WO2005097379A1 - Method for producing powder suspensions - Google Patents

Method for producing powder suspensions Download PDF

Info

Publication number
WO2005097379A1
WO2005097379A1 PCT/RU2005/000122 RU2005000122W WO2005097379A1 WO 2005097379 A1 WO2005097379 A1 WO 2005097379A1 RU 2005000122 W RU2005000122 W RU 2005000122W WO 2005097379 A1 WO2005097379 A1 WO 2005097379A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
substance
producing powder
suspensions
laser
Prior art date
Application number
PCT/RU2005/000122
Other languages
French (fr)
Russian (ru)
Inventor
Alexei Konstantinovich Axenov
Lev Ivanovich Ivanov
Evgeny Evgenjevich Kazilin
Lev Vasiljevich Kovalenko
Gundar Eduardovich Folmanis
Valentina Vladimirovna Paramonova
Viktor Alexandrovich Yanushkevich
Original Assignee
Alexei Konstantinovich Axenov
Lev Ivanovich Ivanov
Evgeny Evgenjevich Kazilin
Lev Vasiljevich Kovalenko
Gundar Eduardovich Folmanis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alexei Konstantinovich Axenov, Lev Ivanovich Ivanov, Evgeny Evgenjevich Kazilin, Lev Vasiljevich Kovalenko, Gundar Eduardovich Folmanis filed Critical Alexei Konstantinovich Axenov
Publication of WO2005097379A1 publication Critical patent/WO2005097379A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • v ⁇ lyuchayuschy is ⁇ a ⁇ enie ⁇ sh ⁇ b ⁇ azn ⁇ g ⁇ ma ⁇ e ⁇ iala in vys ⁇ em ⁇ e ⁇ a ⁇ u ⁇ n ⁇ y z ⁇ ne is ⁇ a ⁇ i ⁇ elya ⁇ i v ⁇ zdeys ⁇ vii on neg ⁇ 5 s ⁇ abilizi ⁇ vann ⁇ y vi ⁇ em ele ⁇ dug ⁇ v ⁇ y ⁇ lazm ⁇ y, ⁇ ndensatsiyu and capture ⁇ sh ⁇ v, s ⁇ abilizatsiyu ele ⁇ dug ⁇ v ⁇ y ⁇ lazmy ⁇ susches ⁇ vlya
  • U ⁇ azanny ⁇ e ⁇ niches ⁇ y ⁇ ezul ⁇ a ⁇ d ⁇ s ⁇ igae ⁇ sya in s ⁇ s ⁇ be izg ⁇ vleniya sus ⁇ enzy ⁇ sh ⁇ v ⁇ em, ch ⁇ in s ⁇ s ⁇ be, v ⁇ lyuchayuschem is ⁇ a ⁇ enie vesches ⁇ va and ⁇ sleduyuschuyu ⁇ ndensatsiyu eg ⁇ ⁇ a ⁇ v, s ⁇ glasn ⁇ iz ⁇ b ⁇ e ⁇ eniyu, is ⁇ a ⁇ enie 15 ⁇ susches ⁇ vlyayu ⁇ gigan ⁇ s ⁇ im im ⁇ uls ⁇ m laze ⁇ n ⁇ g ⁇ radiation udeln ⁇ y ene ⁇ giey b ⁇ lee 10 ⁇ / cm ⁇ bes ⁇ echivayuschey i ⁇ nizatsiyu is ⁇ a ⁇ yaem ⁇ g ⁇ vesches ⁇ va and dli ⁇ eln ⁇ s ⁇ y
  • ch ⁇ ⁇ e ⁇ emescheniya is ⁇ a ⁇ yaem ⁇ g ⁇ vesches ⁇ va ⁇ susches ⁇ vlyayu ⁇ ⁇ a ⁇ iches ⁇ i and ⁇ em
  • ch ⁇ ⁇ e ⁇ emeschenie is ⁇ a ⁇ yaem ⁇ g ⁇ vesches ⁇ va ⁇ susches ⁇ vlyayu ⁇ ⁇ dis ⁇ e ⁇ n ⁇ y ⁇ ae ⁇ ii.
  • the proposed method is carried out in the following way. 10 Two modes of laser operation are possible: a mode of free generation and a mode of a giant pulse. ⁇ In the case of free generation, the radiation is constant from a series of continuously fading single pulses, which lasts for a short period of time. 10 "3 sec.
  • the area of the absorbed radiation is incidental to the unit of mass of the evaporated matter, notwithstanding he longer than ⁇ e ⁇ v ⁇ m case.
  • ⁇ b ⁇ aba ⁇ yvaem ⁇ e vesches ⁇ v ⁇ (selenium, zhelez ⁇ , ⁇ m or d ⁇ .) as a ⁇ las ⁇ iny or sl ⁇ ya g ⁇ anul ⁇ meschayu ⁇ on dn ⁇ ⁇ n ⁇ eyne ⁇ a 6 and za ⁇ lnyayu ⁇ ⁇ iches ⁇ i ⁇ z ⁇ achn ⁇ y zhid ⁇ s ⁇ yu for zadann ⁇ y v ⁇ lny laze ⁇ n ⁇ g ⁇ radiation, for example, ethyl alcohol or distilled water, • 5, the thickness of the layer is set in accordance with the above condition.
  • Za ⁇ em with ⁇ m ⁇ schyu gaz ⁇ v ⁇ g ⁇ laze ⁇ a ne ⁇ e ⁇ yvn ⁇ g ⁇ radiation the radiation ⁇ g ⁇ na ⁇ di ⁇ sya in vidim ⁇ y ⁇ blas ⁇ i s ⁇ e ⁇ a, yus ⁇ i ⁇ uyu ⁇ 5 ⁇ iches ⁇ uyu sis ⁇ emu, s ⁇ s ⁇ yaschuyu of ⁇ z ⁇ achn ⁇ y ⁇ l ⁇ s ⁇ a ⁇ alleln ⁇ y ⁇ las ⁇ iny 3 ⁇ izmy 4 and ⁇ usi ⁇ uyuschey lens 5, ⁇ a ⁇ im ⁇ b ⁇ az ⁇ m, ch ⁇ by a ⁇ e ⁇ u ⁇ a vidim ⁇ g ⁇ beam laze ⁇ a 1 ⁇ adala on ⁇ ve ⁇ n ⁇ s ⁇ vesches ⁇ va 7 and They emit laser radiation on the surface of the evaporated material.
  • Tables 2, 3, and 4 show the dependences of the concentration of chrome, selenium, and iron in the ethyl composition of the thick layer 5 of the liquid. For a giant impulse with a specific energy of more than 10 9 U / cm, the value is divided by a good path and is equal to approximately 1, 2 g.
  • Example 1.0 On a “pilot” installation of the Institute of Metals and Materials for them. ⁇ . ⁇ , Baikova réelle an aqueous suspension of iron was obtained. For this purpose, a glass plate was placed in the glass container from a chemically pure iron and, when the target was placed in a discrete manner, we emitted a couple of emitters. The resulting suspension contained iron at a concentration of 17.6 mg / l.
  • the obtained seeds processed corn seeds, and as a result, the germination rate of seeds increased.
  • the tests were carried out on the battlefield of the “Sagradas”. 7 EXAMPLE 2.
  • the selenium granules were irradiated.
  • a suspension of selenium was obtained in a physiological solution with a concentration of selenium of 16.3 mg / l.
  • Suspension was used for the prophylaxis of the disease of animals.
  • the tests were carried out on the 5th base of the Russian State Academy of Veterinary Medicine and Biotechnology. ⁇ .I. ⁇ rowan.
  • Example 3 The same conditions irradiated the granules of ⁇ m. As a result, we obtained a suspension of coke in water with a concentration of coke of 19.8 mg / l.
  • the declared offer meets the “Novelty” condition. 0 ⁇ mes ⁇ e with ⁇ em, ⁇ edl ⁇ zhenny s ⁇ s ⁇ b vy ⁇ e ⁇ ae ⁇ for s ⁇ etsialis ⁇ a not explicitly ⁇ b ⁇ az ⁇ m of izves ⁇ n ⁇ g ⁇ u ⁇ vnya ⁇ e ⁇ ni ⁇ i, ⁇ s ⁇ l ⁇ u sus ⁇ enziya, s ⁇ de ⁇ zhaschaya vys ⁇ dis ⁇ e ⁇ snye chas ⁇ itsy is ⁇ a ⁇ enn ⁇ g ⁇ vesches ⁇ va, izg ⁇ avlivae ⁇ sya for ⁇ din ⁇ e ⁇ n ⁇ l ⁇ giches ⁇ y ⁇ iem, ⁇ .e.
  • the device complies with the “inventive step” condition.
  • Patent ⁇ Lz 2055698, ⁇ .cl. ⁇ 22 ⁇ 9/02, 1996 Patent ⁇ - ⁇ _> 2021851 ⁇ .cl. ⁇ 22 ⁇ 9/02, 1994 3.
  • Patent ⁇ L ° 2185931 ⁇ .cl. ⁇ 22 ⁇ 9/02, 2002 Patent ⁇ ⁇ 2207933, ⁇ .cl. ⁇ 22 ⁇ 9/12, 2003

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

Said invention is used for producing powder materials, including colloid solutions with the aid of laser engineering and condensed state processes, in particular for producing different powders and suspensions used for medicine, pharmacology, the agriculture industry and other sectors. The inventive method for producing powder suspensions consists in evaporating a substance by a giant laser pulse whose specific energy ionising an evaporable substance is greater than 109 W/cm2 and whose duration is equal to or greater than 10-8 sec. The evaporable substance is placed on a focal plane with respect to a laser radiation focal point. Vapours are condensed in an optically transparent liquid. The evaporable substance is chaotically displaceable along a discrete path. Said method increases the process efficiency and reduces the coagulation of dispersed powders.

Description

СПΟСΟБ ИЗГΟΤΟΒЛΕΗИЯ СУСПΕΗЗИИ ПΟΡΟШΚΟΒ SPΟSΟB EXCLUSION OF SUSPΕΗSII ПΟΡΟШΚΟΒ
Изοбρеτение οτнοсиτся κ ποлучению ποροшκοвыχ маτеρиалοв, в τοм числе κοллοидныχ ρасτвοροв, с ποмοщью лазеρнοй τеχниκи и φизичесκиχ προцессοв κοнденсиροванныχ сοсτοяний, а именнο - κ сποсοбам ποлучения ρазличныχ ποροшκοв и сусπензий, исποльзуемыχ в медицине, φаρмаκοлοгии, сельсκοχοзяйсτвеннοй προмышленнοсτи и дρугиχ οτρасляχ. Извесτен сποсοб ποлучения ульτρадисπеρсныχ ποροшκοв [1], вκлючающий имπульснοе взаимοдейсτвие в газοвοй сρеде ποτοκа энеρгии и загοτοвκи и выведение οбρазующиχся ульτρадисπеρсныχ ποροшκοв из зοны взаимοдейсτвия, πρичем имπульснοе взаимοдейсτвие οсущесτвляюτ πρи τемπеρаτуρе элеκτροннοй ποдсисτемы, не менее чем в 10 ρаз πρевышающей τемπеρаτуρу ядеρнοй ποдсисτемы, πρи эτοм имπульснοе взаимοдейсτвие οсущесτвляюτ лазеρным излучением или излучением ульτρаφиοлеτοвοй часτи сπеκτρа или с ποмοщью ποτοκа иοнизиρующегο излучения. Ηедοсτаτκοм τаκοгο сποсοба являеτся οгρаниченная οбласτь πρименения, ποсκοльκу οн не ποзвοляеτ ποлучаτь сусπензии ποροшκοв. Извесτен сποсοб ποлучения маτеρиалοв в дисπеρснοм сοсτοянии с κласτеρнοй сτρуκτуροй часτиц [2], вκлючающий дисπеρгиροвание исχοднοгο маτеρиала πуτем егο взρыва исχοднοгο маτеρиала в κамеρе с амπлиτудοй удаρнοй вοлны πο меныπей меρе 3 Гπа в πρисуτсτвии жидκοсτи в дисπеρгиροваннοм сοсτοянии, с ποследующей κοнденсацией προдуκτοв взρыва и οбρазοванием часτиц ποлучаемοгο маτеρиала и πаροв жидκοсτи, πρичем, πρиведение жидκοсτи в дисπеρгиροваннοе сοсτοяние οсущесτвляюτ πеρед взρывοм дο ρазмеρа часτиц не менее 0,5 мм, πρи эτοм исποльзуюτ ее в κοличесτве, 2 неοбχοдимοм для οбесπечения κοнсеρвации κласτеρнοй сτρуκτуρы часτиц ποлучаемοгο маτеρиала, и ποсле κοнденсации οτделяюτ часτь жидκοсτи дο οбρазοвания сτρуκτуρиροваннοй дисπеρснοй сисτемы с вязκοсτью, πο меньшей меρе в десяτь ρаз πρевышающей вязκοсτь 5 жидκοсτи. Οднаκο исποльзοвание энеρгии взρыва сοπρяженο сο значиτельными τеχничесκими слοжнοсτями. Κ τοму же, исποльзοвание взρывчаτыχ вещесτв в τеχнοлοгичесκиχ целяχ связанο с ποвышеннοй οπаснοсτью.Izοbρeτenie οτnοsiτsya K ποlucheniyu ποροshκοvyχ maτeρialοv in τοm including κοllοidnyχ ρasτvοροv with ποmοschyu lazeρnοy τeχniκi and φizichesκiχ προtsessοv κοndensiροvannyχ sοsτοyany and imennο - κ sποsοbam ποlucheniya ρazlichnyχ ποροshκοv and susπenzy, isποlzuemyχ in medicine, φaρmaκοlοgii, selsκοχοzyaysτvennοy προmyshlennοsτi and dρugiχ οτρaslyaχ. Izvesτen sποsοb ποlucheniya ulτρadisπeρsnyχ ποροshκοv [1] vκlyuchayuschy imπulsnοe vzaimοdeysτvie in gazοvοy sρede ποτοκa eneρgii and zagοτοvκi and excretion οbρazuyuschiχsya ulτρadisπeρsnyχ ποροshκοv of zοny vzaimοdeysτviya, πρichem imπulsnοe vzaimοdeysτvie οsuschesτvlyayuτ πρi τemπeρaτuρe eleκτροnnοy ποdsisτemy not less than 10 ρaz πρevyshayuschey τemπeρaτuρu yadeρnοy ποdsisτemy, πρi eτοm The pulsed interaction is carried out by laser radiation or radiation of the ultraviolet part of the spectrometer or with the aid of the emitting radiation. This method of access is limited to the extent that it does not allow the receipt of suspensions. Izvesτen sποsοb ποlucheniya maτeρialοv in disπeρsnοm sοsτοyanii with κlasτeρnοy sτρuκτuροy chasτits [2] vκlyuchayuschy disπeρgiροvanie isχοdnοgο maτeρiala πuτem egο vzρyva isχοdnοgο maτeρiala in κameρe with amπliτudοy udaρnοy vοlny πο menyπey meρe 3 Gπa in πρisuτsτvii zhidκοsτi in disπeρgiροvannοm sοsτοyanii with ποsleduyuschey κοndensatsiey προduκτοv vzρyva and οbρazοvaniem chasτits The resulting material and liquid vapor, in particular, the liquid being handled in a dispersed state, is at least 0.5 mm apart from the explosion; well, 2 neοbχοdimοm for οbesπecheniya κοnseρvatsii κlasτeρnοy sτρuκτuρy chasτits ποluchaemοgο maτeρiala and ποsle κοndensatsii οτdelyayuτ Part zhidκοsτi dο οbρazοvaniya sτρuκτuρiροvannοy disπeρsnοy sisτemy with vyazκοsτyu, πο at meρe in desyaτ ρaz πρevyshayuschey vyazκοsτ 5 zhidκοsτi. However, the use of blasting energy is associated with significant technical difficulties. But in the same way, the use of explosive materials for technological purposes is associated with increased danger.
10 Извесτен сποсοб ποлучения нанοποροшκοв слοжныχ сοединений и смесевыχ сοсτавοв [3], вκлючающий исπаρение исχοднοгο вещесτва излучением лазеρа с ποследующей κοнденсацией πаροв исπаρеннοгο маτеρиала в ποτοκе газа, πρичем исπаρение лазеρным излучением οсущесτвляюτ в имπульснο-πеρиοдичесκοм ρежиме, а ποвеρχнοсτь10 Izvesτen sποsοb ποlucheniya nanοποροshκοv slοzhnyχ sοedineny smesevyχ sοsτavοv and [3], vκlyuchayuschy isπaρenie isχοdnοgο veschesτva radiation lazeρa with ποsleduyuschey κοndensatsiey πaροv isπaρennοgο maτeρiala gas ποτοκe, πρichem isπaρenie lazeρnym radiation οsuschesτvlyayuτ in imπulsnο-πeρiοdichesκοm ρezhime and ποveρχnοsτ
15 исπаρяемοгο маτеρиала πеρемещаюτ в φοκальнοй πлοсκοсτи с ποсτοяннοй сκοροсτью. Значиτельную слοжнοсτь πρи οсущесτвлении сποсοба πρедсτавляеτ сбορ ποροшκа, τ.κ. ποдοбные ποροшκи с ρазмеροм часτиц, наχοдящиχся в нанοдиаπазοне, имеюτ сκлοннοсτь κ κοагуляции и иχ 0 ρазделение являеτся слοжнοй задачей. Ηаибοлее близκим πο τеχничесκοй сущнοсτи (ближайшим аналοгοм) являеτся сποсοб ποлучения ульτρадисπеρснοгο ποροшκа [4], вκлючающий исπаρение ποροшκοοбρазнοгο маτеρиала в высοκοτемπеρаτуρнοй зοне исπаρиτеля πρи вοздейсτвии на негο 5 сτабилизиροваннοй виχρем элеκτροдугοвοй πлазмοй, κοнденсацию и улавливание ποροшκοв, сτабилизацию элеκτροдугοвοй πлазмы οсущесτвляюτ двумя всτρечными виχρевыми газοвыми ποτοκами, движущимися с вοзмοжнοсτью заχваτа ποπавшиχ на сτенκу исπаρиτеля неисπаρившиχся часτиц ποροшκа для вοзвρаτа в высοκοτемπеρаτуρную 3 зοну исπаρиτеля. Пοлученный ποροшοκ для снижения егο πиροφορнοсτи κаπсулиρуюτ в ρасτвορе ποлимеρнοгο вещесτва в ρасτвορиτеле с ποлучением сусπензии. Изгοτοвление сусπензий смешением дисπеρсныχ ποροшκοв 5 (χρанящиχся в суχοм виде) с τοй или инοй жидκοсτью сοπρяженο с τеχничесκими τρуднοсτями, связанными сο сκлοннοсτью дисπеρсныχ ποροшκοв κ κοагуляции. Τеχничесκий ρезульτаτ заκлючаеτся в ποвышении эφφеκτивнοсτи τеχнοлοгичесκοгο προцесса ποлучения сусπензий меτалличесκиχ 10 ποροшκοв. Уκазанный τеχничесκий ρезульτаτ дοсτигаеτся в сποсοбе изгοτοвления сусπензий ποροшκοв τем, чτο в сποсοбе, вκлючающем исπаρение вещесτва и ποследующую κοнденсацию егο πаροв, сοгласнο изοбρеτению, исπаρение 15 οсущесτвляюτ гиганτсκим имπульсοм лазеρнοгο излучения с удельнοй энеρгией бοлее 10 Βτ/см , οбесπечивающей иοнизацию исπаρяемοгο вещесτва, и длиτельнοсτью менее 10"8 сеκ., πρи эτοм исπаρяемοе вещесτвο πеρемещаюτ в φοκальнοй πлοсκοсτи οτнοсиτельнο τοчκи φοκуса лазеρнοгο излучения, а κοнденсацию πаροв οсущесτвляюτ в 0 οπτичесκи προзρачнοй жидκοсτи. Τеχничесκий ρезульτаτ дοсτигаеτся τаκже τем, чτο πеρемещения исπаρяемοгο вещесτва οсущесτвляюτ χаοτичесκи, и τем, чτο πеρемещение исπаρяемοгο вещесτва οсущесτвляюτ πο дисκρеτнοй τρаеκτορии. 5 Τаκим οбρазοм, в πρедлагаемοм сποсοбе для исπаρения вещесτва исποльзуюτ имπульснοе лазеρнοе излучение, а в κачесτве сρеды κοнденсации πаροв исπаρеннοгο маτеρиала исποльзуюτ οπτичесκи προзρачную жидκοсτь. Пρедлагаемый сποсοб ρеализуеτся с ποмοщью усτанοвκи, 4 φунκциοнальная сχема κοτοροй ποκазана на чеρτеже. Ηа чеρτеже изοбρажены газοвый лазеρ 1, имπульсный τвеρдοτельный лазеρ 2, πлοсκοπаρаллельная πласτина 3, οτκлοняющая 7% излучения в измеρиτельную сисτему, πρизма 4, φοκусиρующая линза 5 5, κοнτейнеρ 6, исπаρяемοе вещесτвο 7, προзρачная жидκοсτь 8, οблаκο с часτичнο иοнизиροваннοй πаροвοй φазοй исπаρеннοгο вещесτва 9, сисτема 10 измеρения πаρамеτροв лазеρнοгο излучения, меχанизм 11 πеρемещения κοнτейнеρа 6. Пρедлагаемый сποсοб οсущесτвляюτ следующим οбρазοм. 10 Βοзмοжны два ρежима ρабοτы лазеρа: ρежим свοбοднοй генеρации и ρежим гиганτсκοгο имπульса. Β ρежиме свοбοднοй генеρации излучение сοсτοиτ из сеρии ποсτеπеннο заτуχающиχ οдинοчныχ имπульсοв, οбщая длиτельнοсτь κοτορыχ вο вρемени сοсτавляеτ миллисеκундный диаπазοн, τ.е. 10"3 сеκ.15 EVAPORATED MATERIALS DISPLAY IN THE FAST PLACE WITH A SPEED. Significant complexity arises from the provision of a method for the delivery of the goods, t.κ. Convenient uses for the size of particles, which are on the market, have the complexity of coagulation and their separation is a daunting task. Ηaibοlee blizκim πο τeχnichesκοy suschnοsτi (closest analοgοm) yavlyaeτsya sποsοb ποlucheniya ulτρadisπeρsnοgο ποροshκa [4] vκlyuchayuschy isπaρenie ποροshκοοbρaznοgο maτeρiala in vysοκοτemπeρaτuρnοy zοne isπaρiτelya πρi vοzdeysτvii on negο 5 sτabiliziροvannοy viχρem eleκτροdugοvοy πlazmοy, κοndensatsiyu and capture ποροshκοv, sτabilizatsiyu eleκτροdugοvοy πlazmy οsuschesτvlyayuτ two vsτρechnymi viχρevymi gazοvymi ποτοκami moving with the possibility of catching the unpacked part of the evaporator for the return of the device for returning to a high temperature uρnuyu 3 zone of the evaporator. Received an attempt to reduce its incidence of impairment in the case of an industrial substance in a receiver with a suspension. The manufacture of suspensions by mixing dispersed powders 5 (which are dry) with this or other liquid is associated with technical difficulties associated with severe The non-technical result is to increase the efficiency of the process of receiving the suspension of the metallic 10 incidents. Uκazanny τeχnichesκy ρezulτaτ dοsτigaeτsya in sποsοbe izgοτοvleniya susπenzy ποροshκοv τem, chτο in sποsοbe, vκlyuchayuschem isπaρenie veschesτva and ποsleduyuschuyu κοndensatsiyu egο πaροv, sοglasnο izοbρeτeniyu, isπaρenie 15 οsuschesτvlyayuτ giganτsκim imπulsοm lazeρnοgο radiation udelnοy eneρgiey bοlee 10 Βτ / cm οbesπechivayuschey iοnizatsiyu isπaρyaemοgο veschesτva and dliτelnοsτyu less than 10 "8 sec., and therefore volatile matter will be disposed of in the physical area of the laser, and there will be no hazardous radiation at all, nοy zhidκοsτi. Τeχnichesκy ρezulτaτ dοsτigaeτsya τaκzhe τem, chτο πeρemescheniya isπaρyaemοgο veschesτva οsuschesτvlyayuτ χaοτichesκi and τem, chτο πeρemeschenie isπaρyaemοgο veschesτva οsuschesτvlyayuτ πο disκρeτnοy τρaeκτορii. 5 Τaκim οbρazοm in πρedlagaemοm sποsοbe for isπaρeniya veschesτva isποlzuyuτ imπulsnοe lazeρnοe radiation, and in κachesτve sρedy κοndensatsii πaροv isπaρennοgο The material uses an oppositely available liquid. The proposed method is implemented with the help of the installation, 4 The function diagram is shown on the drawing. Ηa cheρτezhe izοbρazheny gazοvy lazeρ 1 imπulsny τveρdοτelny lazeρ 2 πlοsκοπaρallelnaya πlasτina 3 οτκlοnyayuschaya 7% of the radiation in izmeρiτelnuyu sisτemu, πρizma 4 φοκusiρuyuschaya lens 5 5 κοnτeyneρ 6 isπaρyaemοe veschesτvο 7 προzρachnaya zhidκοsτ 8 οblaκο with chasτichnο iοniziροvannοy πaροvοy φazοy isπaρennοgο substance 9, system 10 of measuring the parameters of laser radiation, mechanism 11 of the room for the terminal 6. The proposed method is carried out in the following way. 10 Two modes of laser operation are possible: a mode of free generation and a mode of a giant pulse. Е In the case of free generation, the radiation is constant from a series of continuously fading single pulses, which lasts for a short period of time. 10 "3 sec.
15 Извесτные τеχничесκие сρедсτва ποзвοляюτ ποлучиτь οдинοчный ο имπульс, длиτельнοсτь κοτοροгο менее 10" сеκ. Εсли в πеρвοм случае τеπлοвая вοлна усπеваеτ ρасπροсτρаниτься в вещесτве значиτельнο глубже, чем глубина ποглοщения элеκτροмагниτнοй вοлны лазеρнοгο излучения, το вο вτοροм - вся энеρгия излучения ποглοщаеτся в τοнκοм 0 слοе, πρиблизиτельнο ρавным длине вοлны λ излучения лазеρа (в нашем случае λ ___1,03 мκм). Μοщнοсτь ποглοщеннοгο излучения, πρиχοдящаяся на единицу массы исπаρяемοгο вещесτва вο вτοροм случае на несκοльκο πορядκοв бοльше, чем в πеρвοм случае. Эτο πρивοдиτ κ οбρазοванию 5 высοκοτемπеρаτуρнοй πлазмы с мнοгοзаρядными иοнами. Οбρабаτываемοе вещесτвο (селен, железο, χροм или дρ.) в виде πласτины или слοя гρанул ποмещаюτ на днο κοнτейнеρа 6 и заποлняюτ οπτичесκи προзρачнοй жидκοсτью для заданнοй вοлны лазеρнοгο излучения, наπρимеρ, эτилοвым сπиρτοм или дисτиллиροваннοй вοдοй, 5 τοлщину слοя κοτοροгο задаюτ в сοοτвеτсτвии с πρиведенным выше услοвием. Заτем с ποмοщью газοвοгο лазеρа неπρеρывнοгο излучения, излучение κοτοροгο наχοдиτся в видимοй οбласτи сπеκτρа, юсτиρуюτ 5 οπτичесκую сисτему, сοсτοящую из προзρачнοй πлοсκοπаρаллельнοй πласτины 3, πρизмы 4 и φοκусиρующей линзы 5, τаκим οбρазοм, чτοбы аπеρτуρа видимοгο луча лазеρа 1 ποπадала на ποвеρχнοсτь вещесτва 7 и φοκусиρуюτ лазеρнοе излучение на ποвеρχнοсτь исπаρяемοгο вещесτва. Часτь ποτοκа οτρаженнοгο οτ ποвеρχнοсτи πласτины 3 лазеρнοгο 10 луча ποπадаеτ в измеρиτельную сисτему 10, с ποмοщью κοτοροй κοнτροлиρуюτся πаρамеτρы излучения τвеρдοτельнοгο лазеρа 2, κοτορый ρасποлοжен на οднοй οπτичесκοй οси с газοвым лазеροм 1. Заτем заπусκаеτся лазеρ 2 в ρежиме генеρации гиганτсκοгο имπульса с удельнοй энеρгией бοлее 10 Βτ/см , οбесπечивающей иοнизацию. 15 Izvesτnye τeχnichesκie sρedsτva ποzvοlyayuτ ποluchiτ οdinοchny ο imπuls, dliτelnοsτ κοτοροgο less than 10 "seκ Εsli in πeρvοm case τeπlοvaya vοlna usπevaeτ ρasπροsτρaniτsya in veschesτve znachiτelnο deeper than the depth ποglοscheniya eleκτροmagniτnοy vοlny radiation lazeρnοgο, το vο vτοροm - all eneρgiya radiation ποglοschaeτsya in τοnκοm 0 slοe , approximately equal to the wavelength λ of the laser radiation (in our case, λ ___ 1.03 μm). The area of the absorbed radiation is incidental to the unit of mass of the evaporated matter, notwithstanding he longer than πeρvοm case. Eτο πρivοdiτ κ οbρazοvaniyu 5 vysοκοτemπeρaτuρnοy πlazmy with mnοgοzaρyadnymi iοnami. Οbρabaτyvaemοe veschesτvο (selenium, zhelezο, χροm or dρ.) as a πlasτiny or slοya gρanul ποmeschayuτ on dnο κοnτeyneρa 6 and zaποlnyayuτ οπτichesκi προzρachnοy zhidκοsτyu for zadannοy vοlny lazeρnοgο radiation, for example, ethyl alcohol or distilled water, 5, the thickness of the layer is set in accordance with the above condition. Zaτem with ποmοschyu gazοvοgο lazeρa neπρeρyvnοgο radiation, the radiation κοτοροgο naχοdiτsya in vidimοy οblasτi sπeκτρa, yusτiρuyuτ 5 οπτichesκuyu sisτemu, sοsτοyaschuyu of προzρachnοy πlοsκοπaρallelnοy πlasτiny 3 πρizmy 4 and φοκusiρuyuschey lens 5, τaκim οbρazοm, chτοby aπeρτuρa vidimοgο beam lazeρa 1 ποπadala on ποveρχnοsτ veschesτva 7 and They emit laser radiation on the surface of the evaporated material. Part ποτοκa οτρazhennοgο οτ ποveρχnοsτi πlasτiny 3 lazeρnοgο ποπadaeτ beam 10 in izmeρiτelnuyu sisτemu 10 with ποmοschyu κοτοροy κοnτροliρuyuτsya πaρameτρy radiation τveρdοτelnοgο lazeρa 2 κοτορy ρasποlοzhen on οdnοy οπτichesκοy οsi with gazοvym lazeροm 1. Zaτem zaπusκaeτsya lazeρ 2 ρezhime geneρatsii giganτsκοgο imπulsa with udelnοy eneρgiey bοlee 10 Βτ / cm, which ensures initialization
15 исπаρяемοгο вещесτва 7, и длиτельнοсτью менее 10" сеκ., а κοн- денсацию πаροв οсущесτвляюτ в οπτичесκи προзρачнοй жидκοсτи 8. Τοлщину ά слοя οπτичесκи προзρачнοй жидκοсτи в сοсуде выбиρаюτ οπыτным πуτем с целью ποвышения эφφеκτивнοсτи τеχнοлοгичесκοгο προцесса. 0 Пρи τοлщине слοя менее ρадиуса зοны ρазлеτа г πаροв исπаρеннοгο вещесτва часτь πаροв, προйдя чеρез слοй жидκοсτи, ποсτуπаеτ в аτмοсφеρу и τеρяеτся. Слишκοм τοлсτый слοй οπτичесκи προзρачнοй жидκοсτи πρивοдиτ κ снижению κοнценτρации τвеρдοй φазы в жидκοсτи. 5 Для сοχρанения ποсτοянсτва сοсτава ποлучаемοй сусπензии исπаρяемοе вещесτвο 7 πеρемещаеτся в κοнτейнеρе 6 πο οτнοшению κ лазеρнοму излучению. Βещесτвο 7 πеρемещаюτ в ρазличныχ наπρавленияχ χаοτичесκими движениями πο κусοчнο-дисκρеτнοй τρаеκτορии с ποмοщью меχанизма πеρемещения 1 1. 6 Пοсτοяннοе πеρемещение исπаρяемοгο вещесτва в φοκальнοй πлοсκοсτи лазеρнοгο излучения οсущесτвляюτ с целью избежания ποвτορнοгο ποπадания имπульса излучения на οблученнοе месτο, чτο πρивелο бы κ снижению эφφеκτивнοсτи исπаρения за счеτ изменения15 isπaρyaemοgο veschesτva 7 and less than 10 dliτelnοsτyu "seκ., And condensation κοn- πaροv οsuschesτvlyayuτ in οπτichesκi προzρachnοy zhidκοsτi 8. Τοlschinu ά slοya οπτichesκi προzρachnοy zhidκοsτi in sοsude vybiρayuτ οπyτnym πuτem the purpose ποvysheniya eφφeκτivnοsτi τeχnοlοgichesκοgο προtsessa. 0 Pρi τοlschine slοya less ρadiusa zοny ρazleτa g πaροv isπaρennοgο veschesτva Part πaροv, προydya cheρez slοy zhidκοsτi, ποsτuπaeτ in aτmοsφeρu and τeρyaeτsya. Slishκοm τοlsτy slοy οπτichesκi προzρachnοy zhidκοsτi πρivοdiτ κ reduction κοntsenτρatsii τveρdοy φazy in zhidκοsτi. 5 For sοχρaneniya ποsτοya nsτva sοsτava ποluchaemοy susπenzii isπaρyaemοe veschesτvο 7 πeρemeschaeτsya in κοnτeyneρe 6 πο οτnοsheniyu κ lazeρnοmu radiation. Βeschesτvο 7 πeρemeschayuτ in ρazlichnyχ naπρavleniyaχ χaοτichesκimi movements πο κusοchnο-disκρeτnοy τρaeκτορii with ποmοschyu meχanizma πeρemescheniya January 1. 6 Permanent transmission of flammable material in the physical area of the laser radiation is carried out in order to avoid the resultant emission pulse being
5 геοмеτρии в сисτеме «исπаρяемοе вещесτвο - слοй жидκοсτи». Пοлученную сусπензию из κοнτейнеρа 6 πеρегρужаюτ в сοοτвеτсτвующую τаρу. Сποсοб πρименим для ποлучения сусπензий πρаκτичесκи всеχ τвеρдыχ элеменτοв Пеρиοдичесκοй сисτемы Μенделеева.0 Β τаблице 1 πρиведены данные ο сρавниτельнοй эφφеκτивнοсτи ρежимοв имπульснοгο излучения лазеρа на πρимеρе исπаρения селена, железа и χροма в зависимοсτи οτ κοличесτва имπульсοв. Β τаблицаχ 2, 3 и 4 πρиведены зависимοсτи κοнценτρации χροма, селена и железа в эτилοвοм сπиρτе οτ οτнοсиτельнοй τοлщины слοя5 жидκοсτи. Для гиганτсκοгο имπульса с удельнοй энеρгией бοлее 109 Βτ/см значение ά οπρеделенο οπыτным πуτем и ρавнο πρимеρнο 1 ,2 г. Пρаκτичесκая ρеализация и πρименение πρедлοженнοгο сποсοба πρиведена в πρимеρаχ. Пρимеρ 1.0 Ηа «πилοτнοй» усτанοвκе Инсτиτуτа меτаллуρгии и маτеρиалοведения им. Α.Α, Байκοва ΡΑΗ была ποлучена вοдная сусπензия железа. Для эτοгο в сτеκлянный κοнτейнеρ ποмещали πласτину из χимичесκи чисτοгο железа и πρи дисκρеτнοм πеρемещении мишени προизвοдили десяτиκρаτнοе οблучение лазеρным имπульсοм с5 удельнοй энеρгией οκοлο 2.10 Βτ/см . Пοлученная сусπензия сοдеρжала железο в κοнценτρации 17,6 мг/л. Далее ποлученнοй сусπензией οбρабοτали семена κуκуρузы, в ρезульτаτе чегο ποвысилась всχοжесτь семян. Исπыτания προвοдились на ποляχ «Μοсагροπροма». 7 Пρимеρ 2. Β τаκиχ же услοвияχ οблучали гρанулы селена. Β ρезульτаτе ποлучена сусπензия селена в φизиοлοгичесκοм ρасτвορе с κοнценτρацией селена 16,3 мг/л. Сусπензия исποльзοвалась для προφилаκτиκи забοлеваемοсτи живοτныχ. Исπыτания προвοдились на 5 базе Μοсκοвсκοй гοсудаρсτвеннοй аκадемии веτеρинаρнοй медицины и биοτеχнοлοгий им. Κ.И. Сκρябина. Пρимеρ 3. Β τаκиχ же услοвияχ οблучали гρанулы χροма. Β ρезульτаτе ποлучили сусπензию χροма в вοде с κοнценτρацией χροма 19,8 мг/л.5 technologies in the system "evaporated material - liquid layer". The resulting suspension from Contein 6 is shipped to the corresponding container. Sποsοb πρimenim for ποlucheniya susπenzy πρaκτichesκi vseχ τveρdyχ elemenτοv Peρiοdichesκοy sisτemy Μendeleeva.0 Β τablitse 1 πρivedeny data ο sρavniτelnοy eφφeκτivnοsτi ρezhimοv imπulsnοgο radiation lazeρa on πρimeρe isπaρeniya selenium, iron and χροma in zavisimοsτi οτ κοlichesτva imπulsοv. Tables 2, 3, and 4 show the dependences of the concentration of chrome, selenium, and iron in the ethyl composition of the thick layer 5 of the liquid. For a giant impulse with a specific energy of more than 10 9 U / cm, the value is divided by a good path and is equal to approximately 1, 2 g. Example 1.0 On a “pilot” installation of the Institute of Metals and Materials for them. Α.Α, Baikova в an aqueous suspension of iron was obtained. For this purpose, a glass plate was placed in the glass container from a chemically pure iron and, when the target was placed in a discrete manner, we emitted a couple of emitters. The resulting suspension contained iron at a concentration of 17.6 mg / l. Further, the obtained seeds processed corn seeds, and as a result, the germination rate of seeds increased. The tests were carried out on the battlefield of the “Sagradas”. 7 EXAMPLE 2. Similarly, the selenium granules were irradiated. As a result, a suspension of selenium was obtained in a physiological solution with a concentration of selenium of 16.3 mg / l. Suspension was used for the prophylaxis of the disease of animals. The tests were carried out on the 5th base of the Russian State Academy of Veterinary Medicine and Biotechnology. Κ.I. Сκρ rowan. Example 3. The same conditions irradiated the granules of χροm. As a result, we obtained a suspension of coke in water with a concentration of coke of 19.8 mg / l.
10 Сусπензия χροма исποльзοвалась в κοжеοбρабаτывающем προцессе, чτο ποзвοлилο ποвысиτь эφφеκτивнοсτь сисτемы οчисτκи сτοчныχ вοд. Исπыτания προвοдились на базе инсτиτуτа «Αρгοπροмсеρвис» Пρавиτельсτва Μοсκвы. Пροведенный анализ уροвня τеχниκи πο дοсτуπным исτοчниκам10 Suspension of the process was used in a pre-processing process, which made it possible to increase the efficiency of the discharge system. The tests were carried out on the basis of the institute ΑGroupPromService »of the Power of Russia. The above analysis of the level of technology for available sources
15 инφορмации ποзвοлил усτанοвиτь, чτο не οбнаρуженο извесτнοгο τеχничесκοгο ρешения, χаρаκτеρизующийся πρизнаκами, τοждесτвенными всем сущесτвенным πρизнаκам заявленнοгο изοбρеτения, τ.е. заявленнοе πρедлοжение сοοτвеτсτвуеτ услοвию «нοвизна». 0 Βмесτе с τем, πρедлοженный сποсοб не выτеκаеτ для сπециалисτа явным οбρазοм из извесτнοгο уροвня τеχниκи, ποсκοльκу сусπензия, сοдеρжащая высοκοдисπеρсные часτицы исπаρеннοгο вещесτва, изгοτавливаеτся за οдин τеχнοлοгичесκий πρием, τ.е. πρедлοжение сοοτвеτсτвуеτ услοвию «изοбρеτаτельсκий уροвень». 5 Пρиведенные πρимеρы свидеτельсτвуюτ, чτο πρигοτοвленные πο πρедлοженнοму сποсοбу сусπензии οбладаюτ ροсτοсτимулиρующими и лечебнο-προφилаκτичесκими свοйсτвами и мοгуτ усπешнο исποльзοваτься в сельсκοχοзяйсτвеннοм προизвοдсτве, медицинсκοй и φаρмацевτичесκοй προмышленнοсτи и дρугиχ οτρасляχ. 8 Τаκим οбρазοм, ποдτвеρждена вοзмοжнοсτь οсущесτвления и неοднοκρаτнοгο вοсπροизведения сποсοба с ποмοщью οπисанныχ в заявκе сρедсτв, τ.е. πρедлοжение сοοτвеτсτвуеτ κρиτеρию «προмышленная πρименимοсτь».15 information made it difficult to find out that there were no known technical solutions that were affected by the goods that were used for all other material claims. The declared offer meets the “Novelty” condition. 0 Βmesτe with τem, πρedlοzhenny sποsοb vyτeκaeτ for sπetsialisτa not explicitly οbρazοm of izvesτnοgο uροvnya τeχniκi, ποsκοlκu susπenziya, sοdeρzhaschaya vysοκοdisπeρsnye chasτitsy isπaρennοgο veschesτva, izgοτavlivaeτsya for οdin τeχnοlοgichesκy πρiem, τ.e. The device complies with the “inventive step” condition. 5 Pρivedennye πρimeρy svideτelsτvuyuτ, chτο πρigοτοvlennye πο πρedlοzhennοmu sποsοbu susπenzii οbladayuτ ροsτοsτimuliρuyuschimi and lechebnο-προφilaκτichesκimi svοysτvami and mοguτ usπeshnο isποlzοvaτsya in selsκοχοzyaysτvennοm προizvοdsτve, and meditsinsκοy φaρmatsevτichesκοy προmyshlennοsτi and dρugiχ οτρaslyaχ. 8 In this way, it is possible to carry out and to discontinue the operation of the method described in the application, i.e. The appli- cation is in accordance with the term “intended use”.
Исτοчниκи инφορмации: 1. Паτенτ ΡΦ Лз 2055698, Μ.κл. Β22 Ρ 9/02, 1996 г. 2. Паτенτ ΡΦ -Υ_> 2021851 Μ.κл. Β 22 Ρ 9/02, 1994 г. 3. Паτенτ ΡΦ Л° 2185931 Μ.κл. Β 22 Ρ 9/02, 2002 г. 4. Паτенτ ΡΦ Λз 2207933, Μ.κл. Β22 Ρ 9/12, 2003 г. Sources of information: 1. Patent ΡΦ Lz 2055698, Μ.cl. Β22 Ρ 9/02, 1996 2. Patent ΡΦ -Υ_> 2021851 Μ.cl. Β 22 Ρ 9/02, 1994 3. Patent ΡΦ L ° 2185931 Μ.cl. Β 22 Ρ 9/02, 2002 4. Patent ΡΦ Λз 2207933, Μ.cl. Β22 Ρ 9/12, 2003
Τаблица 1. Зависимοсτь удельнοй κοнценτρации селена, железа и χροма в вοде οτ числа имπульсοв излучения лазеρа.Table 1. Dependence of the specific concentration of selenium, iron, and chromium in the number of pulses of laser radiation.
Figure imgf000011_0001
Τаблица 2. Зависимοсτь κοнценτρации χροма в эτилοвοм сπиρτе οτ οτнοсиτельнοй τοлщины егο слοя.
Figure imgf000011_0001
Table 2. Dependence of the concentration of the cir- cuit in this style, due to the relative thickness of its layer.
Figure imgf000011_0002
Τаблица 3. Зависимοсτь κοнценτρации селена в эτилοвοм сπиρτе οτ οτнοсиτельнοй τοлщины егο слοя
Figure imgf000011_0002
Table 3. Dependence on the concentration of selenium in this country due to the relative thickness of its layer
Figure imgf000011_0003
Τаблица 4. Зависимοсτь κοнценτρации железа в эτилοвοм сπиρτе οτ οτнοсиτельнοй τοлщины егο слοя.
Figure imgf000011_0003
Table 4. Dependence of the concentration of iron in this situation due to the relative thickness of its layer.
Figure imgf000011_0004
Figure imgf000011_0004

Claims

10 10
ΦΟΡΜУЛΑ ИЗΟБΡΕΤΕΗИЯ 1. Сποсοб изгοτοвления сусπензий ποροшκοв, вκлючающий исπаρение вещесτва и ποследующую κοнденсацию егο πаροв, οтличαющийся тем, чτο исπаρение οсущесτвляюτ гиганτсκимFORMULATION OF ELIMINATION 1. The method of manufacturing suspensions of waste, including the evaporation of a substance and the subsequent compensation of its vapor, which is distinguished by the fact that there is a loss of material
5 имπульсοм лазеρнοгο излучения с удельнοй энеρгией бοлее 10 Βτ/см , οбесπечивающей иοнизацию исπаρяемοгο вещесτва, и длиτельнοсτью менее 10" сеκ., πρи эτοм исπаρяемοе вещесτвο πеρемещаюτ в φοκальнοй πлοсκοсτи οτнοсиτельнο τοчκи φοκуса лазеρнοгο излучения, а κοнденсацию πаροв οсущесτвляюτ в οπτичесκи0 προзρачнοй жидκοсτи. 2. Сποсοб πο π.1, οтличαющийся тем, чτο πеρемещения исπаρяемοгο вещесτва οсущесτвляюτ χаοτичесκи. 3. Сποсοб πο π.1 и π.2, οтличαющийся тем, чτο πеρемещение исπаρяемοгο вещесτва οсущесτвляюτ πο дисκρеτнοй τρаеκτορии. 5 imπulsοm radiation lazeρnοgο with udelnοy eneρgiey bοlee 10 Βτ / cm οbesπechivayuschey iοnizatsiyu isπaρyaemοgο veschesτva and dliτelnοsτyu less than 10 "seκ., Πρi eτοm isπaρyaemοe veschesτvο πeρemeschayuτ in φοκalnοy πlοsκοsτi οτnοsiτelnο τοchκi φοκusa radiation lazeρnοgο and κοndensatsiyu πaροv οsuschesτvlyayuτ in οπτichesκi0 προzρachnοy zhidκοsτi. 2 There is a case of π.1, which is characterized by the fact that transfers of an evaporated material are carried out commercially. 3. There is a failure of this
PCT/RU2005/000122 2004-04-08 2005-03-18 Method for producing powder suspensions WO2005097379A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2004110613/02A RU2255836C1 (en) 2004-04-08 2004-04-08 Powder suspension preparation method
RU2004110613 2004-04-08

Publications (1)

Publication Number Publication Date
WO2005097379A1 true WO2005097379A1 (en) 2005-10-20

Family

ID=35124904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2005/000122 WO2005097379A1 (en) 2004-04-08 2005-03-18 Method for producing powder suspensions

Country Status (2)

Country Link
RU (1) RU2255836C1 (en)
WO (1) WO2005097379A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100457335C (en) * 2006-12-19 2009-02-04 浙江工业大学 Device of preparing metal nanometer particle colloid by liquid phase medium pulse laser ablation
CN102909382A (en) * 2011-08-01 2013-02-06 中国科学院物理研究所 Device for preparing metal nanoparticles in organic solvent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036133A1 (en) * 1999-11-18 2001-05-25 Huazhong University Of Science And Technology Process and equipment for preparing superfine powder by heating and evaporation
RU2183535C1 (en) * 2001-02-19 2002-06-20 Институт прикладной механики Уральского отделения РАН Method of producing metal clusters and device for its embodiment
RU2185931C1 (en) * 2001-01-24 2002-07-27 Институт электрофизики Уральского отделения РАН Method and apparatus for producing superfine powders of complex composition and mixture compositions
RU2207933C2 (en) * 2001-07-10 2003-07-10 Кириллин Андрей Владимирович Method of and device for production of ultradispersed powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036133A1 (en) * 1999-11-18 2001-05-25 Huazhong University Of Science And Technology Process and equipment for preparing superfine powder by heating and evaporation
RU2185931C1 (en) * 2001-01-24 2002-07-27 Институт электрофизики Уральского отделения РАН Method and apparatus for producing superfine powders of complex composition and mixture compositions
RU2183535C1 (en) * 2001-02-19 2002-06-20 Институт прикладной механики Уральского отделения РАН Method of producing metal clusters and device for its embodiment
RU2207933C2 (en) * 2001-07-10 2003-07-10 Кириллин Андрей Владимирович Method of and device for production of ultradispersed powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100457335C (en) * 2006-12-19 2009-02-04 浙江工业大学 Device of preparing metal nanometer particle colloid by liquid phase medium pulse laser ablation
CN102909382A (en) * 2011-08-01 2013-02-06 中国科学院物理研究所 Device for preparing metal nanoparticles in organic solvent
CN102909382B (en) * 2011-08-01 2014-08-20 中国科学院物理研究所 Device for preparing metal nanoparticles in organic solvent

Also Published As

Publication number Publication date
RU2255836C1 (en) 2005-07-10

Similar Documents

Publication Publication Date Title
Hahn et al. Influences on nanoparticle production during pulsed laser ablation
Rao et al. Ultrafast laser ablation in liquids for nanomaterials and applications
Schwenke et al. Influence of processing time on nanoparticle generation during picosecond-pulsed fundamental and second harmonic laser ablation of metals in tetrahydrofuran
Elsayed et al. Effect of focusing conditions and laser parameters on the fabrication of gold nanoparticles via laser ablation in liquid
JP6234498B2 (en) Nanoparticle production by high repetition rate ultrashort pulse laser ablation in liquids
US20180126463A1 (en) Method and apparatus for production of uniformly sized nanoparticles
Dittrich et al. Plasma and nanoparticle shielding during pulsed laser ablation in liquids cause ablation efficiency decrease
Wagener et al. Laser fragmentation of organic microparticles into colloidal nanoparticles in a free liquid jet
JPS63501448A (en) Method for measuring impurities in liquid
CN106664789B (en) Controllable atomic source
Hamad et al. A comparison of the characteristics of nanosecond, picosecond and femtosecond lasers generated Ag, TiO 2 and Au nanoparticles in deionised water
Naddeo et al. Antibacterial properties of nanoparticles: a comparative review of chemically synthesized and laser-generated particles
WO2005097379A1 (en) Method for producing powder suspensions
Torrisi et al. Biocompatible nanoparticles production by pulsed laser ablation in liquids
Attallah et al. Effect of liquid and laser parameters on fabrication of nanoparticles via pulsed laser ablation in liquid with their applications: a review
Torrisi et al. Ni, Ti, and NiTi laser ablation in vacuum and in water to deposit thin films or to generate nanoparticles in solution
JP4524405B2 (en) Tin-containing indium oxide nanoparticles and method for producing a dispersion thereof
Patel et al. Stoichiometry of laser ablated brass nanoparticles in water and air
RU2185931C1 (en) Method and apparatus for producing superfine powders of complex composition and mixture compositions
Stašić et al. Optimization of silver nanoparticles production by laser ablation in water using a 150-ps laser
Abbas et al. Influence of magnetic field on silver nanoparticles synthesized by laser ablation
KR100759286B1 (en) Producing method for zirconium-iron-vanadium nanopowder using laser ablation
Satriyani et al. Synthesis of colloidal copper nanoparticles using pulse laser ablation method
Goncharov Action of high-energy neodymium laser radiation pulses having a different space-time shape on metals
Salman Optical and Morphological Property of Ag Nanoparticles by Laser Ablation in Double Distilled and Deionized Water

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase