WO2005095435A1 - Method for producing pregnane derivative - Google Patents

Method for producing pregnane derivative Download PDF

Info

Publication number
WO2005095435A1
WO2005095435A1 PCT/JP2005/006808 JP2005006808W WO2005095435A1 WO 2005095435 A1 WO2005095435 A1 WO 2005095435A1 JP 2005006808 W JP2005006808 W JP 2005006808W WO 2005095435 A1 WO2005095435 A1 WO 2005095435A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
predanane
derivative
water
Prior art date
Application number
PCT/JP2005/006808
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Sugioka
Kenichi Koyakumaru
Original Assignee
Kuraray Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd. filed Critical Kuraray Co., Ltd.
Publication of WO2005095435A1 publication Critical patent/WO2005095435A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J9/00Normal steroids containing carbon, hydrogen, halogen or oxygen substituted in position 17 beta by a chain of more than two carbon atoms, e.g. cholane, cholestane, coprostane

Definitions

  • the present invention relates to a method for producing a predanane derivative.
  • the predanane derivative obtained in the present invention is an intermediate for synthesizing various compounds such as biologically active compounds, for example, a synthetic intermediate of a vitamin D derivative (for example, JP-A-2000-351796) or squalamine.
  • a synthetic intermediate of a vitamin D derivative for example, JP-A-2000-351796
  • squalamine a synthetic intermediate of a vitamin D derivative
  • (2OS) —7a, 21-dihydroxy-20_methylpredana-1,4_gen_3_one which is a compound serving as a raw material of the predanane derivative obtained in the present invention, is a compound of the formula: Fermented to obtain (2 OS) — 7 ⁇ -hydroxypredaner 1,4 _ gen-13 -one _ 20-carbaldehyde, which can be obtained by reduction with a reducing agent such as sodium borohydride (J ⁇ — ⁇ —252505049 or WO 02/20552).
  • (20S) -7a 21-dihydroxy-1-20-methylpredaner 1,41-gen_3_one has a primary hydroxyl group at the 21-position.
  • Silyl etherification is known as a protection method for protecting a group.
  • a method of reacting a compound having a hydroxyl group with a trisubstituted silyl halide is generally known.
  • the reaction conditions include, for example, N, N— in the presence of a base such as imidazole.
  • a base such as imidazole.
  • the reaction is carried out in a solvent such as dimethylformamide-methylene chloride (for example, J. Am. Chem. Soc., Vol. 94, p. 6190 (1972), Chemistry Letters, p. 41 ( 1987), Tetrahedron Letters, Vol. 22, p. 3455 (1981)).
  • N, N-dimethylformamide is highly water-soluble and can be separated by diluting with a large amount of non-polar solvent and washing with water. There is a problem that wastewater containing amide is generated.
  • halogenated solvents such as methylene chloride has a problem that the burden on the environment in recent years is extremely large. Therefore, all solvents are difficult to use industrially, and there is a problem in selecting a solvent suitable for industrialization.
  • the present invention has been made in order to solve the above-mentioned problems, and uses a predanane derivative useful as a synthetic intermediate such as vitamin D and squalamine in a small amount of a solvent having low toxicity to the environment to reduce waste. It is an object of the present invention to provide a method for producing a high-purity, simple, high-yield product that does not affect the conversion in the subsequent steps.
  • the problem was that (2 OS) -7 ⁇ , 21-dihydroxy-l 20-methylpredaner 1,4-gen-13-one could be converted from hydrocarbons, ethers and esters.
  • the reaction product is cooled to precipitate the desired product from the reaction solution, which is collected by filtration.
  • the present inventors have found that the problem can be solved by removing water-soluble impurities in the obtained precipitate by washing with water, and have completed the present invention. That is, the present invention provides a compound represented by the formula (I):
  • predanane derivative (I) is a base and a hydrocarbon, ether And silylation with a silylating agent (hereinafter abbreviated as silylating agent (III)) in the presence of one or more solvents selected from the group consisting of a compound of general formula (II)
  • R 1 R 2 and R 3 each independently represent an alkyl group optionally having a substituent, an alkenyl group optionally having a substituent, Good alkynyl group, aralkyl group optionally having substituent (s), aryl group optionally having substituent group, alkoxyl group optionally having substituent group, and aryloxy group optionally having substituent (s)
  • predanane derivative (II) A predanane derivative represented by the following formula (hereinafter, abbreviated as predanane derivative (II)):
  • a method for producing a predanane derivative (II), comprising cooling the obtained reaction solution to precipitate the predanane derivative (II) as a solid in the reaction solution, and collecting the precipitate by filtration.
  • a preferred embodiment is a method for producing a predanane derivative (II), wherein the precipitate is washed with water to remove water-soluble impurities.
  • a small amount of a highly versatile and low-toxic solvent for the environment is used, and the reaction solution is filtered to remove salts produced as by-products with water, or water is added to the reaction solution and the solution is filtered as it is.
  • a high-purity predanane derivative (II) having a high yield and not affecting the subsequent conversion reaction can be obtained.
  • the alkyl group represented by R 1 , R 2 and R 3 is preferably an alkyl group having 1 to 6 carbon atoms, for example, a methyl group, an ethyl group, and a —Propyl group, isopropyl group, n-butyl group, 1-methylpropyl group, 2-methylpropyl group, n-pentyl group, 1-methylbutyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group, 1-ethylpropyl group, n-hexyl group and the like.
  • alkyl groups may have a substituent, and examples of such a substituent include halogen atoms such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; a methoxy group, an ethoxy group, and a propoxy group. And an alkoxyl group such as a butoxy group; an aralkyloxy group such as a benzyloxy group.
  • the alkenyl group represented by each of R 1 , R 2 and R 3 is preferably an alkenyl group having 3 to 6 carbon atoms, for example, 2-propyl group, 2-butenyl group, 3-butenyl group, and 1-alkenyl group.
  • the alkynyl group represented by R 1 , R 2 and R 3 is preferably an alkynyl group having 3 to 6 carbon atoms, for example, 2-propynyl group, 2-buturyl group, 3-butynyl group, 2-pentulyl group, Examples thereof include a 3-pentul group, a 4-pentul group, a 1-methyl-3-butul group, a 2-methyl-13-butur group, and a 2-hexyl group. These alkenyl groups and alkynyl groups may have a substituent.
  • substituents examples include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; a methoxy group and an ethoxy group. And an alkoxy group such as a propoxy group and a butoxy group; and an aralkyloxy group such as a benzyloxy group.
  • the aralkyl group represented by R 1 , R 2 and R 3 is preferably an aralkyl group having an alkyl group having 1 to 6 carbon atoms as an alkyl moiety and having an aralkyl group having 6 to 10 carbon atoms as an aryl moiety.
  • Examples thereof include a benzyl group, a 1-phenylethyl group, and a naphthylmethyl group.
  • These aralkyl groups may have a substituent, and examples of the substituent include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; a methyl group, an ethyl group, an n-propyl group, Alkyl groups such as isopropyl group, n-butyl group, isoptyl group, sec-butyl group and tert-butyl group; alkoxyl groups such as methoxy group, ethoxy group, propoxy group and butoxy group; aralkyloxy groups such as benzyloxy group And so on.
