WO2005101148A2 - Procede et systeme pour mettre en exploitation virtuellement une installation technique au moyen d'une utilisation preferee - Google Patents

Procede et systeme pour mettre en exploitation virtuellement une installation technique au moyen d'une utilisation preferee Download PDF

Info

Publication number
WO2005101148A2
WO2005101148A2 PCT/EP2005/051536 EP2005051536W WO2005101148A2 WO 2005101148 A2 WO2005101148 A2 WO 2005101148A2 EP 2005051536 W EP2005051536 W EP 2005051536W WO 2005101148 A2 WO2005101148 A2 WO 2005101148A2
Authority
WO
WIPO (PCT)
Prior art keywords
cad
objects
vibs
data
anl
Prior art date
Application number
PCT/EP2005/051536
Other languages
German (de)
English (en)
Other versions
WO2005101148A3 (fr
Inventor
Christof Carl
Rolf-Peter Hofmann
Dirk Schaumburg
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2005101148A2 publication Critical patent/WO2005101148A2/fr
Publication of WO2005101148A3 publication Critical patent/WO2005101148A3/fr

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41885Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by modeling, simulation of the manufacturing system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32085Layout of factory, facility, cell, production system planning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32351Visual, graphical animation of process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35009Dynamic simulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • Technical systems e.g. in the manufacturing industry, are highly complex and represent a network of coordinated and interlocking technical resources.
  • the interaction of these technical resources of the respective technical system is intended to achieve the desired work results, e.g. the production of motor vehicles in a car manufacturing plant.
  • Equipment necessary instrumentation e.g. in the form of electrical and / or pneumatic drives and actuators and e.g. electromagnetic or radio sensors, not visible in the CAD drawings.
  • the CAD drawings are based on the structural and mechanical constructive
  • the invention is based on the object of specifying a method and a system which enables virtual testing of a technical system which is only available as a CAD drawing.
  • the principle of the invention is based on the fact that a CAD drawing, in which the technical resources of a technical system are initially only shown, can be automatically prepared so that the functioning of the individual resources and, above all, their interaction in the entire system are simulated can.
  • the originally purely rigid CAD drawing is thus made dynamic and represents such a real image of a technical system that it can even be operated together via a control system, which may already be available on the system side. The controller does not notice that it is not working with the actual technical system, but with the dynamically expanded CAD drawing.
  • the technical resources which are initially only shown in terms of drawing technology are supplemented by all those mechanical and electrical objects which are later present on a real technical resource of this type and are necessary for its operation.
  • These mechanical and electrical objects are generally referred to as instrumentation objects.
  • the CAD drawing is therefore automatically supplemented in particular by sensors and actuators, for example light barriers, proximity switches, drives and the like.
  • sensors and actuators for example light barriers, proximity switches, drives and the like.
  • PLC programmable logic controller
  • 1 shows the block diagram of an advantageous embodiment of a system designed according to the invention for virtual commissioning of a technical system
  • 2 shows the layout of a CAD drawing object in a CAD drawing, which represents a roller conveyor as an exemplary technical resource
  • FIG. 4 shows, by way of example, the interaction of the CAD movement objects from FIG. 3 with the virtual commissioning means and the control during the course of a virtual commissioning.
  • the system has at least three components, which are advantageously implemented using a data processing system, e.g. a PC.
  • the first component is a commissioning block VIBS.
  • the second component is a CAD program for creating, changing, displaying and saving technical CAD drawings.
  • the third component is a data platform DB. This contains at least one library BD for resource data. A library PD for project data can also be available.
  • CAD drawings are used to represent a technical system and the associated technical resources.
  • a display unit LCD for example in the form of a monitor, is provided for displaying, in particular, the CAD drawing.
  • An essential element of the system according to the invention is a commissioning module VIBS. This Completes a piece of technical equipment shown in the CAD drawing in the form of a CAD drawing object, after a user has assigned a specified type of equipment, automatically with the attributes of the mechanical and / or electrical instrumentation objects required for this, in particular with actuators, sensors and parts.
  • the commissioning module VIBS and a data platform DB are connected to each other in FIG. 1 via a data interface S3.
  • the data platform DB contains at least one library BD for resource data and advantageously also a library PD for project data.
  • the data platform DB is preferably designed as a data storage device which contains files, streams or the like for data storage and / or data transmission.
  • the data platform DB and the libraries it contains can be accessed by the user using separate software and e.g. the input unit KB can be edited.
  • the permitted types of equipment and their physical and technical properties are listed in the form of attributes in the BD library for equipment data.
  • the attributes represent so-called default attributes, i.e. are preset standard values. Depending on the application, these can be adapted by the user.
  • further attributes can be recorded in a library PD for project data. These attributes then represent custom attributes, i.e. Values are pre-assembled by the user for specific projects or systems for one or more applications.
  • the CAD application is connected to the commissioning module VIBS via a data interface S2.
  • this automatically supplements the originally purely static CAD drawings with the associated mechanical and / or electrical instrumentation objects.
  • the instrumentation objects are in the form of so-called CAD movement objects in the associated CAD drawing.
  • CAD drawing object added. This will be explained in more detail below.
  • the commissioning module VIBS continues to handle the entire simulation, also called virtual commissioning, by representing the interface to the PLC control on the one hand and making it visible by animating the CAD drawing on the other.
  • the interaction of the VIBS commissioning module with such a dynamic CAD drawing creates a virtual commissioning model that realistically replicates a real system and its technical resources.
  • roller conveyor R symbolizes as an exemplary technical resource.
  • This has an elongated frame RR, in which roller elements RO are arranged in parallel one behind the other.
  • roller conveyor R e.g. a piece-shaped part RF, or a pallet or a carrier, e.g. in the by one
  • Arrow RF shown conveying direction can be moved.
  • the roller conveyor R should automatically convey the part RF, for example, until it reaches a sensor, e.g. a light barrier interrupted at the end of the roller conveyor.
  • a resource type is assigned to the CAD drawing object concerned in a first step.
  • the affected CAD drawing object must first be marked in the CAD drawing, ie selected.
  • the CAD drawing object concerned can advantageously be identified by an individual CAD ID.
  • the actual assignment of the equipment type takes place by selection from a list of the types available in the data platform DB.
  • the selected equipment type is identified by an individual KNOWLEDGE ID. Now an assignment of the KNOWLEDGE ID of the selected device type with the CAD ID of the selected CAD drawing object.
  • the instrumentation object VIBS reads the geometric data of the associated CAD drawing object from the CAD drawing using the individual CAD ID. These are in particular the position of the CAD drawing object in the drawing plane of the CAD drawing, i.e. its coordinates, and the dimensions of the CAD drawing object, e.g. Length L, width B, height H. Furthermore, the instrumentation object VIBS reads the instrumentation objects belonging to the assigned resource type and their attributes from the library BD for resource data of the data platform DB via the KNOWLEDGE ID.
  • the CAD drawing object which shows a roller conveyor R
  • This device type has three instrumentation objects of the type DRIVE, SENSOR and PART, which have, for example, the following attributes: Instrumentation object DRIVE • Position DRIVE • Position and size of the associated DRIVE AREA • Direction and speed of the DRIVE AREA
  • Attributes that contain position and size information can have absolute values with regard to the coordinate system of the Display CAD drawing or relative values in relation to the geometry data of the CAD object.
  • a separate VIBS data object is advantageously created in the commissioning block VIBS for each instrumentation object of the assigned equipment type.
  • the VIBS data objects are used to manage all data that are necessary for virtual commissioning and that are subject to possible changes during the virtual commissioning process.
  • the individual VIBS data objects store and manage the geometry data of the associated CAD drawing object read by means of the CAD ID and the attributes of the associated instrumentation objects read by means of the KNOWLEDGE ID.
  • the geometric data of instrumentation objects of the type DRIVE and PART, and the states of instrumentation objects of the type SENSOR are subject to change during the virtual commissioning process.
  • the data platform provided by the VIBS data objects enables data exchange both with the CAD drawing via the interface S2 and with the controller via the interface S3, thus providing the basis for virtual commissioning.
  • each VIBS data object the geometry data of instrumentation objects, which are or may be subject to changes during the course of virtual commissioning, are each managed in a CAD motion object.
  • the associated CAD drawing object in the CAD drawing is supplemented by the CAD moving objects of the associated instrumentation objects.
  • These represent a dynamic image of each instrumentation object and, in the originally rigid CAD drawing, enable the movements of all instrumentation objects involved to be visualized during the virtual commissioning process. So that the CAD movement objects move during the virtual commissioning process in the CAD drawing, their geometry data, in particular their position data, are cyclically recorded by the VIBS commissioning block in the associated VIBS data object, changed if necessary and output to the CAD system.
  • the geometry data of a CAD movement object is updated cyclically with the aid of the geometry data of the CAD drawing object and the attributes of the associated instrumentation object. In doing so, the starting positions recorded in the attributes and prescribed changes, in particular directions of conveyance and speeds, are taken into account. This applies in particular to CAD movement objects that visualize type DRIVE and PART instrumentation objects.
  • changes to the geometry data can also result from the fact that CAD movement objects in the CAD drawing are changed by manual intervention by a user, for example by displacement with a computer mouse.
  • VIBS records such changes in geometry data by cyclically reading the current position of the CAD movement objects in the CAD drawing object.
  • the VIBS data objects for the example shown in FIGS. 2 to 4 can have the following contents:
  • VIBS data object DRIVE Geometry data of the assigned CAD drawing object • PLC data control: output address, binary status of the output (bit, byte, word) • CAD motion object DRIVE: position (X, Y, Z), dimensions (L, W , H %) • CAD motion object DRIVE AREA: Position (X, Y, Z), dimensions (L, W, H %) • Reference to CAD drawing object in CAD drawing via individual CAD ID
  • VIBS data object SENSOR Geometry data of the assigned CAD drawing object • PLC data control: input address, binary status of the input (bit, byte, word) • CAD motion object SENSOR: position (X, Y, Z), dimensions (L, W, H .. .) • CAD moving object SENSOR AREA: Position (X, Y, Z), dimensions (L, W, H 7) • Reference to CAD drawing object in CAD drawing via individual CAD ID
  • VIBS data object PART Geometry data of the assigned CAD drawing object • CAD movement object PART: position (X, Y, Z), dimensions (L, W, H %) • Reference to CAD drawing object in CAD drawing via individual CAD -ID
  • FIG. 3 shows the CAD drawing object for the roller conveyor R which has been extended by the CAD movement objects.
  • five CAD movement objects DRIVE, RAIL, DRIVE AREA RA2 are included in the associated three VIBS data objects.
  • SENSOR RSl, SENSORBEREICH RS2 and TEIL TR managed and displayed in the CAD drawing object.
  • the CAD motion objects ANTRIEB RAl and SENSOR RSl indicated the size and location of the actual devices, while the CAD motion objects ANTRIEBSBEREICH RA2 and SENSORBEREICH RS2 symbolize the size and location of the action and effect areas of these devices.
  • the basic principle in virtual commissioning according to the invention is based on a calculation of overlap areas in the current geometry data of the CAD motion objects managed in the VIBS data objects.
  • the CAD drawing provides the necessary coordinate system and the geometry data derived from it.
  • the geometry data of the CAD movement object PART are recalculated cyclically and output to the CAD drawing. This causes a virtual movement of the CAD movement object with the respectively predetermined dynamic CAD drawing or a stop of the same.
  • the CAD motion object PART RT is located inside the CAD motion object DRIVE AREA RA2. If the control program of the PLC control system now activates the output address accordingly, the geometry data of the CAD movement object TEIL RT are updated cyclically in dependence on the attributes conveying direction and speed and output to the CAD drawing in such a way that the TEIL RT in FIG. 3 moved to the right at the desired speed.
  • the binary status of the Input or reset of the CAD movement object SENSOR AREA if, for example, the current geometry data of a CAD movement object of the SENSOR AREA type overlaps or does not overlap with the current geometry data of another CAD movement object, for example with a CAD movement object of the PART type, the binary status of the Input or reset of the CAD movement object SENSOR AREA.
  • the commissioning block VIBS When a virtual commissioning is carried out, the commissioning block VIBS cyclically reads the current geometry data of the CAD motion objects from the CAD drawing object and the current output data from the PLC using the CAD ID.
  • the VIBS commissioning block recalculates the PLC data of the CAD movement object of the sensor type and writes the input information to the PLC, and recalculates the PLC data of the CAD movement object of the drive type and moves it using the data in the CAD drawing. Since the commissioning block VIBS reads the geometry data cyclically, changes that are made manually via the CAD system in the CAD drawing are also taken into account in the VIBS data objects. If e.g. in the drawing a part is moved with the mouse over a sensor area, the input of the
  • Instrumentation object sensor switched accordingly in the associated VIBS data object.
  • the commissioning module VIBS advantageously has three program layers E1-E2-E3. These are logically vertically one above the other and are referred to as levels below. There is only vertical data exchange through the program layers, ie only adjacent levels, ie E1 and E2 or E2 and E3, exchange data. A data exchange directly between the levels El and E3 is therefore not programmatically possible.
  • the first level E 1 designated “PLC I / O data” in FIG. 1 represents a direct data interface to the programmable logic controller PLC.
  • the second level E 2 designated “instrumentation objects, VIBS data objects” in FIG. 2 , forms the actual data platform for the administration of all data which are necessary for the initialization and execution of the simulation.
  • the level E2 as explained above, also receives data from the data platform DB via an interface S3.
  • the third level E3, designated “CAD interface, geometry data” in FIG. 1, represents a direct data interface for the CAD application and CAD drawing.
  • the quasi outer levels E1 and E3 represent interface layers, which bring about data conversion for the purpose of communication with the PLC and communication with the CAD application.
  • the communication between level E2 and the control PLC advantageously takes place via an intermediate interface ST, as already shown in FIG. 1.
  • the data connections S41, ie writing data, and S42, ie reading data can either be pure software connections or a physical data bus, for example a so-called PROFIBUS or a data bus based on the "Industrial Ethernet" standard. This is used to manage technical resources of a system that does not actually exist for the purpose of simulation as abstract software objects.
  • the technical system ANL shown in dashed lines in FIG. 1, the "devices" symbolically indicated therein and their process interfaces I / O are therefore generally not yet available.
  • commissioning model consisting of the commissioning module VIBS, the "animated" CAD drawing and the data platform DB modeled.
  • the elements VIBS, CAD and DB can advantageously be processed as program elements in a personal computer PC.
  • the control PLC in the data processing unit PC can also be emulated in software.
  • the interface card ST would also be simulated by software.
  • the commissioning block starts the control. If the sensor is not damped, output A328.0 is set by the control, for example. This is shown in the example in FIG. 3. The value of this output is read out by the commissioning module and interpreted in such a way that the roller conveyor R is intended to convey and represents this conveying process in the CAD drawing by simulating the real motion sequence.
  • the commissioning module can simulate this simulation in a realistic manner, since the drive speed of the drive is known. This has preferably been read as an attribute from the resource data library of the data platform.
  • the commissioning module can also determine that the part has now been conveyed in the CAD drawing to a point that corresponds to the position of the sensor area while the simulation is running. In reality, the sensor would now be activated.
  • the commissioning block sets input E95.0 in the controller to simulate this activation.
  • the control reacts by resetting the output A328.0.
  • the commissioning block reads the current status of this output and reacts by stopping the simulation of the conveying process.
  • the current states of the CAD motion objects RT, RA2 and RS2 are recorded regularly while the simulation is running. This is shown in Fig. 3 by the logic connections G3, G2 and Gl.
  • the commissioning block causes the PLC controller to start the control program loaded in it
  • the PLC controller causes its outputs to be set depending on the inputs
  • the commissioning module records output values via level El and passes them on to level E2,
  • the commissioning module updates level E3 via level E2 depending on the output values
  • the commissioning module controls the CAD drawing via level E3, i.e. virtual commissioning takes place
  • the commissioning block uses level E3 to determine if conditions in the CAD drawing have changed during commissioning and passes these input states on to level E2.
  • the commissioning module updates level E1 via level E2 depending on changed input states and causes the input values to be output to the PLC via level E1.
  • the invention makes it possible to "control" a CAD drawing via a control PLC.
  • binary inputs and outputs of the PLC control can be set, or the PLC control - after setting the corresponding start conditions - takes over the control fully automatically.
  • the control works as if it were directly connected to the technical equipment that is actually available in a real technical system.
  • the particular advantage of the invention lies in the fact that neither the technical resources nor the technical system have to be present. Rather, all a corresponding system can be tested beforehand in a CAD drawing animated using the method according to the invention. This makes it possible to start up the system virtually.

Abstract

L'invention concerne un procédé pour mettre en exploitation (VIBS) une installation technique comprenant un dispositif comportant un système CAO (CAO) permettant d'établir et de représenter un dessin CAO comprenant des objets de dessin CAO (R) pour des ressources techniques de l'installation (ANL). Le dispositif comprend une plate-forme de données (DB) comprenant une bibliothèque pour les données de ressources techniques (BD), dans laquelle les attributs des objets d'instrumentation appartenant au type de ressources techniques sont inscrits, et un dispositif de commande (PLC), qui exécute un programme de commande pour l'installation technique (ANL). Selon l'invention, un type de ressources est ajouté à un objet de dessin (R) sélectionné à partir de la bibliothèque pour les données de ressources (BD). Enfin, des objets de déplacement (RF1, RF2, RT, RS1, RS2) CAO sont formés pour chaque objet d'instrumentation du type de ressources en fonction de ses attributs, et disposés, en vue d'être affichés dans un objet de dessin (R) CAO du dessin CAO correspondant. Selon l'invention, on peut quasiment commander un dessin CAO par l'intermédiaire de la commande PLC. De manière avantageuse, les ressources techniques et l'installation technique ne sont pas nécessairement existantes. De plus, un dessin CAO animé peut être utilisé dans tous les états d'une installation sélectionnée, grâce à l'utilisation du procédé de l'invention, ce qui permet de faire fonctionner virtuellement l'installation.
PCT/EP2005/051536 2004-04-19 2005-04-07 Procede et systeme pour mettre en exploitation virtuellement une installation technique au moyen d'une utilisation preferee WO2005101148A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004019432.7 2004-04-19
DE102004019432A DE102004019432A1 (de) 2004-04-19 2004-04-19 Verfahren und System zur virtuellen Inbetriebsetzung einer technischen Anlage mit bevorzugter Verwendung

Publications (2)

Publication Number Publication Date
WO2005101148A2 true WO2005101148A2 (fr) 2005-10-27
WO2005101148A3 WO2005101148A3 (fr) 2006-04-13

Family

ID=34981791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/051536 WO2005101148A2 (fr) 2004-04-19 2005-04-07 Procede et systeme pour mettre en exploitation virtuellement une installation technique au moyen d'une utilisation preferee

Country Status (2)

Country Link
DE (1) DE102004019432A1 (fr)
WO (1) WO2005101148A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009030242A1 (fr) 2007-08-28 2009-03-12 Siemens Aktiengesellschaft Système et procédé pour générer un modèle de comportement afin de simuler un système d'automatisation
WO2011036384A1 (fr) 2009-09-25 2011-03-31 Solystic Simulateur numérique temps réel
US8100366B2 (en) 2006-12-11 2012-01-24 Kite Gen Research S.R.L. Automatic kite flight control system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2193409B1 (fr) 2007-09-25 2011-07-06 Siemens Aktiengesellschaft Système et procédé de modélisation de flux de signaux dans des installations industrielles d'automatisation
DE102013010783A1 (de) 2013-06-28 2014-12-31 Abb Ag Verfahren und Steuergerät zum Testen einer Automatisierungslösung basierend auf einer PLC-Steuerung
EP3239795A1 (fr) * 2016-04-27 2017-11-01 ABB Schweiz AG Procédé et système de mise en service et optimisation d'une ligne de production
DE102016123332A1 (de) 2016-12-02 2018-06-07 Abb Ag Virtuelle Inbetriebnahme und Simulation eines Gebäudeautomatisierungssystems
DE102018119388A1 (de) * 2018-08-09 2020-02-13 Abb Schweiz Ag System und Verfahren zur Inbetriebnahme, Überwachung und Wartung von Geräten eines Gebäudes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997012301A1 (fr) * 1995-09-25 1997-04-03 Siemens Aktiengesellschaft Procede de conception pour systemes industriels et systemes de construction, et systeme de planification assiste par ordinateur a utiliser dans le cadre dudit procede
US5991528A (en) * 1997-11-05 1999-11-23 Reliance Electric Industrial Company Expert manufacturing system
WO2002101596A2 (fr) * 2001-06-13 2002-12-19 Robert Bosch Gmbh Procede et systeme pour soutenir les projets de construction d'usines
WO2003046672A2 (fr) * 2001-11-21 2003-06-05 Prophet Control Systems Limited Procede de fabrication virtuel en 3 dimensions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997012301A1 (fr) * 1995-09-25 1997-04-03 Siemens Aktiengesellschaft Procede de conception pour systemes industriels et systemes de construction, et systeme de planification assiste par ordinateur a utiliser dans le cadre dudit procede
US5991528A (en) * 1997-11-05 1999-11-23 Reliance Electric Industrial Company Expert manufacturing system
WO2002101596A2 (fr) * 2001-06-13 2002-12-19 Robert Bosch Gmbh Procede et systeme pour soutenir les projets de construction d'usines
WO2003046672A2 (fr) * 2001-11-21 2003-06-05 Prophet Control Systems Limited Procede de fabrication virtuel en 3 dimensions

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FARRINGTON, NEMBHARD, STURROCK, EVANS: "Increasing the power and value of manufacturing simulation via collaboration with other analytical tools: a panel discussion" PROCEEDINGS OF THE 1999 WINTER SIMULATION CONFERENCE, [Online] 31. Dezember 1999 (1999-12-31), Seiten 749-753, XP002354958 Gefunden im Internet: URL:http://www.informs-sim.org/wsc99papers /107.PDF> [gefunden am 2005-11-18] *
ROSSGODERER U ET AL: "A CONCEPT FOR AUTOMATICAL LAYOUT GENERATION" PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION. NAGOYA,JAPAN, MAY 21 - 27, 1995, NEW YORK, IEEE, US, Bd. VOL. 1, 21. Mai 1995 (1995-05-21), Seiten 800-805, XP000657267 ISBN: 0-7803-1966-4 *
SPATH D ET AL: "3-D-Projektierung und Simulation von Ablaufsteuerungen" WERKSTATTSTECHNIK, SPRINGER VERLAG. BERLIN, DE, Bd. 90, Nr. 7-8, 31. August 2000 (2000-08-31), Seiten 292-296, XP002254620 ISSN: 0340-4544 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8100366B2 (en) 2006-12-11 2012-01-24 Kite Gen Research S.R.L. Automatic kite flight control system
WO2009030242A1 (fr) 2007-08-28 2009-03-12 Siemens Aktiengesellschaft Système et procédé pour générer un modèle de comportement afin de simuler un système d'automatisation
WO2011036384A1 (fr) 2009-09-25 2011-03-31 Solystic Simulateur numérique temps réel

Also Published As

Publication number Publication date
DE102004019432A1 (de) 2005-11-03
WO2005101148A3 (fr) 2006-04-13

Similar Documents

Publication Publication Date Title
DE10102205B4 (de) Verfahren und Vorrichtung zum Konfigurieren und Verwalten eines Prozeßsteuerungsnetzes
WO2005101148A2 (fr) Procede et systeme pour mettre en exploitation virtuellement une installation technique au moyen d'une utilisation preferee
DE10352815B4 (de) Simulationsverfahren für eine Bearbeitung eines Werkstücks durch eine Werkzeugmaschine und korrespondierender Rechner
EP2068214B1 (fr) Programmation graphique déduisant la séquence de la commande de processus de la connection d'objets graphiques dynamiques
DE102006043390A1 (de) Vorrichtung und Verfahren zur Simulation eines Ablaufs zur Bearbeitung eines Werkstücks an einer Werkzeugmaschine
EP2266066B1 (fr) Procédé et système de détection de propriétés de groupement
DE3401060A1 (de) Verfahren zum grafischen darstellen eines gebildes
DE102005026040A1 (de) Parametrierung eines Simulations-Arbeitsmodells
DE102010005308A1 (de) Testanlage zum Testen von Steuerprogrammen für eine Roboteranlage
EP2009525A1 (fr) Procédé et dispositif pour tester au moins une unité de commande
DE112008003963T5 (de) System und Verfahren zur Off-line-Programmierung eines Industrieroboters
DE102017120016A1 (de) Verfahren zur Konfiguration eines zum Testen eines elektronischen Steuergeräts eingerichteten Testgeräts sowie Konfigurationssystem
DE112015006570T5 (de) Programmerzeugungseinrichtung, Programmerzeugungsverfahren und Programmerzeugungsprogramm
EP3650970B1 (fr) Procédé et dispositif de simulation assistée par ordinateur d'un système technique modulaire
DE102006021574A1 (de) Verfahren zur Performanceverbesserung bei der Bearbeitung eines prozessübergreifenden digitalen Versuchsmodells
DE19644481A1 (de) Computergestütztes Arbeits- und Informationssystem und zugehöriger Baustein
DE112016007339T5 (de) Simulationsvorrichtung
EP1658535B1 (fr) Procede de projection graphique de la commande d'une installation technique a projection integree d'appareils d'exploitation
EP1758001A2 (fr) Procédé et système destinés à représenter la structure d' une installation d' automatisation sur un ordinateur
EP2642359A1 (fr) Dispositif de développement et méthode pour créer un programme de calculateur embarqué
DE102020002382A1 (de) Werkzeugmaschinen-steuervorrichtung und werkzeugmaschine
WO2017021211A1 (fr) Simulateur de véhicule pour véhicule ferroviaire
EP3151217A1 (fr) Systeme d'apprentissage pour operateur
DE102004057727A1 (de) Engineeringsystem mit automatischer Generierung von Instanzvorlagen
EP3760392B1 (fr) Procédé et système d'essai et/ou de montage d'un objet au moyen d'un robot

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase