JP3561148B2 - Method for separating quinaldine isomers - Google Patents

Method for separating quinaldine isomers Download PDF

Info

Publication number
JP3561148B2
JP3561148B2 JP15218998A JP15218998A JP3561148B2 JP 3561148 B2 JP3561148 B2 JP 3561148B2 JP 15218998 A JP15218998 A JP 15218998A JP 15218998 A JP15218998 A JP 15218998A JP 3561148 B2 JP3561148 B2 JP 3561148B2
Authority
JP
Japan
Prior art keywords
quinaldine
isomers
zinc chloride
hydrochloric acid
substituent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15218998A
Other languages
Japanese (ja)
Other versions
JPH11322718A (en
Inventor
浩通 山口
Original Assignee
エア・ウォーター・ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エア・ウォーター・ケミカル株式会社 filed Critical エア・ウォーター・ケミカル株式会社
Priority to JP15218998A priority Critical patent/JP3561148B2/en
Publication of JPH11322718A publication Critical patent/JPH11322718A/en
Application granted granted Critical
Publication of JP3561148B2 publication Critical patent/JP3561148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Quinoline Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、3位に置換基を有するアニリンを出発物質として、Doebner−Miller法により得たキナルジン異性体のうち、7位に置換基を有する7位置換キナルジンの分離方法に関する。
【0002】
【従来の技術】
キナルジン異性体は、Doebner−Miller反応(Doebner et al.,Ber.,14,2816(1881))による製造法が、100年以上もの間利用されてきた。しかし、3位に置換基を有するアニリンを出発物質とするDoebner−Miller反応により得られるキナルジン類は、5位と7位に置換基を有する異性体が生成する。このうち、7位に置換基を有する7位置換キナルジンは、医薬品の中間体として有用であるが、単離すると、収率が低いことに加え、純度に問題がある。
【0003】
キナルジン異性体の分離方法としては、例えば、A.M.Spivey,et.al.,J.Chem. Soc.,2656(1949)に開示のピクリン酸塩にする方法、W.P.Utermohlen et.J.Org. Chem.,,544(1943)に開示の蒸留法を用いるのが、一般的である。また、他の方法としては、Leir,J.Org.Chem.,42,911(1971)に開示されている、キナルジン異性体の塩酸・塩化亜鉛錯体として単離する方法、Z.Song et.al.J,Heterocyclyc Chem.,30,17(1993)に開示されている、キナルジン異性体を塩化亜鉛を用いて塩化亜鉛錯体としたのち、分離溶媒としてテトラヒドロフラン(THF)を用いて7位置換キナルジンを単離する方法、ドイツ特許第3932136号の明細書に開示されている、酸として酒石酸を用い、7−クロロキナルジンを単離する方法がある。
【0004】
【発明が解決しようとする課題】
上記ピクリン酸塩にする方法や蒸留法では、5位置換と7位置換のキナルジン異性体の物性が近似しているため、7位置換キナルジンを単離しても、7位置換キナルジンの純度が低いばかりでなく、収率も低くなる。また、キナルジン異性体の塩酸・塩化亜鉛錯体として単離する方法は、重合物が多く生成しているため、単離が難しい。塩化亜鉛錯体としたのち、分離溶媒としてテトラヒドロフランを用いる方法は、テトラヒドロフランはエーテル系溶媒であり、取扱いにくく、かつ高価であること、本発明者らの実験によると、キナルジン異性体のテトラヒドロフランへの溶解量が多くなり、単離収量が減量することが判明した。
【0005】
本発明の目的は、上記従来技術の欠点を解消し、キナルジン異性体のうち、7位に置換基を有する7位置換キナルジンを、高純度で、かつ高収率で単離できるキナルジン異性体の分離方法を提供することである。
【0006】
【課題を解決するための手段】
本発明のキナルジン異性体の分離方法は、3位に置換基を有する3位置換アニリンを出発物質とするDoebner−Miller反応により得たキナルジン異性体のうち、7位置換キナルジンを単離するもので、キナルジン異性体を含む反応液に塩化亜鉛を添加して撹拌反応させ、キナルジン異性体を塩酸・塩化亜鉛錯体としたのち、脂肪族ケトン類を添加して析出した結晶を濾別するのである。
【0007】
このように、キナルジン異性体を塩酸・塩化亜鉛錯体としたのち、脂肪族ケトン類を添加して析出した結晶を濾別することによって、7位置換キナルジンを高純度で、かつ高収率で単離することができる。
【0008】
本発明で使用する脂肪族ケトン類としては、アセトン、シクロヘキサノン、メチルイソブチルケトンまたはメチルエチルケトンを挙げることができる。
【0009】
【発明の実施の形態】
出発物質である3位に置換基を有するアニリンとしては、下記の化1に示すRの置換基が、メチル、エチル、プロピル、ブチル等のアルキル基、メトキシ、エトキシ、プロポキシ、ブトキシ等のアルコキシル基、フッ素、臭素、塩素、ヨウ素のハロゲン基、フェニル、トリル、キシリル、ヒドロキシフェニル等のアリール基で、化1に示すRが、水素、メチル、エチル、プロピル、ブチル等のアルキル基、メトキシ、エトキシ、プロポキシ、ブトキシ等のアルコキシル基、フッ素、臭素、塩素、ヨウ素のハロゲン基、フェニル、トリル、キシリル、ヒドロキシフェニル等のアリール基のものを使用できる。
【0010】
【化1】

Figure 0003561148
【0011】
本発明における3位に置換基を有するアニリンとクロトンアルデヒドとの反応は、濃塩酸存在下に加熱、撹拌しつつ、冷却・還流させながら実施する。反応は、75〜110℃で行う。
【0012】
上記反応における3位置換アニリンに対するクロトンアルデヒドの添加量は、等モル以上、例えば、1.1倍モル〜1.3倍モルとやや余分に用いる。3位置換アニリンに対する濃塩酸の量は、3位置換アニリン1モルに対し、塩酸換算で1.0倍〜10倍モル、好ましくは1.5倍〜5倍モル用いる。
【0013】
上記反応により生成するキナルジン異性体は、化2に示す7位に置換基を有するキナルジン、化3に示す5位に置換基を有するキナルジンで、Rの置換基が、メチル、エチル、プロピル、ブチル等のアルキル基、メトキシ、エトキシ、プロポキシ、ブトキシ等のアルコキシル基、フッ素、臭素、塩素、ヨウ素のハロゲン基、フェニル、トリル、キシリル、ヒドロキシフェニル等のアリール基であり、Rが、水素、メチル、エチル、プロピル、ブチル等のアメキル基、メトキシ、エトキシ、プロポキシ、ブトキシ等のアルコキシル基、フッ素、臭素、塩素、ヨウ素のハロゲン基、フェニル、トリル、キシリル、ヒドロキシフェニル等のアリール基のものである。
【0014】
【化2】
Figure 0003561148
【0015】
【化3】
Figure 0003561148
【0016】
上記反応後の反応液からのキナルジン異性体の分離には、塩化亜鉛(ZnCl)と脂肪族ケトン類を添加し、キナルジン異性体を塩酸・塩化亜鉛錯体として濾別回収する。反応液に添加する塩化亜鉛量は、出発物質である3位置換アニリンに対して0.01〜20倍モル、好ましくは0.1〜5倍モルである。処理温度は、0℃〜150℃、好ましくは10℃〜溶媒の沸点未満である。
【0017】
本発明の錯体分離溶媒である脂肪族ケトン類は、上記塩化亜鉛とともに添加する。脂肪族ケトン類の添加量は、前記反応液重量に対して10〜200重量%、好ましくは、30〜100重量%である。
【0018】
反応液に塩化亜鉛、脂肪族ケトン類を添加して所定時間、例えば0.5〜1時間撹拌すると、キナルジン異性体が塩酸・塩化亜鉛錯体として析出する。このキナルジン異性体の塩酸・塩化亜鉛錯体を濾過すれば、7位置換キナルジンを高純度で含む塩酸・塩化亜鉛錯体を得ることができる。
【0019】
7位置換キナルジンを高純度で含む塩酸・塩化亜鉛錯体は、アンモニア水で分解すれば、高純度の7位置換キナルジンを高収率で得ることができる。
【0020】
【実施例】
実施例1
撹拌機、還流コンデンサー付きの容量2lの三方フラスコに3−クロロアニリン127.6g(1mol)、市販の塩酸濃度37.2%の濃塩酸300gを仕込み、100℃に加熱した。容量250mlの添加用漏斗を、このフラスコに取付け、クロトンアルデヒド80g(1.14mol)で満たした。フラスコ中の混合物を撹拌・加熱し、還流しつつ、クロトンアルデヒドを60分間に亘って撹拌しながら滴下し反応させた。反応物から試料を採取し、内部標準物質としてビフェニルまたはナフタレン(ピークがビフェニルと重なったとき)を用いたガスクロマトグラフィー(GC/IS)により分析したところ、7−クロロキナルジンの反応収率は25%(クロロキナルジンの反応収率38%)で、反応液中の7−クロロキナルジン濃度は8.8重量%、5−クロロキナルジン濃度は4.5重量%であった。
【0021】
反応終了後、反応液に塩化亜鉛135g、アセトン200gを添加し、30℃で0.5時間撹拌した。この液を濾過して得られた粗結晶をアンモニアで分解し、ガスクロマトグラフィーを用いて分析した。その結果、5−クロロキナルジン2.8%、7−クロロキナルジン97.2%の割合で含有する塩酸・塩化亜鉛錯体を得た。この塩酸・塩化亜鉛錯体をシクロヘキサンと濃度25%のアンモニア水を用いて分解抽出したのち、有機層より得られた結晶を濾別し、純度99.3%の7−クロロキナルジン36gを得た。その結果を表1に示す。なお、表1中の選択率は、単離したクロロキナルジン錯体中の7−クロロキナルジン含有率、回収率は、反応液からの7−クロロキナルジン収率である。単位はモル%である。
【0022】
実施例2〜4
溶媒種をアセトンからシクロヘキサノン、メチルイソブチルケトン、メチルエチルケトンに代えた以外は、実施例1と同一条件で実施した。その結果を実施例1とともに表1に示す。
【0023】
【表1】
Figure 0003561148
【0024】
表1に示すとおり、実施例1〜4においては、いずれも選択率が93%以上、回収率が88%以上と、高選択率、高回収率を示している。
【0025】
実施例5〜8
実施例1〜4で原料として用いた3−クロロアニリンに代えて、3−ブロモアニリン、3−フルオロアニリン、3−クロロ−4−フルオロアニリン、3−メトキシアニリンを用いた以外は、実施例1と同一条件で実施した。その結果を表2に示す。
【0026】
【表2】
Figure 0003561148
【0027】
表2に示すとおり、実施例5〜8においては、いずれも選択率が90%以上、回収率が87%以上と、高選択率、高回収率を示している。
【0028】
比較例1〜6
溶媒種をアセトンから酢酸エチル、酢酸ブチル、メタノール、イソプロピルアルコール、テトラヒドロフランに代えて使用した場合および溶媒を使用しない以外は、実施例1と同一条件で実施した。その結果を表3に示す。
【0029】
【表3】
Figure 0003561148
【0030】
表3に示すとおり、比較例1〜5の溶媒を使用すると、いずれも選択率が92%以上と高い値を示しているが、回収率が52〜77%と本発明に比較して低い値を示している。
【0031】
【発明の効果】
本発明のキナルジン異性体の分離方法は、キナルジン異性体を塩酸・塩化亜鉛錯体としたのち、脂肪族ケトン類を添加して析出した結晶を濾別することによって、7位置換キナルジンを高純度、高収率で得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for separating a 7-substituted quinaldine having a substituent at the 7-position among quinaldine isomers obtained by the Doebner-Miller method using an aniline having a substituent at the 3-position as a starting material.
[0002]
[Prior art]
The quinaldine isomers have been used for more than 100 years by a production method based on the Doebner-Miller reaction (Doebner et al., Ber., 14 , 2816 (1881)). However, quinaldines obtained by a Doebner-Miller reaction starting from aniline having a substituent at the 3-position generate isomers having substituents at the 5- and 7-positions. Among them, the 7-substituted quinaldine having a substituent at the 7-position is useful as an intermediate of a drug, but when isolated, has a problem in purity as well as low yield.
[0003]
