas (via 99a) and liquid (via 99b) are then injected separately into the passages return of the cycle, spraying at low pressure.
Plus précisément, la fraction vapeur est
injectée latéralement à l'endroit de la coupure 40, tandis
que la fraction liquide est injectée légèrement plus en
aval, à proximité du bout froid 6b de l'échangeur 6, via le
chemin d'injection latéral 101 débouchant sur 42.More specifically, the vapor fraction is
injected laterally at the
Un traitement comparable de la fraction liquide
issue du séparateur de cycle 8 et détendue dans la vanne
d'expansion 69 après avoir circulé dans les passages 65,
pour être sous-refroidie, est effectué dans le troisième
séparateur de cycle 103.Comparable treatment of the liquid fraction
from
Ainsi, les fractions respectivement gazeuse et
liquide issues de ce séparateur sont injectées séparément
par des injections distinctes, respectivement 105 et 107,
sensiblement à un même niveau intermédiaire des passages
froids de vaporisation 41 de l'échangeur 7, c'est-à-dire
donc plus en amont des passages retour du mélange
frigorigène vaporisé à basse pression que les arrivées
d'injection des fractions vapeur et liquide arrivant de 99a
et 99b.Thus, the gaseous and
liquid from this separator are injected separately
by separate injections, 105 and 107 respectively,
substantially at the same intermediate level of the passages
vaporization cold 41 of the
Toujours sur la figure 3, on notera que le gaz
naturel (GN), après décarbonatation et dessiccation, est
admis pour sa partie principale (environ 90%) en 77', en
partie intermédiaire de l'échangeur 6, après avoir circulé
dans les conduits 20 en échange de chaleur dans l'échangeur
18 pour y être refroidi par échange thermique indirect avec
le liquide réfrigérant en circulation dans le circuit 21"
que l'on va présenter ci-après.Still in Figure 3, note that the gas
natural (GN), after decarbonation and drying, is
admitted for its main part (about 90%) in 77 ', in
intermediate part of the
Après avoir circulé dans les passages 79'
jusque vers l'extrémité froide 6b de l'échangeur 6, ce gaz
naturel ainsi sous-refroidi sort en 81' de l'échangeur 6
pour passer dans l'échangeur 7, via une injection 109,
avant de ressortir par une sortie intermédiaire 111, après
avoir été sous-refroidi dans les passages 113, jusqu'à une
température d'environ -40°C à -60°C, le gaz ainsi sous-refroidi
passant dans l'installation de séparation 75, sa
fraction qui sort en 83 étant ensuite réinjectée
latéralement en 115 en partie intermédiaire de l'échangeur
7 pour circuler dans les passages froids 117 jusqu'aux
environs de -160°C et être ainsi liquéfiée, avant de
ressortir en 89', sensiblement à l'endroit de la sortie 89
des figures précédentes, puis passer dans la vanne
d'expansion 119 (qui pourrait également être un expandeur)
et être enfin stockée dans l'unité de stockage 10, après
détente.After having passed in the passages 79 '
up to the
A noter qu'en sortie 81', une partie du gaz
peut être délivrée dans l'unité de séparation 75, via la
conduite 82, sans passer là à travers l'échangeur 7.Note that at outlet 81 ', part of the gas
can be delivered to the
Si l'on s'intéresse maintenant au circuit 21"
du fluide réfrigérant utilisé dans l'échangeur 18, on note
qu'en plus du circuit 21 de la figure 1 (dont il reprend
les caractéristiques) le circuit 21" comprend un circuit
additionnel 121, branché en parallèle, en entrée, entre la
sortie 25 et la vanne d'expansion 32 et, en sortie, entre
le condenseur 22 (ou la sortie du condenseur basse pression
1D) et le raccordement de mélange 35.If we are interested now in the 21 "circuit
of the refrigerant used in the
Le circuit 121 ainsi branché comprend un
échangeur supplémentaire 123 dans lequel circule entre son
extrémité froide 123a et son extrémité plus chaude 123b, le
mélange réfrigérant binaire liquéfié sortant de 25 et
détendu en 125 dans une vanne d'expansion, avant d'être
vaporisé dans les passages 127, entre les extrémités froide
et chaude de l'échangeur 123, à contre-courant d'un flux de
gaz naturel relativement humide (avant dessiccation), admis
en 129 et circulant donc à contresens du fluide vaporisé
dans 127, à l'intérieur des passages 131, avant d'être
introduit dans une unité de dessiccation (non représentée),
puis éventuellement d'être introduit à l'entrée "GN" 73
pour partir soit dans le conduit 20, soit directement vers
l'installation de séparation 75.The
L'installation de la figure 4 se différencie ainsi uniquement de celle de la figure 1 :
- du fait de la circulation de la fraction vapeur haute pression sortant de 3C, avant que cette fraction vapeur parvienne à l'entrée latérale d'injection 61 de l'échangeur 6,
- et dans la manière dont le mélange frigorigène comprimé sortant du condenseur 3A est admis dans le distillateur 12, du fait qu'un refroidissement du mélange sortant de 3A est prévu en dessous de la température "ambiante" (et même éventuellement en dessous de la température du fluide de refroidissement disponible sur le site) avant entrée dans la colonne 12, ceci par circulation dans l'échangeur 18.
- due to the circulation of the high pressure steam fraction leaving 3C, before this steam fraction reaches the
lateral injection inlet 61 of theexchanger 6, - and in the manner in which the compressed refrigerant mixture leaving the
condenser 3A is admitted into thedistiller 12, since cooling of the mixture leaving 3A is provided below the "ambient" temperature (and even possibly below the temperature of the coolant available on the site) before entering thecolumn 12, this by circulation in theexchanger 18.
Sur la figure 4, on note ainsi qu'en sortie du
réfrigérant 3C, la fraction vapeur haute pression est
admise en 133 vers le bout "chaud" 28b de l'échangeur 18
pour être refroidie jusqu'à une zone intermédiaire de la
longueur axiale de l'échangeur, avant d'en ressortir pour
être admise dans l'échangeur 6, via l'entrée d'injection
61.In FIG. 4, it is thus noted that at the output of the
3C refrigerant, the high pressure steam fraction is
admitted in 133 towards the "hot"
Les passages laissés libres à la suite de ceux
135 réservés pour ladite fraction vapeur haute pression
dans l'échangeur 18, sont ici utilisés pour condenser la
fraction vapeur issue de la tête 12a de la colonne de
distillation 12 (passages de vaporisation repérés 135')
avant que cette fraction vapeur condensée soit séparée en
13.The passages left free following those
135 reserved for said high pressure steam fraction
in the
Une partition des longueurs des passages a
également été utilisée pour refroidir, dans la partie la
moins froide de l'échangeur 18 (passages 137), le mélange
diphasique comprimé sortant du condenseur 3A, avant de
l'admettre en entrée basse 12c de l'appareil de
distillation 12 (aux environs de 10°C à 15°C en dessous de
la température "ambiante"), la partie complémentaire des
passages 137 (repérée 137') située dans la partie plus
froide de l'échangeur 18 servant à refroidir le liquide de
cuve récupéré en 12b, avant de l'admettre dans l'entrée
d'injection latérale 48 de l'échangeur 6.A partition of the lengths of the passages has
also used to cool, in the part the
less cold from exchanger 18 (passages 137), the mixture
compressed two-phase leaving the 3A condenser, before
admit it as a
A noter que la circulation dans les passages
137 du mélange diphasique partiellement condensé et
comprimé permet d'obtenir une température d'entrée dans la
première partie 12 des moyens de séparation 4 qui peut donc
être différente de (inférieure à) la "température
ambiante", voire à la température du fluide de
refroidissement disponible sur le site.Note that the traffic in the
Et ce refroidissement de la température de cuve du distillateur 12 permet d'atteindre une température de coupure (en 40) plus basse que dans les autres cas.And this cooling of the tank temperature of the still 12 allows a temperature of cut (in 40) lower than in the other cases.
A noter également que la circulation de la
fraction vapeur haute pression dans les passages 135 permet
d'obtenir en 61 une température d'entrée de cette fraction
vapeur dans l'échangeur 6, de l'ordre de 25°C à 30°C que
l'on peut adapter et qui peut en particulier être
inférieure à la température d'entrée en 61 de
l'installation de la figure 1, typiquement de l'ordre de
40°C, c'est-à-dire proche de la température dite "ambiante"
(ou de la température du "fluide de refroidissement").Also note that the circulation of
high pressure steam fraction in
Même si cela n'a pas été illustré, le
refroidissement intermédiaire, dans les passages 137 du
mélange diphasique partiellement condensé et comprimé,
entre le condenseur 3A et la première unité (12 ou 14) des
moyens de séparation 4, pourrait être prévu sur
l'installation à deux séparateurs associés 14, 15 de la
figure 6.Although this has not been illustrated, the
intermediate cooling, in
Mais avant de revenir à cette solution de la
figure 6, remarquons que sur la figure 5, le gaz de cycle
haute pression passant dans 2C et éventuellement
partiellement condensé en 3C est refroidi d'une dizaine de
degrés (c'est-à-dire typiquement d'environ 40°C à environ
30°C) dans des passages 139 de l'échangeur 18 situés du
côté du dôme "chaud" 28b de celui-ci, avant de ressortir
latéralement en 141, puis d'être injecté comme précédemment
en 61 dans l'échangeur 6.But before coming back to this solution of the
figure 6, note that in figure 5, the cycle gas
high pressure passing through 2C and possibly
partially condensed in 3C is cooled by ten
degrees (i.e. typically about 40 ° C to about
30 ° C) in
L'intérêt d'un tel refroidissement que l'on
peut contrôler en adaptant le fonctionnement de l'échangeur
18, est d'atteindre entre l'entrée 61 et la conduite de
recyclage 46, un écart de température inférieur à environ
20°C, et donc d'obtenir une sortie du cycle de
refroidissement aux environs de 20°C, assez proche du point
de rosée du mélange frigorigène utilisé, ce refroidissement
uniquement d'environ 10°C dans les passages 139 évitant de
liquéfier la phase vapeur haute pression avant de
l'injecter en 61.The advantage of such cooling that one
can control by adapting the operation of the
Du point de vue énergétique, cette version de la figure 5 parait potentiellement l'une des plus intéressantes.From an energy point of view, this version of figure 5 appears potentially one of the most interesting.
Pour les autres caractéristiques,
l'installation de la figure 5 correspond à celle de la
figure 1 (la prévision d'un expandeur 91 en parallèle de la
vanne de détente 69 étant facultative).For the other characteristics,
the installation of figure 5 corresponds to that of the
figure 1 (the forecast of an
Sur la figure 6, la colonne de distillation 12
a donc été remplacée par un séparateur 14.In FIG. 6, the
La fraction liquide récupérée aux environs de
8°C en partie basse du deuxième séparateur 15 est transmise
vers l'entrée intermédiaire 48, et ce a priori directement,
sans passer par l'échangeur 18.The liquid fraction recovered around
8 ° C in the lower part of the
En 143, cette fraction liquide issue du
séparateur 15 rencontre le conduit 145 utilisé pour la
fraction liquide récupérée du séparateur 14, après
circulation sensiblement entre les extrémités "chaude" 28b
et "froide" 28a de l'échangeur 18, dans les passages de
refroidissement indirect 147.In 143, this liquid fraction from
Des vannes de réglage, respectivement 149 et
151, permettent d'adapter le débit des fractions liquides
issues des séparateurs 14 et 15, respectivement.Adjustment valves, respectively 149 and
151, allow to adapt the flow rate of liquid fractions
from
La circulation de la fraction liquide du
séparateur 14 dans les passages 147 permet de faire passer
sa température d'environ 40°C aux environs de 8°C,
température à laquelle la fraction liquide du séparateur 15
est récupérée, du fait de sa circulation dans les passages
153 de l'échangeur 18, sensiblement dans les mêmes
conditions d'échange thermique indirect que la fraction
liquide circulant dans les passages 147.The circulation of the liquid fraction of the
Compte-tenu de cela, et comme cela a déjà été
indiqué, la fraction vapeur ayant circulé dans les passages
153 à contre-courant (comme pour 147 notamment) des
passages 33' du circuit de refroidissement 21', est
condensée, de manière à être introduite sous cette forme
dans le séparateur 15, la fraction vapeur récupérée en 15a
étant quant à elle admise à l'entrée du compresseur haute
pression 1C.In view of this, and as has already been
indicated, the vapor fraction having circulated in the
Compte-tenu de ce qui précède, on aura compris
que l'entrée "liquide" de l'échangeur 6, en 48, s'effectue
aux environs de 8°C sur l'installation de la figure 6.In view of the above, we will have understood
that the "liquid" entry of the
L'installation de la figure 7 se différencie de
celle de la figure 1 uniquement (si l'on excepte la
prévision de l'expandeur 91 en parallèle de la vanne de
détente 69) du fait de la prévision non pas de deux mais de
trois étages de compression sur l'unité de compression de
cycle 1'.The installation of figure 7 differs from
that of Figure 1 only (except the
prediction of
Ainsi sur cette figure 7, entre l'entrée 12c de
l'appareil de distillation 12 et la sortie du condenseur
3A, ont été interposés un séparateur 155, une pompe 157, un
étage intermédiaire de compression 1B refoulant en 2B dans
un condenseur 3B dont la sortie communique avec l'entrée
12c de l'appareil de distillation 12.So in this figure 7, between the
Comme cela a déjà été décrit dans WO-A-94 24500, cet étage intermédiaire de compression et ses accessoires permet de séparer en 155 en une fraction vapeur et une fraction liquide le mélange frigorigène comprimé en 1A et condensé partiellement en 3A, avec refroidissement jusqu'à une température de +30°C à +40°C.As already described in WO-A-94 24500, this intermediate compression stage and its accessories allows to separate in 155 in a vapor fraction and a liquid fraction the refrigerant mixture compressed into 1A and partially condensed into 3A, with cooling up to a temperature of + 30 ° C to + 40 ° C.
La phase vapeur issue du séparateur 155 est
comprimée à une deuxième pression intermédiaire Pi
typiquement de l'ordre de 12 à 20 bar, en 1B, tandis que la
fraction liquide récupérée du même séparateur 155 est
portée par la pompe 157 à la même pression Pi et injectée
dans la conduite 2B (ou éventuellement en sortie du
condenseur partiel 3B).The vapor phase from
Le mélange des deux phases dans cette conduite est ensuite refroidi et partiellement condensé en 3B, puis distillé en 12.The mixture of the two phases in this conduct is then cooled and partially condensed into 3B, then distilled in 12.
A noter qu'une telle unité de compression 1' à trois étages de compression pourrait être employée dans les autres versions de l'installation de l'invention.Note that such a compression unit 1 'to three stages of compression could be used in other versions of the installation of the invention.
D'ailleurs, et d'une façon plus générale, les particularités de telle figure peuvent être appliquées en l'espèce à telle autre, indifféremment.Moreover, and more generally, the peculiarities of such figure can be applied in the species to another, indifferently.
Concernant l'utilisation des séparateurs 9 et
103, celle-ci pourrait également être appliquée dans
n'importe quel autre cas de figure.Regarding the use of
De la même manière, la circulation du gaz
naturel dans les passages 79' puis 113 peut être prévue sur
les autres figures que la figure 3, dans la mesure où la
température d'envoi vers l'unité 75 est différente de la
température de coupure en 40.Similarly, the circulation of gas
natural in passages 79 'then 113 can be provided on
the other figures than Figure 3, insofar as the
send temperature to
Claims (27)
- A process for refrigerating a fluid to be cooled, notably for liquefying natural gas, in first heat exchanging means, by using a refrigerating mixture circulating in an endless circuit, the process comprising :a) compressing the refrigerating mixture in a penultimate stage (1a,1b) of a plurality of stages of a compression unit (1,1'),b) separating (12,14) the compressed refrigerating mixture for obtaining a vapour fraction and a liquid fraction,c) cooling and partially condensing the vapour fraction and cooling the liquid fraction by circulating said vapour fraction through first channels (57, 135) and said liquid fraction through second channels (93,137'), in second heat exchange means independent from first heat exchange means, said circulation through the second heat exchange means comprising a heat exchange between the vapour and liquid fractions and the refrigerating fluid which circulates in an endless circuit (21,21'), for obtaining respectively a condensed vapour fraction and a cooled liquid fraction, and then cooling the cooled liquid fraction in the first heat exchange means (5),d) separating (13,15) the condensed vapour fraction for obtaining a resultant vapour fraction and a resultant liquid fraction,e) sending the resultant vapour fraction to the final compression stage (1c), for obtaining a high pressure vapour fraction,f) expanding the cooled liquid fraction issued from the first heat exchange means and the high pressure vapour fraction, before circulating them through the first heat exchange means, in a heat exchange with the fluid to be cooled, and then recycling them to the penultimate stage of said compression unit, as the refrigerating mixture.
- The process according to Claim 1, characterized in that, between steps a) and b), the compressed refrigerating mixture issued from the penultimate stage of compression is cooled by a refrigerating fluid which is present on the site.
- The process according to Claim 1 or claim 2, characterized in that during step b) and step d):the compressed refrigerating mixture is separated in a first separator (14),the condensed vapour fraction is separated in a second separator for obtaining the resultant vapour fraction and the resultant liquid fraction.
- The process according to Claim 3, characterized in that, before admitting the resultant liquid fraction into the first heat exchange means (5), this resultant liquid fraction is combined with the cooled liquid fraction having passed into said second heat exchange means (18).
- The process according to Claim 1 or claim 2, characterized in that during step b), step d) and step e):the compressed refrigerating mixture is separated in a distillation apparatus (12),the condensed vapour fraction is separated in a separator (13), for obtaining said resultant vapour fraction and said resultant liquid fraction,and, the resultant liquid fraction is returned to the column head (12a) of the distillation apparatus, to cool it.
- The process according to anyone of Claims 3 to 5, characterized in that:the liquid fraction issued from the distillation apparatus (12) or from the first separator (14) is circulated in the second heat exchange means (18), between a hot end (28b) and a cold end (28a) thereof,and said cooled liquid fraction is admitted in an intermediate part of a first, hot exchanger (6) of two heat exchangers arranged in series, one hot and the other cold, belonging to said first heat exchange means (5).
- The process according to anyone of the preceding claims, characterized in that the refrigerating fluid is circulated in an endless circuit refrigeration cycle (21) comprising two successive compression stages (1D,1E) and, on emerging from the highest compression stage of the two (1E), the refrigerating fluid is totally condensed.
- The process according to anyone of the Claims 1 to 6, characterized in that the refrigerating fluid is circulated in an endless circuit refrigeration cycle (21') which comprises a single compression stage and, on emerging from this single compression stage, the refrigerating fluid is totally condensed.
- The process according to anyone of the preceding claims, characterized in that, between steps e) and f):the high pressure vapour fraction is cooled after the final compression stage (1c) of said compression unit (1,1'),and said condensed, high pressure vapour fraction is circulated in the second heat exchange means (18), in order to cool it further by heat exchange with the refrigerating fluid before sending it into the first heat exchange means (5).
- The process according to anyone of Claims 5 and 9, characterized in that:for refrigerating one more time the cooled, high pressure vapour fraction, the latter is circulated between a hot end (28b) of the second heat exchange means (18) and an intermediate part thereof,and the vapour fraction issued from the distillation apparatus (12) is circulated between said intermediate part and a cold end (28a) of said second heat exchange means (18), before sending it into said separator (13).
- The process according to anyone of Claims 5 to 9, characterized in that the vapour fraction and the liquid fraction derived from the distillation apparatus (12) are circulated between a hot end and a cold end of the second heat exchange means (18), before they are admitted respectively into said separator (13) and into said first heat exchange means (5).
- The process according to anyone of the preceding Claims, characterized in that, between the steps a) and b), the compressed refrigerating mixture is circulated in the second heat exchange means (18).
- The process according to anyone of the preceding Claims, characterized in that:the fluid to be cooled is natural gas,before circulating the natural gas in the first heat exchange means (5), it is subjected to drying,and, after drying, the dried natural gas passes, inside the first heat exchange means (5), firstly into a first part of a first, hot exchanger (6) of a first and a second exchangers arranged in series, one hot and the other cold (7), belonging to said first heat exchange means, then into a part of said second exchanger of the first heat exchange means, before passing into a fractionating unit (75) arranged outside the first heat exchange means.
- The process according to anyone of the preceding Claims, characterized in that:the fluid to be cooled is natural gas,before admitting the natural gas into said first heat exchange unit (5), it is passed successively:into third heat exchange means (123) in order to cool it by heat exchange with the refrigerating fluid,then, into an intermediate drying unit.
- The process according to Claim 14, characterized in that the dried natural gas derived from the intermediate drying unit is circulated in the second heat exchange means (18), before being admitted into the first heat exchange means (5).
- The process according to anyone of Claims 1 to 14, characterized in that:the fluid to be cooled is natural gas, andbefore admitting the natural gas into the first heat exchange means (5), it is circulated firstly in the second heat exchange means (18) and, before or after this circulation in the second heat exchange means, the natural gas is subjected to drying.
- The process according to anyone of the preceding Claims, characterized in that:the fluid to be cooled is natural gas,the natural gas is subjected to drying before it is admitted, in order to cool it, into a first, hot exchanger (6) of a first and a second exchangers arranged in series, one hot and the other cold (7), belonging to said first heat exchange means (5),at least a part of the natural gas is cooled in a first part of the second, cold exchanger (7),the natural gas is then passed into a fractionating unit (75) in order to obtain a fractionary resultant compound,and said fractionary resultant compound is circulated in a second part of the second, cold exchanger (7), in order to liquefy and under-cool it.
- A cooling installation for refrigerating a fluid to be cooled, the installation comprising an endless circuit for a refrigerating mixture, and including:a compression unit (1,1') comprising a plurality of compression stages arranged in series, including a final compression stage (1c) comprising an outlet for a high pressure vapour fraction, and a penultimate compression stage (1A, 1B), for compressing at least a part of the refrigerating mixture,first separating means (12,14) arranged between the penultimate compression stage (1A,1B) and the final compression stage (1C), for obtaining a separation of the refrigerating mixture issued from the penultimate compression stage into a vapour fraction and a liquid fraction,cooling means (18), for cooling said vapour fraction and said liquid fraction issued from the first separating means, said cooling means comprising :second heat exchanging means (18) comprising first channels (57,135') and second channels (93,137') separate from the first channels, for circulating therein respectively the vapour fraction and the liquid fraction in a heat exchange with a refrigerating fluid and thus obtaining a condensed vapour fraction and a cooled liquid fraction,the refrigerating fluid which circulates in a separate endless circuit (21, 21', 21") passing through the second heat exchanging means,second separating means (13,15) for separating the condensed vapour fraction in a resultant liquid fraction and a resultant vapour fraction, said second separating means comprising an outlet for said resultant vapour fraction communicating with an inlet of the final compression stage,expanding means (50, 69, 71),first heat exchanging means (5) enclosing:a first passage (79) for circulating there through the fluid to be cooled,. the first passage having an inlet and an outlet,a second passage (59,65) having an outlet communicating with the expanding means and inlets for the refrigerating mixture, said inlets communicating with an outlet of the second heat exchanging means, for circulating the cooled liquid fraction, and with an outlet of the final compression stage, for circulating the high pressure vapour fraction, and,a third passage (41,42), for returning the refrigerating mixture to the compression unit, said third passage having an outlet communicating with an inlet of the compression unit and an inlet communicating with the expanding means.
- The installation according to Claim 18, characterized in that the first separating means comprise a separator (14).
- The installation according to Claim 18, characterized in that the first separating means comprise a distillation apparatus (12).
- The installation according to anyone of Claims 18 to 20, characterized in that the second separating means comprise a separator (13,15).
- The installation according to anyone of Claims 18 to 21, characterized in that the second separating means (13,15) comprise an outlet for a liquid fraction communicating with the cooled, liquid fraction inlet (48) of the first heat exchanging means (5).
- The installation according to anyone of Claims 18 to 22, characterized in that:the first separating means (12,14) comprise an inlet communicating with an outlet of a condenser (3A),and this communication between the outlet of the condenser and the inlet of the first separating means (12,14) passes through the second heat exchanging means (18).
- The installation according to anyone of Claims 18 to 23, characterized in that the refrigerating fluid circulates in a refrigerating cycle (21") including:the second heat exchanging means (18),and third heat exchange means (123) through which pass, in a heat exchange, the refrigerating fluid and the fluid to be cooled.
- The installation according to anyone of Claims 18 to 24, characterized in that the communication between the outlet of the final compression stage (1C) and the inlet of the first exchanging means for the high pressure vapour fraction passes through the second heat exchange means (18).
- The installation according to anyone of Claims 18 to 25, characterized in that it comprises a refrigerating fluid circuit for the refrigerating fluid which passes through the second heat exchange means (18).
- The installation according to anyone of Claims 18 to 26, characterized in that it additionally comprises separate heat exchange means (3A, 3B) for a heat exchange with a separate cooling fluid, the separate heat exchange means being disposed between the outlet of said penultimate compression stage and the inlet of the first separating means (12,14), so as to cool the refrigerating mixture derived from the penultimate compression stage before introducing it into the first separating means.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9608758 | 1996-07-12 | ||
FR9608758A FR2751059B1 (en) | 1996-07-12 | 1996-07-12 | IMPROVED COOLING PROCESS AND INSTALLATION, PARTICULARLY FOR LIQUEFACTION OF NATURAL GAS |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0818661A1 EP0818661A1 (en) | 1998-01-14 |
EP0818661B1 true EP0818661B1 (en) | 2002-09-11 |
Family
ID=9494005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97401367A Expired - Lifetime EP0818661B1 (en) | 1996-07-12 | 1997-06-16 | Improved process and apparatus for cooling and liquefaction of natural gas |
Country Status (22)
Country | Link |
---|---|
US (1) | US5943881A (en) |
EP (1) | EP0818661B1 (en) |
JP (1) | JP4233619B2 (en) |
KR (1) | KR100365367B1 (en) |
CN (1) | CN1140755C (en) |
AR (1) | AR007816A1 (en) |
AT (1) | ATE224036T1 (en) |
AU (1) | AU723530B2 (en) |
BR (1) | BR9703959A (en) |
CA (1) | CA2209723C (en) |
CO (1) | CO5070650A1 (en) |
DE (1) | DE69715330T2 (en) |
DK (1) | DK0818661T3 (en) |
DZ (1) | DZ2265A1 (en) |
ES (1) | ES2185883T3 (en) |
FR (1) | FR2751059B1 (en) |
ID (1) | ID19101A (en) |
IL (1) | IL121092A (en) |
MY (1) | MY119081A (en) |
NO (1) | NO311461B1 (en) |
PT (1) | PT818661E (en) |
TW (1) | TW332253B (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10329015A (en) | 1997-03-24 | 1998-12-15 | Canon Inc | Polishing device and polishing method |
US6119479A (en) * | 1998-12-09 | 2000-09-19 | Air Products And Chemicals, Inc. | Dual mixed refrigerant cycle for gas liquefaction |
US6347532B1 (en) * | 1999-10-12 | 2002-02-19 | Air Products And Chemicals, Inc. | Gas liquefaction process with partial condensation of mixed refrigerant at intermediate temperatures |
US6298688B1 (en) | 1999-10-12 | 2001-10-09 | Air Products And Chemicals, Inc. | Process for nitrogen liquefaction |
US6564578B1 (en) | 2002-01-18 | 2003-05-20 | Bp Corporation North America Inc. | Self-refrigerated LNG process |
US6640586B1 (en) | 2002-11-01 | 2003-11-04 | Conocophillips Company | Motor driven compressor system for natural gas liquefaction |
DE102004011483A1 (en) * | 2004-03-09 | 2005-09-29 | Linde Ag | Process for liquefying a hydrocarbon-rich stream |
US7266976B2 (en) * | 2004-10-25 | 2007-09-11 | Conocophillips Company | Vertical heat exchanger configuration for LNG facility |
US8578734B2 (en) | 2006-05-15 | 2013-11-12 | Shell Oil Company | Method and apparatus for liquefying a hydrocarbon stream |
WO2009010558A2 (en) * | 2007-07-19 | 2009-01-22 | Shell Internationale Research Maatschappij B.V. | Method and apparatus for recovering and fractionating a mixed hydrocarbon feed stream |
JP5683277B2 (en) | 2008-02-14 | 2015-03-11 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイShell Internationale Research Maatschappij Beslotenvennootshap | Method and apparatus for cooling hydrocarbon streams |
CN101239194B (en) * | 2008-03-17 | 2012-11-28 | 张博 | Deodorizing sterilizing foamed liquid for water closet |
US8209997B2 (en) * | 2008-05-16 | 2012-07-03 | Lummus Technology, Inc. | ISO-pressure open refrigeration NGL recovery |
CN102115683A (en) * | 2009-12-30 | 2011-07-06 | 中国科学院理化技术研究所 | Method for producing liquefied natural gas |
CN105247190B (en) | 2014-04-07 | 2017-04-05 | 三菱重工压缩机有限公司 | Float type liquefied gas manufacturing equipment |
FR3043451B1 (en) * | 2015-11-10 | 2019-12-20 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | METHOD FOR OPTIMIZING NATURAL GAS LIQUEFACTION |
FR3043452B1 (en) * | 2015-11-10 | 2019-12-20 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | METHOD FOR LIQUEFACTING NATURAL GAS USING A CLOSED CYCLE REFRIGERATION CIRCUIT |
FR3045798A1 (en) | 2015-12-17 | 2017-06-23 | Engie | HYBRID PROCESS FOR THE LIQUEFACTION OF A COMBUSTIBLE GAS AND INSTALLATION FOR ITS IMPLEMENTATION |
US10323880B2 (en) * | 2016-09-27 | 2019-06-18 | Air Products And Chemicals, Inc. | Mixed refrigerant cooling process and system |
CN106831300B (en) * | 2017-04-17 | 2023-05-23 | 中国石油集团工程股份有限公司 | Device and method for recycling ethane and co-producing liquefied natural gas |
US11268756B2 (en) * | 2017-12-15 | 2022-03-08 | Saudi Arabian Oil Company | Process integration for natural gas liquid recovery |
PE20210785A1 (en) * | 2018-04-20 | 2021-04-22 | Chart Energy And Chemicals Inc | PRE-COOLING MIXED REFRIGERANT LIQUEFACTION SYSTEM AND METHOD |
FR3103543B1 (en) * | 2019-11-21 | 2021-10-22 | Air Liquide | Heat exchanger with arrangement of mixing devices improving the distribution of a two-phase mixture |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2280041A1 (en) * | 1974-05-31 | 1976-02-20 | Teal Technip Liquefaction Gaz | METHOD AND INSTALLATION FOR COOLING A GAS MIXTURE |
FR2292203A1 (en) * | 1974-11-21 | 1976-06-18 | Technip Cie | METHOD AND INSTALLATION FOR LIQUEFACTION OF A LOW BOILING POINT GAS |
US4325231A (en) * | 1976-06-23 | 1982-04-20 | Heinrich Krieger | Cascade cooling arrangement |
FR2471566B1 (en) * | 1979-12-12 | 1986-09-05 | Technip Cie | METHOD AND SYSTEM FOR LIQUEFACTION OF A LOW-BOILING GAS |
FR2540612A1 (en) * | 1983-02-08 | 1984-08-10 | Air Liquide | METHOD AND INSTALLATION FOR COOLING A FLUID, IN PARTICULAR A LIQUEFACTION OF NATURAL GAS |
US4755200A (en) * | 1987-02-27 | 1988-07-05 | Air Products And Chemicals, Inc. | Feed gas drier precooling in mixed refrigerant natural gas liquefaction processes |
FR2703762B1 (en) * | 1993-04-09 | 1995-05-24 | Maurice Grenier | Method and installation for cooling a fluid, in particular for liquefying natural gas. |
DE19722490C1 (en) * | 1997-05-28 | 1998-07-02 | Linde Ag | Single flow liquefaction of hydrocarbon-rich stream especially natural gas with reduced energy consumption |
-
1996
- 1996-07-12 FR FR9608758A patent/FR2751059B1/en not_active Expired - Lifetime
-
1997
- 1997-06-11 TW TW086108000A patent/TW332253B/en not_active IP Right Cessation
- 1997-06-16 DE DE69715330T patent/DE69715330T2/en not_active Expired - Lifetime
- 1997-06-16 DK DK97401367T patent/DK0818661T3/en active
- 1997-06-16 PT PT97401367T patent/PT818661E/en unknown
- 1997-06-16 EP EP97401367A patent/EP0818661B1/en not_active Expired - Lifetime
- 1997-06-16 ES ES97401367T patent/ES2185883T3/en not_active Expired - Lifetime
- 1997-06-16 AT AT97401367T patent/ATE224036T1/en active
- 1997-06-17 AU AU24966/97A patent/AU723530B2/en not_active Expired
- 1997-06-17 IL IL12109297A patent/IL121092A/en not_active IP Right Cessation
- 1997-06-25 MY MYPI97002852A patent/MY119081A/en unknown
- 1997-06-27 CO CO97036140A patent/CO5070650A1/en unknown
- 1997-07-07 CA CA002209723A patent/CA2209723C/en not_active Expired - Lifetime
- 1997-07-07 AR ARP970103019A patent/AR007816A1/en active IP Right Grant
- 1997-07-07 ID IDP972347A patent/ID19101A/en unknown
- 1997-07-09 DZ DZ970115A patent/DZ2265A1/en active
- 1997-07-10 US US08/891,133 patent/US5943881A/en not_active Expired - Lifetime
- 1997-07-10 NO NO19973221A patent/NO311461B1/en not_active IP Right Cessation
- 1997-07-11 BR BR9703959A patent/BR9703959A/en not_active IP Right Cessation
- 1997-07-12 KR KR1019970032394A patent/KR100365367B1/en not_active IP Right Cessation
- 1997-07-14 CN CNB971145717A patent/CN1140755C/en not_active Expired - Lifetime
- 1997-07-14 JP JP18806697A patent/JP4233619B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
IL121092A (en) | 2000-07-16 |
KR980010302A (en) | 1998-04-30 |
IL121092A0 (en) | 1997-11-20 |
DK0818661T3 (en) | 2003-01-20 |
TW332253B (en) | 1998-05-21 |
NO311461B1 (en) | 2001-11-26 |
AU723530B2 (en) | 2000-08-31 |
US5943881A (en) | 1999-08-31 |
CN1172243A (en) | 1998-02-04 |
KR100365367B1 (en) | 2003-02-19 |
NO973221D0 (en) | 1997-07-10 |
ES2185883T3 (en) | 2003-05-01 |
ATE224036T1 (en) | 2002-09-15 |
DE69715330T2 (en) | 2003-01-02 |
CA2209723C (en) | 2005-05-24 |
JPH1068586A (en) | 1998-03-10 |
NO973221L (en) | 1998-01-13 |
MY119081A (en) | 2005-03-31 |
CN1140755C (en) | 2004-03-03 |
AU2496697A (en) | 1998-01-22 |
JP4233619B2 (en) | 2009-03-04 |
BR9703959A (en) | 1999-03-16 |
DE69715330D1 (en) | 2002-10-17 |
FR2751059A1 (en) | 1998-01-16 |
CO5070650A1 (en) | 2001-08-28 |
PT818661E (en) | 2003-01-31 |
CA2209723A1 (en) | 1998-01-12 |
DZ2265A1 (en) | 2004-07-04 |
AR007816A1 (en) | 1999-11-24 |
EP0818661A1 (en) | 1998-01-14 |
FR2751059B1 (en) | 1998-09-25 |
ID19101A (en) | 1998-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0818661B1 (en) | Improved process and apparatus for cooling and liquefaction of natural gas | |
EP0644996B1 (en) | Gas cooling process and plant, especially for natural gas liquefaction | |
FR3053771B1 (en) | METHOD FOR LIQUEFACTING NATURAL GAS AND RECOVERING LIQUID EVENTS OF NATURAL GAS COMPRISING TWO NATURAL GAS SEMI-OPENING REFRIGERANT CYCLES AND A REFRIGERANT GAS REFRIGERANT CYCLE | |
CA2269147C (en) | Method and apparatus for liquefying natural gas on refrigerant mixtures without stage separation | |
FR2471567A1 (en) | METHOD AND SYSTEM FOR REFRIGERATING A FLUID TO BE COOLED AT LOW TEMPERATURE | |
EP0125980B1 (en) | Process and apparatus for the cooling and liquefaction of at least a low boiling point gas, such as natural gas | |
EP1352203B1 (en) | Method for refrigerating liquefied gas and installation therefor | |
RU2298743C2 (en) | Method and device for liquefying natural gas under high pressure | |
CA2194089C (en) | Two-stage liquefaction process and device for a gaseous mixture, such as a natural gas | |
FR2611386A1 (en) | IMPROVED METHOD FOR LIQUEFYING A NATURAL GAS SUPPLY FLOW USING ONE OR TWO MULTI-COMPONENT CLOSED CIRCUIT REFRIGERANTS | |
EP1118827B1 (en) | Partial liquifaction process for a hydrocarbon-rich fraction such as natural gas | |
FR2471566A1 (en) | METHOD AND SYSTEM FOR LIQUEFACTING A LOW BOILING GAS | |
FR2714722A1 (en) | Method and apparatus for liquefying a natural gas | |
FR2764972A1 (en) | Liquefaction of natural gas using two stages and monophase refrigerant | |
FR3053770B1 (en) | METHOD FOR LIQUEFACTING NATURAL GAS AND RECOVERING LIQUID EVENTS OF NATURAL GAS COMPRISING A SEMI-OPENING REFRIGERANT CYCLE WITH NATURAL GAS AND TWO REFRIGERANT GAS REFRIGERANT CYCLES | |
FR2723183A1 (en) | Process for the liquefaction of hydrogen | |
EP2417411B1 (en) | Refrigeration process and system for recovering cold from methane by refrigerants | |
EP3830511B1 (en) | Method for exchanging heat | |
WO2005103583A1 (en) | Method for the liquefaction of a gas involving a thermo-acoustic cooling apparatus | |
FR2714720A1 (en) | Natural gas liquefaction process | |
EP4348137A1 (en) | Device and method for pre-cooling a stream of a target fluid to a temperature less than or equal to 90 k | |
FR3099560A1 (en) | Natural gas liquefaction process with improved injection of a mixed refrigerant stream | |
MXPA97005256A (en) | Procedure and installation to cool a flu |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17P | Request for examination filed |
Effective date: 19980613 |
|
AKX | Designation fees paid |
Free format text: AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 20000529 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
REF | Corresponds to: |
Ref document number: 224036 Country of ref document: AT Date of ref document: 20020915 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: FRENCH |
|
REF | Corresponds to: |
Ref document number: 69715330 Country of ref document: DE Date of ref document: 20021017 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20021223 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: LUCHS & PARTNER PATENTANWAELTE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20021210 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20020404209 Country of ref document: GR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2185883 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030616 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030630 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030612 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: GDF SUEZ SOCIETE ANONYME Free format text: GAZ DE FRANCE (SERVICE NATIONAL)#23 RUE PHILIBERT-DELORME#F-75017 PARIS (FR) -TRANSFER TO- GDF SUEZ SOCIETE ANONYME#12-26 RUE DU DOCTEUR LANCEREAUX#75008 PARIS (FR) |
|
NLT1 | Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1 |
Owner name: GDF SUEZ |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CJ Ref country code: FR Ref legal event code: CD Ref country code: FR Ref legal event code: CA |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 69715330 Country of ref document: DE Representative=s name: WSL PATENTANWAELTE PARTNERSCHAFTSGESELLSCHAFT, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 69715330 Country of ref document: DE Representative=s name: WSL PATENTANWAELTE PARTNERSCHAFT MBB, DE Effective date: 20111028 Ref country code: DE Ref legal event code: R081 Ref document number: 69715330 Country of ref document: DE Owner name: GDF SUEZ S.A., FR Free format text: FORMER OWNER: GAZ DE FRANCE (SERVICE NATIONAL), PARIS, FR Effective date: 20111028 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: PC Ref document number: 224036 Country of ref document: AT Kind code of ref document: T Owner name: GDF SUEZ, FR Effective date: 20130328 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20160525 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160524 Year of fee payment: 20 Ref country code: ES Payment date: 20160525 Year of fee payment: 20 Ref country code: GB Payment date: 20160527 Year of fee payment: 20 Ref country code: IE Payment date: 20160524 Year of fee payment: 20 Ref country code: CH Payment date: 20160523 Year of fee payment: 20 Ref country code: FI Payment date: 20160524 Year of fee payment: 20 Ref country code: GR Payment date: 20160524 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20160525 Year of fee payment: 20 Ref country code: FR Payment date: 20160526 Year of fee payment: 20 Ref country code: SE Payment date: 20160527 Year of fee payment: 20 Ref country code: BE Payment date: 20160525 Year of fee payment: 20 Ref country code: DK Payment date: 20160524 Year of fee payment: 20 Ref country code: AT Payment date: 20160524 Year of fee payment: 20 Ref country code: PT Payment date: 20160601 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69715330 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EUP Effective date: 20170616 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MK Effective date: 20170615 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20170615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MK9A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20170615 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 224036 Country of ref document: AT Kind code of ref document: T Effective date: 20170616 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20170623 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20170616 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20180508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20170617 |