WO2005095701A1 - Process for producing nonwoven fabric and nonwoven fabric - Google Patents

Process for producing nonwoven fabric and nonwoven fabric Download PDF

Info

Publication number
WO2005095701A1
WO2005095701A1 PCT/JP2005/005874 JP2005005874W WO2005095701A1 WO 2005095701 A1 WO2005095701 A1 WO 2005095701A1 JP 2005005874 W JP2005005874 W JP 2005005874W WO 2005095701 A1 WO2005095701 A1 WO 2005095701A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
nonwoven fabric
sheath
core
melting point
Prior art date
Application number
PCT/JP2005/005874
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiyuki Ogata
Shin Kasai
Hirofumi Yashiro
Akio Ohta
Original Assignee
Ube Nitto Kasei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co., Ltd. filed Critical Ube Nitto Kasei Co., Ltd.
Priority to US10/599,400 priority Critical patent/US20080045109A1/en
Priority to EP05727361A priority patent/EP1739220A4/en
Priority to CA 2561911 priority patent/CA2561911A1/en
Publication of WO2005095701A1 publication Critical patent/WO2005095701A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/04Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments in rectilinear paths, e.g. crossing at right angles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/641Sheath-core multicomponent strand or fiber material

Definitions

  • the present invention relates to a method for producing a nonwoven fabric formed by laminating continuous fiber yarns and a nonwoven fabric formed by laminating continuous fiber yarns.
  • the braid includes triaxial braids laminated in the warp, diagonal, and reverse diagonal directions, and four-axis braids laminated in the warp, weft, diagonal, and reverse diagonal directions.
  • a manufacturing method of this braided fabric for example, a manufacturing method is known in which vinylon fibers and the like are aligned in a predetermined direction, and the fibers are bonded to each other with a hot melt adhesive or emulsion adhesive. Also, there is a manufacturing method in which reinforcing fibers (glass fiber, carbon fiber, alumina fiber, aramide fiber, etc.) coated with thermoplastic resin are aligned and fused together (for example, see Patent Document 1). There is also known a production method in which a thermoplastic resin is adhered to a surface of the resin by bonding (for example, see Patent Document 2).
  • a mesh sheet is also known in which a polyester polymer is used for the core portion and a sheath portion is knitted and woven using a polyester-based core-sheath yarn having a lower melting point than the polyester polymer used for the core portion.
  • a polyester-based core-sheath yarn having a lower melting point than the polyester polymer used for the core portion.
  • Patent Document 1 JP-A-11-20059
  • Patent document 2 WO00 / 21742
  • Patent Document 3 JP 2003-301346 A
  • both the braid and the mesh sheet of the above disclosed examples are inferior in flexibility and bendability and do not have sufficient followability.
  • Such yarns and mesh sheets are inferior in general versatility in the field of industrial materials such as concrete spalling prevention.
  • the present invention provides a nonwoven fabric comprising a continuous fiber having excellent flexibility and flexibility, excellent followability, and whose strength and flexibility can be adjusted according to the intended use and required characteristics. It is an object of the present invention to provide a method for producing the same. Another object of the present invention is to provide a nonwoven fabric made of continuous fiber obtained by this production method.
  • the method for producing a nonwoven fabric of the present invention has a core-sheath structure in which a fibrous core resin is surrounded by a resin having a melting point of 20 ° C or more and a lower melting point.
  • the composite yarn in the method for producing a nonwoven fabric of the present invention has excellent flexibility and strength because the sheath resin is fused, and furthermore, the resin single fiber does not disperse. In addition, it is possible to produce a nonwoven fabric having excellent flexibility and strength with less trouble in nonwoven fabric production. In addition, since the sheath resin of the core-sheath structure has a melting point lower than that of the core resin by 20 ° C. or more, after laminating the composite yarns in each direction in the nonwoven fabric manufacturing method of the present invention, the melting point of the core resin is reduced.
  • the nonwoven fabric of the present invention can be manufactured without using an adhesive such as a hot melt resin or a thermoplastic resin.
  • the difference in melting point is 20 ° C or more, the core resin becomes difficult to melt even when the sheath resin is melted, and the core resin maintains a fibrous form. It is possible to prevent the composite yarn from being deformed during the production of the nonwoven fabric. That is, since the deformation or cutting of the composite yarn, which is likely to occur when using a resin monofilament having no core-sheath structure, can be prevented, the production trouble is further reduced.
  • the composite yarns are laminated in at least three directions of the warp direction, the oblique direction, and the reverse oblique direction, a nonwoven fabric having excellent strength can be manufactured regardless of the direction.
  • the composite yarn in the method for producing a nonwoven fabric of the present invention also has a resin monofilament strength of 10 to 500 fibers.
  • the core resin has a fibrous island portion having a fineness of l to 70 dtex.
  • the sheath resin that forms (island part resin) and the fused sheath part forms sea part (sea part resin)! Since such a composite yarn is in the form of a fiber-reinforced thermoplastic resin, it has strength and rigidity in the longitudinal (fiber axis) direction. Can be further improved. Further, by adjusting the sectional diameter of the island resin and the number of bundles, the strength and flexibility can be made favorable, and the followability can be further improved.
  • the core resin and the sheath resin in the resin core fiber having a core-sheath structure are preferably polyolefin.
  • polyolefin As the core resin, flexibility and workability are improved.
  • both the core resin and the sheath resin are polyolefin, the affinity of the core resin and the sheath resin is excellent.
  • the composite yarn structure in which the core is a reinforcing fiber and the sheath is a matrix resin can be maintained without being separated from polyolefin, which is a fat.
  • polyolefin is non-polar, it can withstand acids and bases, and can produce a nonwoven fabric with excellent durability.
  • the core resin is preferably polypropylene, and the sheath resin is preferably polyethylene having a melting point of 120 ° C or lower.
  • the nonwoven fabric of such a configuration has the properties of the composite yarn and Together, they have particularly excellent flexibility and bendability and have excellent followability. In other words, when the conventional braid is used to cover a bent portion, it is inferior in flexibility and bendability and rebounds due to the elasticity of the braid, which makes it difficult to cover the corners. However, the nonwoven fabric of the present invention can be easily bent, and can be adhered to and adhere to an object.
  • the core resin is polypropylene
  • the melting point is relatively high, so that separation or decomposition by heat, acid, or a base can be prevented. Therefore, the shape of the nonwoven fabric can be maintained even after long-term use. Furthermore, since polypropylene is a thermoplastic resin, it can be recycled and is environmentally friendly.
  • the sheath resin is polyethylene, the melting point is relatively low, so that the sheath resin can be easily melted. Energy loss.
  • the nonwoven fabric of the present invention is a composite yarn (10 to 500 fibrous island resins having a fineness of l to 70 dtex) arranged in a fibrous sea resin (in the longitudinal direction of the fibrous sea resin). (It is preferable that fibrous island resin is arranged along the same direction) in at least three directions: longitudinal, diagonal, and reverse diagonal, and marine resin is melted and laminated. It is a nonwoven fabric in which yarns are bonded to each other, wherein the sea part resin has a melting point lower than the island part resin by 20 ° C or more. Since such a composite yarn is excellent in flexibility, a trouble in production of the nonwoven fabric is reduced, and a nonwoven fabric excellent in flexibility and strength can be obtained.
  • the method for producing a composite yarn in the nonwoven fabric of the present invention can be obtained by any of the following methods. That is,
  • (1) Core and sheath monofilaments are bundled and stretched at a temperature lower than the melting point of the core resin and higher than the melting point of the sheath resin to melt the sheath resin and fuse the sheath resin with each other.
  • seawater resin matrix
  • the core resin is island-water resin (reinforcement fiber) to form a sea-island composite yarn.
  • the sea-island composite yarn is preferably a sea-based resin and an island-based resin are polyolefins. Furthermore, the sea-based resin is polypropylene and the island-based resin has a melting point of 120. U, which is preferably polyethylene below ° C.
  • the mass ratio of island resin to sea resin in the composite yarn is 2
  • the method for producing a nonwoven fabric of the present invention it is possible to produce a nonwoven fabric which is excellent in flexibility and followability, and whose strength and flexibility can be adjusted according to the intended use and required properties. it can.
  • the nonwoven fabric obtained by this manufacturing method is useful as a material for preventing concrete from falling off, a net for protecting riverbeds, a net for preventing the outflow of cultured shellfish, a net for controlling pests, and a casing material for filters.
  • FIG. 1 is a plan view showing a nonwoven fabric according to an embodiment.
  • FIG. 2 is an enlarged perspective view of a portion P in FIG. 1.
  • FIG. 3 is a perspective view showing a bundled resin single fiber.
  • FIG. 4 is a perspective view showing a composite yarn that can be used for the nonwoven fabric of the present invention.
  • FIG. 5 is a plan view showing a positional relationship between a contact surface between a warp 11 and an oblique yarn 12 of the nonwoven fabric shown in FIG. 1 and a reverse oblique yarn 13.
  • FIG. 6 is a plan view showing an embodiment of a positional relationship between a contact surface between the warp yarn 11 and the diagonal yarn 12 and the reverse diagonal yarn 13 of the nonwoven fabric according to the present invention.
  • FIG. 7 is a plan view showing a drum and a traverser in a state where a warp group and a weft group are fed.
  • FIG. 8 is a front view showing a drum, a traverser, and a weft feeding mechanism.
  • FIG. 9 is a plan view showing a nonwoven fabric according to another embodiment.
  • FIG. 1 is a plan view showing a nonwoven fabric according to the embodiment.
  • the nonwoven fabric 10 shown in FIG. A plurality of reverse oblique yarns 13 are arranged in parallel, and a force is also formed.
  • the warp yarn 11, the oblique yarn 12 and the reverse oblique yarn 13 are all composite yarns, and are the same except that the aligned directions are different.
  • the warp 11, the oblique thread 12 and the reverse oblique thread 13 are all arranged at equal intervals, and the contact surface of the warp 11 and the oblique thread 12 is located on the reverse oblique thread 13.
  • FIG. 2 is an enlarged perspective view of a portion where the warp 11, the oblique yarn 12 and the reverse oblique yarn 13 intersect (region P in FIG. 1).
  • the warp yarn 11, the oblique yarn 12, and the reverse oblique yarn 13 according to the embodiment have an oval cross-sectional shape.
  • the warp yarn 11 is adhered to the oblique yarn 12 at the contact surface H
  • the reverse oblique yarn 13 is adhered to the oblique yarn 12 at the surface opposite to the contact surface H.
  • the contact surface H between the warp yarn 11 and the oblique yarn 12 and the contact surface between the oblique yarn 12 and the reverse oblique yarn 13 have the sheath resin melted and adhered.
  • FIG. 3 is a perspective view showing a bundle of resin single fibers (hereinafter referred to as a “resin single fiber bundle” t).
  • the resin single fiber bundle 20a shown in FIG. 3 is obtained by, for example, bundling resin single fibers in an undrawn state. That is, the resin single fiber bundle 20a is formed by bundling a plurality of resin single fibers 23a having a core-sheath structure including a core resin 21a and a sheath resin 22a.
  • FIG. 4 is a perspective view showing a composite yarn according to the present invention.
  • the composite yarn 20b is, for example, an undrawn resin single fiber bundle 20a obtained by bundling a plurality of resin single fibers 23a having a core-sheath structure shown in FIG.
  • the sheath resin is melted while being stretched, and the sheath resin is fused together to form a sea-island structure with a substantially elliptical cross-sectional shape.
  • the core resin 21a forms the island resin 21b, and the sheath resin 22a fuses to form the sea resin 22b. .
  • a sea-island structure is formed as a whole.
  • the composite yarn 20b thus obtained is most suitable as a composite yarn for obtaining the nonwoven fabric 10 in terms of strength and flexibility.
  • FIG. 5 and 6 are plan views showing the positional relationship between the contact surface between the warp yarn 11 and the oblique yarn 12 and the reverse oblique yarn 13.
  • FIG. 5 the contact surface between the warp yarn 11 and the oblique yarn 12 is on the reverse oblique yarn 13, and the nonwoven fabric 10 shown in FIG. 1 has such a positional relationship.
  • FIG. 6 the contact surface of the warp yarn 11 and the oblique yarn 12 does not exist on the reverse oblique yarn 13, and the warp 11 and the oblique yarn 12, the warp 11 and the reverse oblique yarn 13, the oblique yarn
  • the yarn 12 and the reverse oblique yarn 13 are bonded to each other. At least a part of the nonwoven fabric according to the present invention may have such a positional relationship.
  • the nonwoven fabric 10 Since the nonwoven fabric 10 has the fiber bundles laminated in the warp direction, the oblique direction, and the reverse oblique direction, the nonwoven fabric 10 has excellent strength regardless of the direction. Further, as shown in FIG. 1, the arrangement of the warp yarns 11, the oblique yarns 12, and the reverse oblique yarns 13 are all equidistant, and thus the nonwoven fabric 10 has excellent strength and excellent balance. Furthermore, since each fiber bundle forms an equilateral triangle by intersecting, the nonwoven fabric 10 is also excellent in design.
  • the non-woven fabric 10 can obtain desired flexibility and strength by adjusting the intervals between the warp yarns 11, the diagonal yarns 12, or the reverse diagonal yarns 13, and can reduce the size of the gap between the respective fiber bundles. It can also be adjusted. Therefore, the required characteristics can be imparted according to the use mode and purpose.
  • the nonwoven fabric 10 is excellent in strength and followability, so that it can be suitably used in the field of industrial materials.
  • the gap between the fiber bundles can be adjusted, for example, when used as a concrete spalling prevention material, if the gap between the fiber bundles is large to some extent, it will have excellent integrity with concrete and high spalling prevention performance. Can be demonstrated.
  • the nonwoven fabric 10 does not require a hot melt adhesive or a thermoplastic resin or the like for production, the step of applying the hot melt adhesive, the thermoplastic resin, or the like can be omitted. It can increase the speed. Further, the non-woven fabric 10 is composed of a warp 11, an oblique yarn 12, and a reverse oblique. Since the interlaced yarn 13 can be bonded by laminating and heating, it can be manufactured relatively easily. That is, mass production is easy and the productivity is excellent.
  • the marine resin 22b is melted when the nonwoven fabric 10 is manufactured, and is fused with the marine resin 22b of the adjacent composite yarn 20b. Glue. Therefore, the nonwoven fabric 10 exhibits high strength as a whole.
  • the core resin 21a needs to have a melting point higher by 20 ° C or more than the sheath resin 22a. If the difference in melting point is 20 ° C or more, the core resin becomes difficult to melt even when the sheath resin is melted, and the shape of the composite yarn can be maintained while maintaining the strength of the core fiber. . Therefore, the difference between the melting points is preferably large, more preferably 40 ° C. or more!
  • the core resin 21a also has a polypropylene force
  • the sheath resin 22a also has a polyethylene force
  • the sheath resin 22a is made of polyethylene
  • polyethylene is thermoplastic and has a relatively low melting point, so that it can be efficiently melted and bonded when heated.
  • the melting point of polypropylene is relatively high, so that it has excellent thermal stability even when used for a long time, and since it is non-polar, it is difficult to separate or decompose with acids or bases. It has excellent durability.
  • after use it can be easily recycled by melting and reshaping. Therefore, it is environmentally friendly because it does not become industrial waste and has excellent safety.
  • the polyethylene used is preferably a low-density polyethylene, and more preferably has a melting point of 120 ° C. or less. Since low-density polyethylene has a low melting point, bonding can be performed at a particularly low temperature, and processing efficiency is dramatically improved.
  • the fineness of the polypropylene which is the island part resin 21b is preferably 1 to 70 dtex, more preferably 2 to 50 dtex. 30dtex or less especially when flexibility is required Is preferred. If the fineness is less than ldtex, the island resin 21b becomes too thin, so that it is difficult to maintain the shape, and the physical properties after thermal bonding tend to be reduced. On the other hand, when the fineness exceeds 70 dte X, the resin single fiber 23a itself becomes too thick, so that flexibility and flexibility are impaired.
  • the composite yarn can be produced by stretching a plurality of resin single fibers 23a while being bundled.
  • the number of bundles is preferably 10 to 500. If the number is less than 10, the resin monofilament 23a becomes thick and spinnability may be deteriorated. If the number is more than 500, the spinning nozzle density increases and the resin monofilament 23a becomes thin, so that spinning is performed. And stretchability may be poor. More preferably, the number is 100 to 300.
  • the fineness of the composite yarn 20b is preferably 100 to 5000 dtex. If it is less than lOOdtex, it will be difficult to obtain the desired physical properties, and if it exceeds 5000dtex, the flexibility and followability may be impaired. More preferably, it is 500-3000 dtex
  • the nonwoven fabric according to the present invention preferably has a mass ratio of the island resin 21b to the sea resin 22b of 20:80 to 80:20. If the mass ratio of the island resin 21b to the sea resin 22b is less than 20%, it may be difficult to obtain desired physical properties, and the mass ratio of the island resin 21b to the sea resin 22b may be reduced. If the ratio exceeds 80%, the thermal adhesive strength may be reduced. More preferably, it is 40:60 to 70:30.
  • the nonwoven fabric 10 can be manufactured using a nonwoven fabric manufacturing apparatus.
  • FIG. 7 is a plan view of a manufacturing apparatus capable of manufacturing the nonwoven fabric 10
  • FIG. 8 is a front view thereof.
  • the nonwoven fabric manufacturing apparatus 30 shown in FIGS. 7 and 8 includes a drum 31 having a circular cross section, a traverser 34, and a weft feeding mechanism 35.
  • the drum 31 rotates counterclockwise in the figure around a rotation axis 32 parallel to the y direction.
  • the traverser 34 reciprocates in the y-direction along the side surface of the drum 31 and forms an oblique thread group T3 on the warp group T1 supplied to the drum 31.
  • the weft feeding mechanism 35 feeds the weft group T2 for forming the diagonal yarn group T3 to the traverser 34.
  • a warp group T1 in which a plurality of warps 11 are arranged in parallel in a warp direction (X direction in the figure) is formed on a side surface of a cylindrical drum 31. Along the circumference, it is supplied so as to wind in a circumferential direction.
  • the drum 31 is rotatable about an axis 32. It is supported by a table (not shown) and rotates at a constant speed with respect to the base.
  • a thread hook 33a is provided, and on the circumference of the other edge, a thread hook 33b is provided so as to protrude vertically to the cylindrical side surface. It is arranged to separate.
  • the traverser 34 is provided in an arc shape along the side surface of the drum 31 and is supported along the side surface of the drum 31 so as to reciprocate in the Y direction.
  • the traverser 34 has a through-hole 36 through which each of the weft group T2 sent from the weft sending mechanism 35 passes.
  • the weft group T2 is sent from the weft feed mechanism 35 to the drum 31 via the through hole 36, and reciprocates on both edges of the drum 31 while being alternately hooked between the yarn hooks 33a and 33b.
  • the nonwoven fabric 10 is formed by the oblique thread group T3 which is obliquely stretched on the warp group T1.
  • the reciprocating pitch of the traverser 34 is controlled so as to have a predetermined ratio with respect to the rotation pitch of the drum 31.
  • the ratio between the reciprocating pitch of the traverser 34 and the rotation pitch of the drum 31 may be controlled directly in a mechanically linked manner or indirectly by a servomotor.
  • a nonwoven fabric having higher strength may be required.
  • the strength can be increased by increasing the density of the yarn and cloth as described above. That is, the number of the warp yarns 11 in the warp group T1 in which a plurality of warp yarns 11 are arranged in parallel in the warp direction (the X direction in the drawing) or the yarn hooks 33a provided on the circumference of the edge of the drum 31 and By reducing the interval of 33b, it is possible to provide a high density nonwoven fabric
  • composite yarns aligned in the warp direction, the oblique direction, and the reverse oblique direction are bonded by heating.
  • the heating temperature is lower than the melting point of the core resin and higher than the melting point of the sheath resin.
  • Heating for melting the sheath resin is preferably contact heating using a heating roller or the like.
  • pressurization such as cylinder pressurization, air pressurization, and pressurization by its own weight.
  • a treatment is also performed.
  • the pressure treatment the area of the contact surface of the composite yarn becomes large, the adhesive force of the contact surface becomes strong, and at the same time, the thickness of the nonwoven fabric can be adjusted.
  • the nonwoven fabric according to the present invention be pressurized in a heated state.
  • the force described in the embodiment of the method for manufacturing a nonwoven fabric according to the present invention is not necessarily limited to the above-described embodiment, and various modifications can be made.
  • the resin single fiber bundle 23a is formed into the composite yarn 20b
  • diverting the crimping and false twisting techniques the flexibility of the fiber is improved and the workability of the nonwoven fabric is improved.
  • the nonwoven fabric 10 according to the embodiment of the present invention is a triaxial fabric in which composite yarns are laminated in the warp direction, the oblique direction, and the reverse oblique direction.
  • the crossing angle between the warp 11 and the oblique yarn 12 or the reverse oblique yarn 13 is preferably 60 ⁇ 10 °.
  • the composite yarn can be knitted on the triaxial fabric in the weft direction. That is, a four-axis fabric in which composite yarns are laminated in the warp direction, the weft direction, the oblique direction, and the reverse oblique direction can be used.
  • the weft is orthogonal to the warp direction.
  • the crossing angle between the warp or weft and the diagonal or reverse diagonal is preferably 45 ⁇ 10 °.
  • a four-axis fabric is excellent in strength, and even when twisted.
  • the core resin 21a is made of polypropylene
  • the sheath resin 22a is made of polyethylene.
  • Resin. Specifically, polyethylene terephthalate and polyamide (nylon) are used as the core resin 21a, and resins having a lower melting point and various copolymer resins are used as the sheath resin 22a.
  • polyolefin which is preferably an alkali-resistant thermoplastic resin for the core resin 21a and the sheath resin 22a. More preferred. Core resin 21a with polyolefin By doing so, followability and workability are improved.
  • the core resin 21a and the sheath resin 22a are both polyolefins, the affinity of the core resin 21a and the sheath resin 22a is excellent.
  • the core resin 2 la, polyolefin can maintain the core-sheath structure without separation.
  • polyolefin is non-polar, it is possible to produce a nonwoven fabric that is resistant to acids and bases and has excellent durability.
  • FIG. 9 is a plan view showing a nonwoven fabric 40 according to another embodiment.
  • the nonwoven fabric 40 includes a plurality of warp yarns 11 arranged in parallel in the warp direction, a plurality of diagonal yarns 12 arranged diagonally to the warp yarns 11, and a plurality of reverse oblique lines arranged diagonally to the warp yarns 11 and the diagonal yarns 12. Thread 13 and power are also composed!
  • the warp yarns 11 are alternately bonded to one side and the other side of the contact surface of the oblique yarn 12 and the reverse oblique yarn 13.
  • the nonwoven fabric 40 having such a structure is particularly excellent in strength and also excellent in strength when twisted.
  • it when used as a concrete spalling prevention material, it exhibits high strength regardless of the shape of the concrete, and is particularly excellent in durability and useful.
  • the method for manufacturing the nonwoven fabric 40 is such that the warp 11 is drawn and adhered only to one surface of the contact surface of the oblique yarn 12 and the reverse oblique yarn 13, and then the warp 11 is drawn and adhered to the other surface. It is manufactured by
  • the obtained composite yarn was 2200 dtex, the single fiber diameter of the island part resin was 33., and the strength was 6.0. cNZdtex.
  • the obtained composite yarn was used as a warp and a weft, and the warp, the diagonal yarn, and the reverse diagonal yarn were laminated at a pitch of 9 mm using the manufacturing apparatus shown in FIGS. At that time, the warp yarns were alternately arranged in the upper and lower layers, and the diagonal yarns and the reverse diagonal yarns were laminated so as to be located in the intermediate layer. Then, the nonwoven fabric A was obtained by contact heating with a heating roller having a surface temperature of 150 ° C. to melt the marine resin of the composite yarn and adhere the composite yarn of each layer.
  • the nonwoven fabric B was impregnated with an acrylic adhesive and heated by contact with a heating roller having a surface temperature of 150 ° C. to obtain a nonwoven fabric B having an adhesive amount of 20% by weight based on the vinylon fiber yarn.
  • the non-woven fabric A of the example had a fold that was easy to be folded, and the folded shape was maintained as it was.
  • the non-woven fabric B of the comparative example had a strong repulsive force to return to the original shape where the fold was difficult to be formed. It was difficult to maintain the shape.
  • the nonwoven fabric A of the example has a lower strength than the nonwoven fabric B of the comparative example in terms of material, and has a higher strength in terms of adhesive strength. You In other words, since the nonwoven fabric A of the example has tightly bonded composite yarns, it is particularly likely that the nonwoven fabric A has excellent adhesion in the weft direction, has improved strength, and has excellent followability.
  • the nonwoven fabric of the present invention has excellent flexibility and bendability, has excellent followability, and is capable of adjusting the strength and flexibility according to the intended use and required characteristics, so that the concrete can be prevented from peeling off. It can be applied particularly as an industrial material such as a material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nonwoven Fabrics (AREA)
  • Multicomponent Fibers (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Laminated Bodies (AREA)

Abstract

A process for producing a nonwoven fabric, comprising the laminating step of laminating conjugate yarns in at least three directions of the warp direction, diagonal direction and reverse diagonal direction, the conjugate yarns obtained by bundling multiple resin monofilaments each having a sheath-core structure composed of a fibrous core resin surrounded by a sheath resin whose melting point is ≥ 20˚C lower than that of the core resin and effecting fusion bonding of the sheath resins; and the bonding step of heating the laminated filament bundles at temperature that is lower than the melting point of the core resin but higher than the melting point of the sheath resin so as to effect bonding thereof. Thus, there is provided a process for producing a nonwoven fabric excelling in flexibility and follow properties that is capable of regulating the strength, etc. thereof in conformity with the intended application field and demanded properties, and provided such a nonwoven fabric.

Description

明 細 書  Specification
不織布の製造方法及び不織布  Nonwoven fabric manufacturing method and nonwoven fabric
技術分野  Technical field
[0001] 本発明は、連続繊維糸を積層してなる不織布の製造方法及び連続繊維糸を積層 してなる不織布に関する。  The present invention relates to a method for producing a nonwoven fabric formed by laminating continuous fiber yarns and a nonwoven fabric formed by laminating continuous fiber yarns.
背景技術  Background art
[0002] コンクリート剥落防止材等の産業資材として、ガラス繊維、炭素繊維、ァラミド繊維、 ビニロン繊維などの織物、編物のほか、各種の組布 (登録商標)(連続繊維不織布) が一般に用いられている。組布には、経方向、斜方向及び逆斜方向に積層した三軸 組布や、経方向、緯方向、斜方向及び逆斜方向に積層した四軸組布がある。  [0002] As industrial materials such as concrete spalling prevention materials, in addition to woven fabrics and knitted fabrics such as glass fiber, carbon fiber, aramid fiber, and vinylon fiber, various braided fabrics (registered trademark) (continuous fiber nonwoven fabric) are generally used. I have. The braid includes triaxial braids laminated in the warp, diagonal, and reverse diagonal directions, and four-axis braids laminated in the warp, weft, diagonal, and reverse diagonal directions.
[0003] この組布の製造方法としては、例えば、ビニロン繊維等を所定の方向に引き揃え、 ホットメルト接着剤ゃェマルジヨン接着剤で繊維同士を接着させる製造方法が知られ ている。また、熱可塑性榭脂により被覆された強化繊維 (ガラス繊維、炭素繊維、アル ミナ繊維、ァラミド繊維等)を引き揃えそれらを融着させる製造方法 (例えば、特許文 献 1参照)や、強化繊維の表面上に熱可塑性榭脂を付着させて接着させる製造方法 (例えば、特許文献 2参照)も公知である。更に、芯部にポリエステル系重合体を、鞘 部に芯部のポリエステル系重合体よりも低い融点を有するポリエステル系重合体の 芯鞘構造糸を用いて製編織したメッシュシートも知られている (例えば、特許文献 3参 照)。  [0003] As a manufacturing method of this braided fabric, for example, a manufacturing method is known in which vinylon fibers and the like are aligned in a predetermined direction, and the fibers are bonded to each other with a hot melt adhesive or emulsion adhesive. Also, there is a manufacturing method in which reinforcing fibers (glass fiber, carbon fiber, alumina fiber, aramide fiber, etc.) coated with thermoplastic resin are aligned and fused together (for example, see Patent Document 1). There is also known a production method in which a thermoplastic resin is adhered to a surface of the resin by bonding (for example, see Patent Document 2). Further, a mesh sheet is also known in which a polyester polymer is used for the core portion and a sheath portion is knitted and woven using a polyester-based core-sheath yarn having a lower melting point than the polyester polymer used for the core portion. For example, see Patent Document 3).
特許文献 1:特開平 11― 20059号公報  Patent Document 1: JP-A-11-20059
特許文献 2: WO00/21742号公報  Patent document 2: WO00 / 21742
特許文献 3:特開 2003 - 301346号公報  Patent Document 3: JP 2003-301346 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しかし、ビニロン繊維を組んだ後、ホットメルト接着剤ゃェマルジヨン接着剤で接着 させる製造方法では、接着剤が必要であるためコスト高になり、不要な箇所にも接着 剤が付着するため、不織布製造工程の作業環境に劣る問題がある。 [0005] また、熱可塑性榭脂を用いて強化繊維を融着させる方法では、強化繊維を熱可塑 性榭脂で完全に被覆することが困難であるため接着力が十分でなぐその結果、コン クリート剥落防止等の特に長期間にわたる用途に適用する場合、耐久性が十分では ない。 [0004] However, in a manufacturing method in which vinylon fibers are assembled and then bonded with a hot-melt adhesive or emulsion adhesive, an adhesive is required, which increases the cost, and the adhesive also adheres to unnecessary parts. However, there is a problem that the working environment of the nonwoven fabric manufacturing process is inferior. [0005] Furthermore, in the method of fusing reinforcing fibers using a thermoplastic resin, it is difficult to completely cover the reinforcing fibers with the thermoplastic resin, so that the adhesive strength is insufficient, and as a result, The durability is not sufficient, especially when applied to long-term applications such as cleat separation prevention.
[0006] 一方、ポリエステル系重合体の芯鞘構造糸を用いて製編織したメッシュシートにお いては、糸且布のように繊維間の空隙を大きくすることができないのでコンクリート剥落 防止材等として適用することが困難であったり、またメッシュ体の製造に手間が力かり 、コスト高になる問題がある。  [0006] On the other hand, in a mesh sheet knitted and woven using a core-sheath structured yarn of a polyester-based polymer, the gap between the fibers cannot be increased as in the case of yarn and cloth. There are problems that it is difficult to apply and that the production of the mesh body is troublesome and costly.
[0007] 更に、上記の開示例の組布及びメッシュシートはいずれも柔軟性や屈曲性に劣り 追随性が十分ではな 、。このような糸且布及びメッシュシートであるとコンクリート剥落防 止等の産業資材の分野では汎用性が劣ることとなるため、その改善が強く望まれて いる。  [0007] Furthermore, both the braid and the mesh sheet of the above disclosed examples are inferior in flexibility and bendability and do not have sufficient followability. Such yarns and mesh sheets are inferior in general versatility in the field of industrial materials such as concrete spalling prevention.
[0008] そこで、本発明は優れた柔軟性および屈曲性を有し追随性に優れ、且つ使用用途 や必要とする特性に応じて強度や柔軟性を調整することも可能な連続繊維からなる 不織布の製造方法を提供することを目的とする。本発明はまたこの製造方法により得 られる連続繊維カゝらなる不織布を提供することを目的とする。  [0008] Therefore, the present invention provides a nonwoven fabric comprising a continuous fiber having excellent flexibility and flexibility, excellent followability, and whose strength and flexibility can be adjusted according to the intended use and required characteristics. It is an object of the present invention to provide a method for producing the same. Another object of the present invention is to provide a nonwoven fabric made of continuous fiber obtained by this production method.
課題を解決するための手段  Means for solving the problem
[0009] 上記目的を達成するため、本発明の不織布の製造方法は、繊維状の芯部榭脂が これより 20°C以上融点の低い鞘部榭脂で囲繞された芯鞘構造を有する榭脂単繊維 を複数本集束し、この鞘部榭脂を融合させてなる複合糸を経方向、斜方向及び逆斜 方向の少なくとも 3方向に積層する積層工程と、積層した複合糸同士を芯部榭脂の 融点より低ぐ且つ鞘部榭脂の融点より高い温度で加熱して接着する接着工程と、を 備えることを特徴とする。  [0009] In order to achieve the above object, the method for producing a nonwoven fabric of the present invention has a core-sheath structure in which a fibrous core resin is surrounded by a resin having a melting point of 20 ° C or more and a lower melting point. A laminating step of bundling a plurality of fat monofilaments and laminating a composite yarn obtained by fusing the sheath with the fat in at least three directions of a warp direction, a diagonal direction, and a reverse diagonal direction; A bonding step of bonding by heating at a temperature lower than the melting point of the resin and higher than the melting point of the sheath resin.
[0010] 本発明の不織布の製造方法における複合糸は、鞘部榭脂を融合させているため、 優れた柔軟性、強度を有しており、更に榭脂単繊維がばらけることがないので、不織 布製造においてトラブルが少なぐ柔軟性、強度の優れた不織布を製造することがで きる。また、芯鞘構造の鞘部榭脂が芯部榭脂より 20°C以上融点が低いため、本発明 の不織布の製造方法において複合糸を各方向に積層した後、芯部榭脂の融点より 低く鞘部榭脂の融点より高 ヽ温度で加熱した場合、芯部榭脂を溶融させず鞘部榭脂 のみを溶融させ、複合糸同士を接着させることが可能となる。すなわち、ホットメルト榭 脂や熱可塑性榭脂等の接着剤を使用しなくても本発明の不織布を製造することがで きる。また、融点の差が 20°C以上であることから、鞘部榭脂を溶融させても芯部榭脂 は溶融し難くなり、芯部榭脂は繊維状の形態を維持しているので、不織布の製造時 に複合糸が変形することを防止することが可能となる。すなわち、芯鞘構造を有しな い榭脂単繊維を用いたときに生じやすい複合糸の変形や切断を防止することができ るため、製造上のトラブルが更に少なくなる。 [0010] The composite yarn in the method for producing a nonwoven fabric of the present invention has excellent flexibility and strength because the sheath resin is fused, and furthermore, the resin single fiber does not disperse. In addition, it is possible to produce a nonwoven fabric having excellent flexibility and strength with less trouble in nonwoven fabric production. In addition, since the sheath resin of the core-sheath structure has a melting point lower than that of the core resin by 20 ° C. or more, after laminating the composite yarns in each direction in the nonwoven fabric manufacturing method of the present invention, the melting point of the core resin is reduced. When heating at a lower temperature than the melting point of the sheath resin, only the sheath resin is melted without melting the core resin and the composite yarns can be bonded to each other. That is, the nonwoven fabric of the present invention can be manufactured without using an adhesive such as a hot melt resin or a thermoplastic resin. In addition, since the difference in melting point is 20 ° C or more, the core resin becomes difficult to melt even when the sheath resin is melted, and the core resin maintains a fibrous form. It is possible to prevent the composite yarn from being deformed during the production of the nonwoven fabric. That is, since the deformation or cutting of the composite yarn, which is likely to occur when using a resin monofilament having no core-sheath structure, can be prevented, the production trouble is further reduced.
[0011] また、経方向、斜方向及び逆斜方向の少なくとも 3方向に複合糸を積層するため、 方向性を問わず強度に優れる不織布を製造することができる。  [0011] Further, since the composite yarns are laminated in at least three directions of the warp direction, the oblique direction, and the reverse oblique direction, a nonwoven fabric having excellent strength can be manufactured regardless of the direction.
[0012] 本発明の不織布の製造方法における複合糸は、 10〜500本の榭脂単繊維力もな るものであり、複合糸において、芯部榭脂が繊度 l〜70dtexの繊維状の島部(島部 榭脂)を形成し、融合した鞘部榭脂は海部 (海部榭脂)を形成して 、ることが好まし!/、 。このような複合糸は、繊維強化熱可塑性榭脂の形態なので、長手 (繊維軸)方向に 強度性、剛性を有しており、このような複合糸を用いることにより不織布の柔軟性、強 度を更に向上させることができる。また、島部榭脂の断面径ゃ集束本数を調整するこ とにより、強度や柔軟性を好適にすることができ、追随性も一層向上させることができ る。  [0012] The composite yarn in the method for producing a nonwoven fabric of the present invention also has a resin monofilament strength of 10 to 500 fibers. In the composite yarn, the core resin has a fibrous island portion having a fineness of l to 70 dtex. It is preferable that the sheath resin that forms (island part resin) and the fused sheath part forms sea part (sea part resin)! Since such a composite yarn is in the form of a fiber-reinforced thermoplastic resin, it has strength and rigidity in the longitudinal (fiber axis) direction. Can be further improved. Further, by adjusting the sectional diameter of the island resin and the number of bundles, the strength and flexibility can be made favorable, and the followability can be further improved.
[0013] また、本発明の不織布の製造方法では、芯鞘構造の榭脂単繊維における芯部榭 脂及び鞘部榭脂はポリオレフインであることが好ま 、。芯部榭脂をポリオレフインと することにより柔軟性及び作業性が優れるようになる。また、芯部榭脂及び鞘部榭脂 が共にポリオレフインである場合は芯部榭脂及び鞘部榭脂の親和性が優れるため、 鞘部榭脂であるポリオレフインが溶融したとしても、芯部榭脂であるポリオレフインから 分離することなく芯部が補強繊維、鞘部がマトリックス榭脂の形態の複合糸構造を維 持することができる。また、ポリオレフインは無極性であることから酸や塩基にも強ぐ 耐久性に優れる不織布を製造することができる。  [0013] Further, in the method for producing a nonwoven fabric of the present invention, the core resin and the sheath resin in the resin core fiber having a core-sheath structure are preferably polyolefin. By using polyolefin as the core resin, flexibility and workability are improved. In addition, when both the core resin and the sheath resin are polyolefin, the affinity of the core resin and the sheath resin is excellent. The composite yarn structure in which the core is a reinforcing fiber and the sheath is a matrix resin can be maintained without being separated from polyolefin, which is a fat. In addition, since polyolefin is non-polar, it can withstand acids and bases, and can produce a nonwoven fabric with excellent durability.
[0014] 上記の芯部榭脂はポリプロピレンであることが好ましぐ鞘部榭脂は融点 120°C以 下のポリエチレンであることが好ましい。このような構成の不織布は、複合糸の特性と 相俟って、特に優れた柔軟性及び屈曲性を有し追随性に優れる。すなわち、従来の 組布では折れ曲がった箇所を被覆するように用いた場合、柔軟性および屈曲性が劣 るため組布の弾力性で跳ね返ってしまい角部の被覆が困難であつたのに対して、本 発明の不織布は容易に折れ曲がり、対象物に追随し密着した施工を行うことができる [0014] The core resin is preferably polypropylene, and the sheath resin is preferably polyethylene having a melting point of 120 ° C or lower. The nonwoven fabric of such a configuration has the properties of the composite yarn and Together, they have particularly excellent flexibility and bendability and have excellent followability. In other words, when the conventional braid is used to cover a bent portion, it is inferior in flexibility and bendability and rebounds due to the elasticity of the braid, which makes it difficult to cover the corners. However, the nonwoven fabric of the present invention can be easily bent, and can be adhered to and adhere to an object.
[0015] 芯部榭脂がポリプロピレンであると、融点が比較的高いことから、熱、或いは酸や塩 基によって分離したり分解したりすることを防止することができる。したがって、長期間 使用しても不織布の形態を維持することができる。更に、ポリプロピレンは熱可塑性 榭脂であるため、リサイクルすることも可能となり環境にもやさしい。 [0015] If the core resin is polypropylene, the melting point is relatively high, so that separation or decomposition by heat, acid, or a base can be prevented. Therefore, the shape of the nonwoven fabric can be maintained even after long-term use. Furthermore, since polypropylene is a thermoplastic resin, it can be recycled and is environmentally friendly.
[0016] また、鞘部榭脂がポリエチレンであると融点が比較的低 、ことから、容易に溶融させ ることができ、特に融点 120°C以下であるとカ卩ェ効率が飛躍的に向上し、エネルギー ロスち少なくなる。  [0016] In addition, if the sheath resin is polyethylene, the melting point is relatively low, so that the sheath resin can be easily melted. Energy loss.
[0017] 本発明の不織布は、繊度 l〜70dtexの繊維状の島部榭脂 10〜500本が繊維状 の海部榭脂中に配された複合糸 (繊維状の海部榭脂の長手方向に沿うように繊維状 の島部榭脂が配されていることが好ましい)を、経方向、斜方向及び逆斜方向の少な くとも 3方向に積層し、海部榭脂を溶融させて積層した複合糸同士を接着した不織布 であって、海部榭脂が島部榭脂より 20°C以上低い融点を有することを特徴とする不 織布である。このような複合糸は柔軟性に優れるため不織布の製造上でのトラブルが 少なぐ且つ柔軟性、強度に優れた不織布を得ることができる。  [0017] The nonwoven fabric of the present invention is a composite yarn (10 to 500 fibrous island resins having a fineness of l to 70 dtex) arranged in a fibrous sea resin (in the longitudinal direction of the fibrous sea resin). (It is preferable that fibrous island resin is arranged along the same direction) in at least three directions: longitudinal, diagonal, and reverse diagonal, and marine resin is melted and laminated. It is a nonwoven fabric in which yarns are bonded to each other, wherein the sea part resin has a melting point lower than the island part resin by 20 ° C or more. Since such a composite yarn is excellent in flexibility, a trouble in production of the nonwoven fabric is reduced, and a nonwoven fabric excellent in flexibility and strength can be obtained.
[0018] 本発明の不織布における複合糸の製造方法は、下記いずれかの方法により得るこ とができる。すなわち、  [0018] The method for producing a composite yarn in the nonwoven fabric of the present invention can be obtained by any of the following methods. That is,
( 1)芯鞘構造の榭脂単繊維を集束し、芯部榭脂の融点より低く鞘部榭脂の融点より 高い温度で延伸しつつ鞘部榭脂を溶融せしめ鞘部榭脂同士を融合し海部榭脂 (マト リックス)を構成させ、芯部榭脂を島部榭脂 (補強繊維)とする海島構造の複合糸とす る方法。  (1) Core and sheath monofilaments are bundled and stretched at a temperature lower than the melting point of the core resin and higher than the melting point of the sheath resin to melt the sheath resin and fuse the sheath resin with each other. In this method, seawater resin (matrix) is composed and the core resin is island-water resin (reinforcement fiber) to form a sea-island composite yarn.
(2)延伸された芯鞘構造の繊維を引き揃えた状態で鞘部の融点より高ぐ芯部の融 点より低 、温度で加熱しつつ、所定径のダイスに通して鞘部同士を熱融着する方法 (3)島部榭脂と、この島部榭脂より 20°C以上融点の低い海部榭脂からなる海島構造 を有する未延伸糸を延伸させる方法。 (2) In a state where the drawn fibers of the core-sheath structure are aligned, while heating at a temperature lower than the melting point of the core, which is higher than the melting point of the sheath, and passing through a die having a predetermined diameter, the sheaths are heated. How to fuse (3) A method of drawing an undrawn yarn having a sea-island structure comprising an island resin and a sea resin having a melting point lower than that of the island resin by 20 ° C or more.
より優れた柔軟性および強度を有する複合糸を得るためには、上述の(1)または(2 In order to obtain a composite yarn having better flexibility and strength, the above-mentioned (1) or (2)
)の方法が好ましぐ特に(1)の方法が好ま U、。 U), especially the method (1) is preferred.
[0019] また、本発明の不織布における海島構造の複合糸は、海部榭脂および島部榭脂 はポリオレフインであることが好ましぐさらに、海部榭脂はポリプロピレンであり島部榭 脂は融点 120°C以下のポリエチレンであることが好ま U、。 In the nonwoven fabric of the present invention, the sea-island composite yarn is preferably a sea-based resin and an island-based resin are polyolefins. Furthermore, the sea-based resin is polypropylene and the island-based resin has a melting point of 120. U, which is preferably polyethylene below ° C.
[0020] 本発明の不織布においては、複合糸における島部榭脂と海部榭脂の質量比が、 2[0020] In the nonwoven fabric of the present invention, the mass ratio of island resin to sea resin in the composite yarn is 2
0: 80〜80: 20であることが好ましい。このような質量比にすることにより、強度及び柔 軟性を適宜調整することができる。 It is preferably 0:80 to 80:20. With such a mass ratio, strength and flexibility can be appropriately adjusted.
発明の効果  The invention's effect
[0021] 本発明の不織布の製造方法によれば、柔軟性及び追随性に優れ、且つ使用用途 や必要とする特性に応じて強度や柔軟性を調整することも可能な不織布を製造する ことができる。また、この製造方法で得られる不織布は、コンクリート剥落防止材、河 川敷の保護網、養殖貝の流出防止網、害獣対策のためのネット、フィルターのケーシ ング材などに有用である。  According to the method for producing a nonwoven fabric of the present invention, it is possible to produce a nonwoven fabric which is excellent in flexibility and followability, and whose strength and flexibility can be adjusted according to the intended use and required properties. it can. In addition, the nonwoven fabric obtained by this manufacturing method is useful as a material for preventing concrete from falling off, a net for protecting riverbeds, a net for preventing the outflow of cultured shellfish, a net for controlling pests, and a casing material for filters.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]図 1は、実施形態に係る不織布を示す平面図である。 FIG. 1 is a plan view showing a nonwoven fabric according to an embodiment.
[図 2]図 2は、図 1の P部を拡大した斜視図である。  FIG. 2 is an enlarged perspective view of a portion P in FIG. 1.
[図 3]図 3は、集束した榭脂単繊維を示す斜視図である。  FIG. 3 is a perspective view showing a bundled resin single fiber.
[図 4]図 4は、本発明の不織布に用いることのできる複合糸を示す斜視図である。  FIG. 4 is a perspective view showing a composite yarn that can be used for the nonwoven fabric of the present invention.
[図 5]図 5は、図 1に係る不織布の経糸 11と斜交糸 12との接面と逆斜交糸 13の位置 関係を示す平面図である。  FIG. 5 is a plan view showing a positional relationship between a contact surface between a warp 11 and an oblique yarn 12 of the nonwoven fabric shown in FIG. 1 and a reverse oblique yarn 13.
[図 6]図 6は、本発明に係る不織布の経糸 11と斜交糸 12との接面と逆斜交糸 13の位 置関係の一形態を示す平面図である。  FIG. 6 is a plan view showing an embodiment of a positional relationship between a contact surface between the warp yarn 11 and the diagonal yarn 12 and the reverse diagonal yarn 13 of the nonwoven fabric according to the present invention.
[図 7]図 7は、経糸群、緯糸群が送られた状態のドラム及びトラバーサを示す平面図 である。  FIG. 7 is a plan view showing a drum and a traverser in a state where a warp group and a weft group are fed.
[図 8]図 8は、ドラム、トラバーサ、及び緯糸送り出し機構を示す正面図である。 [図 9]図 9は、他の実施形態に係る不織布を示す平面図である。 FIG. 8 is a front view showing a drum, a traverser, and a weft feeding mechanism. FIG. 9 is a plan view showing a nonwoven fabric according to another embodiment.
符号の説明  Explanation of symbols
[0023] 10, 40· · ·不織布、 11 · · ·経糸、 12· · ·斜交糸、 13· · ·逆斜交糸、 20a…樹脂単繊維 束、 20b…複合糸、 21a…芯部榭脂、 21b…島部榭脂、 22a…鞘部榭脂、 22b…海 部榭脂、 23a…榭脂単繊維、 30· · ·不織布製造装置、 31 · · ·ドラム、 32…回転軸、 33a , 33b…糸掛具、 34…トラバーサ、 35…緯糸送り出し機構、 36· · ·貫通孔、 H…接面 、 Τ1 · · ·経糸群、 T2…緯糸群、 Τ3· · ·斜交糸群。  [0023] 10, 40 · · · non-woven fabric, 11 · · warp, 12 · · · oblique yarn, 13 · · · reverse oblique yarn, 20a ... resin single fiber bundle, 20b ... composite yarn, 21a ... core Resin, 21b ... island resin, 22a ... sheath resin, 22b ... sea resin, 23a ... resin monofilament, 30 ... nonwoven fabric manufacturing equipment, 31 ... drum, 32 ... rotating shaft, 33a, 33b: thread hooking device, 34: traverser, 35: weft feeding mechanism, 36: through-hole, H: contact surface, Τ1 · · · warp group, T2: weft group, Τ3 · · oblique yarn group.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 以下、図面を参照して本発明の好適な実施形態について詳細に説明する。図 1は 、実施形態に係る不織布を示す平面図である。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a plan view showing a nonwoven fabric according to the embodiment.
[0025] 図 1に示す不織布 10は、経方向に複数並列した経糸 11と、経糸 11と斜交するよう に複数並列した斜交糸 12と、経糸 11及び斜交糸 12に斜交するように複数並列した 逆斜交糸 13と、力も構成されている。ここで、経糸 11、斜交糸 12及び逆斜交糸 13は いずれも複合糸であり、引き揃えられた方向が異なる以外は同一である。また、経糸 11、斜交糸 12及び逆斜交糸 13はいずれも等間隔で配列され、経糸 11及び斜交糸 12の接面は逆斜交糸 13上に位置して!/、る。  [0025] The nonwoven fabric 10 shown in FIG. A plurality of reverse oblique yarns 13 are arranged in parallel, and a force is also formed. Here, the warp yarn 11, the oblique yarn 12 and the reverse oblique yarn 13 are all composite yarns, and are the same except that the aligned directions are different. Further, the warp 11, the oblique thread 12 and the reverse oblique thread 13 are all arranged at equal intervals, and the contact surface of the warp 11 and the oblique thread 12 is located on the reverse oblique thread 13.
[0026] 図 2は、経糸 11、斜交糸 12及び逆斜交糸 13が交差する部分(図 1における Pの領 域)を拡大した斜視図である。図 2に示すように実施形態に係る経糸 11、斜交糸 12 及び逆斜交糸 13は楕円状の断面形状を有して!/、る。経糸 11は斜交糸 12と接面 H にお 、て接着されており、逆斜交糸 13は接面 Hと反対の面で斜交糸 12と接着され ている。また、経糸 11と斜交糸 12との接面 H及び斜交糸 12と逆斜交糸 13との接面 は、鞘部榭脂が溶融して接着している。  FIG. 2 is an enlarged perspective view of a portion where the warp 11, the oblique yarn 12 and the reverse oblique yarn 13 intersect (region P in FIG. 1). As shown in FIG. 2, the warp yarn 11, the oblique yarn 12, and the reverse oblique yarn 13 according to the embodiment have an oval cross-sectional shape. The warp yarn 11 is adhered to the oblique yarn 12 at the contact surface H, and the reverse oblique yarn 13 is adhered to the oblique yarn 12 at the surface opposite to the contact surface H. In addition, the contact surface H between the warp yarn 11 and the oblique yarn 12 and the contact surface between the oblique yarn 12 and the reverse oblique yarn 13 have the sheath resin melted and adhered.
[0027] 図 3は、榭脂単繊維が集束したもの (以下「榭脂単繊維束」 t ヽぅ。 )を示す斜視図 である。図 3に示す榭脂単繊維束 20aは、例えば、榭脂単繊維を未延伸状態で集束 して得られる。すなわち、榭脂単繊維束 20aは、芯部榭脂 21aと鞘部榭脂 22aからな る芯鞘構造を有する榭脂単繊維 23aを複数本集束してなるものである。  FIG. 3 is a perspective view showing a bundle of resin single fibers (hereinafter referred to as a “resin single fiber bundle” t). The resin single fiber bundle 20a shown in FIG. 3 is obtained by, for example, bundling resin single fibers in an undrawn state. That is, the resin single fiber bundle 20a is formed by bundling a plurality of resin single fibers 23a having a core-sheath structure including a core resin 21a and a sheath resin 22a.
[0028] 図 4は、本発明における複合糸を示す斜視図である。複合糸 20bは、例えば、図 3 に示す芯鞘構造の榭脂単繊維 23aを複数本集束した未延伸の榭脂単繊維束 20aを 延伸しつつ鞘部榭脂を溶融し、鞘部榭脂同士を融合して、断面形状を略楕円状に 整えて海島構造を形成させたものである。 FIG. 4 is a perspective view showing a composite yarn according to the present invention. The composite yarn 20b is, for example, an undrawn resin single fiber bundle 20a obtained by bundling a plurality of resin single fibers 23a having a core-sheath structure shown in FIG. The sheath resin is melted while being stretched, and the sheath resin is fused together to form a sea-island structure with a substantially elliptical cross-sectional shape.
[0029] すなわち、複合糸 20bにおいては、図 4に示すように、芯部榭脂 21aが島部榭脂 21 bを形成し、鞘部榭脂 22aが融合して海部榭脂 22bを形成する。その結果、全体とし て海島構造が形成される。このようにして得られた複合糸 20bは強度、柔軟性の点か ら不織布 10を得るための複合糸として最も適している。  That is, in the composite yarn 20b, as shown in FIG. 4, the core resin 21a forms the island resin 21b, and the sheath resin 22a fuses to form the sea resin 22b. . As a result, a sea-island structure is formed as a whole. The composite yarn 20b thus obtained is most suitable as a composite yarn for obtaining the nonwoven fabric 10 in terms of strength and flexibility.
[0030] 図 5及び図 6は経糸 11と斜交糸 12との接面と逆斜交糸 13の位置関係を示す平面 図である。図 5では、経糸 11と斜交糸 12の接面が逆斜交糸 13上にあり、図 1に示す 不織布 10はこのような位置関係を有している。これに対して、図 6では、経糸 11及び 斜交糸 12の接面が逆斜交糸 13上に存在せず、経糸 11と斜交糸 12、経糸 11と逆斜 交糸 13、斜交糸 12と逆斜交糸 13とがそれぞれ接着される。本発明に係る不織布は 、少なくとも一部がこのような位置関係を有するものであってもよい。  5 and 6 are plan views showing the positional relationship between the contact surface between the warp yarn 11 and the oblique yarn 12 and the reverse oblique yarn 13. FIG. In FIG. 5, the contact surface between the warp yarn 11 and the oblique yarn 12 is on the reverse oblique yarn 13, and the nonwoven fabric 10 shown in FIG. 1 has such a positional relationship. On the other hand, in FIG. 6, the contact surface of the warp yarn 11 and the oblique yarn 12 does not exist on the reverse oblique yarn 13, and the warp 11 and the oblique yarn 12, the warp 11 and the reverse oblique yarn 13, the oblique yarn The yarn 12 and the reverse oblique yarn 13 are bonded to each other. At least a part of the nonwoven fabric according to the present invention may have such a positional relationship.
[0031] 不織布 10は経方向、斜方向及び逆斜方向に繊維束が積層されているため、方向 性を問わず強度に優れる。また、不織布 10は、図 1に示すように、経糸 11、斜交糸 1 2及び逆斜交糸 13の配列がいずれも等間隔であるため、不織布の強度のばらつき 力 くバランスに優れる。更に、各繊維束が交差することで正三角形をなすために、 不織布 10は意匠性にも優れる。  [0031] Since the nonwoven fabric 10 has the fiber bundles laminated in the warp direction, the oblique direction, and the reverse oblique direction, the nonwoven fabric 10 has excellent strength regardless of the direction. Further, as shown in FIG. 1, the arrangement of the warp yarns 11, the oblique yarns 12, and the reverse oblique yarns 13 are all equidistant, and thus the nonwoven fabric 10 has excellent strength and excellent balance. Furthermore, since each fiber bundle forms an equilateral triangle by intersecting, the nonwoven fabric 10 is also excellent in design.
[0032] なお、上記の各繊維束間は必ずしも等間隔である必要はな 、。不織布 10は、経糸 11間、斜交糸 12間、或いは逆斜交糸 13間の間隔を調整することにより所望の柔軟 性や強度を得ることができ、各繊維束間の空隙の大きさを調整することもできる。した がって、使用態様や目的にしたがい必要とする特性を付与することができる。  [0032] It should be noted that the above fiber bundles need not necessarily be at equal intervals. The non-woven fabric 10 can obtain desired flexibility and strength by adjusting the intervals between the warp yarns 11, the diagonal yarns 12, or the reverse diagonal yarns 13, and can reduce the size of the gap between the respective fiber bundles. It can also be adjusted. Therefore, the required characteristics can be imparted according to the use mode and purpose.
[0033] このように不織布 10は強度及び追随性に優れるため産業資材分野において好適 に使用できる。特に、各繊維束間の空隙を調整することができることから、例えば、コ ンクリート剥落防止材として使用する場合、繊維束間の空隙がある程度大きいと、コ ンクリートとの一体性に優れ高い剥落防止性能を発揮することができる。  As described above, the nonwoven fabric 10 is excellent in strength and followability, so that it can be suitably used in the field of industrial materials. In particular, since the gap between the fiber bundles can be adjusted, for example, when used as a concrete spalling prevention material, if the gap between the fiber bundles is large to some extent, it will have excellent integrity with concrete and high spalling prevention performance. Can be demonstrated.
[0034] また、不織布 10は製造のためのホットメルト接着剤や熱可塑性榭脂等の接着剤は 不要であるため、ホットメルト接着剤や熱可塑性榭脂等を付与する工程を省くことが できカ卩ェ速度を速めることができる。更に、不織布 10は経糸 11、斜交糸 12及び逆斜 交糸 13を積層し加熱することによって接着できるため、比較的容易に製造することが できる。すなわち、大量生産が容易であり生産性に優れる。 [0034] Furthermore, since the nonwoven fabric 10 does not require a hot melt adhesive or a thermoplastic resin or the like for production, the step of applying the hot melt adhesive, the thermoplastic resin, or the like can be omitted. It can increase the speed. Further, the non-woven fabric 10 is composed of a warp 11, an oblique yarn 12, and a reverse oblique. Since the interlaced yarn 13 can be bonded by laminating and heating, it can be manufactured relatively easily. That is, mass production is easy and the productivity is excellent.
[0035] また、図 4に示すように、複合糸 20bは海島構造を有するため、不織布 10を製造す る時に海部榭脂 22bが溶融し、隣接する複合糸 20bの海部榭脂 22bと融合し接着す る。したがって不織布 10は全体として高い強度を示す。  As shown in FIG. 4, since the composite yarn 20b has a sea-island structure, the marine resin 22b is melted when the nonwoven fabric 10 is manufactured, and is fused with the marine resin 22b of the adjacent composite yarn 20b. Glue. Therefore, the nonwoven fabric 10 exhibits high strength as a whole.
[0036] 芯部榭脂 21aは鞘部榭脂 22aより 20°C以上高い融点を有する必要がある。融点の 差を 20°C以上とすると、鞘部榭脂を溶融させても芯部榭脂は溶融し難くなり、芯部繊 維の強度を保持しつつ複合糸の形態を維持することができる。したがって、融点の差 は大き 、ほうが好ましく 40°C以上であるのが更に好まし!/、。  [0036] The core resin 21a needs to have a melting point higher by 20 ° C or more than the sheath resin 22a. If the difference in melting point is 20 ° C or more, the core resin becomes difficult to melt even when the sheath resin is melted, and the shape of the composite yarn can be maintained while maintaining the strength of the core fiber. . Therefore, the difference between the melting points is preferably large, more preferably 40 ° C. or more!
[0037] 本実施形態では芯部榭脂 21aはポリプロピレン力もなり、鞘部榭脂 22aはポリェチ レン力もなる。鞘部榭脂 22aをポリエチレンとすると、ポリエチレンは熱可塑性であつ て且つ比較的低融点であるため、加熱する際には効率良く溶融させ接着させること ができる。また、芯部榭脂 21aをポリプロピレンとすると、ポリプロピレンの融点は比較 的高いため長期間用いても熱安定性に優れ、また、無極性であることから、酸や塩基 による分離や分解がし難いため耐久性に優れる。更に、使用後は溶融し再成型する ことによって容易にリサイクルすることができる。したがって、産業廃棄物とはならず安 全性にも優れるため環境にやさ 、。  In the present embodiment, the core resin 21a also has a polypropylene force, and the sheath resin 22a also has a polyethylene force. When the sheath resin 22a is made of polyethylene, polyethylene is thermoplastic and has a relatively low melting point, so that it can be efficiently melted and bonded when heated. In addition, if the core resin 21a is made of polypropylene, the melting point of polypropylene is relatively high, so that it has excellent thermal stability even when used for a long time, and since it is non-polar, it is difficult to separate or decompose with acids or bases. It has excellent durability. Furthermore, after use, it can be easily recycled by melting and reshaping. Therefore, it is environmentally friendly because it does not become industrial waste and has excellent safety.
[0038] また、ポリプロピレン及びポリエチレンを用いて上記構造とすることで、各複合糸間 の空隙を狭くしたり、芯鞘構造を有する榭脂単繊維の本数を増やした複合糸を用い たりして不織布の強度を高めた場合であっても、特異的に柔軟性に優れ、また、折れ 曲がりやすい。したがって、このような構成の不織布は、折れ曲がった箇所や湾曲し た箇所に被覆するように用いた場合であっても、対象物に密着させて被覆することが できる。  [0038] In addition, by adopting the above structure using polypropylene and polyethylene, it is possible to narrow the gap between the respective composite yarns or to use a composite yarn in which the number of resin monofilaments having a core-sheath structure is increased. Even when the strength of the nonwoven fabric is increased, it is specifically excellent in flexibility and easily bends. Therefore, even when the nonwoven fabric having such a configuration is used to cover a bent portion or a curved portion, the nonwoven fabric can be covered in close contact with an object.
[0039] 本発明にお 、て用いられるポリエチレンは低密度ポリエチレンであることが好ましく 、融点が 120°C以下であることが更に好ましい。低密度ポリエチレンであると融点が 低いため特に低温で接着を行うことができ加工効率も飛躍的に向上する。  In the present invention, the polyethylene used is preferably a low-density polyethylene, and more preferably has a melting point of 120 ° C. or less. Since low-density polyethylene has a low melting point, bonding can be performed at a particularly low temperature, and processing efficiency is dramatically improved.
[0040] 島部榭脂 21bであるポリプロピレンの繊度は、 l〜70dtexであることが好ましぐさら に好ましくは繊度は 2〜50dtexである。特に柔軟性を求められるときは 30dtex以下 が好ましい。繊度が、 ldtex未満であると、島部榭脂 21bが細くなりすぎるため、形態 を維持することが困難となり、熱接着後の物性が低下しやすい。一方、繊度が 70dte Xを超えると、榭脂単繊維 23a自体が太くなりすぎるため、柔軟性や屈曲性が損なわ れる虡がある。 [0040] The fineness of the polypropylene which is the island part resin 21b is preferably 1 to 70 dtex, more preferably 2 to 50 dtex. 30dtex or less especially when flexibility is required Is preferred. If the fineness is less than ldtex, the island resin 21b becomes too thin, so that it is difficult to maintain the shape, and the physical properties after thermal bonding tend to be reduced. On the other hand, when the fineness exceeds 70 dte X, the resin single fiber 23a itself becomes too thick, so that flexibility and flexibility are impaired.
[0041] また、複合糸は榭脂単繊維 23aを複数本集束しつつ延伸して製造され得るが、この 場合、集束する本数は 10〜500本が好ましい。 10本未満であると、榭脂単繊維 23a が太くなり紡糸性が悪ィ匕する虞があり、 500本を超えると、紡糸ノズル密度が増加し、 榭脂単繊維 23aも細くなるため、紡糸性、延伸性が悪ィ匕する虞がある。更に好ましく は、 100〜300本である。  Further, the composite yarn can be produced by stretching a plurality of resin single fibers 23a while being bundled. In this case, the number of bundles is preferably 10 to 500. If the number is less than 10, the resin monofilament 23a becomes thick and spinnability may be deteriorated. If the number is more than 500, the spinning nozzle density increases and the resin monofilament 23a becomes thin, so that spinning is performed. And stretchability may be poor. More preferably, the number is 100 to 300.
[0042] また、複合糸 20bの繊度は 100〜5000dtexが好ましい。 lOOdtex未満であると、 目的とする物性が得られ難くなり、 5000dtexを超えると柔軟性や追随性が損なわれ る虞がある。更に好ましくは、 500〜3000dtexである  [0042] The fineness of the composite yarn 20b is preferably 100 to 5000 dtex. If it is less than lOOdtex, it will be difficult to obtain the desired physical properties, and if it exceeds 5000dtex, the flexibility and followability may be impaired. More preferably, it is 500-3000 dtex
[0043] 本発明に係る不織布は島部榭脂 21bと海部榭脂 22bの質量比が 20 : 80〜80: 20 であることが好ま 、。島部榭脂 21bの海部榭脂 22bに対する質量比が割合で 20% 未満であると、目的とする物性が得られ難くなる虞があり、島部榭脂 21bの海部榭脂 22bに対する質量比が割合で 80%を超えると、熱接着強度が低下する虞がある。更 に好ましくは、 40: 60〜70: 30である。  [0043] The nonwoven fabric according to the present invention preferably has a mass ratio of the island resin 21b to the sea resin 22b of 20:80 to 80:20. If the mass ratio of the island resin 21b to the sea resin 22b is less than 20%, it may be difficult to obtain desired physical properties, and the mass ratio of the island resin 21b to the sea resin 22b may be reduced. If the ratio exceeds 80%, the thermal adhesive strength may be reduced. More preferably, it is 40:60 to 70:30.
[0044] 不織布 10は不織布製造装置を用いて製造できる。図 7は、不織布 10を製造可能 な製造装置の平面図であり、図 8は、その正面図である。  [0044] The nonwoven fabric 10 can be manufactured using a nonwoven fabric manufacturing apparatus. FIG. 7 is a plan view of a manufacturing apparatus capable of manufacturing the nonwoven fabric 10, and FIG. 8 is a front view thereof.
[0045] 図 7及び図 8に示す不織布製造装置 30は、断面形状が円形のドラム 31と、トラバー サ 34と、緯糸送り出し機構 35と、を備えている。ドラム 31は、 y方向に平行な回転軸 3 2を中心として図中の反時計回りに回転する。トラバーサ 34は、ドラム 31の側面に沿 つて y方向に往復し、ドラム 31に供給されて ヽる経糸群 T1上に斜交糸群 T3を形成 する。緯糸送り出し機構 35は、斜交糸群 T3を形成するための緯糸群 T2をトラバー サ 34へ送り出している。  The nonwoven fabric manufacturing apparatus 30 shown in FIGS. 7 and 8 includes a drum 31 having a circular cross section, a traverser 34, and a weft feeding mechanism 35. The drum 31 rotates counterclockwise in the figure around a rotation axis 32 parallel to the y direction. The traverser 34 reciprocates in the y-direction along the side surface of the drum 31 and forms an oblique thread group T3 on the warp group T1 supplied to the drum 31. The weft feeding mechanism 35 feeds the weft group T2 for forming the diagonal yarn group T3 to the traverser 34.
[0046] 不織布製造装置 30を用いて不織布 10を製造する場合、まず、経方向(図中の X方 向)に経糸 11が複数並列した経糸群 T1は、円柱形をなすドラム 31の側面に沿って、 円周方向に巻き付くように供給される。ドラム 31は、軸 32を中心として回転可能に基 台(図示せず)に支持され、基台に対して一定の速度で回転している。ドラム 31の縁 部の円周上には、糸掛具 33a及びもう一方の縁部の円周上には、糸掛具 33bが円柱 側面力 垂直に突出するように設けられ、円周を等分するように配置されている。トラ バーサ 34は、ドラム 31の側面に沿って円弧状に設けられ、ドラム 31の側面に沿って Y方向に往復動可能に支持されている。トラバーサ 34は、緯糸送り出し機構 35から 送り出される緯糸群 T2の各々を貫通させる貫通孔 36を有して 、る。緯糸群 T2は、 緯糸送り出し機構 35から上記貫通孔 36を介してドラム 31に送られ、糸掛具 33aと糸 掛具 33bとの間を交互に引っ掛けられながらドラム 31の両縁部を往復し、ドラム 31の 側面上に送られる経糸群 T1の上に、斜交糸 12及び逆斜交糸 13が複数並列した斜 交糸群 T3として張られて ヽく。 When the nonwoven fabric 10 is manufactured using the nonwoven fabric manufacturing apparatus 30, first, a warp group T1 in which a plurality of warps 11 are arranged in parallel in a warp direction (X direction in the figure) is formed on a side surface of a cylindrical drum 31. Along the circumference, it is supplied so as to wind in a circumferential direction. The drum 31 is rotatable about an axis 32. It is supported by a table (not shown) and rotates at a constant speed with respect to the base. On the circumference of the edge of the drum 31, a thread hook 33a is provided, and on the circumference of the other edge, a thread hook 33b is provided so as to protrude vertically to the cylindrical side surface. It is arranged to separate. The traverser 34 is provided in an arc shape along the side surface of the drum 31 and is supported along the side surface of the drum 31 so as to reciprocate in the Y direction. The traverser 34 has a through-hole 36 through which each of the weft group T2 sent from the weft sending mechanism 35 passes. The weft group T2 is sent from the weft feed mechanism 35 to the drum 31 via the through hole 36, and reciprocates on both edges of the drum 31 while being alternately hooked between the yarn hooks 33a and 33b. On the warp group T1 sent on the side surface of the drum 31, a plurality of diagonal yarns 12 and reverse diagonal yarns 13 are stretched as a diagonal yarn group T3 arranged in parallel.
[0047] このようにして、経糸群 T1上に斜交して張られた斜交糸群 T3によって不織布 10が 形成される。トラバーサ 34の往復動ピッチはドラム 31回転ピッチに対して所定の比に なるように制御されて 、る。トラバーサ 34の往復動ピッチとドラム 31の回転ピッチとの 比は機械的に連動させて直接制御されてもよぐサーボモータで間接的に制御され てもよい。 [0047] In this way, the nonwoven fabric 10 is formed by the oblique thread group T3 which is obliquely stretched on the warp group T1. The reciprocating pitch of the traverser 34 is controlled so as to have a predetermined ratio with respect to the rotation pitch of the drum 31. The ratio between the reciprocating pitch of the traverser 34 and the rotation pitch of the drum 31 may be controlled directly in a mechanically linked manner or indirectly by a servomotor.
[0048] 多岐にわたる産業資材の分野においては、より強度のある不織布を求められる場 合がある。その場合は上述したように糸且布の密度を高めることによって、強度を高める ことができる。すなわち、上記経方向(図中の X方向)に経糸 11が複数並列した経糸 群 T1の経糸 11の本数を増やしたり、ドラム 31の縁部の円周上に設けられた糸掛具 3 3a及び 33bの間隔を狭めることによって、密度の高い不織布を提供することができる  [0048] In a wide variety of fields of industrial materials, a nonwoven fabric having higher strength may be required. In that case, the strength can be increased by increasing the density of the yarn and cloth as described above. That is, the number of the warp yarns 11 in the warp group T1 in which a plurality of warp yarns 11 are arranged in parallel in the warp direction (the X direction in the drawing) or the yarn hooks 33a provided on the circumference of the edge of the drum 31 and By reducing the interval of 33b, it is possible to provide a high density nonwoven fabric
[0049] 本発明に係る不織布の製造方法においては、経方向、斜方向及び逆斜方向に引 き揃えられた複合糸を加熱により接着させる。加熱温度は芯部榭脂の融点より低ぐ 鞘部榭脂の融点より高い温度で行う。この温度で加熱処理を行うと芯鞘構造の芯部 榭脂を溶融させずに鞘部榭脂のみを溶融させて接着することができ、不織布全体の 強度を向上させることができる。鞘部榭脂の溶融のための加熱は加熱ローラなどによ る接触加熱が好ましい。 [0049] In the method for producing a nonwoven fabric according to the present invention, composite yarns aligned in the warp direction, the oblique direction, and the reverse oblique direction are bonded by heating. The heating temperature is lower than the melting point of the core resin and higher than the melting point of the sheath resin. When heat treatment is performed at this temperature, only the sheath resin can be melted and bonded without melting the core resin of the core-sheath structure, and the strength of the entire nonwoven fabric can be improved. Heating for melting the sheath resin is preferably contact heating using a heating roller or the like.
[0050] また、加熱処理に加え、シリンダー加圧、エアー加圧、自重による加圧などの加圧 処理も行うのが好ましい。加圧処理を行うと複合糸の接面の面積が大きくなり、接面 の接着力が強くなると同時に、不織布の厚みを調節することが出来る。 [0050] In addition to heat treatment, pressurization such as cylinder pressurization, air pressurization, and pressurization by its own weight. Preferably, a treatment is also performed. By performing the pressure treatment, the area of the contact surface of the composite yarn becomes large, the adhesive force of the contact surface becomes strong, and at the same time, the thickness of the nonwoven fabric can be adjusted.
[0051] また、本発明に係る不織布は、加熱された状態で加圧を行うことが更に好ま 、。  [0051] Further, it is more preferable that the nonwoven fabric according to the present invention be pressurized in a heated state.
加熱によって複合糸の海部榭脂が溶融され、他の複合糸の海部榭脂と接着するが、 加熱された状態で加圧を行うと複合糸が押しつぶされ複合糸と他の複合糸との接面 が更に大きくなる。したがって、加熱と同時に加圧をするとより強固な接着力を発揮す ることができる。なお、前述したドラム 31で加圧接触することとすれば一度に加熱カロ 圧処理を行うことが可能で作業性も良好となる。  Heating melts the marine resin of the composite yarn and adheres to the marine resin of other composite yarns.However, if pressure is applied in a heated state, the composite yarn is crushed and the composite yarn is bonded to another composite yarn. The surface becomes even larger. Therefore, when pressure is applied simultaneously with heating, stronger adhesion can be exhibited. If the above-mentioned pressure contact is made with the drum 31, the heating calo-pressure treatment can be performed at once, and the workability is improved.
[0052] 以上、本発明に係る不織布の製造方法の実施形態につ!ヽて説明した力 本発明 は必ずしも上述した実施形態に限定されるものではなぐ種々の変形が可能である。  As described above, the force described in the embodiment of the method for manufacturing a nonwoven fabric according to the present invention is not necessarily limited to the above-described embodiment, and various modifications can be made.
[0053] 例えば、榭脂単繊維束 23aを複合糸 20bとした後、複合糸に柔軟性を付与する目 的で、捲縮や仮撚り技術を転用することも可能である。捲縮や仮撚り技術を転用する ことにより、繊維の柔軟性が向上し、不織布の加工性が向上する。  For example, after the resin single fiber bundle 23a is formed into the composite yarn 20b, it is also possible to divert crimping or false twisting techniques for the purpose of imparting flexibility to the composite yarn. By diverting the crimping and false twisting techniques, the flexibility of the fiber is improved and the workability of the nonwoven fabric is improved.
[0054] また、本発明の実施形態に係る不織布 10は経方向、斜方向及び逆斜方向に複合 糸を積層させた三軸組布である。この場合は、経糸 11と、斜交糸 12や逆斜交糸 13と の交差角度は 60 ± 10° が好ましい。  [0054] The nonwoven fabric 10 according to the embodiment of the present invention is a triaxial fabric in which composite yarns are laminated in the warp direction, the oblique direction, and the reverse oblique direction. In this case, the crossing angle between the warp 11 and the oblique yarn 12 or the reverse oblique yarn 13 is preferably 60 ± 10 °.
[0055] さらに、この三軸組布に緯方向にも複合糸をカ卩えることができる。すなわち、経方向 、緯方向、斜方向及び逆斜方向に複合糸を積層させた四軸組布とすることもできる。 この場合、緯糸は、経方向に対して、直交することとなる。なお、四軸組布の場合は、 経糸または緯糸と、斜交糸又は逆斜交糸との交差角度は 45 ± 10° が好ましい。四 軸組布とすると強度に優れ、更にねじれた場合の強度にも優れる。  [0055] Further, the composite yarn can be knitted on the triaxial fabric in the weft direction. That is, a four-axis fabric in which composite yarns are laminated in the warp direction, the weft direction, the oblique direction, and the reverse oblique direction can be used. In this case, the weft is orthogonal to the warp direction. In the case of a four-axis fabric, the crossing angle between the warp or weft and the diagonal or reverse diagonal is preferably 45 ± 10 °. A four-axis fabric is excellent in strength, and even when twisted.
[0056] また、本実施形態にぉ 、ては芯部榭脂 21aとしてポリプロピレンを用い、鞘部榭脂 2 2aとしてポリエチレンを用いている力 使用用途や必要とされる特性に応じて任意に 別の榭脂とすることができる。具体的には、芯部榭脂 21aとしてポリエチレンテレフタ レート、ポリアミド (ナイロン)、鞘部榭脂 22aとしてこれらより低融点の榭脂ゃ各種共重 合榭脂が挙げられる。特に、本発明の不織布をセメント系の補強材として用いる場合 には、芯部榭脂 21a及び鞘部榭脂 22aが耐アルカリ性の熱可塑性榭脂であるのが好 ましぐポリオレフインを使用するのが更に好ましい。芯部榭脂 21aをポリオレフインと することにより追随性及び作業性が優れるようになる。また、芯部榭脂 21a及び鞘部 榭脂 22aが共にポリオレフインである場合は芯部榭脂 21a及び鞘部榭脂 22aの親和 性が優れるため、鞘部榭脂 22aであるポリオレフインが溶融したとしても、芯部榭脂 2 laであるポリオレフインカ 分離することなく芯鞘構造を維持することができる。また、 ポリオレフインは無極性であることから、酸や塩基にも強ぐ耐久性に優れる不織布を 製造することができる。 In the present embodiment, the core resin 21a is made of polypropylene, and the sheath resin 22a is made of polyethylene. Resin. Specifically, polyethylene terephthalate and polyamide (nylon) are used as the core resin 21a, and resins having a lower melting point and various copolymer resins are used as the sheath resin 22a. In particular, when the nonwoven fabric of the present invention is used as a cement-based reinforcing material, it is preferable to use polyolefin, which is preferably an alkali-resistant thermoplastic resin for the core resin 21a and the sheath resin 22a. More preferred. Core resin 21a with polyolefin By doing so, followability and workability are improved. When the core resin 21a and the sheath resin 22a are both polyolefins, the affinity of the core resin 21a and the sheath resin 22a is excellent. In addition, the core resin 2 la, polyolefin, can maintain the core-sheath structure without separation. In addition, since polyolefin is non-polar, it is possible to produce a nonwoven fabric that is resistant to acids and bases and has excellent durability.
[0057] 図 9は、他の実施形態に係る不織布 40を示す平面図である。不織布 40は、経方向 に複数並列した経糸 11と、経糸 11と斜交するように複数並列した斜交糸 12と、経糸 11及び斜交糸 12に斜交するように複数並列した逆斜交糸 13と、力も構成されて!、 る。ここで経糸 11は、斜交糸 12及び逆斜交糸 13の接面の一方面側と他方面側に交 互に接着している。  FIG. 9 is a plan view showing a nonwoven fabric 40 according to another embodiment. The nonwoven fabric 40 includes a plurality of warp yarns 11 arranged in parallel in the warp direction, a plurality of diagonal yarns 12 arranged diagonally to the warp yarns 11, and a plurality of reverse oblique lines arranged diagonally to the warp yarns 11 and the diagonal yarns 12. Thread 13 and power are also composed! Here, the warp yarns 11 are alternately bonded to one side and the other side of the contact surface of the oblique yarn 12 and the reverse oblique yarn 13.
[0058] このような構造の不織布 40は、特に強度に優れ、更にねじれた場合の強度にも優 れる。また、コンクリート剥落防止材に用いるとコンクリートの形状にかかわらず強度を 発揮するため特に耐久性に優れ有用である。  [0058] The nonwoven fabric 40 having such a structure is particularly excellent in strength and also excellent in strength when twisted. In addition, when used as a concrete spalling prevention material, it exhibits high strength regardless of the shape of the concrete, and is particularly excellent in durability and useful.
[0059] また、不織布 40の製造方法は、経糸 11を斜交糸 12及び逆斜交糸 13の接面の一 方面側のみに引き揃え接着した後、他方面側に経糸 11を引き揃え接着させて製造 される。 [0059] Further, the method for manufacturing the nonwoven fabric 40 is such that the warp 11 is drawn and adhered only to one surface of the contact surface of the oblique yarn 12 and the reverse oblique yarn 13, and then the warp 11 is drawn and adhered to the other surface. It is manufactured by
実施例  Example
[0060] <複合糸の製造 > [0060] <Production of composite yarn>
芯部榭脂の熱可塑性榭脂として MFR= 20 (g/min)のァイソタクチックポリプロピ レンを使用し、鞘部榭脂として MI (190°C) = 20 (g/min)の低密度ポリエチレン榭 脂を使用した。定法の複合紡糸設備、芯鞘型複合紡糸ノズル (150H)を用いて紡糸 した。得られた榭脂単繊維を 150本集束し、これと直結する延伸設備に通して、絶対 圧 4. 2kPa (145°C)の飽和水蒸気圧下で全延伸倍率 14倍のローラー延伸を行い、 (直ちに所定形状の成形ダイスに通して、 )島部榭脂のポリプロピレン繊維 (融点 165 °C)を海部榭脂の低密度ポリエチレン (融点 113°C)で結着した略楕円状の複合糸( 島部榭脂と海部榭脂の質量比 = 55 :45)を得た。  Using isotactic polypropylene with MFR = 20 (g / min) as the thermoplastic resin for the core resin, and low density MI (190 ° C) = 20 (g / min) as the sheath resin Polyethylene resin was used. Spinning was carried out using a conventional composite spinning facility, core-sheath type composite spinning nozzle (150H). The obtained 150 resin monofilaments were bundled, passed through a drawing equipment directly connected thereto, and subjected to roller drawing at a total draw ratio of 14 times under a saturated steam pressure of 4.2 kPa (145 ° C) absolute pressure. Immediately through a molding die of a predetermined shape, a) An approximately elliptical composite yarn (Island) in which polypropylene fiber (melting point 165 ° C) of Shima resin is bound with low-density polyethylene (melting point 113 ° C) of Shima resin. The mass ratio of part resin to sea part resin was 55:45).
得られた複合糸は 2200dtexで、島部榭脂の単繊維径 33. であり、強度 6. 0 cNZdtexであった。 The obtained composite yarn was 2200 dtex, the single fiber diameter of the island part resin was 33., and the strength was 6.0. cNZdtex.
[0061] <不織布 Aの製造 >  <Manufacture of Nonwoven Fabric A>
得られた複合糸を経糸、緯糸として図 7及び図 8に示す製造装置にて、経糸、斜交 糸および逆斜交糸を 9mmピッチで積層した。その際、経糸は上下層に交互に配置 するように、斜交糸および逆斜交糸は中間層に位置するように積層した。その後、表 面温度 150°Cの加熱ローラで接触加熱し、複合糸の海部榭脂を溶融し各層の複合 糸を接着し不織布 Aを得た。  The obtained composite yarn was used as a warp and a weft, and the warp, the diagonal yarn, and the reverse diagonal yarn were laminated at a pitch of 9 mm using the manufacturing apparatus shown in FIGS. At that time, the warp yarns were alternately arranged in the upper and lower layers, and the diagonal yarns and the reverse diagonal yarns were laminated so as to be located in the intermediate layer. Then, the nonwoven fabric A was obtained by contact heating with a heating roller having a surface temperature of 150 ° C. to melt the marine resin of the composite yarn and adhere the composite yarn of each layer.
[0062] (比較例)  (Comparative Example)
<不織布 Bの製造 >  <Manufacture of nonwoven fabric B>
番手 2000dtex (フィラメント本数 750本)のビニロン繊維糸を経糸、斜交糸、逆斜 交糸とし、それぞれ実施例と同様のピッチで積層した。次いで、アクリル系接着剤に 含浸し、表面温度 150°Cの加熱ローラで接触加熱して、接着剤の付着量がビニロン 繊維糸に対し 20重量%の不織布 Bを得た。  2,000 dtex (750 filament filaments) vinylon fiber yarns were used as warp yarns, diagonal yarns, and reverse diagonal yarns, each of which was laminated at the same pitch as in the examples. Next, the nonwoven fabric B was impregnated with an acrylic adhesive and heated by contact with a heating roller having a surface temperature of 150 ° C. to obtain a nonwoven fabric B having an adhesive amount of 20% by weight based on the vinylon fiber yarn.
[0063] <試験例 1 >  <Test Example 1>
不織布 A及び Bを折り曲げた場合の追随性にっ 、て試験を行った。実施例の不織 布 Aは折り目が簡単につき、折り曲がった形状をそのまま維持していた力 比較例の 不織布 Bは折り目が付き難ぐもとの形状に戻ろうとする反発力が強く折曲がった形 状を維持することが困難であった。  A test was conducted on the followability of the nonwoven fabrics A and B when bent. The non-woven fabric A of the example had a fold that was easy to be folded, and the folded shape was maintained as it was.The non-woven fabric B of the comparative example had a strong repulsive force to return to the original shape where the fold was difficult to be formed. It was difficult to maintain the shape.
[0064] <試験例 2>  <Test Example 2>
JIS規格 R3420 ガラス繊維一般試験方法 7. 4 (a)織物の引張強さの試験方法 に準じ、引張強さを測定した。幅 25mmの試験片について経糸方向(経方向)の引 張強さと、幅 50mmの試験片につ 、て経糸方向と直交する方向(緯方向)の引張強 さを測定したところ、実施例の不織布 Aは経方向 370NZ25mm、緯方向 37NZ50 mmであり、比較例の不織布 Bは経方向 480NZ25mm、緯方向 23NZ50mmであ つた o  JIS standard R3420 Glass fiber general test method 7.4 (a) Tensile strength was measured according to the test method of tensile strength of woven fabric. The tensile strength in the warp direction (warp direction) of a test piece having a width of 25 mm and the tensile strength in the direction perpendicular to the warp direction (weft direction) of a test piece having a width of 50 mm were measured. Is 370 NZ25 mm in the warp direction and 37 NZ50 mm in the weft direction, and the nonwoven fabric B of the comparative example was 480 NZ25 mm in the warp direction and 23 NZ50 mm in the weft direction o
[0065] 経方向の引張強さは経糸の材質によるものであり、緯方向の引張強さは糸同士の 接着力の差によるものであると考えられる。したがって、実施例の不織布 Aは比較例 の不織布 Bと比較して材質面では強度に劣る力 接着力の面では強度に優れる。す なわち実施例の不織布 Aは各複合糸が強固に接着しているため、特に緯方向の接 着力に優れ強度が向上し、且つ追随性にも優れて ヽることがゎカゝる。 [0065] It is considered that the tensile strength in the warp direction is due to the material of the warp, and the tensile strength in the weft direction is due to the difference in the adhesive force between the yarns. Therefore, the nonwoven fabric A of the example has a lower strength than the nonwoven fabric B of the comparative example in terms of material, and has a higher strength in terms of adhesive strength. You In other words, since the nonwoven fabric A of the example has tightly bonded composite yarns, it is particularly likely that the nonwoven fabric A has excellent adhesion in the weft direction, has improved strength, and has excellent followability.
産業上の利用可能性 Industrial applicability
本発明の不織布は、優れた柔軟性および屈曲性を有し追随性に優れ、且つ使用 用途や必要とする特性に応じて強度や柔軟性を調整することも可能なことから、コン クリート剥落防止材等の産業資材として、特に適用することができる。  The nonwoven fabric of the present invention has excellent flexibility and bendability, has excellent followability, and is capable of adjusting the strength and flexibility according to the intended use and required characteristics, so that the concrete can be prevented from peeling off. It can be applied particularly as an industrial material such as a material.

Claims

請求の範囲 The scope of the claims
[1] 繊維状の芯部榭脂がこれより 20°C以上融点の低い鞘部榭脂で囲繞された芯鞘構 造を有する榭脂単繊維を複数本集束し、前記鞘部榭脂を融合させてなる複合糸を、 経方向、斜方向及び逆斜方向の少なくとも 3方向に積層する積層工程と、 積層した複合糸同士を前記芯部榭脂の融点より低ぐ且つ前記鞘部榭脂の融点よ り高 、温度で加熱して接着する接着工程と、を備える不織布の製造方法。  [1] A plurality of resin monofilaments having a core-sheath structure in which a fibrous core resin is surrounded by a sheath resin having a melting point of 20 ° C. or lower than this are bundled, and the sheath resin is condensed. A laminating step of laminating the composite yarn obtained by fusing in at least three directions of a warp direction, a diagonal direction, and a reverse diagonal direction; and the laminating composite yarns having a melting point lower than the melting point of the core resin and the sheath resin. And a bonding step of bonding by heating at a temperature higher than the melting point of the nonwoven fabric.
[2] 前記複合糸は 10〜500本の前記榭脂単繊維力もなるものであり、前記複合糸にお いて、前記芯部榭脂は繊度 l〜70dtexの繊維状の島部を形成し、融合した前記鞘 部榭脂は海部を形成している請求項 1記載の不織布の製造方法。  [2] The composite yarn also has a strength of 10 to 500 pieces of the resin monofilament, and in the composite yarn, the core resin forms a fibrous island portion having a fineness of l to 70 dtex, The method for producing a nonwoven fabric according to claim 1, wherein the fused sheath resin forms a sea part.
[3] 前記芯部榭脂及び前記鞘部榭脂がポリオレフインである請求項 1又は 2に記載の 不織布の製造方法。  3. The method for producing a nonwoven fabric according to claim 1, wherein the core resin and the sheath resin are polyolefins.
[4] 前記芯部榭脂がポリプロピレンであって、前記鞘部榭脂が融点 120°C以下のポリエ チレンである請求項 1〜3のいずれか一項に記載の不織布の製造方法。  [4] The method for producing a nonwoven fabric according to any one of claims 1 to 3, wherein the core resin is polypropylene, and the sheath resin is polyethylene having a melting point of 120 ° C or lower.
[5] 繊度 l〜70dtexの繊維状の島部榭脂 10〜500本が繊維状の海部榭脂中に配さ れた複合糸を、経方向、斜方向及び逆斜方向の少なくとも 3方向に積層し、海部榭 脂を溶融させて積層した複合糸同士を接着した不織布であって、前記海部榭脂が前 記島部榭脂より 20°C以上低い融点を有することを特徴とする不織布。  [5] A fibrous island resin with a fineness of l to 70 dtex is laid out in a fibrous marine resin with 10 to 500 fibers in at least three directions: warp, diagonal, and reverse diagonal. What is claimed is: 1. A nonwoven fabric obtained by laminating and bonding two or more composite yarns by melting and laminating a sea resin, wherein the sea resin has a melting point lower than that of the island resin by 20 ° C. or more.
[6] 前記島部榭脂及び前記海部榭脂がポリオレフインである請求項 5記載の不織布。  6. The nonwoven fabric according to claim 5, wherein the island resin and the sea resin are polyolefin.
[7] 前記島部榭脂がポリプロピレンであって、前記海部榭脂が融点 120°C以下のポリエ チレンであることを特徴とする請求項 5又は 6に記載の不織布。  7. The nonwoven fabric according to claim 5, wherein the island resin is polypropylene, and the sea resin is polyethylene having a melting point of 120 ° C. or less.
[8] 前記島部榭脂と前記海部榭脂の質量比力 20: 80〜80: 20である請求項 5〜7の V、ずれか一項に記載の不織布。  [8] The nonwoven fabric according to any one of claims 5 to 7, wherein the mass specific force between the island resin and the sea resin is 20:80 to 80:20.
PCT/JP2005/005874 2004-03-30 2005-03-29 Process for producing nonwoven fabric and nonwoven fabric WO2005095701A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/599,400 US20080045109A1 (en) 2004-03-30 2005-03-29 Process for Producing Nonwoven Fabric and Nonwoven Fabric
EP05727361A EP1739220A4 (en) 2004-03-30 2005-03-29 Process for producing nonwoven fabric and nonwoven fabric
CA 2561911 CA2561911A1 (en) 2004-03-30 2005-03-29 Process for producing nonwoven fabric and nonwoven fabric

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004100404A JP4459680B2 (en) 2004-03-30 2004-03-30 Nonwoven fabric manufacturing method and nonwoven fabric
JP2004-100404 2004-03-30

Publications (1)

Publication Number Publication Date
WO2005095701A1 true WO2005095701A1 (en) 2005-10-13

Family

ID=35063817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005874 WO2005095701A1 (en) 2004-03-30 2005-03-29 Process for producing nonwoven fabric and nonwoven fabric

Country Status (6)

Country Link
US (1) US20080045109A1 (en)
EP (1) EP1739220A4 (en)
JP (1) JP4459680B2 (en)
CN (1) CN100529225C (en)
CA (1) CA2561911A1 (en)
WO (1) WO2005095701A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012515272A (en) * 2009-01-16 2012-07-05 フリードリヒ ランデルツハーメル, Net made of tape
JP2020033799A (en) * 2018-08-31 2020-03-05 日東紡績株式会社 Four-spindle braided fabric and laminate

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4933868B2 (en) * 2006-09-06 2012-05-16 宇部日東化成株式会社 Mesh for repair or reinforcement of concrete structure and method for manufacturing the same
US7993727B2 (en) * 2007-07-06 2011-08-09 Mitsubishi Electric Corporation Advanced grid structure
EP2411127B1 (en) * 2009-03-26 2022-01-05 BL Technologies, Inc. Non-braided reinforced hollow fibre membrane
JP2013507535A (en) 2009-10-09 2013-03-04 エックスメッシュ テクノロジー ゲーエムベーハー Coarse mesh material and bag made from the coarse mesh material
BR112012020434A2 (en) * 2010-02-15 2016-05-17 Kurashiki Boseki Kk fiber reinforced resin sheet and fiber reinforced resin molded article using the same
JP2012007275A (en) * 2010-05-28 2012-01-12 Unitika Ltd Composite nonwoven sheet and method for manufacturing the same
JP2012001854A (en) * 2010-06-18 2012-01-05 Unitika Ltd Composite nonwoven sheet and manufacturing method thereof
CN102493051B (en) * 2011-12-06 2014-07-16 绍兴文理学院 Hot-melt novel polyester monofilament with island-shaped section
CN102560708B (en) * 2011-12-06 2014-09-03 绍兴文理学院 Production technology of novel hot-melting polyester monofilament with island-shaped cross section
CN102560709B (en) * 2012-01-04 2015-09-23 江苏省纺织研究所股份有限公司 The production method of bio-degradable heat-viscose bi-component filament fiber
ITBO20120472A1 (en) * 2012-09-06 2014-03-07 Sailmaker Internat S P A MULTI-AXIAL RETICULAR GRID
DE102015005160B4 (en) * 2015-04-16 2019-04-18 Saint-Gobain Adfors Method and device for producing yarn layers
CA2943102A1 (en) 2015-09-25 2017-03-25 Volm Companies, Inc. Synthetic mesh reinforced multilayer material and bags made therefrom
EP3184682B1 (en) * 2015-12-21 2018-09-19 Saint-Gobain Adfors Tridirectional laid scrims for reinforcement purposes
JP7095967B2 (en) * 2017-09-27 2022-07-05 宇部エクシモ株式会社 Composite fiber and molded body
CN108950879A (en) * 2018-08-21 2018-12-07 珠海水丝新材料有限公司 A kind of production method of superabsorbent water longitude and latitude non-woven fabrics
EP3901346B1 (en) * 2019-01-30 2023-05-10 Mitsui Chemicals, Inc. Spunbonded non-woven fabric, sanitary material, and method of manufacturing spunbonded non-woven fabric
CN115516150B (en) * 2020-05-29 2024-10-25 日东纺绩株式会社 Multiaxial nonwoven fabric and tile unit
CN113978093B (en) * 2021-09-22 2024-08-20 沈阳君茂保温材料有限公司 High-light fiberglass mesh and production process thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059121A (en) * 1983-09-13 1985-04-05 Chisso Corp Heat-bondable conjugate fiber and production thereof
JPH01306664A (en) * 1988-06-06 1989-12-11 Polymer Processing Res Inst Multi-axis non-woven fabric of yarn, its production and apparatus therefor
JPH1120059A (en) * 1997-06-30 1999-01-26 Nitto Boseki Co Ltd Reinforced fiber base material for composite material and manufacture thereof
JP2001181954A (en) * 1999-12-21 2001-07-03 Nitto Boseki Co Ltd Nonwoven fabric and unit tile
JP2003105975A (en) * 2001-09-28 2003-04-09 Nitto Boseki Co Ltd Reinforcing sheet and reinforcing method
JP2003326609A (en) * 2002-05-09 2003-11-19 Ube Nitto Kasei Co Ltd Linear or rod-shaped composite material made of fiber- reinforced thermoplastic resin and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0344318A4 (en) * 1987-11-30 1990-05-14 Hagihara Ind Nonwoven fabric and apparatus for manufacturing same.
JP2736017B2 (en) * 1994-10-21 1998-04-02 鐘紡株式会社 Method of manufacturing wide-width laminated fabric body with yarn as weft
US6284680B1 (en) * 1998-11-17 2001-09-04 Japan Vilene Company Nonwoven fabric containing fine fibers, and a filter material
JP3853774B2 (en) * 2003-10-01 2006-12-06 倉敷紡績株式会社 Nonwoven fabric for reinforcement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059121A (en) * 1983-09-13 1985-04-05 Chisso Corp Heat-bondable conjugate fiber and production thereof
JPH01306664A (en) * 1988-06-06 1989-12-11 Polymer Processing Res Inst Multi-axis non-woven fabric of yarn, its production and apparatus therefor
JPH1120059A (en) * 1997-06-30 1999-01-26 Nitto Boseki Co Ltd Reinforced fiber base material for composite material and manufacture thereof
JP2001181954A (en) * 1999-12-21 2001-07-03 Nitto Boseki Co Ltd Nonwoven fabric and unit tile
JP2003105975A (en) * 2001-09-28 2003-04-09 Nitto Boseki Co Ltd Reinforcing sheet and reinforcing method
JP2003326609A (en) * 2002-05-09 2003-11-19 Ube Nitto Kasei Co Ltd Linear or rod-shaped composite material made of fiber- reinforced thermoplastic resin and its manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1739220A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012515272A (en) * 2009-01-16 2012-07-05 フリードリヒ ランデルツハーメル, Net made of tape
JP2020033799A (en) * 2018-08-31 2020-03-05 日東紡績株式会社 Four-spindle braided fabric and laminate
JP7035911B2 (en) 2018-08-31 2022-03-15 日東紡績株式会社 Quadruple fabric and laminate

Also Published As

Publication number Publication date
EP1739220A4 (en) 2008-04-02
CN1926272A (en) 2007-03-07
EP1739220A1 (en) 2007-01-03
US20080045109A1 (en) 2008-02-21
JP2005281924A (en) 2005-10-13
JP4459680B2 (en) 2010-04-28
CN100529225C (en) 2009-08-19
CA2561911A1 (en) 2005-10-13

Similar Documents

Publication Publication Date Title
WO2005095701A1 (en) Process for producing nonwoven fabric and nonwoven fabric
CN108350624B (en) Low-porosity high-strength UHMWPE fabric
US7294384B2 (en) Moldable construction incorporating bonding interface
US5840633A (en) Nonwoven fabric and method of making the same
CN107107394B (en) Dry fiber reinforcement in ribbon form
JP5279375B2 (en) Nonwoven fabric for reinforcement having reinforcing fiber yarn sheet
KR20160023918A (en) Bulk fill materials and methods for producing the same
TWI532594B (en) Thermoplastic resin reinforced sheet material and method for manufacture thereof
JP4772124B2 (en) Reinforcing fiber cord having excellent adhesion and method for producing the same
JP2009061718A (en) Fiber-reinforced plastic (frp) sheet for repairing/reinforcing concrete structure and method of manufacturing the same
US20060154020A1 (en) Nonwoven base fabric for reinforcing
JP5433836B2 (en) Carbon fiber reinforced composite material of woven fabric wrapped with thermoplastic fiber yarn
EP3837109B1 (en) Semi -finished composite materials containing natural fibers and production thereof
WO2010147231A1 (en) Reinforcing-fiber sheet material
JP2019044285A (en) Heat-resistant multiaxial stitch base material
EP2382085B1 (en) Multi-layered fiber, fibrous layer comprising the same and consolidated fibrous structure comprising the same
WO2007038048A2 (en) Moldable construction incorporating bonding interface
JP3193938B2 (en) Polyvinyl alcohol-based water-soluble long-fiber nonwoven fabric
JPH085137B2 (en) Fiber-reinforced plastic pultrusion method
CN110730834A (en) Breathable lightweight unidirectional laminate
JP4355101B2 (en) Multiaxial fiber sheet and resin composite material based thereon
JPH10325062A (en) Cross-drawn nonwoven fabric and its production
JP2021070180A (en) Mesh sheet and manufacturing method thereof
JPH07145543A (en) Padding cloth and adherent padding cloth
JP2003236958A (en) Reinforcing fiber sheet and manufacturing method therefor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580006326.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2561911

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005727361

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005727361

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10599400

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10599400

Country of ref document: US