As a method for separating quinaldine isomers, for example, A.I. M. Spivey, et. al. , J. et al. Chem. Soc. , 2656 (1949). P. Utermohlen et. J. Org. Chem. , 8 , 544 (1943). Another method is described in Leir, J. et al. Org. Chem. , 42 , 911 (1971), a method of isolating a quinaldine isomer as a hydrochloric acid / zinc chloride complex; Song et. al. J, Heterocyclic Chem. , 30 , 17 (1993), a method for isolating a 7-substituted quinaldine by converting a quinaldine isomer into a zinc chloride complex using zinc chloride and then using tetrahydrofuran (THF) as a separation solvent, Germany There is a method disclosed in the specification of Japanese Patent No. 3932136 for isolating 7-chloroquinaldine using tartaric acid as an acid.
[0004]
[Problems to be solved by the invention]
In the above-mentioned method for conversion to picrate and distillation method, since the physical properties of the quinaldine isomers at the 5-position and the 7-position are similar, the purity of the quinaldine at the 7-position is low even when the quinaldine at the 7-position is isolated. Not only that, but also the yield is low. In the method of isolating the quinaldine isomer as a hydrochloric acid / zinc chloride complex, the isolation is difficult because a large amount of a polymer is produced. The method of using tetrahydrofuran as a separation solvent after forming a zinc chloride complex is that tetrahydrofuran is an ether-based solvent, is difficult to handle, and is expensive. According to the experiments of the present inventors, the dissolution of quinaldine isomer in tetrahydrofuran It was found that the amount increased and the isolation yield decreased.
[0005]
An object of the present invention is to solve the above-mentioned drawbacks of the prior art, and, among the quinaldine isomers, a 7-substituted quinaldine having a substituent at the 7-position can be isolated with high purity and high yield. It is to provide a separation method.
[0006]
[Means for Solving the Problems]
The method for separating quinaldine isomers of the present invention isolates a 7-substituted quinaldine among quinaldine isomers obtained by a Doebner-Miller reaction starting from a 3-substituted aniline having a substituent at the 3-position. Then, zinc chloride is added to the reaction solution containing the quinaldine isomer to cause a stirring reaction, the quinaldine isomer is converted into a hydrochloric acid / zinc chloride complex, and then the aliphatic ketones are added and the precipitated crystals are separated by filtration.
[0007]
As described above, the quinaldine isomer is converted into a hydrochloric acid / zinc chloride complex, and the crystals precipitated by adding an aliphatic ketone are separated by filtration to obtain a 7-substituted quinaldine with high purity and high yield. Can be released.
[0008]
Examples of the aliphatic ketones used in the present invention include acetone, cyclohexanone, methyl isobutyl ketone and methyl ethyl ketone.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
As the starting material, the aniline having a substituent at the 3-position, the substituent of R 1 shown in the following chemical formula 1 is an alkyl group such as methyl, ethyl, propyl, butyl or the like, or an alkoxyl such as methoxy, ethoxy, propoxy or butoxy. Group, a halogen group of fluorine, bromine, chlorine, iodine, an aryl group such as phenyl, tolyl, xylyl, and hydroxyphenyl, wherein R 2 shown in Chemical formula 1 is hydrogen, an alkyl group such as methyl, ethyl, propyl, and butyl; And alkoxy groups such as ethoxy, propoxy and butoxy; halogen groups such as fluorine, bromine, chlorine and iodine; and aryl groups such as phenyl, tolyl, xylyl and hydroxyphenyl.
[0010]
Embedded image
Figure 0003561148
[0011]
The reaction between aniline having a substituent at the 3-position and crotonaldehyde in the present invention is carried out in the presence of concentrated hydrochloric acid while heating, stirring, cooling and refluxing. The reaction is performed at 75-110 ° C.
[0012]
The amount of crotonaldehyde to be added to the 3-substituted aniline in the above reaction is equimolar or more, for example, 1.1 to 1.3 times mol, which is slightly extra. Concentrated hydrochloric acid is used in an amount of 1.0 to 10 moles, preferably 1.5 to 5 moles in terms of hydrochloric acid, per 1 mole of the 3-position substituted aniline, based on 1 mole of the 3-position substituted aniline.
[0013]
The quinaldine isomers formed by the above reaction are quinaldine having a substituent at the 7-position shown in Chemical formula 2, and quinaldine having a substituent at the 5-position shown in Chemical formula 3, wherein the substituent of R 1 is methyl, ethyl, propyl, An alkyl group such as butyl, an alkoxyl group such as methoxy, ethoxy, propoxy and butoxy; a halogen group such as fluorine, bromine, chlorine and iodine; an aryl group such as phenyl, tolyl, xylyl and hydroxyphenyl; and R 2 is hydrogen, Amalkyl groups such as methyl, ethyl, propyl and butyl, alkoxyl groups such as methoxy, ethoxy, propoxy and butoxy, halogen groups such as fluorine, bromine, chlorine and iodine, and aryl groups such as phenyl, tolyl, xylyl and hydroxyphenyl is there.
[0014]
Embedded image
Figure 0003561148
[0015]
Embedded image
Figure 0003561148
[0016]
To separate the quinaldine isomer from the reaction solution after the above reaction, zinc chloride (ZnCl 2 ) and an aliphatic ketone are added, and the quinaldine isomer is separated and recovered as a hydrochloric acid / zinc chloride complex. The amount of zinc chloride to be added to the reaction solution is 0.01 to 20 times mol, preferably 0.1 to 5 times mol, of the starting 3-substituted aniline. The processing temperature is 0 ° C to 150 ° C, preferably 10 ° C to less than the boiling point of the solvent.
[0017]
Aliphatic ketones, which are the complex separation solvents of the present invention, are added together with the zinc chloride. The amount of the aliphatic ketone to be added is 10 to 200% by weight, preferably 30 to 100% by weight, based on the weight of the reaction solution.
[0018]
When zinc chloride and aliphatic ketones are added to the reaction solution and stirred for a predetermined time, for example, 0.5 to 1 hour, the quinaldine isomer precipitates as a hydrochloric acid / zinc chloride complex. By filtering the hydrochloric acid / zinc chloride complex of this quinaldine isomer, a hydrochloric acid / zinc chloride complex containing the 7-substituted quinaldine with high purity can be obtained.
[0019]
When the hydrochloric acid / zinc chloride complex containing the 7-substituted quinaldine with high purity is decomposed with aqueous ammonia, high-purity 7-substituted quinaldine can be obtained in high yield.
[0020]
【Example】
Example 1
127.6 g (1 mol) of 3-chloroaniline and 300 g of commercially available concentrated hydrochloric acid having a hydrochloric acid concentration of 37.2% were charged into a 2-liter three-way flask equipped with a stirrer and a reflux condenser, and heated to 100 ° C. A 250 ml addition funnel was attached to the flask and filled with 80 g (1.14 mol) of crotonaldehyde. The mixture in the flask was stirred and heated, and while refluxing, crotonaldehyde was added dropwise with stirring for 60 minutes to cause a reaction. A sample was collected from the reaction product and analyzed by gas chromatography (GC / IS) using biphenyl or naphthalene (when the peak overlapped with biphenyl) as an internal standard substance. The reaction yield of 7-chloroquinaldine was found to be: The reaction solution had a concentration of 7-chloroquinaldine of 8.8% by weight and a concentration of 5-chloroquinaldine of 4.5% by weight at 25% (reaction yield of chloroquinaldine 38%).
[0021]
After completion of the reaction, 135 g of zinc chloride and 200 g of acetone were added to the reaction solution, and the mixture was stirred at 30 ° C. for 0.5 hour. The crude crystals obtained by filtering this liquid were decomposed with ammonia, and analyzed using gas chromatography. As a result, a hydrochloric acid / zinc chloride complex containing 2.8% of 5-chloroquinaldine and 97.2% of 7-chloroquinaldine was obtained. The hydrochloric acid / zinc chloride complex was decomposed and extracted using cyclohexane and 25% ammonia water, and the crystals obtained from the organic layer were separated by filtration to obtain 36 g of 99.3% pure 7-chloroquinaldine. . Table 1 shows the results. The selectivity in Table 1 is the content of 7-chloroquinaldine in the isolated chloroquinaldine complex, and the recovery is the yield of 7-chloroquinaldine from the reaction solution. The unit is mol%.
[0022]
Examples 2 to 4
The procedure was performed under the same conditions as in Example 1 except that the solvent was changed from acetone to cyclohexanone, methyl isobutyl ketone, and methyl ethyl ketone. The results are shown in Table 1 together with Example 1.
[0023]
[Table 1]
Figure 0003561148
[0024]
As shown in Table 1, in Examples 1 to 4, the selectivity was 93% or more and the recovery rate was 88% or more, indicating high selectivity and high recovery rate.
[0025]
Examples 5 to 8
Example 1 was repeated except that 3-bromoaniline, 3-fluoroaniline, 3-chloro-4-fluoroaniline, and 3-methoxyaniline were used instead of 3-chloroaniline used as a raw material in Examples 1 to 4. The test was performed under the same conditions as described above. Table 2 shows the results.
[0026]
[Table 2]
Figure 0003561148
[0027]
As shown in Table 2, in Examples 5 to 8, the selectivity was 90% or more and the recovery rate was 87% or more, indicating high selectivity and high recovery rate.
[0028]
Comparative Examples 1 to 6
Example 1 was carried out under the same conditions as in Example 1 except that the solvent was changed from acetone to ethyl acetate, butyl acetate, methanol, isopropyl alcohol, and tetrahydrofuran, and that no solvent was used. Table 3 shows the results.
[0029]
[Table 3]
Figure 0003561148
[0030]
As shown in Table 3, when the solvents of Comparative Examples 1 to 5 were used, the selectivity was as high as 92% or more, but the recovery was 52 to 77%, which was lower than that of the present invention. Is shown.
[0031]
【The invention's effect】
The method for separating quinaldine isomers of the present invention comprises converting the quinaldine isomer into a hydrochloric acid / zinc chloride complex, adding an aliphatic ketone, and filtering the precipitated crystal to obtain a 7-substituted quinaldine with high purity. It can be obtained in high yield.

Claims (2)

3位に置換基を有するアニリンを出発物質とするDoebner−Miller反応により得たキナルジン異性体のうち、7位に置換基を有するキナルジンを単離するもので、キナルジン異性体を含む反応液に塩化亜鉛を添加してキナルジン異性体を塩酸・塩化亜鉛錯体としたのち、脂肪族ケトン類を添加して析出した結晶を濾別することを特徴とするキナルジン異性体の分離方法。Among the quinaldine isomers obtained by the Doebner-Miller reaction starting from aniline having a substituent at the 3-position, quinaldine having a substituent at the 7-position is isolated. A method for separating quinaldine isomers, comprising adding zinc to convert the quinaldine isomer into a hydrochloric acid / zinc chloride complex, adding an aliphatic ketone, and filtering out precipitated crystals. 脂肪族ケトン類が、アセトン、シクロヘキサノン、メチルイソブチルケトンまたはメチルエチルケトンである請求項1記載のキナルジン異性体の分離方法。2. The method for separating quinaldine isomers according to claim 1, wherein the aliphatic ketone is acetone, cyclohexanone, methyl isobutyl ketone or methyl ethyl ketone.
JP15218998A 1998-05-14 1998-05-14 Method for separating quinaldine isomers Expired - Fee Related JP3561148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15218998A JP3561148B2 (en) 1998-05-14 1998-05-14 Method for separating quinaldine isomers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15218998A JP3561148B2 (en) 1998-05-14 1998-05-14 Method for separating quinaldine isomers

Publications (2)

Publication Number Publication Date
JPH11322718A JPH11322718A (en) 1999-11-24
JP3561148B2 true JP3561148B2 (en) 2004-09-02

Family

ID=15535017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15218998A Expired - Fee Related JP3561148B2 (en) 1998-05-14 1998-05-14 Method for separating quinaldine isomers

Country Status (1)

Country Link
JP (1) JP3561148B2 (en)

Also Published As

Publication number Publication date
JPH11322718A (en) 1999-11-24

Similar Documents

Publication Publication Date Title
CN111646922B (en) Synthetic method of 2- (4-bromo-2-cyano-6-fluorophenyl) acetic acid
CN113582910B (en) Synthesis method of 1-bromocarbazole by taking carbazole as raw material
JP2004532185A (en) New cannabimetic ligands
US7667071B2 (en) Process for the preparation of gabapentin hydrochloride
TW201429924A (en) Production method of refined amine compound
CN106674079A (en) Synthesis method of panobinostat
JP3561148B2 (en) Method for separating quinaldine isomers
JP4538114B2 (en) Novel process for the preparation of derivatives of 4-phenyl-1,2,3,6-tetrahydropyridine and intermediates used
WO2014051077A1 (en) Method for producing nitrogen-containing heterocyclic compound of high purity
RU2735600C2 (en) Method of producing (r)-5-(3,4-difluorophenyl)-5-[(3-methyl-2-oxopyridine-1(2h)-yl)methyl]imidazolidine-2,4-dione and an intermediate compound for synthesis thereof
RU2264391C2 (en) Method for preparing quinoline carboxaldehyde derivative and intermediate compounds
WO1981002157A1 (en) Novel process for synthesizing 2-haloacetylphenols
CN110563659A (en) Method for preparing 1,2, 3-triazole compound by heterogeneous copper catalysis in one pot
JP4157361B2 (en) Method for producing 9-spirofluorene compound
JPS597699B2 (en) Method for producing indolines
JP4480802B2 (en) Brominating agent
JP3563424B2 (en) Method for producing 4H-pyran-4-one
US20100222601A1 (en) Synthesis of cyclopentadiene derivatives
JP3747511B2 (en) Method for producing maleimides
JP3025319B2 (en) N-substituted maleimide and method for producing the same
WO2023100110A1 (en) Process for preparing brivaracetam
JP6433809B2 (en) Process for producing 1- (3-hydroxymethylpyridyl-2-)-2-phenyl-4-methylpiperazine
JP2001510830A (en) Method for preparing 1,3-diaza-spiro (4,4) non-1-en-4-one derivative and 1-cyano-1-acylaminocyclopentane intermediate
KR0129007B1 (en) 4-chloro-2-fluoru-5-(pentyl oxycarbonyl-methyloxy)nitrobenazene and the process of production thereof
JP2015174853A (en) Production method of 2-(4-methyl-2-phenylpiperazin-1-yl)pyridine-3-methanol

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040527

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees