WO2005103282A1 - Method of measuring active oxygen - Google Patents

Method of measuring active oxygen Download PDF

Info

Publication number
WO2005103282A1
WO2005103282A1 PCT/JP2005/007948 JP2005007948W WO2005103282A1 WO 2005103282 A1 WO2005103282 A1 WO 2005103282A1 JP 2005007948 W JP2005007948 W JP 2005007948W WO 2005103282 A1 WO2005103282 A1 WO 2005103282A1
Authority
WO
WIPO (PCT)
Prior art keywords
antioxidant
active oxygen
biological samples
fluorescent reagent
sets
Prior art date
Application number
PCT/JP2005/007948
Other languages
French (fr)
Japanese (ja)
Inventor
Hideyuki Majima
Original Assignee
Mitochondria Research Institute Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitochondria Research Institute Co., Ltd. filed Critical Mitochondria Research Institute Co., Ltd.
Priority to JP2006512644A priority Critical patent/JPWO2005103282A1/en
Publication of WO2005103282A1 publication Critical patent/WO2005103282A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5076Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving cell organelles, e.g. Golgi complex, endoplasmic reticulum
    • G01N33/5079Mitochondria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label

Definitions

  • the present invention relates to a method for measuring active oxygen generated from mitochondria, and a method for quantifying the antioxidant ability of an antioxidant using the method.
  • telomeres With respect to aging, the importance of telomeres has been pointed out by the importance of the ⁇ kuroto (k 1 o t ho) gene. However, it was difficult for the telomere (k 1 o t ho) gene alone to fully explain health and aging. Recently, it has been revealed that the causes of many nervous diseases and incurable diseases of unknown origin, such as aging and Alzheimer's, Parkinson's, ALS (amyotrophic lateral sclerosis), are actually diseases of reactive oxygen species. It is getting. These diseases are often accompanied by chronic rather than acute symptoms. Apoptosis (cell death) is said to be involved in these diseases, and it has been reported that mitochondria play an important role in apoptosis.
  • Mitochondria contain 165969 base pairs of DNA, and oxidative stress causes many mutations in this mitochondrial DNA, causing aging and many neurological diseases such as Alzheimer, Parkinson, and ALS. It is said that the relationship between stress oxide and mitochondrial disorders is highlighted.
  • This electron transport system exists in the inner mitochondrial membrane, and ATP (adenosine triphosphate) synthesis is performed under oxygen.
  • This electron transport system is a complex (C om p 1 ex) 1: -IV, composed of ATP synthase (synthase) and ATP / ADP (adenosine diphosphate) translocator (trans 1 ocator). While this complex biomachine is the largest energy-producing organ in a cell, it is not a perfect machine and is known to leak electrons. This electron leakage is most abundant from complexes (Comp 1 ex) I and III. Normally, even under normal conditions, 2-3% of the electrons leak, which is thought to be the source of superoxide.
  • Fig. 1 shows a part of the in vivo reaction of active oxygen.
  • oxygen radical ( ⁇ 2 - ') and hydrogen peroxide (Eta 2 0 2) is by reaction, hydroxycarboxylic radical (Omikuron'ita ⁇ ) is generated.
  • the oxygen radical ( ⁇ 2 - ⁇ ) and nitrogen monoxide radicals (vo-) and is .nu.0 3 radicals by reacting (Nyu_ ⁇ 3 ⁇ ) is generated.
  • Both the hydroxyl radical and the ⁇ 03 radical are highly reactive substances.
  • Daltathione reductase transfers electrons from reduced nicotinamide adenine dinucleotide phosphate (NADPH) to oxidized daltathione, which converts oxidized daltathione to reduced daltathione (GSH) and reduces it. Nicotinamide dodenine dinucleotide phosphate is converted to oxidized nicotinamide dodenine dinucleotide phosphate (NADP).
  • NADP oxidized nicotinamide dodenine dinucleotide phosphate
  • Glucose 6-phosphate dehydratase converts oxidized nicotinamide amide adenine into prostaglandin (PG) in the pentose phosphate cycle during the process of converting prostaglandin (PG) to dalcose-6-phosphate (G6P).
  • the dinucleotide phosphate is converted back to reduced nicotinamide dodenine dinucleotide phosphate.
  • antioxidants antioxidant drugs, foods, etc.
  • Patent Document 1 discloses a method for measuring the amount of 8-OhdG, which is oxidized DNA in a living body. Have been. Also, “Free Rad. Res. Comms., Vol. 14, No. 3, pp. 173-178, 1991” (hereinafter referred to as Non-Patent Document 1) states that active oxygen or antioxidant against cells, animals, and humans is described. Methods for evaluating the effects of substances and cytotoxicity on active oxygen and hydrogen peroxide are disclosed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 08-1898929
  • Non-Patent Document 1 Free Rad. Res. Comms., Vol. 14, No. 3, pp. 173-178,
  • activated acids using conventional reagents such as DCF, DHR, HE, etc.
  • the elemental detection method could measure intracellular active oxygen, but could not verify which organelle it originated from.
  • some reagents generate a positive or negative charge when dyeing active oxygen, and the active oxygen stained with such a reagent has a negative charge on the cell membrane plus the negative charge. It was extremely difficult to identify only the mitochondrial-derived active oxygen and measure the amount of active oxygen generated, because it was drawn to the outer membrane of the tochondria and the original generation site was unknown.
  • the conventional measuring methods include a method of removing cells from a living body after the administration of the antioxidant, measuring the antioxidant ability of the antioxidant, a method of measuring by a chemical reaction in a test tube, According to the former, there is a possibility that accurate measurement cannot be performed due to the time lag from the moment of administration, and the latter cannot be quantitatively expressed.
  • the present invention has been made based on the above technical background, and an object of the present invention is to provide a method capable of accurately measuring the amount of mitochondrial-derived active oxygen in a cell. It is in.
  • Another object of the present invention is to provide a method for accurately quantifying the antioxidant ability of various antioxidants.
  • Another object of the present invention is to provide a scientific basis for antioxidants from the viewpoint of preventing aging and promoting health by accurately quantifying the antioxidant ability of various antioxidants. It is to provide an evaluation method.
  • the method for measuring active oxygen generated from mitochondria comprises a method of applying a fluorescent reagent having a property of specifically reacting with active oxygen in cells to a biological sample.
  • Steps and the first step In a state where the fluorescent reagent contained in the biological sample obtained in the step is excited, the biological sample is microscopically photographed and subjected to photoelectric conversion processing to obtain a fluorescent image containing one or more cells in the field of view.
  • the biological sample may be any of a human cell, an animal cell, and a plant cell, or may be a cell at any site.
  • the fluorescent reagent a reagent capable of measuring hydroxy radical, singlet oxygen, or superoxide may be used.
  • the active oxygen in the cells is stained using a fluorescent reagent that specifically acts on the hydroxyl radical, singlet oxygen, and superoxide among the active oxygens.
  • Active oxygen derived from mitochondria can be trapped in the active oxygen.
  • HPF or APF is used among the fluorescent reagents that can measure hydroxy radical, singlet oxygen, or superoxide
  • the selective use of HPF and APF to selectively stain the hydroxyl radical among the active oxygen is also possible.
  • DMAX is used as the fluorescent reagent, singlet oxygen can be selectively fluorescently stained. Since the fluorescent reagents of HPF, APF, and DMAX do not have a positive or negative charge, they are attracted to the oppositely charged site like the conventional fluorescent reagents, and the original active oxygen generating organs There is no problem of not knowing.
  • the method for quantifying the antioxidant ability of the antioxidant according to the present invention comprises the following steps: a first step of preparing two sets of biological samples having the same active oxygen generation characteristics; The antioxidant to be quantified for antioxidant capacity is applied to one of the two sets of biological samples prepared in the first step, while the other set of biological samples is In the second step, an antioxidant is used as a standard for quantification of antioxidant capacity, and the same set of active oxygen inducers are used for the two sets of biological samples to which the antioxidant is applied in the second step.
  • a fifth step of obtaining two sets of fluorescent images including: a sixth step of obtaining a sum of luminance of constituent pixels in a predetermined area for each of the two sets of fluorescent images obtained in the fifth step;
  • the antioxidant material to be quantified for the antioxidant capacity is the sum of the luminance on the side where the antioxidant material is applied, which is the standard for quantifying the antioxidant capacity.
  • antioxidant refers to chemicals, foodstuffs, etc. having (or possibly having) antioxidant ability.
  • the antioxidant capacity can be easily determined from the total brightness of the images taken by the microscope.
  • the amount of active oxygen generated significantly increases when a biological sample is stimulated with active oxygen, and the difference between the antioxidant used as the measurement reference and the antioxidant of the antioxidant used as the measurement target becomes clearer. become. It is possible to relatively express the antioxidant ability of the antioxidant to be measured by administering the antioxidant to be measured and the antioxidant to be measured to biological samples under the same conditions and comparing them. It is.
  • the amount of active oxygen generated can be measured more accurately than the method of removing cells from the body after administering antioxidants. It is possible to
  • the active oxygen-induced stimulus may be given either before or after administration of the antioxidant.
  • the active oxygen-induced stimulus may be X-ray irradiation.
  • the reactive oxygen-induced stimulus may be application of a site force-in.
  • HPF, APF, or DMAX may be used as a fluorescent reagent having a property of specifically reacting with active oxygen in cells. If HPF or APF is used as a fluorescent reagent, it is possible to selectively fluorescently stain hydroxy radicals, especially among active oxygens. If DMAX is used, it is possible to selectively fluorescently stain singlet oxygen. It is.
  • Vitamin E may be used as an antioxidant used as a standard for quantifying antioxidant capacity. According to this configuration, vitamin E, which is relatively easy to obtain, is used as an antioxidant capacity measurement standard, resulting in “two times the antioxidant power of vitamin E” and “five times the antioxidant power of vitamin E” It is possible to show the antioxidant power of various antioxidants in an easy-to-understand expression like this.
  • a biological sample having the same active oxygen generation characteristics may be a biological sample obtained from a previously prepared standard individual.
  • the “standard individual” refers to one sample included in a certain sample group such as a cell line, a lineage animal and a plant, and a subject.
  • Biological samples having the same active oxygen generation characteristics may be biological samples obtained from specific individuals who should take the antioxidant.
  • the “specific individual” refers to one individual, one individual, a mutant strain, a plant or animal, a human, a gene or a protein treated with a drug, etc.
  • the antioxidant to be quantified is orally administered to a specific individual to whom the antioxidant is to be taken, and then the specific individual A biological sample is collected from the sample to measure the amount of antioxidant taken into cells, and the amount of antioxidant applied when quantifying antioxidant capacity is adjusted according to the measured value of intake. Is also good.
  • active oxygen generated from mitochondria among active oxygen in cells is identified, and the amount of active oxygen generated from mitochondria is measured to visually determine It is possible to confirm this.
  • FIG. 1 is a diagram showing a reaction formula of an antioxidant enzyme.
  • FIG. 2 is a diagram showing the progress of active oxygen suppression.
  • FIG. 3 is a diagram schematically showing a mitochondrial membrane surface.
  • FIG. 4 is a diagram showing the structure of HPF.
  • FIG. 5 is a diagram showing the structure of DMAX.
  • FIG. 6 is a diagram showing the fluorescence activity of HPF.
  • FIG. 7 is a diagram showing the fluorescence activity by DMAX.
  • Fig. 8 is a graph (1) showing the fluorescence sensitivity.
  • FIG. 9 is a graph (part 2) showing the fluorescence sensitivity.
  • FIG. 10 is a graph (part 3) showing the fluorescence sensitivity.
  • FIG. 11 is a graph (part 4) showing the fluorescence sensitivity.
  • FIG. 12 is a graph (part 1) showing the antioxidant ability of the antioxidant.
  • Figure 13 is a graph (part 2) showing the antioxidant capacity of antioxidants.
  • Figure 14 is a graph (part 3) showing the antioxidant capacity of antioxidants.
  • FIG. 15 is a diagram illustrating the first embodiment of the present application.
  • FIG. 16 is a diagram illustrating a second embodiment of the present application.
  • FIG. 17 is a diagram illustrating a third embodiment (part 1) of the present application.
  • FIG. 18 is a view for explaining the third embodiment (No. 2) of the present application.
  • FIG. 19 is a photomicrograph of 144 B cells. BEST MODE FOR CARRYING OUT THE INVENTION
  • the method for measuring active oxygen comprises: a first step of applying a fluorescent reagent having a property of specifically reacting with active oxygen in cells to a biological sample; In a state where the fluorescent reagent contained in the biological sample obtained in step 1 is excited, the biological sample is subjected to confocal microscopy imaging and photoelectric conversion processing, so that one or more cells can be seen in the field of view.
  • Mitochondria have long been suspected as a source of active oxygen in living cells.However, even though conventional methods can prove that active oxygen exists in cells, any of these active oxygen sources can It was not possible to identify whether it originated from a small organ.
  • the present inventors have verified active oxygen generated from mitochondria by the following method, and have verified that most of active oxygen in cells is generated from mitochondria.
  • FIG. 19 shows a micrograph of a fluorescent reagent applied to 144 B cells.
  • 1a is a state in which the active oxygen in the cell is fluorescently stained with HE
  • 1b is a state in which the mitochondria in the cell are stained with mitochondrial green
  • 1c is a superimposition of 1a and 1b.
  • Things. 2a is a state in which the active oxygen in the cell is fluorescently stained with HPF
  • 2b is a state in which the mitochondrial in the cell is stained with mitochondrial
  • 2c is a state in which 2a and 2b are superimposed. is there.
  • the stained area of HE does not completely overlap with the mitochondrial image (lc), it is clear from the figure that the stained area of HPF completely matches the mitochondria.
  • HPF is Hydroxyphenyl Fluorescein
  • APe is Aminophenyl Fluorescein
  • both are fluorescent reagents that specifically detect hydroxyl radical (OH) and peroxynitrite (ONOO-).
  • DMAX is 9_ [2- (3-carboxy-9,10_dimethyl) anthryl] 6-hydroxy-3H-xanthen-3, which is a fluorescent reagent having high reactivity with singlet oxygen.
  • DMAX-DA (a) is hydrolyzed or reacted with esterase to obtain DM AX (b), and DMAX (b) reacts with -doublet oxygen to form DMAX-EP (c).
  • DMAX-DA (a) is hydrolyzed or reacted with esterase to obtain DM AX (b), and DMAX (b) reacts with -doublet oxygen to form DMAX-EP (c).
  • DMAX-DA a
  • DMAX-EP reacts with -doublet oxygen to form DMAX-EP
  • the present inventor has discovered that by fluorescently staining a biological sample using a fluorescent reagent such as HPF or DMAX, active oxygen generated from mitochondria can be fluorescently colored. Based on this finding, it became possible to measure the change in the amount of active oxygen before and after administration of the antioxidant, and to quantitatively measure the antioxidant ability of the antioxidant.
  • a fluorescent reagent such as HPF or DMAX
  • a biological sample (A) is collected from a standard individual 100 and divided into two, and one of the biological samples contains an antioxidant (B x) to be measured, and the other has an antioxidant ( B ref).
  • a biological sample to which an antioxidant has been administered is given an active oxygen-induced stimulus (C) and a fluorescent reagent (E) for staining active oxygen, and allowed to stand for a predetermined time (for example, about 2 hours). Then take a picture with a confocal microscope. Image processing is performed on the obtained microscopic images, and the total brightness is calculated for each image. The total brightness (D x) of the antioxidant to be measured and the total brightness (D ref) of the antioxidant to be measured are determined.
  • FIG. A biological sample (A) is collected from a standard individual 100, divided into two, and an active oxygen-inducing stimulus (C) and a fluorescent reagent (E) for staining active oxygen are added to each of the biological samples.
  • a third embodiment (No. 1) of the present application is shown in FIG.
  • an antioxidant to be measured is orally administered to a specific individual 200, and then blood, cells, etc. are taken to measure the amount of the antioxidant taken into the body.
  • the subsequent antioxidant ability test can be performed under the same conditions as when the antioxidant is actually administered orally, so that the test can be performed under almost the same conditions as when the antioxidant is actually ingested.
  • a biological sample (A) is collected from a specific individual 200, and a biological sample A is collected and divided into two parts.
  • One of the biological samples contains an antioxidant (B x) to be measured, and the other has an antioxidant as a measurement reference.
  • the biological sample to which the antioxidant has been added is given an active oxygen-induced stimulus (C) and a fluorescent reagent (E) for staining active oxygen, and allowed to stand for a predetermined period of time. Take a picture.
  • the obtained microscope images are image-processed, and the total brightness is calculated for each image.
  • the total brightness (D x) of the antioxidant to be measured and the total brightness (D ref) of the antioxidant to be measured are measured.
  • a third embodiment (No. 2) of the present application is shown in FIG.
  • an antioxidant to be measured is orally administered to a specific individual 200, and then blood, cells, etc. are taken to measure the amount of antioxidant taken into the body, and the amount taken into the body Determine the dose of antioxidant (B x, B ref) to biological sample (A) according to.
  • a biological sample (A) is collected from a specific individual 200 and divided into two, and each of the divided biological samples is given an active oxygen-induced stimulus (C) and a fluorescent reagent (E) for staining active oxygen.
  • an antioxidant (B x) to be measured is added to one biological sample, and an antioxidant (B ref) to be a measurement reference is added to the other biological sample, and the mixture is added for a predetermined time (for example, about 2 hours).
  • a predetermined time for example, about 2 hours.
  • Image processing is performed on the obtained microscopic images, and the luminance sum is calculated for each image.
  • the activity is calculated from the luminance sum (D x) of the antioxidant to be measured and the luminance sum (D ref) of the antioxidant to be measured. Calculate the remaining amount of oxygen and determine the antioxidant capacity of the antioxidant to be measured.
  • the comparison was made between the antioxidant to be measured and the reference antioxidant, but the biological sample was divided into three or more samples, and multiple antioxidants were used. The antioxidant ability may be measured simultaneously, or a blank sample without any antioxidant may be used.
  • the context of the timing of the administration of the fluorescent reagent (E) and the timing of the application of the antioxidant (B x, B ref) / reactive oxygen-stimulating stimulus (C) is not specified, but the fluorescent reagent (E) is altered. If it is a type that is easy to administer, the timing of administration should be considered.
  • FIG. 2 shows a state in which active oxygen is suppressed by a substance having antioxidant ability.
  • Figure 2 (a) shows the cells irradiated with X-rays and observed 2 hours after. In the figure, the colored area is where active oxygen derived from mitochondria is generated. From this figure, it can be seen that a large amount of active oxygen is generated from mitochondria by X-ray irradiation.
  • Fig. 2 (b) shows the cells exposed to X-rays, vitamin E immediately after, and the cells observed two hours later. It is clear that the amount of generated active oxygen is suppressed as compared with Fig. 2 (a).
  • FIG. 2 (a) shows the cells exposed to X-rays and the hydroxy radicals observed 2 hours after. A comparison with the photograph in which only mitochondria was stained showed that more active oxygen was generated than in mitochondria.
  • FIG. 2 (b) shows the state of the hydroxy radical 2 hours after vitamin E administration immediately after X-ray irradiation. It was found that the degree of light emission was clearly smaller than in the case of Fig. 2 (a), and less active oxygen was generated. From these results, it was proved that the administration of vitamin E suppressed the generation of active oxygen.
  • FIG. 12 is a graph comparing the degree of fluorescence emission of the cells shown in FIG.
  • FIG. 12 shows that the administration of vitamin E suppresses the generation of active oxygen regardless of before and after X-ray irradiation.
  • Reactive oxygen inducement
  • FIG. 13 shows an example in which DMAX was used as the fluorescent stain in the case of FIG. DMAX is a fluorescent stain that selectively stains singlet oxygen, as opposed to HPF, which selectively stains hydroxyl radicals.
  • Figure 14 shows a graph comparing the apoptosis incidence after irradiating a biological sample with X-rays (18.8 Gy). As in the case of Figs. 12 and 13, (a) When only X-ray (18.8 Gy) irradiation is performed,
  • FIG. 6 shows a state in which various cells were fluorescently stained with HPF
  • FIG. 7 shows a state in which various cells were stained with DMAX.
  • (a) is a human cell (143B)
  • (b) is an mtDNA-deficient cell (p0)
  • (c) is a cell in which normal mitochondria have been returned to p0 cells ( 8 7
  • FIGS. 8 and 9 show the fluorescence sensitivities of the cells stained with HPF by fluorescence, and quantify the fluorescence sensitivities (a) to (f) in FIG.
  • FIGS. 10 and 11 show the fluorescence sensitivities of the cells fluorescently stained using DMAX, and numerically represent the fluorescence sensitivities of (a) to (f) in FIG. is there.
  • Figure 3 shows a schematic diagram showing the movement of internal and external substances on the mitochondrial membrane surface.
  • 1 is the outer membrane
  • 2 is the complex ( CO mplex, the same applies hereinafter) I
  • 3 is the complex II
  • 4 is the complex III
  • 5 is the complex IV
  • 6 is the ATP Synthase
  • 7 is ATP / ADP Translocator
  • 8 is inner membrane
  • 9 is cytochrome C
  • 10 is coenzyme (3,)
  • the side on which outer membrane 1 is provided that is, the lower part of the figure
  • the outer side of the mitochondria and the side where the intima 8 is provided is the inner side of the mitochondria.
  • Figure 3 shows a schematic diagram of the reaction on the mitochondrial membrane surface.
  • 1 is outer membrane
  • 2 is complex I
  • 3 is complex II
  • 4 is complex I II
  • 5 is complex IV
  • 6 is ATP synthase
  • 7 is ATP ADP translocator
  • 8 Is the inner membrane
  • 9 is cytochrome C
  • 10 is coenzyme Q
  • the process from complex I to IV is the electron transport system.
  • Hydrogen carried as NADH 2 + moves from complex I to the transmembrane space, and at the same time two electrons are passed to the capture enzyme Q.
  • the electrons carried as FADH 2 are also passed from complex ⁇ to coenzyme Q.
  • Hydrogen of reduced ubiquinone is released as 2 H + in the chain with complex III and moves to the intermembrane space.
  • the electrons are passed to complex III.
  • the electrons passed to complex III are sent to complex IV via cytochrome C, which is superficial on the mitochondrial membrane.
  • Complex IV oxidizes reduced cytochrome C, the resulting electrons are passed to o 2 molecule. 1 2 0 molecules 2 are attached water two H + Upon binding to one molecule of the matrix.
  • HPF or DMAX is preferred as the fluorescent reagent used for staining active oxygen.
  • Conventional fluorescent reagents such as DCF, DHR, and HE sometimes become positively or negatively charged after reacting with active oxygen, and are sometimes biased toward sites having the opposite charge. In other words, with these fluorescent reagents, it was very difficult to specify where the stained active oxygen originated because it did not stop at that spot after staining with active oxygen.
  • the charge is not biased to a specific side unlike the conventional fluorescent reagent, and the generation site of the active oxygen can be reliably specified.
  • human cells (143B) were used (other cells may be used). Human cells were cultured at 37 ° C in air containing 5% carbon dioxide using Dulbecco's MEM culture solution containing 10% fetal bovine serum. The cells are seeded on a glass bottom dish (MatTek Corp., Ashland, Mass., USA) containing the above culture solution and cultured for approximately one day under the above conditions. Explanation This culture Ha Nkusu solution (HB SS) (1 0. OmM HE PES, 1. 0 mM Mg C 12, 2 mM C a CJ 2, and 2. 7 mM glucose, p H 0. 0 5) to Replace.
  • HB SS Ha Nkusu solution
  • Vitamin ⁇ administration non The ratio is determined from the fluorescence intensity of the administration.
  • the antioxidant extracted from foods is added to the culture medium in the same manner as vitamin E, and the fluorescence intensity of HPF is examined. The antioxidant ability is compared with the case of vitamin E administration. Reactive oxygen detection using HPF was detected near the mitochondria and matched the distribution of the mitochondria-specific detection reagent (Mitotracker Red) . Using HPF, active oxygen generated from mitochondria was detected. It was verified that. Industrial applicability
  • the method for quantifying the antioxidant ability of the antioxidant according to the present invention it is possible to measure the antioxidant ability of various foods and drugs and visually recognize the same.
  • image processing it is possible to quantify and compare the antioxidant ability of foods, drugs, and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A method of accurately measuring the amount of active oxygen generated by intracellular mitochondria. There is provided a method of measuring active oxygen generated by mitochondria, characterized by including the first step of applying a fluorescent reagent capable of specific reaction with intracellular active oxygen to a biosample; the second step of obtaining a fluorescent image containing one or two or more cells in its visual field by subjecting to micrography and photoelectric conversion treatment the biosample resulting from the first step and having the contained fluorescent reagent held in an excited state; the third step of determining the sum of luminance values of constituent pixels within a given region of the fluorescent image obtained in the second step; and the fourth step of identifying the amount of active oxygen generated by intracellular mitochondria on the basis of the sum of luminance values of constituent pixels determined in the third step.

Description

明 細 書 活性酸素の測定方法 技術分野  Description Method for measuring active oxygen Technical field
本発明は、 ミ トコンドリアから発生する活性酸素の測定方法、 並びに、 同方法を応用した抗酸化材の抗酸化能を定量化する方法に関するもので ある。 背景技術  The present invention relates to a method for measuring active oxygen generated from mitochondria, and a method for quantifying the antioxidant ability of an antioxidant using the method. Background art
老化に関しては、 テロメァの重要性ゃクロト (k 1 o t h o ) 遺伝子 の重要性が指摘されてきた。 しかしながら、 テロメァゃクロ ト (k 1 o t h o ) 遺伝子だけでは、 健康や老化を充分に説明することは困難であ つた。 最近、 老化及ぴアルツハイマー、 パーキンソン、 A L S (筋萎縮 性側索硬化症) 等、 多くの神経疾患や原因不明の難病等の原因が、 実は、 活性酸素の病気であると言うことが明らかにされつつある。 これらの病 気は、 急性ではなくて慢性の症状を伴うことが多い。 これらの疾患では、 アポトーシス (細胞死) が関連することが言われており、 アポトーシス にはミ トコンドリアが重要な役割を果たしていることが報告されている。 ミ トコンドリアには 1 6 5 6 9塩基対の D N Aが存在し、 酸化ス トレス によりこのミ トコンドリア D N Aに突然変異を多く発生させ、 老化、 及 ぴアルツハイマー、 パーキンソン、 A L S等、 多くの神経疾患の原因と なっていると言われており、 酸化ス トレスとミ トコンドリア障害との関 連が浮き彫りにされている。  With respect to aging, the importance of telomeres has been pointed out by the importance of the ゃ kuroto (k 1 o t ho) gene. However, it was difficult for the telomere (k 1 o t ho) gene alone to fully explain health and aging. Recently, it has been revealed that the causes of many nervous diseases and incurable diseases of unknown origin, such as aging and Alzheimer's, Parkinson's, ALS (amyotrophic lateral sclerosis), are actually diseases of reactive oxygen species. It is getting. These diseases are often accompanied by chronic rather than acute symptoms. Apoptosis (cell death) is said to be involved in these diseases, and it has been reported that mitochondria play an important role in apoptosis. Mitochondria contain 165969 base pairs of DNA, and oxidative stress causes many mutations in this mitochondrial DNA, causing aging and many neurological diseases such as Alzheimer, Parkinson, and ALS. It is said that the relationship between stress oxide and mitochondrial disorders is highlighted.
ミ トコンドリア内膜には電子伝達系が存在し酸素下で A T P (アデノ シン 3リン酸) 合成が行われている。 この電子伝達系は複合体 (C o m p 1 e x) 1:〜 IV、 AT Pシンターゼ (s y n t h a s e) 、 及ぴ A TP/ADP (アデノシン 2リン酸) トランスロケータ (t r a n s 1 o c a t o r ) から構成されている。 この複雑なバイオマシンは細胞中 の最も大きなエネルギー製造器官となっているが、 一方完璧なマシンで はなく、 電子の漏れが生ずることが知られている。 この電子の漏れは、 複合体 (C omp 1 e x) Iと IIIから最も多く生ずる。 通常、 正常な状 態でも 2〜 3 %の電子の漏れが生じ、 これからスーパーォキサイ ドが発 生すると考えられている。 即ち、 この漏れ電子は酸素により捕獲され、 酸素はスーパーオキサイ ドとなる。 ミ トコンドリアには、 特有のマンガ ンスーパーォキサイ ドが存在するが、 この酵素の役割はこのスーパーォ キサイ ドを捕獲する役割上において重要であることが容易に示唆される。 最近、 この電子伝達系の異常による病気が多数報告されつつある。 例 えば、 パーキンソン病では、 電子伝達系の複合体 (C omp 1 e x) I にその異常が集中している。 前述のように、 この部分は最も大きな電子 の漏れを生じさせており、 この電子の漏れによりスーパーオキサイ ドが 生ずることが原因として考えられる。 パーキンソン病のほか、 多くの神 経系疾患ではもミ トコンドリア DNAの突変異が報告されている。 これ らの疾患でも同様にミ トコンドリァからの大量のスーパーォキサイ ドの 発生が容易に予想され、 これが病因となっている可能性が大きい。 老化 に関する研究では、 細胞の加齢に伴いミ トコンドリア DNAの欠損が生 ずる、 いわゆるコモンアイ レーシヨン (c ommo n d e 1 e t i o n) が起こることが知られている。 また、 神経障害疾患では、 特に、 こ のコモンディレーションが早期に起こり始めることが知られている。 ミ トコンドリァ DN Aコモンディレーションでは、 この部分が特に電子伝 達系の AT P a s e蛋白質を部分的にコードしているため、 前述のよう に、 より大量のスーパーォキサイドが放出されている可能性が大きい。 活性酸素の生体内における反応の一部が図 1に示されている。 同図に 示されるように、 酸素ラジカル (〇2- ') と過酸化水素 (Η202) が反 応することにより、 ヒ ドロキシラジカル (ΟΗ · ) が発生する。 また、 酸素ラジカル (〇2- · ) と一酸化窒素ラジカル (ΝΟ · ) とが反応する ことにより Ν03ラジカル (Ν〇3 · ) が発生する。 ヒ ドロキシラジカル と Ν03ラジカルはいずれも反応性の高い物質である。 An electron transport system exists in the inner mitochondrial membrane, and ATP (adenosine triphosphate) synthesis is performed under oxygen. This electron transport system is a complex (C om p 1 ex) 1: -IV, composed of ATP synthase (synthase) and ATP / ADP (adenosine diphosphate) translocator (trans 1 ocator). While this complex biomachine is the largest energy-producing organ in a cell, it is not a perfect machine and is known to leak electrons. This electron leakage is most abundant from complexes (Comp 1 ex) I and III. Normally, even under normal conditions, 2-3% of the electrons leak, which is thought to be the source of superoxide. That is, the leaked electrons are captured by oxygen, and the oxygen becomes superoxide. Mitochondria have a unique manganese superoxide, but it is easily suggested that the role of this enzyme is important in the role of capturing this superoxide. Recently, a large number of diseases caused by this electron transport system abnormality are being reported. For example, in Parkinson's disease, the abnormalities are concentrated in the electron transport complex (Comp 1 ex) I. As described above, this part causes the largest leakage of electrons, and it is considered that the cause is that superoxide is generated by this leakage of electrons. In addition to Parkinson's disease, mutations in mitochondrial DNA have been reported in many neurological disorders. Similarly, the occurrence of a large amount of superoxide from mitochondria is likely to occur in these diseases as well, and this is likely to be the etiology. In studies on aging, it is known that mitochondrial DNA deficiency occurs with the aging of cells, so-called common ionization (commonde 1 etion). In neuropathic diseases, it is known that this common duration starts to occur early. In the mitochondrial DNA common dilation, this part, in particular, partially encodes the ATPase protein of the electron transport system, and as described above, a larger amount of superoxide may be released. Great nature. Fig. 1 shows a part of the in vivo reaction of active oxygen. In the figure As shown, oxygen radical (〇 2 - ') and hydrogen peroxide (Eta 2 0 2) is by reaction, hydroxycarboxylic radical (Omikuron'ita ·) is generated. The oxygen radical (〇 2 - ·) and nitrogen monoxide radicals (vo-) and is .nu.0 3 radicals by reacting (Nyu_〇 3 ·) is generated. Both the hydroxyl radical and the Ν03 radical are highly reactive substances.
酸素ラジカル (〇2- · ) がスーパー 'オキサイ ド 'ディムスターゼOxygen radicals (〇 2- ·) form super 'oxide' dimutase
(S OD) と反応することにより過酸化水素 (H202) となり、 この過 酸化水素とカタラーゼ (CAT) とが反応することにより水 (H20) と酸素 (〇2) になる。 また、 過酸化水素とダルタチオンペルォキシダ ーゼ (GPX) とが反応することにより、 水 (H20) と酸化型グルタ チオン (GS SG) とが発生する。 ダルタチオン還元酵素 (GR) は、 還元型ニコチンアミ ドアデニンジヌクレオチドリン酸 (NADPH) よ りの電子を酸化型ダルタチオンに転移し、 これにより酸化型ダルタチォ ンは還元型ダルタチオン (GSH) となり、 還元型ニコチンアミ ドアデ ニンジヌクレオチドリン酸は酸化型ニコチンァミ ドアデニンジヌクレオ チドリン酸 (NADP) となる。 グルコース 6リン酸脱水酵素 (G 6 P D) は、 ペントースリン酸回路にてプロスタグランジン (PG) をダル コース- 6-リン酸 (G 6 P) に変換する過程にて、 酸化型ニコチンアミ ドアデニンジヌクレオチドリン酸を還元型ニコチンァミ ドアデニンジヌ クレオチドリン酸に戻す。 By reacting with (S OD), it becomes hydrogen peroxide (H 2 0 2 ), and by reacting this hydrogen peroxide with catalase (CAT), it becomes water (H 2 0) and oxygen ( 2 ). Moreover, by hydrogen peroxide and Dar glutathione peroxide O Kishida over peptidase (GPX) are reacted water (H 2 0) and oxidized glutathione (GS SG) and is generated. Daltathione reductase (GR) transfers electrons from reduced nicotinamide adenine dinucleotide phosphate (NADPH) to oxidized daltathione, which converts oxidized daltathione to reduced daltathione (GSH) and reduces it. Nicotinamide dodenine dinucleotide phosphate is converted to oxidized nicotinamide dodenine dinucleotide phosphate (NADP). Glucose 6-phosphate dehydratase (G6PD) converts oxidized nicotinamide amide adenine into prostaglandin (PG) in the pentose phosphate cycle during the process of converting prostaglandin (PG) to dalcose-6-phosphate (G6P). The dinucleotide phosphate is converted back to reduced nicotinamide dodenine dinucleotide phosphate.
前述のスーパーォキサイ ドについて、 活性酸素のうちスーパーォキサ イ ド (02 · - ) こそが、 活性酸素群系列の最初を担う重要な物質である と言う説がある。 1 9 6 9年にフリードピッチ (F r i d ο V i c h) 博士がスーパーォキサイ ドを駆除するスーパーォキサイ ドデイスムター ゼ (S OD) を発見している。 スーパーオキサイ ドと一酸化炭素は容易 に反応し、 ぺロキシナイ トライ ト (p e r o x i n i t r i t e) と言 う反応活性の著しく高い物質に変わることがわかった。 出願人らは、 1 9 9 8年にマンガンスーパーォキサイ ドディスムターゼの遺伝子をトラ ンスフエタ トした細胞では、 活性酸素刺激により生ずるアポトーシスに 対し抵抗性を示すことを明らかにした (Ma j i ma等、 J B C, 1 9 9 8) 。 すなわち、 ミ トコンドリア内スーパーオキサイ ドの量を少なく するようにコントロールすることこそ、 一連の後に続く生体内反応を制 御することが可能であると言うことを意味している。 For Super O genius de described above, of the active oxygen Supaokisa Lee de (0 2 · -) is what, there is a theory to say that is an important substance responsible for the first of the active oxygen group series. In 1969, Dr. Frid ο Vich discovered a Superox de dismutase (SOD) that eliminates superoxides. Superoxide and carbon monoxide easily reacted with each other and turned into peroxinitrite, a substance with extremely high reaction activity. Applicants 1 In 1998, it was shown that cells transfected with the manganese superoxide dismutase gene exhibited resistance to apoptosis induced by reactive oxygen species (Majima et al., JBC, 1989). ). In other words, controlling the amount of superoxide in mitochondria to be reduced means that it is possible to control a series of subsequent in vivo reactions.
ミ トコンドリアから発生する活性酸素こそが、 老化や神経障害等の原 因となっている可能性が大きい。 従って、 抗酸化能を有する薬剤、 食品 等 (以下、 抗酸化材とする) がミ トコンドリア由来の活性酸素をどれだ け抑えるかを調べることによりこれらの抗酸化材の抗酸化能を調べるこ とが可能である。  It is highly likely that active oxygen generated from mitochondria is the cause of aging and neuropathy. Therefore, the antioxidant capacity of mitochondrial-derived active oxygen should be examined by examining the extent to which antioxidant drugs, foods, etc. (hereinafter referred to as antioxidants) suppress active oxygen derived from mitochondria. Is possible.
現在、 細胞内活性酸素の検出には 2, 7 d i c h 1 o r o f 1 u o r e s c e i n d i a c e t a t e (D C F ) 、 d i h y d r o r h i d am i n e 1 2 3 (DHR) 、 h y d r o e t h i d i n e (H E) 等の試薬を用いた方法が存在する。  Currently, detection of intracellular reactive oxygen using reagents using methods such as 2,7 dich 1 o r o f 1 u o r e s c e in d i a c e t a t e (DCF), d i h y d r o r h i d am i n e 1 2 3 (DHR), and h y d r o e t h i d e n (H E).
活性酸素抑制の効果がある抗酸化材の抗酸化能の測定方法としては、 試験管内において化学反応により測定する方法が主流である。 このよう な測定法の一つとして、 特開平 08— 1 8 9 929号公報 (以下、 特許 文献 1とする) には、 生体中で酸化された DNAである 8- OhdG量の測定 法が開示されている。 また、 「Free Rad. Res. Comms. , 14卷、 3号、 17 3-178頁、 1991」 (以下、 非特許文献 1とする) には、 細胞や動物 · ヒ トに対する活性酸素もしくは抗酸化物の影響、 活性酸素や過酸化水素に 対する細胞毒性の評価法が開示されている。  As a method of measuring the antioxidant ability of an antioxidant having an effect of suppressing active oxygen, a method of measuring the antioxidant ability by a chemical reaction in a test tube is mainly used. As one of such measurement methods, Japanese Patent Application Laid-Open No. 08-189929 (hereinafter referred to as Patent Document 1) discloses a method for measuring the amount of 8-OhdG, which is oxidized DNA in a living body. Have been. Also, “Free Rad. Res. Comms., Vol. 14, No. 3, pp. 173-178, 1991” (hereinafter referred to as Non-Patent Document 1) states that active oxygen or antioxidant against cells, animals, and humans is described. Methods for evaluating the effects of substances and cytotoxicity on active oxygen and hydrogen peroxide are disclosed.
[特許文献 1 ] 特開平 0 8— 1 8 9 9 2 9号公報  [Patent Document 1] Japanese Patent Application Laid-Open No. 08-1898929
[非特許文献 1] Free Rad. Res. Comms. , 14卷、 3号、 173 - 178頁、 [Non-Patent Document 1] Free Rad. Res. Comms., Vol. 14, No. 3, pp. 173-178,
1991 1991
しかしながら、 DC F、 DHR、 HE等の従前の試薬を用いた活性酸 素検出方法では、 細胞内の活性酸素の測定は行えても、 いずれの小器官 から発生するかの検証を行うことはできなかった。 また、 活性酸素を染 色する際にプラスまたはマイナスの電荷を生じてレまう試薬もあり、 こ のような試薬で染色された活性酸素はマイナスの電荷を持つ細胞膜ゃプ ラスの電荷を持つミ トコンドリア外膜に引き寄せられてしまい元々の発 生箇所がわからなくなるため、 ミ トコンドリア由来の活性酸素のみを特 定してその活性酸素発生量を測定することは極めて困難であった。 However, activated acids using conventional reagents such as DCF, DHR, HE, etc. The elemental detection method could measure intracellular active oxygen, but could not verify which organelle it originated from. In addition, some reagents generate a positive or negative charge when dyeing active oxygen, and the active oxygen stained with such a reagent has a negative charge on the cell membrane plus the negative charge. It was extremely difficult to identify only the mitochondrial-derived active oxygen and measure the amount of active oxygen generated, because it was drawn to the outer membrane of the tochondria and the original generation site was unknown.
また抗酸化能の測定方法に関しては、 従前の測定方法は抗酸化材の投 与後に生体内から細胞を取り出し抗酸化材の抗酸化能を測定する方法、 試験管内において化学反応により測定する方法、 等が用いられており、 前者によれば投与の瞬間よりのタイムラグで正確に測定できない可能性 があり、 後者によっても定量的には表現できないという問題点があった。 この発明は、 上述した技術的背景に基づいてなされたものであり、 そ の目的とするところは、 細胞内のミ トコンドリア由来の活性酸素発生量 を正確に測定することができる方法を提供することにある。  Regarding the method of measuring the antioxidant capacity, the conventional measuring methods include a method of removing cells from a living body after the administration of the antioxidant, measuring the antioxidant ability of the antioxidant, a method of measuring by a chemical reaction in a test tube, According to the former, there is a possibility that accurate measurement cannot be performed due to the time lag from the moment of administration, and the latter cannot be quantitatively expressed. The present invention has been made based on the above technical background, and an object of the present invention is to provide a method capable of accurately measuring the amount of mitochondrial-derived active oxygen in a cell. It is in.
この発明の他の目的とするところは、 各種抗酸化材の有する抗酸化能 を正確に定量化することができる方法を提供することにある。  Another object of the present invention is to provide a method for accurately quantifying the antioxidant ability of various antioxidants.
この発明の他の目的とするところは、 各種抗酸化材の有する抗酸化能 を正確に定量化することにより、 老化阻止や健康増進の観点から、 抗酸 化材に関して、 科学的に根拠のある評価方法を提供することにある。  Another object of the present invention is to provide a scientific basis for antioxidants from the viewpoint of preventing aging and promoting health by accurately quantifying the antioxidant ability of various antioxidants. It is to provide an evaluation method.
この発明のさらに他の目的並びに作用効果については、 以下の記述を 参照することにより、 当業者であれば容易に理解されるであろう。 発明の開示  Still other objects, functions and effects of the present invention will be easily understood by those skilled in the art by referring to the following description. Disclosure of the invention
上記の目的を達成するために、 本発明のミ トコンドリアから発生する 活性酸素の測定方法は、 生体試料に対して細胞内の活性酸素と特異的に 反応する性質を有する蛍光試薬を適用する第 1のステップと、 第 1のス テツプで得られた生体試料に含まれる蛍光試薬を励起させた状態におい て、 当該生体試料を顕微鏡撮影並びに光電変換処理することにより、 1 もしくは 2以上の細胞を視野に含む蛍光画像を取得する第 2のステップ と、 第 2のステップで取得された蛍光画像の所定領域内の構成画素の輝 度総和を求める第 3のステップと、 第 3のステップで求められた構成画 素の輝度総和に基づいて細胞内のミ トコンドリアから発生する活性酸素 の量を同定する第 4のステップと、 を具備するものである。 ここで、 生 体試料としては、 ヒ ト細胞、 動物細胞、 植物細胞のいずれでもよく、 ま た、 いずれの部位の細胞でもよい。 In order to achieve the above object, the method for measuring active oxygen generated from mitochondria according to the present invention comprises a method of applying a fluorescent reagent having a property of specifically reacting with active oxygen in cells to a biological sample. Steps and the first step In a state where the fluorescent reagent contained in the biological sample obtained in the step is excited, the biological sample is microscopically photographed and subjected to photoelectric conversion processing to obtain a fluorescent image containing one or more cells in the field of view. A second step, a third step of calculating the total brightness of constituent pixels within a predetermined area of the fluorescent image acquired in the second step, and a total brightness of the constituent pixels obtained in the third step. And identifying the amount of active oxygen generated from mitochondria in the cells. Here, the biological sample may be any of a human cell, an animal cell, and a plant cell, or may be a cell at any site.
そしてこのような構成によれば、 ミ トコンドリア由来の活性酸素の発 生量を特定することが可能である。  According to such a configuration, it is possible to specify the amount of mitochondrial-derived active oxygen generated.
ここで、 蛍光試薬としては、 ヒ ドロキシラジカル、 一重項酸素、 もし くは、 スーパーオキサイ ドを測定可能な試薬を用いてもよい。 このよう な構成によれば、 活性酸素の中でも特にヒ ドロキシラジカル、 一重項酸 素、 スーパーォキサイ ドと特異的に作用する蛍光試薬を用いて細胞中の 活性酸素を染色するため、 細胞内の活性酸素のうちミ トコンドリア由来 の活性酸素を捕捉可能である。  Here, as the fluorescent reagent, a reagent capable of measuring hydroxy radical, singlet oxygen, or superoxide may be used. According to such a configuration, the active oxygen in the cells is stained using a fluorescent reagent that specifically acts on the hydroxyl radical, singlet oxygen, and superoxide among the active oxygens. Active oxygen derived from mitochondria can be trapped in the active oxygen.
また、 ヒ ドロキシラジカル、 一重項酸素、 もしくは、 スーパーォキサ ィ ドを測定可能な試薬な蛍光試薬の中で特に H P F、 A P Fを用いれば、 活性酸素の中でも特にヒ ドロキシラジカルを選択的に蛍光染色すること が可能であり、 蛍光試薬として D MA Xを用いれば一重項酸素を選択的 に蛍光染色することが可能である。 H P F、 A P F、 D MA Xのいずれ の蛍光試薬もプラス ·マイナスのいずれにも電荷が偏らないため、 従前 の蛍光試薬のように逆の電荷をもつ箇所に引き寄せられて元々の活性酸 素発生器官がわからない、 という問題が生じることもない。  In addition, if HPF or APF is used among the fluorescent reagents that can measure hydroxy radical, singlet oxygen, or superoxide, the selective use of HPF and APF to selectively stain the hydroxyl radical among the active oxygen is also possible. When DMAX is used as the fluorescent reagent, singlet oxygen can be selectively fluorescently stained. Since the fluorescent reagents of HPF, APF, and DMAX do not have a positive or negative charge, they are attracted to the oppositely charged site like the conventional fluorescent reagents, and the original active oxygen generating organs There is no problem of not knowing.
次に、 本発明にかかる抗酸化材の抗酸化能を定量化する方法は、 同一 の活性酸素発生特性を有する生体試料を 2組用意する第 1のステップと、 第 1のステップで用意された 2組の生体試料のうちの一方の組の生体試 料には、 抗酸化能定量化の対象となる抗酸化材を適用する一方、 他方の 組の生体試料には抗酸化能定量化の基準となる抗酸化材を適用する第 2 のステップと、 第 2のステップにて抗酸化材が適用された 2組の生体試 料に対して、 同一の活性酸素誘因刺激を与える第 3のステップと、 第 3 のステップにて活性酸素誘因刺激が与えられた 2組の生体試料のそれぞ れに対して、 細胞内の活性酸素と特異的に反応する性質を有する蛍光試 薬を適用する第 4のステップと、 第 4のステップで蛍光試薬が適用され た 2組の生体試料のそれぞれを、 その蛍光試薬が励起された状態におい て、 顕微鏡撮影並びに光電変換処理することにより、 それぞれ 1もしく は 2以上の細胞を視野に含む 2組の蛍光画像を取得する第 5のステップ と、 第 5のステップで取得された 2組の蛍光画像のそれぞれについて、 所定領域内の構成画素の輝度総和を求める第 6のステップと、 第 6のス テツプにて求められた 2組の輝度総和について、 抗酸化能定量化の基準 となる抗酸化材が適用された側の輝度総和に対する、 抗酸化能定量化の 対象となる抗酸化材が適用された側の輝度総和の比を求める第 7のステ ップとを具備するものである。 Next, the method for quantifying the antioxidant ability of the antioxidant according to the present invention comprises the following steps: a first step of preparing two sets of biological samples having the same active oxygen generation characteristics; The antioxidant to be quantified for antioxidant capacity is applied to one of the two sets of biological samples prepared in the first step, while the other set of biological samples is In the second step, an antioxidant is used as a standard for quantification of antioxidant capacity, and the same set of active oxygen inducers are used for the two sets of biological samples to which the antioxidant is applied in the second step. The third step of applying a stimulus and the property of reacting specifically with the active oxygen in the cell to each of the two sets of biological samples to which the active oxygen-induced stimulus was applied in the third step Fourth step of applying the fluorescent reagent and microscopic imaging and photoelectric conversion of each of the two sets of biological samples to which the fluorescent reagent has been applied in the fourth step, with the fluorescent reagent being excited To see one or two or more cells each A fifth step of obtaining two sets of fluorescent images including: a sixth step of obtaining a sum of luminance of constituent pixels in a predetermined area for each of the two sets of fluorescent images obtained in the fifth step; For the two sets of luminance sums determined in step 6, the antioxidant material to be quantified for the antioxidant capacity is the sum of the luminance on the side where the antioxidant material is applied, which is the standard for quantifying the antioxidant capacity. And a seventh step of calculating a ratio of the sum of luminance on the side to which is applied.
ここで、 「抗酸化材」 とは、 抗酸化能を有する (もしくは有する可能 性のある) 薬品ゃ食材等のことである。  Here, the term “antioxidant” refers to chemicals, foodstuffs, etc. having (or possibly having) antioxidant ability.
そして、 このような構成によれば、 顕微鏡撮影画像の輝度総和より抗 酸化能の定量が容易に行える。 また、 生体試料に活性酸素誘因刺激を与 えることにより活性酸素の発生量が著しく増加し、 測定基準となる抗酸 化材と測定対象となる抗酸化材の抗酸化能との差異がより明確になる。 測定基準となる抗酸化材と測定対象となる抗酸化材とを同条件の生体 試料に投与して比較することにより、 測定対象となる抗酸化材の抗酸化 能を相対的に表すことが可能である。 加えて、 抗酸化材を投与した後に 細胞を生体内から取り出す方法よりも精度高く活性酸素発生量を測定す ることが可能である。 According to such a configuration, the antioxidant capacity can be easily determined from the total brightness of the images taken by the microscope. In addition, the amount of active oxygen generated significantly increases when a biological sample is stimulated with active oxygen, and the difference between the antioxidant used as the measurement reference and the antioxidant of the antioxidant used as the measurement target becomes clearer. become. It is possible to relatively express the antioxidant ability of the antioxidant to be measured by administering the antioxidant to be measured and the antioxidant to be measured to biological samples under the same conditions and comparing them. It is. In addition, the amount of active oxygen generated can be measured more accurately than the method of removing cells from the body after administering antioxidants. It is possible to
また、 活性酸素誘因刺激を与えるのは抗酸化材投与前、 投与後のいず れでもよい。  The active oxygen-induced stimulus may be given either before or after administration of the antioxidant.
本発明の好ましい実施の形態においては、 活性酸素誘因刺激が X線照 射であってもよい。 また、 活性酸素誘因刺激がサイ ト力インの適用であ つてもよい。  In a preferred embodiment of the present invention, the active oxygen-induced stimulus may be X-ray irradiation. Further, the reactive oxygen-induced stimulus may be application of a site force-in.
ここで、 細胞内の活性酸素と特異的に反応する性質を有する蛍光試薬 として H P F、 A P F、 D MA Xを用いてもよい。 蛍光試薬として H P F、 A P Fを用いれば活性酸素の中でも特にヒ ドロキシラジカルを選択 的に蛍光染色することが可能であり、 D MA Xを用いれば一重項酸素を 選択的に蛍光染色することが可能である。  Here, HPF, APF, or DMAX may be used as a fluorescent reagent having a property of specifically reacting with active oxygen in cells. If HPF or APF is used as a fluorescent reagent, it is possible to selectively fluorescently stain hydroxy radicals, especially among active oxygens.If DMAX is used, it is possible to selectively fluorescently stain singlet oxygen. It is.
抗酸化能定量化の基準となる抗酸化材としては、 ビタミン Eを用いて もよい。 このような構成によれば、 入手が比較的容易であるビタミン E を抗酸化能測定基準とすることにより、 「ビタミン Eの 2倍の抗酸化 力」 「ビタミン Eの 5倍の抗酸化力」 のようにわかりやすい表現で様々 な抗酸化材の抗酸化力を示すことが可能となる。  Vitamin E may be used as an antioxidant used as a standard for quantifying antioxidant capacity. According to this configuration, vitamin E, which is relatively easy to obtain, is used as an antioxidant capacity measurement standard, resulting in “two times the antioxidant power of vitamin E” and “five times the antioxidant power of vitamin E” It is possible to show the antioxidant power of various antioxidants in an easy-to-understand expression like this.
同一の活性酸素発生特性を有する生体試料が、 予め用意された標準個 体から取得された生体試料であってもよい。  A biological sample having the same active oxygen generation characteristics may be a biological sample obtained from a previously prepared standard individual.
ここで 「標準個体」 とは、 細胞株、 系統動植物、 被検体等のとあるサ ンプル群に含まれる 1サンプルのことである。  Here, the “standard individual” refers to one sample included in a certain sample group such as a cell line, a lineage animal and a plant, and a subject.
そして、 このような構成によれば、 ある集合の中の一個体を標準個体 として用いることにより、 そのサンプル群に対する当該抗酸化材のおお よその効果を予測することが可能である。  According to such a configuration, by using one individual in a certain set as a standard individual, it is possible to predict the effect of the antioxidant on the sample group.
同一の活性酸素発生特性を有する生体試料が、 当該抗酸化材を服用す べき特定個体から取得された生体試料であってもよい。  Biological samples having the same active oxygen generation characteristics may be biological samples obtained from specific individuals who should take the antioxidant.
ここで、 「特定個体」 とは 1個体、 1個人、 突然変異株、 薬剤等で処 置された動植物ないしはヒ ト、 遺伝子ないしはタンパク質を導入された 細胞、 トランスジヱニック動植物、 クローン動植物等のサンプル群の中 の特定の 1個体のことである。 Here, the “specific individual” refers to one individual, one individual, a mutant strain, a plant or animal, a human, a gene or a protein treated with a drug, etc. A specific individual in a sample group of cells, transgenic animals and plants, cloned animals and plants, etc.
そして、 このような構成によれば、 特定個体に対する抗酸化能を定量 化することにより、 たとえば個人個人に対する効果を測定することが可 能となり、 より個体差を考慮した試験を行うことができる。  According to such a configuration, by quantifying the antioxidant ability of a specific individual, for example, it is possible to measure the effect on an individual, and a test can be performed in which individual differences are taken into account.
本願の抗酸化材の抗酸化能を定量化する方法においては、 抗酸化能を 定量化したい抗酸化材を、 当該抗酸化材を服用すべき特定個体に経口服 用させたのち、 当該特定個体から生体試料を採取して細胞内への抗酸化 材摂取量を測定し、 この測定された摂取量の値に合わせて抗酸化能定量 化の際の抗酸化材適用量を調整するようにしてもよい。  In the method for quantifying the antioxidant ability of the antioxidant of the present invention, the antioxidant to be quantified is orally administered to a specific individual to whom the antioxidant is to be taken, and then the specific individual A biological sample is collected from the sample to measure the amount of antioxidant taken into cells, and the amount of antioxidant applied when quantifying antioxidant capacity is adjusted according to the measured value of intake. Is also good.
このような構成によれば、 特定個体が抗酸化材を経口服用で摂取した 場合に、 抗酸化材が体内にどれだけ摂取されるかがわかる。 抗酸化能の 定量化を行う際にこの摂取量を参照して生体試料に抗酸化材を投与する ことにより、 経口服用で摂取した場合と同じ摂取量で実験が行えるため、 より特定個体への影響を判断しやすくなる。  According to such a configuration, it is possible to know how much antioxidant is taken into the body when a specific individual takes the antioxidant by oral administration. When quantifying antioxidant capacity, by administering an antioxidant to a biological sample with reference to this intake, it is possible to conduct experiments with the same intake as when taken orally, so that more specific individuals can be treated. It is easier to determine the impact.
本願にかかるミ トコンドリアから発生する活性酸素の測定方法によれ ば、 細胞内の活性酸素のうちミ トコンドリアから発生した活性酸素を特 定し、 ミ トコンドリアから発生した活性酸素の量を測定し視覚的に確認 することが可能である。  According to the method for measuring active oxygen generated from mitochondria according to the present application, active oxygen generated from mitochondria among active oxygen in cells is identified, and the amount of active oxygen generated from mitochondria is measured to visually determine It is possible to confirm this.
また、 本願にかかる抗酸化材の抗酸化能を定量化する方法によれば、 様々な食品 ·薬剤等の抗酸化能を測定し、 視覚的に認識することが可能 である。 また、 顕微鏡撮影を行い得られた画像について画像処理を行う ことにより食品 · '薬剤等の抗酸化能を数値化して比較することが可能で ある。 図面の簡単な説明  Further, according to the method for quantifying the antioxidant ability of the antioxidant according to the present invention, it is possible to measure the antioxidant ability of various foods and drugs and visually recognize the antioxidant ability. In addition, by performing image processing on images obtained by microscopic photographing, it is possible to quantify and compare the antioxidant ability of foods, drugs, and the like. Brief Description of Drawings
図 1は、 抗酸化酵素の反応式を示す図である。 図 2は、 活性酸素抑制の経過を示す図である。 FIG. 1 is a diagram showing a reaction formula of an antioxidant enzyme. FIG. 2 is a diagram showing the progress of active oxygen suppression.
図 3は、 ミ トコンドリアの膜表面を模式的に示す図である。  FIG. 3 is a diagram schematically showing a mitochondrial membrane surface.
図 4は、 HP Fの構造を示す図である。  FIG. 4 is a diagram showing the structure of HPF.
図 5は、 DMAXの構造を示す図である。  FIG. 5 is a diagram showing the structure of DMAX.
図 6は、 HP Fによる蛍光活性を示す図である。  FIG. 6 is a diagram showing the fluorescence activity of HPF.
図 7は、 DMAXによる蛍光活性を示す図である。  FIG. 7 is a diagram showing the fluorescence activity by DMAX.
図 8は、 蛍光感度を示すグラフ (その 1) である。  Fig. 8 is a graph (1) showing the fluorescence sensitivity.
図 9は、 蛍光感度を示すグラフ (その 2) である。  FIG. 9 is a graph (part 2) showing the fluorescence sensitivity.
図 1 0は、 蛍光感度を示すグラフ (その 3) である。  FIG. 10 is a graph (part 3) showing the fluorescence sensitivity.
図 1 1は、 蛍光感度を示すグラフ (その 4) である。  FIG. 11 is a graph (part 4) showing the fluorescence sensitivity.
図 1 2は、 抗酸化材の抗酸化能を示すグラフ (その 1 ) である。 図 1 3は、 抗酸化材の抗酸化能を示すグラフ (その 2) である。 図 1 4は、 抗酸化材の抗酸化能を示すグラフ (その 3) である。 図 1 5は、 本願の第一実施形態を説明する図である。  FIG. 12 is a graph (part 1) showing the antioxidant ability of the antioxidant. Figure 13 is a graph (part 2) showing the antioxidant capacity of antioxidants. Figure 14 is a graph (part 3) showing the antioxidant capacity of antioxidants. FIG. 15 is a diagram illustrating the first embodiment of the present application.
図 1 6は、 本願の第二実施形態を説明する図である。  FIG. 16 is a diagram illustrating a second embodiment of the present application.
図 1 7は、 本願の第三実施形態 (その 1) を説明する図である。 図 1 8は、 本願の第三実施形態 (その 2) を説明する図である。 図 1 9は、 1 4 3 B細胞の顕微鏡写真である。 発明を実施するための最良の形態  FIG. 17 is a diagram illustrating a third embodiment (part 1) of the present application. FIG. 18 is a view for explaining the third embodiment (No. 2) of the present application. FIG. 19 is a photomicrograph of 144 B cells. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の好適な実施の一形態を添付図面を参照しながら詳細 に説明する。  Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
先に述べたように、 本発明に係る活性酸素測定方法は、 生体試科に対 して細胞内の活性酸素と特異的に反応する性質を有する蛍光試薬を適用 する第 1のステップと、 第 1のステップで得られた生体試料に含まれる 蛍光試薬を励起させた状態において、 当該生体試料を共焦点顕微鏡撮影 並びに光電変換処理することにより、 1もしくは 2以上の細胞を視野に 含む蛍光画像を取得する第 2のステップと、 第 2のステップで取得され た蛍光画像の所定領域内の構成画素の輝度総和を求める第 3のステップ と、 第 3のステップで求められた構成画素の輝度総和に基づいて細胞内 のミ トコンドリアから発生する活性酸素の量を同定する第 4のステップ と、 を具備することを特徴とするものである。 As described above, the method for measuring active oxygen according to the present invention comprises: a first step of applying a fluorescent reagent having a property of specifically reacting with active oxygen in cells to a biological sample; In a state where the fluorescent reagent contained in the biological sample obtained in step 1 is excited, the biological sample is subjected to confocal microscopy imaging and photoelectric conversion processing, so that one or more cells can be seen in the field of view. A second step of obtaining a fluorescent image including the fluorescent image, a third step of obtaining a luminance sum of constituent pixels in a predetermined area of the fluorescent image obtained in the second step, and a constituent pixel obtained in the third step And a fourth step of identifying the amount of active oxygen generated from mitochondria in the cell based on the total luminance of the cells.
生体細胞内における活性酸素の発生源としては、 従前よりミ トコンド リァが疑われていたが、 従来の手法では細胞内に活性酸素が存在するこ とは証明出来ても、 それらの活性酸素がいずれの小器官より発生したも のかを特定することは出来なかった。 本発明者らは以下の手法にてミ ト コンドリアから発生する活性酸素についての検証を行い、 細胞内の活性 酸素の多くがミ トコンドリアから発生していることを検証した。  Mitochondria have long been suspected as a source of active oxygen in living cells.However, even though conventional methods can prove that active oxygen exists in cells, any of these active oxygen sources can It was not possible to identify whether it originated from a small organ. The present inventors have verified active oxygen generated from mitochondria by the following method, and have verified that most of active oxygen in cells is generated from mitochondria.
1 4 3 B細胞に蛍光試薬を適用し顕微鏡撮影したものが図 1 9に示さ れている。 同図において 1 aは H Eで細胞内の活性酸素を蛍光染色した 状態、 1 bはミ トコンドリアグリーンにて細胞内のミ トコンドリアを染 色した状態、 1 cは 1 aと 1 bを重ね合わせたものである。 また、 2 a は H P Fで細胞内の活性酸素を蛍光染色した状態、 2 bはミ トコンドリ ァレツドにて細胞内のミ トコンドリァを染色した状態、 2 cは 2 aと 2 bを重ね合わせた状態である。 H Eの染色領域はミ トコンドリア画像と 完全には重ならないが (l c ) 、 H P Fの染色領域はミ トコンドリアと 完全に一致することが同図より明らかである。  FIG. 19 shows a micrograph of a fluorescent reagent applied to 144 B cells. In the same figure, 1a is a state in which the active oxygen in the cell is fluorescently stained with HE, 1b is a state in which the mitochondria in the cell are stained with mitochondrial green, and 1c is a superimposition of 1a and 1b. Things. 2a is a state in which the active oxygen in the cell is fluorescently stained with HPF, 2b is a state in which the mitochondrial in the cell is stained with mitochondrial, and 2c is a state in which 2a and 2b are superimposed. is there. Although the stained area of HE does not completely overlap with the mitochondrial image (lc), it is clear from the figure that the stained area of HPF completely matches the mitochondria.
蛍光試薬である H P F及び A P Fの構造が図 4に示されている。 H P Fは Hydroxyphenyl Fluorescein^ A P eは Aminophenyl Fluorescein であり、 いずれもヒ ドロキシルラジカル ( · O H) 、 パーォキシナイ ト ライト (O N O O— ) を特異的に検出する蛍光試薬である。 ヒ ドロキシ ラジカル、 パーォキシナイ トライ ト等の活性酸素を生産する細胞に H P Fもしくは A P Fを添加し、 レーザ光で励起させることにより活性酸素 を発生している箇所のみが染色される。 活性酸素と反応する前の (a ) の状態では HP F、 A P F共にほとんど蛍光が見られないが、 活性酸素 と反応した後の (b) の状態では高い蛍光が見られる。 The structures of the fluorescent reagents HPF and APF are shown in FIG. HPF is Hydroxyphenyl Fluorescein ^ APe is Aminophenyl Fluorescein, and both are fluorescent reagents that specifically detect hydroxyl radical (OH) and peroxynitrite (ONOO-). By adding HPF or APF to cells that produce active oxygen such as hydroxy radicals and peroxynitrite and exciting them with laser light, only the sites that generate active oxygen are stained. Before reacting with active oxygen (a) In the state of (a), almost no fluorescence is observed in both HP F and APF, but in the state of (b) after reacting with active oxygen, high fluorescence is observed.
また、 他の蛍光試薬である DMAXの構造が図 5に示されている。 D MAXは 9_[2 -(3- carboxy- 9, 10_dimethyl) anthryl] 6- hydroxy- 3H - xant hen - 3のことであり、 一重項酸素との反応性が高い蛍光試薬である。 一 重項酸素を生産する細胞に DMAXを投与した後レーザ光で励起させる ことにより一重項酸素を生産する部位が蛍光発色する。 DMAX— D A (a) を加水分解する、 もしくは esteraseと反応させることにより DM AX (b) が得られ、 DMAX (b) がー重項酸素と反応することによ り DMAX— E P ( c ) となる。 DMAX— DA (a) の状態では蛍光 が見られないが、 DMAX (b) となると低い傾向が見られ、 一重項酸 素と反応し DMAX— E P ( c ) となると高い蛍光が見られる。  The structure of another fluorescent reagent, DMAX, is shown in FIG. DMAX is 9_ [2- (3-carboxy-9,10_dimethyl) anthryl] 6-hydroxy-3H-xanthen-3, which is a fluorescent reagent having high reactivity with singlet oxygen. When DMAX is administered to cells that produce singlet oxygen and then excited by laser light, the site that produces singlet oxygen emits a fluorescent color. DMAX-DA (a) is hydrolyzed or reacted with esterase to obtain DM AX (b), and DMAX (b) reacts with -doublet oxygen to form DMAX-EP (c). Become. No fluorescence is observed in the state of DMAX-DA (a), but it tends to be low in the case of DMAX (b), and high in the case of DMAX-EP (c) after reacting with singlet oxygen.
本願発明者は、 HP F、 DMAX等の蛍光試薬を用いて生体試料を蛍 光染色することにより、 ミ トコンドリアから発生する活性酸素を蛍光着 色できることを発見した。 この知見に基づき、 抗酸化材の投与前後にお ける活性酸素量の変化を測定可能とし、 抗酸化材の抗酸化能を定量的に 測定できるようになった。  The present inventor has discovered that by fluorescently staining a biological sample using a fluorescent reagent such as HPF or DMAX, active oxygen generated from mitochondria can be fluorescently colored. Based on this finding, it became possible to measure the change in the amount of active oxygen before and after administration of the antioxidant, and to quantitatively measure the antioxidant ability of the antioxidant.
本願の第一実施形態が図 1 5に示されている。 標準個体 1 00より生 体試料 (A) を採取し 2つに分け、 一方の生体試料には測定対象となる 抗酸化材 (B x) を、 もう一方には測定基準となる抗酸化材 (B r e f ) を加える。 抗酸化材を投与した生体試料に活性酸素誘因刺激 (C) と、 活性酸素を染色する蛍光試薬 (E) とを与え所定時間 (たとえば 2 時間程度) 静置し、 その後投与した蛍光試薬を励起させ共焦点顕微鏡に て撮影を行う。 得られた顕微鏡画像を画像処理しそれぞれの画像ごとに 輝度総和を求め、 測定対象となる抗酸化材の輝度総和 (D x) と測定基 準となる抗酸化材の輝度総和 (D r e f ) より活性酸素の残量を算出し、 測定対象となる抗酸化材の抗酸化能を求める。 測定対象となる抗酸化材の抗酸化能 = (D x) / (D r e f ) 本願の第二実施形態が図 1 6に示されている。 標準個体 1 00より生 体試料 (A) を採取し 2つに分け、 生体試料のそれぞれに活性酸素誘因 刺激 (C) と活性酸素を染色する蛍光試薬 (E) とを加える。 活性酸素 誘因刺激 (C) を加えた生体試料 (A) に、 一方の生体試料には測定対 象となる抗酸化材 (B x) を、 もう一方には測定基準となる抗酸化材A first embodiment of the present application is shown in FIG. A biological sample (A) is collected from a standard individual 100 and divided into two, and one of the biological samples contains an antioxidant (B x) to be measured, and the other has an antioxidant ( B ref). A biological sample to which an antioxidant has been administered is given an active oxygen-induced stimulus (C) and a fluorescent reagent (E) for staining active oxygen, and allowed to stand for a predetermined time (for example, about 2 hours). Then take a picture with a confocal microscope. Image processing is performed on the obtained microscopic images, and the total brightness is calculated for each image. The total brightness (D x) of the antioxidant to be measured and the total brightness (D ref) of the antioxidant to be measured are determined. Calculate the remaining amount of active oxygen and determine the antioxidant capacity of the antioxidant to be measured. Antioxidant capacity of antioxidant to be measured = (Dx) / (Dref) A second embodiment of the present invention is shown in FIG. A biological sample (A) is collected from a standard individual 100, divided into two, and an active oxygen-inducing stimulus (C) and a fluorescent reagent (E) for staining active oxygen are added to each of the biological samples. The biological sample (A) to which the active oxygen-induced stimulus (C) was added, the antioxidant (Bx) to be measured in one biological sample, and the antioxidant as the measurement reference in the other.
(B r e f ) を加え所定時間静置し、 その後投与した蛍光試薬を励起さ せ共焦点顕微鏡にて撮影を行う。 得られた顕微鏡画像を画像処理しそれ ぞれの画像ごとに輝度総和を求め、 測定対象となる抗酸化材の輝度総和 (Dx) と測定基準となる抗酸化材の輝度総和 (D r e f ) より活性酸 素の残量を算出し、 測定対象となる抗酸化材の抗酸化能を求 'める。 (Bref) is added, and the mixture is allowed to stand for a predetermined time. Thereafter, the administered fluorescent reagent is excited, and imaging is performed with a confocal microscope. Image processing is performed on the obtained microscope images, and the luminance sum is calculated for each image. The luminance sum (Dx) of the antioxidant to be measured and the luminance sum (Dref) of the antioxidant to be measured are determined. Calculate the remaining amount of active oxygen and determine the antioxidant ability of the antioxidant to be measured.
本願の第三実施形態 (その 1) が図 1 7に示されている。 まず特定個 体 200に測定対象となる抗酸化材を経口投与し、 その後血液:細胞等 を取り抗酸化材の体内摂取量を測定する。 測定された体内摂取量に応じ て、 生体試料 (A) への抗酸化材 (B x, B r e f ) 投与量を決定する。 これにより、 この後の抗酸化能テストを抗酸化材を実際に経口投与した 場合と同様の条件で行える為、 実際に抗酸化材を摂取した場合とほぼ同 条件で試験が行える。  A third embodiment (No. 1) of the present application is shown in FIG. First, an antioxidant to be measured is orally administered to a specific individual 200, and then blood, cells, etc. are taken to measure the amount of the antioxidant taken into the body. Determine the dose of antioxidant (Bx, Bref) to the biological sample (A) according to the measured body intake. As a result, the subsequent antioxidant ability test can be performed under the same conditions as when the antioxidant is actually administered orally, so that the test can be performed under almost the same conditions as when the antioxidant is actually ingested.
特定個体 200より生体試料 (A) を生体試料 Aを採取し 2つに分け、 一方の生体試料には測定対象となる抗酸化材 (B x) を、 もう一方には 測定基準となる抗酸化材 (B r e f ) を加える。 抗酸化材を加えた生体 試料に活性酸素誘因刺激 (C) と活性酸素を染色する蛍光試薬 (E) と を与え所定時間静置し、 その後投与した蛍光試薬を励起させ共焦点顕微 鏡にて撮影を行う。 得られた顕微鏡画像を画像処理しそれぞれの画像ご とに輝度総和を求め、 測定対象となる抗酸化材の輝度総和 (D x) と測 定基準となる抗酸化材の輝度総和 (D r e f ) より活性酸素の残量を算 出し、 測定対象となる抗酸化材の抗酸化能を求める。 本願の第三実施形態 (その 2 ) が図 1 8に示されている。 先の例と同 様に、 まず特定個体 2 0 0に測定対象となる抗酸化材を経口投与し、 そ の後血液 ·細胞等を取り抗酸化材の体内摂取量を測定し、 体内摂取量に 応じて生体試料 (A) への抗酸化材 (B x, B r e f ) 投与量を決定す る。 特定個体 2 0 0より生体試料 (A) を採取し 2つに分け、 分けた生 体試料のそれぞれに活性酸素誘因刺激 (C ) と活性酸素を染色する蛍光 試薬 (E ) とを与える。 活性酸素誘因刺激 (C ) を与えた生体試料 A biological sample (A) is collected from a specific individual 200, and a biological sample A is collected and divided into two parts. One of the biological samples contains an antioxidant (B x) to be measured, and the other has an antioxidant as a measurement reference. Add material (B ref). The biological sample to which the antioxidant has been added is given an active oxygen-induced stimulus (C) and a fluorescent reagent (E) for staining active oxygen, and allowed to stand for a predetermined period of time. Take a picture. The obtained microscope images are image-processed, and the total brightness is calculated for each image. The total brightness (D x) of the antioxidant to be measured and the total brightness (D ref) of the antioxidant to be measured are measured. The remaining amount of active oxygen is calculated from the calculated value, and the antioxidant capacity of the antioxidant to be measured is determined. A third embodiment (No. 2) of the present application is shown in FIG. As in the previous example, first, an antioxidant to be measured is orally administered to a specific individual 200, and then blood, cells, etc. are taken to measure the amount of antioxidant taken into the body, and the amount taken into the body Determine the dose of antioxidant (B x, B ref) to biological sample (A) according to. A biological sample (A) is collected from a specific individual 200 and divided into two, and each of the divided biological samples is given an active oxygen-induced stimulus (C) and a fluorescent reagent (E) for staining active oxygen. Biological sample given reactive oxygen-stimulated stimulus (C)
( A) に、 一方の生体試料には測定対象となる抗酸化材 (B x ) を、 も う一方には測定基準となる抗酸化材 (B r e f ) を加え所定時間 (たと えば 2時間程度) 静置し、 その後投与した蛍光試薬を励起させ共焦点顕 微鏡にて撮影を行う。 得られた顕微鏡画像を画像処理しそれぞれの画像 ごとに輝度総和を求め、 測定対象となる抗酸化材の輝度総和 (D x ) と 測定基準となる抗酸化材の輝度総和 (D r e f ) より活性酸素の残量を 算出し、 測定対象となる抗酸化材の抗酸化能を求める。  To (A), an antioxidant (B x) to be measured is added to one biological sample, and an antioxidant (B ref) to be a measurement reference is added to the other biological sample, and the mixture is added for a predetermined time (for example, about 2 hours). ) Leave still, then excite the administered fluorescent reagent, and take a picture with a confocal microscope. Image processing is performed on the obtained microscopic images, and the luminance sum is calculated for each image. The activity is calculated from the luminance sum (D x) of the antioxidant to be measured and the luminance sum (D ref) of the antioxidant to be measured. Calculate the remaining amount of oxygen and determine the antioxidant capacity of the antioxidant to be measured.
なお、 図 1 5〜1 8の例においては、 測定対象となる抗酸化材と基準 となる抗酸化材の 2つで比較したが、 生体試料を 3つ以上にわけて複数 の抗酸化材の抗酸化能を同時に測定するようにしてもよいし、 まったく 抗酸化材を用いないブランクサンプルを用いるようにしてもよい。 また、 蛍光試薬 (E ) の投与タイミングと、 抗酸化材 (B x、 B r e f ) ゃ活 性酸素誘因刺激 (C ) を与えるタイミングとの前後関係は特定しないが、 蛍光試薬 (E ) が変質しやすい種類のものである場合には投与タイミン グを検討する必要がある。  In the examples of Figs. 15 to 18, the comparison was made between the antioxidant to be measured and the reference antioxidant, but the biological sample was divided into three or more samples, and multiple antioxidants were used. The antioxidant ability may be measured simultaneously, or a blank sample without any antioxidant may be used. The context of the timing of the administration of the fluorescent reagent (E) and the timing of the application of the antioxidant (B x, B ref) / reactive oxygen-stimulating stimulus (C) is not specified, but the fluorescent reagent (E) is altered. If it is a type that is easy to administer, the timing of administration should be considered.
本願に係る抗酸化能測定方法においては、 抗酸化能を有する物質の投 与前、 もしくは投与後に生体試料にス トレスを与え活性酸素をより多く 発生させることが望ましい。 より多く活性酸素を発生させることにより、 基準となる抗酸化材と、 測定対象となる抗酸化材との抗酸化能の差異が より顕著に現れる。 ここで生体試料にストレスを与える方法としては、 X線照射、 サイ ト力イン投与、 抗ガン剤投与などが考えられる。 In the method for measuring antioxidant capacity according to the present application, it is desirable that stress is applied to a biological sample before or after administration of a substance having antioxidant capacity to generate more active oxygen. By generating more active oxygen, the difference in antioxidant ability between the reference antioxidant and the antioxidant to be measured becomes more pronounced. Here, as a method of applying stress to a biological sample, X-ray irradiation, site power-in administration, anticancer drug administration, etc. are conceivable.
抗酸化能を有する物質により活性酸素が抑制される状態が図 2に示さ れている。 図 2 (a) は、 細胞に X線照射を行い、 その 2時間後に細胞 を観察したものである。 同図において、 着色されているのはミ トコンド リア由来の活性酸素が発生している箇所である。 この図より、 X線照射 によりミ トコンドリアから多量の活性酸素が発生している様子がわかる。 次に図 2 (b) は、 細胞に X線照射を行い、 その直後にビタミン Eを投 与し、 2時間後に細胞を観察したものである。 図 2 (a) と比較して明 らかに活性酸素の発生量が抑制されていることがわかる。  FIG. 2 shows a state in which active oxygen is suppressed by a substance having antioxidant ability. Figure 2 (a) shows the cells irradiated with X-rays and observed 2 hours after. In the figure, the colored area is where active oxygen derived from mitochondria is generated. From this figure, it can be seen that a large amount of active oxygen is generated from mitochondria by X-ray irradiation. Next, Fig. 2 (b) shows the cells exposed to X-rays, vitamin E immediately after, and the cells observed two hours later. It is clear that the amount of generated active oxygen is suppressed as compared with Fig. 2 (a).
この測定は、 以下の手順で行われている。  This measurement is performed according to the following procedure.
1. 細胞培養  1. Cell culture
2. X線照射  2. X-ray irradiation
3. 培養液置換  3. Culture medium replacement
4. 蛍光染色 (HP F)  4. Fluorescent staining (HP F)
5. レーザ光による励起、 蛍光発色観察 (図 2)  5. Excitation by laser light and observation of fluorescence (Fig. 2)
図 2 (a) に示されているのは、 細胞に X線照射を行いその 2時間後 にヒ ドロキシラジカルを観察したものである。 ミ トコンドリアのみを染 色した写真との比較により、 ミ トコンドリアより多量の活性酸素が発生 したことがわかった。 対して、 図 2 (b) に示されているのは X線照射 直後にビタミン Eを投与した場合の 2時間後のヒ ドロキシラジカルの状 態である。 図 2 (a) の場合と比べて明らかに発光の度合いが小さく活 性酸素の発生が少ないことが分かった。 この結果より、 ビタミン Eを投 与することにより活性酸素の発生が抑制されるということが証明された。 図 2に示された細胞の蛍光発色の度合いを比べたグラフが図 1 2に示 されている。 同図において、 (a) は生体試料に X線 (1 8. 8 G y ) 照射のみを行った場合の蛍光感度、 (b) は X線照射の 3時間前にビタ ミン Eを投与した場合の蛍光感度、 (c) は X線を照射した直後にビタ ミン Eを投与した場合の蛍光感度である。 なお、 活性酸素の蛍光染色に は HPFを用いた。 同図より、 X線照射の 2時間前に抗酸化材であるビ タミン Eを投与した (b) と、 X線照射直後に抗酸化材であるビタミン Eを投与した (c) とでは、 蛍光感度はほぼ同等の値であるのに対して、 X線照射のみで抗酸化材を一切投与していない (a) では、 (b) ,Figure 2 (a) shows the cells exposed to X-rays and the hydroxy radicals observed 2 hours after. A comparison with the photograph in which only mitochondria was stained showed that more active oxygen was generated than in mitochondria. On the other hand, FIG. 2 (b) shows the state of the hydroxy radical 2 hours after vitamin E administration immediately after X-ray irradiation. It was found that the degree of light emission was clearly smaller than in the case of Fig. 2 (a), and less active oxygen was generated. From these results, it was proved that the administration of vitamin E suppressed the generation of active oxygen. FIG. 12 is a graph comparing the degree of fluorescence emission of the cells shown in FIG. In the same figure, (a) shows the fluorescence sensitivity when only X-ray (18.8 Gy) irradiation was performed on the biological sample, and (b) shows the case when vitamin E was administered 3 hours before X-ray irradiation. (C) shows the fluorescence sensitivity immediately after X-ray irradiation. This is the fluorescence sensitivity when Min E was administered. HPF was used for fluorescent staining of active oxygen. From the figure, it can be seen that the fluorescence was different between the administration of the antioxidant vitamin E two hours before the X-ray irradiation (b) and the administration of the antioxidant vitamin E immediately after the X-ray irradiation (c). Sensitivity is almost the same value, while (a) does not use any antioxidant only by X-ray irradiation, (b),
(c) と比べて、 活性酸素の発生量が 1割以上多いことがわかる。 この ことより、 ビタミン Eは活性酸素の発生を抑制することと、 ビタミン E は X線照射によってほとんど影響を受けていないことがわかった。 即ち 図 1 2からは、 X線照射の前後にかかわらずビタミン Eを投与すること により活性酸素の発生が抑制されるということがわかる。 活性酸素誘因 刺激を与えるタイミングは抗酸化材の種類等により適宜決定可能である。 次に、 図 1 2の場合において、 蛍光染色剤として DMAXを用いた例 が図 1 3に示されている。 ヒ ドロキシラジカルを選択的に染色する HP Fに対して、 DMAXは一重項酸素を選択的に染色する蛍光染色剤であ る。 同図において、 (a) は X線 (1 8. 8 Gy) 照射のみを行った場 合の蛍光感度、 (b) は X線照射の 3時間前にビタミン Eを投与した場 合の蛍光感度、 (c) は X線を照射した直後にビタミン Eを投与した場 合の蛍光感度を示している。 DMAXで染色を行った場合でも HP Fの ときと同様に、 ビタミン Eの投与タイミングによる蛍光感度の差は見ら れなかった ( (b) 、 (c) 参照) 。 これに対して、 X線照射のみを行 つた (a) では、 活性酸素の発生量が (b) 、 (c) と比べて 1割以上 多く、 活性酸素発生量が多いことがわかる。 It can be seen that the amount of active oxygen generated is more than 10% higher than (c). This indicates that vitamin E suppresses the generation of active oxygen, and that vitamin E is hardly affected by X-ray irradiation. In other words, FIG. 12 shows that the administration of vitamin E suppresses the generation of active oxygen regardless of before and after X-ray irradiation. Reactive oxygen inducement The timing of applying a stimulus can be determined as appropriate depending on the type of antioxidant. Next, FIG. 13 shows an example in which DMAX was used as the fluorescent stain in the case of FIG. DMAX is a fluorescent stain that selectively stains singlet oxygen, as opposed to HPF, which selectively stains hydroxyl radicals. In the figure, (a) shows the fluorescence sensitivity when only X-ray (18.8 Gy) irradiation was performed, and (b) shows the fluorescence sensitivity when vitamin E was administered 3 hours before X-ray irradiation. (C) shows the fluorescence sensitivity when vitamin E was administered immediately after X-ray irradiation. Even when staining with DMAX, there was no difference in fluorescence sensitivity depending on the timing of administration of vitamin E as in the case of HPF (see (b) and (c)). On the other hand, in (a) where only X-ray irradiation was performed, the amount of active oxygen generated was more than 10% higher than in (b) and (c), indicating that the amount of active oxygen generated was large.
生体試料に X線 (1 8. 8 Gy) を照射した後の、 アポトーシス発生 率を比較するグラフが図 14に示されている。 図 1 2、 図 1 3の場合と 同様にそれぞれ (a) X線 (1 8. 8 Gy) 照射のみを行った場合、 Figure 14 shows a graph comparing the apoptosis incidence after irradiating a biological sample with X-rays (18.8 Gy). As in the case of Figs. 12 and 13, (a) When only X-ray (18.8 Gy) irradiation is performed,
(b) X線照射の 3時間前にビタミン Eを投与した場合、 (c) X線照 射直後にビタミン Eを投与した場合である。 なお、 蛍光染色剤としては H o e c h s t 3 3 342を用いた。 X線照射のみを行った ( a ) のァ ポトーシス発生率と、 ビタミン Eを投与した (b) 、 (c) のアポトー シス発生率とでは明らかに異なり、 ビタミン Eを投与した (b) 、 ( c ) では、 ビタミン Eを投与していない (a) の 1/5程度までアポ トーシス発生率が落ちている。 このことより、 活性酸素の抑制によりァ ポトーシス発生率が下がることが予測される。 (b) When vitamin E was administered 3 hours before X-ray irradiation, and ( c ) When vitamin E was administered immediately after X-ray irradiation. As a fluorescent stain, Hoechst 3 3 342 was used. The incidence of apoptosis in X-irradiation alone (a) was significantly different from the incidence of apoptosis in vitamin E administered (b) and (c). Vitamin E was administered (b), ( In c), the incidence of apoptosis is reduced to about 1/5 of that in the case without vitamin E (a). From this, it is predicted that the apoptosis generation rate will decrease due to the suppression of active oxygen.
様々な細胞を HP Fで蛍光染色した状態が図 6に、 様々な細胞を DM AXで染色した状態が図 7に、 それぞれ示されている。 図 6, 7におい て、 (a) はヒ ト細胞 (1 43 B) 、 (b) は m t DNA欠損細胞 (p 0) 、 ( c ) は p 0細胞に正常ミ トコンドリアを戻し入れた細胞 (8 7 FIG. 6 shows a state in which various cells were fluorescently stained with HPF, and FIG. 7 shows a state in which various cells were stained with DMAX. In Figures 6 and 7, (a) is a human cell (143B), (b) is an mtDNA-deficient cell (p0), and (c) is a cell in which normal mitochondria have been returned to p0 cells ( 8 7
WT) 、 (d) は不死化したヒ ト子宫ガン細胞 (He 1 a) 、 (e) は (BH 5) 、 ( f ) は (BH50) 、 (g) は (BH3 # 1 2) をそれ ぞれ HP Fにて蛍光染色したものである。 蛍光染色の手順は、 先に示し た方法と同じである。 同図より、 1 43 B細胞や 8 7 WT細胞等では活 性酸素が多量に発生しているが、 m t DNAが欠損した p 0細胞では活 性酸素の発生量が少ないことがわかる。 (WT), (d) shows immortalized human carcinoma cells (He1a), (e) shows (BH5), (f) shows (BH50), and (g) shows (BH3 # 12). Each was fluorescently stained with HP F. The procedure for fluorescent staining is the same as the method described above. From the figure, it can be seen that a large amount of active oxygen is generated in 143 B cells and 87 WT cells, etc., but that the amount of active oxygen is small in p0 cells lacking mtDNA.
図 6、 図 7に示された写真の蛍光強度をグラフ化したものが図 8〜1 1に示されている。 図 8及ぴ図 9は HP Fを用いて蛍光染色した細胞の 蛍光感度を表したものであり、 図 6中の (a) 〜 ( f ) の蛍光感度を数 値化したものである。 同様に、 図 1 0及び図 1 1は DMAXを用いて蛍 光染色した細胞の蛍光感度を表したものであり、 図 7中の (a) 〜 ( f ) の蛍光感度を数値化したものである。  Graphs of the fluorescence intensities of the photographs shown in FIGS. 6 and 7 are shown in FIGS. FIGS. 8 and 9 show the fluorescence sensitivities of the cells stained with HPF by fluorescence, and quantify the fluorescence sensitivities (a) to (f) in FIG. Similarly, FIGS. 10 and 11 show the fluorescence sensitivities of the cells fluorescently stained using DMAX, and numerically represent the fluorescence sensitivities of (a) to (f) in FIG. is there.
ミ トコンドリアの細胞内における働き等はよく知られたことである力 念のため以下において簡単に説明する。  The action of mitochondria in cells is briefly described below because of the well-known force.
ミ トコンドリアの膜表面における内外物質の移動を示す模式図が図 3 に示されている。 同図において、 1は外膜、 2は複合体(COmplex、 以下 同じ) I、 3は複合体 II、 4は複合体 III、 5は複合体 IV、 6は ATP 合成酵素、 7は ATP/ADP Translocator、 8は内膜、 9はチトクロム C、 1 0は補酵素(3、 を示しており、 外膜 1の設けられた側 (即ち、 図の下 部) がミ トコンドリアの外側であり、 内膜 8の設けられた側 (即ち図の 上部) がミ トコンドリアの内側である。 Figure 3 shows a schematic diagram showing the movement of internal and external substances on the mitochondrial membrane surface. In the figure, 1 is the outer membrane, 2 is the complex ( CO mplex, the same applies hereinafter) I, 3 is the complex II, 4 is the complex III, 5 is the complex IV, 6 is the ATP Synthase, 7 is ATP / ADP Translocator, 8 is inner membrane, 9 is cytochrome C, 10 is coenzyme (3,), and the side on which outer membrane 1 is provided (that is, the lower part of the figure) The outer side of the mitochondria and the side where the intima 8 is provided (ie, the upper part of the figure) is the inner side of the mitochondria.
ミ トコンドリアの膜表面の反応の模式図が図 3に示されている。 先に 説明したように、 1は外膜、 2は複合体 I、 3は複合体 II、 4は複合体 I II、 5は複合体 IV、 6は ATPシンターゼ、 7は ATP ADP トラン スロケータ、 8は内膜、 9はチトクロム C、 1 0は補酵素 Qであり、 複 合体 I〜IVまでの過程が電子伝達系である。  Figure 3 shows a schematic diagram of the reaction on the mitochondrial membrane surface. As explained earlier, 1 is outer membrane, 2 is complex I, 3 is complex II, 4 is complex I II, 5 is complex IV, 6 is ATP synthase, 7 is ATP ADP translocator, 8 Is the inner membrane, 9 is cytochrome C, 10 is coenzyme Q, and the process from complex I to IV is the electron transport system.
NADH2+として運ばれた水素は複合体 Iから膜間スペースへ移動し、 同時に捕酵素 Qへ 2個の電子が渡される。 一方、 FADH2として運ば れた電子も複合体 Πから補酵素 Qへ渡される。 還元型ュビキノンの水素 は複合体 IIIとの連鎖で 2 H +として外れて膜間スペースへ移動する。 同時に、 電子は複合体 IIIに渡される。 複合体 IIIに渡された電子はミ ト コンドリア膜表在性のシトクロム Cを経て複合体 IVに送られる。 複合体 IVは、 還元型シトクロム Cを酸化し、 生じた電子が o2分子に渡される。 1 2分子の02がマトリックス内の 2個の H+と結合すると 1分子の 水がつく られる。 Hydrogen carried as NADH 2 + moves from complex I to the transmembrane space, and at the same time two electrons are passed to the capture enzyme Q. On the other hand, the electrons carried as FADH 2 are also passed from complex へ to coenzyme Q. Hydrogen of reduced ubiquinone is released as 2 H + in the chain with complex III and moves to the intermembrane space. At the same time, the electrons are passed to complex III. The electrons passed to complex III are sent to complex IV via cytochrome C, which is superficial on the mitochondrial membrane. Complex IV oxidizes reduced cytochrome C, the resulting electrons are passed to o 2 molecule. 1 2 0 molecules 2 are attached water two H + Upon binding to one molecule of the matrix.
本願において、 活性酸素を染色するために用いる蛍光試薬としては H P Fもしくは DMAXが好ましい。 DCF、 DHR、 HEのような従前 の蛍光試薬は、 活性酸素と作用した後にプラスもしくはマイナスに帯電 し、 逆の電荷を有する箇所に偏ってしまうことがあった。 つまりこれら の蛍光試薬では、 活性酸素の染色を行った後にその箇所に止まらないた め染色された活性酸素が元々どこで発生したものであるかを特定するの は非常に困難であった。 これに対して、 本願で用いた HP F、 DMAX によれば、 従前の蛍光試薬のように特定の側に電荷が偏るということが 起こらず、 活性酸素の発生箇所が確実に特定可能である。 [実施例 1 ] In the present application, HPF or DMAX is preferred as the fluorescent reagent used for staining active oxygen. Conventional fluorescent reagents such as DCF, DHR, and HE sometimes become positively or negatively charged after reacting with active oxygen, and are sometimes biased toward sites having the opposite charge. In other words, with these fluorescent reagents, it was very difficult to specify where the stained active oxygen originated because it did not stop at that spot after staining with active oxygen. On the other hand, according to the HPF and DMAX used in the present application, the charge is not biased to a specific side unlike the conventional fluorescent reagent, and the generation site of the active oxygen can be reliably specified. [Example 1]
ぐ細胞培養及び活性酸素測定法 >  Cell culture and reactive oxygen measurement>
本実施例では、 ヒ ト細胞 (1 4 3 B) を用いた (他の細胞でもよ' レ、) 。 ヒ ト細胞は、 1 0 %牛胎児血清を含むダルベッコ MEM培養液を用 い、 3 7°Cにて 5 %炭酸ガスを含む空気中で培養した。 細胞を上記の培 養液を含むグラスボトムディッシュ(MatTek Corp. , Ashland, MA, U.S. A.)に播種し、 およそ 1 日上記の条件にて培養する。 このの培養液をハ ンクス液 (HB S S) ( 1 0. OmM HE P E S, 1. 0 mM Mg C 12, 2 mM C a C J 2, and 2. 7 mM g l u c o s e、 p H 0. 0 5) に置換する。 活性酸素の観察には、 活性酸素種のうちヒ ドロキシ ラジカルを比較的特異的に反応し蛍光を発する HP Fを用いた。 (一重 項酸素観察用の DMAXでも同様な結果が得られている。 ) 共焦点レー ザ顕微鏡にて、 5 0 0 Wの 4 8 8 nmの励起光を 0. 4秒間照射し、 5 1 5 nmパリァフリーフィルターを用い、 観察する。 画像はコンビュ 一ターに保存し、 後、 コンピューター上で蛍光強度を、 作成したプログ ラムを用いて求める。 In this example, human cells (143B) were used (other cells may be used). Human cells were cultured at 37 ° C in air containing 5% carbon dioxide using Dulbecco's MEM culture solution containing 10% fetal bovine serum. The cells are seeded on a glass bottom dish (MatTek Corp., Ashland, Mass., USA) containing the above culture solution and cultured for approximately one day under the above conditions. Explanation This culture Ha Nkusu solution (HB SS) (1 0. OmM HE PES, 1. 0 mM Mg C 12, 2 mM C a CJ 2, and 2. 7 mM glucose, p H 0. 0 5) to Replace. For the observation of active oxygen, HPF, which reacts relatively specifically with hydroxyl radicals among active oxygen species and emits fluorescence, was used. (Similar results have been obtained with DMAX for singlet oxygen observation.) Using a confocal laser microscope, 500 W of 488 nm excitation light was irradiated for 0.4 seconds, and 5 15 Observe using a nm parier-free filter. The images are stored in a computer, and the fluorescence intensity is determined on a computer using the created program.
ぐ抗酸化能測定試験 >  Antioxidant capacity test>
細胞をグラスボトムディッシュに播種し上記のごとく培養する。 培 養開始 1 日後、 X線照射装置 (MB R— 1 5 0 5 R (日立社製)) を用い、 1 5 G y照射を行う。 その後、 ただちに 5 %炭酸ガスインキュベーター に細胞を戻し、 2時間後、 1 m 1の HB S Sに培養液を入れ替えし、 1 IX 1 の HP Fを最終濃度 1 0 μ g/m 1になるように加え、 共焦点レー ザ顕微鏡にて蛍光を観察、 コンピューターに保存し、 後、 コンピュータ 一上で蛍光強度を作成したプログラムを用い強度を求める。 この照射に 伴い、 照射の直後に最終濃度 1 0 μ g/m 1になるように DM S Oに溶 解したビタミン E 1 μ 1を培養液に加え 2時間インキュベーターに同様 にもどす。 その後、 前述のように蛍光を測定する。 ビタミン Ε投与、 非 投与の蛍光強度から比を求める。 Cells are seeded in a glass bottom dish and cultured as described above. One day after the start of the culture, 15 Gy irradiation is performed using an X-ray irradiator (MBR-1505R (Hitachi)). Then, immediately return the cells to a 5% CO 2 incubator, and after 2 hours, replace the culture medium with 1 ml of HBSS, and adjust the concentration of 1 IX 1 HPF to a final concentration of 10 μg / m 1. In addition, observe the fluorescence with a confocal laser microscope, store it in a computer, and then calculate the intensity using a program that creates the fluorescence intensity on a computer. Following this irradiation, 1 μl of vitamin E dissolved in DMSO is added to the culture solution to a final concentration of 10 μg / m 1 immediately after the irradiation, and the mixture is returned to the incubator for 2 hours. Thereafter, the fluorescence is measured as described above. Vitamin Ε administration, non The ratio is determined from the fluorescence intensity of the administration.
食品等から抽出した抗酸化剤について、 ビタミン Eと同様に培養液に 加え、 H P F蛍光強度を調べ、 ビタミン E投与の場合と比較することに より、 抗酸化能を調べる。 H P Fを用いた活性酸素検出は、 ミ トコンド リア付近に認められ、 ミ トコンドリア特定検出試薬 (Mitotracker Re d) の分布と一致したことにより、 H P Fを用いるとミ トコンドリアか ら発生する活性酸素を検出していることが検証された。 産業上の利用可能性  The antioxidant extracted from foods is added to the culture medium in the same manner as vitamin E, and the fluorescence intensity of HPF is examined. The antioxidant ability is compared with the case of vitamin E administration. Reactive oxygen detection using HPF was detected near the mitochondria and matched the distribution of the mitochondria-specific detection reagent (Mitotracker Red) .Using HPF, active oxygen generated from mitochondria was detected. It was verified that. Industrial applicability
以上より明らかなように、 本願によれば細胞内の活性酸素のうちミ ト コンドリアから発生した活性酸素を特定することが可能である。 また、 本発明によれば画像の所定領域画像を一様に輝度積算するだけでミ トコ ンドリアから発生する活性酸素量を測定することが可能であり、 ミ トコ ンドリアの内外判定不要で処理が簡易で処理時間が短縮する。  As is clear from the above, according to the present application, it is possible to specify active oxygen generated from mitochondria among active oxygen in cells. Further, according to the present invention, it is possible to measure the amount of active oxygen generated from the mitochondria simply by integrating the luminance of a predetermined area image of the image uniformly. Reduces processing time.
さらに、 本願にかかる抗酸化材の抗酸化能を定量化する方法によれば、 様々な食品 ·薬剤等の抗酸化能を測定し、 視覚的に認識することが可能 である。 また、 顕微鏡撮影を行い得られた画像について画像処理を行う ことにより食品 ·薬剤等の抗酸化能を数値化して比較することが可能で ある。 Further, according to the method for quantifying the antioxidant ability of the antioxidant according to the present invention, it is possible to measure the antioxidant ability of various foods and drugs and visually recognize the same. In addition, by performing image processing on images obtained by microscopic photographing, it is possible to quantify and compare the antioxidant ability of foods, drugs, and the like.

Claims

1 . 生体試料に対して細胞内の活性酸素と特異的に反応する性質を有 する蛍光試薬を適用する第 1のステップと、 1. a first step of applying a fluorescent reagent having a property of specifically reacting with intracellular active oxygen to a biological sample;
第 1のステップで得られた生体試料に含まれる蛍光試薬を励起させた 賓  The guest who excited the fluorescent reagent contained in the biological sample obtained in the first step
状態において、 当該生体試料を顕微鏡撮影並びに光電変換処理すること により、 1もしくは 2以上の細胞を視野に含む蛍光画像を取得する第 2 の In this state, the biological sample is microscopically photographed and subjected to photoelectric conversion processing to obtain a fluorescence image including one or more cells in the field of view.
のステップと、 Steps and
第 2のステツプで取得された蛍光画像の所定領域内の構成画素の輝度 囲  Luminance of constituent pixels in a predetermined area of the fluorescence image acquired in the second step
総和を求める第 3のステップと、 A third step for summation,
第 3のステップで求められた構成画素の輝度総和に基づいて細胞内の ミ トコンドリアから発生する活性酸素の量を同定する第 4のステップと、 を具備する、 ことを特徴とするミ トコンドリアから発生する活性酸素 の測定方法。  A fourth step of identifying the amount of active oxygen generated from the mitochondria in the cell based on the sum of luminance of the constituent pixels obtained in the third step. How to measure active oxygen.
2 . 細胞内の活性酸素が、 ヒ ドロキシラジカル、 一重項酸素、 もしく は、 スーパーオキサイ ドである、 ことを特徴とする請求の範囲第 1項に 記載のミ トコンドリァから発生する活性酸素の測定方法。 2. The active oxygen generated from the mitochondrial according to claim 1, wherein the active oxygen in the cell is a hydroxy radical, a singlet oxygen, or a superoxide. Measurement method.
3 . 蛍光試薬が H P Fである、 ことを特徴とする請求の範囲第 2項に 記載のミ トコンドリアから発生する活性酸素の測定方法。 3. The method for measuring active oxygen generated from mitochondria according to claim 2, wherein the fluorescent reagent is HPF.
4 . 蛍光試薬が D MA Xである、 ことを特徴とする請求の範囲第 2項 に記載のミ トコンドリアから発生する活性酸素の測定方法。 4. The method for measuring active oxygen generated from mitochondria according to claim 2, wherein the fluorescent reagent is DMAX.
5 . 蛍光試薬が A P Fである、 ことを特徴とする請求の範囲第 2項に 記載のミ トコンドリアから発生する活性酸素の測定方法。 5. The method for measuring active oxygen generated from mitochondria according to claim 2, wherein the fluorescent reagent is APF.
6 . 同一の活性酸素発生特性を有する生体試料を 2組用意する第 1の ステップと、 6. A first step of preparing two sets of biological samples having the same active oxygen generation characteristics,
第 1のステップで用意された 2組の生体試料のうちの一方の組の生体 試料には、 抗酸化能定量化の対象となる抗酸化材を適用する一方、 他方 の組の生体試料には抗酸化能定量化の基準となる抗酸化材を適用する第 2のステップと、 One set of biological samples from the two sets of biological samples prepared in the first step A second step of applying an antioxidant which is a target of the antioxidant capacity quantification to the sample while applying an antioxidant which is a reference of the antioxidant capacity quantification to the other set of biological samples;
第 2のステップにて抗酸化材が適用された 2組の生体試料に対して、 同一の活性酸素誘因刺激を与える第 3のステップと、  A third step of providing the same active oxygen-induced stimulus to the two sets of biological samples to which the antioxidant has been applied in the second step;
第 3のステップにて活性酸素誘因刺激が与えられた 2組の生体試料の それぞれに対して、 細胞内の活性酸素と特異的に反応する性質を有する 蛍光試薬を適用する第 4のステップと、  A fourth step of applying a fluorescent reagent having a property of specifically reacting with intracellular active oxygen to each of the two sets of biological samples to which the active oxygen-induced stimulus has been given in the third step;
第 4のステップで蛍光試薬が適用された 2組の生体試料のそれぞれを、 その蛍光試薬が励起された状態において、 顕微鏡撮影並びに光電変換処 理することにより、 それぞれ 1もしくは 2以上の細胞を視野に含む 2組 の蛍光画像を取得する第 5のステップと、  Each of the two biological samples to which the fluorescent reagent has been applied in the fourth step is subjected to microscopic photography and photoelectric conversion processing in a state where the fluorescent reagent has been excited, so that one or more cells can be visualized. A fifth step of acquiring two sets of fluorescence images included in
第 5のステップで取得された 2組の蛍光画像のそれぞれについて、 所 定領域内の構成画素の輝度総和を求める第 6のステップと、  A sixth step of calculating the sum of the luminance of the constituent pixels in the predetermined area for each of the two sets of fluorescent images acquired in the fifth step;
第 6のステップにて求められた 2組の輝度総和について、 抗酸化能定 量化の基準となる抗酸化材が適用された側の輝度総和に対する、 抗酸化 能定量化の対象となる抗酸化材が適用された側の輝度総和の比を求める 第 7のステップと、  For the two sets of luminance sums obtained in the sixth step, the antioxidant material to be quantified for the antioxidant capacity is the sum of the luminance on the side where the antioxidant material, which is the standard for antioxidant capacity quantification, is applied. A seventh step of calculating the ratio of the sum of luminance on the side where
を具備する、 ことを特徴とする抗酸化材の抗酸化能を定量化する方法。  A method for quantifying the antioxidant ability of an antioxidant material, comprising:
7 . 同一の活性酸素発生特性を有する生体試料を 2組用意する第 1の ステップと、 7. A first step of preparing two sets of biological samples having the same active oxygen generation characteristics,
第 1のステップにて用意された 2組の生体試料に対して、 同一の活性 酸素誘因刺激を与える第 2のステップと、  A second step of applying the same active oxygen-induced stimulus to the two sets of biological samples prepared in the first step;
第 2のステップにて同一の活性酸素誘因刺激が与えられた 2組の生体 試料のうちの一方の組の生体試料には、 抗酸化能定量化の対象となる抗 酸化材を適用する一方、 他方の組の生体試料には抗酸化能定量化の基準 となる抗酸化材を適用する第 3のステップと、 In the second step, one of the two biological samples to which the same active oxygen-induced stimulus was given was applied with an antioxidant to be quantified for antioxidant ability, Criteria for quantification of antioxidant capacity in the other set of biological samples A third step of applying an antioxidant,
第 3のステップにて抗酸化材が適用された 2組の生体試料のそれぞれ に対して、 細胞内の活性酸素と特異的に反応する性質を有する蛍光試薬 を適用する第 4のステップと、  A fourth step of applying a fluorescent reagent having a property of specifically reacting with intracellular active oxygen to each of the two sets of biological samples to which the antioxidant has been applied in the third step;
第 4のステップにて蛍光試薬が適用された 2組の生体試料のそれぞれ を、 その蛍光試薬が励起された状態において、 顕微鏡撮影並びに光電変 換処理することにより、 それぞれ 1もしくは 2以上の細胞を視野に含む 2組の蛍光画像を取得する第 5のステップと、  Each of the two biological samples to which the fluorescent reagent was applied in the fourth step was microscopically photographed and subjected to photoelectric conversion while the fluorescent reagent was excited, whereby one or more cells were obtained. A fifth step of acquiring two sets of fluorescence images included in the field of view,
第 5のステップで取得された 2組の蛍光画像のそれぞれについて、 所 定領域内の構成画素の輝度総和を求める第 6のステップと、  A sixth step of calculating the sum of the luminance of the constituent pixels in the predetermined area for each of the two sets of fluorescent images acquired in the fifth step;
第 6のステップにて求められた 2組の輝度総和について、 抗酸化能定 量化の基準となる抗酸化材が適用された側の輝度総和に対する、 抗酸化 能定量化の対象となる抗酸化材が適用された側の輝度総和の比を求める 第 7のステップと、  For the two sets of luminance sums obtained in the sixth step, the antioxidant material to be quantified for the antioxidant capacity is the sum of the luminance on the side where the antioxidant material, which is the standard for antioxidant capacity quantification, is applied. A seventh step of calculating the ratio of the sum of luminance on the side where
を具備する、 ことを特徴とする抗酸化材の抗酸化能を定量化する方法。 A method for quantifying the antioxidant ability of an antioxidant material, comprising:
8 . 活性酸素誘因刺激が X線照射である、 ことを特徴とする請求の範 囲第 5項又は第 6項に記載の抗酸化材の抗酸化能を定量化する方法。 '8. The method for quantifying the antioxidant ability of an antioxidant according to claim 5 or 6, wherein the active oxygen-induced stimulus is X-ray irradiation. '
9 . 活性酸素誘因刺激がサイ ト力インの適用である、 ことを特徴とす る請求の範囲第 5項又は第 6項に記載の抗酸化材の抗酸化能を定量化す る方法。 9. The method for quantifying the antioxidant ability of an antioxidant according to claim 5 or 6, wherein the reactive oxygen-induced stimulus is application of a site force-in.
1 0 . 細胞内の活性酸素と特異的に反応する性質を有する蛍光試薬が H P Fである、 ことを特徴とする請求の範囲第 5項又は第 6項に記載の 抗酸化材の抗酸化能を定量化する方法。  10. The antioxidant ability of the antioxidant according to claim 5 or 6, wherein the fluorescent reagent having a property of specifically reacting with active oxygen in cells is HPF. How to quantify.
1 1 . 細胞内の活性酸素と特異的に反応する性質を有する蛍光試薬が D MA Xである、 ことを特徴とする請求の範囲第 5項又は第 6項に記載 の抗酸化材の抗酸化能を定量化する方法。 11. The antioxidant of the antioxidant according to claim 5 or 6, wherein the fluorescent reagent having a property of specifically reacting with active oxygen in cells is DMAX. How to quantify performance.
1 2 . 抗酸化能定量化の基準となる抗酸化材がビタミン Eである、 こ とを特徴とする請求の範囲第 5項又は第 6項に記載の抗酸化材の抗酸化 能を定量化する方法。 12. The antioxidant used as the standard for quantifying the antioxidant capacity is vitamin E, and the antioxidant ability of the antioxidant according to claim 5 or 6 is quantified. how to.
1 3 . 同一の活性酸素発生特性を有する生体試料が、 予め用意された 標準個体から取得された生体試料である、 ことを特徴とする請求の範囲 第 5項又は第 6項に記載の抗酸化材の抗酸化能を定量化する方法。  13. The antioxidant according to claim 5 or claim 6, wherein the biological samples having the same active oxygen generation characteristics are biological samples obtained from a standard specimen prepared in advance. A method for quantifying the antioxidant capacity of wood.
1 4 . 同一の活性酸素発生特性を有する生体試料が、 当該抗酸化材を 服用すべき特定個体から取得された生体試料である、 ことを特徴とする 請求の範囲第 5項又は第 6項に記載の抗酸化材の抗酸化能を定量化する 方法。  14. The biological sample having the same active oxygen generating property is a biological sample obtained from a specific individual to be taken the antioxidant, wherein the biological sample has the same active oxygen generating property. A method for quantifying the antioxidant ability of the described antioxidant.
1 5 . 抗酸化能を定量化したい抗酸化材を、 当該抗酸化材を服用すベ き特定個体に経口服用させたのち、 当該特定個体から生体試料を採取し て細胞内への抗酸化材摂取量を測定し、 この測定された摂取量の値に合 わせて抗酸化能定量化の際の抗酸化材適用量を調整する、 ことを特徴と する請求の範囲第 1 3項に記載の抗酸化材の抗酸化能を定量化する方法。  15. Antioxidant whose oral antioxidant capacity is to be quantified is orally administered to a specific individual who is to take the antioxidant, and then a biological sample is collected from the specific individual and the antioxidant is injected into cells. The method according to claim 13, wherein the intake amount is measured, and the amount of the antioxidant applied when quantifying the antioxidant ability is adjusted in accordance with the measured intake amount. A method for quantifying the antioxidant capacity of an antioxidant.
PCT/JP2005/007948 2004-04-20 2005-04-20 Method of measuring active oxygen WO2005103282A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006512644A JPWO2005103282A1 (en) 2004-04-20 2005-04-20 Method for measuring active oxygen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-124869 2004-04-20
JP2004124869 2004-04-20

Publications (1)

Publication Number Publication Date
WO2005103282A1 true WO2005103282A1 (en) 2005-11-03

Family

ID=35196992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007948 WO2005103282A1 (en) 2004-04-20 2005-04-20 Method of measuring active oxygen

Country Status (3)

Country Link
JP (1) JPWO2005103282A1 (en)
TW (1) TW200540408A (en)
WO (1) WO2005103282A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139452A1 (en) * 2008-05-16 2009-11-19 国立大学法人東京大学 Reagent for measurement of active oxygen
WO2021007109A1 (en) * 2019-07-05 2021-01-14 Purdue Research Foundation Design and efficient synthesis of lipid-fluorescein conjugates for car-t cell therapy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018362A1 (en) * 2000-08-31 2002-03-07 Daiichi Pure Chemicals Co., Ltd. Reagent for determining singlet oxygen
JP2003096091A (en) * 2001-09-25 2003-04-03 Kobe University Gene lesion marker
JP2004502434A (en) * 2000-07-04 2004-01-29 バイオイメージ エイ/エス A method for extracting quantitative information on interactions between cellular components

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004502434A (en) * 2000-07-04 2004-01-29 バイオイメージ エイ/エス A method for extracting quantitative information on interactions between cellular components
WO2002018362A1 (en) * 2000-08-31 2002-03-07 Daiichi Pure Chemicals Co., Ltd. Reagent for determining singlet oxygen
JP2003096091A (en) * 2001-09-25 2003-04-03 Kobe University Gene lesion marker

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MAJIMA H. ET AL: "Mitochondria Ojo o Motsu Baiyo Saibo ni okeru Dotai Henka ni Kansuru Kento.", 2004, pages 88 - 93, XP002994242 *
SETSUKINAI K. ET AL: "Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species.", J BIOL CHEM., vol. 278, no. 5, 2003, pages 3170 - 3175, XP002994241 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139452A1 (en) * 2008-05-16 2009-11-19 国立大学法人東京大学 Reagent for measurement of active oxygen
US8410164B2 (en) 2008-05-16 2013-04-02 The University Of Tokyo Reagent for measurement of active oxygen
WO2021007109A1 (en) * 2019-07-05 2021-01-14 Purdue Research Foundation Design and efficient synthesis of lipid-fluorescein conjugates for car-t cell therapy

Also Published As

Publication number Publication date
TW200540408A (en) 2005-12-16
JPWO2005103282A1 (en) 2008-03-13

Similar Documents

Publication Publication Date Title
Blacker et al. Investigating mitochondrial redox state using NADH and NADPH autofluorescence
Huang et al. Two-photon fluorescence spectroscopy and microscopy of NAD (P) H and flavoprotein
Blinova et al. Mitochondrial NADH fluorescence is enhanced by complex I binding
Kostyuk et al. In vivo imaging with genetically encoded redox biosensors
Johnson et al. Direct observation of single amyloid-β (1-40) oligomers on live cells: binding and growth at physiological concentrations
Bonnin et al. Novel secondary ion mass spectrometry methods for the examination of metabolic effects at the cellular and subcellular levels
Tang et al. Bioluminescent probe for detecting endogenous hypochlorite in living mice
Colvin et al. Visualizing metal content and intracellular distribution in primary hippocampal neurons with synchrotron X-ray fluorescence
Maric et al. A bioluminescent-based probe for in vivo non-invasive monitoring of nicotinamide riboside uptake reveals a link between metastasis and NAD+ metabolism
KR101872155B1 (en) Two-photon fluorescent probe for detection of Cysteine
Li et al. Label-free monitoring of drug-induced cytotoxicity and its molecular fingerprint by live-cell Raman and autofluorescence imaging
Graziotto et al. Towards multimodal cellular imaging: optical and X-ray fluorescence
Chornyi et al. Human peroxisomal NAD+/NADH homeostasis is regulated by two independent NAD (H) shuttle systems
WO2005103282A1 (en) Method of measuring active oxygen
Nakamura et al. Acute CO2‐independent vasodilatation of penetrating and pre‐capillary arterioles in mouse cerebral parenchyma upon hypoxia revealed by a thinned‐skull window method
Rodimova et al. Interrogation of the liver during regeneration by fluorescence lifetime imaging and mass spectrometry
Wang et al. Inactivation of Candida albicans biofilms on polymethyl methacrylate and enhancement of the drug susceptibility by cold Ar/O 2 plasma jet
Rumschik et al. The interplay between inorganic phosphate and amino acids determines zinc solubility in brain slices
Li et al. Ratiometric imaging of mitochondrial hydrogen peroxide in Aβ42-mediated neurotoxicity
Du et al. Preparation and application of high-brightness red carbon quantum dots for pH and oxidized l-glutathione dual response
Heikal A multiparametric imaging of cellular coenzymes for monitoring metabolic and mitochondrial activities
Xu et al. Probing the dynamic crosstalk of lysosomes and mitochondria with structured illumination microscopy
Mothes et al. Teriflunomide does not change dynamics of nadph oxidase activation and neuronal dysfunction during neuroinflammation
JPWO2006019111A1 (en) Gamma-aminobutyric acid release amount measurement system and reaction promoting substance used therefor
Sommer et al. Monitoring tuberculosis drug activity in live animals by using near-infrared fluorescence imaging

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512644

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase