WO2005098327A1 - Heliostat et procede de controle de celui-ci - Google Patents

Heliostat et procede de controle de celui-ci Download PDF

Info

Publication number
WO2005098327A1
WO2005098327A1 PCT/JP2005/004432 JP2005004432W WO2005098327A1 WO 2005098327 A1 WO2005098327 A1 WO 2005098327A1 JP 2005004432 W JP2005004432 W JP 2005004432W WO 2005098327 A1 WO2005098327 A1 WO 2005098327A1
Authority
WO
WIPO (PCT)
Prior art keywords
heliostat
sensor
target
sunlight
angle
Prior art date
Application number
PCT/JP2005/004432
Other languages
English (en)
Japanese (ja)
Inventor
Yutaka Tamaura
Hirofumi Aoki
Nobuyuki Iwatuki
Masukazu Kusano
Katsunori Hanamura
Akio Suzuki
Original Assignee
Solar Hytech Co., Ltd.
Suzuki, Ariya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solar Hytech Co., Ltd., Suzuki, Ariya filed Critical Solar Hytech Co., Ltd.
Publication of WO2005098327A1 publication Critical patent/WO2005098327A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/452Vertical primary axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the present invention relates to a heliostat (solar tracking mirror device) used when condensing sunlight to generate thermal energy, and a method for controlling its position and orientation.
  • heliostat solar tracking mirror device
  • solar thermal energy is very promising as an alternative to fossil fuels due to its large amount of endowment (potential energy resources).
  • Solar energy is also a different force about LkWZm 2 depending on the location, the thermal energy of the sunlight can be sufficiently utilized as a source energy for operating the thermochemical reaction plant or a power plant or the like.
  • the thermal energy of the sunlight In order to utilize solar thermal energy as an energy source, it must be efficiently converted to chemical or electrical energy.To increase the conversion efficiency, however, the amount of energy per unit area by concentrating sunlight Must be increased.
  • Patent Document 1 CIEMAT (Spain), Patent No. P9901275
  • Patent Document 2 Japanese Patent No. 2951297
  • Patent document 3 JP-A-2000-146310
  • Patent Document 4 JP 2004-37037 A
  • a heliostat In order to converge sunlight and efficiently obtain thermal energy, a heliostat must accurately track the position of the sun.
  • the energy obtained by condensing sunlight is theoretically proportional to the total area of the mirror surface of the heliostat.
  • the beams supporting the mirrors and the mechanisms that operate them are also huge heavy objects, and a solid foundation is needed to set them up to accurately track the sun. Things are needed.
  • a condensing system for controlling the attitude of a heliostat a host computer is used based on a solar orbit (known) and the position of each heliostat (known; accuracy of the installation position and attitude is required).
  • the centralized control method for the heliostat is mainly used. When this method is used, wired or wireless communication equipment is required for controlling the attitude of the heliostat.
  • the host computer breaks down or radio interference occurs during the use of wireless communication, the entire condensing system is affected and the position and orientation of the heliostat cannot be controlled. Problems arise.
  • the present invention automatically and sequentially detects targets at three or more known locations using sensors such as a CCD and a CMOS, which are two-dimensional visual sensors mounted on the heliostat, and determines the relative position between the heliostat and the target.
  • sensors such as a CCD and a CMOS, which are two-dimensional visual sensors mounted on the heliostat, and determines the relative position between the heliostat and the target.
  • the process of measuring the relationship and the process of calculating the position and orientation of the heliostat with respect to the known condensing part (condensing point) and the solar orbit from the measured values are performed, and the heliostat is moved at an arbitrary position and orientation.
  • the greatest feature is that even if it is installed, it can automatically track the sun and reflect the sunlight to the condensing part.
  • the position and attitude of the arbitrarily installed heliostat with respect to the known target and the condensing part are automatically calculated, and the sun is tracked by the value and the known sun orbit to collect the sunlight. Can be led to.
  • installation of a heliostat eliminates the need for rigorous surveying, leveling work, and solid foundation work as in the past. To obtain a large amount of concentrated solar thermal energy, hundreds of thousands of heliostats are required, but the installation effort is very small, and it is an essential technology for mass production of many concentrated plants .
  • each heliostat is independently determined with respect to the position of the known light collector.
  • the equipment that calculates the attitude is known from its values and the observation results so far, and also controls the solar orbital value stored in the device on the heliostat in advance, so that it is not necessary to perform centralized control. Becomes unnecessary.
  • each heliostat automatically collects sunlight as a completely independent robot and obtains thermal energy be able to.
  • the position of the reference target object is measured regularly, and the force may be corrected if necessary.
  • Hundreds of powers Compared to the conventional system that maintains thousands of heliostats, several points are required. The effort required to maintain only the target 's' time' costs can be greatly reduced.
  • Target force of three or more points Based on the measured and calculated position of the heliostat, based on the attitude and the known solar orbit, control that tracks the sun even if the position of the sun is temporarily weak due to the effects of clouds, etc. Is possible.
  • FIG. 1 is a diagram showing a configuration of a tower-type solar light collecting system.
  • FIG. 2 is a diagram showing a configuration of a heliostat.
  • FIG. 3 (a) is a diagram showing a coordinate system of a heliostat.
  • FIG. 3 (b) is a diagram showing a coordinate system of a sensor.
  • FIG. 4 is a diagram showing a flowchart of the system of the present invention.
  • FIG. 5 is a diagram showing a coordinate system arrangement when attitude control is performed by rotating a sensor in a two-dimensional coordinate system.
  • FIG. 6 is a diagram showing a method for determining the position and orientation of the heliostat, the position measuring force of three targets.
  • FIG. 7 is a diagram showing a control procedure of a heliostat for reflecting reflected light of sunlight to a light condensing part.
  • FIG. 8 is a diagram showing a relationship between a stationary coordinate system and a moving coordinate system.
  • FIG. 6 is a diagram illustrating a point of calculating a coordinate conversion matrix related to a roll
  • FIG. 10 is a diagram showing a control procedure for reflecting sunlight by a heliostat mirror and directing the sunlight to a condensing section.
  • a coordinate system serving as a reference for the positions of a target and a light-collecting unit is defined as a “stationary coordinate system”. Even if the heliostat is placed at any position and in any posture, if the deviation of the position and direction from the origin of the stationary coordinate system is known, the amount of the deviation is calculated and the position of the sun and the condensing part are calculated. The heliostat can calculate the turning angle and the elevation angle according to the deviation amount, and reflect the received sunlight toward the condensing part while tracking the sun.
  • FIG. 1 shows a basic structure of a tower-type light condensing system as an example of a solar light condensing system using a heliostat.
  • the tower type light collection system is Combination with Heliostat 2.
  • Each heliostat 2 receives the sunlight L on the mirror surface of the reflecting mirror 3 while tracking the sun, and reflects the reflected light R to the condensing section 1.
  • the condenser 1 is provided with a heat exchanger or a reactor for converting sunlight into heat energy, and the received reflected light R of the sunlight is focused on the heat exchanger and the like.
  • the reflecting mirror 3 of the heliostat 2 is, as a tracking mechanism, supported by a forked arm 5 supported on a base 4 as a tracking mechanism.
  • a base 4 is supported by a base 4
  • the reflecting mirror 3 is supported by a horizontal axis 5 b laid on a fork of the arm 5.
  • the structure of the heliostat shown in FIG. 2 is a schematic structure, and any type or shape of a heliostat that can control the turning angle and the elevation angle may be used.
  • the reflecting mirror 3 may be a curved surface or a flat surface.
  • the vertical axis 5a is an axis for adjusting the turning angle (ex) of the reflecting mirror 3
  • the horizontal axis 5b is an axis for adjusting the elevation angle ( ⁇ ) of the reflecting mirror 3.
  • the rotation of each axis and the adjustment of the rotation angle are performed by motors 6a and 6b and rotary encoders 7a and 7b, respectively.
  • the solar cell panel 8 and the storage battery 9 are provided, and the storage battery is housed in the base 4.
  • the present invention is to control the attitude of the heliostat 2 using at least three or more targets 10a, 10b, 10c and the sensor 11 in the heliostat.
  • the attitude of the heliostat 2 is controlled by the control device 12.
  • the targets 10a, 10b, and 10c are set at positions determined as targets for positioning the heliostat, and it is assumed that the coordinates in the stationary coordinate system are known. Since the sensor 11 is set arbitrarily with respect to a target which is a force stationary coordinate system which is installed on the heliostat 2, this is called a "dynamic coordinate system".
  • the sensor 11 gives the position and orientation of the moving coordinate system fixed to the heliostat, and further gives the turning angle a and the elevation angle j8 in the moving coordinate system fixed to the heliostat, thereby determining the position and orientation in the stationary coordinate system. Is done.
  • the control device 12 is, for example, stored in the base 4 and individually mounted on each heliostat 2. Therefore, in the present invention, each heliostat 2 is controlled autonomously by the control device 12 unique to the heliostat 2.
  • the sensor 11 observes the positions of the objects 10a, 10b, and 10c and detects the object on the sensor 11 And the turning angle a and the elevation angle of the reflecting mirror 3 of the heliostat 2 at that time are measured, and a calculation command is output to the control device 12.
  • the control device 12 receives the calculation command from the sensor 11 as an input, adjusts the turning angle and elevation angle of the mirror surface of the reflector, and adjusts the solar orbit and the Helios required to receive the solar light and reflect it to the condensing part. Calculate the turning angle and elevation angle of the reflector 3 of the tut 2 and output the attitude control command to the heliostat.
  • the senor 11 is a mirror surface where the axis of the vertical axis 5a intersects with the axis of the horizontal axis 5b on the mirror surface of the reflecting mirror 4 which is in the same direction as the normal of the mirror surface of the reflecting mirror 3. It is installed in the center of.
  • the position of the sensor 11 may theoretically be set at an arbitrary point on the movable part of the heliostat 2, but it is set at the center of the moving coordinate system in the same direction as the normal of the mirror surface. This facilitates the calculations described below.
  • the sensor 11 observes the positions of the targets 10a, 10b, and 10c, and coordinates the targets 10a, 10b, and 10c on the sensor 11, and the turning angle ⁇ and the elevation angle of the reflecting mirror 3 of the heliostat 2 at that time.
  • FIG. 3 (a) shows the coordinate system of the heliostat
  • FIG. 3 (b) shows the coordinate system of the sensor 11 (FIG. 3 (b) does not show the reflecting mirror).
  • the sensor 11 observes the targets 10a, 10b, and 10c shown in FIG. 1, detects the position and posture of the heliostat with respect to the target coordinate system, and issues a command to control the posture of the heliostat. Output.
  • the sensor 11 is, for example, a two-dimensional visual sensor such as a CCD camera or a CMOS
  • the control device 12 has a recording device (memory) for the sun's orbit.
  • As a computer function it controls the motor's sensor and the position of the heliostat. Includes a function to calculate posture!
  • FIG. 4 shows a flowchart of the control procedure.
  • the adjustment of the turning angle and the elevation angle of the mirror surface of the reflecting mirror according to the present invention is realized by executing the following steps 119 in order.
  • the condensing unit 1 and the three or more targets 10a, 10b, and 10c are set at predetermined positions.
  • the coordinate system serving as a reference for those positions is defined as the "stationary coordinate system" earlier.
  • Stationary The solar orbit in the coordinate system has a known force such as a conventional observation result.
  • Heliostat 2 is placed at an arbitrary position and orientation in the stationary coordinate system (Note 1).
  • the coordinate system fixed to Heliostat 2 is the "dynamic coordinate system”.
  • the turning angle ⁇ (longitude) and elevation angle ⁇ 8 (latitude) of the reflecting mirror 3 are sequentially moved by the two motors 6a and 6b of the heliostat 2.
  • the sensor 11 fixed on the heliostat 2 determines whether the target object 10a, 10b, or 10c has any force.
  • the coordinates (7 ?, ⁇ ) of the targets 10a, 10b, and 10c on the sensor, and the turning angle ⁇ of the heliostat 2 and The elevation angle / 3 is measured by the rotary encoders 7a and 7b and stored.
  • the targets 10a, 10b, and 10c alternately emit light at a predetermined time, or the targets 10a, 10b, and 10c There are methods such as making the color and shape different for each.
  • Step 8 From the position in the stationary coordinate system of the known target 10a, 10b, 10c corresponding to 1 n 1 n and the position in the stationary coordinate system of the heliostat 2 (the deviation of the origin force of the stationary coordinate system) and the attitude Is obtained by numerical calculation using a computer as the control device 12. The details of the numerical calculation are described in the next section. Landmarks 10a, 10b and 10c require a minimum of 3 points. If more than three targets are used, the position accuracy in the stationary coordinate system can be improved by the method of least squares or the like. [0033] (8) Step 8
  • the turning angle ⁇ and the elevation angle of the heliostat 2 for reflecting the sunlight L to the condensing unit 1 are calculated.
  • the two motors 6a and 6b of the heliostat are controlled so that the turning angle and the elevation angle / 3 calculated in step 8 are obtained.
  • step 9 Based on the result of step 9, the attitude of the heliostat 2 is controlled. Then, while tracking the sun, the sunlight L is received by the reflector 3 of the heliostat, and the reflected light R is reflected. The posture control required to irradiate the light collector 1 is performed. This control is also a function of the control device 12 which is a computer.
  • a base for a heliostat is installed on a stationary coordinate system O—XY, and a base on a rectangular motion coordinate system P—xy with a point P as an origin on the base. Fix on top.
  • the reflecting mirror and the sensor can rotate around P with respect to the base, and the orthogonal motion coordinate system P ⁇ ⁇ with P as the origin is fixed on the reflecting mirror and the sensor. Is described by the angle ⁇ between the ⁇ axis and the X axis.
  • the sensor is mounted in the ⁇ -axis direction and can detect only the coordinates of the target in the direction perpendicular to the ⁇ -axis direction, that is, only the r? Coordinates of the target.
  • the sensor and the reflector are swiveled and captured on the sensor, respectively, and are measured by the respective dynamic coordinates r ?, ⁇ , ⁇ and the rotary encoder measured by the sensor.
  • the position and attitude angle of the host in the stationary coordinate system are determined.
  • the value of the attitude angle 0 of the heliostat reflector for reflecting sunlight L to (0, ⁇ ) as an example is con
  • the reflected light R of the sunlight L can be applied to the condensing section by moving the motor of the heliostat so that the obtained turning angle ⁇ is obtained.
  • Fig. 3 it is assumed that the direction of the sensor on the heliostat can be controlled by controlling the rotation angle ex (longitude) and elevation angle ⁇ (latitude) of the heliostat.
  • the dynamic coordinate system ⁇ —xyz is fixed on the pedestal of the heliostat, and the dynamic coordinate system ⁇ — ⁇ is fixed so that the sensor direction is the ⁇ axis and the rotation axis that gives the elevation angle ⁇ is the ⁇ axis.
  • the heliostat is positioned at any position in the field of the stationary coordinate system ⁇ — ⁇ (the position vector of the origin ⁇ of the local coordinate system).
  • the swivel angle a and the elevation angle j8 of the heliostat are adjusted so as to capture the angle, and the swivel angle a and the elevation angle j8 at this time are measured with a rotary encoder.
  • the ⁇ coordinate which is the depth direction, cannot be measured.
  • the coordinates (7 ?, ⁇ ) on the sensor, the turning angle a, the elevation angle, and 13 (i ⁇ 3) are measured, and the position and orientation of the heliostat (X , Y, Z), (
  • a 33i -os ⁇ . Sin (-cosOsm cos ( ⁇ + sin 6 sin y /)-sin o :. sin (cosOsm sin y / + sin ⁇ cos y /)
  • Equation (10) can be solved by, for example, Newton-Raphson method.
  • C is a position vector of the condensing part in the stationary coordinate system.
  • Solar power is expected to be a fuel that uses concentrated solar thermal energy for the endothermic reaction of chemical reactions, and a solar thermal power generation system that can collect dilute solar energy and supply stable power generation.

Abstract

[PROBLEMES] Réflechir la lumière du soleil sur une pièce de condensation tout en suivant automatiquement le soleil en installant des héliostats à n’importe quelle position et n’importe quelle attitude. [MOYENS POUR RESOUDRE LES PROBLEMES] Un système héliostat comprend des cibles (10a), (10b), et (10c), des capteurs (11), et des contrôleurs (12). Ce procédé de contrôle du système héliostat pour condenser la lumière du soleil reçoit la lumière du soleil sur les faces de miroir de réflecteurs (4) et réfléchit la lumière reçue vers la pièce de condensation (1). Les héliostats (2) peuvent modifier l’orientation des faces de miroir, et réfléchir la lumière du soleil vers la pièce de condensation (1) pour la convergence. Les trois cibles ou davantage parmi les cibles déjà connues (10a), (10b) et (10c) sont détectées par les capteurs (11), on calcule la position et l’attitude des héliostats (2) par rapport aux cibles (10a), (10b) et (10c), et sur la base des résultats calculés, on contrôle l’attitude des héliostats.
PCT/JP2005/004432 2004-03-30 2005-03-14 Heliostat et procede de controle de celui-ci WO2005098327A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-100172 2004-03-30
JP2004100172 2004-03-30

Publications (1)

Publication Number Publication Date
WO2005098327A1 true WO2005098327A1 (fr) 2005-10-20

Family

ID=35125167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004432 WO2005098327A1 (fr) 2004-03-30 2005-03-14 Heliostat et procede de controle de celui-ci

Country Status (1)

Country Link
WO (1) WO2005098327A1 (fr)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2893120A1 (fr) * 2005-11-07 2007-05-11 Frederic Conchy Module solaire elementaire destine a un dispositif de recuperation du rayonnement solaire
JP2008082594A (ja) * 2006-09-27 2008-04-10 Wakasawan Energ Kenkyu Center 集光装置における集光レンズ位置調節機構
WO2009131787A2 (fr) * 2008-04-20 2009-10-29 The Boeing Company Héliostat autonome pour centrale solaire
EP2145137A1 (fr) * 2007-03-30 2010-01-20 Esolar, Inc. Héliostat avec dispositif de commande de poursuite intégré basé sur des images
WO2010050107A1 (fr) * 2008-10-27 2010-05-06 三井造船株式会社 Procédé permettant de commander un héliostat utilisé pour condenser la lumière du soleil, et dispositif associé
EP2212626A1 (fr) * 2007-10-24 2010-08-04 Esolar, Inc. Calibrage et commande de suivi d'héliostats dans une centrale solaire à récepteur à tour centrale
CN101929744A (zh) * 2010-08-13 2010-12-29 李应鹏 线塔式太阳能聚光集热系统
WO2011001448A3 (fr) * 2009-07-01 2012-08-02 Ravindra Patwardhan Système récepteur central solaire utilisant un mécanisme de positionnement commun pour héliostats
WO2013047019A1 (fr) * 2011-09-30 2013-04-04 株式会社日立プラントテクノロジー Dispositif de collecteur thermique solaire et procédé de poursuite solaire automatique pour dispositif de collecteur thermique solaire
CN104156003A (zh) * 2014-09-04 2014-11-19 武汉易辰科技有限公司 一种新型定日镜控制方法
JP2016056965A (ja) * 2014-09-05 2016-04-21 国立大学法人三重大学 ヘリオスタット、太陽光集光システム、および、太陽光集光システムの制御方法
EP3367139A1 (fr) 2017-02-28 2018-08-29 Marco Antonio Carrascosa Perez Facette autonome pour concentrateurs solaires et concentrateur solaire comprenant ladite facette
EP3477219A4 (fr) * 2016-06-24 2020-01-29 SFI Corporation Appareil d'héliostat et procédé de génération d'énergie solaire
WO2020025107A1 (fr) 2018-07-31 2020-02-06 Carrascosa Perez Marco Antonio Facette autonome pour concentrateurs solaires et concentrateur solaire comprenant ladite facette

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146310A (ja) * 1998-11-05 2000-05-26 Mitaka Koki Co Ltd 太陽光集光システム用のヘリオスタット
WO2002052204A1 (fr) * 2000-12-25 2002-07-04 Mikio Kinoshita Concentrateur de rayonnement solaire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146310A (ja) * 1998-11-05 2000-05-26 Mitaka Koki Co Ltd 太陽光集光システム用のヘリオスタット
WO2002052204A1 (fr) * 2000-12-25 2002-07-04 Mikio Kinoshita Concentrateur de rayonnement solaire

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8704080B2 (en) 2005-11-07 2014-04-22 Exosun Basic solar module for a device collecting solar radiation
FR2893120A1 (fr) * 2005-11-07 2007-05-11 Frederic Conchy Module solaire elementaire destine a un dispositif de recuperation du rayonnement solaire
JP2008082594A (ja) * 2006-09-27 2008-04-10 Wakasawan Energ Kenkyu Center 集光装置における集光レンズ位置調節機構
EP2145137A1 (fr) * 2007-03-30 2010-01-20 Esolar, Inc. Héliostat avec dispositif de commande de poursuite intégré basé sur des images
EP2145137A4 (fr) * 2007-03-30 2013-11-27 Esolar Inc Héliostat avec dispositif de commande de poursuite intégré basé sur des images
EP2212626A1 (fr) * 2007-10-24 2010-08-04 Esolar, Inc. Calibrage et commande de suivi d'héliostats dans une centrale solaire à récepteur à tour centrale
EP2212626A4 (fr) * 2007-10-24 2014-01-08 Esolar Inc Calibrage et commande de suivi d'héliostats dans une centrale solaire à récepteur à tour centrale
WO2009131787A3 (fr) * 2008-04-20 2011-11-10 The Boeing Company Héliostat autonome pour centrale solaire
WO2009131787A2 (fr) * 2008-04-20 2009-10-29 The Boeing Company Héliostat autonome pour centrale solaire
JP2010101594A (ja) * 2008-10-27 2010-05-06 Mitsui Eng & Shipbuild Co Ltd 太陽光集光用ヘリオスタットの制御方法及びその装置
CN102197267A (zh) * 2008-10-27 2011-09-21 三井造船株式会社 太阳光聚光用定日镜的控制方法及其装置
JP4473332B2 (ja) * 2008-10-27 2010-06-02 三井造船株式会社 太陽光集光用ヘリオスタットの制御方法及びその装置
AU2009309208B2 (en) * 2008-10-27 2013-01-24 Mitsui Engineering & Shipbuilding Co., Ltd. Method for controlling heliostat used for condensing of sunlight and device thereof
WO2010050107A1 (fr) * 2008-10-27 2010-05-06 三井造船株式会社 Procédé permettant de commander un héliostat utilisé pour condenser la lumière du soleil, et dispositif associé
WO2011001448A3 (fr) * 2009-07-01 2012-08-02 Ravindra Patwardhan Système récepteur central solaire utilisant un mécanisme de positionnement commun pour héliostats
CN101929744A (zh) * 2010-08-13 2010-12-29 李应鹏 线塔式太阳能聚光集热系统
JP2013076507A (ja) * 2011-09-30 2013-04-25 Hitachi Plant Technologies Ltd 太陽光集熱装置および太陽光集熱装置の太陽自動追尾方法
WO2013047019A1 (fr) * 2011-09-30 2013-04-04 株式会社日立プラントテクノロジー Dispositif de collecteur thermique solaire et procédé de poursuite solaire automatique pour dispositif de collecteur thermique solaire
CN104156003A (zh) * 2014-09-04 2014-11-19 武汉易辰科技有限公司 一种新型定日镜控制方法
JP2016056965A (ja) * 2014-09-05 2016-04-21 国立大学法人三重大学 ヘリオスタット、太陽光集光システム、および、太陽光集光システムの制御方法
EP3477219A4 (fr) * 2016-06-24 2020-01-29 SFI Corporation Appareil d'héliostat et procédé de génération d'énergie solaire
EP3367139A1 (fr) 2017-02-28 2018-08-29 Marco Antonio Carrascosa Perez Facette autonome pour concentrateurs solaires et concentrateur solaire comprenant ladite facette
WO2020025107A1 (fr) 2018-07-31 2020-02-06 Carrascosa Perez Marco Antonio Facette autonome pour concentrateurs solaires et concentrateur solaire comprenant ladite facette

Similar Documents

Publication Publication Date Title
WO2005098327A1 (fr) Heliostat et procede de controle de celui-ci
Salgado-Conrado A review on sun position sensors used in solar applications
US9182470B2 (en) Inclinometer for a solar array and associated systems, methods, and computer program products
Chong et al. General formula for on-axis sun-tracking system and its application in improving tracking accuracy of solar collector
US8365719B2 (en) Multi-receiver heliostat system architecture
US20110259320A1 (en) Solar light collecting method in multi-tower beam-down light collecting system
CN102242980B (zh) 定日镜跟踪控制装置及跟踪控制方法
CN109062265B (zh) 一种太阳光热发电定日镜安装误差校正方法
WO2010048589A2 (fr) Systèmes d'énergie solaire à récepteur central : architecture et procédés de commande
US20120325314A1 (en) Solar Power Collection Using High-Focus-Accuracy Mirror Array
WO2007034717A1 (fr) Dispositif de support de miroirs reflechissants pour heliostat
KR100914273B1 (ko) 음영방지기능을 갖춘 태양광 모듈의 태양광 추적 장치 및 그 제어방법
US20120325313A1 (en) Solar-Tower System With High-Focus-Accuracy Mirror Array
CN102506811A (zh) 基于图像检测的定日镜反射角度在线检测及校正方法
US20110120447A1 (en) Tilting/Tracking System for Solar Devices
Schneider Control algorithms for large-scale single-axis photovoltaic trackers
Argeseanu et al. New low cost structure for dual axis mount solar tracking system using adaptive solar sensor
WO2017187445A1 (fr) Détecteur de position du soleil et procédé de détection de position du soleil
JP2010258369A (ja) 太陽光追尾機構制御装置、太陽光追尾装置及び太陽光発電システム
TW201314241A (zh) 用於追蹤器的直接對準的組合太陽能電池太陽感測器及封閉迴路追蹤
WO2011099035A2 (fr) Procédé et appareil maître-esclave à déploiement rapide et échelonnable pour capteur solaire orientable distribué et d'autres applications
US8552285B2 (en) Device and method for solar-tracking according to sensor
Tchao et al. An Implementation of an optimized dual-axis solar tracking algorithm for concentrating solar power plants deployment
WO2022013288A1 (fr) Procédé de gestion de suiveur solaire à axe unique et installation solaire mettant en oeuvre ledit procédé
CN115443608A (zh) 优化光伏模块发电量的方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP