WO2005103372A2 - Oxidative, reduktive, hydrolytische und andere enzymatische systeme zur oxidation, reduktion, zum coaten, koppeln und crosslinken von natürlichen und künstlichen faserstoffen, kunststoffen oder anderen natürlichen und künstlichen mono- bis polymerstoffen - Google Patents

Oxidative, reduktive, hydrolytische und andere enzymatische systeme zur oxidation, reduktion, zum coaten, koppeln und crosslinken von natürlichen und künstlichen faserstoffen, kunststoffen oder anderen natürlichen und künstlichen mono- bis polymerstoffen Download PDF

Info

Publication number
WO2005103372A2
WO2005103372A2 PCT/DE2005/000762 DE2005000762W WO2005103372A2 WO 2005103372 A2 WO2005103372 A2 WO 2005103372A2 DE 2005000762 W DE2005000762 W DE 2005000762W WO 2005103372 A2 WO2005103372 A2 WO 2005103372A2
Authority
WO
WIPO (PCT)
Prior art keywords
substances
coupling
natural
reactions
artificial
Prior art date
Application number
PCT/DE2005/000762
Other languages
English (en)
French (fr)
Other versions
WO2005103372A3 (de
Inventor
Hans-Peter Call
Original Assignee
Call, Krimhild
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Call, Krimhild filed Critical Call, Krimhild
Priority to EP05749924A priority Critical patent/EP1743066A2/de
Priority to AU2005235662A priority patent/AU2005235662A1/en
Priority to CA002564380A priority patent/CA2564380A1/en
Priority to US11/587,639 priority patent/US20080070284A1/en
Publication of WO2005103372A2 publication Critical patent/WO2005103372A2/de
Publication of WO2005103372A3 publication Critical patent/WO2005103372A3/de

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C5/00Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials
    • D21C5/005Treatment of cellulose-containing material with microorganisms or enzymes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • D21C9/1026Other features in bleaching processes
    • D21C9/1036Use of compounds accelerating or improving the efficiency of the processes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • D21C9/147Bleaching ; Apparatus therefor with oxygen or its allotropic modifications
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • D21C9/16Bleaching ; Apparatus therefor with per compounds

Definitions

  • hydrolytic enzymes such as glycosidases and glycotransferases, other transferases (e.g. transglutaminases), lipases, esterases, proteases, amidases and acylases and oxidoreductases, such as especially Laccases and peroxidases, for the enzymatic coupling of certain enzyme substrates via formation of ester or ether bonds etc. or via radical reactions.
  • transferases e.g. transglutaminases
  • lipases e.g. transglutaminases
  • esterases e.g. transglutaminases
  • proteases e.g., amino acids
  • amidases and acylases and oxidoreductases such as especially Laccases and peroxidases
  • the chemical reactions usually carried out work with the aid of chemical couplers such as aldehydes, anhydrides, hydrazides, acrylic derivatives, ninyl derivatives, oxirane compounds, ⁇ -hydroxysuccimidyl-Neritatien, halide-containing compounds such as chlorotriazines and many more.
  • these couplers have two or more active coupling groups. These are able to react with important functional groups such as mainly amines, sulfur groups or hydroxyl or carboxylic acid groups in the compounds to be coupled. Their high reactivity is associated with high toxicity in almost all cases, and in many cases there are high costs.
  • An important example of application is the prevention of yellowing of pulps produced by light, oxygen and / or heat, preferably in the case of high-yield pulps such as mechanically produced pulps (TMP, CTMP, BCTMP or wood pulp etc.), the so-called "yellowing inhibition”.
  • UV absorbing becomes Substances (so-called “sunscreens”) such as benzotriazole compounds, para-aminobenzoic acids and derivatives, cinnamic acid and derivatives, 2-phenylbenzimidazoles and derivatives, dibenzoylmethanes and derivatives and benzophenones such as 2-hydroxy-4-methoxy-benzophenone and derivatives and other substances are used or other substances to the pulp preferably via the OH groups of the
  • UV absorbers can be found in: light absorption u. Photochemistry of organic molecules, Kiessinger and Michl, VCH, 1989. Radical scavengers such as nitroxyl radicals such as TEMPO compounds, nitranes, other NO compounds or generally suitable antioxidants are also used (Sulfides, disulfides, thiols, ascorbates etc.) are used or are preferably coupled to the cellulose via the OH groups of the cellulose / hemicelluloses.
  • Radical scavengers such as nitroxyl radicals such as TEMPO compounds, nitranes, other NO compounds or generally suitable antioxidants are also used (Sulfides, disulfides, thiols, ascorbates etc.) are used or are preferably coupled to the cellulose via the OH groups of the cellulose / hemicelluloses.
  • Textiles applied by means of enzymatic coupling, e.g. Hemicelluloses (such as xylans) or proteins or lignins etc. are coupled with cellulose, which can cause a strong increase in strength.
  • Crosslink reactions can also be carried out purely enzymatically, preferably those of natural (ie occurring naturally) or artificial (ie synthetically produced) monomers to polymers or mixtures between natural and artificial polymers or fibrous materials, preferably those of lignocellulose-containing, cellulose-containing or protein-containing natural polymers or fibrous materials such as cellulose, textiles such as cotton or wool.
  • These enzymatically catalyzed reactions are used for general coupling, for general crosslinking and for blocking unwanted reactive groups or for combined reactions.
  • Enzyme-based processes for oxidation (red / ox reactions), preferably of cellulose (delignification / bleaching), for coupling reactions (grafting of polymer materials) or for crosslink reactions are preferably made available, preferably by natural (ie occurring in nature) or artificial (ie synthetically produced) monomers to polymers or mixtures between natural and artificial polymers or fiber materials, particularly preferably those of lignocellulose-containing, cellulose-containing or protein-containing natural polymers or fiber materials such as cellulose, textiles such as cotton or wool, characterized in that
  • hydrolases such as lipases, esterases, proteases, amidases, transferases, acylases, glycosidases or glycotransferases or oxidoreductases, such as preferably peroxidases, chloroperoxidases and laccases, are carried out either singly or in combination and further characterized in that
  • enzymes according to the International Enzyme Nomenclature: Committee of the International Union of Biochemistry and Molecülar Biology (Enzyme Nomenclature, Academic Press, Inc., 1992, pp. 306 - 337) preferably Group 3 enzymes (hydrolases) 3.1, 3.1.1, 3.1.2, 3.1.3, 3.1.4 and 3.1.7 are used such as: carboxyl ester hydrolases (3. 1. 1), thiolester hydrolases (3.1.2), phosphorus monester hydrolases (Phosphataseri) ( 3.1.3), phosphoric acid diester hydrolases (3.1.4), diphosphoric acid monoester hydrolases (3.1.7).
  • Enzymes from group 3.1.1.3, lipases (triacylglycerol lipases, triglycerol acyl hydrolases) are very particularly preferred.
  • C / N carbon / nitrogen bonds
  • Other enzymes that can cleave carbon / nitrogen bonds (C / N) are used (3.5), particularly preferred: enzymes of class 3.5.5.1 nitrilases, class 3.5.1.4 amidases and class 3.5 acylases ,
  • class 3.4 enzymes which act hydrolytically on peptide bonds here in particular class 3.4. 11-19, which comprise the exopeptidases and particularly preferably class 3.4. 21-24 and 3.4. 99, which include the endopeptidases and here in particular the class of serine proteinases such as: chymotrypsin (3.4.2 1. 1); Trypsin (3.4.21.4); SubtUisin (3.4.21.62); Endopeptidase K (3.4.21.64); the class of cysteine endopeptidases is also particularly preferred, such as:
  • Penicillopepsin (3.4.23.20); Rhizopuspepsin (3.4.23.21); Endothiapepsin (3.4.23.22); Mucorpepsin (3.4.23.23); Candidapepsin (3.4.23.24), saccharopepsin (3.4.23.25);
  • Rhodutorulapepsin 3.4.23.26
  • Physaropepsin 3.4.23.26
  • Acrocylindropepsin 3.4.23.28
  • Polyporopepsin (3.4.23.29); Pycnoporopepsin (3.4.23.30); Scytalidopepsin A / B (3.4.23.3 1 / 3.4.23.32), xanthomonapepsin (3.4.23.33); and also particularly preferably the class of metalloendopeptidases such as: microbial collagenase (3.4.24.3); Gelatinase A / B (3.4.24.24/3.4.24.35); Thermolysin (3.4.24.27); Bacillolysin (3.4.24.28); Deuterolysin (3.4.24.39).
  • class 1 enzymes oxidoreductases
  • oxidoreductases oxidoreductases
  • Cellobiose quinone -1-oxidoreductase 1.1.5.1, bilirubin oxidase 1.3.3.5, cytochrome oxidase 1.9.3, oxigenases, lipoxygenases, cytochrome P 450 enzymes, 1.13, 1.14, superoxide dismutase 1.15.11, ferrioxidase, e.g. ceruloplasmm 1.16.3.1 and in particular preferably class 1.10 enzymes which act on biphenols and related compounds. They catalyze the oxidation of biphenols and ascorbates. NAD + , NADP + (1.10.1), cytochrome (1.10.2), oxygen (1.10.3) or others (1.10.99) act as acceptors. Of these in turn, class 1.10.3 enzymes with oxygen (O 2 ) as the acceptor are particularly preferred.
  • the enzymes in this class are catechol oxidase (tyrosinase) (1.10.3.1), L-ascorbate oxidase (1.10.3.3), O-aminophenol oxidase (1.10.3.4) and laccase (benzenediol: oxigen oxidoreductase) (1.10. 3.2) is preferred, with the laccases (benzenediol oxo oxidoreductase) (1.10.3.2.) Being particularly preferred.
  • Enzymes from group 1.11. Which act on a peroxide as acceptor are also particularly preferred. This only subclass (1.11.1) contains the peroxidases.
  • the cytochrome C peroxidases (1.11.1.5), catalase (1.11.1.6), the peroxidase (1.11.1.7), the iodide peroxidase (1.11.1.8) and the glutathione peroxidase (1.11.1.9) are very particularly preferred here chloride
  • Peroxidases (1.11.1.7), chloroperoxidases (1.11.1.10) and catalases ((1.11.1.6) are particularly preferred.
  • glycosidases of class 3.2 are used, also according to the International
  • Enzymes for peroxide generation are those according to the international enzyme nomenclature from class 1.1.3 cited above, such as:
  • Galactonolactone oxidase 1.1.3.24, cellobiose oxidase 1.1.3.25, hydroxyphytanate oxidase 1.1.3.27, N-acetylhexosamine oxidase 1.1.3.29, polyvinyl alcohol oxidase 1.1.3.30 and methanol oxidase 1.1.3.31 were used.
  • Enhancer substances according to the invention are, for example: thiocyanates, isothiocyanates and isocyanates such as alkyl or aryl monoisocyanates, aryl diisocyanates, alkyl diisocyanates, aryl monoisothiocyanates, alkyl monoisothiocyanates, alkyl diisothiocyanates, aryl diisothiocyanates e.g. such as those and others listed in Appendix 3 pp. 1637-1642 of the Lancaster (Clariant) Research Chemicals Catalog 2004-2005.
  • Peroxidases and peroxide for example, can oxidize these compounds from thiocyanate to the strong oxidant hypothiocyanite or hypothiocyanic acid.
  • oxidoreductase / enhancer combinations can be used for the significant delignification of cellulose or generally for oxidations (Red / Ox reactions).
  • enzymatic activation of the enhancer compounds according to the invention can be brought about in such a way that a coupling reaction of these compounds to hydroxyl, thio or amine groups, for example in the pulp (here in particular to phenolic or aliphatic hydroxyl groups of the lignin) or hydroxyl groups of the polysaccharides), which either leads to a blocking of these groups (eg amination of phenols) or to an activation for more effective simultaneous or successive coupling with suitable coupling reagents.
  • the corresponding coupling reagents according to the invention are e.g. in. Chemistry of Protein Conjugation and Cross-linking; S.S. Wong ed .: CRC Press, 1991 and: Immobilized Affimty Techniques; G. T. Hermanson et al. eds .; Academic Press, 1992 and: Bioconjugate Techniques; G. T. Hermanson ed .; Academic Press, listed in 1996.
  • Preferred enhancer substances for enzymatic coupling or crosslinking methods of certain groups in the polymers according to the invention are in particular:
  • BT Coating / cross-linking of NH 2 groups (eg proteins): a) reaction with isocyanates, diisocyanates or isothiocyanates or diisothiocyanates b) reaction with acyl azides c) reaction with NHS esters (N-hydroxysuccin ⁇ nid) d) reaction with sulfonyl chlorides e) reaction with aldehydes and glyoxals f) reaction with carbonates g) reaction with arylating reagents h) reaction with imidoesters i) reaction with carbodiimides j) reaction with anhydrides
  • NH 2 groups eg proteins
  • thiol groups e.g. proteins: a) reaction with haloacetyl and alkyl halide derivatives b) reaction with maleimides c) reaction with aziridines d) reaction with acryloyl derivatives e) reaction with arylating agents f) reaction with thiol -Disulfide exchange reagents
  • VT Coating / cross-linking of substrates by means of photoreactive chemical reaction: a) reaction with aryl azides and halogenated aryl azides b) reaction with benzophenones c) reaction with certain diazo compounds d) reaction with diazirine derivatives
  • homobifunctional cross-linkers which carry two identical functional coupling-relevant end groups or heterobifunctional cross-linkers which carry two different functional coupling-relevant end groups or trifunctional cross-linkers, although in all cases different functional substrate groups can be coupled to one another.
  • oxiranes which are present in more than one double bond can also be formed in multiplicity, can serve as coupling reagents and as crosslinking reagents, especially for hydroxyl groups, but also amine or thio groups, although the literature describes only the general possibility of generating such oxiranes but in no way the applications according to the invention described here these are new and inventive,
  • the oxidation systems should preferably be used in the bleaching delignification of cellulose, in the bleaching of textiles (cotton, wool), also in the bleaching of denim fabrics and in the bleaching in detergents.
  • Another particularly preferred application is the use of the enzymes according to the invention and the enhancers according to the invention in coupling reactions (grafting of polymer materials) or crosslink reactions, preferably of natural (ie in nature) occurring) or artificial (ie synthetically produced) monomers to polymers or mixtures between natural and artificial polymers or fiber materials, particularly preferably those of lignocellulose-containing, cellulose-containing or protein-containing natural polymers or fiber materials such as cellulose, textiles such as cotton or wool.
  • such polymers are preferably biopolymers obtained from plant, animal or microbial material, such as these, for example, in Rauen, HM, ed., "Biochemisches Taschenbuch", Springer Verlag, 1964; Elias, HG.
  • they can preferably be complex, less complex to relatively uniform polysaccharides and / or, according to the invention, preferably complex, less complex, to relatively uniform polyamines or proteins or proteinaceous substances and / or according to the invention preferably complex, less complex to relatively uniform lignins, lignans and / or Humine substances and / or according to the invention preferably complex, less complex to relatively uniform polyesters such as polylactic acids, polyglycolic acids, poly- ⁇ -caprolactones, poly-ß-hydroxybutyric acid, poly-ß-hydroxyvaleric acid, polydioxanones, poly (ethylene terephthalates, polymalonic acid, polytartonic acid, poly ( ), Polyanhydrides, polycyanoacrylates, poly (phosphoesters) and polyphosphazenes and / or polyisoprenoids and / or fats or fatty acids and / or
  • Polynucleotides such as deoxyribonucleic acids or ribonucleic acids, mixed polymers such as lipopolysaccharides, glycoproteins, glycolipids, lipoproteins or derivatives of the substances mentioned.
  • polysaccharides preference is given to those such as (also described in Rauen, H.M “Biochemisches Taschenbuch” pages 718-734):
  • Starch and starch derivatives amylopectin, glycogen, lichenan, pustulan, laminarin, lutean, yeast glucan, nigeran, pullulan, scleroglukan, curdlan, gellan, emulsan, acetan, welan, cellulose and cellulose derivatives including cellulose, dextrans and dextran derivatives, mannane in particular, mannane, yeastane, mannane Galactans, arbans, xanthans, tapioca, inulin and other fructosans of the inulin type, levans, arabinogalactans, glucomannans, galactomannans, galactoglucomannans, phosphomannans, fucans, agar, agarose, cyclodexrine, carrageenans, cholesterol, cholesterol, verectinitine, cholesterol, pectins (unesterified) , Heparins, teichoic acids,
  • Proteins of animal, vegetable and microbial origin are also particularly preferred (also described in: Rauen, HM biochemical paperback "page 778-813): such as animal proteins such as: albumins, plasmas, globulins, fibrinogens, thrombins, milk proteins such as caseins, lactalbumines, lactoglobulins , animal framework and fiber proteins such as collagens, keratins, fibroins, actins, myosins, elastins, gelatins, silk and wool, plant proteins such as cereal proteins such as hordeins, glutenins etc., soy proteins, phaseolines, leguminins etc. or poly ( ⁇ -amino acids ).
  • animal proteins such as: albumins, plasmas, globulins, fibrinogens, thrombins, milk proteins such as caseins, lactalbumines, lactoglobulins , animal framework and fiber proteins such as collagens, keratins, fibroins,
  • a particularly preferred coupling / crosslinking application is the prevention or weakening of non-yellowing of wood, cellulose, textiles, plastics, paints, carpets, or any material exposed to light, which is produced by light (UV), oxygen and / or heat.
  • This prevention of yellowing is particularly preferred also in the case of cellulose, especially for high yield pulp, i.e. Pulps with a high lignin content, which is mainly responsible for the strong tendency to yellowing.
  • this is bleached high-yield pulp such as BTMP, BCTMP, bleached wood pulp or unbleached high-yield pulp such as TMP, CTMP or wood pulp etc.
  • the polymeric substances should preferably be coated with substances (UV absorbers), preferably with benzophenone and benzotriazole derivatives, but also para-aminobenzoic acids and derivatives, cinnamic acid and derivatives, 2-phenylbenzimidazoles and derivatives, dibenzoylmethanes and derivatives.
  • substances UV absorbers
  • benzophenone and benzotriazole derivatives but also para-aminobenzoic acids and derivatives, cinnamic acid and derivatives, 2-phenylbenzimidazoles and derivatives, dibenzoylmethanes and derivatives.
  • radical scavengers such as substances belonging to the group of hydroxylamines or ⁇ OH compounds, or particularly preferably those belonging to the group of roxitroxyl radicals (hindered ⁇ itroxides, hindered amines such as TEMPO compounds) and / or ⁇ itrones, or generally suitable antioxidants are coupled.
  • optical brighteners such as derivatives of flavonic acid, umbelliferone compounds, coumarin compounds, and compounds which are used in: Detergents and Textile Washing; Jacoby et al; VCH, mentioned in 1987.
  • enzyme / enhancer systems should generally also be used, as described in our own applications WO / 98/59108 (here in particular also laccase NO, NOH and HNOH compounds), in PCT / DE02 / 02035, PCT / DE03 / 00201 and DE 10215277.2.
  • Enzyme protein 1.5 kgH 2 O 2 per ton of dry cellulose. Solutions A and B are added together and made up to 33 ml.
  • the consistency should be between 8 and 12.5%.
  • the substance is then placed in a reaction vessel preheated to 50 ° C. and under
  • the kappa number is determined.
  • HRP peroxidase
  • Solutions A and B are added together and made up to 33 ml. In general, the consistency should be between 8 and 12.5%. After adding the pulp, it is mixed for 2 min with a dough kneader.
  • the substance is then placed in a reaction vessel preheated to 50 ° C. and incubated under normal pressure for one hour.
  • the fabric is then washed over a nylon sieve (30 ⁇ m) and a leaf is sucked through a suction filter, which is dried in the dryer of a sheet former under vacuum.
  • the sheet is irradiated for 24 hours in a SUNTEST UV radiation device from Atlas,> 300nm.
  • the yellowing in a reduction of ISO whiteness
  • an untreated sheet also irradiated in the SUNTEST.
  • a reduction in remuneration of more than 15 ISO whites% was measured.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Paper (AREA)
  • Graft Or Block Polymers (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

Es werden Verfahren zur Oxidation (Red/Ox Reaktionen) bevorzugt von Zellstoffen (Delignifizierung/Bleiche), für Kopplungsreaktionen (grafting von Polymerstoffen) oder für Crosslinkreaktionen von natürlichen (d.h. in der Natur vorkommenden) oder künstlichen (d.h. synthetisch hergestellten) Monomeren bis Polymeren oder Gemischen zwischen natürlichen und künstlichen Polymeren bzw. Faserstoffen, vor lignocellulosehaltigen, cellulosehaltigen oder proteinhaltigen natürlichen Polymeren bzw. Faserstoffen wie Zellstoff, Textilien wie Baumwolle oder Wolle, beschrieben. Diese sind dadurch gekennzeichnet, dass: 1) diese Oxidationen, Kopplungsreaktionen oder Crosslinkreaktionen mit Hilfe von Hydrolasen wie Lipasen, Esterasen, Proteasen, Amidasen, Transferasen, Acylasen, Glycosidasen oder Glycotransferasen oder Oxidoreduktasen, wie bevorzugt Peroxidasen, Chloroperoxidasen und Laccasen, entweder in Einzahl oder in Kombination durchgeführt werden und des weiteren dadurch gekennzeichnet, dass: 2) diese Reaktionen (Oxidationen, Kopplungsreaktionen oder Crosslinkreaktionen) mit sich selbst und/oder mit eigenschaftsverändernden Stoffen wie monomeren bis polymeren Substanzen (natürlichen oder synthetischen) entweder gleichz itig oder nacheinander mit Hilfe von speziellen enzymaktzivierten Enhancersubstanzen und/oder Kopplungssubstanzen durchgeführt werden.

Description

Oxidative, reduktive, hydrolytische und andere enzymatische Systeme zur Oxidation , Reduktion, zum Coaten, Koppeln und Crosslinken von natürlichen und künstlichen Faserstoffen, Kunststoffen oder anderen natürlichen und künstlichen Mono- bis Polymerstoffen
Stand der Technik Es ist bekannt, dass hydrolytische Enzyme wie Glycosidasen und Glycotransferasen, andere Transferasen (z.B. Transglutaminasen), Lipasen, Esterasen, Proteasen , Amidasen und Acylasen und Oxidoreductasen, wie v.a. Laccasen und Peroxidasen, zur enzy atischen Kopplung bestimmter Enzymsubstrate über Bildung von Ester- oder Etherbindungen etc. oder über radikalische Reaktionen in der Lage sind. Dabei werden z.B. Lipasen und andere Esterasen hauptsächlich in der enantioselektiven Katalyse eingesetzt, wobei sowohl die Esterhydrolyse wie auch Esterbildung von Interesse sind. Andere Enzyme wie Laccasen, Peroxidasen werden als Radikalketteninitiatoren z.B. zur Herstellung von holzhaltigen Polymerstoffen wie verschiedene Board-Typen eingesetzt. Bislang wurde aber kein rein enzymatisches System beschrieben, welches in der Lage ist, auch im wässrigen Milieu in ausreichendem Umfang Koppungsreaktionen (grafting von Polymerstoffen) oder Crosslinkreaktionen von natürlichen (d.h. in der Natur vorkommenden) oder künstlichen (d.h. synthetisch hergestellten) Monomeren bis Polymeren oder Gemischen zwischen natürlichen und künstlichen Polymeren bzw. Faserstoffen, auszuführen, auch nicht solche von lignocellulosehaltigen, cellulosehaltigen oder proteinhaltigen natürlichen Polymeren bzw. Faserstoffen wie Zellstoff, Textilien wie Baumwolle oder Wolle.
Die üblicherweise durchgeführten chemischen Reaktionen (Kopplungsreaktionen, Crosslinkreaktionen, Blockierungsreaktionen von bestimmten Gruppen etc.) arbeiten mit Hilfe von chemischen Kopplern wie Aldehyden, Anhydriden, Hydraziden, Acrylderivativen, Ninylderivativen, Oxiranverbindungen, Ν-Hydroxysuccimidyl-Nerbindungen, halidhaltigen Verbindungen wie Chlortriazinen und vielen mehr. Diese Koppler haben bei Crosslinkreaktionen zwei oder mehr aktive Koppelgruppen. Diese sind in der Lage mit wichtigen fimktionellen Gruppen wie hauptsächlich Aminen, Schwefelgruppen oder Hydroxyl- oder Carbonsäuregruppen in den zu koppelnden Verbindungen zu reagieren. Dabei ist mit ihrer hohen Reaktivität auch in fast allen Fällen hohe Toxizität verbunden, dazu kommen in vielen Fällen hohe Kosten.
Generelle Beschreibung der Erfindung Um diese Schwierigkeit des Stands der Technik zu überwinden, werden enzymatische Systeme zur Verfügung gestellt, die sich vor allem durch ihre wesentlich höhere Spezifität, ihre wesentlich schnellere Reaktion und ihre geringere Toxizität auszeichnen und damit eine wesentlich kostengünstigere und umweltfreundlichere Arbeitsweise erlauben. Es konnte überraschenderweise gefunden werden, dass bei gezieltem Einsatz von Lipasen, Esterasen, Proteasen, Amidasen, Transferasen, Acylasen, Glycosidasen, Glycotransferasen und Oxidoreduktasen wie bevorzugt Peroxidasen, Chloroperoxidasen und Laccasen einzeln oder in Kombination und mit speziellen erfindungsgemäßen Enhancersubstanzen Oxidationen (Red/Ox Reaktionen) -wie auch Bleichreaktioneri/Delignifϊzierungsreaktionen von Zellstoffen-1 durchgeführt werden können. Ebenfalls können mittels dieser Enzyme Kopplungsreaktionen mit speziellen durch die Wirkung der Enzyme aktivierten Kopplern mit zu koppelnden Polymer-Substanzen durchgeführt werden (grafting von Polymerstoffen).
Bevorzugt sind dabei solche Substanzen wie natürliche (d.h. in der Natur vorkommende) oder künstliche (d.h. synthetisch hergestellte) Monomere bis Polymere oder Gemische zwischen natürlichen und künstlichen Polymeren bzw. Faserstoffen, bevorzugt lignocellulosehaltige, cellulosehaltige oder proteinhaltige natürliche Polymere bzw. Faserstoffe wie Zellstoff, Textilien wie Baumwolle oder Wolle.
Ein wichtiges Anwendungsbeispiel ist die Verhinderung von durch Licht, Sauerstoff und/oder Wärme erzeugte Vergilbungen von Zellstoffen, bevorzugt bei Hochausbeutezellstoffen wie mechanisch hergestellten Zellstoffen (TMP, CTMP, BCTMP oder Holzschliff etc.), das sogenannte „Yellowing Inhibition". Hier werden UV absorbierende Substanzen (sogenannte „Sunscreens") wie Benzotriazol- Verbindungen, para-Aminobenzoesäuren und Derivate, Zimtsäure und Derivate, 2-Phenylbenzimidazole und Derivate, Dibenzoylmethane und Derivate und Benzophenone wie 2-Hydroxy-4-methoxy-benzophenon und Derivate und andere Stoffe eingesetzt bzw. an den Zellstoff bevorzugt über die OH-Gruppen der
Cellulose/Hemicellulosen angekoppelt. Weitere erfindungsgemäße UV-Absorber finden sich in: Lichtabsorption u. Photochemie organischer Moleküle, Kiessinger und Michl, VCH, 1989. Ebenso werden Radikalfänger wie Nitroxylradikale wie TEMPO- Verbindungen, Nitrane, andere NO- Verbindungen oder generell geeignete Antioxidantien ( Sulfide, Disulfide, Thiole, Ascorbate etc.) eingesetzt bzw. an den Zellstoff bevorzugt über die OH-Gruppen der Cellulose/Hemicellulosen angekoppelt.
Ein weiteres wichtiges Anwendungsbeispiel ist die sogenannte „Fibre Modifϊcation" von Zellstoffen (aber auch Textilstoffen). Dabei werden eigenschaftsverändernde Mono- bis Polymere an den Zellstoff (oder an
Textilstoffe) mittels enzymatischer Kopplung aufgebracht, z.B. Hemicellulosen (wie Xylane) oder auch Proteine oder Lignine etc. werden mit Zellulose gekoppelt, was eine starke Festigkeitserhöhung bewirken kann. Ebenfalls können Crosslinkreaktionen rein enzymatisch ausgeführt werden, bevorzugt solche von natürlichen (d.h. in der Natur vorkommenden) oder künstlichen (d.h. synthetisch hergestellten) Monomeren bis Polymeren oder Gemischen zwischen natürlichen und künstlichen Polymeren bzw. Faserstoffen, bevorzugt solche von lignocellulosehaltigen, cellulosehaltigen oder proteinhaltigen natürlichen Polymeren bzw. Faserstoffen wie Zellstoff, Textilien wie Baumwolle oder Wolle. Diese enzymatisch katalysierten Reaktionen dienen zur generellen Kopplung, zum generellen Crosslinken und zum Blocken von unerwünschten reaktiven Gruppen oder zu kombinierten Reaktionen.
Es werden also enzymbasierende Verfahren zur Oxidation (Red/Ox Reaktionen) bevorzugt von Zellstoffen (Delignifϊzierung/Bleiche), für Kopplungsreaktionen (grafting von Polymerstoffen) oder für Crosslinkreaktionen zur Verfugung gestellt, bevorzugt von natürlichen (d.h. in der Natur vorkommenden) oder künstlichen (d.h. synthetisch hergestellten) Monomeren bis Polymeren oder Gemischen zwischen natürlichen und künstlichen Polymeren bzw. Faserstoffen, besonders bevorzugt solche von lignocellulosehaltigen, cellulosehaltigen oder proteinhaltigen natürlichen Polymeren bzw. Faserstoffen wie Zellstoff, Textilien wie Baumwolle oder Wolle, dadurch gekennzeichnet, dass
1) diese Oxidationen, Kopplungsreaktionen oder Crosslinkreaktionen mit Hilfe von Hydrolasen wie Lipasen, Esterasen, Proteasen, Amidasen, Transferasen, Acylasen, Glycosidasen oder Glycotransferasen oder Oxidoreduktasen, wie bevorzugt Peroxidasen, Chloroperoxidasen und Laccasen, entweder in Einzahl oder in Kombination durchgeführt werden und des weiteren dadurch gekennzeichnet, dass
2) diese Reaktionen (Oxidationen, Kopplungsreaktionen oder Crosslinkreaktionen) mit sich selbst und/oder mit eigenschaftsverandernden Stoffen wie monomeren bis polymeren Substanzen (natürlichen oder synthetischen) entweder gleichzeitig oder nacheinander mit Hilfe von speziellen enzymaktzivierten Enhancersubstanzen und/oder Kopplungssubstanzen durchgeführt werden, wobei die genannten erfindungsgemäßen polymeren Stoffe nach der Behandlung in ihrer Struktur, physikalisch und/oder chemisch verändert und so in ihren Eigenschaften verbessert sind.
Detaillierte Beschreibung der Erfindung
Für die erfindungsgemäßen Reaktionen werden Enzyme gemäß Internationaler Enzym- Nomenklature: Committee of the International Union of Biochemistry and Molecülar Biology (Enzyme Nomenclature, Academic Press, Inc., 1992, S. 306 - 337) bevorzugt Enzyme der Gruppe 3 (Hydrolasen) 3.1, 3.1.1, 3.1.2, 3.1.3, 3.1.4 und 3.1.7 eingesetzt wie z.B.: Carboxylester-Hydrolasen (3. 1. 1), Thiolesterhydrolasen (3.1.2), Phosphor-Monester- Hydrolasen (Phosphataseri) (3.1.3), Phosphorsäure Diester Hydrolasen (3.1.4), Diphosphorsäure-Monoester-Hydrolasen (3.1.7). Davon ganz besonders bevorzugt sind Enzyme der Gruppe 3.1.1.3, Lipasen (Triacylglycerin Lipasen, Triglycerinacylhydrolasen).
Als weitere Enzyme werden solche, die Kohlenstoff/Stickstoffbindungen (C/N) spalten können (andere als Peptidbindungen), eingesetzt (3.5), besonders bevorzugt: Enzyme der Klasse 3.5.5.1 Nitrilasen, der Klasse 3.5.1.4 Amidasen und der Klasse 3.5 Acylasen. Ebenso besonders bevorzugt sind Enzyme der Klasse 3.4., welche hydrolytisch auf Peptidbindungen wirken: hier insbesondere der Klasse 3.4. 11-19, welche die Exopeptidasen umfassen und besonders bevorzugt die Klasse 3.4. 21-24 und 3.4. 99, welche die Endopeptidasen umfassen und hier insbesondere die Klasse der Serinproteinasen wie: Chymotrypsin (3.4.2 1. 1); Trypsin (3.4.21.4); SubtUisin (3.4.21.62); Endopeptidase K (3.4.21.64); ebenso besonders bevorzugt die Klasse der Cystein Endopeptidasen wie:
Papain (3.4.22.2), Ficain (Ficin) (3.4.22.3); Bromelaine (3.4.22.32/3.4.22.33), ebenso besonders bevorzugt die Klasse der Aspartic Endopeptidasen wie:
Pepsine (3.4.23.1/3.4.23.2); Renin (3.4.23.15), Aspergillopepsine (3.4.23.18/3.4.23.19),
Penicillopepsin (3.4.23.20); Rhizopuspepsin (3.4.23.21); Endothiapepsin (3.4.23.22); Mucorpepsin (3.4.23.23); Candidapepsin (3.4.23.24), Saccharopepsin (3.4.23.25);
Rhodutorulapepsin (3.4.23.26); Physaropepsin (3.4.23.26); Acrocylindropepsin (3.4.23.28),
Polyporopepsin (3.4.23.29); Pycnoporopepsin (3.4.23.30); Scytalidopepsin A/B (3.4.23.3 1/ 3.4.23.32), Xanthomonapepsin (3.4.23.33); und ebenso besonders bevorzugt die Klasse der Metalloendopeptidasen wie: Microbial Collagenase (3.4.24.3); Gelatinase A/B (3.4.24.24/3.4.24.35); Thermolysin (3.4.24.27); Bacillolysin (3.4.24.28); Deuterolysin (3.4.24.39).
Ebenso bevorzugt sind Enzyme der Klasse 1 (Oxidoreduktasen) gemäß Internationaler Enzym-Nomenklature: Committee of the International Union of Biochemistry and Molecülar Biology (Enzyme Nomenclature, Academic Press, Inc., 1992, S. 24 bis 154) wie:
Cellobiose: quinone -1-oxidoreductase 1.1.5.1, Bilirubinoxidase 1.3.3.5, Cytochromoxidase 1.9.3, Oxigenasen, Lipoxigenasen, Cytochrom P 450 Enzyme, 1.13, 1.14, Superoxid- dismutase 1.15.11, Ferrioxidase, z.B. Ceruloplasmm 1.16.3.1 und insbesondere bevorzugt Enzyme der Klasse 1.10, die auf Biphenole und verwandte Verbindungen wirken. Sie katalysieren die Oxidation von Biphenolen und Ascorbaten. Als Akzeptoren fungieren NAD+, NADP+ (1.10.1), Cytochrome (1.10.2), Sauerstoff (1.10.3) oder andere (1.10.99). Von diesen wiederum sind Enzyme der Klasse 1.10.3 mit Sauerstoff (O2) als Akzeptor besonders bevorzugt.
Von den Enzymen dieser Klasse sind insbesondere die Enzyme Catechol Oxidase (Tyrosinase) (1.10.3.1), L-Ascorbate Oxidase (1.10.3.3),O- Aminophenol Oxidase (1.10.3.4) und Laccase (Benzoldiol:Oxigen Oxidoreduktase) (1.10.3.2) bevorzugt, wobei die Laccasen (BenzoldiokOxigen Oxidoreduktase) (1.10.3.2.) insbesondere bevorzugt sind.
Weiterhin besonders bevorzugt sind die Enzyme der Gruppe 1.11., die auf ein Peroxid als Akzeptor wirken. Diese einzige Subklasse (1.11.1) enthält die Peroxidasen. Ganz besonders bevorzugt sind hier die Cytochrom C Peroxidasen (1.11.1.5), Catalase (1.11.1.6), die Peroxidase (1.11.1.7) die Iodid- Peroxidase ( 1.11.1.8), die Glutathione-Peroxidase ( 1.11.1.9), die Chlorid
Peroxidase (1.11.1.10), die L-Ascorbat-Peroxidase (1.11.1.11), die
Phospholipid-Hydroperoxid-Glutathione-Peroxidase ( 1.11.1.12), die Mangan Peroxidase
(1.11.1.13) und die Diarylpropan-Peroxidase (Ligninase, Lignin Peroxidase) (1.11.1.14).
Insbesondere bevorzugt sind Peroxidasen (1.11.1.7), Chloroperoxidasen (1.11.1.10) und Catalasen ((1.11.1.6).
Ebenso bevorzugt werden Glycotransferasen und Transglutaminasen der Klassen 2.3 und
2.4 und Glycosidasen der Klasse 3.2 eingesetzt, ebenfalls entsprechend der Internationalen
Enzym-Nomenklature: Committee of the International Union of Biochemistry and Molecülar
Biology (Enzyme Nomenclature, Academic Press, Inc., 1992, S. 24 bis 154). Für Enzyme, die für ihre Wirkung Peroxide benötigen werden dieses als H202 oder als organische Peroxide oder Peroxid- Addukte ( wie Harnstoff-Peroxid- Addukt etc.) zur Verfugung gestellt oder enzymatisch generiert.
Als Enzyme zur Peroxid-Generierung werden solche entsprechend der oben zitierten Internationalen Enzym-Nomenklature aus der Klasse 1.1.3 wie:
Malate Oxidase 1.1.3.3, Glukose Oxidase (GOD) 1.1.3.4, Hexose oxidase 1.1.3.5, Cholesterol Oxidase 1.1.3.6, Aryl-alkohol Oxidase 1.1.3.7, L-Gluconolacton oxidase 1.1.3.8, Galactose Oxidase 1.1.3.9, Pyranose Oxidase 1.1.4.10, L-Sorbose oxidase 1.1.3.11, Alkohol oxidase 1.1.3.12, Choline Oxidase 1.1.3.17, Sekundäre Alkohol Oxidase 1.1.3.18, Glycerin-3- phosphat Oxidase 1.1.3.21, Xanthin Oxidase 1.1.3.22, Thiamin Oxidase 1.1.3.23, L-
Galactonolacton Oxidase 1.1.3.24, Cellobiose Oxidase 1.1.3.25, Hydroxyphytanat Oxidase 1.1.3.27, N-Acetylhexosamin Oxidase 1.1.3.29, Polyvinyl-alkohol Oxidase 1.1.3.30 und Methanol Oxidase 1.1.3.31 eingesetzt. Erfindungsgemäße Enhancersubstanzen sind z.B.: Thiocyanate, Isothiocyanate und Isocyanate wie Alkyl- bzw. Aryl- Monoisocyanate, Aryldiisocyanate, Alkyldiisocyanate, Arylmonoisothiocyanate, Alkylmonoisothiocyanate, Alkyldiisothiocyanate, Aryldiisothiocyanate z.B. wie solche und weitere, die im Appendix 3 S. 1637-1642 des Lancaster (Clariant) Forschungschemikalienkatalog 2004-2005 aufgeführt sind. Peroxidasen und Peroxid, z.B., können diese Verbindungen vom Thiocyanat zum starken Oxidants Hypothiocyanit bzw. der Hypothiocyanic acid oxidieren.
Diese Oxidoreduktase/Enhancer Kombinationen (auch Laccase/O2 + Enhancer) können zur signifikanten Delignifizierung von Zellstoffen oder generell für Oxidationen (Red/Ox- Reaktionen) eingesetzt werden. Es konnte auch überraschenderweise gezeigt werden, dass enzymatisch eine Aktivierung der genannten erfindungsmäßigen Enhancer- Verbindungen in der Weise bewirkt werden kann, dass eine Kopplungsreaktion dieser Verbindungen an Hydroxy-, Thio- oder Amingruppen z.B. im Zellstoff (hier v.a. an phenolische oder aliphatische Hydroxylgruppen des Lignins oder Hydroxylgruppen der Polysaccharide) erfolgt, was entweder zu einer Blockierung dieser Gruppen fuhrt (z.B. Aminierung von Phenolen) bzw. zu einer Aktivierung für effektivere gleichzeitige oder sukzessive Kopplung mit geeigneten Kopplungsreagenzien.
Beim Einsatz von Bis-Enhancerverbindungen werden Crosslinkreaktionen initiiert. Des weiteren können beim Einsatz von erfindungsgemäßen Oxidoreduktasen, aber auch beim oxidativen Einsatz von Hydrolasen, wie in den eigenen Patentanmeldungen WO/ 98/ 59108 und PCT/DE02/02035 beschrieben, mit Hilfe von a) anderen Kopplungssubstanzen oder Kopplungsprecursern wie Fettsäuren, Fetten, Fettsäureestern, ggf. zusammen mit entsprechenden Emulgatoren (wie in WO/98/59108 beschrieben) oder mit Hilfe von b) Reaktivankerverbindungen wie ß-Sulfooxyethylsulfonverbindungen (Schwefelsäureester des 2-Hydroxy-ethylsulfons) bzw. allgemein Sulfonyl-, Sulfamoyl- oder Carbamoylalkylsulfonsäure-Gruppierungen tragende Verbindungen (wie z.B. in Zollinger, Color Chemistry, VCH, Weinheim, 1987 beschrieben) oder mit Hilfe von c) anderen chemischen Kopplern wie Aldehyden, Anhydriden, Hydraziden, Acrylderivativen, Vinylderivativen, Oxiranverbindungen, N-Hydroxysuccimidyl- Verbindungen etc. und deren Dimeren oder Trimeren etc. Kopplungsreaktionen und Crosslinkreaktionen durchgeführt werden, da diese Enhancersubstanzen generell in der Lage sind, mit wichtigen funktioneilen Gruppen in den erfϊndungsgemäßen Polymeren wie hauptsächlich Aminen, SH-Gruppen oder Hydroxyl- oder Carbonsäuregruppen zu reagieren.
Die entsprechenden erfindungsgemäßen Kopplungsreagentien sind z.B. in. Chemistry of Protein Conjugation and Cross-linking; S.S. Wong ed.: CRC Press, 1991 und: Immobilized Affimty Techniques; G.T. Hermanson et al. eds.; Academic Press, 1992 und: Bioconjugate Techniques; G.T. Hermanson ed.; Academic Press, 1996 aufgeführt.
Dabei sind insbesondere bevorzugte Enhancersubstanzen für enzymatische Kopplungs- bzw. Crosslinkmethoden von bestimmten Gruppen in den erfindungsgemäßen Polymeren:
1) Coating/ Cross-linken von OH-Gruppen (z.B. Polysacchariden): a) Reaktion mit Epoxiden und Oxiranen oder bifjjnktional mit Bisoxiranen b) Reaktion mit Carbonyldiimidazolen (CDI) c) Reaktion mit N,N'-Disuccinimidyl-carbonaten (DSC) d) Reaktion mit Isocyanaten, Diisocyanaten bzw. Isothiocyanaten oder Diisothiocyanaten
BT) Coating/Cross-linken von NH2-Gruppen (z.B. Proteinen): a) Reaktion mit Isocyanaten, Diisocyanaten bzw. Isothiocyanaten oder Diisothiocyanaten b) Reaktion mit Acyl Aziden c) Reaktion mit NHS Estern ( N-Hydroxysuccinύnid) d) Reaktion mit Sulfonyl Chloriden e) Reaktion mit Aldehyden und Glyoxalen f) Reaktion mit Carbonaten g) Reaktion mit Arylierungs Reagentien h) Reaktion mit Imidoestern i) Reaktion mit Carbodiimiden j) Reaktion mit Anhydriden
DI) Coating/ Cross-linken von Carboxylgruppen ( z.B. Polysaccariden, Proteinen): a) Reaktion mit Carbonyldiimidazolen (CDI) b) Reaktion mit Carbodiimiden c) Reaktion mit Diazoalkanen und Diacetyl Verbindungen
ΓV) Coating/Cross-linken von Thiolgruppen ( z.B. Proteinen): a) Reaktion mit Haloacetyl und Alkyl-Halid Derivaten b) Reaktion mit Maleimiden c) Reaktion mit Aziridinen d) Reaktion mit Acryloyl Derivativen e) Reaktion mit Arylierungsreagentien f) Reaktion mit Thiol-Disulfid Austauschreagentien
V) Coating Cross-linken von Aldehyd- und Ketonen ( z.B. Proteinen und Polysacchariden etc.): a) Reaktion mit Hydrazin Derivativen b) Reaktion mittels Schiff scher Base Bildung c) Reaktion mittels Reduktiver Aminierung d) Reaktion mittels Mannich Kondensation
VT) Coating/Cross-linken von Substraten mittels photoreaktiver chemischer Raktion: a) Reaktion mit Aryl Aziden undhalogenierten Aryl Aziden b) Reaktion mit Benzophenonen c) Reaktion mit bestimmten Diazo Verbindungen d) Reaktion mit Diazirin Derivativen
Darunter sind insbesondere bevorzugt homobifunktionale Cross-linker, die zwei gleiche funktioneile kopplungsrelevante Endgruppen tragen oder heterobifunktionale Cross-linker, die zwei verschiedene funktionelle kopplungsrelevante Endgruppen tragen bzw. trifunktionale Cross-linker, wobei in allen Fällen durchaus verschiedene funktionelle Substratgruppen miteinander gekoppelt werden können.
Der Hauptunterschied der enzymgesteuerten Reaktionen (Kopplungen, Crosslink-Reaktioήen) im Vergleich zu rein chemischen Reaktionen ist vor allem, dass ohne weitere Katalysatoren gearbeitet werden kann, die Reaktionen vielfach wesentlich schneller ablaufen und wesendlich höhere Ausbeuten bei geringerem Reagenzienbedarf erzielt werden.
Des weiteren können durch die Wirkung des in der eigenen Patentanmeldung WO/ 98/ 59108 beschriebenen HOS Systems (hydrolase mediated oxidation System), dort ECS genannt, durch Bildung von Persäuren aus Hydrolasen (hier v.a. Lipasen) + H202 und Fettsäuren bzw. Fetten (-> Perhydrolyse) Oxirane dort gebildet werden, wo Doppelbindungen bei" ungesättigten Fettsäuren vorliegen ( siehe auch: Enzymes in Lipid Modification; U. Bornscheuer ed.; Wiley-VCH, 2000). Diese Oxirane, die bei mehr als einer vorliegender Doppelbindung auch in Mehrzahl gebildet werden können, können als Kopplungsreagenzien und als Crosslinkingsreagenzien v.a. für Hydroxylgruppen aber auch Amin- oder Thiogruppen dienen. Dabei ist die in der Literatur nur die generelle Möglichkeit der Generierung solcher Oxirane beschrieben aber in keiner Weise die hier beschriebenen erfindungsgemäßen Anwendungen. Daher sind diese neu und erfinderisch,
Anwendungen der erfindungsgemäßen enzymatischen Oxidationssysteme (Red/ox- Systeme) und der Kopplungs- bzw. Crosslinksysteme
Die Oxidationssysteme (erfindungsgemäße Enzyme + Enhancer) sollen bevorzugt bei der Bleiche Delignifizierung von Zellstoffen, bei der Bleiche von Textilien (Baumwolle, Wolle), auch Demmbleiche von Jeansstoffen und bei der Bleiche in Waschmitteln eingesetzt werden.
Eine weiterhin besonders beγorzugte Anwendung ist der Einsatz der erfindungsgemäßen Enzyme und der erfindungsgemäßen Enhancer bei Koppelreaktionen (grafting von Polymerstoffen) oder Crosslinkreaktionen bevorzugt von natürlichen (d.h. in der Natur vorkommenden) oder künstlichen (d.h. synthetisch hergestellten) Monomeren bis Polymeren oder Gemischen zwischen natürlichen und künstlichen Polymeren bzw. Faserstoffen, besonders bevorzugt solche von lignocellulosehaltigen, cellulosehaltigen oder proteinhaltigen natürlichen Polymeren bzw. Faserstoffen wie Zellstoff, Textilien wie Baumwolle oder Wolle. Des weiteren sind solche Polymere vorzugsweise Biopolymere, gewonnen aus pflanzlichem, tierischem oder mikrobiellem Material, wie diese z.B. in Rauen, H.M., ed., „Biochemisches Taschenbuch", Springer Verlag, 1964; Elias, H-G. ed., „Makromoleküle" (Band 1 und 2), Hüthing & Wepf Verlag, 1992; Nuhn, P. ed., „Naturstoffchemie" ,S. Hirzel Verlag, 1997 und Steinbüchel, A. ed., "Biopolymers", Volumen 1-10, Wüley-VCH, 2003, beschrieben sind, bevorzugt.
Sie können erfindungsgemäß vorzugsweise komplexe, weniger komplexe bis relativ uniforme Polysaccaride und/oder erfindungsgemäß vorzugsweise komplexe, weniger komplexe, bis relativ uniforme Polyamine bzw. Proteine oder proteinartige Substanzen und/oder erfindungsgemäß vorzugsweise komplexe, weniger komplexe bis relativ uniforme Lignine, Lignane und/oder Huminsubstanzen und/oder erfindungsgemäß vorzugsweise komplexe, weniger komplexe bis relativ uniforme Polyester wie Polymilchsäuren, Polyglycolsäuren, Poly- ε-Caprolactone, Poly-ß-Hydroxybuttersäure, Poly- ß -Hydroxyvaleriansäure, Polydioxanone, Poly(ethylentherephthalate, Polymalonsäure, Polytartonsäure, Poly(orthoester), Polyanhydride, Polycyanoacrylate, Poly(Phosphoester) und Polyphosphazene und/oder Polyisoprenoide und/oder Fette oder Fettsäuren und/oder
Polynucleotide wie Desoxyribonukleinsäuren bzw. Ribonukleinsäuren, Mischpolymere wie Lipopolysaccaride, Glycoproteine, Glycolipide, Lipoproteine oder Derivate der genannten Stoffe sein. Im Falle von Polysaccariden werden insbesondere solche bevorzugt wie (auch beschrieben in Rauen, H.M „Biochemisches Taschenbuch" Seite 718- 734):
Stärke und Stärkederivate, Amylopektin, Glykogen, Lichenan, Pustulan, Laminarin, Lutean, Hefeglukan, Nigeran, Pullulan, Scleroglukan, Curdlan, Gellan, Emulsan, Acetan, Welan, Celluose und Cellulosederivate inklusive Zellstoffen, Dextrane und Dextranderivate, Mannane insbesondere Hefemannan, Xylane, Galaktane, Arbane, Xanthane, Tapioka, Inulin und andere Fruktosane des Inulintyps, Lävane,, Arabinogalaktane, Glukomannane, Galaktomannane, Galaktoglukomannane, Phosphomannane, Fukane, Agar, Agarose, Cyclodexrine, Carrageenane, Pektine (unverestert und verestert), Algine, Chitine, Chitosane, Heparine, Teichinsäuren, Hyaluronsäuren, Chondroitinschwefelsäuren, Carobin, Pflanzengummis wie: Gum Arabicum, Gum Tragacanth, Gum Karaya , Gum Ghatti, Gum Damar, Gum Locust Bean, Gum Rosin, Gum Elemi, Gum Guaiac, Gum Guar, Gum Mastic, Gum Storax, Gum Pontianak etc., Derivate der genannten Polysaccaride bzw. Mischungen. Ebenso besonders bevorzugt sind Proteine tierischer, pflanzlicher und mikrobieller Herkunft (auch beschrieben in : Rauen, H.M biochemisches Taschenbuch" Seite 778- 813): wie tierische Proteine wie: Albumine, Plasmen, Globuline, Fibrinogene, Thrombine, Milchproteine wie Caseine, Lactalbumine, Lactglobuline, tierische Gerüst- und Faserproteine wie Kollagene, Keratine, Fibroine, Actine, Myosine, Elastine, Gelatine, Seide und Wolle, Pflanzenproteine wie Getreideproteine wie Hordeine, Glutenine etc., Sojaproteine, Phaseoline, Legumine etc. bzw. Poly-(α-Aminosäuren).
Eine besonders bevorzugte Kopplungs-/Crosslinkanwendung ist die Verhinderung bzw. Abschwächung von durch Licht (UV), Sauerstoff und/oder Wärme erzeugten Nergilbungen von Holz, Zellstoff, Textilien, Plastik, Farbanstrichen, Teppichböden, bzw. allen dem Licht ausgesetzten Material. Insbesondere bevorzugt ist diese Verhütung der Vergilbung auch bei Zellstoffen, v.a. bei Hochausbeutezellstoffen, d.h. Zellstoffen, die einen hohen Ligningehalt aufweisen, der hauptsächlich für die starke Vergilbungsneigung verantwortlich ist. Insbesondere handelt es sich hier um gebleichten Hochausbeutezellstoff wie BTMP, BCTMP, gebleichten Holzschliff oder ungebleichten Hochausbeutezellstoff wie TMP, CTMP oder Holzschliff etc. Zur Erklärung des Effektes sei auf: Inhibition of Light Induced
Yellowing of Lignin-Containing Paper; C. Heitner et al., eds.; ACS Series, 1993 verwiesen. Bevorzugt sollen die Polymerstoffe bei dieser Anwendung mit Stoffen (UV-Absorbern) gecoated werden, bevorzugt mit Benzophenon- und Benzotriazolabkömmlingen aber auch para-Aminobenzoesäuren und Derivaten, Zimtsäure und Derivaten, 2-Phenylbenzimidazole und Derivaten, Dibenzoylmethane und Derivaten.
Ebenso werden Radikalfänger wie bevorzugt Stoffe, die zur Gruppe der Hydroxylamine oder ΝOH- Verbindungen gehören, bzw. insbesondere bevorzugt die zur Gruppe der Νitroxyl- Radikale (hindered Νitroxides, hindered Amines wie TEMPO Verbindungen) und/oder Νitronen gehören oder generell geeignete Antioxidantien gekoppelt. Ebenso wird bevorzugt mit optischen Aufheller-Substanzen wie Derivaten der Flavonsäure, Umbelliferonverbindungen, Cumarinverbindungen, sowie Verbindungen, die in: Detergents and Textil Washing; Jacoby et al; VCH, 1987 erwähnt sind, gekoppelt. Bei der Anwendung des Coatings und des Crosslinkens sollen generell auch Enzym/ Enhancer Systeme Anwendung finden, wie sie in den eigenen Anmeldungen WO/ 98/ 59108 (hier v.a. auch Laccase NO-, NOH-, und HNOH-Verbindungen), in PCT/DE02/02035, PCT/DE03/00201 und DE 10215277.2 beschrieben sind.
Im Folgenden ist die Erfindung durch Beispiele erläutert, soll aber nicht auf diese beschränkt sein.
Beispiel 1
Enzymatische Delignifizierung/BIeiche von Softwood θ2-delignifiziert (Sulfatzellstoff)
5 g atro Zellstoff (Softwood O2 delignifiziert), Stoffdichte 30% (ca. 17 g feucht) werden zu folgenden Lösungen gegeben: A) In 20 ml Leitungswasser werden 2-5 kg Natrium Isothiocyanat pro Tonne atro Zellstoff unter Rühren versetzt, der pH- Wert mit Schwefelsäure und/oder Natronlauge so eingestellt, dass nach Zugabe des Zellstoffs und des Enzyms ein pH- Wert von ca. 5 resultiert.
B) 5 ml Leitungswasser werden mit 5mg Peroxidase (HRP) (berechnet als reines
Enzymprotein) und 1.5 kgH2O2 pro Tonne atro Zellstoff versetzt. Die Lösungen A und B werden zusammen gegeben und auf 33 ml aufgefüllt.
Generell sollte die Stoffdichte zwischen 8 und 12.5% liegen.
Nach Zugabe des Zellstoffes wird für 2 min mit einem Teigkneter gemixt.
Danach wird der Stoff in ein auf 50°C vorgeheiztes Reaktionsgefäß gegeben und unter
Normaldruck für 1 - 4 Stunden inkubiert. Danach wird der Stoff über einem Nylonsieb (30 μm) gewaschen und 1.5 Stunden bei 70°C,
2% Stoffdichte und 8% NaOH pro g Zellstoff extrahiert.
Nach erneuter Wäsche des Stoffes wird die Kappazahl bestimmt.
Es konnte eine Delignifϊzierung von 37% erreicht werden.
Beispiel 2
Enzymatisches Coating von BCTMP Hochausbeutezellstoff zur Verhinderung der
Vergilbung durch UV-Licht
5 g atro Zellstoff (Hardwood BCTMP), Stoffdichte 30% (ca. 17 g feucht) werden zu / folgenden Lösungen gegeben:
A) In 20 ml Leitungswasser werden 2 kg Natrium Isothiocyanat pro Tonne atro Zellstoff unter Rühren versetzt, der pH-Wert mit Schwefelsäure und/oder Natronlauge so eingestellt, dass nach Zugabe des Zellstoffs und des Enzyms ein pH- Wert von ca. 5 resultiert.
B) 5 ml Leitungswasser werden mit 5mg Peroxidase (HRP) (berechnet als reines Enzymprotein) 1 kg Amino-TEMPO, 2.5 kg Tl-NUVIN 1130 (Benztriazol- Verbindung) und 1.5 kgH2O2 pro Tonne atro Zellstoff versetzt.
Die Lösungen A und B werden zusammen gegeben und auf 33 ml aufgefüllt. Generell sollte die Stoffdichte zwischen 8 und 12.5% liegen. Nach Zugabe des Zellstoffes wird für 2 min mit einem Teigkneter gemixt.
Danach wird der Stoff in ein auf 50°C vorgeheiztes Reaktionsgefäß gegeben und unter Normaldruck für eine Stunde inkubiert.
Danach wird der Stoff über einem Nylonsieb (30 μm) gewaschen und über eine Nutsche ein Blatt genutscht, welches im Trockner eines Blattbildners unter Vakuum getrocknet wird. Das Blatt wird für 24 Std. in einem SUNTEST UV Bestrahlungsgerät der Fa. Atlas bestrahlt, > 300nm. Die Vergilbung (in Reduktion von ISO Weiße) wird gemessen und mit einem unbehandelten Blatt (Ebenfalls im SUNTEST bestrahlt) verglichen. Es konnte eine Reduktion der Vergütung von mehr als 15 ISO Weiße % gemessen werden.

Claims

Patentansprüche
1. Verfahren zur Oxidation (Red/Ox Reaktionen) bevorzugt von Zellstoffen (Delignifizierung/Bleiche), für Kopplungsreaktionen (grafting von Polymerstoffen) oder für Crosslinkreaktionen von natürlichen (d.h. in der Natur vorkommenden) oder künstlichen (d.h. synthetisch hergestellten) Monomeren bis Polymeren oder Gemischen zwischen natürlichen und künstlichen Polymeren bzw. Faserstoffen, von lignocellulosehaltigen, cellulosehaltigen oder proteinhaltigen natürlichen Polymeren bzw. Faserstoffen wie Zellstoff, Textilien wie Baumwolle oder Wolle, dadurch gekennzeichnet, dass 1) diese Oxidationen, Kopplungsreaktionen oder Crosslinkreaktionen mit Hilfe von Hydrolasen wie Lipasen, Esterasen, Proteasen, Amidasen, Transferasen, Acylasen, Glycosidasen oder Glycotransferasen oder Oxidoreduktasen, wie bevorzugt Peroxidasen, Chloroperoxidasen und Laccasen, entweder in Einzahl oder in Kombination durchgeführt werden und des weiteren dadurch gekennzeichnet, dass 2) diese Reaktionen (Oxidationen, Kopplungsreaktionen oder Crosslinkreaktionen) mit sich selbst und/oder mit eigenschaftsverandernden Stoffen wie monomeren bis polymeren Substanzen (natürlichen oder synthetischen) entweder gleichzeitig oder nacheinander mit Hilfe von speziellen enzymaktivierten Enhancersubstanzen und/oder Kopplungssubstanzen durchgeführt werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Enzyme solche aus der Gruppe der Hydrolasen der Klassen 2.2, 2.4, 3.1, 3.2, 3.4, 3.5 und Oxidoreduktasen der Klassen 1.1 insbesondere 1.10.3.2 (Laccasen), 1.11.1.7. (Peroxidasen) und 1.11.1.10 (Chloroperoxidasen) eingesetzt werden.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Enhancersubstanzen solche aus der Gruppe der Isocyanate, der Isothiocyanate, der Thiocyanate und deren Dimere eingesetzt werden.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Oxidationssysteme das Peroxidase/ H2O2 - Systeme, Laccase/O2-Systeme oder Hydrolase/ H Oi/Fett- bzw. Fettsäure-Systeme (mit oder ohne Ketonadditive) mit Isocyanaten, Isothiocyanaten und/oder Thiocyanaten und deren Dimere als Enhancersubstanzen und/oder Kopplungssubstanzen und/oder Crosslinksubstanzen eingesetzt werden.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass neben Oxidoreduktasen oder oxidativen Hydrolasβ-Systemen Kopplungssubstanzen oder Kopplungsprecurser wie Fettsäuren, Fette, Fettsäureester (ggf. zusammen mit entsprechenden Emulatoren), Reaktivankerverbindungen (ß-Sulfooxyethylsulfonverbindungen etc.), Koppler wie Aldehyde, Anhydride, Hydraziden, Acrylderivative, Vinylderivative, Oxiranverbindungen und N-Hydroxysuccimidyl- Verbindungen und deren Dimere oder Trimere eingesetzt werden.
6. Verfahren nach Anspruch 1 und 5, dadurch gekennzeichnet, dass neben Oxidoreduktasen oder oxidativen Hydrolase-Sy stemen Kopplungssubstanzen oder Kopplungsprecurser wie ungesättigte Fettsäuren, Fette und Fettsäureester eingesetzt werden, die durch Reaktion mit den Hydrolasen (Lipasen) und H202 Perfettsäüren generieren können und dann spontan entsprechende Oxirane oder Bisoxirane etc. bilden.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Anwendungen solche wie Bleiche/Delignifizierung von Zellstoffen, Bleiche von Textilien (Baumwolle, Wolle), Bleiche in Waschmitteln, Kopplungsreaktionen (grafting von Polymerstoffen) oder Crosslinkreaktionen von natürlichen (d.h. in der Natur vorkommenden) oder künstlichen (d.h. synthetisch hergestellten) Monomeren bis Polymeren oder Gemischen zwischen natürlichen und künstlichen Polymeren bzw. Faserstoffen, von lignocellulosehaltigen, cellulosehaltigen oder proteinhaltigen natürlichen Polymeren bzw. Faserstoffen wie Zellstoff, Textilien wie Baumwolle oder Wolle durchgeführt werden.
8. Verfahren nach Anspruch 1 und 6, dadurch gekennzeichnet, dass sie für die Anwendimg zur Verhinderung bzw. Abschwächung von durch Licht (UV), Sauerstoff und/öder Wärme erzeugten Vergilbungen von Holz, Plastik, Textilien, Farbanstrichen, Teppichböden, bzw. allen dem Licht ausgesetzten Material insbesondere bevorzugt auch bei Zellstoffen v.a. bei Hochausbeutezellstoffen als Coating- (Kopplungs-) oder Crosslinksystem eingesetzt werden.
9. Verfahren nach Anspruch lund 8 dadurch gekennzeichnet, dass mit Stoffen wie UV- Absorbern, bevorzugt Benzophenonen und Benzotriazolabkömmlingen etc., mit Radikalfängern, bevorzugt Stoffen, die zur Gruppe der Hydroxylamine oder NOH- Verbindungen gehören, bzw. insbesondere bevorzugt, die zur Gruppe der Nitroxyl-Radikale (hindered Nitroxides, hindered Amines) und/oder Nitronen gehören und mit optischen Aufheller-Substanzen wie Derivate der Flavonsäure, Umbelliferonverbindungen, Cumarinverbindungen gecoated werden soll.
10. Verfahren nach Anspruch 1, 7 bis 9 dadurch gekennzeichnet, dass diese bei den Anwendungen bei pH 2-10 (bevorzugt 3-8), bei 10 bis 100 °C (bevorzugt 20- 70 °C) für 10 Minuten bis 36 Stunden (bevorzugt 0.5 Stunden bis 8 Stunden) und bei Stoffdichten von 0.5% bis 40% (bevorzugt 1% bis 12.5%) im wässrigen Milieu oder in Mischsystemen Wasser/Lösungsmittel unter Luft, Sauerstoff oder anderen Gasen wie C02 etc. unter Druck oder Normaldruck durchgeführt werden.
PCT/DE2005/000762 2004-04-26 2005-04-26 Oxidative, reduktive, hydrolytische und andere enzymatische systeme zur oxidation, reduktion, zum coaten, koppeln und crosslinken von natürlichen und künstlichen faserstoffen, kunststoffen oder anderen natürlichen und künstlichen mono- bis polymerstoffen WO2005103372A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05749924A EP1743066A2 (de) 2004-04-26 2005-04-26 Oxidative, reduktive, hydrolytische und andere enzymatische systeme zur oxidation, reduktion, zum coaten, koppeln und crosslinken von natürlichen und künstlichen faserstoffen, kunststoffen oder anderen natürlichen und künstlichen mono- bis polymerstoffen
AU2005235662A AU2005235662A1 (en) 2004-04-26 2005-04-26 Oxidative, reductive, hydrolytic and other enzymatic systems for oxidizing, reducing, coating, coupling or cross-linking natural and artificial fiber materials, plastic materials or other natural or artificial monomer to polymer materials
CA002564380A CA2564380A1 (en) 2004-04-26 2005-04-26 Oxidative, reductive, hydrolytic and other enzymatic systems for oxidizing, reducing, coating, coupling or cross-linking natural and artificial fiber materials, plastic materials or other natural or artificial monomer to polymer materials
US11/587,639 US20080070284A1 (en) 2004-04-26 2005-04-26 Oxidative, Reductive, Hydrolytic and Other Enzymatic Systems for Oxidizing, Reducing, Coating, Coupling or Cross-Linking Natural and Artificial Fiber Materials, Plastic Materials or Other Natural or Artificial Monomer to Polymer Materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004020355.5 2004-04-26
DE102004020355A DE102004020355A1 (de) 2004-04-26 2004-04-26 Oxidative, reduktive, hydrolytische und andere enzymatische Systeme zur Oxidation, Reduktion, zum Coaten, Koppeln und Crosslinken von natürlichen und künstlichen Faserstoffen, Kunststoffen oder anderen natürlichen und künstlichen Mono- bis Polymerstoffen

Publications (2)

Publication Number Publication Date
WO2005103372A2 true WO2005103372A2 (de) 2005-11-03
WO2005103372A3 WO2005103372A3 (de) 2006-03-16

Family

ID=34972654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2005/000762 WO2005103372A2 (de) 2004-04-26 2005-04-26 Oxidative, reduktive, hydrolytische und andere enzymatische systeme zur oxidation, reduktion, zum coaten, koppeln und crosslinken von natürlichen und künstlichen faserstoffen, kunststoffen oder anderen natürlichen und künstlichen mono- bis polymerstoffen

Country Status (6)

Country Link
US (1) US20080070284A1 (de)
EP (1) EP1743066A2 (de)
AU (1) AU2005235662A1 (de)
CA (1) CA2564380A1 (de)
DE (1) DE102004020355A1 (de)
WO (1) WO2005103372A2 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008076738A3 (en) * 2006-12-18 2008-11-27 Novozymes North America Inc Detoxifying pre-treated lignocellulose-containing materials
WO2010015715A2 (de) * 2008-08-07 2010-02-11 Bioscreen E.K. Enzymatische verfahren zum koppeln und crosslinken von natürlichen und künstlichen faserstoffen, kunststoffen oder anderen mono- bis polymerstoffen
DE102009025190A1 (de) 2009-06-12 2010-12-16 Call, Krimhild Enzymatische Systeme zum Koppeln und Cross-linken von Textilien und Biomaterialien für Medizinprodukte und von anderen Stoffen und/oder Materialien
WO2012110564A1 (en) * 2011-02-16 2012-08-23 Novozymes A/S Detergent compositions comprising m7 or m35 metalloproteases
US9828597B2 (en) 2006-11-22 2017-11-28 Toyota Motor Engineering & Manufacturing North America, Inc. Biofunctional materials
US10563094B2 (en) 2011-09-09 2020-02-18 Toyota Motor Engineering & Manufacturing North America, Inc. Coatings containing polymer modified enzyme for stable self-cleaning of organic stains
US10767141B2 (en) 2010-06-21 2020-09-08 Toyota Motor Engineering & Manufacturing North America, Inc. Thermolysin for easy-cleaning of insect body stains
US10988714B2 (en) 2010-06-21 2021-04-27 Regents Of The University Of Minnesota Methods of facilitating removal of a fingerprint from a substrate or a coating
US11015149B2 (en) 2010-06-21 2021-05-25 Toyota Motor Corporation Methods of facilitating removal of a fingerprint
US11624044B2 (en) 2010-06-21 2023-04-11 Toyota Motor Corporation Compositions for facilitating biological stain removal

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107002049A (zh) * 2014-12-16 2017-08-01 诺维信公司 具有n‑乙酰基葡萄糖胺氧化酶活性的多肽
CN110747679B (zh) * 2019-09-23 2022-04-26 西南科技大学 解淀粉芽孢杆菌多酶液/h2o2净化制浆竹片表面抽出物杂质的方法
CN113480694B (zh) * 2021-08-04 2023-12-15 绍兴文理学院 酶催化接枝改性棉浆纤维素及其制备再生生物塑料的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998059108A2 (de) 1997-06-20 1998-12-30 Blume, Hildegard Oxidations- und bleichsystem mit enzymatisch hergestellten oxidationsmitteln
DE10215277A1 (de) 2002-04-06 2003-10-16 Call Krimhild Oxidationssysteme mit Hydrolase katalysierter Bildung von Hydroxamsäuren

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA904441B (en) * 1989-06-22 1991-03-27 Int Paper Co Enzymatic delignification of lignocellulosic material
FI905456A (fi) * 1990-11-02 1992-05-03 Enso Gutzeit Oy Foerfarande foer blekning av cellulosamassa.
DK144192D0 (da) * 1992-12-01 1992-12-01 Novo Nordisk As Aktivering af enzymer
CA2115881C (en) * 1993-02-25 2000-05-23 Michael G. Paice Non-chlorine bleaching of kraft pulp
US5908472A (en) * 1996-01-12 1999-06-01 Novo Nordisk A/S Fabric treated with cellulase and oxidoreductase
WO1998039406A1 (en) * 1997-03-07 1998-09-11 The Procter & Gamble Company Bleach compositions
US6023065A (en) * 1997-03-10 2000-02-08 Alberta Research Council Method and apparatus for monitoring and controlling characteristics of process effluents
PL336319A1 (en) * 1997-04-17 2000-06-19 Novo Nordisk Biochem Inc Enzymatic discharge printing of patterns on dyed textiles
DE19820947B4 (de) * 1997-05-12 2005-12-01 Call, Krimhild Enzymatisches Bleichsystem mit neuen enzymwirkungsverstärkenden Verbindungen zum Verändern, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien oder Verändern oder Abbau von Kohle sowie Verfahren unter Verwendung des Bleichsystems
TR199902957T2 (xx) * 1997-06-10 2004-12-21 Unilever N.V. Bir enzimin etkinli�ini art�rma y�ntemi, a�art�c� bile�imi, deterjan bile�imi ve boya aktar�m�n� �nleme y�ntemi.
DE10203135A1 (de) * 2002-01-26 2003-07-31 Call Krimhild Neue katalytische Aktivitäten von Oxidoreduktasen zur Oxidation und/oder Bleiche
US20050205574A1 (en) * 2002-11-15 2005-09-22 Alexander Lambotte Water-soluble portion packaging with a filling

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998059108A2 (de) 1997-06-20 1998-12-30 Blume, Hildegard Oxidations- und bleichsystem mit enzymatisch hergestellten oxidationsmitteln
DE10215277A1 (de) 2002-04-06 2003-10-16 Call Krimhild Oxidationssysteme mit Hydrolase katalysierter Bildung von Hydroxamsäuren

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
"Enzyme Nomenclature", 1992, ACADEMIC PRESS, INC., pages: 24 - 154
"Enzyme Nomenclature", 1992, ACADEMIC PRESS, INC., pages: 306 - 337
APPENDIX, vol. 3, 2004, pages 1637 - 1642
C. HEITNER ET AL.,: "ACS Series", 1993
ELIAS, H-G.: "Makromoleküle", vol. 1, 2, 1992, HÜTHING & WEPF VERLAG
G.T. HERMANSON ET AL.: "Immobilized Affinity Techniques", 1992, ACADEMIC PRESS
G.T. HERMANSON: "Bioconjugate Techniques", 1996, ACADEMIC PRESS
JACOBY ET AL.: "Detergents and Textil Washing", 1987, VCH
KLESSINGER; MICHL: "Lichtabsorption u. Photochemie organischer Moleküle", 1989, VCH
NUHN, P.: "Naturstoffchemie", 1997, S. HIRZEL VERLAG
RAUEN, H.M, BIOCHEMISCHES TASCHENBUCH, pages 718 - 734
RAUEN, H.M, BIOCHEMISCHES TASCHENBUCH, pages 778 - 813
RAUEN, H.M.,: "Biochemisches Taschenbuch", 1964, SPRINGER VERLAG
S.S. WONG: "Chemistry of Protein Conjugation and Cross-linking", 1991, CRC PRESS
STEINBÜCHEL, A.: "Biopolymers", vol. 1-10, 2003, WILLEY-VCH
U. BORNSCHEUER: "Enzymes in Lipid Modification", 2000, WILEY-VCH
ZOLLINGER: "Color Chemistry", 1987, VCH

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10781438B2 (en) 2006-11-22 2020-09-22 Toyota Motor Engineering & Manufacturing North America, Inc. Biofunctional materials
US11236323B2 (en) 2006-11-22 2022-02-01 Toyota Motor Corporation Biofunctional materials
US9828597B2 (en) 2006-11-22 2017-11-28 Toyota Motor Engineering & Manufacturing North America, Inc. Biofunctional materials
US11225654B2 (en) 2006-11-22 2022-01-18 Toyota Motor Corporation Biofunctional materials
WO2008076738A3 (en) * 2006-12-18 2008-11-27 Novozymes North America Inc Detoxifying pre-treated lignocellulose-containing materials
WO2010015715A2 (de) * 2008-08-07 2010-02-11 Bioscreen E.K. Enzymatische verfahren zum koppeln und crosslinken von natürlichen und künstlichen faserstoffen, kunststoffen oder anderen mono- bis polymerstoffen
WO2010015715A3 (de) * 2008-08-07 2010-08-05 Bioscreen E.K. Verfahren zur epoxidation ungesättigter fettsäuren und anschliessender kopplung dieser unter verwendung einer lipase
DE102009025190A1 (de) 2009-06-12 2010-12-16 Call, Krimhild Enzymatische Systeme zum Koppeln und Cross-linken von Textilien und Biomaterialien für Medizinprodukte und von anderen Stoffen und/oder Materialien
US11015149B2 (en) 2010-06-21 2021-05-25 Toyota Motor Corporation Methods of facilitating removal of a fingerprint
US10988714B2 (en) 2010-06-21 2021-04-27 Regents Of The University Of Minnesota Methods of facilitating removal of a fingerprint from a substrate or a coating
US10767141B2 (en) 2010-06-21 2020-09-08 Toyota Motor Engineering & Manufacturing North America, Inc. Thermolysin for easy-cleaning of insect body stains
US11254898B2 (en) 2010-06-21 2022-02-22 Toyota Motor Corporation Bioactive protein-polymer compositions
US11624044B2 (en) 2010-06-21 2023-04-11 Toyota Motor Corporation Compositions for facilitating biological stain removal
US11692156B2 (en) 2010-06-21 2023-07-04 Toyota Motor Corporation Bioactive protein-polymer compositions for stain removal
WO2012110564A1 (en) * 2011-02-16 2012-08-23 Novozymes A/S Detergent compositions comprising m7 or m35 metalloproteases
US10563094B2 (en) 2011-09-09 2020-02-18 Toyota Motor Engineering & Manufacturing North America, Inc. Coatings containing polymer modified enzyme for stable self-cleaning of organic stains
US11535773B2 (en) 2011-09-09 2022-12-27 Toyota Motor Corporation Coatings containing polymer modified enzyme for stable self-cleaning of organic stains
US11542410B2 (en) 2011-09-09 2023-01-03 Toyota Motor Corporation Coatings containing enzyme for stable self-cleaning of organic stains
US11566149B2 (en) 2011-09-09 2023-01-31 Toyota Motor Corporation Coatings containing polymer modified enzyme for stable self-cleaning of organic stains
US11597853B2 (en) 2011-09-09 2023-03-07 Toyota Motor Corporation Coatings containing polymer modified enzyme for stable self-cleaning of organic stains

Also Published As

Publication number Publication date
DE102004020355A1 (de) 2005-11-10
AU2005235662A1 (en) 2005-11-03
CA2564380A1 (en) 2005-11-03
WO2005103372A3 (de) 2006-03-16
US20080070284A1 (en) 2008-03-20
EP1743066A2 (de) 2007-01-17

Similar Documents

Publication Publication Date Title
WO2005103372A2 (de) Oxidative, reduktive, hydrolytische und andere enzymatische systeme zur oxidation, reduktion, zum coaten, koppeln und crosslinken von natürlichen und künstlichen faserstoffen, kunststoffen oder anderen natürlichen und künstlichen mono- bis polymerstoffen
Singh et al. Utility of laccase in pulp and paper industry: A progressive step towards the green technology
US6214976B1 (en) Chemical method for lignin depolymerization
DE102009025190A1 (de) Enzymatische Systeme zum Koppeln und Cross-linken von Textilien und Biomaterialien für Medizinprodukte und von anderen Stoffen und/oder Materialien
JP3017178B2 (ja) リグニン、リグニン含有材料又は類似材料を変化させ、分解し又は漂白するための多成分系及びリグニン含有材料の脱リグニン化方法
EP0825294B2 (de) Mehrkomponentensystem zum Verändern, Abbau oder Bleichen von Lignin, oder ligninhaltigen Materialien sowie Verfahren zu seiner Anwendung
Cadena et al. On hexenuronic acid (HexA) removal and mediator coupling to pulp fiber in the laccase/mediator treatment
US20070163735A1 (en) Method for reducing brightness reversion of mechanical pulps and high-yield chemical pulps
WO1999023117A1 (en) Method for modification of cellulose
WO1998026127A1 (de) Mehrkomponentensystem zum verändern, abbau oder bleichen von lignin, ligninhaltigen materialien oder ähnlichen stoffen sowie verfahren zu seiner anwendung
US20150122429A1 (en) Method for producing pulp having low lignin content from lignocellulosic material
DE10203135A1 (de) Neue katalytische Aktivitäten von Oxidoreduktasen zur Oxidation und/oder Bleiche
CA2079000C (en) Method for the use of enzymes in processing and bleaching of paper pulp, and apparatus for use thereof
WO1999054545A1 (en) Oxidase process for pulp and dye oxidation
EP2310519A2 (de) Verfahren zur epoxidation ungesättigter fettsäuren und anschliessender kopplung dieser unter verwendung einer lipase
Chakar et al. The effects of oxidative alkaline extraction stages after laccaseHBT and laccaseNHAA treatments-an NMR study of residual lignins
EP2286028B1 (de) Verfahren zur verminderung der lichtinduzierten vergilbung von ligninhaltigem material
DE19723629B4 (de) Verfahren zum Behandeln von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen
Moriya et al. Enzymatic bleaching of organosolv sugarcane bagasse pulps with recombinant xylanase of the fungus Humicola grisea and with commercial Cartazyme HS xylanase
Betcheva et al. Biobleaching of flax by degradation of lignin with laccase
WO2010046542A1 (en) Method for preparing modified fiber products
Chandra Improving the brightness and bleachability of douglas-fir mechanical pulps using white-rot fungi and laccase enzymes
WO2023238458A1 (ja) カルバメート化セルロース繊維の製造方法及びカルバメート化セルロース微細繊維の製造方法
WO2009069143A2 (en) Synergistic composition and a process for biobleaching of ligno cellulosic pulp
JP2023180893A5 (de)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2564380

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005749924

Country of ref document: EP

Ref document number: 2005235662

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2005235662

Country of ref document: AU

Date of ref document: 20050426

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005235662

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2005749924

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11587639

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11587639

Country of ref document: US