WO2005097809A2 - Synthesis of boronic ester and acid compounds - Google Patents
Synthesis of boronic ester and acid compounds Download PDFInfo
- Publication number
- WO2005097809A2 WO2005097809A2 PCT/US2005/009774 US2005009774W WO2005097809A2 WO 2005097809 A2 WO2005097809 A2 WO 2005097809A2 US 2005009774 W US2005009774 W US 2005009774W WO 2005097809 A2 WO2005097809 A2 WO 2005097809A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- formula
- compound
- group
- solvent
- optionally substituted
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 184
- 239000002253 acid Chemical class 0.000 title claims abstract description 51
- 150000002148 esters Chemical class 0.000 title claims abstract description 43
- 238000003786 synthesis reaction Methods 0.000 title abstract description 13
- 230000015572 biosynthetic process Effects 0.000 title abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 146
- 230000008569 process Effects 0.000 claims abstract description 127
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 claims abstract description 64
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 189
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 126
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 114
- 239000002904 solvent Substances 0.000 claims description 114
- -1 ester compound Chemical class 0.000 claims description 112
- 125000003118 aryl group Chemical group 0.000 claims description 90
- 238000006243 chemical reaction Methods 0.000 claims description 90
- 239000000243 solution Substances 0.000 claims description 89
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 89
- 239000000203 mixture Substances 0.000 claims description 84
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 74
- 125000001931 aliphatic group Chemical group 0.000 claims description 73
- 239000011541 reaction mixture Substances 0.000 claims description 72
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims description 66
- 229910052796 boron Inorganic materials 0.000 claims description 60
- 125000001072 heteroaryl group Chemical group 0.000 claims description 58
- 239000002841 Lewis acid Substances 0.000 claims description 44
- 150000007517 lewis acids Chemical class 0.000 claims description 44
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 42
- 238000005859 coupling reaction Methods 0.000 claims description 39
- 230000008878 coupling Effects 0.000 claims description 37
- 238000010168 coupling process Methods 0.000 claims description 37
- 229910052760 oxygen Inorganic materials 0.000 claims description 33
- 238000003756 stirring Methods 0.000 claims description 33
- 239000003153 chemical reaction reagent Substances 0.000 claims description 32
- 229910052799 carbon Inorganic materials 0.000 claims description 30
- 150000003839 salts Chemical class 0.000 claims description 30
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 29
- 239000000047 product Substances 0.000 claims description 27
- 239000003960 organic solvent Substances 0.000 claims description 26
- 239000006184 cosolvent Substances 0.000 claims description 24
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 24
- 239000001257 hydrogen Substances 0.000 claims description 23
- 229910052739 hydrogen Inorganic materials 0.000 claims description 23
- 125000006239 protecting group Chemical group 0.000 claims description 23
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 21
- 125000003277 amino group Chemical group 0.000 claims description 20
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 claims description 19
- 125000000217 alkyl group Chemical group 0.000 claims description 18
- 125000005842 heteroatom Chemical group 0.000 claims description 18
- 239000012455 biphasic mixture Substances 0.000 claims description 17
- 238000004519 manufacturing process Methods 0.000 claims description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 16
- 125000004432 carbon atom Chemical group C* 0.000 claims description 16
- 239000001301 oxygen Substances 0.000 claims description 16
- 229910052783 alkali metal Inorganic materials 0.000 claims description 15
- 150000001340 alkali metals Chemical class 0.000 claims description 15
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 claims description 14
- 125000005620 boronic acid group Chemical group 0.000 claims description 14
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 14
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 claims description 14
- 238000010936 aqueous wash Methods 0.000 claims description 13
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 13
- 238000001914 filtration Methods 0.000 claims description 13
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical group COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 claims description 12
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 12
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims description 12
- 239000004215 Carbon black (E152) Substances 0.000 claims description 11
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 claims description 11
- 125000004122 cyclic group Chemical group 0.000 claims description 11
- 229930195733 hydrocarbon Natural products 0.000 claims description 11
- 150000002430 hydrocarbons Chemical class 0.000 claims description 11
- 230000000903 blocking effect Effects 0.000 claims description 10
- 238000002425 crystallisation Methods 0.000 claims description 10
- 230000008025 crystallization Effects 0.000 claims description 10
- 125000000623 heterocyclic group Chemical group 0.000 claims description 10
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 claims description 10
- 229910052717 sulfur Inorganic materials 0.000 claims description 10
- 150000003512 tertiary amines Chemical class 0.000 claims description 10
- 239000002585 base Substances 0.000 claims description 9
- 239000006227 byproduct Substances 0.000 claims description 9
- 150000001768 cations Chemical class 0.000 claims description 9
- 238000005406 washing Methods 0.000 claims description 9
- 239000000706 filtrate Substances 0.000 claims description 8
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 7
- 238000002955 isolation Methods 0.000 claims description 7
- 235000010755 mineral Nutrition 0.000 claims description 7
- 239000011707 mineral Substances 0.000 claims description 7
- 239000011592 zinc chloride Substances 0.000 claims description 7
- 235000005074 zinc chloride Nutrition 0.000 claims description 7
- NIPZZXUFJPQHNH-UHFFFAOYSA-N pyrazine-2-carboxylic acid Chemical compound OC(=O)C1=CN=CC=N1 NIPZZXUFJPQHNH-UHFFFAOYSA-N 0.000 claims description 6
- 125000003545 alkoxy group Chemical group 0.000 claims description 4
- VNDYJBBGRKZCSX-UHFFFAOYSA-L zinc bromide Chemical compound Br[Zn]Br VNDYJBBGRKZCSX-UHFFFAOYSA-L 0.000 claims description 4
- KBMDBLCFKPRPOC-UHFFFAOYSA-N 2-bromo-3,3,3-trifluoro-2-(trifluoromethyl)propanenitrile Chemical compound FC(F)(F)C(Br)(C#N)C(F)(F)F KBMDBLCFKPRPOC-UHFFFAOYSA-N 0.000 claims description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 3
- 125000002795 guanidino group Chemical group C(N)(=N)N* 0.000 claims description 3
- 229910052736 halogen Inorganic materials 0.000 claims description 3
- 150000002367 halogens Chemical class 0.000 claims description 3
- 238000010992 reflux Methods 0.000 claims description 3
- HVZJRWJGKQPSFL-UHFFFAOYSA-N tert-Amyl methyl ether Chemical compound CCC(C)(C)OC HVZJRWJGKQPSFL-UHFFFAOYSA-N 0.000 claims description 3
- NUMQCACRALPSHD-UHFFFAOYSA-N tert-Butyl ethyl ether Natural products CCOC(C)(C)C NUMQCACRALPSHD-UHFFFAOYSA-N 0.000 claims description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 claims description 2
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 2
- 125000004414 alkyl thio group Chemical group 0.000 claims description 2
- 238000010533 azeotropic distillation Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 2
- 229910052744 lithium Inorganic materials 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 125000003107 substituted aryl group Chemical group 0.000 claims description 2
- FEONEKOZSGPOFN-UHFFFAOYSA-K tribromoiron Chemical compound Br[Fe](Br)Br FEONEKOZSGPOFN-UHFFFAOYSA-K 0.000 claims description 2
- 229940102001 zinc bromide Drugs 0.000 claims description 2
- 229910052700 potassium Inorganic materials 0.000 claims 1
- 108090000765 processed proteins & peptides Proteins 0.000 abstract description 14
- GXJABQQUPOEUTA-RDJZCZTQSA-N bortezomib Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)B(O)O)NC(=O)C=1N=CC=NC=1)C1=CC=CC=C1 GXJABQQUPOEUTA-RDJZCZTQSA-N 0.000 abstract description 6
- 229960001467 bortezomib Drugs 0.000 abstract description 6
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 6
- 229940079156 Proteasome inhibitor Drugs 0.000 abstract description 4
- 239000003207 proteasome inhibitor Substances 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 63
- 239000007787 solid Substances 0.000 description 24
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 19
- 150000001721 carbon Chemical group 0.000 description 17
- 239000011521 glass Substances 0.000 description 17
- 239000012071 phase Substances 0.000 description 17
- 150000008064 anhydrides Chemical class 0.000 description 16
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 14
- 239000012299 nitrogen atmosphere Substances 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000008346 aqueous phase Substances 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- 229940125904 compound 1 Drugs 0.000 description 11
- 238000004817 gas chromatography Methods 0.000 description 11
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 11
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 11
- 238000004007 reversed phase HPLC Methods 0.000 description 11
- 229940126214 compound 3 Drugs 0.000 description 10
- 238000001035 drying Methods 0.000 description 10
- 239000012535 impurity Substances 0.000 description 10
- 230000014759 maintenance of location Effects 0.000 description 10
- 230000008707 rearrangement Effects 0.000 description 10
- 125000001424 substituent group Chemical group 0.000 description 10
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 9
- YGWJZAPCAPKILC-UHFFFAOYSA-N OC(=O)C(F)(F)F.CC(C)CCB(O)O Chemical compound OC(=O)C(F)(F)F.CC(C)CCB(O)O YGWJZAPCAPKILC-UHFFFAOYSA-N 0.000 description 8
- 238000013339 in-process testing Methods 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 125000003342 alkenyl group Chemical group 0.000 description 7
- 229940024606 amino acid Drugs 0.000 description 7
- 150000001413 amino acids Chemical class 0.000 description 7
- 238000004128 high performance liquid chromatography Methods 0.000 description 7
- 239000011780 sodium chloride Substances 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- XHDGJGJBAQDXON-VYDKEIKOSA-N (4s,5r)-4,6,6-trimethylbicyclo[3.1.1]heptane-4,5-diol Chemical compound C1[C@@]2(O)C(C)(C)C1CC[C@@]2(O)C XHDGJGJBAQDXON-VYDKEIKOSA-N 0.000 description 6
- 238000006219 Matteson homologation reaction Methods 0.000 description 6
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000000543 intermediate Substances 0.000 description 6
- QAEDZJGFFMLHHQ-UHFFFAOYSA-N trifluoroacetic anhydride Chemical compound FC(F)(F)C(=O)OC(=O)C(F)(F)F QAEDZJGFFMLHHQ-UHFFFAOYSA-N 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 5
- 125000002252 acyl group Chemical group 0.000 description 5
- 229940125782 compound 2 Drugs 0.000 description 5
- 125000000753 cycloalkyl group Chemical group 0.000 description 5
- 238000011065 in-situ storage Methods 0.000 description 5
- 125000006574 non-aromatic ring group Chemical group 0.000 description 5
- 229920001155 polypropylene Polymers 0.000 description 5
- 238000006462 rearrangement reaction Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 239000011369 resultant mixture Substances 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 238000010626 work up procedure Methods 0.000 description 5
- MOILFCKRQFQVFS-BDNRQGISSA-N (1r,3s,4r,5r)-4,6,6-trimethylbicyclo[3.1.1]heptane-3,4-diol Chemical compound C1[C@@H]2C(C)(C)[C@H]1C[C@H](O)[C@@]2(O)C MOILFCKRQFQVFS-BDNRQGISSA-N 0.000 description 4
- 125000000304 alkynyl group Chemical group 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000006345 epimerization reaction Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 4
- 125000006413 ring segment Chemical group 0.000 description 4
- BGHCVCJVXZWKCC-UHFFFAOYSA-N tetradecane Chemical compound CCCCCCCCCCCCCC BGHCVCJVXZWKCC-UHFFFAOYSA-N 0.000 description 4
- RQJMOCIAILRHIC-JUUVMNCLSA-N (2s)-2-amino-4-methylpentanoic acid;(2s)-2-amino-3-phenylpropanoic acid Chemical compound CC(C)C[C@H](N)C(O)=O.OC(=O)[C@@H](N)CC1=CC=CC=C1 RQJMOCIAILRHIC-JUUVMNCLSA-N 0.000 description 3
- ZAZPDOYUCVFPOI-UHFFFAOYSA-N 2-methylpropylboronic acid Chemical group CC(C)CB(O)O ZAZPDOYUCVFPOI-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 229940043279 diisopropylamine Drugs 0.000 description 3
- 150000002009 diols Chemical class 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000005886 esterification reaction Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- 125000004475 heteroaralkyl group Chemical group 0.000 description 3
- 229920001903 high density polyethylene Polymers 0.000 description 3
- 239000004700 high-density polyethylene Substances 0.000 description 3
- 150000003840 hydrochlorides Chemical class 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 230000002572 peristaltic effect Effects 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 125000000147 tetrahydroquinolinyl group Chemical group N1(CCCC2=CC=CC=C12)* 0.000 description 3
- 125000005500 uronium group Chemical group 0.000 description 3
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 2
- 0 *C([C@](Cc1ccccc1)Nc1ccccc1)=O Chemical compound *C([C@](Cc1ccccc1)Nc1ccccc1)=O 0.000 description 2
- YWPCJRXSHRVGMA-CGTPWUTKSA-N CC(CC)B(O)OC1([C@]2(C(C(CC1)C2)(C)C)O)C Chemical compound CC(CC)B(O)OC1([C@]2(C(C(CC1)C2)(C)C)O)C YWPCJRXSHRVGMA-CGTPWUTKSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 2
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 2
- 102000003945 NF-kappa B Human genes 0.000 description 2
- 108010057466 NF-kappa B Proteins 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 102000004245 Proteasome Endopeptidase Complex Human genes 0.000 description 2
- 108090000708 Proteasome Endopeptidase Complex Proteins 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- MKUXAQIIEYXACX-UHFFFAOYSA-N aciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCO)C=N2 MKUXAQIIEYXACX-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 125000005160 aryl oxy alkyl group Chemical group 0.000 description 2
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 2
- 150000001642 boronic acid derivatives Chemical class 0.000 description 2
- 239000012267 brine Substances 0.000 description 2
- 125000002837 carbocyclic group Chemical group 0.000 description 2
- 125000004452 carbocyclyl group Chemical group 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000010511 deprotection reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004210 ether based solvent Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000003517 fume Substances 0.000 description 2
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 2
- 125000000262 haloalkenyl group Chemical group 0.000 description 2
- 125000004438 haloalkoxy group Chemical group 0.000 description 2
- 125000001188 haloalkyl group Chemical group 0.000 description 2
- 238000011905 homologation Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 230000001617 migratory effect Effects 0.000 description 2
- 230000000269 nucleophilic effect Effects 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- 125000004934 phenanthridinyl group Chemical group C1(=CC=CC2=NC=C3C=CC=CC3=C12)* 0.000 description 2
- 229960005190 phenylalanine Drugs 0.000 description 2
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical group OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 238000013341 scale-up Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 125000003039 tetrahydroisoquinolinyl group Chemical group C1(NCCC2=CC=CC=C12)* 0.000 description 2
- 125000001712 tetrahydronaphthyl group Chemical group C1(CCCC2=CC=CC=C12)* 0.000 description 2
- 230000006663 ubiquitin-proteasome pathway Effects 0.000 description 2
- TZFGNYJLBIZLMC-UHFFFAOYSA-N (1-chloro-3-methylbutyl)boronic acid Chemical compound CC(C)CC(Cl)B(O)O TZFGNYJLBIZLMC-UHFFFAOYSA-N 0.000 description 1
- IHPDTPWNFBQHEB-KBPBESRZSA-N (1s,2s)-1,2-diphenylethane-1,2-diol Chemical compound C1([C@H](O)[C@@H](O)C=2C=CC=CC=2)=CC=CC=C1 IHPDTPWNFBQHEB-KBPBESRZSA-N 0.000 description 1
- OHMBHFSEKCCCBW-PHDIDXHHSA-N (2R,5R)-hexanediol Chemical compound C[C@@H](O)CC[C@@H](C)O OHMBHFSEKCCCBW-PHDIDXHHSA-N 0.000 description 1
- ZYJPUMXJBDHSIF-NSHDSACASA-N (2s)-2-[(2-methylpropan-2-yl)oxycarbonylamino]-3-phenylpropanoic acid Chemical compound CC(C)(C)OC(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 ZYJPUMXJBDHSIF-NSHDSACASA-N 0.000 description 1
- OHMBHFSEKCCCBW-WDSKDSINSA-N (2s,5s)-hexane-2,5-diol Chemical compound C[C@H](O)CC[C@H](C)O OHMBHFSEKCCCBW-WDSKDSINSA-N 0.000 description 1
- XHDGJGJBAQDXON-GDRRJGKNSA-N (5s)-4,6,6-trimethylbicyclo[3.1.1]heptane-4,5-diol Chemical compound C1[C@]2(O)C(C)(C)C1CCC2(O)C XHDGJGJBAQDXON-GDRRJGKNSA-N 0.000 description 1
- RNHDAKUGFHSZEV-UHFFFAOYSA-N 1,4-dioxane;hydrate Chemical compound O.C1COCCO1 RNHDAKUGFHSZEV-UHFFFAOYSA-N 0.000 description 1
- QPKFVRWIISEVCW-UHFFFAOYSA-N 1-butane boronic acid Chemical compound CCCCB(O)O QPKFVRWIISEVCW-UHFFFAOYSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000004972 1-butynyl group Chemical group [H]C([H])([H])C([H])([H])C#C* 0.000 description 1
- 125000006039 1-hexenyl group Chemical group 0.000 description 1
- 125000006023 1-pentenyl group Chemical group 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- 125000000530 1-propynyl group Chemical group [H]C([H])([H])C#C* 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- 125000004080 3-carboxypropanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C(O[H])=O 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- 108091005508 Acid proteases Proteins 0.000 description 1
- 206010002368 Anger Diseases 0.000 description 1
- HZCSTPSWJFWZHP-WNUVPHJXSA-N CC(C)CC(B1O[C@@](C)([C@@H](C2)C(C)(C)[C@@H]2C2)[C@@H]2O1)NC(C(Cc1ccccc1)NC(c1nccnc1)=O)=O Chemical compound CC(C)CC(B1O[C@@](C)([C@@H](C2)C(C)(C)[C@@H]2C2)[C@@H]2O1)NC(C(Cc1ccccc1)NC(c1nccnc1)=O)=O HZCSTPSWJFWZHP-WNUVPHJXSA-N 0.000 description 1
- ZRFBWAJCYKIOOK-FKJOKYEKSA-N CC(C)C[C@@H](B1O[C@@H]2C=C(C3)C(C)(C)[C@H]3C2O1)N Chemical compound CC(C)C[C@@H](B1O[C@@H]2C=C(C3)C(C)(C)[C@H]3C2O1)N ZRFBWAJCYKIOOK-FKJOKYEKSA-N 0.000 description 1
- HZCSTPSWJFWZHP-GQABWHEGSA-N CC(C)C[C@@H](B1O[C@@](C)([C@@H](C2)C(C)(C)[C@@H]2C2)[C@@H]2O1)NC([C@H](Cc1ccccc1)NC(c1nccnc1)=O)=O Chemical compound CC(C)C[C@@H](B1O[C@@](C)([C@@H](C2)C(C)(C)[C@@H]2C2)[C@@H]2O1)NC([C@H](Cc1ccccc1)NC(c1nccnc1)=O)=O HZCSTPSWJFWZHP-GQABWHEGSA-N 0.000 description 1
- PRWYETXOOUDMOB-RRIIRSAJSA-N C[Si](C)(C)N([Si](C)(C)C)C(CC(C)C)B(O)O[C@@]12[C@@](CCC(C1(C)C)C2)(C)O Chemical compound C[Si](C)(C)N([Si](C)(C)C)C(CC(C)C)B(O)O[C@@]12[C@@](CCC(C1(C)C)C2)(C)O PRWYETXOOUDMOB-RRIIRSAJSA-N 0.000 description 1
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical group ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-N Formic acid Chemical compound OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 1
- 102100027612 Kallikrein-11 Human genes 0.000 description 1
- 239000004395 L-leucine Substances 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 102000008934 Muscle Proteins Human genes 0.000 description 1
- 108010074084 Muscle Proteins Proteins 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108090000783 Renin Proteins 0.000 description 1
- 102100028255 Renin Human genes 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 101710152431 Trypsin-like protease Proteins 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 230000030741 antigen processing and presentation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- HBWDWGMBZIFBQE-UHFFFAOYSA-N benzylboronic acid Chemical compound OB(O)CC1=CC=CC=C1 HBWDWGMBZIFBQE-UHFFFAOYSA-N 0.000 description 1
- 125000002618 bicyclic heterocycle group Chemical group 0.000 description 1
- SHOMMGQAMRXRRK-UHFFFAOYSA-N bicyclo[3.1.1]heptane Chemical group C1C2CC1CCC2 SHOMMGQAMRXRRK-UHFFFAOYSA-N 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000002051 biphasic effect Effects 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 125000003016 chromanyl group Chemical group O1C(CCC2=CC=CC=C12)* 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 229940125898 compound 5 Drugs 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000013058 crude material Substances 0.000 description 1
- 230000026374 cyclin catabolic process Effects 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001162 cycloheptenyl group Chemical group C1(=CCCCCC1)* 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- XDRVAZAFNWDVOE-UHFFFAOYSA-N cyclohexylboronic acid Chemical compound OB(O)C1CCCCC1 XDRVAZAFNWDVOE-UHFFFAOYSA-N 0.000 description 1
- WUESWDIHTKHGQA-UHFFFAOYSA-N cyclohexylurea Chemical compound NC(=O)NC1CCCCC1 WUESWDIHTKHGQA-UHFFFAOYSA-N 0.000 description 1
- 125000000522 cyclooctenyl group Chemical group C1(=CCCCCCC1)* 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- VCVOSERVUCJNPR-UHFFFAOYSA-N cyclopentane-1,2-diol Chemical compound OC1CCCC1O VCVOSERVUCJNPR-UHFFFAOYSA-N 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 125000004856 decahydroquinolinyl group Chemical group N1(CCCC2CCCCC12)* 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 125000002576 diazepinyl group Chemical group N1N=C(C=CC=C1)* 0.000 description 1
- 239000002027 dichloromethane extract Substances 0.000 description 1
- KZNICNPSHKQLFF-UHFFFAOYSA-N dihydromaleimide Natural products O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 1
- JMRYOSQOYJBDOI-UHFFFAOYSA-N dilithium;di(propan-2-yl)azanide Chemical compound [Li+].CC(C)[N-]C(C)C.CC(C)N([Li])C(C)C JMRYOSQOYJBDOI-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- UXGNZZKBCMGWAZ-UHFFFAOYSA-N dimethylformamide dmf Chemical compound CN(C)C=O.CN(C)C=O UXGNZZKBCMGWAZ-UHFFFAOYSA-N 0.000 description 1
- 125000000532 dioxanyl group Chemical group 0.000 description 1
- 125000005879 dioxolanyl group Chemical group 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940088679 drug related substance Drugs 0.000 description 1
- SGMJBNSHAZVGMC-PWNYCUMCSA-N erythrono-1,4-lactone Chemical compound O[C@@H]1COC(=O)[C@@H]1O SGMJBNSHAZVGMC-PWNYCUMCSA-N 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 125000000457 gamma-lactone group Chemical group 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 125000005114 heteroarylalkoxy group Chemical group 0.000 description 1
- 125000004415 heterocyclylalkyl group Chemical group 0.000 description 1
- OHMBHFSEKCCCBW-UHFFFAOYSA-N hexane-2,5-diol Chemical compound CC(O)CCC(C)O OHMBHFSEKCCCBW-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- CXSYDLCMCLCOCA-UHFFFAOYSA-N hexylboronic acid Chemical compound CCCCCCB(O)O CXSYDLCMCLCOCA-UHFFFAOYSA-N 0.000 description 1
- 238000007163 homologation reaction Methods 0.000 description 1
- 238000013415 human tumor xenograft model Methods 0.000 description 1
- IHPDTPWNFBQHEB-UHFFFAOYSA-N hydrobenzoin Chemical compound C=1C=CC=CC=1C(O)C(O)C1=CC=CC=C1 IHPDTPWNFBQHEB-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 238000010952 in-situ formation Methods 0.000 description 1
- 125000003392 indanyl group Chemical group C1(CCC2=CC=CC=C12)* 0.000 description 1
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 125000003387 indolinyl group Chemical group N1(CCC2=CC=CC=C12)* 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000000904 isoindolyl group Chemical group C=1(NC=C2C=CC=CC12)* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 238000002307 isotope ratio mass spectrometry Methods 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 238000010667 large scale reaction Methods 0.000 description 1
- 229960003136 leucine Drugs 0.000 description 1
- 239000011968 lewis acid catalyst Substances 0.000 description 1
- YNESATAKKCNGOF-UHFFFAOYSA-N lithium bis(trimethylsilyl)amide Chemical compound [Li+].C[Si](C)(C)[N-][Si](C)(C)C YNESATAKKCNGOF-UHFFFAOYSA-N 0.000 description 1
- CETVQRFGPOGIQJ-UHFFFAOYSA-N lithium;hexane Chemical compound [Li+].CCCCC[CH2-] CETVQRFGPOGIQJ-UHFFFAOYSA-N 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 108091005601 modified peptides Proteins 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000004923 naphthylmethyl group Chemical group C1(=CC=CC2=CC=CC=C12)C* 0.000 description 1
- 125000004593 naphthyridinyl group Chemical group N1=C(C=CC2=CC=CN=C12)* 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 125000001715 oxadiazolyl group Chemical group 0.000 description 1
- 125000000160 oxazolidinyl group Chemical group 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- GTCCGKPBSJZVRZ-UHFFFAOYSA-N pentane-2,4-diol Chemical compound CC(O)CC(C)O GTCCGKPBSJZVRZ-UHFFFAOYSA-N 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- ABWPXVJNCQKYDR-UHFFFAOYSA-N pentylboronic acid Chemical compound CCCCCB(O)O ABWPXVJNCQKYDR-UHFFFAOYSA-N 0.000 description 1
- 238000005897 peptide coupling reaction Methods 0.000 description 1
- 239000012026 peptide coupling reagents Substances 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 125000001151 peptidyl group Chemical group 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 125000001791 phenazinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3N=C12)* 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Natural products O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 125000004592 phthalazinyl group Chemical group C1(=NN=CC2=CC=CC=C12)* 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000004844 protein turnover Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 125000001042 pteridinyl group Chemical group N1=C(N=CC2=NC=CN=C12)* 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 125000004929 pyrrolidonyl group Chemical group N1(C(CCC1)=O)* 0.000 description 1
- 125000001422 pyrrolinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 125000003003 spiro group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- WHRNULOCNSKMGB-UHFFFAOYSA-N tetrahydrofuran thf Chemical compound C1CCOC1.C1CCOC1 WHRNULOCNSKMGB-UHFFFAOYSA-N 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 125000005958 tetrahydrothienyl group Chemical group 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- 125000005308 thiazepinyl group Chemical group S1N=C(C=CC=C1)* 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
- C07F5/02—Boron compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/06—Dipeptides
- C07K5/06191—Dipeptides containing heteroatoms different from O, S, or N
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
- C07F5/02—Boron compounds
- C07F5/025—Boronic and borinic acid compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
- C07F5/02—Boron compounds
- C07F5/04—Esters of boric acids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/55—Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups
Definitions
- This invention relates to the synthesis of boronic ester and acid compounds.
- the invention relates to large-scale synthetic processes for the preparation of boronic ester and acid compounds by Lewis acid promoted rearrangement of boron "ate" complexes.
- boronic acid and ester compounds have displayed particular promise as inhibitors of the proteasome, a multicatalytic protease responsible for the majority of intracellular protein turnover.
- Ciechanover Cell, 79: 13-21 (1994), discloses that the proteasome is the proteolytic component of the ubiquitin-proteasome pathway, in which proteins are targeted for degradation by conjugation to multiple molecules of ubiquitin.
- Ciechanover also discloses that the ubiquitin-proteasome pathway plays a key role in a variety of important physiological processes.
- Adams et al U.S. Patent No. 5,780,454 (1998), U.S. Patent No. 6,066,730 (2000),
- references also describe the use of boronic ester and acid compounds to reduce the rate of muscle protein degradation, to reduce the activity of NF- ⁇ B in a cell, to reduce the rate of degradation of p53 protein in a cell, to inhibit cyclin degradation in a cell, to inhibit the growth of a cancer cell, to inhibit antigen presentation in a cell, to inhibit NF- ⁇ B dependent cell adhesion, and to inhibit BQV replication.
- bortezomib N-2-pyrazinecarbonyl-L ⁇ phenylalanine-L-leucineboronic acid
- bortezomib N-2-pyrazinecarbonyl-L ⁇ phenylalanine-L-leucineboronic acid
- the present invention provides improved synthetic processes for the large- scale production of boronic ester and acid compounds. These processes offer increased yield and purity, increased throughput, and greater ease of handling as compared to prior art methods. Notably, the processes described herein are suitable for batch production on a large, multi-kilogram scale that is limited only by the size of the available manufacturing capabilities. The processes of the invention are particularly advantageous for the synthesis of chiral boronic ester and acid compounds, including alpha-aminoboronic ester and acid compounds. Regardless of scale, the desired products are produced with very high chemical and stereochemical purity.
- aliphatic means a straight-chain, branched or cyclic G . .. hydrocarbon which is completely saturated or which contains one or more units of unsaturation, but which is not aromatic.
- suitable aliphatic groups include substituted or unsubstituted linear, branched or cyclic alkyl, alkenyl, alkynyl groups and hybrids thereof, such as (cylcoalkyfialkyl, (cycloalkenyl) alkyl or (cycloalkyl)alkenyl.
- the aliphatic group has 1-12, 1-8, 1-6, or 1-4 carbons.
- alkyl refers to a straight and branched chain aliphatic group having from 1 to 12 carbon atoms, which is optionally substituted with one, two or three substituents.
- alkyl will be used when the carbon atom attaching the aliphatic group to the rest of the molecule is a saturated carbon atom.
- an alkyl group may include unsaturation at other carbon atoms.
- alkyl groups include, without limitation, methyl, ethyl, propyl, allyl, propargyl, butyl, pentyl, and hexyl.
- alkenyl will be used when the carbon atom attaching the aliphatic group to the rest of the molecule forms part of a carbon-carbon double bond.
- Alkenyl groups include, without limitation, vinyl, 1-propenyl, 1-butenyl, 1-pentenyl, and 1-hexenyl.
- alkynyl will be used when the carbon atom attaching the aliphatic group to the rest of the molecule forms part of a carbon-carbon triple bond.
- Alkynyl groups include, without limitation, ethynyl, 1-propynyl, 1-butynyl, 1-pentynyl, and 1-hexynyl.
- Carbocyclic used alone or as part of a larger moiety, means a saturated or partially unsaturated cyclic aliphatic ring system having from 3 to about 14 members, wherein the aliphatic ring system is optionally substituted.
- Cycloalkyl groups include, without limitation, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, cycloheptenyl, cyclooctyl, cyclooctenyl, and cyclooctadienyl.
- the cycloalkyl has 3-6 carbons.
- cycloalkyl also include aliphatic rings that are fused to one or more aromatic or nonaromatic rings, such as decahydronaphthyl or tetrahydronaphthyl, where the radical or point of attachment is on the aliphatic ring.
- haloalkyl refers to an alkyl, alkenyl or alkoxy group, as the case may be, substituted with one or more halogen atoms.
- halogen or “halo” means F, C, Br, or I.
- alkyl include haloalkyl, haloalkenyl and haloalkoxy groups, including, in particular, those with 1-5 fluorine atoms.
- aralkyl refers to a C M4 aromatic moiety comprising one to three aromatic rings, which are optionally substituted.
- the aryl group is a C M0 aryl group.
- Aryl groups include, without limitation, phenyl, naphthyl, and anthracenyl.
- aryl also includes groups in which an aromatic ring is fused to one or more non-aromatic rings, such as indanyl, phenanthridinyl, or tetrahydronaphthyl, where the radical or point of attachment is on the aromatic ring.
- aryl may be used interchangeably with the term “aryl ring”.
- an "aralkyl” or “arylalkyl” group comprises an aryl group covalently attached to an alkyl group, either of which independently is optionally substituted.
- the aralkyl group is C H0 aryl(C M )alkyl, including, without limitation, benzyl, phenethyl, and naphthylmethyl.
- heteroaryl and “heteroar-”, used alone or as part of a larger moiety, e.g., heteroaralkyl, or “heteroaralkoxy”, refer to groups having 5 to 14 ring atoms, preferably 5, 6, 9, or 10 ring atoms; having 6, 10, or 14 ⁇ electrons shared in a cyclic array; and having, in addition to carbon atoms, from one to four heteroatoms selected from the group consisting of N, O, and S.
- Heteroaryl groups include, without limitation, thienyl, furanyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, indolyl, isoindolyl, benzothienyl, benzofuranyl, dibenzofuranyl, indazolyl, benzimidazolyl, benzthiazolyl, purinyl, quinolyl, isoquinolyl, cirmolinyl, phthalazinyl, quinoxalinyl, naphthyridinyl, pteridinyl, carbazolyl, acridinyl, and phenazinyl.
- heteroaryl and “heteroar-”, as used herein, also include groups in which a heteroaromatic ring is fused to one or more nonaromatic rings, where the radical or point of attachment is on the heteroaromatic ring.
- Nonlimiting examples include tetrahydroquinolinyl, tetrahydroisoquinolinyl, and pyrido[3,4-d]pyrimidinyl.
- heteroaryl may be used interchangeably with the term “heteroaryl ring” or the term “heteroaromatic”, any of which terms include rings that are optionally substituted.
- heterooaralkyl refers to an alkyl group substituted by a heteroaryl, wherein the alkyl and heteroaryl portions independently are optionally substituted.
- heterocycle refers to a stable 5- to 7-membered monocyclic or 7- to 10-membered bicyclic heterocyclic moiety that is either saturated or partially trnsaturated, and having, in addition to carbon atoms, one or more, preferably one to four, heteroatoms selected from the group consisting of N, O, and S, wherein the nitrogen and sulfur heteroatoms are optionally oxidized and the nitrogen atoms are optionally quaternized.
- the heterocyclic ring can be attached to its pendant group at any heteroatom or carbon atom that results in a stable structure, and any of the ring atoms can be optionally substituted.
- saturated or partially unsaturated heterocyclic radicals include, without limitation, tetrahydrofuranyl, tetrahydrothienyl, pyrrolidinyl, pyrrolidonyl, piperidinyl, pyrrolinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, oxazolidinyl, piperazinyl, dioxanyl, dioxolanyl, diazepinyl, oxazepinyl, thiazepinyl, and morpholinyl.
- heterocycle also include groups in which a non-aromatic heteroatom-containing ring is fused to one or more aromatic or non-aromatic rings, such as indolinyl, chromanyl, phenanthridinyl, or tetrahydroquinolinyl, where the radical or point of attachment is on the non-aromatic heteroatom-containing ring.
- heterocyclylalkyl refers to an alkyl group substituted by a heterocyclyl, wherein the alkyl and heterocyclyl portions independently are optionally substituted.
- partially unsaturated refers to a ring moiety that includes at least one double or triple bond between ring atoms.
- the term “partially unsaturated” is intended to encompass rings having one or multiple sites of unsaturation, but is not intended to include aryl or heteroaryl moieties, as herein defined.
- substituted means that one or more hydrogen atoms of the designated moiety are replaced, provided that the substitution results in a stable or chemically feasible compound.
- a stable compound or chemically feasible compound is one in which the chemical structure is not substantially altered when kept at a temperature of 40 °C or less, in the absence of moisture or other chemically reactive conditions, for at least a week, or a compound which maintains its integrity long enough to be useful for the synthetic processes of the invention.
- substituents refers to a number of substituents that equals from one to the maximum number of substituents possible based on the number of available bonding sites, provided that the above conditions of stability and chemical feasibility are met.
- An aryl (including the aryl moiety in aralkyl, aralkoxy, aryloxyalkyl and the like) or heteroaryl (including the heteroaryl moiety in heteroaralkyl and heteroarylalkoxy and the like) group may contain one or more substituents.
- Suitable substituents on the unsaturated carbon atom of an aryl or heteroaryl group include -halo, -NO 2 , -CN, -R*, -OR*, -SR°, -N(R -NR + C(0)R*, -NR + C(O)N(R + ) 2 , -NR + C0 2 R°, -0-CO.R*, -O-C(O)R*, -C0 2 R*, -C(0)R*, -C(0)N(R + ) 2 , -OC(0)N(R -S(O) 2 R°, -SO 2 N(R + ) 2 , -S(0)R°, and -NR + SO 2 N(R + ) 2 .
- Each R + independently is selected from the group consisting of R*, -C(0)R*, -C0 2 R*, and -SO-R*, or two R + on the same nitrogen atom, taken together with the nitrogen atom, form a 5-8 membered aromatic or non-aromatic ring having, in addition to the nitrogen, 0-2 ring heteroatoms selected from N, O, and S.
- Each R* independently is hydrogen or an optionally substituted aliphatic, aryl, heteroaryl, or heterocyclyl group.
- Each R° independently is an optionally substituted aliphatic or aryl group.
- An aliphatic group also may be substituted with one or more substituents.
- Suitable substituents on the saturated carbon of an aliphatic group or of a non- aromatic heterocyclic ring include, without limitation, those listed above for the unsaturated carbon of an aryl or heteroaryl group.
- the invention provides a large-scale process for preparing a boronic ester compound of formula (I):
- R 1 is an optionally substituted aliphatic, aromatic, or heteroaromatic group
- R 2 is hydrogen, a nucleofugic group, or an optionally substituted aliphatic, aromatic, or heteroaromatic group;
- R 3 is a nucleofugic group or an optionally substituted aliphatic, aromatic, or heteroaromatic group; and each of R 4 and R 5 , independently, is an optionally substituted aliphatic, aromatic, or heteroaromatic group, or R 4 and R 5 , taken together with the intervening oxygen and boron atoms, form an optionally substituted 5- to 10-membered ring having 0-2 additional ring heteroatoms selected from N, O, or S.
- Y is a nucleofugic group
- M *" is a cation; and each of R 1 to R 5 is as defined above;
- ether solvent that has low miscibility with water preferably, the solubility of water in the ether solvent is less than about 5% w/w, more preferably less than about 2% w/w.
- ether solvent that has low miscibility with water constitutes at least about 70%, at least about 80%, at least about 85%, at least about 90%, or at least about 95% v/v of the reaction mixture.
- the ether solvent preferably is one that is suitable for routine use in large- scale production.
- the term "large-scale” refers to a reaction that utilizes at least about five moles of at least one starting material.
- a large-scale process utilizes at least about 10, 20, 50, or 100 moles of at least one starting material.
- ether refers to any of a class of chemical compounds characterized in having an oxygen atom attached to two carbon atoms .
- An "ether solvent” is an ether compound that exists in liquid form at the desired reaction temperature and is capable of dissolving the starting material(s) and/or product(s) of the reaction.
- Non-limiting examples of ether solvents suitable for use in the process of the invention include tert-butyl methyl ether, tert-butyl ethyl ether, tert-amyl methyl ether, and isopropyl ether.
- the reaction mixture further comprises a coordinating co- solvent.
- the ether solvent that has low miscibility with water is sufficiently coordinating that a coordinating co-solvent is not necessary.
- coordinating co-solvent and “coordinating solvent” refer to a solvent that is capable of coordinating the Lewis acid and solvating the ionic components of the reaction.
- Hindered ether solvents such as tert-butyl methyl ether, are poorly coordinating and preferably are used with a coordinating co-solvent.
- Nonlimiting examples of coordinating co-solvents suitable for use in the practice of the invention include tetrahydrofuran, dioxane, water, and mixtures thereof.
- the reaction mixture comprises at least about 5% or at least about 10% v/v of a coordinating co-solvent.
- the amount of a water-miscible coordinating co-solvent present in the reaction mixture is not so great as to interfere with phase separation during the reaction or workup.
- the coordinating co-solvent constitutes no more than about 20%, about 15%, or about 10% v/v of the reaction mixture.
- nucleofugic refers to any group that is capable of undergoing nucleophilic displacement under the rearrangement conditions of the present process.
- nucleofugic groups are known in the art.
- the nucleofugic group is a halogen, more preferably chloro or bromo.
- the nucleofugic group Y is released as Y ⁇
- Y is chloro
- chloride ion is released in step (b).
- variable M * is any cationic counterion for the negatively charged tetravalent boron atom in the boron "ate" complex of formula (II).
- M + is selected from the group consisting of Lf, Na + , and K + .
- the salt M ⁇ is formed as a byproduct in the rearrangement reaction of step (b).
- variable R 1 preferably is a group with good migratory aptitude.
- R 1 is C M aliphatic, C M0 aryl, or (C M0 aryl)(C lJ5 aliphatic), any of which groups is optionally substituted.
- R 1 is C M aliphatic, particularly isobutyl.
- the variable R 2 preferably is hydrogen, a nucleofugic group, or an optionally substituted C M aliphatic, C M0 aryl, or (C wo aryl)(C M aliphatic) group.
- the variable R 3 preferably is a nucleofugic group or an optionally substituted C M aliphatic, C M0 aryl, or (C M0 aryl)(C M aliphatic) group.
- functional substituents may be present on any of R 1 , R 2 , or R 3 , provided that the functional substituent does not interfere with the formation of the boron "ate" complex of formula (II).
- One embodiment of the invention relates to a process for preparing a boronic ester compound of formula (I), wherein R 3 is a nucleofugic group.
- Such compounds are useful as intermediates for the synthesis of alpha-substituted boronic ester and acid compounds, including alpha-aminoboronic ester and acid compounds, as described below.
- R 3 is a nucleofugic group and R 2 is hydrogen.
- variables R 4 and R 5 can be the same or different. In some embodiments,
- R 4 and R 5 are directly linked, so that R 4 and R 5 , taken together with the intervening oxygen and boron atoms, form an optionally substituted 5- to 10-membered ring, which can have 0- 2 additional ring heteroatoms selected from N, O, or S.
- the ring is a 5- or 6-membered ring, preferably a 5-membered ring.
- the present invention is particularly advantageous for the Lewis acid promoted rearrangement of boron "ate” complexes of formula (II), wherein R 4 and R 5 are directly linked and together are a chiral moiety.
- One embodiment of the invention relates to the rearrangement of such chiral boron "ate” complexes to provide a boronic ester compound of formula (I) wherein the carbon atom bearing R 1 , R 2 , and R 3 is a chiral center.
- the rearrangement reaction preferably proceeds with a high degree of stereodirection by the R -R 5 chiral moiety to provide the boronic ester compound of formula (I) having a diastereomeric ratio at the carbon atom bearing R 1 , R 2 , and R 3 of at least about 96:4 relative to a chiral center in the R 4 -R 5 chiral moiety.
- the diastereomeric ratio is at least about 97:3.
- stereoisomer compounds that have the same atomic connectivity, but differ in the spatial arrangement of the atoms.
- Enantiomers are stereoisomers that have a mirror image relationship, that is, the stereochemical configuration at all corresponding chiral centers is opposite.
- Diastereomers are stereoisomers having more than one chiral center, which differ from one another in that the stereochemical configuration of at least one, but not all, of the corresponding chiral centers is opposite.
- Epimers are diastereomers that differ in stereochemical configuration at only one chiral center.
- diastereomeric ratio refers to the ratio between diastereomers which differ in the stereochemical configuration at one chiral center, relative to a second chiral center in the same molecule.
- a chemical structure with two chiral centers provides four possible stereoisomers: R*R, R*S, S*R, and S*S, wherein the asterisk denotes the corresponding chiral center in each stereoisomer.
- the term “diastereomeric ratio” has identical meaning in reference to compounds witn mumpie crurai centers as it does in reference to compounds having two chiral centers.
- the term “diastereomeric ratio” refers to the ratio of all compounds having R*R or S*S configuration at the specified chiral centers to all compounds having R*S or S*R configuration at the specified chiral centers. For convenience, this ratio is referred to herein as the diastereomeric ratio at the asterisked carbon, relative to the second specified chiral center.
- the diastereomeric ratio can be measured by any analytical method suitable for distinguishing between diastereomeric compounds having different relative stereochemical configurations at the specified chiral centers.
- analytical methods include, without limitation, nuclear magnetic resonance (NMR), gas chromatography (GC), and high performance liquid chromatography (HPLC) methods.
- one embodiment of the invention is directed to processes that provide a boronic ester compound of formula (T) having a diastereomeric ratio at the carbon atom bearing R 1 , R 2 , and R 3 of at least about 96:4 relative to a chiral center in the R 4 -R 5 chiral moiety.
- R-R 5 chiral moiety may itself contain more than one chiral center.
- R 4 -R 5 does have more than one chiral center, it preferably has high diastereomeric purity, and the diastereomeric ratio at the carbon atom bearing R 1 , R 2 , and R 3 can be measured relative to any one of the chiral centers in R 4 -R ⁇ .
- the R*-R 5 chiral moiety preferably has a high level of enantiomeric purity.
- enantiomeric purity is used to mean “enantiomeric excess”, which is the amount by which the major enantiomer is in excess of the minor enantiomer, expressed as a percentage of the total.
- the R 4 -R 5 chiral moiety has an enantiomeric purity of at least about 98%, more preferably at least about 99%, still more preferably at least about 99.5%, and most preferably at least about 99.9%.
- the term "epimeric ratio” refers to the ratio of product having one absolute stereochemical configuration at a given chiral center to product having the opposite absolute stereochemical configuration at the corresponding chiral center.
- the products have identical stereochemical configuration at all other corresponding chiral centers.
- the invention relates to the rearrangement of a chiral boron "ate" complex of formula (II) to provide a boronic ester compound of formula (I) wherein the epimeric ratio at the carbon atom bearing R 1 , R 2 , and R 3 is at least about 96:4, more preferably at least about 97:3.
- Lewis acids suitable for use in the practice of the invention are those capable of complexing with the nucleofugic group to facilitate its displacement upon migration of R 1 .
- the Lewis acid is additionally capable of coordinating with an oxygen atom attached to boron.
- suitable Lewis acids include zinc bromide, zinc chloride, ferric bromide, and ferric chloride.
- the Lewis acid is zinc chloride.
- the contacting step preferably is performed at low temperature, but may be performed at ambient or elevated temperature.
- the selection of an appropriate reaction temperature will depend largely on the Lewis acid employed, as well as the migratory aptitude of the R 1 moiety. One skilled in the art will be able to select a suitable temperature in view of the reaction conditions being used.
- the contacting step is performed at a reaction temperature of at least about -100 °C, -78 °C, or -60 °C. In some embodiments, the contacting step is performed at a reaction temperature that is no greater than about 80 °C, 40 °C, or 30 °C. Any range encompassing these high and low temperatures are included within the scope of the invention. Preferably, the contacting step is performed at a reaction temperature in the range of about -100 °C to about 80 °C, about -70 °C to about 40 °C, about -60 °C to about 30 °C, or about -50 °C to about 30 °C. In certain preferred embodiments, the contacting step is begun at low temperature, preferably in the range of about -70 °C to about -30 °C, and then the reaction mixture is allowed to warm, preferably to ambient temperature.
- the process of the present invention requires no special precautions to avoid the presence of water during the rearrangement reaction itself.
- moist Lewis acid is employed, with minimal deterioration in diastereomeric ratio.
- the term "moist” means that the water content of the Lewis acid is greater than about 100, 200, 500, or 1,000 ppm. Remarkably, the Lewis acid even can be added to the reaction mixture in the form of an aqueous solution without deleterious impact on diastereomeric ratio.
- the process of the invention comprises the steps:
- step (b) adding to the solution of step (a) a Lewis acid solution comprising water and a Lewis acid.
- the Lewis acid solution comprises tetrahydrofuran and a Lewis acid.
- the process of the invention is readily amenable to large-scale production.
- at least about 5, 10, 20, 50, 100, 500, or 1000 moles of boron "ate" complex of formula (II) is contacted with a Lewis acid under conditions that afford the boronic ester compound of formula (I).
- the invention further provides a composition comprising a boronic ester compound of formula (I), as described herein, and an ether solvent that has low miscibility with water.
- the composition preferably comprises at least about 5, 10, 20, 50, 100, 500, or 1000 moles of the boronic ester compound of formula (I).
- R 4 and R 5 together are a chiral moiety
- the compound of formula (I) present in the composition has a diastereomeric ratio of at least about 96:4 at the carbon atom bearing R 1 , R 2 , and R 3 , relative to a chiral center in the R -R 5 chiral moiety.
- Workup of the reaction preferably comprises washing the reaction mixture with an aqueous solution and concentrating the washed reaction mixture by removal of solvents to afford a residue comprising the boronic ester compound of formula (I).
- the residue comprises at least about 5, 10, 20, 50, 100, 500, or 1000 moles of the boronic ester compound of formula (I).
- the boronic ester compound of formula (I) present in the residue preferably has a diastereomeric ratio of at least about 96:4 at the carbon atom bearing R 1 . R 2 , and R 3 , relative to a chiral center in the R 4 -R 5 chiral moiety. More preferably, the diastereomeric ratio is at least about 97:3.
- the boron "ate" complex of formula (II) can be prepared by any known method, but preferably is prepared by reaction of a boronic ester of formula (III):
- the reaction is performed at a reaction temperature of at least about -100 °C, -78 °C, or -60 °C. In some embodiments, the reaction is performed at a reaction temperature no greater than about 0 °C, -20 °C, or -40 °C. Any range encompassing these high and low temperatures are included within the scope of the invention.
- the reaction preferably is performed at a reaction temperature in the range of about -100 °C to about 0 °C, about -78 °C to about -20 °C, or about -60 °C to about -40 °C.
- the boron "ate" complex of formula (II) is prepared in a solution comprising an ether solvent having low miscibility with water, and the reaction mixture is directly treated with a Lewis acid to effect rearrangement to the boron ester compound of formula
- the reagent of formula (IV) is formed in situ. Such embodiments include the steps:
- the sterically hindered base is an alkali metal dialkylamide bases of formula M 2 N(R*) 2 , where M 2 is Li, Na, or K, and each R", independently is a branched or cyclic C 3J5 aliphatic.
- M 2 is Li, Na, or K
- each R independently is a branched or cyclic C 3J5 aliphatic.
- In situ formation of the reagent of formula (IV) is especially advantageous in those embodiments wherein Y is a nucleofugic group, due to the instability of the reagent of formula (IV).
- the boronic ester of formula (III) can be prepared by any known method, but typically is prepared by esterification of the corresponding boronic acid compound, e.g., by methods described in Brown et al, Organometallics, 2: 1311-1316 (1983). Cyclic boronic esters of formula (III) preferably are prepared by: (a) providing a solution comprising:
- linking chain refers to the shortest linear chain of atoms connecting the oxygen atoms to which R 4 and R 5 are attached.
- the linking chain optionally is substituted at any chain atom, and one or more chain atoms also may form part of a ring system that is spiro to, fused to, or bridging the linear linking chain.
- the compound of formula HO-R 4 -R 5 -OH is pinanediol, having the structure:
- the linking chain R -R 5 comprises two carbon atoms, which together form one side of the bicyclo[3.1.1]heptane ring system, and one of which additionally is substituted with a methyl group.
- the compound of formula HO-R 4 -R 5 -OH is a chiral diol, preferably one having high diastereomeric and enantiomeric purity.
- the compound of formula HO-R -R 5 -OH is employed as a chiral auxiliary to direct the stereochemical configuration at the carbon bearing R 1 , R 2 , and R 3 .
- Chiral diols useful as chiral auxiliaries in organic synthesis are well- known in the art.
- Nonlimiting examples include 2,3-butanediol, preferably (2R,3R)-(-)-2,3- butanediol or (2S,3S)-(+)-2,3-butanediol; pinanediol, preferably (lR,2R,3 ,5S)-(-)-pinanediol or (lS,2S,3S,5R)-(+)-pinanediol; 1,2-cyclopentanediol, preferably (lS,2S)-(+)-trans-l,2- cyclopentanediol or (lR,2R)-(-)-£rarcs-l,2-cyclopentanediol; 2,5-hexanediol, preferably (2S,5S)-2,5-hexanediol or (2R,5R)-2,5-hexanediol; l,2-dicyclo
- Nonlimiting examples of organic solvents suitable for use in the esterification reaction include acetonitrile, toluene, hexane, heptane, and mixtures thereof.
- the organic solvent is an ether solvent, preferably an ether solvent that has low miscibility with water.
- the esterification reaction is performed in an ether solvent that has low miscibility with water, and the product solution comprising the boronic ester of formula (III) is used directly in the next step, without isolation of the boronic ester.
- the process of the present invention for the first time permits workup of large-scale reactions without significant deterioration in diastereomeric ratio.
- the invention provides a composition comprising at least about 5, 10, 20, 50, 100 , 500, or 1000 moles of a boronic ester compound of formula (I):
- R 1 is an optionally substituted aliphatic, aromatic, or heteroaromatic group
- R 2 is hydrogen, a nucleofugic group, or an optionally substituted aliphatic, aromatic, or heteroaromatic group;
- R 3 is a nucleofugic group or an optionally substituted aliphatic, aromatic, or heteroaromatic group
- R 4 and R 5 taken together with the intervening oxygen and boron atoms, form an optionally substituted 5- to 10-membered chiral ring having 0-2 additional ring heteroatoms selected from N, O, or S; wherein the carbon atom to which R 1 , R 2 , and R 3 are attached is a chiral center, having a diastereomeric ratio of at least about 96:4, preferably at least about 97:3, relative to a chiral center in the R 4 -R 5 chiral moiety.
- R 1 to R 3 are as described above.
- solvents constitute less than about 30% w/w, 20% w/w, 10% w/w, or 5% w/w of the composition according to this aspect of the invention.
- the boronic ester compound of formula (I) constitutes at least about 70% w/w, 80% w/w, 90% w/w, or 95% w/w of the composition.
- composition described above wherein at least one of the following features is present:
- R 3 is chloro
- R 2 is hydrogen
- R 1 is C M aliphatic.
- All of the boronic ester compound of formula (I) present in the composition may be produced in a single batch run.
- the term "batch run” refers to execution of a synthetic process, wherein each step of the process is performed only once.
- the boronic ester compound of formula (I) present in the composition is prepared in a single batch run of the process according to the first aspect of the invention.
- preparation of a given quantity of product by a single batch run of a large-scale process is more efficient and provides a more homogeneous product than preparation of the same quantity of product by repeated execution of a small-scale process.
- boronic ester compounds of formula (I) wherein R 3 is a nucleofugic group are useful as intermediates for the synthesis of alpha-aminoboronic ester compounds.
- the invention provides a large-scale process for preparing an alpha-aminoboronic ester, preferably by a process comprising the steps:
- Y is a nucleofugic group
- -VT is a cation
- R 1 is an optionally substituted aliphatic, aromatic, or heteroaromatic group
- R 2 is hydrogen
- R 3 is a nucleofugic group; and each of R 4 and R 5 , independently, is an optionally substituted aliphatic, aromatic, or heteroaromatic group, or R 4 and R 5 , taken together with the intervening oxygen and boron atoms, form an optionally substituted 5- to 10-membered ring having 0-2 additional ring heteroatoms selected from N, O, or S;
- step (c) the boronic ester compound of formula (I) is treated with a reagent of formula M 1 -N(Si(R 6 ) 3 ) 2 where M 1 is an alkali metal and each R 6 independently is selected from the group consisting of alkyl, aralkyl, and aryl, where the aryl or aryl portion of the aralkyl is optionally substituted.
- R 3 is halo, preferably chloro
- M 1 is Li.
- the reaction mixture preferably comprises an organic solvent in which the byproduct M * -R 3 has low solubility.
- step (c) further comprises filtering the reaction mixture to remove M " -R 3 and provide a filtrate comprising the compound of formula (VIII).
- the filtrate is used directly in step (d).
- the reaction mixture may additionally comprise a solvent in which the byproduct M 2 -R 3 has high solubility.
- the solvent in which the byproduct M'-R 3 has high solubility preferably is removed prior to filtration of the reaction mixture.
- a reagent of formula M 1 -N(Si(R 6 ) 3 ) 2 is added to the reaction mixture as a solution comprising tetrahydrofuran.
- step (c) preferably further comprises removing the tetrahydrofuran before filtering the reaction mixture.
- step (d) comprises treating the compound of formula (VIII) with an acid and isolating the compound of formula ( VII) as the acid addition salt.
- the acid is trifluoroacetic acid
- the compound of formula (VII) is isolated as the trifluoroacetic acid addition salt.
- one embodiment of the invention relates to a large- scale process for preparing an alpha-aminoboronic ester compound of formula ⁇ Vila) or (Vllb):
- R 1 is an optionally substituted aliphatic, aromatic, or heteroaromatic group
- R 4 and R 5 taken together with the intervening oxygen and boron atoms, form an optionally substituted chiral cyclic boronic ester; said process comprising:
- Y is a nucleofugic group
- M + is a cation
- R 2 is hydrogen
- R 3 is a nucleofugic group
- R 4 and R 5 are as defined above;
- Y, M + , R 1 to R 5 , and G are as described above.
- the compound of formula (Vila) or (Vllb) preferably has a diastereomeric ratio at the alpha- carbon of at least about 96:4, more preferably at least about 97:3, relative to a chiral center in the R -R 5 chiral moiety.
- the alpha-aminoboronic ester compounds of formula (VII) are useful synthetic intermediates for the preparation of peptidyl boronic ester compounds.
- the process according to this aspect of the invention further comprises coupling the compound of formula (VII) with a compound of formula (IX):
- P 1 is an amino group blocking moiety
- R 7 is selected from the group consisting of hydrogen, C.. 10 aliphatic, optionally substituted C wo aryl, or C M aliphatic-R 8 ; and R 8 is selected from the group consisting of alkoxy, alkylthio, optionally substituted aryl, heteroaryl, and heterocyclyl groups, and optionally protected amino, hydroxy, and guanidino groups; and
- X is OH or a leaving group
- the leaving group X is any group capable of nucleophilic displacement by the alpha-amino group of the compound of formula (VII).
- the moiety - C(0)-X is an activated ester, such as an O-(N-hydroxysucccinimide) ester.
- an activated ester is generated in situ by contacting a compound of formula (IX), wherein X is OH, with a peptide coupling reagent.
- Suitable peptide coupling reagents include, without limitation, carbodiimide reagents, e.g., dicyclohexylcarbodiimide (DCC) or l-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC); phosphonium reagents, e.g., benzoteiazol-l-yloxytiis(dirnethylarnino)phosphoniurn hexafluorophosphate (BOP reagent); and uronium reagents, e.g., O-(lH-benzotriazol-l-yl)- N,ZV,N',-V-tetramethyluronium tetrafluoroborate (TBTU).
- carbodiimide reagents e.g., dicyclohexylcarbodiimide (DCC) or l-(3-dimethylaminopropy
- a compound of formula (VIII) is contacted with a compound of formula (IX) under conditions that remove the (R 6 ) 3 Si groups in situ and form a compound of formula (X).
- amino-group blocking moiety refers to any group used to derivatize an amino group, especially an N-terminal amino group of a peptide or amino acid.
- amino-group blocking moiety includes, but is not limited to, protecting groups that are commonly employed in organic synthesis, especially peptide synthesis. See, for example, Gross and Mienhoffer, eds., The Peptides, Vol.3, Academic Press, New York, 1981, pp. 3-88; Green and Wuts, Protective Groups in Organic Synthesis, 3 rd edition, John Wiley and Sons, Inc., New York, 1999.
- amino-group blocking moieties include, e.g., alkyl, acyl, alkoxycarbonyl, aminocarbonyl, and sulfonyl moieties.
- the amino-group blocking moiety is an acyl moiety derived from an amino acid or peptide, or a derivative or analog thereof.
- amino acid includes both naturally occurring and unnatural amino acids.
- a “derivative" of an amino acid or peptide is one in which a functional group, e.g., a hydroxy, amino, carboxy, or guanidino group at the -terminus or on a side chain, is modified with a blocking group.
- an “analog” of an amino acid or peptide is one which includes a modified backbone or side chain.
- peptide analog is intended to include peptides wherein one or more stereocenters are inverted and one or more peptide bonds are replaced with a peptide isostere.
- P 1 is a cleavable protecting group.
- cleavable protecting groups include, without limitation, acyl protecting groups, e.g., formyl, acetyl (Ac), succinyl (Sue), or methoxysuccinyl (MeOSuc), and urethane protecting groups, e.g., tert-butoxycarbonyl (Boc), benzyloxycarbonyl (Cbz), or fluorenylmethoxycarbonyl (Fmoc).
- acyl protecting groups e.g., formyl, acetyl (Ac), succinyl (Sue), or methoxysuccinyl (MeOSuc
- urethane protecting groups e.g., tert-butoxycarbonyl (Boc), benzyloxycarbonyl (Cbz), or fluorenylmethoxycarbonyl (Fmoc).
- the process according to this aspect of the invention further comprises the steps:
- R 1 , R 4 , R 5 , and R 7 is as defined above;
- each of P 2 , R 1 , R 4 , R 5 , and R 7 are as defined above.
- P 2 is an acyl group, including, e.g., an acyl moiety derived from an amino acid or peptide, or an analog or derivative thereof, the leaving group X may be generated in situ, as discussed above for the compound of formula (IX).
- the boronic acid moiety is protected as a boronic ester.
- the boronic acid moiety can be deprotected by any method known in the art.
- the boronic acid moiety is deprotected by transesterification in a biphasic mixture. More preferably, the boronic acid deprotecting step comprises the steps:
- the organic boronic acid acceptor in step (i) preferably is an aliphatic, aryl, or ar(aliphatic)boronic acid.
- the boronic acid acceptor is selected from the group consisting of phenylboronic acid, benzylboronic acid, butylboronic acid, pentylboronic acid, hexylboronic acid, and cyclohexylboronic acid.
- the boronic acid acceptor is isobutylboronic acid.
- the boronic acid acceptor is selected so that the boronic ester compound of formula (III) is formed as a byproduct of the deprotection reaction.
- the boronic ester compound of formula (III) can then be used in another batch run of the process described above.
- the moiety R -R 5 is effectively recycled, which may be particularly advantageous if R 4 -R 5 is an expensive chiral moiety.
- step (iii) preferably comprises the steps: (1) separating the solvent layers;
- the invention relates to an improved process for manufacturing the proteasome inhibitor bortezomib.
- the invention provides a large-scale process for forming a compound of formula (XIV):
- the process comprises the steps: (a) providing a boron "ate" complex of formula (XV):
- R 3 is a nucleofugic group
- Y is a nucleofugic group
- M + is an alkali metal
- reaction mixture comprising:
- P 1 is a cleavable amino group protecting moiety
- X is OH or a leaving group
- the process is characterized by at least one of the following features (l)-(5). In certain preferred embodiments, the process is characterized by all five features (l)-(5) below.
- the coupling step (e) comprises the steps:
- the protecting group removing step (f) comprises the steps:
- the coupling step (g) comprises the steps:
- the boronic acid deprotecting step (h) comprises the steps:
- step (h)(iii) comprises the steps:
- the invention relates to a large-scale process for forming a compound of formula (XIV)
- P 1 is a cleavable amino group protecting moiety
- X is OH or a leaving group
- step (bb) comprising the steps:
- said cotipling step (cc) comprising the steps:
- step (dd) deprotecting the boronic acid moiety to form the compound of formula (XIV) or a boronic acid anhydride thereof, said deprotecting step (dd) comprising the steps:
- step (dd)(iii) comprises the steps:
- step (e)(iii) or (aa)(i ⁇ ) affords an ethyl acetate solution comprising a compound of formula (XX), and the ethyl acetate solution is directly subjected in step (f) or (bb) to conditions effective to remove the protecting group P 1 .
- the protecting group P 1 is an acid-labile protecting group, for example, ter£-butoxycarbonyl (Boc), and the ethyl acetate solution from step (e)(iii) or (aa)(iii) is treated with acid.
- the ethyl acetate solution from step (e)(iii) or (aa)(iii) is dried azeotropically and then treated with gaseous HCl.
- the deprotecting step (f) or (bb) is performed under anhydrous conditions, as described above, the product of formula (XXI) can be isolated by crystallization from the reaction mixture as its HCl addition salt.
- Crystallization of the product salt is promoted by addition of a hydrocarbon solvent such as n-heptane.
- the reaction mixture is partially concentrated prior to addition of the hydrocarbon solvent.
- the present inventors have discovered that crystallization of the compound of formula (XXI) in this manner efficiently removes any tripeptide impurity that may have formed during the coupling step (e) or (aa). Such impurities are difficult to remove at later stages in the synthesis.
- the invention provides a large-scale process for forming a compound of formula (XIV)
- the process comprises the steps: (a) providing a boron "ate" complex of formula (XV):
- R 3 is a nucleofugic group
- Y is a nucleofugic group
- M 1" is an alkali metal
- the process is characterized by at least one of the following features (l)-(3). In certain preferred embodiments, the process is characterized by all three features (l)-(3) below.
- the boronic acid deprotecting step (f) comprises the steps:
- step (f)( ⁇ i) comprises the steps:
- step (h)(iv), (dd)(iv), or (f)(iv) of the processes described above the compound of formula (XIV), or a boronic acid anhydride thereof, preferably is extracted into ethyl acetate and crystallized by addition of hexane or heptane.
- the process further comprises isolation of a boronic acid anhydride of the compound of formula (XIV), preferably a trimeric boronic acid anhydride of formula (XXIV):
- the processes of the invention permit the large-scale manufacture of bortezomib of very high chemical and stereochemical purity. Prior art processes were limited in scale and afforded product of lower overall purity.
- the invention provides a composition comprising at least one kilogram of a compound of formula (XXIV):
- the compotmd of formula (XXIV) preferably is prepared according to the process described above, and preferably constitutes at least 99% w/w of the composition according to this aspect of the invention.
- Example 1 (IRMS)-Pinanediol 1-ammonium trifluoroacetate-3-methylbutane-l- boronate Manufacturing Process dS)-(S)-Pinanediol l-chloro-3-methylbutane-l-boronate
- n-Hexyllithium in hexane (33.2 weight% solution) (17.6 kg) was added to the diisopropylamine mixture over a period of 57 minutes, while the reaction temperature was maintained at -10 °C to -7 °C
- Tetrahydrofuran 53 kg was added to the zinc chloride suspension over a period of 18 minutes, while the reaction temperature was maintained at 35 °C to 40 °C.
- This mixture (ZnCl 2 -mixture) was stirred for 4 hours and 28 minutes at 38 °C to 39 °C until it was used.
- reaction mixture was stirred for an additional 20 minutes at -59 °C to -55 °C.
- reaction mixture was warmed to -50 °C over a period of 11 minutes.
- a 10% sulfuric acid solution (72 kg) was added over a period of 40 minutes to the reaction vessel, while the reaction temperature was maintained at 10 °C to 21 °C.
- reaction mixture was stirred for 16 minutes at ambient temperature, before the aqueous phase was separated.
- Lithium bis(trimethylsilyl)amide in tetrahydrofuran (19.4 weight% solution), (41.8 kg) was charged to a reaction vessel maintained under a nitrogen atmosphere and cooled to -19 °C with stirring.
- reaction mixture was stirred for an additional 65 minutes at -13 °C to -12 °C and then warmed to 25 °C over a period of 25 minutes. 5.
- a suspension of Celite (2.5 kg) in methylcyclohexane (22 kg) was added to the reaction mixture.
- Trifluoroacetic acid (12 kg) was charged to another reaction vessel maintained under a nitrogen atmosphere.
- reaction mixture was stirred for an additional 8 hours and 20 minutes at -9 °C to -7 °C.
- Trifluoroacetic acid 31 kg was charged to the reaction vessel and the resultant mixture was cooled to 4 °C with stirring.
- the stirring motor was adjusted to provide stirring at 260 RPM.
- reaction mixture was cooled to 1.0 °C, maintaining a nitrogen atmosphere.
- N,N-Diisopropylethylamine (2.778 L) was charged to a glass flask and transferred to the reaction mixture over a period of 117 minutes using a peristaltic pump maintaining a reaction temperature range of 0.7 °C - 2.1 °C.
- the overall addition rate was 23.7 mL/min.
- the reaction mixture was stirred for an additional 35 minutes.
- the temperature at the start of the stir time was 1.8 °C, and 2.5 °C at the end.
- the reaction mixture was transferred in approximately two equal halves to two rotary evaporator flasks.
- the reaction mixture was concentrated tmder reduced pressure using a rotary evaporator, maintaining an external bath temperature of 29- 30 °C.
- a 1% aqueous phosphoric acid solution was prepared by mixing D.I. water (13.18 L) and phosphoric acid (0.160 kg).
- a 2% aqueous potassium carbonate solution (12.0 L) was prepared by mixing D.I. water (11.76 L) and potassium carbonate (0.24 kg).
- a 10% aqueous sodium chloride solution (13.34 L) was prepared by mixing D.I. water (13.34 L) and sodium chloride (1.334 kg).
- the 2% potassium carbonate solution prepared in Step 17 was charged to the reaction flask containing the ethyl acetate solution and the mixture stirred at 367 RPM for 7 minutes. The layers were allowed to separate and the basic aqueous phase (bottom layer) was transferred to a suitable flask and discarded.
- the 10% sodium chloride solution prepared in Step 18 was charged to the reaction flask containing the ethyl acetate solution and the mixture stirred at 373 RPM for 6 minutes. The layers were allowed to separate and the aqueous phase (bottom layer) was transferred to a suitable flask and discarded.
- the ethyl acetate solution was transferred to a rotary evaporator flask and concentrated under reduced pressure using a rotary evaporator, maintaining a bath temperature of 29-30 °C, to provide a residue.
- the solution was concentrated under vacuum using a rotary evaporator, maintaining a bath temperature of 29-30 °C, to provide a residue once more.
- the reaction was stirred for approximately a further 50 minutes, maintaining a temperature of 10 °C ⁇ 5 °C.
- the final temperature was 14.6 °C.
- the slurry was stirred for 2 hours.
- the temperature at the start of the stir time was 12.7 °C, and 15.3 °C at the end.
- the solid was isolated by filtration on a Buchner funnel lined with a polypropylene felt filter pad.
- the solid was transferred to three drying trays at not more than 1" deep and air-dried for 1 hour.
- the solid was then dried at ⁇ 35 °C under a vacuum of 27" of Hg for 16 hours 28 minutes in a vacuum oven equipped with a vacuum gauge and a temperature recorder.
- the solid was sampled from each drying tray to determine the % Loss on Drying.
- the LOD was determined to be 0 %, 0.02 %, and 0.02 % on the three samples taken.
- the stirring motor was adjusted to provide stirring at 272 RPM.
- N,N-Diisopropyleti ⁇ ylamine (1.865 kg) was charged to a glass flask and transferred to the reaction over a period of 50 minutes using a peristaltic pump maintaining a reaction temperature range of -1.2 °C to 2.8 °C.
- the temperature at the start of the stir time was 15 °C, and 24.9 °C at the end.
- the reaction mixture was transferred in approximately two equal halves to two rotary evaporator flasks.
- the reaction mixture was concentrated under reduced pressure using two rotary evaporators, maintaining an external bath temperature of 33-34 °C.
- a 2% aqueous potassium carbonate solution (12.34 L) was prepared by mixing D.I. water (12.09 L) and potassium carbonate (0.247 kg)-
- a 10% aqueous sodium chloride solution (12.34 L) was prepared by mixing D.I. water (12.34 L) and sodium chloride (1.234 kg).
- Step 17 The 1% phosphoric acid solution prepared in Step 17 was charged to the reaction flask containing the ethyl acetate solution and the mixture stirred at 364 RPM for 8 minutes. The layers were allowed to separate and the acidic aqueous phase (bottom layer) was transferred to a suitable flask and discarded.
- Step 18 The 2% potassium carbonate solution prepared in Step 18 was charged to the reaction flask containing the ethyl acetate solution and the mixture stirred at 367 RPM for 8 minutes. The layers were allowed to separate and the basic aqueous phase (bottom layer) was transferred to a suitable flask and discarded.
- Step 19 The 10% sodium chloride solution prepared in Step 19 was charged to the reaction flask containing the ethyl acetate solution and the mixture stirred at 374 RPM for 8 minutes. The layers were allowed to separate and the aqueous phase (bottom layer) was transferred to a suitable flask and discarded.
- the ethyl acetate solution was transferred under vacuum in approximately two equal halves to two rotary evaporator flasks and concentrated under reduced pressure using a rotary evaporator, maintaining an external bath temperature of 34 °C.
- n-Heptane (14.8 L) was divided into two approximately equal portions and charged to the two rotary evaporator flasks. The mixtures in each flask were then concentrated under reduced pressure using a rotary evaporator, maintaining an external bath temperature of 34 °C.
- a 2N sodium hydroxide solution (12.03 L) was prepared by mixing D.I. water (12.03 L) and sodium hydroxide (0.962 kg).
- the stirring motor was adjusted to provide stirring at 284 RPM.
- the stirring motor was adjusted to provide stirring at 326 RPM.
- n-heptane layer (upper layer) was transferred to a suitable flask and discarded.
- n-Heptane (5.37 L) was charged to the reaction flask and the mixture stirred at 381 RPM for 6 minutes. The layers were allowed to separate and the n-heptane phase (upper layer) was transferred to a suitable flask and discarded.
- n-heptane (5.37 L) was charged to the reaction flask and the mixture stirred at 340 RPM for 6 minutes. The layers were allowed to separate and the n-heptane phase (upper layer) was transferred to a suitable flask and discarded.
- the aqtteous methanol solution was transferred in approximately two equal halves to two rotary evaporator flasks and concentrated under reduced pressure using a rotary evaporator, maintaining an external bath temperature of 33-34 °C. 15 L of methanol were collected.
- dichloromethane (5.37 L) was charged to the flask and the mixture stirred at 368 RPM for 8 minutes. The phases were allowed to separate and the dichloromethane layer (lower layer) was transferred to a suitable flask and discarded.
- dichloromethane (5.37 L) was charged to the flask and the mixture stirred at 335 RPM for 6 minutes. The phases were allowed to separate and the dichloromethane layer (lower layer) was transferred to the glass receiving flask.
- n-Heptane (10.2 L) was divided into two approximately equal portions and charged to the two rotary evaporator flasks, and the slurry stirred under a nitrogen atmosphere for 2.67 hours at 22-23 °C.
- the solid was isolated by filtration on a Buchner funnel, lined with a polypropylene felt filter pad.
- the solid was then dried at 36 - 50 °C under a vacuum of 27" of Hg for 18 hours 27 minutes in a vacuum oven equipped with a vacuum gauge and a temperature recorder.
- the solid was sampled from each tray to determine the % Loss on Drying (LOD).
- LOD % Loss on Drying
- N-(2-Pyrazinecarbonyl)-L-phenylalanine-L-leucine boronic anhydride crude was packaged into two 5L, HDPE, tamper-proof wide-mouth bottles and labeled.
- the hot ethyl acetate solution was transferred into a receiving flask via poly tubing and a polypropylene in-line filter capsule using a peristaltic pump.
- the mixture was cooled using an ice /water bath with stirring for 2.33 hours.
- the temperature at the start of the stir time was 3.8 °C, and -2.8 °C at the end.
- the solid was isolated by filtration on a Buchner funnel lined with a polypropylene felt filter pad. The filtrate was collected in a collection flask.
- the solid was then dried at 51-65 °C under a vacuum of 27" of Hg for 19 hours 10 minutes in a vacuum oven equipped with a vacuum gauge and a temperature recorder.
- the solid was sampled to determine the % Loss on Drying (LOD).
- LOD Loss on Drying
- N-(2-Pyrazinecarbonyl)-L-phenylalanine-L-leucine boronic anhydride was packaged into four IL, Type 3, Amber Wide-Mouth Bottles with Teflon-Lined Caps and labeled.
- N-(2-Pyrazinecarbonyl)-L-phenylalanine-L-leucine boronic anhydride was stored at - 25 to -15 °C.
- Example 3 N-(2-Pyrazinecarbonyl)-L-phenylalanine-L-leucine boronic anhydride Convergent Synthesis
- N-(2-pyrazinecarbonyl)-L-phenylalanine (19.52 g; prepared by coupling the preformed succinimide ester of pyrazinecarboxylic acid with L-phenylalanine in dioxane-water) in 62 mL of DMF was added N-methylmorpholine (5.7 L) at a temperature of 0 °C, and the resulting solution was added to the suspension.
- the suspension was adjusted to pH 7 by the addition of another 5.7 mL of N-methylmorpholine and stirred overnight, raising the temperature slowly to 21 °C. After filtration, the filtercake was washed twice with MTBE and the combined filtrates were diluted with 950 mL of MTBE.
- the lower layer was then concentrated in vacuo until it became cloudy, followed by the addition of 109.4 mL of 2N NaOH and 100 mL of Et 2 0. The two phases were separated the lower layer was extracted with Et-O (4 x 100 L each), and then brought to pH 6.0 by the addition of 109 mL of IN HCl. After extraction with 100 L of ethyl acetate, the lower layer was adjusted to pH 6.0 with IN HCl and extracted one more time with 75 mL of ethyl acetate.
- TFAA Trifluoroacetic anhydride
- Solvent A (with Approximately 300 mg of tetradecane were weighed with an internal standard) accuracy of 0.1 mg into a 100-mL volumetric flask. 1.5 mL of TFAA were added and the flask was brought to volume with acetonitrile.
- Sample Preparation About 150 mg of the sample were exactly weighed (within 0.1 mg) into a 10-mL volumetric flask. The flask was brought to volume with Solvent A. The solution was stored for 15 minutes before injection.
- a stock solution of compound 1 was prepared by weighing 150.13 mg of compound 1 into a 10-mL volumetric flask and bringing it to volume with Solvent A. Stability of this solution was tested at ambient temperature over 48 hours. The stock solution was filled in 6 separate GC vials. Injections onto the GC system were carried out from these vials after 0, 12, 24, 48, and 72 hours (double injection out of each vial. The area% of compound 1 and compound 2 were determined. No changes in area% were observed, indicating that the solution is stable over 72 hours at ambient temperature.
- the limit of detection was defined to be that concentration where the signal of compound 1 showed a signal to noise ratio of at least 3:1. A previous blank measurement was carried out to show that no other peaks interfered.
- the signal to noise ratio was calculated by the equation: S /N - H (signal) H (baseline)
- the limit of quantitation was defined to be that concentration where the signal of compound 1 showed a signal to noise ratio of at least 10:1. Signal to noise ratio was calculated as described above. A sample concentration of 0.1% of the standard sample concentration was injected and showed a signal to noise ratio of 10.1. Therefore, the limit of quantitation is 0.015 mg/mL.
- UV detector capable of monitoring effluent at 270 nm
- the retention time of compound 3 was typically between 10 and 14 minutes when using an HPLC system with a 1.3 minute dwell volume.
- Compounds 4 and 5 co- eluted at longer retention time, with a resolution of > 2.0.
- a sTM peak area response of compotmd 3 in the sample preparation
- a std mean peak area response of compound 3 in the working standard preparation
- A. peak area response of individual impurity in the sample preparation
- W std weight of the standard
- mg s am weight of sample
- N-(2-pyrazinecarbonyl)-L-phenylalanine-L- leucineboronic anhydride from Example 2 showed total impurities of less than 1%.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Veterinary Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Immunology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Virology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Transplantation (AREA)
- Tropical Medicine & Parasitology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- AIDS & HIV (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Claims
Priority Applications (27)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2560886A CA2560886C (en) | 2004-03-30 | 2005-03-24 | Synthesis of boronic ester and acid compounds |
DK05742865.8T DK1756121T3 (en) | 2004-03-30 | 2005-03-24 | Synthesis of boron ester and boric acid compounds |
AT05742865T ATE521612T1 (en) | 2004-03-30 | 2005-03-24 | SYNTHESIS OF BORONIC ACID ESTER AND BORONIC ACID COMPOUNDS |
AU2005230930A AU2005230930B2 (en) | 2004-03-30 | 2005-03-24 | Synthesis of boronic ester and acid compounds |
NZ550522A NZ550522A (en) | 2004-03-30 | 2005-03-24 | Synthesis of boronic ester and acid compounds |
MEP-2011-502A ME01975B (en) | 2004-03-30 | 2005-03-24 | Synthesis of boronic ester and acid compounds |
EP05742865A EP1756121B1 (en) | 2004-03-30 | 2005-03-24 | Synthesis of boronic ester and acid compounds |
EA200601795A EA012927B1 (en) | 2004-03-30 | 2005-03-24 | Synthesis of boronic ester and acid compounds |
EP18172486.5A EP3385267B1 (en) | 2004-03-30 | 2005-03-24 | Synthesis of boronic ester and acid compounds |
PL05742865T PL1756121T3 (en) | 2004-03-30 | 2005-03-24 | Synthesis of boronic ester and acid compounds |
PL18172486T PL3385267T3 (en) | 2004-03-30 | 2005-03-24 | Synthesis of boronic ester and acid compounds |
EP21197526.3A EP4008721B1 (en) | 2004-03-30 | 2005-03-24 | Synthesis of boronic ester and acid compounds |
CN202010514035.2A CN111925385B (en) | 2004-03-30 | 2005-03-24 | Synthesis of esters and acid compounds of boron |
CN200580017645.5A CN1960996B (en) | 2004-03-30 | 2005-03-24 | The ester of boron and the synthesis of acid compound |
JP2007506261A JP4558039B2 (en) | 2004-03-30 | 2005-03-24 | Synthesis of boronic acid esters and boronic acid compounds |
UAA200611339A UA90108C2 (en) | 2004-03-30 | 2005-03-24 | Synthesis of boronic ester and acid compounds |
BRPI0509587-5A BRPI0509587A (en) | 2004-03-30 | 2005-03-24 | large-scale process for preparing an aminoboronic boronic ester compound and composition comprising an ether solvent |
IL178250A IL178250A (en) | 2004-03-30 | 2006-09-21 | Synthesis of boronic ester and acid compounds |
NO20064893A NO338905B1 (en) | 2004-03-30 | 2006-10-26 | Process for the preparation of boronic acid esters - compounds and preparations containing the same |
HK07107789.3A HK1100004A1 (en) | 2004-03-30 | 2007-07-19 | Synthesis of boronic ester and acid compounds |
HR20110846T HRP20110846T1 (en) | 2004-03-30 | 2011-11-14 | Synthesis of boronic ester and acid compounds |
IL219856A IL219856A (en) | 2004-03-30 | 2012-05-17 | Large scale process for forming a boronic derivative or anhydride thereof |
IL219853A IL219853A (en) | 2004-03-30 | 2012-05-17 | Large scale process for forming a boronic derivative or anhydride thereof |
NO20161350A NO344610B1 (en) | 2004-03-30 | 2016-08-24 | Large scale process for the preparation synthesis of boronic acid ester and boronic acid compounds |
NO20171939A NO343966B1 (en) | 2004-03-30 | 2017-12-05 | Large scale process for preparation of boronic acid ester and boronic acid compounds |
NO20191065A NO20191065A1 (en) | 2004-03-30 | 2019-09-04 | Synthesis of boronic acid ester and boronic acid compounds |
CY20211101021T CY1124753T1 (en) | 2004-03-30 | 2021-11-24 | COMPOSITION OF BORONIC ESTERS AND ACIDS COMPOUNDS |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US55753504P | 2004-03-30 | 2004-03-30 | |
US60/557,535 | 2004-03-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005097809A2 true WO2005097809A2 (en) | 2005-10-20 |
WO2005097809A3 WO2005097809A3 (en) | 2006-02-16 |
Family
ID=34968044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/009774 WO2005097809A2 (en) | 2004-03-30 | 2005-03-24 | Synthesis of boronic ester and acid compounds |
Country Status (41)
Country | Link |
---|---|
US (14) | US7714159B2 (en) |
EP (5) | EP3385267B1 (en) |
JP (4) | JP4558039B2 (en) |
KR (1) | KR100939598B1 (en) |
CN (5) | CN103396427B (en) |
AR (3) | AR049374A1 (en) |
AT (1) | ATE521612T1 (en) |
AU (1) | AU2005230930B2 (en) |
BR (1) | BRPI0509587A (en) |
CA (4) | CA2560886C (en) |
CL (2) | CL2010000350A1 (en) |
CR (1) | CR8653A (en) |
CY (3) | CY1112053T1 (en) |
DK (4) | DK2377869T3 (en) |
DO (1) | DOP2011000293A (en) |
EA (1) | EA012927B1 (en) |
EC (1) | ECSP066960A (en) |
ES (4) | ES2457593T3 (en) |
FI (1) | FI4008721T3 (en) |
HK (4) | HK1100004A1 (en) |
HR (4) | HRP20212002T1 (en) |
HU (2) | HUE056859T2 (en) |
IL (3) | IL178250A (en) |
LT (2) | LT4008721T (en) |
ME (1) | ME01975B (en) |
MX (1) | MX367324B (en) |
MY (1) | MY145427A (en) |
NL (3) | NL1028639C2 (en) |
NO (4) | NO338905B1 (en) |
NZ (3) | NZ598172A (en) |
PE (3) | PE20060162A1 (en) |
PL (4) | PL4008721T3 (en) |
PT (4) | PT2377869E (en) |
RS (4) | RS51983B (en) |
SG (5) | SG10201800972PA (en) |
SI (4) | SI4008721T1 (en) |
TW (1) | TWI386212B (en) |
UA (1) | UA90108C2 (en) |
UY (3) | UY28830A1 (en) |
WO (1) | WO2005097809A2 (en) |
ZA (1) | ZA200608689B (en) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7442830B1 (en) | 2007-08-06 | 2008-10-28 | Millenium Pharmaceuticals, Inc. | Proteasome inhibitors |
WO2009004350A1 (en) * | 2007-07-03 | 2009-01-08 | Pliva Hrvatska D.O.O. | Methods for preparing bortezomib and intermediates used in its manufacture |
WO2009020448A1 (en) * | 2007-08-06 | 2009-02-12 | Millennium Pharmaceuticals, Inc. | Proteasome inhibitors |
WO2009036281A3 (en) * | 2007-09-12 | 2009-05-14 | Reddys Lab Ltd Dr | Bortezomib and process for producing same |
CN101781326A (en) * | 2010-02-11 | 2010-07-21 | 上海百灵医药科技有限公司 | Intermediate for preparing chiral aminoboronic acid and preparation method thereof |
US7838673B2 (en) | 2007-10-16 | 2010-11-23 | Millennium Pharmaceuticals, Inc. | Proteasome inhibitors |
WO2010146172A2 (en) | 2009-06-19 | 2010-12-23 | Lek Pharmaceuticals D.D. | NEW SYNTHETIC ROUTE FOR THE PREPARATION OF α-AMINO BORONIC ACID DERIVATIVES VIA SUBSTITUTED ALK-1-YNES |
EP2270019A1 (en) | 2009-06-19 | 2011-01-05 | LEK Pharmaceuticals d.d. | New synthetic route for the preparation of alpha-amino boronic esters |
EP2280016A1 (en) | 2009-07-27 | 2011-02-02 | LEK Pharmaceuticals d.d. | New synthetic route for the preparation of alpha-amino boronic esters via substituted alk-1-ynes |
EP2377868A1 (en) * | 2004-03-30 | 2011-10-19 | Millennium Pharmaceuticals, Inc. | Synthesis of Bortezomib |
CN102268029A (en) * | 2011-05-19 | 2011-12-07 | 苏州二叶制药有限公司 | Preparation method of compound (1S, 2S, 3R, 5S)-pinanediol-L-phenylalanine-L-leucine boric acid ester |
WO2012048745A1 (en) | 2010-10-14 | 2012-04-19 | Synthon Bv | Process for making bortezomib and intermediates for the process |
CN102492021A (en) * | 2011-12-13 | 2012-06-13 | 重庆泰濠制药有限公司 | Preparation process for bortezomib |
US8513218B2 (en) | 2010-03-31 | 2013-08-20 | Millennium Pharmaceuticals, Inc. | Derivatives of 1-amino-2-cyclopropylethylboronic acid |
CN103450331A (en) * | 2012-06-05 | 2013-12-18 | 山东新时代药业有限公司 | Method for refining bortezomib |
CN103554219A (en) * | 2013-10-01 | 2014-02-05 | 昆明贵研药业有限公司 | Method for preparing bortezomib |
US8664200B2 (en) | 2008-09-29 | 2014-03-04 | Millennium Pharmaceuticals, Inc. | Derivatives of 1-amino-2-cyclobutylethylboronic acid |
WO2014041324A1 (en) * | 2012-09-11 | 2014-03-20 | Cipla Limited | Process for preparing of bortezamib |
EP2730579A1 (en) | 2008-06-17 | 2014-05-14 | Millennium Pharmaceuticals, Inc. | Boronate ester compounds and pharmaceutical compositions thereof |
WO2014170628A1 (en) | 2013-04-16 | 2014-10-23 | Cipla Limited | Process for the preparation of bortezomib mannitol ester |
JP2016172768A (en) * | 2016-06-27 | 2016-09-29 | ミレニアム ファーマシューティカルズ, インコーポレイテッドMillennium Pharmaceuticals, Inc. | Proteasome inhibitor |
AU2013204874B2 (en) * | 2008-09-29 | 2016-11-10 | Millennium Pharmaceuticals, Inc. | Derivatives of 1-amino-2-cyclobutylethylboronic acid |
US9688702B2 (en) | 2011-12-22 | 2017-06-27 | Ares Trading | Alpha-amino boronic acid derivatives, selective immunoproteasome inhibitors |
WO2018027062A1 (en) | 2016-08-04 | 2018-02-08 | VenatoRx Pharmaceuticals, Inc. | Boron-containing compounds |
WO2018150386A1 (en) | 2017-02-17 | 2018-08-23 | Fresenius Kabi Oncology Ltd. | An improved process for the preparation of boronic acid esters |
US10669290B2 (en) | 2012-12-07 | 2020-06-02 | VenatoRx Pharmaceuticals, Inc. | Beta-lactamase inhibitors |
US20200190117A1 (en) * | 2017-09-02 | 2020-06-18 | Sun Pharmaceutical Industries Limited | Process for the preparation of ixazomib citrate |
AU2018233007B2 (en) * | 2007-08-06 | 2020-07-23 | Takeda Pharmaceutical Company Limited | Proteasome inhibitors |
US11008346B2 (en) | 2014-06-11 | 2021-05-18 | VenatoRx Pharmaceuticals, Inc. | Beta-lactamase inhibitors |
US11091505B2 (en) | 2017-03-06 | 2021-08-17 | VenatoRx Pharmaceuticals, Inc. | Solid forms and combination compositions comprising a beta-lactamase inhibitor and uses thereof |
US11241448B2 (en) | 2014-05-20 | 2022-02-08 | Millennium Pharmaceuticals, Inc. | Methods for cancer therapy |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6083903A (en) | 1994-10-28 | 2000-07-04 | Leukosite, Inc. | Boronic ester and acid compounds, synthesis and uses |
WO2008075376A1 (en) * | 2006-12-18 | 2008-06-26 | Natco Pharma Limited | Polymorphic forms of bortezomib and process for their preparation |
EA034601B1 (en) * | 2007-08-06 | 2020-02-25 | Милленниум Фармасьютикалз, Инк. | Process for producing boronic acids |
US20110118274A1 (en) * | 2007-08-23 | 2011-05-19 | Cornell Research Foundation, Inc. | Proteasome inhibitors and their use in treating pathogen infection and cancer |
EP2238973A1 (en) | 2009-04-07 | 2010-10-13 | Cephalon France | Lyophilized preparations of proteasome inhibitors |
CN101899062B (en) * | 2009-05-26 | 2015-04-15 | 上海威智医药科技有限公司 | Synthesis technology of alpha-chiral boric acid and boric acid ester |
JP5783659B2 (en) | 2009-12-22 | 2015-09-24 | セファロン、インク. | Proteasome inhibitors and methods for their preparation, purification and use |
US20110178287A1 (en) | 2010-01-19 | 2011-07-21 | Cerulean Pharma Inc. | Cyclodextrin-based polymers for therapeutic delivery |
US20130085277A1 (en) | 2010-02-09 | 2013-04-04 | Ranbaxy Laboratories Limited | Process for the preparation of bortezomib |
WO2011107912A1 (en) | 2010-03-04 | 2011-09-09 | Ranbaxy Laboratories Limited | Polymorphic forms of bortezomib |
US8263578B2 (en) | 2010-03-18 | 2012-09-11 | Innopharma, Inc. | Stable bortezomib formulations |
EP2547333B1 (en) * | 2010-03-18 | 2017-08-23 | Innopharma, Inc. | Stable bortezomib formulations |
CN101812026B (en) * | 2010-04-12 | 2013-08-28 | 亚邦医药股份有限公司 | Method for synthesizing bortezomib |
CN105797168A (en) | 2010-05-18 | 2016-07-27 | 天蓝制药公司 | Compositions and method for treatment of autoimmune and other diseases |
TW201309303A (en) | 2011-03-03 | 2013-03-01 | Cephalon Inc | Proteasome inhibitor for the treatment of lupus |
CN102206188B (en) * | 2011-04-08 | 2013-02-27 | 苏州二叶制药有限公司 | Preparation method for N-(pyrazine-2-yl carbonyl)-L-phenylalanine |
US8497374B2 (en) | 2011-05-12 | 2013-07-30 | Scinopharm Taiwan, Ltd. | Process for preparing and purifying bortezomib |
JP5944986B2 (en) | 2011-06-22 | 2016-07-05 | セファロン、インク. | Proteasome inhibitors and processes for their preparation, purification, and use |
CN102351890B (en) * | 2011-09-30 | 2014-07-02 | 重庆泰濠制药有限公司 | Method for synthesizing bortezomib |
CN103374026A (en) * | 2012-04-27 | 2013-10-30 | 重庆医药工业研究院有限责任公司 | Preparation method of bortezomib midbody |
WO2014072985A1 (en) | 2012-11-06 | 2014-05-15 | Natco Pharma Limited | Novel boronic acid derivatives as anti cancer agents |
US9217001B2 (en) | 2012-11-16 | 2015-12-22 | Shilpa Medicare Limited | Crystalline bortezomib process |
CN103897027A (en) * | 2012-12-29 | 2014-07-02 | 曹亚英 | Key intermediate crystal form, preparation method and application of key intermediate crystal form in bortezomib synthesis |
CN103897026A (en) * | 2012-12-29 | 2014-07-02 | 朱继东 | Crystal form of bortezomib key intermediate, and preparation method and application of crystal form |
WO2014110442A1 (en) | 2013-01-10 | 2014-07-17 | VenatoRx Pharmaceuticals, Inc. | Beta-lactamase inhibitors |
CN104211758B (en) * | 2013-05-29 | 2020-06-12 | 深圳翰宇药业股份有限公司 | Preparation method of bortezomib |
CN103497233B (en) * | 2013-09-30 | 2015-04-08 | 哈药集团技术中心 | Preparation method for bortezomib |
KR101691353B1 (en) * | 2013-12-09 | 2016-12-30 | 주식회사 경보제약 | Manufacturing method for Bortezomib and new intermediate thereof |
WO2015117136A1 (en) | 2014-02-03 | 2015-08-06 | Ohio State Innovation Foundation | Boronic acid esters and pharmaceutical formulations thereof |
JP6420629B2 (en) * | 2014-10-30 | 2018-11-07 | ボーグワーナー インコーポレーテッド | Chain guide and chain tensioner arm |
DE102015204151A1 (en) * | 2015-03-09 | 2016-09-15 | Adidas Ag | Ball, in particular soccer ball, and method of making a ball |
WO2018218190A1 (en) | 2017-05-26 | 2018-11-29 | VenatoRx Pharmaceuticals, Inc. | Penicillin-binding protein inhibitors |
US11267826B2 (en) | 2017-05-26 | 2022-03-08 | VenatoRx Pharmaceuticals, Inc. | Penicillin-binding protein inhibitors |
WO2019020099A1 (en) | 2017-07-28 | 2019-01-31 | 成都地奥九泓制药厂 | Borate compound, and synthesis method therefor and uses thereof |
CN111187336B (en) * | 2018-11-14 | 2022-05-20 | 正大天晴药业集团股份有限公司 | Refining method of bortezomib |
US11964993B2 (en) | 2021-07-03 | 2024-04-23 | Shilpa Pharma Lifesciences Limited | Crystalline bortezomib process |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL31992A (en) * | 1968-05-08 | 1973-07-30 | American Cyanamid Co | Synthetic thyrocalcitonins and method of making them |
ZA794723B (en) * | 1978-09-11 | 1980-08-27 | Univ Miami | Anti-hypertensive agents |
US4525309A (en) | 1983-03-15 | 1985-06-25 | Washington State University Research Foundation, Inc. | Lewis acid catalysis of the homologation of boronic esters with haloalkylmetal reagents |
US4499082A (en) | 1983-12-05 | 1985-02-12 | E. I. Du Pont De Nemours And Company | α-Aminoboronic acid peptides |
US4537773A (en) | 1983-12-05 | 1985-08-27 | E. I. Du Pont De Nemours And Company | α-Aminoboronic acid derivatives |
ES542440A0 (en) * | 1985-04-22 | 1985-12-16 | Inke Sa | "PROCEDURE FOR THE OBTAINING OF THE BENZILIC ESTER OF 1- (N- (1 - ETOXICARBONIL-3-OXO-FENILPROPIL) -L-ALANIL) -L-PROLINA". |
SE8506094D0 (en) * | 1985-12-20 | 1985-12-20 | Astra Laekemedel Ab | NEW ANTIBACTERIAL AGENTS AND INTERMEDIATES THEREFOR |
US4701545A (en) | 1986-02-12 | 1987-10-20 | Washington State University Research Foundation, Inc. | Preparation of α,α-dihaloalkyl boronic esters |
US5250720A (en) | 1987-06-05 | 1993-10-05 | The Dupont Merck Pharmaceutical Company | Intermediates for preparing peptide boronic acid inhibitors of trypsin-like proteases |
US5187157A (en) | 1987-06-05 | 1993-02-16 | Du Pont Merck Pharmaceutical Company | Peptide boronic acid inhibitors of trypsin-like proteases |
US5242904A (en) | 1987-06-05 | 1993-09-07 | The Dupont Merck Pharmaceutical Company | Peptide boronic acid inhibitors of trypsin-like proteases |
EP0315574A3 (en) | 1987-11-05 | 1990-08-22 | Hoechst Aktiengesellschaft | Renin inhibitors |
US5106948A (en) | 1988-05-27 | 1992-04-21 | Mao Foundation For Medical Education And Research | Cytotoxic boronic acid peptide analogs |
US6083903A (en) | 1994-10-28 | 2000-07-04 | Leukosite, Inc. | Boronic ester and acid compounds, synthesis and uses |
EP2251344B2 (en) * | 2001-01-25 | 2024-04-24 | THE UNITED STATES OF AMERICA, represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES | Formulation of boronic acid compounds |
JPWO2003033506A1 (en) * | 2001-10-12 | 2005-02-03 | 杏林製薬株式会社 | Aminoboranoic acid derivatives and proteasome inhibitors containing the same |
WO2003033507A1 (en) | 2001-10-12 | 2003-04-24 | Kyorin Pharmaceutical Co., Ltd. | Benzylmalonic acid derivatives and proteasome inhibitors contaiing the same |
PT2377869E (en) | 2004-03-30 | 2014-04-15 | Millennium Pharm Inc | Synthesis of bortezomib |
WO2009004350A1 (en) * | 2007-07-03 | 2009-01-08 | Pliva Hrvatska D.O.O. | Methods for preparing bortezomib and intermediates used in its manufacture |
US7838673B2 (en) * | 2007-10-16 | 2010-11-23 | Millennium Pharmaceuticals, Inc. | Proteasome inhibitors |
US8785674B2 (en) * | 2009-06-19 | 2014-07-22 | Lek Pharmaceuticals D.D. | Process for hydrogenation of halogenoalkenes without dehalogenation |
-
2005
- 2005-03-24 PT PT111672648T patent/PT2377869E/en unknown
- 2005-03-24 US US11/088,667 patent/US7714159B2/en active Active
- 2005-03-24 DK DK11167264.8T patent/DK2377869T3/en active
- 2005-03-24 AU AU2005230930A patent/AU2005230930B2/en active Active
- 2005-03-24 EA EA200601795A patent/EA012927B1/en unknown
- 2005-03-24 MX MX2014005871A patent/MX367324B/en unknown
- 2005-03-24 SI SI200532318T patent/SI4008721T1/en unknown
- 2005-03-24 RS RS20110502A patent/RS51983B/en unknown
- 2005-03-24 WO PCT/US2005/009774 patent/WO2005097809A2/en active Application Filing
- 2005-03-24 KR KR1020067022780A patent/KR100939598B1/en active IP Right Grant
- 2005-03-24 RS RS20140186A patent/RS53259B/en unknown
- 2005-03-24 EP EP18172486.5A patent/EP3385267B1/en active Active
- 2005-03-24 SG SG10201800972PA patent/SG10201800972PA/en unknown
- 2005-03-24 UA UAA200611339A patent/UA90108C2/en unknown
- 2005-03-24 SI SI200531843T patent/SI2377869T1/en unknown
- 2005-03-24 HU HUE18172486A patent/HUE056859T2/en unknown
- 2005-03-24 ES ES11167264.8T patent/ES2457593T3/en active Active
- 2005-03-24 RS RS20211565A patent/RS62738B1/en unknown
- 2005-03-24 NZ NZ598172A patent/NZ598172A/en unknown
- 2005-03-24 EP EP05742865A patent/EP1756121B1/en active Active
- 2005-03-24 SG SG10201600029PA patent/SG10201600029PA/en unknown
- 2005-03-24 PT PT05742865T patent/PT1756121E/en unknown
- 2005-03-24 ES ES18172486T patent/ES2899606T3/en active Active
- 2005-03-24 CN CN201310294873.3A patent/CN103396427B/en active Active
- 2005-03-24 HR HRP20212002TT patent/HRP20212002T1/en unknown
- 2005-03-24 FI FIEP21197526.3T patent/FI4008721T3/en active
- 2005-03-24 EP EP11167264.8A patent/EP2377869B1/en active Active
- 2005-03-24 PL PL21197526.3T patent/PL4008721T3/en unknown
- 2005-03-24 DK DK05742865.8T patent/DK1756121T3/en active
- 2005-03-24 CA CA2560886A patent/CA2560886C/en active Active
- 2005-03-24 CA CA2738706A patent/CA2738706C/en active Active
- 2005-03-24 EP EP21197526.3A patent/EP4008721B1/en active Active
- 2005-03-24 HU HUE21197526A patent/HUE065769T2/en unknown
- 2005-03-24 SI SI200531401T patent/SI1756121T1/en unknown
- 2005-03-24 CA CA2859119A patent/CA2859119A1/en not_active Abandoned
- 2005-03-24 DK DK21197526.3T patent/DK4008721T3/en active
- 2005-03-24 SG SG2012049763A patent/SG182999A1/en unknown
- 2005-03-24 ES ES21197526T patent/ES2974758T3/en active Active
- 2005-03-24 RS RS20240260A patent/RS65253B1/en unknown
- 2005-03-24 JP JP2007506261A patent/JP4558039B2/en active Active
- 2005-03-24 SG SG200902156-9A patent/SG151322A1/en unknown
- 2005-03-24 PT PT181724865T patent/PT3385267T/en unknown
- 2005-03-24 CA CA2853272A patent/CA2853272A1/en not_active Abandoned
- 2005-03-24 PL PL05742865T patent/PL1756121T3/en unknown
- 2005-03-24 ES ES05742865T patent/ES2371652T3/en active Active
- 2005-03-24 CN CN201710810795.6A patent/CN107474062A/en active Pending
- 2005-03-24 EP EP11167263A patent/EP2377868A1/en not_active Ceased
- 2005-03-24 NZ NZ550522A patent/NZ550522A/en active IP Right Revival
- 2005-03-24 PT PT211975263T patent/PT4008721T/en unknown
- 2005-03-24 LT LTEP21197526.3T patent/LT4008721T/en unknown
- 2005-03-24 HR HRP20240307TT patent/HRP20240307T3/en unknown
- 2005-03-24 CN CN202010514035.2A patent/CN111925385B/en active Active
- 2005-03-24 ME MEP-2011-502A patent/ME01975B/en unknown
- 2005-03-24 PL PL11167264T patent/PL2377869T3/en unknown
- 2005-03-24 AT AT05742865T patent/ATE521612T1/en active
- 2005-03-24 CN CN201810192292.1A patent/CN108329337B/en active Active
- 2005-03-24 DK DK18172486.5T patent/DK3385267T3/en active
- 2005-03-24 MY MYPI20051304A patent/MY145427A/en unknown
- 2005-03-24 BR BRPI0509587-5A patent/BRPI0509587A/en not_active Application Discontinuation
- 2005-03-24 PL PL18172486T patent/PL3385267T3/en unknown
- 2005-03-24 SG SG2012049755A patent/SG182998A1/en unknown
- 2005-03-24 SI SI200532297T patent/SI3385267T1/en unknown
- 2005-03-24 NZ NZ586824A patent/NZ586824A/en unknown
- 2005-03-24 CN CN200580017645.5A patent/CN1960996B/en active Active
- 2005-03-24 LT LTEP18172486.5T patent/LT3385267T/en unknown
- 2005-03-29 PE PE2005000359A patent/PE20060162A1/en not_active Application Discontinuation
- 2005-03-29 PE PE2014001477A patent/PE20142402A1/en not_active Application Discontinuation
- 2005-03-29 NL NL1028639A patent/NL1028639C2/en not_active IP Right Cessation
- 2005-03-29 TW TW094109818A patent/TWI386212B/en active
- 2005-03-29 PE PE2009001314A patent/PE20110075A1/en active IP Right Grant
- 2005-03-30 AR ARP050101205A patent/AR049374A1/en active IP Right Grant
- 2005-03-30 UY UY28830A patent/UY28830A1/en active IP Right Grant
-
2006
- 2006-09-21 IL IL178250A patent/IL178250A/en active IP Right Grant
- 2006-09-22 CR CR8653A patent/CR8653A/en unknown
- 2006-10-18 ZA ZA200608689A patent/ZA200608689B/en unknown
- 2006-10-26 NO NO20064893A patent/NO338905B1/en unknown
- 2006-10-27 EC EC2006006960A patent/ECSP066960A/en unknown
-
2007
- 2007-01-08 NL NL1033189A patent/NL1033189C2/en not_active IP Right Cessation
- 2007-01-08 NL NL1033190A patent/NL1033190C2/en not_active IP Right Cessation
- 2007-07-19 HK HK07107789.3A patent/HK1100004A1/en unknown
-
2010
- 2010-02-16 US US12/706,063 patent/US8283467B2/en active Active
- 2010-04-09 CL CL2010000350A patent/CL2010000350A1/en unknown
- 2010-06-01 JP JP2010126333A patent/JP5414625B2/en active Active
-
2011
- 2011-09-23 DO DO2011000293A patent/DOP2011000293A/en unknown
- 2011-11-14 HR HR20110846T patent/HRP20110846T1/en unknown
- 2011-11-21 CY CY20111101122T patent/CY1112053T1/en unknown
-
2012
- 2012-04-12 HK HK12103590.4A patent/HK1164320A1/en unknown
- 2012-05-17 IL IL219853A patent/IL219853A/en active IP Right Grant
- 2012-05-17 IL IL219856A patent/IL219856A/en active IP Right Grant
- 2012-09-14 US US13/615,894 patent/US20130005968A1/en not_active Abandoned
-
2013
- 2013-03-06 JP JP2013043972A patent/JP5894952B2/en active Active
- 2013-08-07 UY UY34969A patent/UY34969A/en not_active Application Discontinuation
-
2014
- 2014-03-06 US US14/199,265 patent/US20150038706A1/en not_active Abandoned
- 2014-04-08 HR HRP20140339TT patent/HRP20140339T1/en unknown
- 2014-04-17 CY CY20141100297T patent/CY1115336T1/en unknown
- 2014-05-19 UY UY0001035578A patent/UY35578A/en not_active Application Discontinuation
- 2014-08-11 AR ARP140103013A patent/AR097310A2/en unknown
- 2014-08-11 AR ARP140103012A patent/AR097309A2/en active IP Right Grant
- 2014-08-25 CL CL2014002252A patent/CL2014002252A1/en unknown
-
2015
- 2015-11-30 JP JP2015232705A patent/JP6193960B2/en active Active
-
2016
- 2016-01-08 US US14/991,363 patent/US9862745B2/en active Active
- 2016-08-24 NO NO20161350A patent/NO344610B1/en unknown
-
2017
- 2017-09-22 US US15/713,005 patent/US10000529B2/en active Active
- 2017-12-05 NO NO20171939A patent/NO343966B1/en unknown
-
2018
- 2018-05-03 HK HK18105728.8A patent/HK1246300A1/en unknown
- 2018-05-23 US US15/986,972 patent/US20180265546A1/en not_active Abandoned
- 2018-12-13 US US16/218,783 patent/US20190112334A1/en not_active Abandoned
- 2018-12-21 HK HK18116447.5A patent/HK1257298A1/en unknown
-
2019
- 2019-07-11 US US16/508,706 patent/US20190330270A1/en not_active Abandoned
- 2019-09-04 NO NO20191065A patent/NO20191065A1/en not_active Application Discontinuation
-
2020
- 2020-01-24 US US16/751,374 patent/US20200157143A1/en not_active Abandoned
- 2020-08-13 US US16/992,353 patent/US20200369722A1/en not_active Abandoned
-
2021
- 2021-02-19 US US17/179,508 patent/US20210171574A1/en not_active Abandoned
- 2021-09-02 US US17/465,144 patent/US20210395301A1/en not_active Abandoned
- 2021-11-24 CY CY20211101021T patent/CY1124753T1/en unknown
-
2022
- 2022-03-14 US US17/694,545 patent/US20220204558A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
None |
Cited By (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2377868A1 (en) * | 2004-03-30 | 2011-10-19 | Millennium Pharmaceuticals, Inc. | Synthesis of Bortezomib |
US9862745B2 (en) | 2004-03-30 | 2018-01-09 | Millennium Pharmaceuticals, Inc. | Synthesis of boronic ester and acid compounds |
US10000529B2 (en) | 2004-03-30 | 2018-06-19 | Millennium Pharmaceuticals, Inc. | Synthesis of boronic ester and acid compounds |
EP3385267A1 (en) | 2004-03-30 | 2018-10-10 | Millennium Pharmaceuticals, Inc. | Synthesis of boronic ester and acid compounds |
EP4008721A1 (en) | 2004-03-30 | 2022-06-08 | Millennium Pharmaceuticals, Inc. | Synthesis of boronic ester and acid compounds |
WO2009004350A1 (en) * | 2007-07-03 | 2009-01-08 | Pliva Hrvatska D.O.O. | Methods for preparing bortezomib and intermediates used in its manufacture |
EP2527347A1 (en) | 2007-08-06 | 2012-11-28 | Millennium Pharmaceuticals, Inc. | Proteasome inhibitors |
US8003819B2 (en) | 2007-08-06 | 2011-08-23 | Millennium Pharmaceuticals, Inc. | Proteasome inhibitors |
WO2009020448A1 (en) * | 2007-08-06 | 2009-02-12 | Millennium Pharmaceuticals, Inc. | Proteasome inhibitors |
EA028622B1 (en) * | 2007-08-06 | 2017-12-29 | Милленниум Фармасьютикалз, Инк. | Proteasome inhibitors |
US8772536B2 (en) | 2007-08-06 | 2014-07-08 | Millennium Pharmaceuticals, Inc. | Proteasome inhibitors |
US8530694B2 (en) | 2007-08-06 | 2013-09-10 | Millennium Pharmaceuticals, Inc. | Proteasome inhibitors |
AU2007357338B2 (en) * | 2007-08-06 | 2014-03-20 | Takeda Pharmaceutical Company Limited | Proteasome inhibitors |
US7687662B2 (en) | 2007-08-06 | 2010-03-30 | Millennium Pharmaceuticals, Inc. | Proteasome inhibitors |
US8871745B2 (en) | 2007-08-06 | 2014-10-28 | Millennium Pharmaceuticals, Inc. | Proteasome inhibitors |
US7442830B1 (en) | 2007-08-06 | 2008-10-28 | Millenium Pharmaceuticals, Inc. | Proteasome inhibitors |
EP3210987A1 (en) | 2007-08-06 | 2017-08-30 | Millennium Pharmaceuticals, Inc. | Process for the synthesis of proteasome inhibitors |
AU2018233007B2 (en) * | 2007-08-06 | 2020-07-23 | Takeda Pharmaceutical Company Limited | Proteasome inhibitors |
JP2010539183A (en) * | 2007-09-12 | 2010-12-16 | ドクター・レディーズ・ラボラトリーズ・リミテッド | Bortezomib and process for its production |
WO2009036281A3 (en) * | 2007-09-12 | 2009-05-14 | Reddys Lab Ltd Dr | Bortezomib and process for producing same |
US7838673B2 (en) | 2007-10-16 | 2010-11-23 | Millennium Pharmaceuticals, Inc. | Proteasome inhibitors |
US10526351B2 (en) | 2008-06-17 | 2020-01-07 | Millennium Pharmaceuticals, Inc. | Boronate ester compounds and pharmaceutical compositions thereof |
EP2730579A1 (en) | 2008-06-17 | 2014-05-14 | Millennium Pharmaceuticals, Inc. | Boronate ester compounds and pharmaceutical compositions thereof |
US10604538B2 (en) | 2008-06-17 | 2020-03-31 | Millenium Pharmaceuticals, Inc. | Boronate ester compounds and pharmaceutical compositions thereof |
CN107253975A (en) * | 2008-06-17 | 2017-10-17 | 米伦纽姆医药公司 | Boric acid ester compound and its medical composition |
US11485746B2 (en) | 2008-06-17 | 2022-11-01 | Millennium Pharmaceuticals, Inc. | Boronate ester compounds and pharmaceutical compositions thereof |
US9175017B2 (en) | 2008-06-17 | 2015-11-03 | Millennium Pharmaceuticals, Inc. | Boronate ester compounds and pharmaceutical compositions thereof |
US9175018B2 (en) | 2008-06-17 | 2015-11-03 | Millennium Pharmaceuticals, Inc. | Boronate ester compounds and pharmaceutical compositions thereof |
EP3536693A1 (en) | 2008-06-17 | 2019-09-11 | Millennium Pharmaceuticals, Inc. | Boronate ester compounds and pharmaceutical compositions thereof |
EP2730580A1 (en) | 2008-06-17 | 2014-05-14 | Millennium Pharmaceuticals, Inc. | Boronate ester compounds and pharmaceutical compositions thereof |
EP2730581A1 (en) | 2008-06-17 | 2014-05-14 | Millennium Pharmaceuticals, Inc. | Boronate ester compounds and pharmaceutical compositions thereof |
EP2733147A1 (en) | 2008-06-17 | 2014-05-21 | Millennium Pharmaceuticals, Inc. | Boronate ester compounds and pharmaceutical compositions thereof |
CN107266482A (en) * | 2008-06-17 | 2017-10-20 | 米伦纽姆医药公司 | Boric acid ester compound and its medical composition |
CN107266480A (en) * | 2008-06-17 | 2017-10-20 | 米伦纽姆医药公司 | Boric acid ester compound and its medical composition |
US8859504B2 (en) | 2008-06-17 | 2014-10-14 | Millennium Pharmaceuticals, Inc. | Boronate ester compounds and pharmaceutical compositions thereof |
CN107253966A (en) * | 2008-06-17 | 2017-10-17 | 米伦纽姆医药公司 | Boric acid ester compound and its medical composition |
US8664200B2 (en) | 2008-09-29 | 2014-03-04 | Millennium Pharmaceuticals, Inc. | Derivatives of 1-amino-2-cyclobutylethylboronic acid |
US10035811B2 (en) | 2008-09-29 | 2018-07-31 | Millennium Pharmaceuticals, Inc. | Derivatives of 1-amino-2-cyclobutylethylboronic acid |
AU2013204874B2 (en) * | 2008-09-29 | 2016-11-10 | Millennium Pharmaceuticals, Inc. | Derivatives of 1-amino-2-cyclobutylethylboronic acid |
US9771381B2 (en) | 2008-09-29 | 2017-09-26 | Millennium Pharmaceuticals, Inc. | Derivatives of 1-amino-2-cyclobutylethylboronic acid |
US8785674B2 (en) | 2009-06-19 | 2014-07-22 | Lek Pharmaceuticals D.D. | Process for hydrogenation of halogenoalkenes without dehalogenation |
WO2010146176A3 (en) * | 2009-06-19 | 2011-02-24 | Lek Pharmaceuticals D.D. | Process for hydrogenation of halogenoalkenes without dehalogenation |
US9315525B2 (en) | 2009-06-19 | 2016-04-19 | Lek Pharmaceuticals D.D. | Synthetic route for the preparation of α-amino boronic acid derivatives via substituted alk-1-ynes |
EP2270019A1 (en) | 2009-06-19 | 2011-01-05 | LEK Pharmaceuticals d.d. | New synthetic route for the preparation of alpha-amino boronic esters |
WO2010146176A2 (en) | 2009-06-19 | 2010-12-23 | Lek Pharmaceuticals D.D. | Process for hydrogenation of halogenoalkenes without dehalogenation |
WO2010146172A2 (en) | 2009-06-19 | 2010-12-23 | Lek Pharmaceuticals D.D. | NEW SYNTHETIC ROUTE FOR THE PREPARATION OF α-AMINO BORONIC ACID DERIVATIVES VIA SUBSTITUTED ALK-1-YNES |
EP2280016A1 (en) | 2009-07-27 | 2011-02-02 | LEK Pharmaceuticals d.d. | New synthetic route for the preparation of alpha-amino boronic esters via substituted alk-1-ynes |
CN101781326A (en) * | 2010-02-11 | 2010-07-21 | 上海百灵医药科技有限公司 | Intermediate for preparing chiral aminoboronic acid and preparation method thereof |
US9023832B2 (en) | 2010-03-31 | 2015-05-05 | Millennium Pharmaceuticals, Inc. | Derivatives of 1-amino-2-cyclopropylethylboronic acid |
US8703743B2 (en) | 2010-03-31 | 2014-04-22 | Millennium Pharmaceuticals, Inc. | Derivatives of 1-amino-2-cyclopropylethylboronic acid |
US8513218B2 (en) | 2010-03-31 | 2013-08-20 | Millennium Pharmaceuticals, Inc. | Derivatives of 1-amino-2-cyclopropylethylboronic acid |
WO2012048745A1 (en) | 2010-10-14 | 2012-04-19 | Synthon Bv | Process for making bortezomib and intermediates for the process |
US8884009B2 (en) | 2010-10-14 | 2014-11-11 | Synthon Bv | Process for making bortezomib and intermediates for the process |
CN102268029B (en) * | 2011-05-19 | 2013-10-09 | 苏州二叶制药有限公司 | Preparation method of compound (1S, 2S, 3R, 5S)-pinanediol-L-phenylalanine-L-leucine boric acid ester |
CN102268029A (en) * | 2011-05-19 | 2011-12-07 | 苏州二叶制药有限公司 | Preparation method of compound (1S, 2S, 3R, 5S)-pinanediol-L-phenylalanine-L-leucine boric acid ester |
CN102492021A (en) * | 2011-12-13 | 2012-06-13 | 重庆泰濠制药有限公司 | Preparation process for bortezomib |
US9688702B2 (en) | 2011-12-22 | 2017-06-27 | Ares Trading | Alpha-amino boronic acid derivatives, selective immunoproteasome inhibitors |
CN103450331A (en) * | 2012-06-05 | 2013-12-18 | 山东新时代药业有限公司 | Method for refining bortezomib |
WO2014041324A1 (en) * | 2012-09-11 | 2014-03-20 | Cipla Limited | Process for preparing of bortezamib |
US9505787B2 (en) | 2012-09-11 | 2016-11-29 | Cipla Limited | Process for preparing of bortezomib |
US10669290B2 (en) | 2012-12-07 | 2020-06-02 | VenatoRx Pharmaceuticals, Inc. | Beta-lactamase inhibitors |
US10023611B2 (en) | 2013-04-16 | 2018-07-17 | Cipla Limited | Process for the preparation of bortezomib mannitol ester |
WO2014170628A1 (en) | 2013-04-16 | 2014-10-23 | Cipla Limited | Process for the preparation of bortezomib mannitol ester |
CN103554219A (en) * | 2013-10-01 | 2014-02-05 | 昆明贵研药业有限公司 | Method for preparing bortezomib |
US11241448B2 (en) | 2014-05-20 | 2022-02-08 | Millennium Pharmaceuticals, Inc. | Methods for cancer therapy |
US11008346B2 (en) | 2014-06-11 | 2021-05-18 | VenatoRx Pharmaceuticals, Inc. | Beta-lactamase inhibitors |
JP2016172768A (en) * | 2016-06-27 | 2016-09-29 | ミレニアム ファーマシューティカルズ, インコーポレイテッドMillennium Pharmaceuticals, Inc. | Proteasome inhibitor |
US10889600B2 (en) | 2016-08-04 | 2021-01-12 | VenatoRx Pharmaceuticals, Inc. | Boron-containing compounds |
US11560392B2 (en) | 2016-08-04 | 2023-01-24 | VenatoRx Pharmaceuticals, Inc. | Boron-containing compounds |
WO2018027062A1 (en) | 2016-08-04 | 2018-02-08 | VenatoRx Pharmaceuticals, Inc. | Boron-containing compounds |
US11667654B2 (en) | 2017-02-17 | 2023-06-06 | Fresenius Kabi Oncology Ltd. | Process for the preparation of boronic acid esters |
WO2018150386A1 (en) | 2017-02-17 | 2018-08-23 | Fresenius Kabi Oncology Ltd. | An improved process for the preparation of boronic acid esters |
US11091505B2 (en) | 2017-03-06 | 2021-08-17 | VenatoRx Pharmaceuticals, Inc. | Solid forms and combination compositions comprising a beta-lactamase inhibitor and uses thereof |
US11820784B2 (en) | 2017-03-06 | 2023-11-21 | VenatoRx Pharmaceuticals, Inc. | Solid forms and combination compositions comprising a beta-lactamase inhibitor and uses thereof |
US10927133B2 (en) * | 2017-09-02 | 2021-02-23 | Sun Pharmaceutical Industries Limited | Process for the preparation of ixazomib citrate |
US20200190117A1 (en) * | 2017-09-02 | 2020-06-18 | Sun Pharmaceutical Industries Limited | Process for the preparation of ixazomib citrate |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1756121B1 (en) | Synthesis of boronic ester and acid compounds | |
AU2019222807A1 (en) | Synthesis of boronic ester and acid compounds | |
AU2011265442B2 (en) | Synthesis of boronic ester and acid compounds | |
AU2013202996A1 (en) | Synthesis of boronic ester and acid compounds | |
MXPA06011276A (en) | Synthesis of boronic ester and acid compounds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2560886 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 178250 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: CR2006-008653 Country of ref document: CR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005230930 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 5633/DELNP/2006 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007506261 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2006/011276 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12006501934 Country of ref document: PH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 550522 Country of ref document: NZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200601795 Country of ref document: EA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006/08689 Country of ref document: ZA |
|
ENP | Entry into the national phase |
Ref document number: 2005230930 Country of ref document: AU Date of ref document: 20050324 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2005230930 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005742865 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 06109669A Country of ref document: CO Ref document number: 06109669 Country of ref document: CO Ref document number: 1200601772 Country of ref document: VN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020067022780 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580017645.5 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 1020067022780 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2005742865 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: PI0509587 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: P-2011/0502 Country of ref document: RS |
|
WWE | Wipo information: entry into national phase |
Ref document number: 219856 Country of ref document: IL Ref document number: 219853 Country of ref document: IL |