KR100759286B1 - Producing method for zirconium-iron-vanadium nanopowder using laser ablation - Google Patents

Producing method for zirconium-iron-vanadium nanopowder using laser ablation Download PDF

Info

Publication number
KR100759286B1
KR100759286B1 KR1020050028315A KR20050028315A KR100759286B1 KR 100759286 B1 KR100759286 B1 KR 100759286B1 KR 1020050028315 A KR1020050028315 A KR 1020050028315A KR 20050028315 A KR20050028315 A KR 20050028315A KR 100759286 B1 KR100759286 B1 KR 100759286B1
Authority
KR
South Korea
Prior art keywords
zirconium
iron
powder
alloy
vanadium
Prior art date
Application number
KR1020050028315A
Other languages
Korean (ko)
Other versions
KR20060106043A (en
Inventor
장희동
김원백
서용재
길대섭
서창열
박제신
이동진
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to KR1020050028315A priority Critical patent/KR100759286B1/en
Publication of KR20060106043A publication Critical patent/KR20060106043A/en
Application granted granted Critical
Publication of KR100759286B1 publication Critical patent/KR100759286B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/125Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering using screw filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/302Treatment of water, waste water, or sewage by irradiation with microwaves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • F26B3/30Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun from infrared-emitting elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/32Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action
    • F26B3/34Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action by using electrical effects
    • F26B3/347Electromagnetic heating, e.g. induction heating or heating using microwave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/20Nature of the water, waste water, sewage or sludge to be treated from animal husbandry

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Microbiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Biotechnology (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은 레이저 애블레이션(laser ablation)을 이용하여 진공게터용 원료소재인 나노사이즈 지르코늄-철-바나듐 합금 분말을 제조하는 방법에 관한 것으로, 특히 레이저를 조사 하여 금속 펠릿(pellet) 및 분말을 증발, 응축시켜 나노 입자를 생성시키는 기술을 사용하여 50 미크론급 지르코늄-철-바나듐 합금 분말로부터 평균입자크기 범위가 50 ~ 150 나노미터(nm)의 지르코늄-철-바나듐 합금 나노 분말을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing nanosize zirconium-iron-vanadium alloy powder, which is a raw material for vacuum getter, using laser ablation, and in particular, to irradiate a laser to evaporate metal pellets and powder. To a method for producing a zirconium-iron-vanadium alloy nanopowder having a mean particle size range of 50 to 150 nanometers (nm) from a 50 micron-grade zirconium-iron-vanadium alloy powder using a technique of condensation to produce nanoparticles. It is about.

상기의 지르코늄-철-바나듐 나노 분말을 제조하기 위하여 본 발명에서는 지르코늄, 철 및 바나듐이 일정 비율(조성비(at%): 57:35.8:7.2)로 혼합되고 평균입자크기 50 미크론인 합금분말에 레이저를 조사하여 증발된 금속 증기를 응축시켜 동일한 조성을 갖는 지르코늄-철-바나듐 합금 나노 분말을 제조하는 방법을 제공한다.In order to prepare the zirconium-iron-vanadium nano-powder, in the present invention, zirconium, iron and vanadium are mixed in a constant ratio (composition ratio (at%): 57: 35.8: 7.2) and the laser powder on the alloy powder having an average particle size of 50 microns Irradiation of the condensed metal vapor to provide a method for producing a zirconium-iron-vanadium alloy nano powder having the same composition.

지르코늄-철-바나듐 합금, 나노 분말, 레이저 애블레이션법 Zirconium-iron-vanadium alloys, nanopowders, laser ablation method

Description

레이저 애블레이션을 이용한 지르코늄-철-바나듐 합금 나노 분말 제조 방법 {Producing method for zirconium-iron-vanadium nanopowder using laser ablation}Production method for zirconium-iron-vanadium alloy nanopowder using laser ablation {Producing method for zirconium-iron-vanadium nanopowder using laser ablation}

도 1은 본 발명에 따른 사용한 나노 분말 제조장치 개략도1 is a schematic view of the nano-powder manufacturing apparatus used in accordance with the present invention

도 2는 본 발명에 사용된 지르코늄-철-바나듐 합금 원료 분말의 전자현미경 사진Figure 2 is an electron micrograph of the zirconium-iron-vanadium alloy raw material powder used in the present invention

도 3는 본 발명에 따른 레이저의 에너지 변화에 따라 생성된 나노 분말의 전자현미경 사진Figure 3 is an electron micrograph of the nano-powder generated according to the energy change of the laser according to the present invention

도 4은 본 발명에 사용된 지르코늄-철-바나듐 합금 원료분말 및 생성된 나노분말의 결정형 분석결과 Figure 4 is a crystalline analysis of the zirconium-iron-vanadium alloy raw powder and the nano-powder produced in the present invention

도 5는 본 발명에 따른 합근 원료분말이 에탄올에 분산된 상태에서 레이저를조사하에 생성된 지르코늄-철-바나듐 합금 나노 분말의 전자현미경 사진5 is an electron micrograph of a zirconium-iron-vanadium alloy nanopowder produced under laser irradiation in a state in which the raw material powder of the present invention is dispersed in ethanol

※ 도면의 주요부분에 대한 부호의 설명 ※※ Explanation of code about main part of drawing ※

10 : 레이저 발생부 20 : 합금시편 장입부10: laser generating unit 20: alloy specimen charging unit

30 : 회전모터 40 : 합금의 펠렛 또는 분말30: rotating motor 40: pellet or powder of alloy

50 : 렌즈 60 : 회동부50 lens 60 rotation part

100 : 레이저장치 200 : 용기100: laser device 200: container

본 발명은 액정표시장치 (LCD), 플라즈마 디스플레이 패널 (PDP), 유기 발광소자 등에 사용되는 판넬에 코팅하여 전도성과 투명성을 확보해주는 진공 게터용 고효율 원료소재로서 기대되는 지르코늄-철-바나듐(이하 "Zr-Fe-V"라 한다) 나노 분말을 레이저를 조사하여 제조하는 방법에 관한 것이다.The present invention is a zirconium-iron-vanadium (hereinafter "") which is expected as a high-efficiency raw material for vacuum getters, which is coated on panels used in liquid crystal displays (LCDs), plasma display panels (PDPs), organic light emitting devices, and the like, to secure conductivity and transparency. Zr-Fe-V ") to a method for producing a nano-powder by irradiation with a laser.

지르코늄계 합금 분말은 진공 게터용 핵심 원료소재로서 이러한 진공게터 소재는 국내산업의 Post-반도체시대를 견인할 것으로 기대되고 있는 평판 디스플레이제품을 비롯하여 각종 광원, 진공펌프, 반도체용 가스정제기, 진공단열재, MEMS 등에 광범위하게 사용되고 있다.진공게터 응용제품의 시장은 Cathode Ray Tube(CRT)를 비롯한 디스플레이 분야가 가장 크며 평판 디스플레이분야 등 첨단 응용제품 산업이 급성장함에 따라 장착되는 진공게터의 시장규모도 함께 증가하고 있다.Zirconium-based alloy powder is a key raw material for vacuum getters. These vacuum getter materials are expected to lead the post-semiconductor era of the domestic industry, including various light sources, vacuum pumps, gas purifiers for semiconductors, vacuum insulation materials, It is widely used in MEMS, etc. The market for vacuum getter application products is the largest display field including Cathode Ray Tube (CRT), and the market size of vacuum getters that are mounted as the high-tech application industry such as flat panel display field grows together. have.

현재 평균입자크기가 50 미크론급의 지르코늄계 2성분 및 3성분의 합금 분말이 진공 게터용 원료소재로 사용되고 있으며 국내 기술로 수소화-탈수화법에 의해 상용화 되어 일부 사용되고 있으나 현재 대부분 수입에 의존하고 있다. 최근에는 입자의 미세화에 따라 비표면적의 증가 특성을 이용하여 게터의 재료 특성을 향상 시키고자 나노 분말의 제조 기술 개발이 진행 중에 있으나 그 기술이 공개되고 있지 않다. At present, the alloy particles of zirconium-based two- and three-component alloys having an average particle size of 50 micron are used as raw materials for vacuum getters, and are commercially used by hydrogenation-dehydration method as a domestic technology, but most depend on imports. Recently, in order to improve the material properties of the getter using the characteristic of increasing the specific surface area according to the miniaturization of the particles, the development of nanopowder manufacturing technology is in progress, but the technology is not disclosed.

이러한 게터소재용 지르코늄계 다성분 합금 분말을 제조하는 기술에 대한 공지기술로서는 미국특허 US 6,398,980 (명칭 : Method for producing a non- evaporable getter, 출원일 : 2001년 6월 8일) 및 국내특허 10-1996-7004758 (명칭: 비증발성 게터 및 그 제조 방법, 출원일 : 1996년 8월 29일), 국내특허 10- 1999-7008852 (명칭: 비증발성 게터의 제조방법 및 그 방법에 의해 제조된 게터, 출원일: 1999년 9월 28일) 등이 공개되어 있다. As a known technique for manufacturing a zirconium-based multi-component alloy powder for such getter material, US Patent US 6,398,980 (name: Method for producing a non-evaporable getter, filing date: June 8, 2001) and domestic patent 10-1996 -7004758 (name: non-evaporable getter and method for manufacturing the same, filed date: August 29, 1996), domestic patent 10-1999-7008852 (name: method for producing a non-evaporable getter, and getter manufactured by the method, filed: September 28, 1999).

상기의 미국 특허 US 6,398,980은 산화물 환원법에 의해 지르코늄계 및 티타늄계 합금분말의 제조하는 방법이며, 국내 특허 10-1996-7004758는 산화물 환원법에 의해 티타늄계 합금 분말을 제조하는 방법이다. 또한, 국내특허 10- 1999-7008852는 상기 미국특허를 국내에 출원한 경우이다. 이상의 방법들은 일차 입자의 평균입자크기가 나노미터급이 아닌 미크론급의 지르코늄계 혹은 티타늄계 합금 분말의 제조에 관한 것이며 입자크기가 나노사이즈인 Zr-Fe-V 분말을 제조하는 방법에 대한 내용은 공개되지 않았다. US Pat. No. 6,398,980 is a method for producing zirconium-based and titanium-based alloy powders by an oxide reduction method, and domestic patent 10-1996-7004758 is a method for producing titanium-based alloy powders by an oxide reduction method. In addition, domestic patent 10-1999-7008852 is a case where the US patent is filed in Korea. The above methods relate to the production of micron-based zirconium-based or titanium-based alloy powders with an average particle size of primary particles other than nanometers, and details on how to prepare Zr-Fe-V powders with nano-size particles. It was not released.

이에 본 발명에서는 나노 분말 제조 방법 중 증발, 응축 기술을 이용한 것으로, 보다 상세하게는 평균입자크기 50미크론의 Zr-Fe-V 합금 분말에 레이저를 조사하여 합금을 증발, 응축시켜 평균입자크기가 나노사이즈이고 동일한 조성의 Zr-Fe- V 합금 나노 분말을 제조하는 기술을 제공하는데 그 기술적 과제가 있다.Therefore, the present invention uses the evaporation and condensation technology of the nano-powder manufacturing method, and more specifically, the average particle size of the nanoparticles by evaporating and condensing the alloy by irradiating a laser to the Zr-Fe-V alloy powder having an average particle size of 50 microns There is a technical problem to provide a technique for producing a Zr-Fe-V alloy nano powder of the same size and composition.

또한 본 발명은 간단하면서도 용이하게 구형의 상기 나노합금분말을 제조할 수 있는 제조방법을 제공하는 것이다.In another aspect, the present invention is to provide a method for producing the spherical nano-alloy powder simply and easily.

본 발명의 또 다른 과제는 상기의 방법 및 장치에 의해 제조되는 나노합금분말의 전구체인 합금의 분말이나 펠렛과 동일한 조성의 구형의 나노합금분말을 제공하는 것이다. Another object of the present invention is to provide a spherical nanoalloy powder having the same composition as powder or pellet of an alloy which is a precursor of the nanoalloy powder produced by the above method and apparatus.

상기한 본 발명의 기술적과제는 반응물질인 Zr-Fe-V 합금 펠릿 및 분말 일정량을 에탄올 용액에 장입한 후 높은 에너지 준위의 레이저를 시편에 조사하여 합금 증기를 발생시킨 후 용액 중에서 응축하면서 동일한 조성의 Zr-Fe-V 합금 나노 분말을 제조함으로써 달성할 수 있으며, 합금 시편에 조사되는 레이저 빔의 세기(intensity), 빔의 직경, 합금을 장입한 액상물질의 종류 등이 주요 변수이므로 이들 변수를 변화시킴으로서 본 발명의 나노사이즈의 입자 크기를 갖도록 하여 본 발명의 기술적 과제를 달성할 수 있다.The technical problem of the present invention is to charge a Zr-Fe-V alloy pellets and a certain amount of powder in an ethanol solution, and then irradiate a laser of a high energy level to the specimen to generate alloy vapors and condensate in the solution. This can be achieved by manufacturing Zr-Fe-V alloy nanopowders, and since the main variables are the intensity of the laser beam irradiated onto the alloy specimen, the diameter of the beam, and the type of liquid substance charged with the alloy, By changing the nanoparticle size of the present invention to achieve the technical problem of the present invention can be achieved.

이하에서는 Zr-Fe-V 합금 나노 분말을 제조함에 있어서 Zr-Fe-V 합금 시편에 조사되는 레이저 빔의 에너지(Fluence) 및 합금분말의 장입한 형태(펠릿 혹은 분말)를 조절하여 Zr-Fe-V 합금 나노 분말을 제조하는 방법을 첨부한 도면들에 의하여 상세히 설명하겠다. 본 발명에서 분말은 Zr-Fe-V의 마이크로 사이즈의 분말을 그대로 에탄올에 분산하여 사용할 수도 있고, 펠렛으로 사용하는 경우에는 900℃ 이하의 온도에서 진공하에서 고압으로 펠렛을 제조하여 사용하기도 한다. 본 발명의 고압은 3000psi 내지 4000psi의 고압을 사용하는 것이 좋지만 펠렛을 제조하는 이상 크게 영향을 받지는 않는다.Hereinafter, in preparing Zr-Fe-V alloy nanopowder, Zr-Fe- is controlled by adjusting the energy (fluence) of the laser beam irradiated to the Zr-Fe-V alloy specimen and the charged form (pellet or powder) of the alloy powder. The method of manufacturing the V alloy nano powder will be described in detail with reference to the accompanying drawings. In the present invention, the powder may be used by dispersing the micro-sized powder of Zr-Fe-V in ethanol as it is, or in the case of using as a pellet may be used to produce the pellet under high pressure under vacuum at a temperature of 900 ℃ or less. The high pressure of the present invention preferably uses a high pressure of 3000 psi to 4000 psi but is not significantly affected as long as pellets are prepared.

도 1은 본 발명의 제조방법에 사용된 Zr-Fe-V 합금 나노 분말 제조장치를 개략적으로 나타낸 것으로서, 반응물질인 Zr-Fe-V 합금 펠릿 또는 분말을 액상의 유기매질이 주입된 용기(100)의 합금시편 장입부(20)에 장입하고 용기의 렌즈(50)를 통하여 레이저발생부(10)로부터 고에너지의 레이저광을 저속으로 회전하는 합금 펠릿 또는 분말(40)의 표면에 조사하면 합금의 증발 및 응축 현상에 의해 합금 나노 분말이 형성되게 한다. 상기의 생성된 합금 나노 분말은 입자크기가 작아 액상의 유기매질 중에서 브라운 운동하게 되어 분산상태로 존재하게 되는 데 실험 종료 후 합금 펠릿과 분리 후 분산상의 입자들은 기공크기 1 미크론의 멤브레인 필터로 여과하여 회수하게 되는 것이다.1 is a schematic view showing an apparatus for preparing Zr-Fe-V alloy nanopowders used in the manufacturing method of the present invention, in which a container in which a liquid organic medium is injected into a reactant Zr-Fe-V alloy pellet or powder (100) Is loaded into the alloy specimen charging portion 20 and irradiates the surface of the alloy pellet or powder 40, which rotates at a low speed, from the laser generation portion 10 through the lens 50 of the container. The alloy nano powder is formed by evaporation and condensation. The resulting alloy nanopowder has a small particle size, which causes brown movement in a liquid organic medium to exist in a dispersed state. After completion of the experiment, the alloy pellet and the dispersed phase particles are filtered by a membrane filter having a pore size of 1 micron. It will be recovered.

본 발명의 도 1에 기재된 장치를 상세히 설명하면, 레이저발진부(10)를 가지는 레이저(100)와 유기매질과 합금펠렛 또는 분말을 장입하는 장입부(20)와 유기매질과 합금을 회전시키는 회동부(60)로 구성되는 용기(100)로 이루어진다. 본 발명의 상기 유기매질은 합금분말이나 펠렛을 부유시킬 수 있고, 조사광의 흡수가 없거나 상대적으로 상기 합금을 증발시킬 수 있을 정도로 레이저광을 흡수하지 않을 정도면 제한이 없지만 에탄올을 이용하는 것이 더욱 좋다.Referring to the apparatus of FIG. 1 of the present invention in detail, the laser 100 having the laser oscillation unit 10, the charging unit 20 for charging the organic medium and the alloy pellets or powder and the rotating unit for rotating the organic medium and the alloy It consists of the container 100 comprised from 60. The organic medium of the present invention is not limited so long as it can float the alloy powder or pellets, and does not absorb laser light to the extent that there is no absorption of irradiated light or relatively evaporates the alloy, but it is better to use ethanol.

본 발명에 사용하는 레이저는 합금을 증발시킬 수 있을 정도의 에너지를 가지는 레이저라면 제한이 없지만, 고에너지의 Nd:YaG 레이저를 사용한다.The laser used in the present invention is not limited as long as the laser has energy enough to evaporate the alloy, but a high energy Nd: YaG laser is used.

본 발명에 따른 방법을 사용하는 경우 합금 시편에 조사되는 레이저 빔의 에너지(Fluence)세기 및 합금분말의 장입한 형태(펠릿 혹은 분말) 등의 조건을 조절함으로써 50~150 나노미터의 구형의 나노합금분말을 용이하게 제조할 수 있는 장점이 있다.When using the method according to the present invention, a spherical nanoalloy of 50 to 150 nanometers is controlled by adjusting conditions such as the energy intensity of the laser beam irradiated onto the alloy specimen and the charged form (pellet or powder) of the alloy powder. There is an advantage that the powder can be easily produced.

이하는, 본 발명을 실시예를 통하여 더욱 구체적으로 설명하며, 본 발명은 하기의 실시예에 만 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples, and the present invention is not limited only to the following Examples.

<실시예 1><Example 1>

본 실시예는 Zr-Fe-V 합금 나노 분말 제조 시 합금 펠릿의 표면에 조사되는 레이저 빔의 에너지를 변화시켜 생성되는 분말의 입자크기를 조절하고자 하는 것이다.This embodiment is intended to control the particle size of the powder produced by changing the energy of the laser beam irradiated to the surface of the alloy pellets during the production of Zr-Fe-V alloy nanopowder.

Nd:YaG 레이저(Spectron Laser Systems, Model SL802G-10; Pulse duration: 6-8 ns; Wavelength: 532 nm; Repetition rate: 10 Hz)를 이용하여 Zr-Fe-V 합금(조성비(at%): 57:35.8:7.2)으로 이루어진 원통형 펠릿(직경 25mm, 두께 5mm)을 에탄올 용액 100 ml 중에서 12 rpm으로 회전시키면서 레이저를 조사하여 나노 분말을 제조하였다. 이때 단위 면적당 조사되는 레이저 빔의 에너지(Fluence)를 조절함으로써 분말의 크기를 조절하고자 하였다. 타겟으로 사용된 펠릿은 Zr-Fe-V 합금 분말을 진공 프레스에서 900 ℃ 진공분위기에서 3,500psi로 가압하여 만든 것을 사용하였으며 레이저 빔의 에너지는 9.6, 56.5, 194.9 mJ/mm2로 변화 시키며 분말 제조 실험을 수행하였다. Zr-Fe-V alloy (composition ratio (at%): 57) using Nd: YaG laser (Spectron Laser Systems, Model SL802G-10; Pulse duration: 6-8 ns; Wavelength: 532 nm; Repetition rate: 10 Hz) : 35.8: 7.2), a cylindrical pellet (diameter 25 mm, thickness 5 mm) was irradiated with laser while rotating in 12 ml of 100 ml of ethanol solution to prepare a nano powder. At this time, the size of the powder was controlled by adjusting the energy (Fluence) of the laser beam irradiated per unit area. The pellet used as the target was Zr-Fe-V alloy powder, which was made by pressing it at 3,500 psi at 900 ℃ in a vacuum press in a vacuum press. The energy of the laser beam was changed to 9.6, 56.5, 194.9 mJ / mm 2 , and powder was prepared. The experiment was performed.

상기 실험을 통해 생성되는 입자크기 변화 및 결정형을 조사하였는바, Zr-Fe-V 분말의 평균입자크기 변화를 전자현미경 분석에 의해 구한 결과, 레이저 빔의 에너지 증가에 따라 200, 100, 50 nm로 감소하며 변화하였다.As a result of investigating the particle size change and crystal form produced through the experiment, the average particle size change of Zr-Fe-V powder was determined by electron microscopy analysis. As a result, the energy of the laser beam increased to 200, 100, 50 nm. Decreased and changed.

도 2는 Zr-Fe-V 나노분말의 제조를 위해 사용된 시료인 Zr-Fe-V 합금 분말의 전자현미경 사진을 나타내고 있으며, 평균입자크기는 50 미크론이며 입자형상은 거의 다각형에 가까운 것을 알 수 있었다. 도 3는 레이저 빔의 에너지 증가에 따라 제조된 Zr-Fe-V 나노분말의 전자현미경 사진을 나타내고 있으며, 입자형상은 거의 구상에 가까운 것을 알 수 있었다.  Figure 2 shows an electron micrograph of the Zr-Fe-V alloy powder, a sample used for the production of Zr-Fe-V nanopowder, the average particle size is 50 microns and the particle shape is almost polygonal. there was. Figure 3 shows an electron micrograph of the Zr-Fe-V nanopowder prepared as the energy of the laser beam increases, it can be seen that the particle shape is almost spherical.

도 4에는 도 3에 나타난 분말 중 평균 입자크기 100 nm인 나노분말의 결정형 분석을 나타내고 있으며, 50 미크론의 원료분말의 결정형과을 비교한 동일한 합금 조성을 가진 Zr-Fe-V 합금 나노 분말이 실험을 통해 제조되었음을 알 수 있었다.Figure 4 shows the crystalline analysis of the nanopowder having an average particle size of 100 nm in the powder shown in Figure 3, Zr-Fe-V alloy nano powder having the same alloy composition compared to the crystal form of the raw material powder of 50 microns through experiments It can be seen that the preparation.

<실시예 2><Example 2>

실시예 1에서 사용한 Zr-Fe-V 합금 나노 분말 제조시 레이저가 조사되는 시료의 형태를 변화시켜 생성되는 분말의 입자크기를 조절하고자 하는 것이다.In preparing the Zr-Fe-V alloy nanopowder used in Example 1, it is intended to control the particle size of the powder produced by changing the shape of the sample irradiated with the laser.

평균입자크기가 50 미크론인 Zr-Fe-V 합금분말을 에탄올 용액 중에 그대로 분산시키거나 일정크기의 디스크형 펠릿(직경: 2.5 cm, 두께: 0.4 cm)을 투입 하여 용액 내에서 저속으로 회전시키면서 빔의 에너지가 56.5 mJ/mm2로 고정된 Nd:YaG 레이저(Spectron Laser Systems, Model SL802G-10; Pulse duration: 6-8 ns; Wavelength: 532 nm; Repetition rate: 10 Hz)를 조사시켜 분말을 제조하였다. 이때, 에탄올 100ml에 분말상태로 주입된 합금분말의 양은 14g 이었으며 디스크형 펠릿의 경우 진공 프레스에서 3,500psi로 가압하여 열처리 온도를 20, 850, 900℃로 변화시켜 시편을 준비하였다.The Zr-Fe-V alloy powder with an average particle size of 50 microns is dispersed in an ethanol solution as it is, or a certain size of disk pellets (diameter: 2.5 cm, thickness: 0.4 cm) is added and the beam is rotated at low speed in the solution. The powder was prepared by irradiating an Nd: YaG laser (Spectron Laser Systems, Model SL802G-10; Pulse duration: 6-8 ns; Wavelength: 532 nm; Repetition rate: 10 Hz) having an energy of 56.5 mJ / mm 2 . It was. At this time, the amount of the alloy powder injected into the ethanol 100ml powder was 14g and in the case of the disk-shaped pellets were pressurized to 3,500psi in a vacuum press to prepare a specimen by changing the heat treatment temperature to 20, 850, 900 ℃.

상기 실험을 통해 생성되는 입자크기 변화 및 결정형을 조사하였는바, Zr-Fe-V 분말의 평균입자크기 변화를 전자현미경 분석에 의해 구한 결과, 펠릿화 한 경우 열처리 온도 증가에 따라 평균입자크기가 변화하지 않고 100 nm에서 일정한 크기를 나타내었으며, 반응시료인 50 미크론급의 합금 분말을 용액 중에 분산시킨 경우 입자크기가 상당히 감소하였으며 그 평균입자크기가 50 nm 이었다. As a result of investigating the particle size change and crystal form produced through the experiment, the average particle size change of Zr-Fe-V powder was determined by electron microscopic analysis. It showed a constant size at 100 nm, the particle size was significantly reduced and the average particle size was 50 nm when 50 micron alloy powders were dispersed in the solution.

도 5는 합금 분말을 용액 중에 분산시킨 경우에 제조된 Zr-Fe-V 나노분말의 전자현미경 사진을 나타내고 있으며, 입자형상은 거의 구상에 가까운 것을 알 수 있었다. 5 shows an electron micrograph of the Zr-Fe-V nanopowder prepared when the alloy powder was dispersed in a solution, and it was found that the particle shape was almost spherical.

본 발명은 원료물질인 평균입자크기 50 미크론의 지르코늄-철-바나듐 합금 분말에 높은 에너지의 Nd:YaG 레이저를 조사하여 합금의 증발 및 응축 현상에 따라 생성 및 성장되는 분말의 입자크기 제어기술을 적용하여 원료물질과 동일한 조성을 갖으며 평균입자크기 범위가 50 ~ 150 nm의 지르코늄-철-바나듐 합금 나노 분말을 제조 할 수 있는 효과가 있다.The present invention is applied to the particle size control technology of the powder produced and grown according to the evaporation and condensation of the alloy by irradiating a high energy Nd: YaG laser to the zirconium-iron-vanadium alloy powder of the average particle size of 50 microns as a raw material It has the same composition as the raw material and has the effect of producing a zirconium-iron-vanadium alloy nanopowder having an average particle size range of 50 ~ 150 nm.

Claims (5)

레이저 애블레이션에 의한 지르코늄-철-바나듐 합금 나노 분말의 입자크기를 조절하는 방법에 있어서, In the method for controlling the particle size of the zirconium-iron-vanadium alloy nanopowder by laser ablation, 평균입자크기가 50㎛급의 지르코늄-철-바나듐 합금 펠렛 또는 분말을 에탄올 용액에 투입하는 단계;Adding zirconium-iron-vanadium alloy pellets or powder having an average particle size of 50 µm into an ethanol solution; 상기 투입된 지르코늄-철-바나듐 합금 펠렛 또는 분말을 용매 내부에 설치된 회동부에 의해 분산하여 분산액을 제조하는 단계;Dispersing the injected zirconium-iron-vanadium alloy pellets or powder by a rotating unit installed in a solvent to prepare a dispersion; 상기 분산된 용액에 레이저를 조사하는 단계; 및Irradiating a laser on the dispersed solution; And 상기 조사 시 레이저의 에너지를 변화시키고 합금을 증발 및 응축하여 조절된 크기의 지르코늄-철-바나듐 합금 나노 입자를 제조하는 단계;Preparing zirconium-iron-vanadium alloy nanoparticles of controlled size by varying the energy of the laser during the irradiation and evaporating and condensing the alloy; 에 의해 상기 지르코늄-철-바나듐 합금의 펠렛 또는 분말과 동일한 조성을 갖으며 조절된 크기를 갖는 구형의 지르코늄-철-바나듐 합금 나노 분말의 입자 크기를 조절하는 방법.And controlling the particle size of the spherical zirconium-iron-vanadium alloy nanopowder having the same composition as the pellet or powder of the zirconium-iron-vanadium alloy and having a controlled size. 제1항에 있어서, 상기 조절된 나노분말의 크기는 평균입경이 50 ~ 150 nm인 것을 특징으로 하는 구형의 지르코늄-철-바나듐 합금 나노 분말의 입자 크기를 조절하는 방법.According to claim 1, wherein the size of the adjusted nano-powder is a method of controlling the particle size of the spherical zirconium-iron-vanadium alloy nano powder, characterized in that the average particle diameter of 50 ~ 150 nm. 삭제delete 제1항에 있어서, 에탄올 용액에 장입된 지르코늄-철-바나듐 합금의 펠렛을 진공 분위기에서 가온,가압하여 제조한 것을 특징으로 하는 구형의 지르코늄-철-바나듐 합금 나노 분말의 입자 크기를 조절하는 방법.The method of controlling the particle size of the spherical zirconium-iron-vanadium alloy nanopowder according to claim 1, wherein the pellets of zirconium-iron-vanadium alloy charged in ethanol solution are heated and pressurized in a vacuum atmosphere. . 삭제delete
KR1020050028315A 2005-04-06 2005-04-06 Producing method for zirconium-iron-vanadium nanopowder using laser ablation KR100759286B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050028315A KR100759286B1 (en) 2005-04-06 2005-04-06 Producing method for zirconium-iron-vanadium nanopowder using laser ablation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050028315A KR100759286B1 (en) 2005-04-06 2005-04-06 Producing method for zirconium-iron-vanadium nanopowder using laser ablation

Publications (2)

Publication Number Publication Date
KR20060106043A KR20060106043A (en) 2006-10-12
KR100759286B1 true KR100759286B1 (en) 2007-09-17

Family

ID=37626816

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050028315A KR100759286B1 (en) 2005-04-06 2005-04-06 Producing method for zirconium-iron-vanadium nanopowder using laser ablation

Country Status (1)

Country Link
KR (1) KR100759286B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104014800B (en) * 2014-06-09 2016-01-27 天津大学 Utilize the preparation method of laser controlledly synthesis single dispersing active metal nano particle
KR101982934B1 (en) * 2017-09-25 2019-05-27 한국에너지기술연구원 Manufacturing system of metal nanoparticles using laser ablation
CN116000310A (en) * 2023-01-18 2023-04-25 上海交通大学包头材料研究院 Preparation method of zirconium ferrovanadium getter based on 3D printing and zirconium ferrovanadium getter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463203A (en) * 1990-06-29 1992-02-28 Agency Of Ind Science & Technol Manufacture of super fine particle suspension
KR20050023505A (en) * 2003-08-28 2005-03-10 학교법인단국대학 ENHANCED METHOD FOR PREPARING NONSPHERICAL Au-Pt BIMETALLIC NANOPARTICLES BY LASER ABLATION

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463203A (en) * 1990-06-29 1992-02-28 Agency Of Ind Science & Technol Manufacture of super fine particle suspension
KR20050023505A (en) * 2003-08-28 2005-03-10 학교법인단국대학 ENHANCED METHOD FOR PREPARING NONSPHERICAL Au-Pt BIMETALLIC NANOPARTICLES BY LASER ABLATION

Also Published As

Publication number Publication date
KR20060106043A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
Abid et al. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review
Kumar et al. Zinc oxide nanomaterials for photocatalytic degradation of methyl orange: a review
Habiba et al. Fabrication of nanomaterials by pulsed laser synthesis
Makarov Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithography
US20080006524A1 (en) Method for producing and depositing nanoparticles
Zhou et al. Particle size and pore structure characterization of silver nanoparticles prepared by confined arc plasma
Elsayed et al. Effect of focusing conditions and laser parameters on the fabrication of gold nanoparticles via laser ablation in liquid
Ghaem et al. Characterization of cobalt oxide nanoparticles produced by laser ablation method: Effects of laser fluence
JP5589168B2 (en) Gold nanoparticle and dispersion thereof, gold nanoparticle production method, nanoparticle production system
CN110484236A (en) The preparation method of bismuth quanta point material is grown in a kind of mesoporous silica nano-particle
KR100759286B1 (en) Producing method for zirconium-iron-vanadium nanopowder using laser ablation
Guo et al. Recent advances in green synthesis and modification of inorganic nanomaterials by ionizing and non-ionizing radiation
Musaev et al. Influence of the liquid environment on the products formed from the laser ablation of tin
Torrisi et al. Biocompatible nanoparticles production by pulsed laser ablation in liquids
CN103566604B (en) Efficient liquid steaming method based on liquid surface electromagnetic wave absorption structure membrane
CN112663333B (en) Method for depositing superfine nano metal powder on surface of fabric
Ali Preparation of gold nanoparticles by pulsed laser ablation in NaOH solution
Khashan Synthesis of polyynes by laser ablation of graphite in ethanol
CN111570811A (en) Method for preparing nano alloy liquid drops through laser irradiation
Cutroneo et al. Characterization of thin films for TNSA laser irradiation
JP4399780B2 (en) Method for producing spherical metal powder
JP2003306319A (en) Method for manufacturing nanoparticle of metal oxide
Enríquez-Sánchez et al. Colloidal MnOX NPs/Carbon sheets nanocomposite synthesis by laser ablation in liquids
Shimotsuma et al. Functional Nanomaterials Synthesized by Femtosecond Laser Pulses
Li et al. Control of the size and luminescence of carbon nanodots by adjusting ambient pressure in laser ablation process

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20130710

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140703

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150619

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160629

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170626

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180625

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20181226

Year of fee payment: 18