EP0818661B1 - Improved process and apparatus for cooling and liquefaction of natural gas - Google Patents

Improved process and apparatus for cooling and liquefaction of natural gas Download PDF

Info

Publication number
EP0818661B1
EP0818661B1 EP97401367A EP97401367A EP0818661B1 EP 0818661 B1 EP0818661 B1 EP 0818661B1 EP 97401367 A EP97401367 A EP 97401367A EP 97401367 A EP97401367 A EP 97401367A EP 0818661 B1 EP0818661 B1 EP 0818661B1
Authority
EP
European Patent Office
Prior art keywords
heat exchange
fraction
cooled
exchange means
refrigerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97401367A
Other languages
German (de)
French (fr)
Other versions
EP0818661A1 (en
Inventor
Maurice Grenier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Engie SA
Original Assignee
Gaz de France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaz de France SA filed Critical Gaz de France SA
Publication of EP0818661A1 publication Critical patent/EP0818661A1/en
Application granted granted Critical
Publication of EP0818661B1 publication Critical patent/EP0818661B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0092Mixtures of hydrocarbons comprising possibly also minor amounts of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0268Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using a dedicated refrigeration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0291Refrigerant compression by combined gas compression and liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/912External refrigeration system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/912External refrigeration system
    • Y10S62/913Liquified gas

Definitions

  • the present invention relates to a method and an installation for cooling a fluid and applies in particular to the liquefaction of natural gas.
  • WO-A-94 24500 describes a process in which compresses in at least two stages, in an installation of the integral incorporated waterfall type, a refrigerant mixture composed of constituents of different volatilities, and, after at least each of the intermediate stages of compression (i.e.
  • the refrigerant mixture is partially condensed, at least some of the condensed fractions as well as the high pressure gas fraction being cooled, expanded (or expanded) and linked to heat exchange with the fluid to be cooled, then compressed again, the gas from the penultimate compression stage being by elsewhere distilled in a distillation apparatus which cools the head with a liquid having a temperature below a so-called “reference” temperature, or “ambient”, to form on the one hand the liquid condensate of this penultimate compression stage and, on the other hand, a vapor phase which is sent to the last stage of compression.
  • this same publication provides for partially cool and condense the overhead vapor the distillation apparatus, by heat exchange (in a heat exchange unit with two plate heat exchangers arranged in series) with at least said fractions relaxed, to obtain a vapor phase and a phase liquid, and cool the camera head distillation with the liquid phase thus obtained, the phase vapor constituting said phase which is sent to the last compression stage.
  • the refrigerant mixture which we already have spoken, should be considered to consist of a certain number of fluids including, among others, nitrogen and hydrocarbons such as methane, ethylene, ethane, propane, butane, pentane, etc ...
  • ambient temperature the thermodynamic reference temperature corresponding to coolant temperature (water or air in particular) available on the process use site and used in the cycle, increased by the temperature difference that we fix, by construction, at the exit of the devices refrigerants of the installation (compressor, exchanger, ). In practice, this difference will be around 1 ° C to 20 ° C, and preferably around 3 ° C to 15 ° C.
  • the mechanical energy necessary for the operation of second means of cooling should, according to calculations, be less than 10% of the total mechanical energy necessary for the entire installation, allowing for example to drive these second means by a motor electric from the launch engine of the turbine to gas from the refrigerant compression unit, then used as a generator.
  • natural gas production liquefied could be increased by more than 10% compared to the two-stage compression solution of WO-A-94 24500.
  • the invention also relates to an installation for cooling according to claim 18, in particular for gas liquefaction natural, which can be used for the implementation of process presented above.
  • Natural gas liquefaction facility represented in the figures, and in particular in FIG. 1, includes in particular a cycle compression unit 1 to two compression stages 1A, 1C, each stage discharging by via a line 2A, 2C in a condenser or refrigerant, respectively 3A, 3C, cooled with water or air, the available fluid used having typically a temperature of the order of + 25 ° C to + 35 ° C; separation means identified as a whole 4, interposed between the two compression stages 1A and 1C of so as to supply the high pressure stage 1C with a steam fraction from these separation means; a first heat exchange unit 5 comprising two heat exchangers in series, namely an exchanger "hot” 6 and a "cold” exchanger 7; a separator pot intermediate 8; and a storage of liquefied natural gas (LNG) 10.
  • a cycle compression unit 1 to two compression stages 1A, 1C, each stage discharging by via a line 2A, 2C in a condenser or refrigerant, respectively
  • the separation means 4 can be consisting either of a distillation apparatus 12, the upper head 12a is cooled by a liquid from a separator 13 ( Figures 1 to 5 and 7), or by two separator pots 14, 15, the vapor fraction of the distillation apparatus 12 or the first separator 14 circulating in the associated separator (respectively 13, 15) before being admitted to the input of the compression stage high pressure 1C.
  • the output of the condenser 3A communicates with the lower part of tank 12b of the column distillation 12 and the bottom of the separator 13 is connected by gravity or by pump, via a siphon 16 and an adjustment valve 17, at the head 12a of the column 12.
  • the gas liquefaction installation natural further includes, on the different modes of realization of Figures 1 to 7, a second exchange unit thermal 18 constituting a second refrigerant group, independent of the first, 5.
  • auxiliary circuit 19 it can go to the hottest part of the exchanger 18 which is then used to cool from + 40 ° C to + 20 ° C approximately the heat transfer fluid which circulates there, this fluid (if it does not not natural gas) that can be used to refrigerate a other part of the installation, for example natural gas crude intended to be dried before processing in installation.
  • the fluid circulating in each of the cooling circuits above is cooled by indirect heat exchange with a coolant, such as a "pure" fluid, or mixture binary or ternary, circulating in a closed circuit in the regenerating cycle 21 or 21 '.
  • a coolant such as a "pure" fluid, or mixture binary or ternary
  • the circuit regeneration 21 comes as a refrigeration cycle with two compression stages, including a lower stage 1D pressure (of the order of 2.5 to 3.5 bars) and a stage of 1E high pressure compression (operating at approximately 6 to 8 bars), possibly a refrigerant 22, and a condenser 23 condensing the mixture in circulation.
  • This mixture can in particular comprise about 60% butane and about 40% propane.
  • a "pure” fluid can however be used, as an alternative.
  • the mixture leaving the high pressure stage 1E is fully condensed in condenser 23, such so it's a liquid mixture that's allowed to the hot upper end (around 40 ° C) of the exchanger 18.
  • the refrigerant mixture in gaseous state, can be cooled in the refrigerant 22, before being admitted at the inlet of the high pressure stage 1E, mixed with the part of the binary mixture that we recovered in 25, relaxed to a intermediate cycle pressure at 32, reintroduced into exchanger 18 for axial circulation about half the length of the exchanger, from so as to be vaporized in the axial passages 33, the vaporized mixture emerging axially through the dome higher "hot" 28b before being mixed in 35 with the part of the mixture in the gaseous state from stage 1D.
  • Exchangers 6, 7 and 18 are preferably plate exchangers, these plates preferably being equipped with fins (or waves). These exchangers which are for example metallic plates and aluminum fins.
  • two exchangers 6, 7 can be brazed or welded coaxially butt end, in series, for a counter-current circulation of fluids put in heat exchange relation, and can have the same length.
  • the refrigerant mixture consisting of hydrocarbons in C1 to C6 and nitrogen, leaves in the gaseous state from vertex 6a (so-called "hot” end) of the exchanger 6 (via the passages 42) and arrives via the recycling line 46, at the suction of the first compression stage 1A.
  • This gas mixture is then compressed to a first intermediate pressure Pi, typically of the order from 12 to 20 bars, then cooled to + 30 ° C to + ° 40 ° C approximately in 3A, with partial condensation, and separated in a vapor fraction and a liquid fraction in the device distillation 12.
  • a first intermediate pressure Pi typically of the order from 12 to 20 bars
  • the tank liquid in column 12 (recovered in 12b) constitutes a first suitable coolant to provide essential refrigeration of the exchanger hot 6, after cooling in the exchanger 18.
  • this tank liquid is allowed (to around 30 ° C to 40 ° C) towards the "hot" end 28b of the exchanger 18 in which it circulates, as far as its "cold” end 28a, to come out at around 47 of 8 ° C, this cooled liquid fraction then being introduced at approximately the same temperature at the location an intermediate lateral entry 48, substantially mid-length of the hot exchanger 6, to come out of again laterally towards its "cold" end 6b, at around -20 ° C to -40 ° C, be relaxed (or undergo a expansion) at low cycle pressure (2.5 to 3.5 bar) in an expansion valve 50 and be reintroduced under two-phase form, always at the cold end 6b of the same exchanger, via the inlet side box 52 and a suitable dispensing device, to be vaporized in the low pressure passages 42 of the exchanger.
  • the temperature reached may even (possibly) be lower than the temperature of the "coolant" available on site.
  • the liquid phase recovered at the base of the separator 13 returns, via the siphon 16 and of the adjustment valve 17, at the head of the column 12 for the cool, while the vapor phase of the separator is compressed at the high pressure of the cycle (of the order of 40 to 45 bar) at 1C and then reduced to + 30 ° C to + 40 ° C in the 3C refrigerant.
  • the temperature of the head of column 12 will therefore be lower than said temperature "ambient", or even at the temperature of the "fluid cooling "available on the site, even if we would have could imagine that this temperature is higher, in particular by removing the 3A refrigerant and operating as in EP-A-117 793, that is to say with a direct passage from compression stage 1A at the entrance to the distiller 12.
  • the vapor fraction from separator 8 is, meanwhile, cooled, condensed and sub-cooled (up to around -160 ° C) from the hot end to the cold end of the exchanger 7 and the liquid thus obtained is expanded at the low pressure of the cycle in an expansion valve 71 and reintroduced into the exchanger 7, parallel to the axis 5a, at through the lower "cold" dome 7b, to be vaporized in the cold part of the low pressure passages 41, then combined with two-phase fluids (mainly liquids) relaxed admitted by intermediate entry 70, for a return to line 46.
  • two-phase fluids mainly liquids
  • Processed natural gas for example arriving at a temperature of the order of 20 ° C. after drying, via a pipe 73 is, in part, admitted directly into the apparatus 75 for removing hydrocarbons in C2 + and, for its remaining part, admitted laterally in 77, substantially mid-length of exchanger 6, to be cooled to towards the cold end 6b in passages 79, before come out laterally towards this end, at 81, this portion cooled (approximately -20 ° C to -40 ° C) then being admitted in unit 75.
  • the remaining mixture leaving at 83 is then admitted in 85, near the "hot” dome 7a of the exchanger "cold” 7, to circulate near its end cold 7b, in passages 87 while being liquefied and sub-cooled to come out in 89, around -160 ° C, before being stored, in liquid form (LNG), at 10, after being relaxed.
  • LNG liquid form
  • the expanders provided on the circulation paths of liquids may particular be used to drive pumps (not shown), the one providing the most power being that arranged in parallel with valve 69, the valves do not preferably for fine adjustment or trigger (expansion) of the liquid in question, in the event of failure of the (turbo-) corresponding expander.
  • circuit 21 ' there will preferably be a ternary mixture, for example composed of ethane, butane and propane.
  • the mixture under its vapor form is (totally) condensed in the 23 'condenser to be admitted 24' towards the end hot 28b of the exchanger 18 in which it circulates longitudinally (parallel to axis 18a) up to the cold end 28a, near which it emerges laterally in 26 'around 8 ° C to 10 ° C to be slackened by valve 27 up to around 2.5 to 3.5 bar.
  • the refrigerant mixture thus cooled and relaxed is then reinjected through the cold dome 28a, parallel to axis 18a, against the current of the others circulation passages, in vaporization passages 33 'to exit coaxially through the "hot" dome 28b and always be introduced in vapor form around 30 ° C to 40 ° C at the inlet of compressor 1E '.
  • the 21 'circuit which we also find in Figure 6, is simpler than circuit 21 but has an energy handicap of around 15 to 20% per compared to this circuit, i.e. approximately 1.5 to 2% over the cycle complete installation.
  • the gas (via 99a) and liquid (via 99b) are then injected separately into the passages return of the cycle, spraying at low pressure.
  • the vapor fraction is injected laterally at the cut 40, while that the liquid fraction is injected slightly more downstream, near the cold end 6b of the exchanger 6, via the lateral injection path 101 leading to 42.
  • Comparable treatment of the liquid fraction from cycle separator 8 and expanded in the valve expansion 69 after having circulated in passages 65, to be sub-cooled, is performed in the third cycle separator 103.
  • the gaseous and liquid from this separator are injected separately by separate injections, 105 and 107 respectively, substantially at the same intermediate level of the passages vaporization cold 41 of the exchanger 7, that is to say therefore further upstream of the return passages of the mixture refrigerant vaporized at low pressure as arrivals injection of steam and liquid fractions arriving from 99a and 99b.
  • this gas After having passed in the passages 79 ' up to the cold end 6b of the exchanger 6, this gas natural thus sub-cooled leaves 81 'from exchanger 6 to pass into the exchanger 7, via an injection 109, before exiting through an intermediate outlet 111, after have been sub-cooled in passages 113, to a temperature of about -40 ° C to -60 ° C, the gas thus sub-cooled passing through the separation installation 75, its fraction which leaves in 83 then being reinjected laterally at 115 in the intermediate part of the exchanger 7 to circulate in cold passages 117 to around -160 ° C and thus be liquefied, before exit at 89 ', substantially at the exit 89 of the previous figures, then go through the valve expansion 119 (which could also be an expander) and finally be stored in the storage unit 10, after relaxation.
  • the valve expansion 119 which could also be an expander
  • part of the gas can be delivered to the separation unit 75, via the line 82, without passing there through the exchanger 7.
  • the 21 "circuit of the refrigerant used in the exchanger 18 includes a circuit additional 121, connected in parallel, at input, between outlet 25 and the expansion valve 32 and, at the outlet, between condenser 22 (or low pressure condenser outlet 1D) and the mixing connection 35.
  • the circuit 121 thus connected comprises a additional exchanger 123 in which circulates between its cold end 123a and its warmer end 123b, the binary liquefied refrigerant mixture leaving 25 and relaxed in 125 in an expansion valve, before being sprayed in passages 127, between the cold ends and hot heat exchanger 123, against the flow of a relatively wet natural gas (before drying), allowed in 129 and therefore circulating in the opposite direction to the vaporized fluid in 127, inside passages 131, before being introduced into a desiccation unit (not shown), then possibly to be introduced at the entry "GN" 73 to leave either in line 20 or directly to the separation installation 75.
  • a partition of the lengths of the passages has also used to cool, in the part the less cold from exchanger 18 (passages 137), the mixture compressed two-phase leaving the 3A condenser, before admit it as a low input 12c from the distillation 12 (around 10 ° C to 15 ° C below "ambient" temperature), the complementary part of passages 137 (marked 137 ') located in the more heat exchanger 18 used to cool the liquid tank recovered in 12b, before admitting it into the entry lateral injection 48 of the exchanger 6.
  • the traffic in the passages 137 of the partially condensed two-phase mixture and tablet provides an entry temperature into the first part 12 of the separation means 4 which can therefore be different from (less than) the "temperature ambient ", or even at the temperature of the cooling available on site.
  • the circulation of high pressure steam fraction in passages 135 allows to obtain in 61 an inlet temperature of this fraction steam in exchanger 6, of the order of 25 ° C to 30 ° C that we can adapt and which can in particular be lower than the inlet temperature in 61 of the installation of FIG. 1, typically of the order of 40 ° C, that is to say close to the so-called “ambient” temperature (or the temperature of the "coolant").
  • figure 5 corresponds to that of the figure 1 (the forecast of an expander 91 in parallel with the expansion valve 69 being optional).
  • the liquid fraction recovered around 8 ° C in the lower part of the second separator 15 is transmitted towards the intermediate input 48, and a priori directly, without going through the exchanger 18.
  • this liquid fraction from separator 15 meets the duct 145 used for the liquid fraction recovered from separator 14, after circulation substantially between the "hot” ends 28b and "cold” 28a of the exchanger 18, in the passages of indirect cooling 147.
  • Adjustment valves respectively 149 and 151, allow to adapt the flow rate of liquid fractions from separators 14 and 15, respectively.
  • the circulation of the liquid fraction of the separator 14 in the passages 147 allows passage its temperature of around 40 ° C around 8 ° C, temperature at which the liquid fraction of the separator 15 is recovered, due to its circulation in the passages 153 of exchanger 18, substantially in the same indirect heat exchange conditions as the fraction liquid flowing through passages 147.
  • figure 7 differs from that of Figure 1 only (except the prediction of expander 91 in parallel with the valve trigger 69) because of the forecast not of two but of three compression stages on the compression unit of cycle 1 '.
  • this intermediate compression stage and its accessories allows to separate in 155 in a vapor fraction and a liquid fraction the refrigerant mixture compressed into 1A and partially condensed into 3A, with cooling up to a temperature of + 30 ° C to + 40 ° C.
  • the vapor phase from separator 155 is compressed at a second intermediate pressure Pi typically of the order of 12 to 20 bar, in 1B, while the liquid fraction recovered from the same separator 155 is carried by pump 157 at the same pressure Pi and injected in line 2B (or possibly leaving the partial condenser 3B).
  • separators 9 and 103 this could also be applied in any other case.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Compounds Of Unknown Constitution (AREA)

Abstract

The method involves compressing a coolant mixture in a pre-final stage (1A) through a series of stages of a compression unit (1). The mixture is condensed partially by cooling, and then is separated to produce a vapour fraction and a liquid fraction. The vapour fraction is cooled and partially condensed, and then passed through a final compression stage (1C) to obtain a high-pressure vapour. Part of the high-pressure vapour fraction and liquid fraction is then cooled, expanded and circulated through a first heat exchanger (5). During the vapour fraction's cooling and partial condensation stage, the vapour fraction obtained from the separation of the condensed mixture is cooled by passing it through a second heat exchanger (18) with the coolant. The condensed mixture is separated in a first separator (14). The vapour fraction from it is condensed in the second heat exchanger, and then passed through a second separator (15) to produce a vapour and a liquid fraction. The vapour fraction is sent to the final compression stage, and the liquid fraction to the first heat exchanger.

Description

La présente invention est relative a un procédé et une installation pour refroidir un fuide et s'applique en particulier à la liquéfaction du gaz naturel.The present invention relates to a method and an installation for cooling a fluid and applies in particular to the liquefaction of natural gas.

WO-A-94 24500 décrit un procédé dans lequel on comprime en au moins deux stades, dans une installation du type à cascade incorporée intégrale, un mélange frigorigène composé de constituants de volatilités différentes, et, après au moins chacun des stades intermédiaires de compression (c'est-à-dire des stades précédant le dernier étage haute pression) on condense partiellement le mélange frigorigène, certaines au moins des fractions condensées ainsi que la fraction gazeuse haute pression étant refroidies, détendues (ou expansées) et mises en relation d'échange de chaleur avec le fluide à refroidir, puis comprimées de nouveau, le gaz issu de l'avant-dernier étage de compression étant par ailleurs distillé dans un appareil de distillation dont on refroidit la tête avec un liquide ayant une température inférieure à une température dite "de référence", ou "ambiante", pour former d'une part le condensat liquide de cet avant-dernier étage de compression et, d'autre part, une phase vapeur qui est envoyée au dernier stade de compression.WO-A-94 24500 describes a process in which compresses in at least two stages, in an installation of the integral incorporated waterfall type, a refrigerant mixture composed of constituents of different volatilities, and, after at least each of the intermediate stages of compression (i.e. stadiums preceding the last upper story pressure) the refrigerant mixture is partially condensed, at least some of the condensed fractions as well as the high pressure gas fraction being cooled, expanded (or expanded) and linked to heat exchange with the fluid to be cooled, then compressed again, the gas from the penultimate compression stage being by elsewhere distilled in a distillation apparatus which cools the head with a liquid having a temperature below a so-called "reference" temperature, or "ambient", to form on the one hand the liquid condensate of this penultimate compression stage and, on the other hand, a vapor phase which is sent to the last stage of compression.

De préférence, cette même publication prévoit de refroidir et de condenser partiellement la vapeur de tête de l'appareil de distillation, par échange de chaleur (dans une unité d'échange thermique à deux échangeurs à plaques disposés en série) avec au moins lesdites fractions détendues, pour obtenir une phase vapeur et une phase liquide, et de refroidir la tête de l'appareil de distillation avec la phase liquide ainsi obtenue, la phase vapeur constituant ladite phase qui est envoyée au dernier étage de compression.Preferably, this same publication provides for partially cool and condense the overhead vapor the distillation apparatus, by heat exchange (in a heat exchange unit with two plate heat exchangers arranged in series) with at least said fractions relaxed, to obtain a vapor phase and a phase liquid, and cool the camera head distillation with the liquid phase thus obtained, the phase vapor constituting said phase which is sent to the last compression stage.

On notera que dans la présente description, comme dans WO-A-94 24500, les pressions dont il est question sont des pressions absolues.Note that in the present description, as in WO-A-94 24500, the pressures in question are absolute pressures.

Par ailleurs, le mélange frigorigène dont on a déjà parlé, doit être considéré comme constitué d'un certain nombre de fluides dont, en autres, l'azote et des hydrocarbures comme le méthane, l'éthylène, l'éthane, le propane, le butane, le pentane, etc...In addition, the refrigerant mixture which we already have spoken, should be considered to consist of a certain number of fluids including, among others, nitrogen and hydrocarbons such as methane, ethylene, ethane, propane, butane, pentane, etc ...

On définira par ailleurs la "température ambiante" comme la température de référence thermodynamique correspondant à la température du fluide de refroidissement (eau ou air notamment) disponible sur le site d'utilisation du procédé et utilisé dans le cycle, augmentée de l'écart de température que l'on se fixe, par construction, à la sortie des appareils réfrigérants de l'installation (compresseur, échangeur,...). En pratique, cet écart sera d'environ 1°C à 20°C, et de préférence de l'ordre de 3°C à 15°C.We will also define "ambient temperature" as the thermodynamic reference temperature corresponding to coolant temperature (water or air in particular) available on the process use site and used in the cycle, increased by the temperature difference that we fix, by construction, at the exit of the devices refrigerants of the installation (compressor, exchanger, ...). In practice, this difference will be around 1 ° C to 20 ° C, and preferably around 3 ° C to 15 ° C.

On notera également dès à présent que si on utilise un appareil de distillation, on aura avantage à refroidir sa tête avec un fluide (liquide) de telle sorte que :

  • ledit fluide (liquide) destiné au refroidissement de cette tête soit lui-même refroidi à une température inférieure à ladite température "de référence" ou "ambiante" (voire même inférieure à la température du fluide de refroidissement utilisé sur le site dans les échangeurs),
  • et que la différence de température entre cette température "ambiante" et la température du fluide (liquide) destiné au refroidissement de la tête du distillateur soit comprise entre environ 20°C et 55°C, et typiquement de 30°C à 45°C.
Typiquement, la température du fluide de refroidissement disponible sur le site (air, eau de mer ou de rivière ...) sera comprise environ entre -20°C et + 45°C.It should also be noted now that if a distillation apparatus is used, it will be advantageous to cool the head with a fluid (liquid) so that:
  • said fluid (liquid) intended for cooling this head is itself cooled to a temperature below said "reference" or "ambient" temperature (or even lower than the temperature of the cooling fluid used on site in the exchangers) ,
  • and that the temperature difference between this "ambient" temperature and the temperature of the fluid (liquid) intended for cooling the head of the still is between approximately 20 ° C and 55 ° C, and typically from 30 ° C to 45 ° C .
Typically, the temperature of the cooling fluid available on site (air, sea or river water, etc.) will be between approximately -20 ° C and + 45 ° C.

Pour intéressant que soient le procédé et l'installation de WO-A-94 24500, il s'est toutefois avéré que l'on peut encore obtenir un gain d'énergie mécanique globale utilisée pour le refroidissement recherché et améliorer l'efficacité thermodynamique de cette opération de refroidissement, tout particulièrement s'il s'agit de liquéfier le gaz naturel, ceci avec une fiabilité et une rentabilité d'installation potentiellement meilleures.As interesting as the process and the installation are WO-A-94 24500, it turned out, however, that one can still get a gain in overall mechanical energy used for the desired cooling and improve efficiency thermodynamics of this cooling operation, everything particularly if it is a question of liquefying natural gas, this with installation reliability and profitability potentially better.

La solution proposée dans l'invention pour tendre vers ces objectifs consiste en un procédé présentant les étapes suivantes :

  • a) on comprime le mélange frigorigène dans un avant-dernier étage (lA, 1B) parmi plusieurs étages d'une unité de compression (1, 1'),
  • b) on sépare le mélange comprimé pour obtenir une fraction vapeur et une fraction liquide,
  • c) on refroidit et on condense partiellement ladite fraction vapeur, et on refroidit ladite fraction liquide, en faisant circuler respectivement ladite fraction vapeur par des premiers passages (57, 135') et ladite fraction liquide par des seconds passages (93, 137'), dans des seconds moyens d'échange thermique (18) indépendants des premiers, en échange de chaleur avec un fluide réfrigérant circulant en circuit fermé, pour obtenir respectivement une fraction vapeur condensée et une fraction liquide refroidie, puis on refroidit et on fait circuler la fraction liquide refroidie dans au moins des premiers moyens (5) d'échange thermique,
  • d) on sépare la fraction vapeur condensée pour obtenir une fraction vapeur et une fraction liquide résultantes,
  • e) on envoie la fraction vapeur résultante vers le dernier étage de compression (1C), pour obtenir une fraction vapeur haute pression,
  • f) on expanse la fraction liquide refroidie ayant circulé dans les premiers moyens d'échange thermique et la fraction vapeur haute pression, avant de les faire circuler dans lesdits premiers moyens d'échange thermique en échange de chaleur avec le fluide à refroidir, puis de les recycler en tant que mélange frigorigène dans l'avant-dernier étage de compression.
  • The solution proposed in the invention to tend towards these objectives consists of a method having the following steps:
  • a) the refrigerant mixture is compressed in a penultimate stage (1A, 1B) among several stages of a compression unit (1, 1 '),
  • b) the compressed mixture is separated to obtain a vapor fraction and a liquid fraction,
  • c) said vapor fraction is partially cooled and condensed, and said liquid fraction is cooled, by circulating said vapor fraction respectively by first passages (57, 135 ') and said liquid fraction by second passages (93, 137') , in second heat exchange means (18) independent of the first, in exchange for heat with a refrigerant circulating in a closed circuit, to obtain respectively a condensed vapor fraction and a cooled liquid fraction, then the device is cooled and circulated. liquid fraction cooled in at least the first heat exchange means (5),
  • d) the condensed vapor fraction is separated to obtain a resulting vapor fraction and a liquid fraction,
  • e) the resulting vapor fraction is sent to the last compression stage (1C), to obtain a high pressure vapor fraction,
  • f) the cooled liquid fraction having circulated in the first heat exchange means and the high pressure steam fraction are expanded, before circulating them in said first heat exchange means in exchange for heat with the fluid to be cooled, then recycle them as a refrigerant mixture in the penultimate compression stage.
  • L'énergie mécanique nécessaire au fonctionnement des seconds moyens de refroidissement devrait, d'après les calculs, être inférieure à 10 % de l'énergie mécanique totale nécessaire à l'ensemble de l'installation, ceci permettant par exemple d'entraíner ces seconds moyens par un moteur électrique à partir du moteur de lancement de la turbine à gaz de l'unité de compression du mélange frigorigène, utilisée alors en génératrice.The mechanical energy necessary for the operation of second means of cooling should, according to calculations, be less than 10% of the total mechanical energy necessary for the entire installation, allowing for example to drive these second means by a motor electric from the launch engine of the turbine to gas from the refrigerant compression unit, then used as a generator.

    Par ailleurs, avec un tel procédé appliqué à la liquéfaction de gaz naturel, la production de gaz naturel liquéfié pourrait être augmentée de plus de 10 % par rapport à la solution à deux étages de compression de WO-A-94 24500.Furthermore, with such a method applied to the natural gas liquefaction, natural gas production liquefied could be increased by more than 10% compared to the two-stage compression solution of WO-A-94 24500.

    Du fait de l'adjonction des deuxièmes moyens de refroidissement, par rapport à la solution de WO-A-94 24500, le coût d'investissement en matériel pour une production de GNL donnée, sera probablement augmenté. Par contre, le gain en tuyauterie peut être non négligeable.Due to the addition of the second means of cooling, compared to the solution of WO-A-94 24500, the cost of investment in equipment for a production of LNG given, will likely be increased. However, the gain in piping can be significant.

    A noter également que la technologie de l'échangeur chaud des premiers moyens de refroidissement est également simplifiée. L'invention permet en effet de délester partiellement de leur travail thermique, une partie desdits premiers moyens d'échange thermique, ceci permettant d'optimiser d'autres éléments du cycle.Also note that the technology of the exchanger warm of the first cooling means is also simplified. The invention makes it possible to offload partially from their thermal work, part of said first means of heat exchange, allowing optimize other elements of the cycle.

    Si une colonne de distillation est utilisée, une première optimisation du refroidissement de sa tête va par ailleurs être possible, en comparaison de ce qui est prévu dans WO-A-94 24500.If a distillation column is used, a first optimization of the cooling of his head goes by elsewhere be possible, compared to what is expected in WO-A-94 24500.

    Pour cela, on conseille, lors des étapes b), c), d) et e) précitées :

    • de séparer dans ledit appareil de distillation le mélange comprimé,
    • de condenser dans lesdits seconds moyens d'échange thermique la fraction vapeur issue de cet appareil de distillation, pour obtenir une fraction vapeur condensée,
    • de faire passer dans un séparateur la fraction vapeur condensée, pour obtenir ladite fraction vapeur résultante et ladite fraction liquide résultante,
    • d'envoyer la fraction vapeur résultante dans le dernier étage de compression,
    • et de renvoyer la fraction liquide résultante dans la tête de colonne de l'appareil de distillation, pour la refroidir.
    For this, we advise, during steps b), c), d) and e) above:
    • to separate the compressed mixture in said distillation apparatus,
    • to condense in said second heat exchange means the vapor fraction from this distillation apparatus, to obtain a condensed vapor fraction,
    • passing the condensed vapor fraction through a separator to obtain said resulting vapor fraction and said resulting liquid fraction,
    • to send the resulting vapor fraction to the last compression stage,
    • and returning the resulting liquid fraction to the column head of the distillation apparatus, to cool it.

    A noter qu'en place de l'appareil de distillation, un autre séparateur peut être utilisé.Note that in place of the distillation apparatus, a another separator can be used.

    Dans ce cas :

    • on sépare le mélange comprimé dans un premier séparateur,
    • on condense la fraction vapeur issue dudit premier séparateur dans les seconds moyens d'échange thermique, pour obtenir la fraction vapeur condensée,
    • on fait passer dans un second séparateur ladite fraction vapeur condensée, pour obtenir la fraction vapeur et la fraction liquide résultantes,
    • on envoie la fraction vapeur résultante dans ledit dernier étage de compression,
    • et on envoie la fraction liquide résultante vers lesdits premiers moyens d'échange thermique.
    In that case :
    • the compressed mixture is separated in a first separator,
    • the vapor fraction from said first separator is condensed in the second heat exchange means, to obtain the condensed vapor fraction,
    • said condensed vapor fraction is passed through a second separator to obtain the resulting vapor fraction and liquid fraction,
    • the resulting vapor fraction is sent to said last compression stage,
    • and the resulting liquid fraction is sent to said first heat exchange means.

    De préférence, dans un cas comme dans l'autre, on conseille par ailleurs :

    • de faire circuler la fraction liquide issue de l'appareil de distillation ou du premier séparateur dans les seconds moyens d'échange thermique, sensiblement entre les extrémités chaude et froide desdits moyens d'échange thermique,
    • et d'admettre la fraction liquide refroidie, en partie intermédiaire d'un premier échangeur chaud parmi deux échangeurs de chaleur disposés en série, l'un chaud, l'autre froid, appartenant auxdits premiers moyens d'échange thermique.
    Preferably, in either case, we also advise:
    • circulating the liquid fraction from the distillation apparatus or the first separator in the second heat exchange means, substantially between the hot and cold ends of said heat exchange means,
    • and admitting the cooled liquid fraction, in the intermediate part of a first hot exchanger among two heat exchangers arranged in series, one hot, the other cold, belonging to said first heat exchange means.

    Outre ce qui précède, le procédé de l'invention peut par ailleurs comprendre une ou plusieurs des caractéristiques suivantes :

    • à l'extérieur des seconds moyens d'échange thermique, on fait circuler le fluide réfrigérant dans un cycle de réfrigération en circuit fermé, soit à un étage unique de compression, soit à deux étages successifs de compression, avec, en sortie du réfrigérant final (23 sur la figure 1), une condensation totale du fluide réfrigérant;
    • si le fluide à refroidir est du gaz naturel, avant d'admettre ce gaz naturel dans lesdits premiers moyens d'échange thermique, on le fait circuler d'abord dans lesdits seconds moyens d'échange thermique et, avant ou après sa circulation dans ces seconds moyens, on fait passer le gaz naturel dans une unité de dessiccation ;
    • entre les étapes e) et f) précitées, on refroidit la fraction vapeur haute pression après le dernier étage de compression, et on la fait circuler dans les seconds moyens d'échange thermique, pour la refroidir encore par échange de chaleur avec le fluide réfrigérant avant de l'envoyer dans les premiers moyens d'échange thermique,
    • en sortie du dernier étage de compression de ladite unité de compression, on refroidit la fraction vapeur haute pression et on l'envoie dans une entrée intermédiaire d'un premier échangeur chaud, parmi deux échangeurs disposés en série, l'un chaud, l'autre froid, constituant lesdits premiers moyens d'échange thermique ;
    • entre les étapes a) et b) susmentionnées, on fait circuler le mélange comprimé dans les seconds moyens d'échange thermique ;
    • on fait circuler isolément un fluide caloporteur dans les seconds moyens d'échange thermique ;
    • dans l'hypothèse où le gaz à refroidir est du gaz naturel,
      • avant de faire circuler ce gaz naturel dans les premiers moyens d'échange thermique, on lui fait subir une dessiccation,
      • et, après dessiccation, le gaz naturel sec passe, à l'intérieur des premiers moyens d'échange thermique, d'abord dans une première partie d'un premier échangeur chaud parmi deux échangeurs disposés en série, l'un chaud, l'autre froid, appartenant auxdits premiers moyens d'échange thermique, puis dans une partie dudit second échangeur de ces premiers moyens d'échange thermique, avant de passer dans une unité de fractionnement extérieure auxdits premiers moyens d'échange thermique.
    In addition to the above, the method of the invention may also include one or more of the following characteristics:
    • outside the second heat exchange means, the refrigerant is circulated in a refrigeration cycle in a closed circuit, either at a single compression stage, or at two successive compression stages, with, at the outlet of the final refrigerant (23 in FIG. 1), total condensation of the refrigerant;
    • if the fluid to be cooled is natural gas, before admitting this natural gas into said first heat exchange means, it is first circulated in said second heat exchange means and, before or after its circulation in these second means, the natural gas is passed through a drying unit;
    • between steps e) and f) above, the high pressure steam fraction is cooled after the last compression stage, and it is circulated in the second heat exchange means, to cool it further by heat exchange with the refrigerant before sending it to the first heat exchange means,
    • at the outlet of the last compression stage of said compression unit, the high-pressure steam fraction is cooled and sent to an intermediate inlet of a first hot exchanger, from two exchangers arranged in series, one hot, the other cold, constituting said first heat exchange means;
    • between steps a) and b) above, the compressed mixture is circulated in the second heat exchange means;
    • a heat transfer fluid is circulated in isolation in the second heat exchange means;
    • assuming that the gas to be cooled is natural gas,
      • before circulating this natural gas in the first heat exchange means, it is subjected to drying,
      • and, after drying, the dry natural gas passes, inside the first heat exchange means, first in a first part of a first hot exchanger among two exchangers arranged in series, one hot, the other cold, belonging to said first heat exchange means, then in part of said second exchanger of these first heat exchange means, before passing into a fractionation unit external to said first heat exchange means.

    A noter encore qu'il peut ne pas y avoir d'appareil réfrigérant entre la sortie du compresseur de l'avant dernier étage et l'entrée de l'appareil de séparation (distillateur en particulier), et qu'ainsi on ne condense pas le mélange frigorigène comprimé avant de le séparer dans l'étape b). Ainsi, on réalisera alors le procédé sur la base alors de l'art antérieur EP-A 117 793 avec, dans ce cas, circulation de la fraction liquide issue de la séparation du mélange comprimé dans des moyens d'échange thermique (repérés 4A, 10, dans EP-A-117 793) distincts desdits "premiers moyens d'échange thermique" (repérés 11, 15 dans EP'793), avant d'y circuler elle-même.Note again that there may not be a device refrigerant between the compressor output of the penultimate floor and the entrance to the separation device (still in particular), and so that the mixture is not condensed compressed refrigerant before separating it in step b). So, we will then carry out the process then on the basis of art previous EP-A 117 793 with, in this case, circulation of the liquid fraction resulting from the separation of the compressed mixture in heat exchange means (marked 4A, 10, in EP-A-117 793) distinct from said "first means of exchange thermal "(marked 11, 15 in EP'793), before traveling herself.

    L'invention a également pour objet une installation de refroidissement selon la revendication 18, en particulier de liquéfaction de gaz naturel, qui peut être utilisée pour la mise en oeuvre du procédé présenté ci-avant.The invention also relates to an installation for cooling according to claim 18, in particular for gas liquefaction natural, which can be used for the implementation of process presented above.

    Ainsi est-il prévu que lesdits moyens de refroidissement de l'installation de l'invention comprennent :

    • des seconds moyens d'échange thermique comportant des premiers passages et des seconds passages indépendants des premiers pour y faire circuler respectivement ladite fraction vapeur et ladite fraction liquide en échange de chaleur avec le fluide réfrigérant, et
    • un fluide réfrigérant circulant dans un circuit fermé.
    It is thus intended that said means for cooling the installation of the invention comprise:
    • second heat exchange means comprising first passages and second passages independent of the first for circulating therein respectively said vapor fraction and said liquid fraction in exchange for heat with the refrigerant, and
    • a refrigerant circulating in a closed circuit.

    Cette caractéristique et d'autres apparaissent dans les revendications 18 à 27 ci-après.This characteristic and others appear in the claims 18 to 27 below.

    Une description plus détaillée de l'invention va maintenant être donnée, en référence aux dessins annexés, dans lesquels :

  • Les figures 1, 2, 3, 4, 5, 6 et 7 représentent autant de modes de réalisation possibles de l'installation de l'invention qu'il y a de figures.
  • A more detailed description of the invention will now be given, with reference to the accompanying drawings, in which:
  • Figures 1, 2, 3, 4, 5, 6 and 7 show as many possible embodiments of the installation of the invention as there are figures.
  • L'installation de liquéfaction de gaz naturel représentée aux figures, et notamment sur la figure 1, comprend en particulier une unité de compression de cycle 1 à deux étages de compression 1A, 1C, chaque étage refoulant par l'intermédiaire d'une conduite 2A, 2C dans un condenseur ou réfrigérant, respectivement 3A, 3C, refroidis à l'eau ou à l'air, le fluide disponible utilisé ayant typiquement une température de l'ordre de +25°C à +35°C ; des moyens de séparation repérés dans leur ensemble 4, interposés entre les deux étages de compression 1A et 1C de manière à alimenter l'étage haute pression 1C avec une fraction vapeur issue de ces moyens de séparation ; une première unité 5 d'échange thermique comprenant deux échangeurs de chaleur en série, à savoir un échangeur "chaud" 6 et un échangeur "froid" 7 ; un pot séparateur intermédiaire 8 ; et un stockage de gaz naturel liquéfié (GNL) 10.Natural gas liquefaction facility represented in the figures, and in particular in FIG. 1, includes in particular a cycle compression unit 1 to two compression stages 1A, 1C, each stage discharging by via a line 2A, 2C in a condenser or refrigerant, respectively 3A, 3C, cooled with water or air, the available fluid used having typically a temperature of the order of + 25 ° C to + 35 ° C; separation means identified as a whole 4, interposed between the two compression stages 1A and 1C of so as to supply the high pressure stage 1C with a steam fraction from these separation means; a first heat exchange unit 5 comprising two heat exchangers in series, namely an exchanger "hot" 6 and a "cold" exchanger 7; a separator pot intermediate 8; and a storage of liquefied natural gas (LNG) 10.

    Les moyens de séparation 4 peuvent être constitués soit par un appareil de distillation 12 dont la partie supérieure de tête 12a est refroidie par un liquide provenant d'un séparateur 13 (figures 1 à 5 et 7), ou par deux pots séparateurs 14, 15, la fraction vapeur de l'appareil de distillation 12 ou du premier séparateur 14 circulant dans le séparateur associé (respectivement 13, 15) avant d'être admise en entrée de l'étage de compression haute pression 1C.The separation means 4 can be consisting either of a distillation apparatus 12, the upper head 12a is cooled by a liquid from a separator 13 (Figures 1 to 5 and 7), or by two separator pots 14, 15, the vapor fraction of the distillation apparatus 12 or the first separator 14 circulating in the associated separator (respectively 13, 15) before being admitted to the input of the compression stage high pressure 1C.

    Dans l'hypothèse de l'utilisation d'une colonne de distillation 12, la sortie du condenseur 3A communique avec la partie inférieure de cuve 12b de la colonne de distillation 12 et la partie inférieure du séparateur 13 est reliée par gravité ou par pompe, via un siphon 16 et une vanne de réglage 17, à la tête 12a de la colonne 12.Assuming the use of a column distillation 12, the output of the condenser 3A communicates with the lower part of tank 12b of the column distillation 12 and the bottom of the separator 13 is connected by gravity or by pump, via a siphon 16 and an adjustment valve 17, at the head 12a of the column 12.

    Conformément à une caractéristique importante de l'invention, l'installation de liquéfaction de gaz naturel comprend en outre, sur les différents modes de réalisation des figures 1 à 7, une seconde unité d'échange thermique 18 constituant un second groupe frigorigène, indépendant du premier, 5.In accordance with an important characteristic of the invention, the gas liquefaction installation natural further includes, on the different modes of realization of Figures 1 to 7, a second exchange unit thermal 18 constituting a second refrigerant group, independent of the first, 5.

    Ce second groupe frigorigène a en particulier pour rôle, en combinaison ou en alternative :

    • de refroidir la fraction vapeur issue des premiers moyens de séparation 12 ou 14, avant qu'elle passe dans les seconds moyens de séparation 13, 15,
    • de refroidir la fraction liquide issue desdits premiers moyens de séparation 12, 14, avant de l'envoyer dans le premier 6, des deux échangeurs de la première unité d'échange thermique 5,
    • d'assurer un refroidissement d'un circuit auxiliaire 19 (figures 1,2 et 4 à 7) dans lequel circule soit du pentane, soit du gaz naturel avant décarbonatation et dessiccation (c'est-à-dire relativement humide),
    • ou encore, par le circuit 20 de la figure 3, de refroidir du gaz naturel déjà sec mais non encore fractionné, avant de l'envoyer dans la première unité d'échange thermique 5 pour le liquéfier, avec élimination intermédiaire d'hydrocarbures en C2+, dans l'unité de fractionnement 75.
    This second refrigerant group has in particular the role, in combination or as an alternative:
    • to cool the vapor fraction from the first separation means 12 or 14, before it passes into the second separation means 13, 15,
    • cooling the liquid fraction from said first separation means 12, 14, before sending it into the first 6, from the two exchangers of the first heat exchange unit 5,
    • to provide cooling of an auxiliary circuit 19 (FIGS. 1, 2 and 4 to 7) in which either pentane or natural gas circulates before decarbonation and drying (that is to say relatively wet),
    • or, by circuit 20 of FIG. 3, to cool natural gas already dry but not yet fractionated, before sending it into the first heat exchange unit 5 to liquefy it, with intermediate elimination of hydrocarbons in C2 + , in the fractionation unit 75.

    Concernant le circuit auxiliaire 19, il peut passer dans la partie la plus chaude de l'échangeur 18 qui est alors utilisée pour refroidir de +40°C à +20°C environ le fluide caloporteur qui y circule, ce fluide (s'il ne s'agit pas de gaz naturel) pouvant servir à réfrigérer une autre partie de l'installation, par exemple du gaz naturel brut destiné à être séché avant son traitement dans l'installation.Regarding the auxiliary circuit 19, it can go to the hottest part of the exchanger 18 which is then used to cool from + 40 ° C to + 20 ° C approximately the heat transfer fluid which circulates there, this fluid (if it does not not natural gas) that can be used to refrigerate a other part of the installation, for example natural gas crude intended to be dried before processing in installation.

    Dans l'échangeur thermique 18, le fluide circulant dans chacun des circuits de refroidissement précité est refroidi par échange de chaleur indirect avec un fluide réfrigérant, tel qu'un fluide "pur", ou mélange binaire ou ternaire, circulant en circuit fermé dans le cycle régénérant 21 ou 21'.In the heat exchanger 18, the fluid circulating in each of the cooling circuits above is cooled by indirect heat exchange with a coolant, such as a "pure" fluid, or mixture binary or ternary, circulating in a closed circuit in the regenerating cycle 21 or 21 '.

    Sur les figures 1, 3, 4, 5 et 7, le circuit de régénération 21 se présente comme un cycle de réfrigération à deux étages de compression, comprenant un étage basse pression 1D (de l'ordre de 2,5 à 3,5 bars) et un étage de compression haute pression 1E (fonctionnant à environ 6 à 8 bars), éventuellement un réfrigérant 22, et un condenseur 23 condensant le mélange en circulation.In Figures 1, 3, 4, 5 and 7, the circuit regeneration 21 comes as a refrigeration cycle with two compression stages, including a lower stage 1D pressure (of the order of 2.5 to 3.5 bars) and a stage of 1E high pressure compression (operating at approximately 6 to 8 bars), possibly a refrigerant 22, and a condenser 23 condensing the mixture in circulation.

    Ce mélange peut en particulier comprendre environ 60 % de butane et environ 40 % de propane. Un fluide "pur" peut toutefois être utilisé, en alternative.This mixture can in particular comprise about 60% butane and about 40% propane. A "pure" fluid can however be used, as an alternative.

    Le mélange qui sort de l'étage haute pression 1E est totalement condensé dans le condenseur 23, de telle sorte que c'est un mélange liquide qui est admis à l'extrémité supérieure chaude (environ 40°C) de l'échangeur 18.The mixture leaving the high pressure stage 1E is fully condensed in condenser 23, such so it's a liquid mixture that's allowed to the hot upper end (around 40 ° C) of the exchanger 18.

    Sensiblement à la moitié de la longueur axiale (axe 18a) de l'échangeur, une partie du mélange refroidi jusqu'aux environs de 20°C est sortie en 25, tandis que la partie restante continue à circuler jusque vers l'extrémité inférieure froide de l'échangeur, pour ressortir en 26 aux environs de 8°C et être détendue en 27 à la basse pression du cycle avant d'être réintroduite axialement à travers le dôme inférieur froid 28a de l'échangeur dans des passages 29 où le mélange liquide basse pression est vaporisé avant de ressortir latéralement en 31 sensiblement à mi-longueur axiale de l'échangeur et être admis dans l'étage basse pression 1D.Substantially half the axial length (axis 18a) of the exchanger, part of the cooled mixture until around 20 ° C is released at 25, while the remaining part continues to flow to the end lower cold side of the exchanger, to come out at 26 aux around 8 ° C and be relaxed at 27 at low pressure of the cycle before being reintroduced axially through the cold lower dome 28a of the exchanger in passages 29 where the low pressure liquid mixture is vaporized before to come out laterally at 31 substantially at mid-length axial of the exchanger and be admitted in the lower floor 1D pressure.

    En sortie de l'étage de compression 1D, le mélange réfrigérant, à l'état gazeux, peut être refroidi dans le réfrigérant 22, avant d'être admis en entrée de l'étage haute pression 1E, en mélange avec la partie du mélange binaire que l'on a récupéré en 25, détendu à une pression de cycle intermédiaire en 32, réintroduit dans l'échangeur 18 pour une circulation axiale sur environ la moitié de la longueur de l'échangeur, de manière à être vaporisé dans les passages axiaux 33, le mélange vaporisé ressortant axialement à travers le dôme supérieur "chaud" 28b avant d'être donc mélangé en 35 à la partie du mélange à l'état gazeux issue de l'étage 1D.At the output of the 1D compression stage, the refrigerant mixture, in gaseous state, can be cooled in the refrigerant 22, before being admitted at the inlet of the high pressure stage 1E, mixed with the part of the binary mixture that we recovered in 25, relaxed to a intermediate cycle pressure at 32, reintroduced into exchanger 18 for axial circulation about half the length of the exchanger, from so as to be vaporized in the axial passages 33, the vaporized mixture emerging axially through the dome higher "hot" 28b before being mixed in 35 with the part of the mixture in the gaseous state from stage 1D.

    Les échangeurs 6, 7 et 18 sont de préférence des échangeurs à plaques, ces plaques étant de préférence équipées d'ailettes (ou ondes). Ces échangeurs qui sont métalliques peuvent être par exemple à plaques et à ailettes en aluminium.Exchangers 6, 7 and 18 are preferably plate exchangers, these plates preferably being equipped with fins (or waves). These exchangers which are for example metallic plates and aluminum fins.

    Concernant spécifiquement les deux échangeurs 6, 7, ils peuvent être brasés ou soudés coaxialement bout à bout, en série, pour une circulation à contre-courant des fluides mis en relation d'échange thermique, et peuvent avoir la même longueur.Specifically concerning the two exchangers 6, 7, they can be brazed or welded coaxially butt end, in series, for a counter-current circulation of fluids put in heat exchange relation, and can have the same length.

    Ils présentent en outre des passages entre les plaques nécessaires au fonctionnement qui va être décrit ci-après.They also have passages between the plates necessary for the operation which will be described below.

    Avant cela, on notera toutefois qu'à l'endroit de la liaison bout à bout 40 "sur dômes" entre l'échangeur "froid" 7 et l'échangeur "chaud" 6, les passages de retour, 41 pour l'échangeur 7 et 42 pour l'échangeur 6 (dans lesquels le mélange frigorigène circule à contre-courant de la circulation dans les autres passages de ces échangeurs) communiquent entre eux directement dans la zone intermédiaire 40, ainsi que cela avait déjà été prévu dans WO-A-94 24500.Before that, it will be noted however that at the place end-to-end connection 40 "on domes" between the exchanger "cold" 7 and the "hot" exchanger 6, the return passages, 41 for exchanger 7 and 42 for exchanger 6 (in which the refrigerant mixture circulates against the current of traffic in the other passages of these exchangers) communicate with each other directly in the area intermediate 40, as had already been planned in WO-A-94 24500.

    A noter qu'un tel passage direct en 40 entre le dôme supérieur 7a de l'échangeur 7 et le dôme inférieur 6b de l'échangeur 6, sur au moins l'essentiel de la section des deux échangeurs, ne peut être réalisée qu'en évitant une redistribution diphasique à la coupure 40, comme d'ailleurs dans WO-A-94 24500.Note that such a direct passage at 40 between the upper dome 7a of the exchanger 7 and the lower dome 6b of exchanger 6, on at least most of the section of the two exchangers, can only be achieved by avoiding a two-phase redistribution at cutoff 40, as moreover in WO-A-94 24500.

    Avec une installation telle que présentée ci-avant, le mélange frigorigène constitué d'hydrocarbures en C1 à C6 et d'azote, sort à l'état gazeux du sommet 6a (extrémité dite "chaude") de l'échangeur 6 (via les passages 42) et parvient, via la conduite de recyclage 46, à l'aspiration du premier étage de compression 1A.With an installation as presented above, the refrigerant mixture consisting of hydrocarbons in C1 to C6 and nitrogen, leaves in the gaseous state from vertex 6a (so-called "hot" end) of the exchanger 6 (via the passages 42) and arrives via the recycling line 46, at the suction of the first compression stage 1A.

    Ce mélange gazeux est alors comprimé à une première pression intermédiaire Pi, typiquement de l'ordre de 12 à 20 bars, puis est refroidi vers +30°C à +°40°C environ en 3A, avec condensation partielle, et séparé en une fraction vapeur et une fraction liquide dans l'appareil de distillation 12.This gas mixture is then compressed to a first intermediate pressure Pi, typically of the order from 12 to 20 bars, then cooled to + 30 ° C to + ° 40 ° C approximately in 3A, with partial condensation, and separated in a vapor fraction and a liquid fraction in the device distillation 12.

    Le liquide de cuve de la colonne 12 (récupéré en 12b) constitue un premier liquide réfrigérant adapté pour assurer l'essentiel de la réfrigération de l'échangeur chaud 6, après refroidissement dans l'échangeur 18. The tank liquid in column 12 (recovered in 12b) constitutes a first suitable coolant to provide essential refrigeration of the exchanger hot 6, after cooling in the exchanger 18.

    Pour cela, ce liquide de cuve est admis (aux environs de 30°C à 40°C) vers l'extrémité "chaude" 28b de l'échangeur 18 dans lequel il circule, jusque vers son extrémité "froide" 28a, pour ressortir en 47 aux environs de 8°C, cette fraction liquide refroidie étant ensuite introduite sensiblement à la même température à l'endroit d'une entrée latérale intermédiaire 48, sensiblement à mi-longueur de l'échangeur chaud 6, pour en ressortir à nouveau latéralement vers son extrémité "froide" 6b, aux environs de -20°C à -40°C, être détendue (ou subir une expansion) à la basse pression du cycle (2,5 à 3,5 bar) dans une vanne de détente 50 et être réintroduite sous forme diphasique, toujours au bout froid 6b du même échangeur, via la boíte latérale d'entrée 52 et un dispositif de distribution approprié, pour être vaporisée dans les passages basse pression 42 de l'échangeur.For this, this tank liquid is allowed (to around 30 ° C to 40 ° C) towards the "hot" end 28b of the exchanger 18 in which it circulates, as far as its "cold" end 28a, to come out at around 47 of 8 ° C, this cooled liquid fraction then being introduced at approximately the same temperature at the location an intermediate lateral entry 48, substantially mid-length of the hot exchanger 6, to come out of again laterally towards its "cold" end 6b, at around -20 ° C to -40 ° C, be relaxed (or undergo a expansion) at low cycle pressure (2.5 to 3.5 bar) in an expansion valve 50 and be reintroduced under two-phase form, always at the cold end 6b of the same exchanger, via the inlet side box 52 and a suitable dispensing device, to be vaporized in the low pressure passages 42 of the exchanger.

    La vapeur de tête de la colonne de distillation 12, récupérée en sortie de la tête 12a, circule quant à elle, comme illustré aux figures 1 à 5 et 7, entre sensiblement les extrémités chaude 28b et froide 28a de l'échangeur 18, avec entrée et sortie vers les deux extrémités en 53 et 55 respectivement, de manière à être refroidie et partiellement condensée dans les passages 57 de l'échangeur jusqu'à une température intermédiaire inférieure à ladite température "ambiante", par exemple de +5°C à +10°C, puis introduite dans le pot séparateur 13. En pratique, la température atteinte pourra même (éventuellement) être inférieure à la température du "fluide de refroidissement" disponible sur le site.Overhead steam from the distillation column 12, recovered at the outlet of the head 12a, circulates as to it, as illustrated in Figures 1 to 5 and 7, between substantially the hot ends 28b and cold ends 28a of exchanger 18, with inlet and outlet to both ends at 53 and 55 respectively, so as to be cooled and partially condensed in passages 57 from the exchanger to an intermediate temperature lower than said "ambient" temperature, for example + 5 ° C to + 10 ° C, then introduced into the separator pot 13. In practical, the temperature reached may even (possibly) be lower than the temperature of the "coolant" available on site.

    La phase liquide récupérée à la base du séparateur 13 retourne, par l'intermédiaire du siphon 16 et de la vanne de réglage 17, en tête de la colonne 12 pour la refroidir, tandis que la phase vapeur du séparateur est comprimée à la haute pression du cycle (de l'ordre de 40 à 45 bar) en 1C puis est ramenée vers +30°C à +40°C dans le réfrigérant 3C. Dans ce cas, la température de la tête de la colonne 12 sera donc inférieure à ladite température "ambiante", voire à à la température du "fluide de refroidissement" disponible sur le site, même si on aurait pu imaginer que cette température soit supérieure, notamment en supprimant le réfrigérant 3A et en fonctionnant comme dans EP-A-117 793, c'est-à-dire avec un passage direct de l'étage de compression 1A à l'entrée dans le distilateur 12.The liquid phase recovered at the base of the separator 13 returns, via the siphon 16 and of the adjustment valve 17, at the head of the column 12 for the cool, while the vapor phase of the separator is compressed at the high pressure of the cycle (of the order of 40 to 45 bar) at 1C and then reduced to + 30 ° C to + 40 ° C in the 3C refrigerant. In this case, the temperature of the head of column 12 will therefore be lower than said temperature "ambient", or even at the temperature of the "fluid cooling "available on the site, even if we would have could imagine that this temperature is higher, in particular by removing the 3A refrigerant and operating as in EP-A-117 793, that is to say with a direct passage from compression stage 1A at the entrance to the distiller 12.

    Cette fraction vapeur haute pression refroidie dans le dispositif réfrigérant 3C sensiblement jusqu'à la température dite "ambiante" (à l'écart de température fixé dans la définition de la page 2 près), est ensuite à nouveau refroidie du bout chaud 6a jusque vers le bout froid 6b (donc d'environ 30°C à -30°C) dans les passages haute pression 59 de l'échangeur 6, avec entrée et sortie respectivement en 61 et 63, puis séparée en fractions liquide et vapeur, en 8.This cooled high pressure steam fraction in the 3C refrigeration device substantially up to the so-called "ambient" temperature (at a fixed temperature difference in the definition on page 2), is next to again cooled from the hot end 6a to the end cold 6b (therefore around 30 ° C to -30 ° C) in the passages high pressure 59 of exchanger 6, with inlet and outlet respectively in 61 and 63, then separated into fractions liquid and vapor, in 8.

    A noter que le contrôle de la température et de la pression (+5°C à +10°C, 12 à 20 bar) du liquide de refroidissement de la tête de la colonne 12 permet d'obtenir un gaz monophasique à la fois en sortie de 3C et en 40, juste en sortie de l'échangeur 7.Note that the temperature and the pressure (+ 5 ° C to + 10 ° C, 12 to 20 bar) of the cooling of the head of the column 12 allows obtain a single-phase gas both at the outlet of 3C and at 40, just at the exit of the exchanger 7.

    La réfrigération de cet échangeur froid 7 est obtenue au moyen du fluide haute pression, de la manière suivante :

  • Le liquide recueilli à la base du séparateur 8 est sous-refroidi dans la partie chaude de l'échangeur 7, dans des passages 65, sorti de l'échangeur en partie intermédiaire (en 67) aux environs de -120°C, détendu à la basse pression du cycle, par exemple dans une vanne de détente 69, et réintroduit latéralement en 70, toujours en partie intermédiaire de l'échangeur, dans les passages retour basse pression 41 de celui-ci.
  • The refrigeration of this cold exchanger 7 is obtained by means of the high pressure fluid, as follows:
  • The liquid collected at the base of the separator 8 is sub-cooled in the hot part of the exchanger 7, in passages 65, taken out of the exchanger in the intermediate part (at 67) at around -120 ° C., expanded at the low pressure of the cycle, for example in an expansion valve 69, and reintroduced laterally at 70, still in the intermediate part of the exchanger, in the low pressure return passages 41 thereof.
  • La fraction vapeur issue du séparateur 8 est, quant à elle, refroidie, condensée et sous-refroidie (jusqu'aux environs de -160°C) du bout chaud au bout froid de l'échangeur 7 et le liquide ainsi obtenu est détendu à la basse pression du cycle dans une vanne de détente 71 et réintroduit dans l'échangeur 7, parallèlement à l'axe 5a, à travers le dôme inférieur "froid" 7b, pour être vaporisé dans la partie froide des passages basse pression 41, puis réuni aux fluides diphasiques (essentiellement liquides) détendus admis par l'entrée intermédiaire 70, pour un retour vers la conduite 46.The vapor fraction from separator 8 is, meanwhile, cooled, condensed and sub-cooled (up to around -160 ° C) from the hot end to the cold end of the exchanger 7 and the liquid thus obtained is expanded at the low pressure of the cycle in an expansion valve 71 and reintroduced into the exchanger 7, parallel to the axis 5a, at through the lower "cold" dome 7b, to be vaporized in the cold part of the low pressure passages 41, then combined with two-phase fluids (mainly liquids) relaxed admitted by intermediate entry 70, for a return to line 46.

    Le gaz naturel traité, arrivant par exemple à une température de l'ordre de 20°C après dessiccation, via une conduite 73 est, pour partie, admis directement dans l'appareil 75 d'élimination d'hydrocarbures en C2+ et, pour sa partie restante, admis latéralement en 77, sensiblement à mi-longueur de l'échangeur 6, pour être refroidi jusque vers l'extrémité froide 6b dans des passages 79, avant de ressortir latéralement vers cette extrémité, en 81, cette portion refroidie (environ -20°C à -40°C) étant ensuite admise dans l'unité 75.Processed natural gas, for example arriving at a temperature of the order of 20 ° C. after drying, via a pipe 73 is, in part, admitted directly into the apparatus 75 for removing hydrocarbons in C2 + and, for its remaining part, admitted laterally in 77, substantially mid-length of exchanger 6, to be cooled to towards the cold end 6b in passages 79, before come out laterally towards this end, at 81, this portion cooled (approximately -20 ° C to -40 ° C) then being admitted in unit 75.

    Dans l'unité 75, on extrait du gaz naturel qui y est admis :

    • les produits qui risqueraient de cristalliser lors de la liquéfaction (c'est-à-dire essentiellement les C6+),
    • les produits en C2 à C5 nécessaires au maintien de la composition au gaz de cycle,
    • et éventuellement les quantités de produits à extraire pour que le gaz naturel liquéfié soit conforme aux spécifications requises par les utilisateurs,
    • et on produit la majeure partie du "fuel gaz" nécessaire à la production d'énergie mécanique de l'installation, directement à la pression requise.
    In unit 75, natural gas admitted to it is extracted:
    • the products which might crystallize during liquefaction (i.e. essentially C6 +),
    • the products in C2 to C5 necessary for maintaining the cycle gas composition,
    • and possibly the quantities of products to be extracted so that the liquefied natural gas meets the specifications required by users,
    • and most of the "fuel gas" necessary for the production of mechanical energy from the installation is produced directly at the required pressure.

    Le mélange restant sortant en 83 est ensuite admis en 85, à proximité du dôme "chaud" 7a de l'échangeur "froid" 7, pour circuler jusqu'à proximité de son extrémité froide 7b, dans des passages 87 en étant liquéfié et sous-refroidi pour ressortir en 89, aux environs de -160°C, avant d'être stocké, sous forme de liquide (GNL), en 10, après avoir été détendu.The remaining mixture leaving at 83 is then admitted in 85, near the "hot" dome 7a of the exchanger "cold" 7, to circulate near its end cold 7b, in passages 87 while being liquefied and sub-cooled to come out in 89, around -160 ° C, before being stored, in liquid form (LNG), at 10, after being relaxed.

    A noter que de préférence l'essentiel (environ 90 %) du flux de gaz naturel (GN) décarbonaté et sec admis par la conduite 73 circulera dans les passages 79, seul au plus environ 10 % étant donc admis directement dans l'installation de séparation 75.Note that preferably the essential (approximately 90%) of the decarbonated and dry natural gas (GN) flow admitted through line 73 will circulate in passages 79, only at plus approximately 10% therefore being admitted directly into the separation installation 75.

    Avec une telle disposition et grâce en particulier au délestage obtenu de l'échangeur 6 par rapport à ce qui est décrit dans WO-A-94 24500, il est prévu un gain d'environ 10 % d'énergie globale, ainsi qu'une décharge de l'échangeur 6 d'environ la moitié de son travail thermique, 40 à 50 % de gaz naturel pouvant être traité en plus dans un tel échangeur de taille définie.With such a disposition and thanks in particular to the load shedding obtained from the exchanger 6 by compared to what is described in WO-A-94 24500, it is expected a gain of around 10% overall energy, as well that a discharge from the exchanger 6 of approximately half of its thermal work, 40 to 50% of natural gas can be further processed in such a defined size exchanger.

    comme cela a été représenté sur les figures 1, 2 et 4, il peut être souhaitable de détendre une partie des liquides froids dans des turbines à liquide ou "expanders" 91 prévus en parallèle des vannes de détente 69 et/ou 71.as shown in Figures 1, 2 and 4, it may be desirable to relax some of the cold liquids in liquid turbines or "expanders" 91 provided in parallel with expansion valves 69 and / or 71.

    A noter qu'en pratique, on montera n échangeurs 6 et 7, en parallèle, ainsi que n' échangeurs 18 également en parallèle.Note that in practice, we will install n heat exchangers 6 and 7, in parallel, as well as n exchangers 18 also in parallel.

    A noter par ailleurs que les expandeurs prévus sur les chemins de circulation des liquides pourront en particulier être utilisés pour entraíner des pompes (non représentées), celui qui fournit le plus de puissance étant celui disposé en parallèle de la vanne 69, les vannes ne servant de préférence qu'au réglage fin ou à la détente (expansion) du liquide considéré, en cas de défaillance du (turbo-) expandeur correspondant.Note also that the expanders provided on the circulation paths of liquids may particular be used to drive pumps (not shown), the one providing the most power being that arranged in parallel with valve 69, the valves do not preferably for fine adjustment or trigger (expansion) of the liquid in question, in the event of failure of the (turbo-) corresponding expander.

    Sur la figure 2, les éléments communs avec la figure 1 ont été repérés de la même manière (de même pour les autres figures).In Figure 2, the common elements with the Figure 1 have been identified in the same way (similarly for the other figures).

    La différence principale entre les figures 1 et 2 consiste en l'agencement du circuit fermé 21' du liquide réfrigérant, en circulation dans la deuxième unité d'échange thermique 18.The main difference between Figures 1 and 2 consists of the arrangement of the closed circuit 21 'of the liquid refrigerant, circulating in the second unit heat exchange 18.

    En effet, sur cette figure 2, il s'agit d'un cycle à un étage de compression 1E' comprenant donc un seul compresseur haute pression (de l'ordre de 6,5 à 7,5 bars).Indeed, in this figure 2, it is a cycle with a compression stage 1E 'therefore comprising a single high pressure compressor (of the order of 6.5 to 7.5 bars).

    Dans le circuit 21', circulera de préférence un mélange ternaire, par exemple composé d'éthane, de butane et de propane.In circuit 21 ', there will preferably be a ternary mixture, for example composed of ethane, butane and propane.

    En sortie du compresseur 1E', le mélange sous sa forme vapeur est (totalement) condensé dans le condenseur 23' pour être admis en 24' vers l'extrémité chaude 28b de l'échangeur 18 dans lequel il circule longitudinalement (parallèlement à l'axe 18a) jusque vers l'extrémité froide 28a, à proximité de laquelle il ressort latéralement en 26' aux environs de 8°C à 10°C pour être détendu par la vanne 27 jusque vers 2,5 à 3,5 bar.At the outlet of compressor 1E ', the mixture under its vapor form is (totally) condensed in the 23 'condenser to be admitted 24' towards the end hot 28b of the exchanger 18 in which it circulates longitudinally (parallel to axis 18a) up to the cold end 28a, near which it emerges laterally in 26 'around 8 ° C to 10 ° C to be slackened by valve 27 up to around 2.5 to 3.5 bar.

    Le mélange réfrigérant ainsi refroidi et détendu est alors réinjecté à travers le dôme froid 28a, parallèlement à l'axe 18a, à contre-courant des autres passages de circulation, dans les passages de vaporisation 33' pour ressortir coaxialement à travers le dôme "chaud" 28b et être introduit toujours sous forme vapeur aux environs de 30°C à 40°C en entrée du compresseur 1E'.The refrigerant mixture thus cooled and relaxed is then reinjected through the cold dome 28a, parallel to axis 18a, against the current of the others circulation passages, in vaporization passages 33 'to exit coaxially through the "hot" dome 28b and always be introduced in vapor form around 30 ° C to 40 ° C at the inlet of compressor 1E '.

    A noter que l'utilisation d'un mélange ternaire permet d'obtenir un gradient de température plus important que le mélange binaire utilisé dans le circuit 21 des figures 1, 4, 5 et 7.Note that the use of a ternary mixture provides a larger temperature gradient that the binary mixture used in circuit 21 of Figures 1, 4, 5 and 7.

    Le circuit 21', que l'on retrouve d'ailleurs sur la figure 6, est plus simple que le circuit 21 mais présente un handicap énergétique d'environ 15 à 20 % par rapport à ce circuit, soit environ 1,5 à 2 % sur le cycle complet de l'installation.The 21 'circuit, which we also find in Figure 6, is simpler than circuit 21 but has an energy handicap of around 15 to 20% per compared to this circuit, i.e. approximately 1.5 to 2% over the cycle complete installation.

    Sur la figure 3, le mélange frigorigène de cycle de l'installation, dans sa fraction liquide issue du liquide de cuve de l'appareil de distillation 12, après refroidissement sensiblement entre les extrémités chaude 28b et froide 28a de l'échangeur 18 dans les passages correspondant 93, puis sous-refroidissement dans une partie froide de l'échangeur "chaud" 6 dans les passages 95 de cet échangeur, subit une expansion dans une vanne d'expansion 97, avant d'être envoyé dans le séparateur 9.In Figure 3, the refrigerant mixture of installation cycle, in its liquid fraction from tank liquid from the distillation apparatus 12, after cooling substantially between the hot ends 28b and cold 28a of the exchanger 18 in the passages corresponding 93, then sub-cooling in a part cold from the "hot" heat exchanger 6 in the passages 95 of this exchanger, undergoes expansion in an expansion valve 97, before being sent to the separator 9.

    Les fractions gazeuse (via 99a) et liquide (via 99b) sont ensuite injectées séparément dans les passages retour du cycle, en vaporisation à basse pression.The gas (via 99a) and liquid (via 99b) are then injected separately into the passages return of the cycle, spraying at low pressure.

    Plus précisément, la fraction vapeur est injectée latéralement à l'endroit de la coupure 40, tandis que la fraction liquide est injectée légèrement plus en aval, à proximité du bout froid 6b de l'échangeur 6, via le chemin d'injection latéral 101 débouchant sur 42.More specifically, the vapor fraction is injected laterally at the cut 40, while that the liquid fraction is injected slightly more downstream, near the cold end 6b of the exchanger 6, via the lateral injection path 101 leading to 42.

    Un traitement comparable de la fraction liquide issue du séparateur de cycle 8 et détendue dans la vanne d'expansion 69 après avoir circulé dans les passages 65, pour être sous-refroidie, est effectué dans le troisième séparateur de cycle 103.Comparable treatment of the liquid fraction from cycle separator 8 and expanded in the valve expansion 69 after having circulated in passages 65, to be sub-cooled, is performed in the third cycle separator 103.

    Ainsi, les fractions respectivement gazeuse et liquide issues de ce séparateur sont injectées séparément par des injections distinctes, respectivement 105 et 107, sensiblement à un même niveau intermédiaire des passages froids de vaporisation 41 de l'échangeur 7, c'est-à-dire donc plus en amont des passages retour du mélange frigorigène vaporisé à basse pression que les arrivées d'injection des fractions vapeur et liquide arrivant de 99a et 99b.Thus, the gaseous and liquid from this separator are injected separately by separate injections, 105 and 107 respectively, substantially at the same intermediate level of the passages vaporization cold 41 of the exchanger 7, that is to say therefore further upstream of the return passages of the mixture refrigerant vaporized at low pressure as arrivals injection of steam and liquid fractions arriving from 99a and 99b.

    Toujours sur la figure 3, on notera que le gaz naturel (GN), après décarbonatation et dessiccation, est admis pour sa partie principale (environ 90%) en 77', en partie intermédiaire de l'échangeur 6, après avoir circulé dans les conduits 20 en échange de chaleur dans l'échangeur 18 pour y être refroidi par échange thermique indirect avec le liquide réfrigérant en circulation dans le circuit 21" que l'on va présenter ci-après.Still in Figure 3, note that the gas natural (GN), after decarbonation and drying, is admitted for its main part (about 90%) in 77 ', in intermediate part of the exchanger 6, after having circulated in conduits 20 in exchange for heat in the exchanger 18 to be cooled by indirect heat exchange with the coolant circulating in the 21 "circuit that we will present below.

    Après avoir circulé dans les passages 79' jusque vers l'extrémité froide 6b de l'échangeur 6, ce gaz naturel ainsi sous-refroidi sort en 81' de l'échangeur 6 pour passer dans l'échangeur 7, via une injection 109, avant de ressortir par une sortie intermédiaire 111, après avoir été sous-refroidi dans les passages 113, jusqu'à une température d'environ -40°C à -60°C, le gaz ainsi sous-refroidi passant dans l'installation de séparation 75, sa fraction qui sort en 83 étant ensuite réinjectée latéralement en 115 en partie intermédiaire de l'échangeur 7 pour circuler dans les passages froids 117 jusqu'aux environs de -160°C et être ainsi liquéfiée, avant de ressortir en 89', sensiblement à l'endroit de la sortie 89 des figures précédentes, puis passer dans la vanne d'expansion 119 (qui pourrait également être un expandeur) et être enfin stockée dans l'unité de stockage 10, après détente.After having passed in the passages 79 ' up to the cold end 6b of the exchanger 6, this gas natural thus sub-cooled leaves 81 'from exchanger 6 to pass into the exchanger 7, via an injection 109, before exiting through an intermediate outlet 111, after have been sub-cooled in passages 113, to a temperature of about -40 ° C to -60 ° C, the gas thus sub-cooled passing through the separation installation 75, its fraction which leaves in 83 then being reinjected laterally at 115 in the intermediate part of the exchanger 7 to circulate in cold passages 117 to around -160 ° C and thus be liquefied, before exit at 89 ', substantially at the exit 89 of the previous figures, then go through the valve expansion 119 (which could also be an expander) and finally be stored in the storage unit 10, after relaxation.

    A noter qu'en sortie 81', une partie du gaz peut être délivrée dans l'unité de séparation 75, via la conduite 82, sans passer là à travers l'échangeur 7.Note that at outlet 81 ', part of the gas can be delivered to the separation unit 75, via the line 82, without passing there through the exchanger 7.

    Si l'on s'intéresse maintenant au circuit 21" du fluide réfrigérant utilisé dans l'échangeur 18, on note qu'en plus du circuit 21 de la figure 1 (dont il reprend les caractéristiques) le circuit 21" comprend un circuit additionnel 121, branché en parallèle, en entrée, entre la sortie 25 et la vanne d'expansion 32 et, en sortie, entre le condenseur 22 (ou la sortie du condenseur basse pression 1D) et le raccordement de mélange 35.If we are interested now in the 21 "circuit of the refrigerant used in the exchanger 18, we note that in addition to circuit 21 of Figure 1 (which it takes characteristics) the 21 "circuit includes a circuit additional 121, connected in parallel, at input, between outlet 25 and the expansion valve 32 and, at the outlet, between condenser 22 (or low pressure condenser outlet 1D) and the mixing connection 35.

    Le circuit 121 ainsi branché comprend un échangeur supplémentaire 123 dans lequel circule entre son extrémité froide 123a et son extrémité plus chaude 123b, le mélange réfrigérant binaire liquéfié sortant de 25 et détendu en 125 dans une vanne d'expansion, avant d'être vaporisé dans les passages 127, entre les extrémités froide et chaude de l'échangeur 123, à contre-courant d'un flux de gaz naturel relativement humide (avant dessiccation), admis en 129 et circulant donc à contresens du fluide vaporisé dans 127, à l'intérieur des passages 131, avant d'être introduit dans une unité de dessiccation (non représentée), puis éventuellement d'être introduit à l'entrée "GN" 73 pour partir soit dans le conduit 20, soit directement vers l'installation de séparation 75.The circuit 121 thus connected comprises a additional exchanger 123 in which circulates between its cold end 123a and its warmer end 123b, the binary liquefied refrigerant mixture leaving 25 and relaxed in 125 in an expansion valve, before being sprayed in passages 127, between the cold ends and hot heat exchanger 123, against the flow of a relatively wet natural gas (before drying), allowed in 129 and therefore circulating in the opposite direction to the vaporized fluid in 127, inside passages 131, before being introduced into a desiccation unit (not shown), then possibly to be introduced at the entry "GN" 73 to leave either in line 20 or directly to the separation installation 75.

    L'installation de la figure 4 se différencie ainsi uniquement de celle de la figure 1 :

    • du fait de la circulation de la fraction vapeur haute pression sortant de 3C, avant que cette fraction vapeur parvienne à l'entrée latérale d'injection 61 de l'échangeur 6,
    • et dans la manière dont le mélange frigorigène comprimé sortant du condenseur 3A est admis dans le distillateur 12, du fait qu'un refroidissement du mélange sortant de 3A est prévu en dessous de la température "ambiante" (et même éventuellement en dessous de la température du fluide de refroidissement disponible sur le site) avant entrée dans la colonne 12, ceci par circulation dans l'échangeur 18.
    The installation of FIG. 4 thus differs only from that of FIG. 1:
    • due to the circulation of the high pressure steam fraction leaving 3C, before this steam fraction reaches the lateral injection inlet 61 of the exchanger 6,
    • and in the manner in which the compressed refrigerant mixture leaving the condenser 3A is admitted into the distiller 12, since cooling of the mixture leaving 3A is provided below the "ambient" temperature (and even possibly below the temperature of the coolant available on the site) before entering the column 12, this by circulation in the exchanger 18.

    Sur la figure 4, on note ainsi qu'en sortie du réfrigérant 3C, la fraction vapeur haute pression est admise en 133 vers le bout "chaud" 28b de l'échangeur 18 pour être refroidie jusqu'à une zone intermédiaire de la longueur axiale de l'échangeur, avant d'en ressortir pour être admise dans l'échangeur 6, via l'entrée d'injection 61.In FIG. 4, it is thus noted that at the output of the 3C refrigerant, the high pressure steam fraction is admitted in 133 towards the "hot" end 28b of the exchanger 18 to be cooled to an intermediate zone of the axial length of the exchanger, before coming out for be admitted into exchanger 6, via the injection inlet 61.

    Les passages laissés libres à la suite de ceux 135 réservés pour ladite fraction vapeur haute pression dans l'échangeur 18, sont ici utilisés pour condenser la fraction vapeur issue de la tête 12a de la colonne de distillation 12 (passages de vaporisation repérés 135') avant que cette fraction vapeur condensée soit séparée en 13.The passages left free following those 135 reserved for said high pressure steam fraction in the exchanger 18, are used here to condense the steam fraction from head 12a of the column distillation 12 (spray passages marked 135 ') before this condensed vapor fraction is separated into 13.

    Une partition des longueurs des passages a également été utilisée pour refroidir, dans la partie la moins froide de l'échangeur 18 (passages 137), le mélange diphasique comprimé sortant du condenseur 3A, avant de l'admettre en entrée basse 12c de l'appareil de distillation 12 (aux environs de 10°C à 15°C en dessous de la température "ambiante"), la partie complémentaire des passages 137 (repérée 137') située dans la partie plus froide de l'échangeur 18 servant à refroidir le liquide de cuve récupéré en 12b, avant de l'admettre dans l'entrée d'injection latérale 48 de l'échangeur 6.A partition of the lengths of the passages has also used to cool, in the part the less cold from exchanger 18 (passages 137), the mixture compressed two-phase leaving the 3A condenser, before admit it as a low input 12c from the distillation 12 (around 10 ° C to 15 ° C below "ambient" temperature), the complementary part of passages 137 (marked 137 ') located in the more heat exchanger 18 used to cool the liquid tank recovered in 12b, before admitting it into the entry lateral injection 48 of the exchanger 6.

    A noter que la circulation dans les passages 137 du mélange diphasique partiellement condensé et comprimé permet d'obtenir une température d'entrée dans la première partie 12 des moyens de séparation 4 qui peut donc être différente de (inférieure à) la "température ambiante", voire à la température du fluide de refroidissement disponible sur le site.Note that the traffic in the passages 137 of the partially condensed two-phase mixture and tablet provides an entry temperature into the first part 12 of the separation means 4 which can therefore be different from (less than) the "temperature ambient ", or even at the temperature of the cooling available on site.

    Et ce refroidissement de la température de cuve du distillateur 12 permet d'atteindre une température de coupure (en 40) plus basse que dans les autres cas.And this cooling of the tank temperature of the still 12 allows a temperature of cut (in 40) lower than in the other cases.

    A noter également que la circulation de la fraction vapeur haute pression dans les passages 135 permet d'obtenir en 61 une température d'entrée de cette fraction vapeur dans l'échangeur 6, de l'ordre de 25°C à 30°C que l'on peut adapter et qui peut en particulier être inférieure à la température d'entrée en 61 de l'installation de la figure 1, typiquement de l'ordre de 40°C, c'est-à-dire proche de la température dite "ambiante" (ou de la température du "fluide de refroidissement").Also note that the circulation of high pressure steam fraction in passages 135 allows to obtain in 61 an inlet temperature of this fraction steam in exchanger 6, of the order of 25 ° C to 30 ° C that we can adapt and which can in particular be lower than the inlet temperature in 61 of the installation of FIG. 1, typically of the order of 40 ° C, that is to say close to the so-called "ambient" temperature (or the temperature of the "coolant").

    Même si cela n'a pas été illustré, le refroidissement intermédiaire, dans les passages 137 du mélange diphasique partiellement condensé et comprimé, entre le condenseur 3A et la première unité (12 ou 14) des moyens de séparation 4, pourrait être prévu sur l'installation à deux séparateurs associés 14, 15 de la figure 6.Although this has not been illustrated, the intermediate cooling, in passages 137 of the partially condensed and compressed two-phase mixture, between the condenser 3A and the first unit (12 or 14) of the separation means 4, could be provided on installation with two associated separators 14, 15 of the figure 6.

    Mais avant de revenir à cette solution de la figure 6, remarquons que sur la figure 5, le gaz de cycle haute pression passant dans 2C et éventuellement partiellement condensé en 3C est refroidi d'une dizaine de degrés (c'est-à-dire typiquement d'environ 40°C à environ 30°C) dans des passages 139 de l'échangeur 18 situés du côté du dôme "chaud" 28b de celui-ci, avant de ressortir latéralement en 141, puis d'être injecté comme précédemment en 61 dans l'échangeur 6.But before coming back to this solution of the figure 6, note that in figure 5, the cycle gas high pressure passing through 2C and possibly partially condensed in 3C is cooled by ten degrees (i.e. typically about 40 ° C to about 30 ° C) in passages 139 of exchanger 18 located on the side of the "hot" dome 28b of it, before coming out laterally at 141, then to be injected as before at 61 in exchanger 6.

    L'intérêt d'un tel refroidissement que l'on peut contrôler en adaptant le fonctionnement de l'échangeur 18, est d'atteindre entre l'entrée 61 et la conduite de recyclage 46, un écart de température inférieur à environ 20°C, et donc d'obtenir une sortie du cycle de refroidissement aux environs de 20°C, assez proche du point de rosée du mélange frigorigène utilisé, ce refroidissement uniquement d'environ 10°C dans les passages 139 évitant de liquéfier la phase vapeur haute pression avant de l'injecter en 61.The advantage of such cooling that one can control by adapting the operation of the exchanger 18, is to reach between entrance 61 and the pipe recycling 46, a temperature difference of less than approximately 20 ° C, and therefore to obtain an exit from the cooling around 20 ° C, fairly close to the point dew of the refrigerant mixture used, this cooling only around 10 ° C in passages 139 avoiding liquefy the high pressure vapor phase before inject it in 61.

    Du point de vue énergétique, cette version de la figure 5 parait potentiellement l'une des plus intéressantes.From an energy point of view, this version of figure 5 appears potentially one of the most interesting.

    Pour les autres caractéristiques, l'installation de la figure 5 correspond à celle de la figure 1 (la prévision d'un expandeur 91 en parallèle de la vanne de détente 69 étant facultative).For the other characteristics, the installation of figure 5 corresponds to that of the figure 1 (the forecast of an expander 91 in parallel with the expansion valve 69 being optional).

    Sur la figure 6, la colonne de distillation 12 a donc été remplacée par un séparateur 14.In FIG. 6, the distillation column 12 has therefore been replaced by a separator 14.

    La fraction liquide récupérée aux environs de 8°C en partie basse du deuxième séparateur 15 est transmise vers l'entrée intermédiaire 48, et ce a priori directement, sans passer par l'échangeur 18.The liquid fraction recovered around 8 ° C in the lower part of the second separator 15 is transmitted towards the intermediate input 48, and a priori directly, without going through the exchanger 18.

    En 143, cette fraction liquide issue du séparateur 15 rencontre le conduit 145 utilisé pour la fraction liquide récupérée du séparateur 14, après circulation sensiblement entre les extrémités "chaude" 28b et "froide" 28a de l'échangeur 18, dans les passages de refroidissement indirect 147.In 143, this liquid fraction from separator 15 meets the duct 145 used for the liquid fraction recovered from separator 14, after circulation substantially between the "hot" ends 28b and "cold" 28a of the exchanger 18, in the passages of indirect cooling 147.

    Des vannes de réglage, respectivement 149 et 151, permettent d'adapter le débit des fractions liquides issues des séparateurs 14 et 15, respectivement.Adjustment valves, respectively 149 and 151, allow to adapt the flow rate of liquid fractions from separators 14 and 15, respectively.

    La circulation de la fraction liquide du séparateur 14 dans les passages 147 permet de faire passer sa température d'environ 40°C aux environs de 8°C, température à laquelle la fraction liquide du séparateur 15 est récupérée, du fait de sa circulation dans les passages 153 de l'échangeur 18, sensiblement dans les mêmes conditions d'échange thermique indirect que la fraction liquide circulant dans les passages 147.The circulation of the liquid fraction of the separator 14 in the passages 147 allows passage its temperature of around 40 ° C around 8 ° C, temperature at which the liquid fraction of the separator 15 is recovered, due to its circulation in the passages 153 of exchanger 18, substantially in the same indirect heat exchange conditions as the fraction liquid flowing through passages 147.

    Compte-tenu de cela, et comme cela a déjà été indiqué, la fraction vapeur ayant circulé dans les passages 153 à contre-courant (comme pour 147 notamment) des passages 33' du circuit de refroidissement 21', est condensée, de manière à être introduite sous cette forme dans le séparateur 15, la fraction vapeur récupérée en 15a étant quant à elle admise à l'entrée du compresseur haute pression 1C.In view of this, and as has already been indicated, the vapor fraction having circulated in the passages 153 against the current (as for 147 in particular) passages 33 'of the cooling circuit 21', east condensed, so as to be introduced in this form in the separator 15, the vapor fraction recovered in 15a being admitted to the inlet of the high compressor pressure 1C.

    Compte-tenu de ce qui précède, on aura compris que l'entrée "liquide" de l'échangeur 6, en 48, s'effectue aux environs de 8°C sur l'installation de la figure 6.In view of the above, we will have understood that the "liquid" entry of the exchanger 6, at 48, takes place around 8 ° C on the installation in Figure 6.

    L'installation de la figure 7 se différencie de celle de la figure 1 uniquement (si l'on excepte la prévision de l'expandeur 91 en parallèle de la vanne de détente 69) du fait de la prévision non pas de deux mais de trois étages de compression sur l'unité de compression de cycle 1'.The installation of figure 7 differs from that of Figure 1 only (except the prediction of expander 91 in parallel with the valve trigger 69) because of the forecast not of two but of three compression stages on the compression unit of cycle 1 '.

    Ainsi sur cette figure 7, entre l'entrée 12c de l'appareil de distillation 12 et la sortie du condenseur 3A, ont été interposés un séparateur 155, une pompe 157, un étage intermédiaire de compression 1B refoulant en 2B dans un condenseur 3B dont la sortie communique avec l'entrée 12c de l'appareil de distillation 12.So in this figure 7, between the input 12c of the distillation apparatus 12 and the condenser outlet 3A, a separator 155, a pump 157, a intermediate stage of compression 1B driving back into 2B in a 3B condenser whose output communicates with the input 12c of the distillation apparatus 12.

    Comme cela a déjà été décrit dans WO-A-94 24500, cet étage intermédiaire de compression et ses accessoires permet de séparer en 155 en une fraction vapeur et une fraction liquide le mélange frigorigène comprimé en 1A et condensé partiellement en 3A, avec refroidissement jusqu'à une température de +30°C à +40°C.As already described in WO-A-94 24500, this intermediate compression stage and its accessories allows to separate in 155 in a vapor fraction and a liquid fraction the refrigerant mixture compressed into 1A and partially condensed into 3A, with cooling up to a temperature of + 30 ° C to + 40 ° C.

    La phase vapeur issue du séparateur 155 est comprimée à une deuxième pression intermédiaire Pi typiquement de l'ordre de 12 à 20 bar, en 1B, tandis que la fraction liquide récupérée du même séparateur 155 est portée par la pompe 157 à la même pression Pi et injectée dans la conduite 2B (ou éventuellement en sortie du condenseur partiel 3B).The vapor phase from separator 155 is compressed at a second intermediate pressure Pi typically of the order of 12 to 20 bar, in 1B, while the liquid fraction recovered from the same separator 155 is carried by pump 157 at the same pressure Pi and injected in line 2B (or possibly leaving the partial condenser 3B).

    Le mélange des deux phases dans cette conduite est ensuite refroidi et partiellement condensé en 3B, puis distillé en 12.The mixture of the two phases in this conduct is then cooled and partially condensed into 3B, then distilled in 12.

    A noter qu'une telle unité de compression 1' à trois étages de compression pourrait être employée dans les autres versions de l'installation de l'invention.Note that such a compression unit 1 'to three stages of compression could be used in other versions of the installation of the invention.

    D'ailleurs, et d'une façon plus générale, les particularités de telle figure peuvent être appliquées en l'espèce à telle autre, indifféremment.Moreover, and more generally, the peculiarities of such figure can be applied in the species to another, indifferently.

    Concernant l'utilisation des séparateurs 9 et 103, celle-ci pourrait également être appliquée dans n'importe quel autre cas de figure.Regarding the use of separators 9 and 103, this could also be applied in any other case.

    De la même manière, la circulation du gaz naturel dans les passages 79' puis 113 peut être prévue sur les autres figures que la figure 3, dans la mesure où la température d'envoi vers l'unité 75 est différente de la température de coupure en 40.Similarly, the circulation of gas natural in passages 79 'then 113 can be provided on the other figures than Figure 3, insofar as the send temperature to unit 75 is different from the cut-out temperature at 40.

    Claims (27)

    1. A process for refrigerating a fluid to be cooled, notably for liquefying natural gas, in first heat exchanging means, by using a refrigerating mixture circulating in an endless circuit, the process comprising :
      a) compressing the refrigerating mixture in a penultimate stage (1a,1b) of a plurality of stages of a compression unit (1,1'),
      b) separating (12,14) the compressed refrigerating mixture for obtaining a vapour fraction and a liquid fraction,
      c) cooling and partially condensing the vapour fraction and cooling the liquid fraction by circulating said vapour fraction through first channels (57, 135) and said liquid fraction through second channels (93,137'), in second heat exchange means independent from first heat exchange means, said circulation through the second heat exchange means comprising a heat exchange between the vapour and liquid fractions and the refrigerating fluid which circulates in an endless circuit (21,21'), for obtaining respectively a condensed vapour fraction and a cooled liquid fraction, and then cooling the cooled liquid fraction in the first heat exchange means (5),
      d) separating (13,15) the condensed vapour fraction for obtaining a resultant vapour fraction and a resultant liquid fraction,
      e) sending the resultant vapour fraction to the final compression stage (1c), for obtaining a high pressure vapour fraction,
      f) expanding the cooled liquid fraction issued from the first heat exchange means and the high pressure vapour fraction, before circulating them through the first heat exchange means, in a heat exchange with the fluid to be cooled, and then recycling them to the penultimate stage of said compression unit, as the refrigerating mixture.
    2. The process according to Claim 1, characterized in that, between steps a) and b), the compressed refrigerating mixture issued from the penultimate stage of compression is cooled by a refrigerating fluid which is present on the site.
    3. The process according to Claim 1 or claim 2, characterized in that during step b) and step d):
      the compressed refrigerating mixture is separated in a first separator (14),
      the condensed vapour fraction is separated in a second separator for obtaining the resultant vapour fraction and the resultant liquid fraction.
    4. The process according to Claim 3, characterized in that, before admitting the resultant liquid fraction into the first heat exchange means (5), this resultant liquid fraction is combined with the cooled liquid fraction having passed into said second heat exchange means (18).
    5. The process according to Claim 1 or claim 2, characterized in that during step b), step d) and step e):
      the compressed refrigerating mixture is separated in a distillation apparatus (12),
      the condensed vapour fraction is separated in a separator (13), for obtaining said resultant vapour fraction and said resultant liquid fraction,
      and, the resultant liquid fraction is returned to the column head (12a) of the distillation apparatus, to cool it.
    6. The process according to anyone of Claims 3 to 5, characterized in that:
      the liquid fraction issued from the distillation apparatus (12) or from the first separator (14) is circulated in the second heat exchange means (18), between a hot end (28b) and a cold end (28a) thereof,
      and said cooled liquid fraction is admitted in an intermediate part of a first, hot exchanger (6) of two heat exchangers arranged in series, one hot and the other cold, belonging to said first heat exchange means (5).
    7. The process according to anyone of the preceding claims, characterized in that the refrigerating fluid is circulated in an endless circuit refrigeration cycle (21) comprising two successive compression stages (1D,1E) and, on emerging from the highest compression stage of the two (1E), the refrigerating fluid is totally condensed.
    8. The process according to anyone of the Claims 1 to 6, characterized in that the refrigerating fluid is circulated in an endless circuit refrigeration cycle (21') which comprises a single compression stage and, on emerging from this single compression stage, the refrigerating fluid is totally condensed.
    9. The process according to anyone of the preceding claims, characterized in that, between steps e) and f):
      the high pressure vapour fraction is cooled after the final compression stage (1c) of said compression unit (1,1'),
      and said condensed, high pressure vapour fraction is circulated in the second heat exchange means (18), in order to cool it further by heat exchange with the refrigerating fluid before sending it into the first heat exchange means (5).
    10. The process according to anyone of Claims 5 and 9, characterized in that:
      for refrigerating one more time the cooled, high pressure vapour fraction, the latter is circulated between a hot end (28b) of the second heat exchange means (18) and an intermediate part thereof,
      and the vapour fraction issued from the distillation apparatus (12) is circulated between said intermediate part and a cold end (28a) of said second heat exchange means (18), before sending it into said separator (13).
    11. The process according to anyone of Claims 5 to 9, characterized in that the vapour fraction and the liquid fraction derived from the distillation apparatus (12) are circulated between a hot end and a cold end of the second heat exchange means (18), before they are admitted respectively into said separator (13) and into said first heat exchange means (5).
    12. The process according to anyone of the preceding Claims, characterized in that, between the steps a) and b), the compressed refrigerating mixture is circulated in the second heat exchange means (18).
    13. The process according to anyone of the preceding Claims, characterized in that:
      the fluid to be cooled is natural gas,
      before circulating the natural gas in the first heat exchange means (5), it is subjected to drying,
      and, after drying, the dried natural gas passes, inside the first heat exchange means (5), firstly into a first part of a first, hot exchanger (6) of a first and a second exchangers arranged in series, one hot and the other cold (7), belonging to said first heat exchange means, then into a part of said second exchanger of the first heat exchange means, before passing into a fractionating unit (75) arranged outside the first heat exchange means.
    14. The process according to anyone of the preceding Claims, characterized in that:
      the fluid to be cooled is natural gas,
      before admitting the natural gas into said first heat exchange unit (5), it is passed successively:
      into third heat exchange means (123) in order to cool it by heat exchange with the refrigerating fluid,
      then, into an intermediate drying unit.
    15. The process according to Claim 14, characterized in that the dried natural gas derived from the intermediate drying unit is circulated in the second heat exchange means (18), before being admitted into the first heat exchange means (5).
    16. The process according to anyone of Claims 1 to 14, characterized in that:
      the fluid to be cooled is natural gas, and
      before admitting the natural gas into the first heat exchange means (5), it is circulated firstly in the second heat exchange means (18) and, before or after this circulation in the second heat exchange means, the natural gas is subjected to drying.
    17. The process according to anyone of the preceding Claims, characterized in that:
      the fluid to be cooled is natural gas,
      the natural gas is subjected to drying before it is admitted, in order to cool it, into a first, hot exchanger (6) of a first and a second exchangers arranged in series, one hot and the other cold (7), belonging to said first heat exchange means (5),
      at least a part of the natural gas is cooled in a first part of the second, cold exchanger (7),
      the natural gas is then passed into a fractionating unit (75) in order to obtain a fractionary resultant compound,
      and said fractionary resultant compound is circulated in a second part of the second, cold exchanger (7), in order to liquefy and under-cool it.
    18. A cooling installation for refrigerating a fluid to be cooled, the installation comprising an endless circuit for a refrigerating mixture, and including:
      a compression unit (1,1') comprising a plurality of compression stages arranged in series, including a final compression stage (1c) comprising an outlet for a high pressure vapour fraction, and a penultimate compression stage (1A, 1B), for compressing at least a part of the refrigerating mixture,
      first separating means (12,14) arranged between the penultimate compression stage (1A,1B) and the final compression stage (1C), for obtaining a separation of the refrigerating mixture issued from the penultimate compression stage into a vapour fraction and a liquid fraction,
      cooling means (18), for cooling said vapour fraction and said liquid fraction issued from the first separating means, said cooling means comprising :
      second heat exchanging means (18) comprising first channels (57,135') and second channels (93,137') separate from the first channels, for circulating therein respectively the vapour fraction and the liquid fraction in a heat exchange with a refrigerating fluid and thus obtaining a condensed vapour fraction and a cooled liquid fraction,
      the refrigerating fluid which circulates in a separate endless circuit (21, 21', 21") passing through the second heat exchanging means,
      second separating means (13,15) for separating the condensed vapour fraction in a resultant liquid fraction and a resultant vapour fraction, said second separating means comprising an outlet for said resultant vapour fraction communicating with an inlet of the final compression stage,
      expanding means (50, 69, 71),
      first heat exchanging means (5) enclosing:
      a first passage (79) for circulating there through the fluid to be cooled,. the first passage having an inlet and an outlet,
      a second passage (59,65) having an outlet communicating with the expanding means and inlets for the refrigerating mixture, said inlets communicating with an outlet of the second heat exchanging means, for circulating the cooled liquid fraction, and with an outlet of the final compression stage, for circulating the high pressure vapour fraction, and,
      a third passage (41,42), for returning the refrigerating mixture to the compression unit, said third passage having an outlet communicating with an inlet of the compression unit and an inlet communicating with the expanding means.
    19. The installation according to Claim 18, characterized in that the first separating means comprise a separator (14).
    20. The installation according to Claim 18, characterized in that the first separating means comprise a distillation apparatus (12).
    21. The installation according to anyone of Claims 18 to 20, characterized in that the second separating means comprise a separator (13,15).
    22. The installation according to anyone of Claims 18 to 21, characterized in that the second separating means (13,15) comprise an outlet for a liquid fraction communicating with the cooled, liquid fraction inlet (48) of the first heat exchanging means (5).
    23. The installation according to anyone of Claims 18 to 22, characterized in that:
      the first separating means (12,14) comprise an inlet communicating with an outlet of a condenser (3A),
      and this communication between the outlet of the condenser and the inlet of the first separating means (12,14) passes through the second heat exchanging means (18).
    24. The installation according to anyone of Claims 18 to 23, characterized in that the refrigerating fluid circulates in a refrigerating cycle (21") including:
      the second heat exchanging means (18),
      and third heat exchange means (123) through which pass, in a heat exchange, the refrigerating fluid and the fluid to be cooled.
    25. The installation according to anyone of Claims 18 to 24, characterized in that the communication between the outlet of the final compression stage (1C) and the inlet of the first exchanging means for the high pressure vapour fraction passes through the second heat exchange means (18).
    26. The installation according to anyone of Claims 18 to 25, characterized in that it comprises a refrigerating fluid circuit for the refrigerating fluid which passes through the second heat exchange means (18).
    27. The installation according to anyone of Claims 18 to 26, characterized in that it additionally comprises separate heat exchange means (3A, 3B) for a heat exchange with a separate cooling fluid, the separate heat exchange means being disposed between the outlet of said penultimate compression stage and the inlet of the first separating means (12,14), so as to cool the refrigerating mixture derived from the penultimate compression stage before introducing it into the first separating means.
    EP97401367A 1996-07-12 1997-06-16 Improved process and apparatus for cooling and liquefaction of natural gas Expired - Lifetime EP0818661B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9608758 1996-07-12
    FR9608758A FR2751059B1 (en) 1996-07-12 1996-07-12 IMPROVED COOLING PROCESS AND INSTALLATION, PARTICULARLY FOR LIQUEFACTION OF NATURAL GAS

    Publications (2)

    Publication Number Publication Date
    EP0818661A1 EP0818661A1 (en) 1998-01-14
    EP0818661B1 true EP0818661B1 (en) 2002-09-11

    Family

    ID=9494005

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97401367A Expired - Lifetime EP0818661B1 (en) 1996-07-12 1997-06-16 Improved process and apparatus for cooling and liquefaction of natural gas

    Country Status (22)

    Country Link
    US (1) US5943881A (en)
    EP (1) EP0818661B1 (en)
    JP (1) JP4233619B2 (en)
    KR (1) KR100365367B1 (en)
    CN (1) CN1140755C (en)
    AR (1) AR007816A1 (en)
    AT (1) ATE224036T1 (en)
    AU (1) AU723530B2 (en)
    BR (1) BR9703959A (en)
    CA (1) CA2209723C (en)
    CO (1) CO5070650A1 (en)
    DE (1) DE69715330T2 (en)
    DK (1) DK0818661T3 (en)
    DZ (1) DZ2265A1 (en)
    ES (1) ES2185883T3 (en)
    FR (1) FR2751059B1 (en)
    ID (1) ID19101A (en)
    IL (1) IL121092A (en)
    MY (1) MY119081A (en)
    NO (1) NO311461B1 (en)
    PT (1) PT818661E (en)
    TW (1) TW332253B (en)

    Families Citing this family (23)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPH10329015A (en) 1997-03-24 1998-12-15 Canon Inc Polishing device and polishing method
    US6119479A (en) * 1998-12-09 2000-09-19 Air Products And Chemicals, Inc. Dual mixed refrigerant cycle for gas liquefaction
    US6347532B1 (en) * 1999-10-12 2002-02-19 Air Products And Chemicals, Inc. Gas liquefaction process with partial condensation of mixed refrigerant at intermediate temperatures
    US6298688B1 (en) 1999-10-12 2001-10-09 Air Products And Chemicals, Inc. Process for nitrogen liquefaction
    US6564578B1 (en) 2002-01-18 2003-05-20 Bp Corporation North America Inc. Self-refrigerated LNG process
    US6640586B1 (en) 2002-11-01 2003-11-04 Conocophillips Company Motor driven compressor system for natural gas liquefaction
    DE102004011483A1 (en) * 2004-03-09 2005-09-29 Linde Ag Process for liquefying a hydrocarbon-rich stream
    US7266976B2 (en) * 2004-10-25 2007-09-11 Conocophillips Company Vertical heat exchanger configuration for LNG facility
    US8578734B2 (en) 2006-05-15 2013-11-12 Shell Oil Company Method and apparatus for liquefying a hydrocarbon stream
    WO2009010558A2 (en) * 2007-07-19 2009-01-22 Shell Internationale Research Maatschappij B.V. Method and apparatus for recovering and fractionating a mixed hydrocarbon feed stream
    JP5683277B2 (en) 2008-02-14 2015-03-11 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイShell Internationale Research Maatschappij Beslotenvennootshap Method and apparatus for cooling hydrocarbon streams
    CN101239194B (en) * 2008-03-17 2012-11-28 张博 Deodorizing sterilizing foamed liquid for water closet
    US8209997B2 (en) * 2008-05-16 2012-07-03 Lummus Technology, Inc. ISO-pressure open refrigeration NGL recovery
    CN102115683A (en) * 2009-12-30 2011-07-06 中国科学院理化技术研究所 Method for producing liquefied natural gas
    CN105247190B (en) 2014-04-07 2017-04-05 三菱重工压缩机有限公司 Float type liquefied gas manufacturing equipment
    FR3043451B1 (en) * 2015-11-10 2019-12-20 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD FOR OPTIMIZING NATURAL GAS LIQUEFACTION
    FR3043452B1 (en) * 2015-11-10 2019-12-20 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD FOR LIQUEFACTING NATURAL GAS USING A CLOSED CYCLE REFRIGERATION CIRCUIT
    FR3045798A1 (en) 2015-12-17 2017-06-23 Engie HYBRID PROCESS FOR THE LIQUEFACTION OF A COMBUSTIBLE GAS AND INSTALLATION FOR ITS IMPLEMENTATION
    US10323880B2 (en) * 2016-09-27 2019-06-18 Air Products And Chemicals, Inc. Mixed refrigerant cooling process and system
    CN106831300B (en) * 2017-04-17 2023-05-23 中国石油集团工程股份有限公司 Device and method for recycling ethane and co-producing liquefied natural gas
    US11268756B2 (en) * 2017-12-15 2022-03-08 Saudi Arabian Oil Company Process integration for natural gas liquid recovery
    PE20210785A1 (en) * 2018-04-20 2021-04-22 Chart Energy And Chemicals Inc PRE-COOLING MIXED REFRIGERANT LIQUEFACTION SYSTEM AND METHOD
    FR3103543B1 (en) * 2019-11-21 2021-10-22 Air Liquide Heat exchanger with arrangement of mixing devices improving the distribution of a two-phase mixture

    Family Cites Families (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2280041A1 (en) * 1974-05-31 1976-02-20 Teal Technip Liquefaction Gaz METHOD AND INSTALLATION FOR COOLING A GAS MIXTURE
    FR2292203A1 (en) * 1974-11-21 1976-06-18 Technip Cie METHOD AND INSTALLATION FOR LIQUEFACTION OF A LOW BOILING POINT GAS
    US4325231A (en) * 1976-06-23 1982-04-20 Heinrich Krieger Cascade cooling arrangement
    FR2471566B1 (en) * 1979-12-12 1986-09-05 Technip Cie METHOD AND SYSTEM FOR LIQUEFACTION OF A LOW-BOILING GAS
    FR2540612A1 (en) * 1983-02-08 1984-08-10 Air Liquide METHOD AND INSTALLATION FOR COOLING A FLUID, IN PARTICULAR A LIQUEFACTION OF NATURAL GAS
    US4755200A (en) * 1987-02-27 1988-07-05 Air Products And Chemicals, Inc. Feed gas drier precooling in mixed refrigerant natural gas liquefaction processes
    FR2703762B1 (en) * 1993-04-09 1995-05-24 Maurice Grenier Method and installation for cooling a fluid, in particular for liquefying natural gas.
    DE19722490C1 (en) * 1997-05-28 1998-07-02 Linde Ag Single flow liquefaction of hydrocarbon-rich stream especially natural gas with reduced energy consumption

    Also Published As

    Publication number Publication date
    IL121092A (en) 2000-07-16
    KR980010302A (en) 1998-04-30
    IL121092A0 (en) 1997-11-20
    DK0818661T3 (en) 2003-01-20
    TW332253B (en) 1998-05-21
    NO311461B1 (en) 2001-11-26
    AU723530B2 (en) 2000-08-31
    US5943881A (en) 1999-08-31
    CN1172243A (en) 1998-02-04
    KR100365367B1 (en) 2003-02-19
    NO973221D0 (en) 1997-07-10
    ES2185883T3 (en) 2003-05-01
    ATE224036T1 (en) 2002-09-15
    DE69715330T2 (en) 2003-01-02
    CA2209723C (en) 2005-05-24
    JPH1068586A (en) 1998-03-10
    NO973221L (en) 1998-01-13
    MY119081A (en) 2005-03-31
    CN1140755C (en) 2004-03-03
    AU2496697A (en) 1998-01-22
    JP4233619B2 (en) 2009-03-04
    BR9703959A (en) 1999-03-16
    DE69715330D1 (en) 2002-10-17
    FR2751059A1 (en) 1998-01-16
    CO5070650A1 (en) 2001-08-28
    PT818661E (en) 2003-01-31
    CA2209723A1 (en) 1998-01-12
    DZ2265A1 (en) 2004-07-04
    AR007816A1 (en) 1999-11-24
    EP0818661A1 (en) 1998-01-14
    FR2751059B1 (en) 1998-09-25
    ID19101A (en) 1998-06-11

    Similar Documents

    Publication Publication Date Title
    EP0818661B1 (en) Improved process and apparatus for cooling and liquefaction of natural gas
    EP0644996B1 (en) Gas cooling process and plant, especially for natural gas liquefaction
    FR3053771B1 (en) METHOD FOR LIQUEFACTING NATURAL GAS AND RECOVERING LIQUID EVENTS OF NATURAL GAS COMPRISING TWO NATURAL GAS SEMI-OPENING REFRIGERANT CYCLES AND A REFRIGERANT GAS REFRIGERANT CYCLE
    CA2269147C (en) Method and apparatus for liquefying natural gas on refrigerant mixtures without stage separation
    FR2471567A1 (en) METHOD AND SYSTEM FOR REFRIGERATING A FLUID TO BE COOLED AT LOW TEMPERATURE
    EP0125980B1 (en) Process and apparatus for the cooling and liquefaction of at least a low boiling point gas, such as natural gas
    EP1352203B1 (en) Method for refrigerating liquefied gas and installation therefor
    RU2298743C2 (en) Method and device for liquefying natural gas under high pressure
    CA2194089C (en) Two-stage liquefaction process and device for a gaseous mixture, such as a natural gas
    FR2611386A1 (en) IMPROVED METHOD FOR LIQUEFYING A NATURAL GAS SUPPLY FLOW USING ONE OR TWO MULTI-COMPONENT CLOSED CIRCUIT REFRIGERANTS
    EP1118827B1 (en) Partial liquifaction process for a hydrocarbon-rich fraction such as natural gas
    FR2471566A1 (en) METHOD AND SYSTEM FOR LIQUEFACTING A LOW BOILING GAS
    FR2714722A1 (en) Method and apparatus for liquefying a natural gas
    FR2764972A1 (en) Liquefaction of natural gas using two stages and monophase refrigerant
    FR3053770B1 (en) METHOD FOR LIQUEFACTING NATURAL GAS AND RECOVERING LIQUID EVENTS OF NATURAL GAS COMPRISING A SEMI-OPENING REFRIGERANT CYCLE WITH NATURAL GAS AND TWO REFRIGERANT GAS REFRIGERANT CYCLES
    FR2723183A1 (en) Process for the liquefaction of hydrogen
    EP2417411B1 (en) Refrigeration process and system for recovering cold from methane by refrigerants
    EP3830511B1 (en) Method for exchanging heat
    WO2005103583A1 (en) Method for the liquefaction of a gas involving a thermo-acoustic cooling apparatus
    FR2714720A1 (en) Natural gas liquefaction process
    EP4348137A1 (en) Device and method for pre-cooling a stream of a target fluid to a temperature less than or equal to 90 k
    FR3099560A1 (en) Natural gas liquefaction process with improved injection of a mixed refrigerant stream
    MXPA97005256A (en) Procedure and installation to cool a flu

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    17P Request for examination filed

    Effective date: 19980613

    AKX Designation fees paid

    Free format text: AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    RBV Designated contracting states (corrected)

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    17Q First examination report despatched

    Effective date: 20000529

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    REF Corresponds to:

    Ref document number: 224036

    Country of ref document: AT

    Date of ref document: 20020915

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: FRENCH

    REF Corresponds to:

    Ref document number: 69715330

    Country of ref document: DE

    Date of ref document: 20021017

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20021223

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: LUCHS & PARTNER PATENTANWAELTE

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 20021210

    REG Reference to a national code

    Ref country code: GR

    Ref legal event code: EP

    Ref document number: 20020404209

    Country of ref document: GR

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2185883

    Country of ref document: ES

    Kind code of ref document: T3

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030616

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030630

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20030612

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFA

    Owner name: GDF SUEZ SOCIETE ANONYME

    Free format text: GAZ DE FRANCE (SERVICE NATIONAL)#23 RUE PHILIBERT-DELORME#F-75017 PARIS (FR) -TRANSFER TO- GDF SUEZ SOCIETE ANONYME#12-26 RUE DU DOCTEUR LANCEREAUX#75008 PARIS (FR)

    NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

    Owner name: GDF SUEZ

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CJ

    Ref country code: FR

    Ref legal event code: CD

    Ref country code: FR

    Ref legal event code: CA

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 69715330

    Country of ref document: DE

    Representative=s name: WSL PATENTANWAELTE PARTNERSCHAFTSGESELLSCHAFT, DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 69715330

    Country of ref document: DE

    Representative=s name: WSL PATENTANWAELTE PARTNERSCHAFT MBB, DE

    Effective date: 20111028

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 69715330

    Country of ref document: DE

    Owner name: GDF SUEZ S.A., FR

    Free format text: FORMER OWNER: GAZ DE FRANCE (SERVICE NATIONAL), PARIS, FR

    Effective date: 20111028

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: PC

    Ref document number: 224036

    Country of ref document: AT

    Kind code of ref document: T

    Owner name: GDF SUEZ, FR

    Effective date: 20130328

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20160525

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20160524

    Year of fee payment: 20

    Ref country code: ES

    Payment date: 20160525

    Year of fee payment: 20

    Ref country code: GB

    Payment date: 20160527

    Year of fee payment: 20

    Ref country code: IE

    Payment date: 20160524

    Year of fee payment: 20

    Ref country code: CH

    Payment date: 20160523

    Year of fee payment: 20

    Ref country code: FI

    Payment date: 20160524

    Year of fee payment: 20

    Ref country code: GR

    Payment date: 20160524

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20160525

    Year of fee payment: 20

    Ref country code: FR

    Payment date: 20160526

    Year of fee payment: 20

    Ref country code: SE

    Payment date: 20160527

    Year of fee payment: 20

    Ref country code: BE

    Payment date: 20160525

    Year of fee payment: 20

    Ref country code: DK

    Payment date: 20160524

    Year of fee payment: 20

    Ref country code: AT

    Payment date: 20160524

    Year of fee payment: 20

    Ref country code: PT

    Payment date: 20160601

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 69715330

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EUP

    Effective date: 20170616

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MK

    Effective date: 20170615

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20170615

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MK9A

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20170615

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MK07

    Ref document number: 224036

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20170616

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20170623

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20170616

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20180508

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20170617