  • the aryl group represented by each of R 1 , R 2 and R 3 is preferably an aryl group having 6 to 10 carbon atoms, such as a phenyl group and a naphthyl group. These aryl groups may have a substituent. Examples of the substituent include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; a methyl group, an ethyl group and a propyl group.
  • Alkyl groups such as isopropyl, butyl, isobutyl, sec-butyl and tert-butyl groups; alkoxyl groups such as methoxy, ethoxy, propoxy and butoxy groups; Aryl group; aralkyloxy group such as benzyloxy group.
  • the aryl group having a substituent include a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, a 2,3-dimethylphenyl group, and a 2,4-dimethylinophenyl group.
  • the alkoxyl group represented by R 1 , R 2 and R 3 is preferably a linear, branched or cyclic alkoxyl group having 1 to 12 carbon atoms, such as methoxy, ethoxy, propoxy, Examples include an isopropoxy group, a butoxy group, an isobutoxy group, a tert-butoxy group, a hexyloxy group, an octyloxy group, a dodecyloxy group, a cyclopentyloxy group, and a cyclohexyloxy group. These alkoxyl groups may have a substituent.
  • Examples of such a substituent include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; a methoxy group, an ethoxy group, a propoxy group and a butoxy group.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom
  • a methoxy group, an ethoxy group, a propoxy group and a butoxy group a halogen atom
  • An alkoxyl group such as a group
  • an aralkyloxy group such as a benzyloxy group.
  • the aryloxy group represented by R 1 , R 2 and R 3 is preferably an aryloxy group having 6 to 10 carbon atoms, such as a phenyloxy group and a naphthyloxy group.
  • These aryloxy groups may have a substituent, for example, a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; an alkoxyl group such as a methoxy group, an ethoxy group, a propoxy group and a butoxy group.
  • An aralkyloxy group such as a benzyloxy group.
  • silylating agent (III) used in the present invention include trimethylsilyl chloride, trimethylsilyl bromide, ethyldimethylsilyl chloride, isopropyldimethylsilyl chloride, tert-butyldimethylsilyl chloride, tert-butyldimethylsilyl chloride, Trisubstituted silyl halides such as triethynolesilinochloride, tert-butyldiphenylnonylsilinochloride and triphenylsilyl chloride; trimethylsilyl trifluoride Methanesulfonate.
  • silylating agent (III) is preferably 0.8 to 5 mol, more preferably 0.9 to 3 mol, per 1 mol of the predanane derivative (I) from the viewpoints of production efficiency and economy. More preferred.
  • the silylation reaction of the present invention is carried out in the presence of one or more bases.
  • bases include nitrogen-containing compounds such as triethylamine, dimethylaminopyridine, acetylaminoviridine, imidazole, and 2,6-rutidine; metal hydrides such as sodium hydride and hydrogen hydride; sodium methoxide; Metal alkoxides such as methoxide, potassium methoxide, potassium ethoxide, and potassium tert-butoxide; and alkyllithiums such as methyllithium, n-butyllithium, s-butyllithium, and tert_butyllithium. More preferred.
  • the total amount of the base used is preferably in the range of 1.0 to 5 mol per 1 mol of the silylating agent (III) from the viewpoint of production efficiency and economical viewpoint.
  • Examples of the solvent used in the silylation reaction of the present invention include hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane, cyclopentane, petroleum ether, benzene, toluene, xylene, and mesitylene; tetrahydrofuran, Ethers such as ethynoleate, diisopropinoleate and dimethoxetane; esters such as methyl acetate, ethyl acetate, isopropyl acetate, methyl benzoate and ethyl benzoate, and mixtures thereof.
  • hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane, cyclopentane, petroleum ether, benzene, toluene, xylene, and mesitylene
  • the solubility of the predanane derivative (II) at 20 ° C. is preferably 5 g / 10 Om 1 or less from the viewpoint of simplicity of the post-treatment.
  • Such solvents such as toluene and xylene , Mesitylene, getyl ether, diisopropyl ether.
  • the amount of the solvent used is not particularly limited, but is preferably from 1 to 100 times the mass of the predanane derivative (I) from the viewpoints of production efficiency and economy.
  • reaction temperature and reaction time vary depending on the predanane derivative (I), the type and amount of the base, the type and amount of the silylating agent (III), and the type and amount of the solvent, but an industrially advantageous reaction rate and It can be chosen accordingly to achieve selectivity.
  • the predanane derivative (II) is precipitated as a solid from the reaction solution and collected by filtration, but is used in the reaction for the purpose of improving the product recovery rate. It is also possible to add a poor solvent in which the solubility of the predanane derivative (II) is lower than the solvent used. Such a solvent can be selected from the solvents described above.
  • the temperature at which the predanane derivative (II) is filtered depends on the solubility of the predanane derivative (II) in the solvent used, the solubility of water-soluble impurities in water, and the stability of the product predanane derivative (II). Differently, it can be selected as appropriate, but in general, when water is present, it is preferably in the range of 0 ° C to 60 ° C, and when water is not present, it is preferably 20 ° C It is preferably in the range of C to 60 ° C, and in any case, more preferably in the range of 0 ° C to 40 ° C.
  • the temperature at which the predanane derivative (II) is washed with water depends on the solubility of water-soluble impurities in water and the stability of the predanane derivative (II), and can be selected as appropriate. It is preferably in the range of 60 ° C, more preferably in the range of 0 ° C to 40 ° C.
  • the reaction solution was neutralized by adding 3% hydrochloric acid, and after adding 20 Om1 of water, ethanol was distilled off under reduced pressure.
  • the crude crystals precipitated in the residue were collected by filtration and washed with water.
  • Toluene is added to the obtained crude crystals, and the mixture is heated. After water in the crude crystals is removed by azeotropic distillation with toluene, the toluene is distilled off under reduced pressure to give crude (20).
  • S) -7 ⁇ , 2 1-Dihydroxy-1 20-methylpredana 1,4-Gen-1 3-one 21.12 g (purity determined by HP LC: 89.1%, yield 93%) ) was obtained.
  • the method for producing a predanane derivative of the present invention is useful as a method for using a small amount of a solvent having low toxicity to the environment, and as a method for obtaining a predanane derivative with low waste, high efficiency and high purity.
  • This application is based on a patent application No. 2004-10864 filed in Japan on March 31, 2004, the contents of which are incorporated in full herein.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A method for producing a pregnane derivative is characterized by the process wherein a pregnane derivative represented by the general formula (II) below is produced by silylating a compound represented by the formula (I) below using a silylating agent in the presence of a base and one or more solvents selected from hydrocarbons, ethers and esters, then the resulting reaction liquid is cooled so that the pregnane derivative represented by the general formula (II) below is precipitated as a solid in the reaction liquid, and then the thus-obtained precipitate is filtered out of the reaction liquid. (In the formula, R1, R2 and R3 independently represent an optionally substituted alkyl group or the like.)

Description

明細書  Specification
プレダナン誘導体の製造方法  Method for producing predanane derivative
技術分野  Technical field
本発明は、 プレダナン誘導体の製造方法に関する。  The present invention relates to a method for producing a predanane derivative.
背景技術  Background art
本発明で得られるプレダナン誘導体は、 生物活性化合物等の種々の化合物合成 への中間体、 例えば、 ビタミン D誘導体の合成中間体 (例えば、 J P— A— 2 0 00- 3 5 1 796) やスクァラミンの合成中間体として有用である。  The predanane derivative obtained in the present invention is an intermediate for synthesizing various compounds such as biologically active compounds, for example, a synthetic intermediate of a vitamin D derivative (for example, JP-A-2000-351796) or squalamine. Useful as an intermediate for the synthesis of
本発明で得られるプレダナン誘導体の原料となる化合物である (2 O S) — 7 a, 2 1—ジヒ ドロキシー 20 _メチルプレダナ一 1, 4 _ジェン_ 3 _ォンは、 ケノデォキシコール酸を発酵処理して (2 O S) — 7 α—ヒ ドロキシプレダナー 1, 4 _ジェン一 3—オン _ 20—カルボアルデヒ ドを得、 これを水素化ホウ素 ナトリゥムなどの還元剤により還元することによって得られる ( J Ρ— Β— 2 5 2 5049号または WO 0 2/205 5 2) 。  (2OS) —7a, 21-dihydroxy-20_methylpredana-1,4_gen_3_one, which is a compound serving as a raw material of the predanane derivative obtained in the present invention, is a compound of the formula: Fermented to obtain (2 OS) — 7 α-hydroxypredaner 1,4 _ gen-13 -one _ 20-carbaldehyde, which can be obtained by reduction with a reducing agent such as sodium borohydride (J Ρ—Β—252505049 or WO 02/20552).
また、 (20 S) — 7 a, 2 1—ジヒ ドロキシ一 20—メチルプレダナー 1 , 4一ジェン _ 3 _オンは、 2 1位に一級の水酸基を有しており、 このような水酸 基を保護する保護方法としてシリルエーテル化が知られている。  Also, (20S) -7a, 21-dihydroxy-1-20-methylpredaner 1,41-gen_3_one has a primary hydroxyl group at the 21-position. Silyl etherification is known as a protection method for protecting a group.
シリルエーテル化を行う場合、 水酸基を有する化合物と三置換シリルハラィ ド とを反応させる方法が一般に知られており、 この反応条件としては、 例えば、 ィ ミダゾ一ルなどの塩基存在下、 N, N—ジメチルホルムアミ ドゃ塩化メチレンなど の溶媒中で反応させる例が一般的である (例えば、 J. Am. Chem. Soc. , Vol.94, p.6190(1972) 、 Chemistry Letters, p.41(1987)、 Tetrahedron Letters, Vol. 22, p.3455(1981)) 。  In the case of performing silyl etherification, a method of reacting a compound having a hydroxyl group with a trisubstituted silyl halide is generally known. The reaction conditions include, for example, N, N— in the presence of a base such as imidazole. Generally, the reaction is carried out in a solvent such as dimethylformamide-methylene chloride (for example, J. Am. Chem. Soc., Vol. 94, p. 6190 (1972), Chemistry Letters, p. 41 ( 1987), Tetrahedron Letters, Vol. 22, p. 3455 (1981)).
また、 後述する式 ( I ) で示される (2 0 S) - 7 a, 2 1—ジヒ ドロキシー 20—メチルプレダナ一 1 , 4 _ジェン一 3—オンをシリル化する方法としては、 イミダゾール存在下 t e r t一プチルジメチルシリルクロリ ドを塩化メチレン溶 媒中で反応させ、 反応液を濾過してイミダゾール塩酸塩を除去して濾液を濃縮後、 ジィソプロピルエーテルを用いて再沈殿により取得する方法が知られている ( 「脂肪族および脂環式生物活性物質の合成研究」 中川直著、 東京大学博士論 文) 。 As a method for silylating (20S) -7a, 21-dihydroxy-20-methylpredana-1,4,4-gen-3-one represented by the formula (I) to be described later, tertiary thioamide in the presence of imidazole is used. There is known a method of reacting monobutyldimethylsilyl chloride in a methylene chloride solvent, filtering the reaction solution to remove imidazole hydrochloride, concentrating the filtrate, and re-precipitating with diisopropyl ether. ing ("Synthetic Studies on Aliphatic and Alicyclic Biologically Active Substances", Nao Nakagawa, Ph.D., The University of Tokyo).
発明の開示  Disclosure of the invention
N, N—ジメチルホルムアミドは、 水溶性が高く、 これを分離するためには、 大量の非極性溶媒で希釈し、 水洗するなどの方法が用いられ、 後処理時に大量の N, N—ジメチルホルムアミ ドを含む廃水が生じるという問題がある。 また、 塩 化メチレンなどのハロゲン化溶媒の使用は近年環境面に与える負荷が極めて大き いという問題がある。 したがって、 いずれの溶媒も工業的には使用困難な溶媒で あり、 工業化に適した溶媒の選択についても課題がある。  N, N-dimethylformamide is highly water-soluble and can be separated by diluting with a large amount of non-polar solvent and washing with water. There is a problem that wastewater containing amide is generated. In addition, the use of halogenated solvents such as methylene chloride has a problem that the burden on the environment in recent years is extremely large. Therefore, all solvents are difficult to use industrially, and there is a problem in selecting a solvent suitable for industrialization.
また、 「脂肪族および脂環式生物活性物質の合成研究」 (中川直著、 東京大学 博士論文)に示された方法は、 後述する式 ( I I ) で示されるプレダナン誘導体 の収率が 6 0 %と低い上、 融点が 2 4 0 °Cであり高純度品の融点 (2 6 4 °C〜2 6 5 °C) とは大きく異なっており、 決して高純度であるとは言いがたく、 その後 の反応の種類によっては再精製する必要がある。 特に、 水を使用することなく精 製を行おうとすると、 反応時に使用する塩基などに由来する水溶性の不純物を除 去することが困難であり、 得られた中間体の次工程以降の変換反応に影響を与え ることちある。  Also, the method described in “Synthetic Studies on Aliphatic and Alicyclic Bioactive Substances” (Nao Nakagawa, Ph.D. Dissertation, The University of Tokyo) shows that the yield of the predanane derivative represented by the formula (II) described later is 60%. %, And the melting point is 240 ° C, which is very different from the melting point of high-purity products (264 ° C to 265 ° C). Repurification may be required depending on the type of subsequent reaction. In particular, if the purification is carried out without using water, it is difficult to remove water-soluble impurities derived from the base and the like used in the reaction. In some cases.
本発明は、 上記課題を解決するためになされたものであり、 ビタミン D、 スク ァラミンなどの合成中間体として有用なプレダナン誘導体を、 環境に対して低毒 性の溶媒を少量用い、 廃棄物が少なく、 簡便にかつ高収率で、 次工程以降の変換 に影響を与えることのない高純度で製造する方法を提供することを目的とする。 本発明者らが鋭意検討したところ、 かかる課題は、 (2 O S ) — 7 α , 2 1— ジヒ ドロキシ一 2 0—メチルプレダナー 1 , 4ージェン一 3—オンを炭化水素、 エーテルおよびエステルからなる 1種または 2種以上の溶媒中でシリル化し、 反 応終了後、 反応液を冷却することにより目的生成物を反応液より析出させ、 これ を濾別により採取し、 さらに必要に応じて、 得られた析出物中の水溶性の不純物 を水で洗浄することにより除去することで解決できることを見出し、 本発明を完 成するに至った。 すなわち 本発明は、 式 (I ) The present invention has been made in order to solve the above-mentioned problems, and uses a predanane derivative useful as a synthetic intermediate such as vitamin D and squalamine in a small amount of a solvent having low toxicity to the environment to reduce waste. It is an object of the present invention to provide a method for producing a high-purity, simple, high-yield product that does not affect the conversion in the subsequent steps. As a result of the inventor's diligent studies, the problem was that (2 OS) -7α, 21-dihydroxy-l 20-methylpredaner 1,4-gen-13-one could be converted from hydrocarbons, ethers and esters. After completion of the reaction, the reaction product is cooled to precipitate the desired product from the reaction solution, which is collected by filtration. The present inventors have found that the problem can be solved by removing water-soluble impurities in the obtained precipitate by washing with water, and have completed the present invention. That is, the present invention provides a compound represented by the formula (I):
Figure imgf000005_0001
Figure imgf000005_0001
で示される (2 O S) - 7 a, 2 1—ジヒドロキシ一 20 _メチルプレダナ一 1 4一ジェン _ 3—オン (以下、 プレダナン誘導体 (I ) と略称する。 ) を塩基な らびに炭化水素、 エーテルおよびエステルから選ばれる一種または二種以上の溶 媒の存在下、 シリル化剤 (以下、 シリル化剤 (I I I ) と略称する。 ) によりシ リル化して一般式 (I I ) (2 OS)-7a, 21-dihydroxy-1 20-methylpredana-1 4- 1-gen-3-one (hereinafter abbreviated as predanane derivative (I)) is a base and a hydrocarbon, ether And silylation with a silylating agent (hereinafter abbreviated as silylating agent (III)) in the presence of one or more solvents selected from the group consisting of a compound of general formula (II)
Figure imgf000005_0002
Figure imgf000005_0002
(式中 R 1 R2および R3は、 それぞれ独立して、 置換基を有していてもよいァ ルキル基、 置換基を有していてもよいアルケニル基、 置換基を有していてもよい アルキニル基、 置換基を有していてもよいァラルキル基、 置換基を有していても よいァリール基、 置換基を有していてもよいアルコキシル基および置換基を有し ていてもよいァリールォキシ基を表す。 ) で示されるプレダナン誘導体 (以下、 プレダナン誘導体 (I I ) と略称する。 ) を製造し、 (Wherein R 1 R 2 and R 3 each independently represent an alkyl group optionally having a substituent, an alkenyl group optionally having a substituent, Good alkynyl group, aralkyl group optionally having substituent (s), aryl group optionally having substituent group, alkoxyl group optionally having substituent group, and aryloxy group optionally having substituent (s) A predanane derivative represented by the following formula (hereinafter, abbreviated as predanane derivative (II)):
得られる反応液を冷却することによりプレダナン誘導体 (I I ) を反応液中で 固体として析出させ、 該析出物を濾取することを特徴とするプレダナン誘導体 ( I I ) の製造方法である。  A method for producing a predanane derivative (II), comprising cooling the obtained reaction solution to precipitate the predanane derivative (II) as a solid in the reaction solution, and collecting the precipitate by filtration.
また、 好ましい実施態様は、 上記した析出物を水で洗浄することにより、 水溶 性の不純物を除去することを特徴とするプレダナン誘導体 (I I ) の製造方法で ある。  Further, a preferred embodiment is a method for producing a predanane derivative (II), wherein the precipitate is washed with water to remove water-soluble impurities.
本発明によれば、 汎用性が高く環境に対し低毒性の溶媒を少量用い、 反応液を 濾過して副生する塩を水洗して除去するか、 反応液に水を添加してそのまま濾過 するだけで、 高収率かつ以降の変換反応に影響を与えない高純度のプレダナン誘 導体 ( I I ) を取得することができる。 According to the present invention, a small amount of a highly versatile and low-toxic solvent for the environment is used, and the reaction solution is filtered to remove salts produced as by-products with water, or water is added to the reaction solution and the solution is filtered as it is. By doing so, a high-purity predanane derivative (II) having a high yield and not affecting the subsequent conversion reaction can be obtained.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
上記プレダナン誘導体 (I I ) およびシリル化剤 (I I I ) において、 R 1 、 R 2および R 3がそれぞれ表すアルキル基としては、 炭素数 1 〜 6のアルキル基が 好ましく、 例えばメチル基、 ェチル基、 n—プロピル基、 イソプロピル基、 n— ブチル基、 1一メチルプロピル基、 2—メチルプロピル基、 n—ペンチル基、 1 -メチルブチル基、 1 , 1—ジメチルプロピル基、 1 , 2—ジメチルプロピル基、 2 , 2—ジメチルプロピル基、 1一ェチルプロピル基、 n —へキシル基などが挙 げられる。 これらのアルキル基は置換基を有していてもよく、 かかる置換基とし ては、 例えば、 フッ素原子、 塩素原子、 臭素原子、 ヨウ素原子などのハロゲン原 子; メ トキシ基、 エトキシ基、 プロポキシ基、 ブトキシ基などのアルコキシル 基;ベンジルォキシ基などのァラルキルォキシ基などが挙げられる。 In the predanane derivative (II) and the silylating agent (III), the alkyl group represented by R 1 , R 2 and R 3 is preferably an alkyl group having 1 to 6 carbon atoms, for example, a methyl group, an ethyl group, and a —Propyl group, isopropyl group, n-butyl group, 1-methylpropyl group, 2-methylpropyl group, n-pentyl group, 1-methylbutyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group, 1-ethylpropyl group, n-hexyl group and the like. These alkyl groups may have a substituent, and examples of such a substituent include halogen atoms such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; a methoxy group, an ethoxy group, and a propoxy group. And an alkoxyl group such as a butoxy group; an aralkyloxy group such as a benzyloxy group.
R 1 , R 2および R 3がそれぞれ表すアルケニル基としては、 炭素数 3 〜 6のァ ルケニル基が好ましく、 例えば 2—プロべ-ル基、 2—ブテュル基、 3 _プテニ ル基、 1—メチルー 2 _プロぺニル基、 2—メチル一 2 _プロぺニノレ基、 2—ぺ ンテュル基、 3 _ペンテニル基、 4一ペンテュル基、 1—メチル—2—ブテュル 基、 1ーメチルー 3—ブテュル基、 2—メチルー 2—ブテュル基、 2—メチルー 3—ブテニル基、 3—メチル— 2—ブテニル基、 3—メチル _ 3—プテュル基、 1—ェチルー 2—プロぺニル基、 1—へキセニル基などが挙げられる。 The alkenyl group represented by each of R 1 , R 2 and R 3 is preferably an alkenyl group having 3 to 6 carbon atoms, for example, 2-propyl group, 2-butenyl group, 3-butenyl group, and 1-alkenyl group. Methyl-2-propyl group, 2-methyl-2-propyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group, 1-methyl-2-buturyl group, 1-methyl-3-butyryl group , 2-methyl-2-butenyl, 2-methyl-3-butenyl, 3-methyl-2-butenyl, 3-methyl-3-butul, 1-ethyl-2-propenyl, 1-hexenyl And the like.
R 1 , R 2および R 3がそれぞれ表すアルキニル基としては、 炭素数 3 〜 6のァ ルキュル基が好ましく、 例えば 2—プロピニル基、 2—ブチュル基、 3—ブチニ ル基、 2—ペンチュル基、 3—ペンチュル基、 4 _ペンチュル基、 1—メチルー 3—ブチュル基、 2 _メチル一 3—ブチュル基、 2 _へキシュル基などが挙げら れる。 これらのアルケニル基、 アルキニル基は置換基を有していてもよく、 かか る置換基としては、 例えば、 フッ素原子、 塩素原子、 臭素原子、 ヨウ素原子など のハロゲン原子; メ トキシ基、 エトキシ基、 プロポキシ基、 ブトキシ基などのァ ルコキシル基;ベンジルォキシ基などのァラルキルォキシ基などが挙げられる。 R 1、 R 2および R 3がそれぞれ表すァラルキル基としては、 アルキル部分とし て炭素数 1〜6のアルキル基を有し、 かつァリール部分として炭素数 6〜1 0の ァリール基を有するものが好ましく、 例えばべンジル基、 1 _フエニルェチル基、 ナフチルメチル基などが挙げられる。 これらのァラルキル基は置換基を有してい てもよく、 かかる置換基としては、 例えば、 フッ素原子、 塩素原子、 臭素原子、 ヨウ素原子などのハロゲン原子;メチル基、 ェチル基、 n _プロピル基、 イソプ 口ピル基、 n—プチル基、 ィソプチル基、 s e c —ブチル基、 t e r t —ブチル 基などのアルキル基;メ トキシ基、 エトキシ基、 プロポキシ基、 ブトキシ基など のアルコキシル基;ベンジルォキシ基などのァラルキルォキシ基などが挙げられ る。 The alkynyl group represented by R 1 , R 2 and R 3 is preferably an alkynyl group having 3 to 6 carbon atoms, for example, 2-propynyl group, 2-buturyl group, 3-butynyl group, 2-pentulyl group, Examples thereof include a 3-pentul group, a 4-pentul group, a 1-methyl-3-butul group, a 2-methyl-13-butur group, and a 2-hexyl group. These alkenyl groups and alkynyl groups may have a substituent. Examples of the substituent include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; a methoxy group and an ethoxy group. And an alkoxy group such as a propoxy group and a butoxy group; and an aralkyloxy group such as a benzyloxy group. The aralkyl group represented by R 1 , R 2 and R 3 is preferably an aralkyl group having an alkyl group having 1 to 6 carbon atoms as an alkyl moiety and having an aralkyl group having 6 to 10 carbon atoms as an aryl moiety. Examples thereof include a benzyl group, a 1-phenylethyl group, and a naphthylmethyl group. These aralkyl groups may have a substituent, and examples of the substituent include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; a methyl group, an ethyl group, an n-propyl group, Alkyl groups such as isopropyl group, n-butyl group, isoptyl group, sec-butyl group and tert-butyl group; alkoxyl groups such as methoxy group, ethoxy group, propoxy group and butoxy group; aralkyloxy groups such as benzyloxy group And so on.
R 1 , R 2および R 3がそれぞれ表すァリール基としては、 炭素数 6〜 1 0のァ リール基が好ましく、 例えばフエニル基、 ナフチル基などが挙げられる。 これら のァリール基は置換基を有していてもよく、 かかる置換基としては、 例えば、 フ ッ素原子、 塩素原子、 臭素原子、 ヨウ素原子などのハロゲン原子;メチル基、 ェ チル基、 プロピル基、 イソプロピル基、 プチル基、 イソブチル基、 s e c—ブチ ル基、 t e r t _プチル基などのアルキル基;メ トキシ基、 エトキシ基、 プロボ キシ基、 ブトキシ基などのアルコキシル基; フヱ-ル基などのァリール基;ベン ジルォキシ基などのァラルキルォキシ基などが挙げられる。 置換基を有するァリ ール基としては、 例えば、 2 —メチルフエ-ル基、 3 —メチルフエ-ル基、 4— メチルフエニル基、 2 , 3—ジメチルフエニル基、 2 , 4—ジメチノレフェニル基、 2, 5 —ジメチノレフエ二ノレ基、 2 , 6 —ジメチノレフエ-ル基、 4 _プロピノレフェ ニル基、 4 一ブチルフエニル基、 2 , 3 _ジメチルナフチル基、 2 , 4 —ジメチ ルナフチル基などが挙げられる。 The aryl group represented by each of R 1 , R 2 and R 3 is preferably an aryl group having 6 to 10 carbon atoms, such as a phenyl group and a naphthyl group. These aryl groups may have a substituent. Examples of the substituent include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; a methyl group, an ethyl group and a propyl group. Alkyl groups such as isopropyl, butyl, isobutyl, sec-butyl and tert-butyl groups; alkoxyl groups such as methoxy, ethoxy, propoxy and butoxy groups; Aryl group; aralkyloxy group such as benzyloxy group. Examples of the aryl group having a substituent include a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, a 2,3-dimethylphenyl group, and a 2,4-dimethylinophenyl group. , 2,5-dimethynolephenyl group, 2,6-dimethynolephenyl group, 4-propynolephenyl group, 4-butylbutyl group, 2,3-dimethylnaphthyl group, 2,4-dimethylnaphthyl group, and the like.
R 1 , R 2および R 3がそれぞれ表すアルコキシル基としては、 炭素数が 1〜1 2の直鎖状、 分岐状または環状のアルコキシル基が好ましく、 例えば、 メ トキシ 基、 エトキシ基、 プロポキシ基、 イソプロポキシ基、 ブトキシ基、 イソブトキシ 基、 t e r t —ブトキシ基、 へキシルォキシ基、 ォクチルォキシ基、 ドデシルォ キシ基、 シクロペンチルォキシ基、 シクロへキシルォキシ基などが挙げられる。 これらのアルコキシル基は置換基を有していてもよく、 かかる置換基としては、 例えば、 フッ素原子、 塩素原子、 臭素原子、 ヨウ素原子などのハロゲン原子;メ トキシ基、 エトキシ基、 プロポキシ基、 ブトキシ基などのアルコキシル基;ベン ジルォキシ基などのァラルキルォキシ基などが挙げられる。 The alkoxyl group represented by R 1 , R 2 and R 3 is preferably a linear, branched or cyclic alkoxyl group having 1 to 12 carbon atoms, such as methoxy, ethoxy, propoxy, Examples include an isopropoxy group, a butoxy group, an isobutoxy group, a tert-butoxy group, a hexyloxy group, an octyloxy group, a dodecyloxy group, a cyclopentyloxy group, and a cyclohexyloxy group. These alkoxyl groups may have a substituent. Examples of such a substituent include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; a methoxy group, an ethoxy group, a propoxy group and a butoxy group. An alkoxyl group such as a group; an aralkyloxy group such as a benzyloxy group.
R 1 , R 2および R 3がそれぞれ表すァリールォキシ基としては、 炭素数 6〜1 0のァリールォキシ基が好ましく、 例えばフエニルォキシ基、 ナフチルォキシ基 などが挙げられる。 これらのァリールォキシ基は置換基を有していてもよく、 例 えばフッ素原子、 塩素原子、 臭素原子、 ヨウ素原子などのハロゲン原子; メ トキ シ基、 エトキシ基、 プロポキシ基、 プトキシ基などのアルコキシル基;ベンジル ォキシ基などのァラルキルォキシ基などが挙げられる。 The aryloxy group represented by R 1 , R 2 and R 3 is preferably an aryloxy group having 6 to 10 carbon atoms, such as a phenyloxy group and a naphthyloxy group. These aryloxy groups may have a substituent, for example, a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; an alkoxyl group such as a methoxy group, an ethoxy group, a propoxy group and a butoxy group. An aralkyloxy group such as a benzyloxy group.
本発明で用いるシリル化剤 (I I I ) の具体例としては、 トリメチルシリルク ロリ ド、 トリメチルシリルブロミ ド、 ェチルジメチルシリルクロリ ド、 イソプロ ピルジメチルシリルク口リ ド、 t e r t—ブチルジメチルシリルクロリ ド、 トリ ェチノレシリノレクロリ ド、 t e r t —ブチルジフヱニノレシリノレクロリ ド、 トリフエ ニルシリルクロリ ドなどの三置換シリルハライ ド ; トリメチルシリルトリフルォ 口メタンスノレホネート、 ェチノレジメチノレシリノレトリフノレオ口メタンスノレホネート. イソプロピルジメチルシリルトリフルォロメタンスルホネート、 t e r t—ブチ ノレジメチノレシリノレトリフノレオロメタンスノレホネート、 トリェチルシリルトリフノレ ォロメタンスノレホネート、 t e r t—ブチノレジフエニノレシリノレトリフノレオロメタ ンスルホネート、 トリフエニルシリルトリフルォロメタンスルホネートなどの三 置換シリルトリフルォロメタンスルホネートが挙げられ、 その中でも三置換シリ ルハライ ドが好ましい。 シリル化剤 ( I I I ) の使用量は、 製造効率および経済 的な観点から、 プレダナン誘導体 ( I ) 1モルに対して 0 . 8〜 5モルの範囲が 好ましく、 0 . 9〜 3モルの範囲がより好ましい。  Specific examples of the silylating agent (III) used in the present invention include trimethylsilyl chloride, trimethylsilyl bromide, ethyldimethylsilyl chloride, isopropyldimethylsilyl chloride, tert-butyldimethylsilyl chloride, tert-butyldimethylsilyl chloride, Trisubstituted silyl halides such as triethynolesilinochloride, tert-butyldiphenylnonylsilinochloride and triphenylsilyl chloride; trimethylsilyl trifluoride Methanesulfonate. Isopropyl dimethylsilyl trifluoromethanesulfonate, tert-butylinresinmethinolesylinoletrinorolenomethanshonolefonate, triethylsilyl trifluorene methanesnorefonate, tert-butynolefifenino Examples include trisubstituted silyltrifluoromethanesulfonates such as resilinoretreflenorolomethanesulfonate and triphenylsilyltrifluoromethanesulfonate, among which trisubstituted silyl halides are preferred. The amount of the silylating agent (III) to be used is preferably 0.8 to 5 mol, more preferably 0.9 to 3 mol, per 1 mol of the predanane derivative (I) from the viewpoints of production efficiency and economy. More preferred.
本発明のシリル化反応は、 一種または二種以上の塩基存在下に実施される。 か かる塩基としては、 トリェチルァミン、 ジメチルァミノピリジン、 ジェチルアミ ノビリジン、 ィミダゾール、 2, 6ールチジンなどの含窒素化合物;水素化ナト リウム、 水素化力リゥムなどの金属水素化物;ナトリウムメ トキシド、 ナトリウ ムェトキシド、 カリウムメ トキシド、 カリウムェトキシド、 カリウム t e r t _ ブトキシドなどの金属アルコキシド;メチルリチウム、 n—プチルリチウム、 s 一ブチルリチウム、 t e r t _ブチルリチウムなどのアルキルリチウムが挙げら れ、 その中でも含窒素化合物がより好ましい。 かかる塩基の総使用量は、 製造効 率および経済的な観点からシリル化剤 (I I I ) 1モルに対して 1. 0 1〜5モ ルの範囲が好ましい。 The silylation reaction of the present invention is carried out in the presence of one or more bases. Examples of such bases include nitrogen-containing compounds such as triethylamine, dimethylaminopyridine, acetylaminoviridine, imidazole, and 2,6-rutidine; metal hydrides such as sodium hydride and hydrogen hydride; sodium methoxide; Metal alkoxides such as methoxide, potassium methoxide, potassium ethoxide, and potassium tert-butoxide; and alkyllithiums such as methyllithium, n-butyllithium, s-butyllithium, and tert_butyllithium. More preferred. The total amount of the base used is preferably in the range of 1.0 to 5 mol per 1 mol of the silylating agent (III) from the viewpoint of production efficiency and economical viewpoint.
本発明のシリル化反応において使用する溶媒としては、 例えばペンタン、 へキ サン、 ヘプタン、 オクタン、 シクロへキサン、 シクロペンタン、 石油エーテノレ、 ベンゼン、 トルエン、 キシレン、 メシチレンなどの炭化水素;テトラヒ ドロフラ ン、 ジェチノレエ一テノレ、 ジイソプロピノレエ一テノレ、 ジメ トキシェタンなどのエー テル;酢酸メチル、 酢酸ェチル、 酢酸イソプロピル、 安息香酸メチル、 安息香酸 ェチルなどのエステルまたはこれらの混合物などが挙げられる。 さらに、 これら の中でも、 後処理の簡便性などの観点からプレダナン誘導体 (I I ) の 20°Cに おける溶解度が 5 g/10 Om 1以下であるのが好ましく、 かかる溶媒として、 例えば、 トルエン、 キシレン、 メシチレン、 ジェチルエーテル、 ジイソプロピル エーテルが挙げられる。 溶媒の使用量に特に制限はないが、 製造効率および経済 的な観点から、 プレダナン誘導体 ( I ) に対して 1〜100質量倍の範囲が好ま しい。  Examples of the solvent used in the silylation reaction of the present invention include hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane, cyclopentane, petroleum ether, benzene, toluene, xylene, and mesitylene; tetrahydrofuran, Ethers such as ethynoleate, diisopropinoleate and dimethoxetane; esters such as methyl acetate, ethyl acetate, isopropyl acetate, methyl benzoate and ethyl benzoate, and mixtures thereof. Further, among these, the solubility of the predanane derivative (II) at 20 ° C. is preferably 5 g / 10 Om 1 or less from the viewpoint of simplicity of the post-treatment. Such solvents such as toluene and xylene , Mesitylene, getyl ether, diisopropyl ether. The amount of the solvent used is not particularly limited, but is preferably from 1 to 100 times the mass of the predanane derivative (I) from the viewpoints of production efficiency and economy.
反応温度および反応時間は、 プレダナン誘導体 ( I ) 、 塩基の種類および使用 量、 シリル化剤 ( I I I) の種類および使用量、 溶媒の種類および使用量により 異なるが、 工業的に有利な反応速度および選択率を達成するために適宜選ぶこと ができる。  The reaction temperature and reaction time vary depending on the predanane derivative (I), the type and amount of the base, the type and amount of the silylating agent (III), and the type and amount of the solvent, but an industrially advantageous reaction rate and It can be chosen accordingly to achieve selectivity.
このようにして得られた反応液を冷却することにより、 プレダナン誘導体 (I I ) を反応液より固体として析出させ、 濾取により回収するが、 生成物の回収率 を向上させる目的で、 反応で使用した溶媒よりもプレダナン誘導体 ( I I ) の溶 解度が低い貧溶媒を追加することもできる。 かかる溶媒としては、 先に述べた溶 媒の中から選択することができる。  By cooling the reaction solution thus obtained, the predanane derivative (II) is precipitated as a solid from the reaction solution and collected by filtration, but is used in the reaction for the purpose of improving the product recovery rate. It is also possible to add a poor solvent in which the solubility of the predanane derivative (II) is lower than the solvent used. Such a solvent can be selected from the solvents described above.
この際、 得られた反応液に水を添加し、 その混合液を濾取して得られる粗生成 物を反応に用いたのと同じ溶媒または水で洗浄するか、 反応液をそのまま濾過し て得られる粗生成物を水で洗浄し、 必要に応じてさらに、 反応に用いたのと同じ 溶媒で洗浄することも可能である。 これにより、 シリル化反応で副生し粗生成物 中に含まれる塩類などの水溶性不純物を除去することが可能である。 At this time, water is added to the obtained reaction solution, and the mixture is filtered to obtain a crude product. The product is washed with the same solvent or water used for the reaction, or the reaction solution is filtered and the crude product obtained is washed with water, and if necessary, further washed with the same solvent used for the reaction. It is also possible to wash. This makes it possible to remove water-soluble impurities such as salts contained in the crude product by-produced in the silylation reaction.
プレダナン誘導体 (I I) を濾取する温度は、 使用する溶媒へのプレダナン誘 導体 (I I) の溶解性、 水溶性不純物の水への溶解性、 生成物であるプレダナン 誘導体 (I I) の安定性により異なり、 適宜選択することが可能であるが、 通常、 水が存在する場合には、 0°C〜60°Cの範囲であるのが好ましく、 水が存在しな い場合には、 一 20°C〜60°Cの範囲であるのが好ましく、 いずれの場合も、 0°C〜40°Cの範囲であるのがより好ましい。  The temperature at which the predanane derivative (II) is filtered depends on the solubility of the predanane derivative (II) in the solvent used, the solubility of water-soluble impurities in water, and the stability of the product predanane derivative (II). Differently, it can be selected as appropriate, but in general, when water is present, it is preferably in the range of 0 ° C to 60 ° C, and when water is not present, it is preferably 20 ° C It is preferably in the range of C to 60 ° C, and in any case, more preferably in the range of 0 ° C to 40 ° C.
プレダナン誘導体 (I I) を水で洗浄する温度は、 水溶性不純物の水への溶解 性、 プレダナン誘導体 (I I) の安定性により異なり、 適宜選択することが可能 であるが、 通常、 0°C〜60°Cの範囲であるのが好ましく、 0°C〜40°Cの範囲 であるのがより好ましい。  The temperature at which the predanane derivative (II) is washed with water depends on the solubility of water-soluble impurities in water and the stability of the predanane derivative (II), and can be selected as appropriate. It is preferably in the range of 60 ° C, more preferably in the range of 0 ° C to 40 ° C.
実施例  Example
以下、 本発明を実施例により具体的に説明するが、 本発明はこれらの実施例に より何ら制限されるものではない。  Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples.
参考例 1 Reference example 1
(粗原料の製造例)  (Production example of crude material)
窒素雰囲気下、 容量 5 O Om lのフラスコに、 粗 (20 S) — 7 α—ヒドロキ シ一 3—ォキソープレグナ一 1 , 4ージェン一 20—カルボタスアルデヒ ド 22. 0 g (純分換算重量: 20. 0 g、 54. 8 mm 0 1 ) 、 ェタノール 200m l を加え、 攪拌しながら氷冷した。 この溶液に、 水素化ホウ素ナトリウム 0. 61 g (16. lmmo 1 ) を数回に分けて加え、 添加終了後、 氷冷下で 1時間攪拌 した。 反応液に 3%塩酸を加えて中和し、 さらに水 20 Om 1を加えた後、 エタ ノールを減圧下で留去した。 残留物中に析出した粗結晶を濾過して回収後、 水洗 した。 得られた粗結晶にトルエンを添加して加熱し、 粗結晶中の水をトルエンと の共沸により除去した後、 トルエンを減圧下で留去することにより、 粗 (20 S) - 7 α, 2 1—ジヒ ドロキシ一 20—メチルプレダナ一 1, 4—ジェン一 3 一オン 2 1. 1 2 g (HP LCで定量した純度: 8 9. 1 %、 収率9 3%) を得 た。 Under a nitrogen atmosphere, a crude (20 S) -7α-hydroxy-3-oxoxopregna-1,4-gen-1-20-carbotas aldehyde 22.0 g (weight in terms of pure matter) was placed in a flask with a capacity of 5 O Oml in a nitrogen atmosphere. 20. 0 g, 54. 8 mm 0 1), Etanoru 200 meters l was added, the mixture was cooled in ice with constant stirring. To this solution, 0.61 g (16. lmmo 1) of sodium borohydride was added in several portions, and after the addition was completed, the mixture was stirred for 1 hour under ice cooling. The reaction solution was neutralized by adding 3% hydrochloric acid, and after adding 20 Om1 of water, ethanol was distilled off under reduced pressure. The crude crystals precipitated in the residue were collected by filtration and washed with water. Toluene is added to the obtained crude crystals, and the mixture is heated. After water in the crude crystals is removed by azeotropic distillation with toluene, the toluene is distilled off under reduced pressure to give crude (20). S) -7α, 2 1-Dihydroxy-1 20-methylpredana 1,4-Gen-1 3-one 21.12 g (purity determined by HP LC: 89.1%, yield 93%) ) Was obtained.
実施例 1 Example 1
窒素雰囲気下、 容量 30 Om 1のフラスコに参考例 1で得られた粗 (2 O S) - l a, 2 1—ジヒドロキシ一 20—メチルプレダナ一 1, 4—ジェン一 3—ォ ン 9. 88 5 g (純分換算重量: 8. 79 8 g、 2 5. 5 mm o 1 ) 、 イミダゾ ール 2. 60 g (3 8. 3 mmo 1 ) およびトルエン 1 00 m 1を入れて攪拌し ながら溶解させ、 内温が 6 0°Cになるまで加熱した。 この溶液に、 t e r t—ブ チルジメチノレクロロシラン 5. 00 g (3 3. 2 mmo 1 ) をトノレェン 2 Om l に溶解した溶液を内温が 6 0°C〜6 5 °Cに保たれるように滴下し、 添加終了後さ らに 5時間攪拌した。 反応混合物を室温まで冷却後、 水 5 Om lを添加して 3 0 分攪拌した。 これを濾過し、 濾取物をトルエン 3 Om 1で 2回洗浄し、 次いで水 3 0m lで 2回洗浄した。 水で洗浄する前後の結晶の塩化物イオン濃度を測定し たところ、 各々 3000 p p m、 5 0 p pmであった。 この固体を減圧下で乾燥 し、 (2 O S) — 2 1— t—ブチルジメチルシリルォキシ一 7 α—ヒ ドロキシ一 2 0—メチルプレダナ一 1 , 4—ジェン一 3—オン 1 0. 5 3 gを得た (収率 9 0%、 HP LCで定量した純度: 9 9. 6%、 融点: 264°C〜26 5°C) 。  Under a nitrogen atmosphere, a crude (2 OS) obtained in Reference Example 1 in a flask having a capacity of 30 Om1 and obtained in Reference Example 1-la, 21 1 -dihydroxy-1 20 -methylpredana-1, 4-gen-1 3-one 9.885 g (Equivalent weight: 8.798 g, 25.5 mmo 1), 2.60 g (38.3 mmo 1) of imidazole and 100 ml of toluene were added and dissolved with stirring. Heated until the internal temperature reached 60 ° C. A solution of 5.00 g (33.2 mmo 1) of tert-butyldimethinolechlorosilane in 2 ml of Tonolene was added to this solution to maintain the internal temperature at 60 ° C to 65 ° C. And the mixture was further stirred for 5 hours after completion of the addition. After cooling the reaction mixture to room temperature, 5 Oml of water was added and the mixture was stirred for 30 minutes. This was filtered, and the residue was washed twice with 30 mL of toluene and then twice with 30 mL of water. The chloride ion concentration of the crystals before and after washing with water was measured to be 3000 ppm and 50 ppm, respectively. The solid was dried under reduced pressure to give (2 OS) -21-t-butyldimethylsilyloxy-17α-hydroxy-20-methylpredana-1,4-4-gen-3-one-10.53 g (90% yield, purity determined by HP LC: 99.6%, melting point: 264-265 ° C).
実施例 2 Example 2
実施例 1においてトルエンをジィソプロピルエーテルに代えた以外は実施例 1 と同様に反応および後処理を実施し、 (2 O S) — 2 1— t—ブチルジメチルシ リルォキシ _ 7 α—ヒ ドロキシ一 20—メチルプレダナ一 1 , 4一ジェン一 3 _ オン 1 0. 5 3 gを得た (収率 9 0%、 HP LCで定量した純度: 9 9. 2 %) 。 参考例 2  The reaction and post-treatment were carried out in the same manner as in Example 1 except that toluene was replaced with diisopropyl ether in Example 1, and (2 OS) -21-t-butyldimethylsilyloxy_7α-hydroxyl There were obtained 0.53 g of 20-methylpredana-1,4-dien-3-one (90% yield, purity determined by HP LC: 99.2%). Reference example 2
残留塩素分の次工程の反応への影響を確認するため、 残留塩素分の異なる (2 O S) — 2 1— t e r t—ブチノレジメチノレシリノレオキシ一 7 α—ヒ ドロキシー 2 0 _メチルプレグナー 1, 4 _ジェン _ 3—オンを用いて、 液体アンモニア中で 金属リチウムによりパーチ還元を行ない (金属リチウムの使用量:原料 1モルに 対し 4. 5モル) 、 原料の転化率を測定した。 結果を以下に示す。 In order to confirm the effect of residual chlorine on the reaction of the next process, the residual chlorine content was different (2 OS) — 21 1-tert-butinoresimetinolecinolenoleoxy-17α-hydroxy 20-methylpregnator Using 1, 4 _ gen _ 3-one, perform perch reduction with metallic lithium in liquid ammonia (Amount of metallic lithium used: 1 mol of raw material On the other hand, the conversion rate of the raw material was measured. The results are shown below.
原料 lot. No. 塩化物イオン含有量 (質量%) 転化率 (%)  Raw material lot. No. Chloride ion content (% by mass) Conversion (%)
[1] 0. 1 5 9 0  [1] 0.15 9 0
[2] 0. 0 1 > 9 9 実施例 1および 2により得られた生成物の融点、 純度および収率と 「脂肪族お よび脂環式生物活性物質の合成研究」 (中川直著、 東京大学博士論文) の方法に よつて得られた生成物の融点および収率とを比較して明らかなように、 実施例 1 および 2では、 高収率かつ高純度で生成物を得ることができた。  [2] 0.01> 9 9 Melting point, purity and yield of the products obtained in Examples 1 and 2 and "Synthetic studies on aliphatic and alicyclic bioactive substances" (Nao Nakagawa, Tokyo As is clear from comparison of the melting point and the yield of the product obtained by the method of the University doctoral dissertation, in Examples 1 and 2, the product could be obtained in high yield and high purity. Was.
産業上の利用可能性  Industrial applicability
本発明のプレダナン誘導体の製造方法は、 環境に対し低毒性の溶媒を少量用レ、、 また廃棄物が少なく、 高効率で、 かつ、 高純度にプレダナン誘導体を得る方法と して有用である。 本出願は、 2004年 3月 3 1日に日本で出願された特願 2004 - 1 0 84 64を基礎としており、 その内容は本明細書にすべて包含されるものである。  INDUSTRIAL APPLICABILITY The method for producing a predanane derivative of the present invention is useful as a method for using a small amount of a solvent having low toxicity to the environment, and as a method for obtaining a predanane derivative with low waste, high efficiency and high purity. This application is based on a patent application No. 2004-10864 filed in Japan on March 31, 2004, the contents of which are incorporated in full herein.

Claims

請求の範囲 The scope of the claims
式 (I)  Formula (I)
Figure imgf000013_0001
Figure imgf000013_0001
で示される (2 O S) - 7 a, 2 1—ジヒ ドロキシ一 20—メチルプレダナー 1 4一ジェン一 3—オンを塩基ならびに炭化水素、 エーテルおよびエステルから選 ばれる一種または二種以上の溶媒の存在下、 シリル化剤によりシリル化して一般 式 (I I) (2 OS)-7a, 21 1-Dihydroxy-1-20-methylpredaner 14-1-Gen-3-one is used as a base and one or more solvents selected from hydrocarbons, ethers and esters. In the presence, the compound is converted to a compound of general formula (II)
Figure imgf000013_0002
Figure imgf000013_0002
(式中 R]、 R2および R3は、 それぞれ独立して、 置換基を有していてもよいァ ルキル基、 置換基を有していてもよいアルケニル基、 置換基を有していてもよい アルキニル基、 置換基を有していてもよいァラルキル基、 置換基を有していても よいァリール基、 置換基を有していてもよいアルコキシル基および置換基を有し ていてもよいァリールォキシ基を表す。 ) で示されるプレダナン誘導体を製造し、 得られる反応液を冷却することにより前記一般式 (I I ) で示されるプレダナ ン誘導体を反応液中で固体として析出させ、 該析出物を濾取することを特徴とす る一般式 (I I) で示されるプレダナン誘導体の製造方法。 (Wherein R ] , R 2 and R 3 each independently represent an alkyl group which may have a substituent, an alkenyl group which may have a substituent, or a group which has a substituent. Alkynyl group, aralkyl group optionally having substituent (s), aryl group optionally having substituent (s), alkoxyl group optionally having substituent (s) and optionally having substituent (s) A predanane derivative represented by the formula: is produced, and the resulting reaction solution is cooled to precipitate the predanane derivative represented by the general formula (II) as a solid in the reaction solution. A process for producing a predanane derivative represented by the general formula (II), characterized by filtering.
2. 析出物を水で洗浄することにより、 水溶性の不純物を除去することを特徴 とする、 請求項 1に記載のプレダナン誘導体の製造方法。  2. The method for producing a predanane derivative according to claim 1, wherein the precipitate is washed with water to remove water-soluble impurities.
PCT/JP2005/006808 2004-03-31 2005-03-31 Method for producing pregnane derivative WO2005095435A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004108464 2004-03-31
JP2004-108464 2004-03-31

Publications (1)

Publication Number Publication Date
WO2005095435A1 true WO2005095435A1 (en) 2005-10-13

Family

ID=35063718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006808 WO2005095435A1 (en) 2004-03-31 2005-03-31 Method for producing pregnane derivative

Country Status (1)

Country Link
WO (1) WO2005095435A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143154A (en) * 1995-11-20 1997-06-03 Kureha Chem Ind Co Ltd Production of vitamin d3 derivative
JP2002533430A (en) * 1998-12-29 2002-10-08 ファルマシア・アンド・アップジョン・カンパニー Preparation method of aryl ether
RU2221806C1 (en) * 2002-06-17 2004-01-20 Институт нефтехимии и катализа АН РБ и УНЦ РАН Method for preparing hydroxyl-containing compound trimethylsilyl esters

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143154A (en) * 1995-11-20 1997-06-03 Kureha Chem Ind Co Ltd Production of vitamin d3 derivative
JP2002533430A (en) * 1998-12-29 2002-10-08 ファルマシア・アンド・アップジョン・カンパニー Preparation method of aryl ether
RU2221806C1 (en) * 2002-06-17 2004-01-20 Институт нефтехимии и катализа АН РБ и УНЦ РАН Method for preparing hydroxyl-containing compound trimethylsilyl esters

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GEVORGYAN V. ET AL: "A Novel B(C6F5)3- Catalyzed Reduction of Alchohols and Cleavage of Aryl and Alkyl Ethers with Hydrosilanes.", J ORG CHEM., vol. 65, no. 18, 2000, pages 6179 - 6186, XP002998108 *
GREENE T.W.: "PROTECTIVE GROUPS IN ORGANIC SYNTHESIS.", 1991, JOHN WILEY & SONS, INC, CANADA, pages: 68 - 87, XP002998109 *
NAKAGAWA T. ET AL: "1alpha-Hydroxyvitamin D Yudotai no Gosei.", THE CHEMICAL SOCIETY OF JAPAN., 1991, pages 264 - 265, XP002998107 *
NAKAGAWA T. ET AL: "Shibozoku Oyobi Shi Kanshiki Seiri Kassei Busshitsu no Gosei Kenkyu.", 26 December 1991 (1991-12-26), pages 1 - 129, XP002998106 *
SHIOTANI S. ET AL: "ASYMEETRIC SYNTHESIS OF (+)-AND (-)-EPTAZOCINE VIA AN ENZYMATIC REACTION.", HETEROCYCLES., vol. 43, no. 1, 1996, pages 113 - 126, XP002998110 *

Similar Documents

Publication Publication Date Title
US7153957B2 (en) Regioselective synthesis of CCI-779
JP5535082B2 (en) Method for synthesizing bosentan, polymorphic forms thereof and salts thereof
US20120130133A1 (en) Method For Synthesizing Vitamin D Analogs
RU2718058C2 (en) Synthesis method of rapamycin derivatives
EP3275886B1 (en) Method for producing dialkylaminosilane
JP2001158783A (en) Method for producing vinylene carbonate and its use
RU2448970C2 (en) Method of producing rapamycin derivatives
JP6100798B2 (en) Alkynylation of 16-substituted-17-ketosteroids
WO2005095435A1 (en) Method for producing pregnane derivative
JP5394467B2 (en) Method for producing carbamatoorganosilane
EP3521293B1 (en) Process for the preparation of an inhibitor of phosphodiesterase 4
JP7517244B2 (en) Method for producing hydroxyalkylsilane compound
JP2001114767A (en) Production of pyrimidine compound and production of its intermediate
WO2005095431A1 (en) METHOD FOR PRODUCING 5α-PREGNANE DERIVATIVE
JP2014514298A (en) Industrial preparation of N-alkyl-N-trialkylsilylamides
JP4178378B2 (en) Method for producing chlorosilane compound
JP2736916B2 (en) Manufacturing method of cibeton
JP2000344722A (en) Production of 4-hydroxymethyl-1-aminocyclopent-2-ene derivative
JP2791572B2 (en) Macrocyclic compound and method for producing the same
JP3561148B2 (en) Method for separating quinaldine isomers
JP4483183B2 (en) Process for producing 6,7-dihydroxycoumarin-3-carboxylic acid derivative and its intermediate
JPH09183755A (en) Production of 2-oxocyclopentanecarboxylic acid ester
JP4100003B2 (en) Method for purifying cyclopentenolones
JP2002069069A (en) Derivative of 3,5,6-trihydroxyhexanoic acid ammonium salt and method of preparing the same
JPH06287305A (en) Preparation of (meth) acrylic-functional organosilicon compound

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP