WO2005094701A1 - Ultrasonic wave irradiating method and ultrasonic wave irradiating device - Google Patents

Ultrasonic wave irradiating method and ultrasonic wave irradiating device Download PDF

Info

Publication number
WO2005094701A1
WO2005094701A1 PCT/JP2005/005969 JP2005005969W WO2005094701A1 WO 2005094701 A1 WO2005094701 A1 WO 2005094701A1 JP 2005005969 W JP2005005969 W JP 2005005969W WO 2005094701 A1 WO2005094701 A1 WO 2005094701A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
cavitation
frequency
ultrasonic irradiation
pressure
Prior art date
Application number
PCT/JP2005/005969
Other languages
French (fr)
Japanese (ja)
Inventor
Yoichiro Matsumoto
Teiichiro Ikeda
Shin Yoshizawa
Original Assignee
Toudai Tlo, Ltd.
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toudai Tlo, Ltd., Hitachi, Ltd. filed Critical Toudai Tlo, Ltd.
Priority to JP2006511695A priority Critical patent/JPWO2005094701A1/en
Publication of WO2005094701A1 publication Critical patent/WO2005094701A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22029Means for measuring shock waves

Definitions

  • the present invention relates to an ultrasonic irradiation method and an ultrasonic irradiation device, and more particularly to crushing, cleaning, surface modification, and the like of an object using the collapse pressure of cavitation bubbles.
  • the present invention will be described based on one preferred embodiment, calculus crushing, but the present invention is not limited to medical applications such as calculus crushing, but is also applied to ultrasonic cleaning. It is also useful in industrial applications such as cavitation 'peening.
  • Shock wave lithotripsy is often regarded as an almost established treatment technique at present.
  • calculus fragments are relatively large, and that normal tissue can be damaged by cavitation, leaving unsolved problems. Damage to body tissue is caused by the high impact pressure that occurs when the cavitation bubbles collapse rapidly (collapse).
  • the collapse pressure of the cavitation bubbles is strong enough to scrape stones. If it can be localized only on the stone surface and generate cavitation bubbles, and even more effectively cause its collapse, it will minimize damage to normal tissue. It is thought that it is possible to crush only calculi.
  • the inventors of the present application have developed a method of controlling ultrasonic cavitation using two types of focused ultrasonic waves and crushing so that only calculi are scraped off from the surface.
  • this method only the calculus is crushed by erosion due to the collapse phenomenon of ultrasonic cavitation without using high pressure due to shock waves.
  • a pressure wave for generating cavitation focused ultrasonic waves having a wavelength that is about one order of magnitude shorter than a shock wave generated by SWL are used, and cavitation is generated by generating cavitation in a localized region and causing collapse. High pressure only at the surface. This leads to high energy concentration.
  • stable cloud cavitation means that the rate of change in the size and shape of the cloud cavitation is significantly reduced when a certain ultrasonic irradiation time is exceeded, as shown in FIG.
  • the amount of crushing per unit time greatly depends on the number of collapses of the stable cloud cavitation per unit time, that is, the repetition frequency of high-frequency ultrasonic waves and low-frequency ultrasonic waves. It largely depends on the extinction time of residual bubbles after cloud cavitation collapse.
  • a series of behaviors from generation, collapse, and disappearance of acoustic cavitation in a focused ultrasonic sound field are physically grasped. It is necessary to control the concentration of high pressure and high energy.
  • Patent Document 1 JP 2004-33476
  • the present invention provides a means for generating cavitation by high-frequency ultrasonic waves, disintegrating the cavitation with subsequent low-frequency ultrasonic waves, and generating very high energy in a limited spatiotemporal region. ⁇
  • information that can be used to obtain the behavioral force of the generated cavitation bubbles is used. Therefore, it is an object to optimize the ultrasonic irradiation.
  • the energy concentration efficiency greatly depends on the accuracy of stable cloud cavitation generation.Stable cloud cavitation generation depends on the pressure amplitude at the focal point, dissolved gas concentration, bubble nucleus concentration, saturated vapor pressure, etc. Because of the large dependence, the optimal ultrasonic irradiation method in the system greatly changes depending on these.
  • the total amount of energy concentrated per unit time greatly depends on the number of times a stable cloud cavity collapses per unit time, that is, the repetition frequency of high-frequency ultrasonic waves and low-frequency ultrasonic waves. Depends greatly on the disappearance time of the residual bubbles after the collapse of the cloud cavitation. For this reason, it is necessary to control the concentration of the energy while constantly grasping the series of behaviors from the generation of ultrasonic power to the collapse and disappearance of the cavitation.
  • a technical means adopted by the present invention is to irradiate high frequency ultrasonic waves toward an object in which liquid is present in at least a part of its surroundings, and to irradiate a region including the object.
  • a first step having an interval time (interval step) after the two steps, a first step, and a sound wave emitted from the cavitation bubble are acquired, and the sound wave is subjected to signal processing to obtain ultrasonic irradiation conditions.
  • the cavitation bubbles are generated in a local region near the object, and the cavitation bubbles are collapsed to locally apply high energy to the object.
  • the third step of the first step comprises, after the second step, ultrasonic waves of a moderate intensity without irradiating the object with ultrasonic waves or inducing the generation and growth of bubbles. This is the interval time during which only irradiation is performed.
  • the signal processing in the second step includes determining whether or not a force has been generated by the first step in the first step to generate stable cavitation bubbles, and the controlled ultrasonic irradiation condition is high.
  • the output of the ultrasonic wave at the frequency and the Z or irradiation time Judgment result If the force s is “No”, reset the output of high frequency ultrasonic wave and Z or irradiation time.
  • the controlled ultrasonic irradiation condition may include a frequency of a high frequency ultrasonic wave.
  • the controlled ultrasonic irradiation conditions may further include position adjustment (including phase) of the ultrasonic irradiation device.
  • the determination as to whether or not a force has generated a stable cavitation bubble is performed by using the pressure amplitude and Z or the magnitude of the pressure of the received signal. In another preferred embodiment, the determination as to whether or not the force has generated stable cavitation bubbles is made by using the frequency component of the received signal.
  • the signal processing in the second step includes a determination as to whether the collapse position of the cavitation bubble in the second step in the first step is appropriate, and the ultrasonic irradiation conditions to be controlled are controlled. Is positioning (including phase). If the judgment result is “No”, the position of the device is adjusted.
  • the determination of whether the collapse position of the cavitation bubble is appropriate is made by measuring the time from the transmission of the low-frequency ultrasonic wave to the reception of the sound wave due to the collapse pressure.
  • the signal processing in the second step includes determining whether the collapse pressure of the cavitation bubbles in the second step in the first step is appropriate (determining whether the crushing efficiency is appropriate). ), And the controlled ultrasonic irradiation conditions include at least one of the output, wave number, rising time constant, rising phase, and frequency of the low frequency ultrasound. Further, the controlled ultrasonic irradiation conditions may include at least one of parameters (output, irradiation time, frequency) of high-frequency ultrasonic waves, positioning, and phase correction. In one preferred embodiment, the determination as to whether the collapse pressure of the cavitation bubble is appropriate is made by measuring the pressure amplitude and Z or the magnitude of the pressure of the sound wave reception signal based on the collapse pressure.
  • the signal processing in the second step includes a determination as to whether or not residual bubbles in the first step and the third step are sufficiently small.
  • the repetition frequency In a preferred embodiment, the determination is made based on the collapse pressure of residual bubbles and Z or collapse time.
  • the processing of the generated acoustic wave force generated sound wave may include obtaining an image of the cavity sound bubble based on the sound wave. Further, the method may include the step of acquiring and signal processing the object and Z or sound waves of the environmental forces around the object. Then, the signal processing is performed on the object and Z or the object. Surrounding environmental forces may also include acquiring an image of the object and the z using the sound wave signal, or an image of the surrounding of the object.
  • the first step and the second step may include, in some preferred embodiments, crushing of an object, separation of foreign matter from the object, surface modification of the object, and thermal denaturation of the object. Including.
  • the present invention is also provided as an ultrasonic irradiation device.
  • An ultrasonic irradiation device includes an ultrasonic irradiation unit that irradiates an ultrasonic wave to an object based on set ultrasonic irradiation conditions, a sound wave reception unit, and a signal that processes a signal received by the sound wave reception unit.
  • a processing unit, and a control unit that controls the ultrasonic irradiation conditions of the ultrasonic irradiation unit.
  • the ultrasonic irradiation unit sends the high-frequency ultrasonic wave to at least a part of the surroundings by the control unit.
  • the sound wave receiving unit is controlled so as to impart high energy to the object, receives the sound wave emitted from the cavitation bubble force, and processes the received sound wave by the signal processing unit to generate a signal.
  • the control based on the processing result
  • the unit is configured to control the ultrasonic irradiation conditions.
  • the sound wave receiving section is an ultrasonic probe and a Z or hide mouth phone.
  • the signal processing unit includes a sound pressure analyzing unit for the received sound wave.
  • the sound pressure analyzer can analyze pressure amplitude, pressure magnitude, collapse position, collapse time, collapse pressure, and the like.
  • the signal processing unit includes a frequency analysis unit for the received sound wave.
  • the frequency analyzer can analyze pressure amplitude, pressure magnitude, collapse pressure, and the like.
  • the apparatus further includes a means for irradiating an ultrasonic wave having such an intensity that does not induce the generation and growth of bubbles, so that the object and Z or the environment and Z around the object are irradiated.
  • a means for irradiating an ultrasonic wave having such an intensity that does not induce the generation and growth of bubbles so that the object and Z or the environment and Z around the object are irradiated.
  • it is configured such that the reflected sound wave of the ultrasonic wave having the cavitation force is processed by the sound wave receiving unit.
  • the signal processing unit converts image information based on a received sound wave. It includes an image processing unit to be obtained.
  • the ultrasonic irradiation conditions are preferably, but not limited to, the output of high-frequency ultrasonic waves, the irradiation time of high-frequency ultrasonic waves, the frequency of high-frequency ultrasonic waves, the positioning of the ultrasonic irradiation unit with respect to the object, and the repetition frequency. It includes one or more selected low-frequency ultrasonic power, wave number, rising time constant, rising phase, and group force including frequency force.
  • the device has a storage unit, and the storage unit stores information indicating a relationship between the ultrasonic irradiation condition and the physical condition.
  • the force or force at which the stable cloud cavitation is generated is determined whether the collapse position is appropriate or not. It is possible to determine whether the pressure is appropriate, whether the residual air bubbles are sufficiently small, etc., based on the result of the determination, reliably generate a stable cloud cavitation, and reliably and accurately obtain a stable cloud cavitation. It can lead to disintegration at an appropriate time and position, and reset the ultrasonic irradiation conditions to the optimal repetition frequency.
  • FIG. 1 shows a schematic diagram of an ultrasonic cavitation experimental apparatus according to the present invention.
  • a concave PZT (lead zirconate titanate) transducer with an aperture of 80 mm and a focal length of 80 mm fixed to an acrylic water tank was used.
  • Two types of PZT devices one with a resonance frequency of 1.08 MHz and one with 545 kHz, were used.
  • As a characteristic of the PZT element in addition to the fundamental mode resonance frequency, there are (2n + l) times higher-order mode resonance points, and higher output is possible compared to other frequencies.
  • the waveform of the ultrasonic wave transmitted into the acrylic water tank is created on a PC, then generated by an arbitrary waveform generator (Agilent, 33120A), and an ultrasonic band amplifier (T & C Power Conversion) is used. , AG 1024) and sent to the PZT element.
  • the transmitted ultrasonic wave is focused at the position of 80 mm, which is the geometric focal point of the concave PZT element.
  • the maximum output of AG1024 is 2 kW for continuous sine wave transmission and 800 V for voltage amplitude during pulse transmission.
  • the IMACON 200 a frame mode super high-speed camera manufactured by DRS Hadland, was used for observation of the phenomenon of cavitation.
  • the IMACON 200 has a minimum exposure time of 5 ns and an interframe of 5 ns, and has sufficient performance to capture the cavitation phenomenon generated by ultrasonic waves on the order of MHz.
  • a high-speed camera is equipped with a long-distance microscope (Quester, QM100, focal length 150-350).
  • Fig. 2 is a schematic diagram of the cavitation control method and a diagram of the acoustic cavitation control.
  • the outline of the ultrasonic pulse waveform used is shown.
  • the control of the acoustic cavitation is done by focused ultrasound with two different frequencies.
  • One is high-frequency (about 1 to 4 mm) ultrasonic waves that generate cavitation in a narrow area (Figs. 2-1 and 2).
  • High-frequency ultrasonic waves generate cloud cavitation in the focal region, which is composed of many microbubbles.
  • the other ultrasonic wave is a low-frequency ultrasonic wave (approximately 100 kHz to 1 MHz) having a frequency near the resonance frequency as a group of cloud bubbles, which is lower by about one order than the high-frequency ultrasonic frequency.
  • high-frequency ultrasonic waves are applied immediately after stopping. This low-frequency ultrasonic wave forcibly vibrates the cloud generated at high frequency, leading to collapse (Figs. 2-3 and 4).
  • the shock wave is focused inside the cloud placed in the oscillating pressure field, and the bubble collapses violently in the center (Fig. 2-5, 6).
  • cloud cavitation is generated at spatially controlled locations, and its collapse can be induced to achieve efficient lithotripsy.
  • Figure 3 shows the behavior of the cavitation when the acoustic cavitation is actually generated and collapsed by focused ultrasound using the above method.
  • Figure 3 (a) shows how cloud cavitation created by 2.75MHz high-frequency ultrasound is guided to collapse by 545kHz low-frequency ultrasound.
  • a semi-elliptical cloud cavitation as seen in the first frame of Fig. 3 (a) is generated while maintaining a stable size 'shape if the frequency of the high frequency ultrasonic wave is the same. I can do it.
  • cloud cavitations generated at different frequencies strongly depend on the wavelength of ultrasonic waves. Cloud cavitation can be generated. Supplement this. After continuous ultrasonic irradiation for 100 to 200 s, the state of cloud cavitation developed on the wall was observed.
  • Figure 26A shows a semi-elliptic spherical cloud cavity of stable size and shape created by focused ultrasound at various frequencies.
  • FIG. 26B shows the representative length of the chillon plotted against the frequency. The maximum length of the cloud in the direction normal to the solid wall was used as the representative length. According to Figure 26B, the length of the cloud cavitation generated on the solid wall surface by the ultrasonic wave has a strong correlation with the wavelength of the ultrasonic wave, and fits very well to the line that is a quarter of the wavelength. are doing.
  • FIGS. 26A and 26B show that the cloud cavitation developed on the solid wall surface by the focused ultrasonic wave can control the generation region by the wavelength of the ultrasonic wave.
  • an ultrasonic wave of 1.0 MHz or more can be guided to a localized area of 1.0 mm or less.
  • FIG. 3 (b) is a shadow graph (shadow picture) image of the state of shock wave propagation due to the collapse of the cloud cavitation that occurs subsequent to FIG. 3 (a).
  • the ultrasonic frequency corresponds to the phenomenon immediately after the collapse of the cloud cavitation in the third frame in Fig. 3 at different forces.
  • the high frequency ultrasonic wave is 3.82 MHz, and the low frequency applied subsequently is 545 kHz.
  • Fig. 3 (b) it can be seen that the spherical wave centered on the bubble cloud propagates outside.
  • the shadow graph image a portion where the gradient of the density change is large appears as a shade of black and white. That is, the shadow of the shock wave shown in Fig. 3 (b) indicates that a very high pressure is generated at that location.
  • the pressure value was at least three times greater than the impact pressure at the time when each single cavitation bubble collapsed.
  • FIG. 4 (a) shows the results of applying this method to model calculi.
  • Fig. 4 (a) shows the model stones for each ultrasonic irradiation time
  • Fig. 4 (b) shows the crushed pieces.
  • the cavitation control waveform was the same as that shown in Fig. 2.
  • a group of high frequency and low frequency was defined as one pulse, and ultrasonic waves were irradiated at a repetition frequency of 25Hz. In other words, cloud cavitation collapses 1500 times per minute on the stone surface.
  • Fig. 4 (c) shows the application of this method to cystine stones, which are the hardest kidney stones and are considered difficult to crush with existing SWL equipment.
  • cystine stones which are the hardest kidney stones and are considered difficult to crush with existing SWL equipment.
  • the model stone it can be seen that the stone has been scraped off to the crushed piece, very finely.
  • 1) stones are removed by cavitation erosion, and crushed pieces can be very finely focused.
  • Ultrasonic cavitation that causes crushing is localized only on the stone surface. Is done. Therefore, it has the potential to solve two problems of existing SWL devices: the relatively large size of calculus fragments and the damage to normal tissue in the body during crushing.
  • JP-A-2004-33476 For the ultrasonic irradiation method using two kinds of frequencies, the description of JP-A-2004-33476 can be appropriately referred to.
  • the magnitude of the ultrasonic output has a strong correlation with the magnitude of the pressure amplitude of the ultrasonic wave at the focal point, but in many cases, the effects of reflection, refraction, and scattering in the ultrasonic wave propagation process cannot be ignored.
  • the relationship between the pressure amplitude at the focal point and the formation of a stable cloud cavitation is highly dependent on the dissolved gas concentration at the focal point, the bubble nucleus concentration at the focal point, the saturated vapor pressure at the focal point, and the atmospheric pressure at the focal point.
  • the optimum ultrasonic irradiation conditions in the system vary greatly depending on these. Therefore, it is important to monitor the state of the cavitation and provide feedback, even when it comes to "stable execution of stable cavitation".
  • a sound wave that also generates a cavitation force can be used as a specific monitoring method.
  • Figure 7 shows the sound generated from the cavitation.
  • the target at the focal position whether or not the cavitation is generated, whether or not crushing is sufficiently performed, and optimization of the repetition frequency of the ultrasonic wave can be all performed.
  • the signal corresponding to the irradiation time of the high-frequency ultrasonic wave changes. Therefore, it is determined whether stable cloud cavitation is generated by monitoring the signal change. It is. When the cloud collapses, an impact pressure corresponding to the strength of the collapse is observed.
  • the collapse pressure is estimated from the pressure amplitude and Z or the magnitude of the pressure of the sound wave reception signal due to the impact pressure, and it can be determined whether the crushing efficiency is appropriate.
  • the crushing efficiency is, for example, the amount of weight (mg / min) scraped off per unit time.
  • the residual bubbles collapse after 100-200 s, generating acoustic waves.
  • the optimal repetition frequency is determined from the pressure amplitude and Z or the magnitude of the pressure of the sound wave reception signal, and the collapse time.
  • the overall configuration of the system will be described.
  • the calculus breaking method (CCL: Cavitation Control Lithotripsy) using the collapse pressure of the cavity is configured as shown in Fig. 5.
  • the system can be broadly divided into stone capture and stone crushing.
  • Calculus capture includes calculus position measurement, coarse / fine movement of the ultrasonic generator, and phase correction of the ultrasonic generator.
  • Fracture of a calculus involves two steps: high-frequency ultrasonic irradiation and low-frequency ultrasonic irradiation.
  • the calculus crushing process is related to the process until the generation of cavitation bubbles also disappears. Disappearance is important.
  • Irradiation of high-frequency ultrasonic waves is related to generation of stable cloud cavitation, and is performed during or after irradiation of high-frequency ultrasonic waves (including after irradiation of low-frequency ultrasonic waves). By monitoring the generation state of the cloud, it is determined whether or not the force is generating stable cloud cavitation.
  • the irradiation of low-frequency ultrasonic waves is related to the collapse of cloud cavitation, and by monitoring the collapse phenomenon during or after the irradiation of low-frequency ultrasonic waves, it is possible to determine the force at which appropriate collapse is performed. I do.
  • Steps (1) and (2) in the flowchart shown in FIG. 6 correspond to a calculus capturing block, and steps (3) to (8) correspond to a calculus crushing block.
  • the ultrasonic irradiation apparatus receives the emitted sound waves. Have means to do so.
  • a hide-and-mouth phone is used as a sound wave receiving means.
  • One preferred form of the receiving means is an ultrasonic probe.
  • FIG. 12 illustrates three types of receiving means.
  • the left figure in Fig. 12 shows an ultrasonic probe installed inside a piezoelectric element that irradiates high frequency and Z or low frequency ultrasonic waves.
  • the center figure irradiates high frequency and Z or low frequency ultrasonic waves.
  • An ultrasonic probe is installed outside the piezoelectric element.
  • a piezoelectric element that emits high-frequency and Z- or low-frequency ultrasonic waves or a type in which the piezoelectric element is divided into multiple segments as shown in the right figure.
  • the power of these segments is responsible for the receiving function.
  • These forms receive sound waves alone or in combination. Reception can have both the function of monitoring the cavitation bubbles and the function of normal ultrasound diagnosis for imaging of calculus' tissue.
  • the combination of these receiving means changes the form of the treatment device, whether it is the S phased array system (the focal position can be changed by phase correction) or the single focus system.
  • the sound pressure signal receiving probe may passively receive the sound wave emitted by the cavitation bubble force, or the probe itself may transmit the ultrasonic wave (the waveform generating device is connected to the probe), A reflected wave of the cavitation bubble force with respect to the ultrasonic wave may be received.
  • the sound pressure signal received by the ultrasonic probe is subjected to signal processing in a signal processing unit.
  • the signal processing unit has means for obtaining the pressure amplitude and Z or the magnitude of the pressure of the received sound pressure signal, and analyzes the sound pressure signal (frequency component extraction by frequency filter, Fourier transform such as FFT) Frequency analysis), and a means for obtaining image information from a sound pressure signal.
  • the pressure amplitude of the sound pressure signal, the magnitude of Z or pressure, and the frequency component of the sound pressure signal can be used as parameters in the feedback loop.
  • the acquired image information is displayed on the display unit, and the image information can be used for feedback control.
  • the dependence of the physical parameters on the ultrasonic parameters is stored as a database in the storage unit of the device.
  • the ultrasonic parameters are Means parameters including the focal position of the device, specifically the position of the ultrasonic generator and receiver (including those due to phase correction), the output of high-frequency ultrasonic waves, irradiation time, frequency, low frequency
  • the ultrasonic wave output 'wave number' rise time constant 'rise phase' frequency and repetition frequency of the first step.
  • Physical parameters include dissolved gas concentration, liquid type, liquid temperature, bubble nucleus concentration, saturated vapor pressure, atmospheric pressure, etc.S, and other factors such as the acoustic impedance and surface impedance of the object. Includes roughness and the like.
  • the ultrasonic parameters are set based on the database and the information on the calculus position (Step 1).
  • Information on the calculus position is obtained, for example, by ultrasonic diagnosis.
  • positioning is first performed, then the parameters of the high-frequency and low-frequency ultrasonic waves and the repetition frequency are provisionally set, and then only the high-frequency ultrasonic waves are actually continuously irradiated.
  • Receiving the sound waves from the cavitation, and resetting the parameters of the high-frequency ultrasonic waves using the feedback method of step 5 described later, and optimizing the low-frequency ultrasonic waves and the repetition frequency are performed in steps 2 to 8. This is performed in a loop.
  • step 2 In order to follow the movement of the calculus, the position of the calculus is measured again, and the apparatus is positioned (including that obtained by phase correction) (step 2). At this time, if it is impossible to follow the movement of the calculus in real time, it is possible to return to step 1 again and set the initial force and the ultrasonic parameters again.
  • Irradiate high frequency ultrasonic waves to generate stable cloud cavitation (step 3). Irradiation of high frequency ultrasound is performed based on the parameters set in step 1.
  • the range of the high frequency is 100 kHz or more, preferably 500 kHz to 10 MHz.
  • low-frequency ultrasonic waves are applied to induce cloud cavitation to collapse and crush stones (Step 4).
  • the low frequency range is less than half the frequency of the ultrasonic wave applied in step 3.
  • step 5 It is determined whether a stable cloud cavitation has been generated (step 5). Since the process of step 3 is completed in a very short time, for example 50 s, the monitoring of the cavitation generation is after step 4. This is because it takes about 50 seconds to receive the sound wave generation power from the cavitation. Of course, if this technique is used for different systems, this is not the case. It is desirable to do. Here, for example, the monitoring of the cavitation is performed using the characteristic sound wave at the time of the generation of the cavitation or the characteristic sound wave from the stable cavitation. If it is determined that stable cavitation has been generated, step
  • step 6 It is determined whether or not the collapse position and Z of the cavitation bubble have the correct collapse time (step 6). From the sound wave reception timing by the collapsing pressure, it can be confirmed whether or not the collapsing occurs at a position apart by the focal length! /. For example, it is possible to perceive that a collapse has occurred in the side lobe just before the focal point. Furthermore, if it is determined that the collapse position of the cavitation bubble is correct, the process proceeds to step 7. If it is determined that the collapse position of the cavitation bubble is not correct, return to step 2.
  • step 7 It is determined whether the collapse pressure of the cavitation bubble is appropriate (step 7). From the pressure amplitude of the sound wave due to the collapse pressure and the Z or pressure magnitude value, the collapse pressure at the focal point can be estimated. This makes it possible to check whether the pressure (or pressure amplitude) required for crushing has been obtained. If the collapse pressure is determined to be appropriate, proceed to step 8. If it is determined that the collapse pressure is not appropriate, return to step 2.
  • Step 8 It is determined whether the residual air bubbles are sufficiently small.
  • the reception of the sound wave from the bubble may be reception only, transmission / reception, or a combination thereof.
  • the power of stable cloud cavitation is determined by the change in sound pressure amplitude 'stabilization of sound pressure amplitude' detection of harmonic signals generated from bubbles' and the actual collapse of the cloud at low frequencies
  • a plurality of methods such as whether or not a signal can be obtained are conceivable.
  • This information can be obtained by processing the signal of the received sound pressure of the cavitation bubble force.
  • One preferable example of a normal cavitation control cycle is (1) generation of cavitation, (2) generation of stable cloud cavitation, (3) collapse of stable cloud cavitation, ( 4) The cavitation disappears and the power becomes stronger.
  • processes (1), (2) and (3) are cheaper. It is a part that interacts with the generation of a stable cloud cavitation, and it is possible to check the generation of a stable cloud cavitation in this process.
  • (1) the occurrence of cavitation is detected, and if it has occurred, it is possible to predict how long the irradiation time will lead to the generation of a stable cloud cavitation.
  • (2) confirm whether the cloud cab is stable. However, if it is difficult to detect the sound wave of a stable cloud cavitation, it is possible to use a feature that makes it difficult to detect it. In order to increase the accuracy, it is possible to use (1), (3) It is thought that confirmation in the process of) will also be important. In (3), it can be confirmed that if the collapse according to the database (or sufficiently large) has occurred, a stable cloud cavitation can be generated as a result.
  • FIG. 7 shows the relationship between the sound pressure of the received signal of the sound emitted from the cavitation cloud and time.
  • FIG. 7 shows the relationship between the sound pressure of the received signal of the sound emitted from the cavitation cloud and time.
  • the cloud when the cloud is stabilized, there is a change in the signal during irradiation of high-frequency ultrasonic waves.
  • the pressure amplitude once increases with a change, the value is reduced with time, and the pressure amplitude is stabilized at a substantially constant pressure amplitude.
  • the frequency component for example, since the sound pressure signal emitted in the process of generating the cavitation has a wide frequency band, it can be detected at a frequency lower or higher than the frequency of the irradiation ultrasonic wave. If this becomes a stable cavitation, the frequency component is almost limited to a harmonic component that is an integral multiple of the irradiated ultrasonic wave. Therefore, by examining (1) the distribution (spread and variation) of frequency components, and (2) specific frequency components (such as 1/2 times subharmonic components and 2 times higher harmonic components) It can be determined.
  • the parameters to be back-controlled are high-frequency ultrasonic parameters (high-frequency irradiation time
  • Figure 8 shows the relationship between the minimum output required for stable cloud cavitation and the minimum irradiation time.
  • the generation of a stable cloud cavitation depends on the output of high-frequency ultrasonic waves and the irradiation time of ultrasonic waves. Furthermore, high-frequency frequencies are also controlled. As a result, the size of the cloud cavitation to be generated can be changed, and the crushing force (power, range, etc.) can be changed.
  • the irradiation time of high frequency and the output of Z or high frequency are made longer and larger.
  • the irradiation time of the high frequency and the Z or the output of the high frequency are merely increased for a long time. For example, if the bubble is not the target after passing a stable situation! / If it is also generated in a place, the high-frequency irradiation time and Z become.
  • step 8 the process returns from step 8 to step 2.However, first, the output of the ultrasonic parameter high-frequency irradiation time is changed, and the high-frequency output For example, re-positioning will also redo the force.
  • Other parameters include phased array For example, a change in phase between individual elements is a parameter.
  • ⁇ confirmation of whether or not collapse has occurred at a position separated by the focal length from the sound wave reception time by the collapse pressure '' means measuring the time from low-frequency transmission to reception of the collapse pressure. Done by The time may be measured directly, for example, since the irradiation time of a high frequency is known, it may be measured indirectly by measuring the time of the transmitting power of a high frequency.
  • the position of the device is adjusted by feedback control.
  • the phase of each element is also a parameter as a positioning parameter.
  • the collapse pressure at the focal point is estimated from the relationship between the crushing efficiency of the calculus itself and the received sound pressure. (Because the collapse pressure itself cannot be measured, the received sound pressure is considered to be a parameter that depends on the collapse pressure.)
  • the information we finally obtained is the calculus breaking efficiency and the amount of damage to body tissue. Since both of these have a strong correlation with the collapse pressure, it is also possible to create a database of each relationship through the collapse pressure predicted from the received sound pressure, and directly receive the sound pressure and the crushing efficiency and the magnitude of damage. It is also possible to make a database of the relationships between the two.
  • the object of feedback control is to change the output and wave number of the low frequency, to change the time constant of the low frequency rise.
  • the object of feedback control is to change the rising phase and the low frequency.
  • any one of the high-frequency parameters, the repetition frequency, the positioning, and the phase correction (if the phase correction is possible), or a combination of a plurality of them is also a control target. For example, first adjust the low frequency parameters, and if the appropriate collapse pressure is still not obtained, combine the high frequency parameters, positioning, and phase correction to achieve the target state.
  • one of the points is to use the cavitation limited to a narrow area.
  • the residual bubbles after the collapse of the cavitation are stable cloud cavitation. Is generated or diffused in the region other than the region where the high frequency force is generated, so even if the cycle starting with the high frequency force is repeated as it is, it becomes impossible to control in a local region. Therefore, it is most efficient to start the next cycle when the residual bubbles have become negligibly small. Therefore, monitoring of the residual air bubbles is performed, and the time until the next cycle (that is, the repetition frequency) is determined.
  • the state of the residual bubbles is monitored by receiving a sound wave from the residual bubbles after the collapse.
  • the state of the residual bubbles means the size and the total volume of the residual bubbles. These parameters can be predicted from the magnitude of the collapse pressure (sound wave) from the residual bubbles and the time interval at which the collapse pressure occurs.
  • the magnitude of the collapse pressure from the residual bubbles directly indicates the magnitude of the volume of the residual bubbles. This is because the collapse pressure of a single bubble increases as the bubble radius increases.
  • the fact that the collapse pressure generation time is slow and the interval between the collapse pressure generation times is long also mean that the volume of the residual bubble is large. If the bubble is large, it is a force that naturally lowers the natural frequency of the bubble vibration.
  • the repetition frequency is reset to a low value. If it is determined that the cavitation bubbles disappear quickly enough, the repetition frequency is set to a higher value.
  • FIG. 11 shows a time chart of a protocol of ultrasonic irradiation and ultrasonic reception.
  • pulse repetition frequency pulse repetition frequency
  • a database of cavitation behavior by high-frequency and low-frequency ultrasonic waves (characteristics of cavitation behavior in a series of schemes) was created, and an experiment was performed to confirm the actual collapse behavior corresponding to the database.
  • a pressure-sensitive sheet experiment and a calculus crushing experiment (FIGS. 24 and 25) based on (1), (2), and (3) were performed.
  • FIG. 13 is a schematic diagram of the experimental apparatus used in this example.
  • the experimental apparatus is an experimental system in which an ultrasonic sensor is arranged at a position simulating monitoring from outside the body.
  • FIG. 13 is a schematic diagram of the experimental apparatus used in this example.
  • the ultrasonic source used was a concave PZT transducer with an aperture diameter of 100 [mm] and a focal length of 80 [mm].
  • the resonance frequency of the transducer is 555 [kHz] and has a fourth harmonic mode at 3.89 [MHz].
  • the above two frequencies are used as the high frequency and low frequency of the cavitation control, that is, 3.89 [MHz] for the high frequency phase and 555 [kHz] for the low frequency phase.
  • a high-speed camera IMACON2000 exposure 10 [nsec], inter-frame 10 [ms] in this experiment was used to photograph the behavior of the cavitation.
  • IMACON2000 exposure 10 [nsec], inter-frame 10 [ms] in this experiment
  • a concave-type closed-mouth phone with an aperture of 12 [mm] and a focal length of 78.3 [mm] was used for monitoring the sound pressure emitted from the cavitation.
  • This concave-type microphone has almost the same focal length as the PZT transducer, and can receive the emitted sound pressure due to the cavitation phenomenon occurring at the focal point with high sensitivity.
  • PCD Passive Cavitation Detector
  • Figure 14 shows the results of a high-speed camera photographing the state of bubbles that occur and grow in the high frequency phase of 3.89 [MHz] on the wall.
  • the ultrasonic output (vertical axis) in the graph is the magnitude of the maximum negative pressure at the focal point (
  • p) 4.8-11.7 [MPa]. From these results, it is understood that the behavior of the cavitation bubble group can be largely classified into three types.
  • the sound pressure ranges of (A), (B), and (C) indicate the values as described above in the case of this figure. These thresholds depend on the state of the medium (dissolved gas concentration, liquid type, liquid Temperature, bubble nucleus concentration, saturated vapor pressure, ambient pressure, impurity concentration, etc.), acoustic impedance and roughness of the solid wall. Because the absolute value itself is important, it is important to note that the "characteristic” that the cavitation behavior transitions by increasing the ultrasonic output from (A) to (B) to (C) is important. Keep it. In other words, by monitoring the "characteristic” and its “characteristic response to the characteristic”, it is possible to identify the state of the cavitation by monitoring the "characteristic response”.
  • FIGS. 19 and 20 show examples of monitoring the "characteristic response" corresponding to the three states (A), (B) and (C) in this high-frequency phase.
  • Fig. 15 shows the result of measuring the representative length in the ultrasonic wave propagation direction (normal direction of the solid wall surface) in a photograph of the cavitation bubble group in the same photographing as in Fig. 14. That is, the length corresponding to the horizontal axis direction in FIG. 14 is measured.
  • the conditions are the same as in Fig. 14.
  • the ultrasonic irradiation time (however, the time when the first ultrasonic wave was transmitted by the transducer force was set to zero, so the time when the ultrasonic wave reached the focal point was about 54 [sec]).
  • the symbol “ ⁇ ” indicates the length of the semi-elliptical cavitation bubble group where the solid wall force also grows. The representative length of the cavitation, which can be regarded as a bubble group, is measured. Also, the " ⁇ " mark in the figure
  • It has a length that covers the semi-elliptic bubbles and covers the secondary cavitation.
  • FIG. 16 is a graph in which the ultrasonic output is arranged on the horizontal axis for the same result as in FIG.
  • the ultrasonic irradiation time was set to 114 [sec], which is the time when 233 [periods] were applied.
  • the diameter of the bubble group gradually increases up to an output of about 6.5 [MPa], and a stable shape of a semi-elliptic sphere of about 50 to 60 [ ⁇ m] at about 7 [MPa] ⁇ Size cavitation bubbles.
  • around 10 [MPa] secondary cavitation bubbles are generated. start.
  • the threshold varies depending on various surrounding conditions.
  • the low sound pressure range is 6.5 [MPa] and the medium sound pressure range is 6.5 [MPa] to 10 [MPa].
  • a high sound pressure range of 10 [MPa] or more and a range of three different states of the cavitation bubble group can be defined.
  • FIGS. 17A, 17B, and 17C show the results of high-speed camera imaging and the detection of emitted sound pressure at the time of occurrence of cavitation at each frequency of 1.7, 2.8, and 3.9 [MHz].
  • the emitted sound pressure is detected almost at the same time when the cavitation bubbles are confirmed in the photographed image.
  • Figure 18 shows the monitoring of the emitted sound pressure throughout the high frequency phase.
  • Figures 18A, 18B, and 18C show the results of monitoring the sound pressure from the cavitation bubbles using a concave transducer (in this case, the output is shown as the peak-to-peak amplitude of the function generator). The experiments were performed in the same conditions as in Fig. 18, Fig. 19, Fig. 20, and Fig. 24).
  • Fig. 18A in the low sound pressure range of 100-300 [mV], there is no change in the received signal. From around 350 [mV], the emission sound pressure of the cavitation starts to be detected.
  • Fig. 18A in the low sound pressure range of 100-300 [mV]
  • the emission sound pressure of the cavitation force is always included in the received signal. Is detected.
  • the received signal is detected even in the high sound pressure range of 700-1000 [mV], but its waveform fluctuates greatly, reflecting the generation of bubbles with irregular shapes and sizes. are doing .
  • the waveform of the received signal shows stable amplitude and breakthrough lines, and the generation and response of the stable size and shape of the cavitation bubble group it seems to do.
  • FIG. 19 shows the absolute value of the amplitude of the time-averaged waveform of the sound pressure emitted from the cavitation bubble group at each output in the same case as in FIG. Time average
  • the waveforms are the sums of 10 different sampled received waveforms of the same case with the same time, and divided by 10 samples.
  • the amplitude of random noise can be relatively reduced.
  • the amplitude of the signal of the cavitation bubble group force in a stable state increases each time, and the amplitude of the signal from the cavitation bubble group, which exhibits irregular behavior and random behavior in time and phase, is relatively small. It is expected to become.
  • FIG. 19 corresponding to the original waveform shown in FIG.
  • reception signal processing makes it possible to monitor the cavitation bubble group in the focal region.
  • FIGS. 20A, 20B, and 20C show the emission sound pressure and the frequency component of the force of the cavitation bubbles at each output in the same case as in FIG. Fig. 20A corresponds to the low sound pressure range where only minute cavitation occurs. At that time, the main frequency component is only 3.9 [MHz], which is the transmission frequency.
  • Figure 20B corresponds to the medium sound pressure range where the semi-elliptical cavitation bubbles maintain a stable shape and size. At this time, the frequency component corresponding to a harmonic component such as 7.8 [MHz] is the transmission frequency. It rises to a value close to the component of 3.9 [MHz].
  • Figure 20C shows the high sound pressure range where irregular secondary cavitation bubbles are generated to cover the periphery of the semi-elliptical sphere bubbles.
  • This unstable cavitation causes the reception signal to break down. The line is disturbed, and the value of the component of the frequency lower than 3.9 [MHz] which is the transmission frequency increases.
  • the received signal at the PCD has characteristic frequency components corresponding to each of the three types in FIG. 18, so that the frequency of the received signal is analyzed, or the low-pass filter and the high-pass filter are used. It can be seen that it is possible to monitor the cavitation bubble group in the focal region by applying a filter for frequency components such as a filter and a bandpass filter to the received signal.
  • Fig. 21 shows an example of monitoring the collapse pressure in the low-frequency (555 [kHz]) phase after the high-frequency ultrasonic wave is completed.
  • the upper part shows the original waveform of the PCD reception sound pressure in the low frequency phase, and the lower part cuts the reflected wave due to the low frequency component of 555 [kHz] from the reception signal and extracts the collapse pressure itself of the cavitation bubble group.
  • the pressure amplitude of the low frequency applied from left to right increases.
  • High-frequency ultrasonic waves have a medium sound pressure range of 9.5 [MPa] (maximum negative pressure), under conditions where a stable shape and size of a semi-elliptical spherical cloud cavity are generated. is there. Looking at the upper row, it can be seen that the collapse pressure of the bubbles was observed during the reception of the low-frequency reflected wave. In addition, it can be seen that the received sound pressure of bubble group collapse has increased with the increase in sound pressure at low frequencies.
  • FIG. 22 shows a relationship between cavitation bubble group and collapse pressure.
  • the horizontal axis in FIG. 22 is the "high frequency ultrasound" pressure amplitude.
  • the same graph shows the magnitude of the collapse pressure in the “low-frequency phase” with respect to the pressure amplitude of the high-frequency ultrasonic waves, and the diameter of the cavitation bubble group generated by the “high-frequency ultrasonic waves” at that time.
  • the magnitude of the collapse pressure signal of the bubble group as shown in Fig. 21 was obtained by averaging the absolute values by taking 100 cases each for various high-frequency ultrasonic wave outputs. Is the thing. From FIG.
  • the collapse pressure of the cavitation bubbles is also significantly related to the three types of cavitation in the high frequency phase.
  • A in the low sound pressure range (0-6.5 [MPa]), no cavitation bubbles are generated, or only very small cavitation bubbles are generated. Not observed or very small.
  • B In the medium sound pressure range (6.5-10 [MPa]), the cavitation bubble group gradually increases in size, and the magnitude of the collapse pressure increases accordingly, and 9 [MPa]. Take the maximum value in the vicinity. This is consistent with the area where bubbles of a semi-elliptical spherical shape and shape are stable. Over 9 [MPa] Then the magnitude of the collapse pressure starts to fall.
  • Figure 23 shows the result of measuring the magnitude of the collapse pressure.
  • the collapse pressure increases from the low sound pressure range to the medium sound pressure range, and decreases when the sound pressure reaches the high sound pressure range.
  • the "characteristics of the present technology" shown in the previous examples where the collapse pressure increases as the output increases.
  • the optimum collapse pressure was obtained at a high frequency of 9.5 [MPa] and a low frequency of 30 [MPa]. Optimization can be performed by changing the control target parameter.
  • Figure 23 shows the results of mapping the collapse pressure by monitoring the collapse pressure at a distance.
  • a confirmation test was performed to confirm whether this actually corresponds to the generation of high pressure on the solid wall in the focal region.
  • an experiment was conducted in which a pressure-sensitive sheet that changes color with respect to high pressure was installed in the focal region, and the output of high-frequency and low-frequency ultrasonic waves was changed in the same manner as in Fig. 23.
  • Fig. 24 for the output of high-frequency ultrasonic waves, the collapse pressure increases from the low sound pressure range to the middle sound pressure range, and a large discoloration is observed at the center in the middle sound pressure range.
  • Figure 24B is a cross-sectional view of the luminance distribution.In the middle sound pressure range of 400 mV, strong color development is seen in the center of the pressure-sensitive sheet, and in the high sound pressure range of 800 and 1000 mV, the color development in the center is weak. Is confirmed.
  • the present invention is also effective in industrial applications such as ultrasonic cleaning and cavitation 'Pyung, which are not limited to medical applications such as calculus crushing.
  • FIG. 1 is an overall system diagram of an ultrasonic irradiation apparatus.
  • FIG. 2 shows a schematic diagram of a cavitation control method and an outline of an ultrasonic pulse waveform used for acoustic cavitation control.
  • FIG. 3 shows the behavior of the cavitation when the acoustic cavitation using focused ultrasound is generated and collapsed using the above-described method.
  • FIG. 4 is a diagram showing a result of applying the present method to a model stone.
  • FIG. 5 is a view showing a configuration of a calculus breaking system according to the present invention.
  • FIG. 6 is a flowchart of a calculus breaking method using the collapse pressure of a cavity.
  • FIG. 7 is a diagram showing sound emitted from the cavitation cloud, where the horizontal axis is time and the vertical axis is sound pressure.
  • FIG. 8A is a diagram showing a minimum output required for stable cloud cavitation.
  • the vertical line A indicates the threshold (minimum applied voltage) of the occurrence of cavitation
  • the vertical line B indicates the threshold (applied voltage) of the stable cloud cavitation.
  • the applied voltage physically corresponds to the ultrasonic pressure amplitude on a one-to-one basis.
  • FIG. 8B is a diagram showing a minimum irradiation time required for stable cloud cavitation. Vertical line
  • C indicates a stable cloud cavitation threshold (irradiation time).
  • FIG. 9 is a flowchart illustrating a stable cloud calibration monitoring rig.
  • FIG. 10 is a diagram showing monitoring of collapse and disappearance of cavitation bubbles.
  • FIG. 11 is a diagram showing an ultrasonic irradiation / reception protocol.
  • FIG. 12 is a schematic diagram illustrating a sound wave receiving unit.
  • FIG. 13 is a schematic diagram of an experimental apparatus.
  • FIG. 14 shows the classification of cavitation in the high frequency phase (high frequency pressure amplitude 4.8-11.7 [MPa]).
  • FIG. 15A Shown is the representative length of the cavitation bubble group with respect to the ultrasonic irradiation time in the low sound pressure range of 4.7 [MPa].
  • Cloud cavitation with semi-elliptical sphere;
  • Shielding cavitation that covers cloud cavitation with semi-elliptical sphere.
  • the bubble cloud has grown up! /, Na! / ,.
  • FIG. 15B Shown is the representative length of the cavitation bubble group with respect to the ultrasonic irradiation time in the medium sound pressure range of 8.7 [MPa].
  • Cloud cavitation with semi-elliptical sphere;
  • Shielding cavitation that covers cloud cavitation with semi-elliptical sphere.
  • FIG. 17A Detection of emitted sound pressure at the occurrence of cavitation at each frequency of 1.7 [MHz].
  • FIG. 17B Detection of emitted sound pressure when cavitation occurs at each frequency of 2.8 [MHz].
  • FIG. 17C Detection of emitted sound pressure when cavitation occurs at each frequency of 3.9 [MHz].
  • FIG. 19 Example of monitoring the dynamics of cavitation using sound pressure waveform-1: Indicates the amplitude of the time-averaged waveform.
  • A No signal is detected in the low sound pressure range.
  • B In the medium sound pressure range, the amplitude of the time-average waveform takes a stable amplitude because the signal has the same amplitude and phase.
  • C In the high sound pressure range, the magnitude of the pressure amplitude is reduced by canceling the irregular component.
  • ⁇ 21 Indicates detection of collapse pressure in the low-frequency phase (upper row: raw waveform of received sound pressure, lower row: waveform after removal of low-frequency (555 [kHz]) component).
  • high-frequency ultrasonic waves have a medium sound pressure range of 9.5 [MPa] (maximum negative pressure), which is a condition for generating a stable shape and size of a semi-elliptical spherical cloud cavity.
  • FIG. 22 shows the relationship between the cavitation bubbles generated in the high frequency phase and the collapse pressure in the low frequency phase.
  • FIG. 23 shows an example of a database of collapse pressure with respect to the ultrasonic pressure amplitude of high frequency and low frequency.
  • FIG. 24A shows the experimental results for the high frequency and low frequency amplitudes.
  • FIG. 24B shows a pressure-sensitive sheet experiment.
  • Figure 24B shows the luminance in the case of low frequency 26.6 [MPa]. It is a cross section of the distribution.
  • FIG. 26A Cloud cavities of semi-elliptical spheres with stable size 'shapes created by focused ultrasound at various frequencies (1.67, 2.75, 3.27, 3.82 MHz).
  • FIG. 26B is a plot of the representative length of a cloud cavitation as shown in FIG. 26A versus frequency.

Abstract

Using information collected from the behavior of produced cavitation air bubbles, ultrasonic irradiation is optimized. An ultrasonic wave irradiating method comprises a first step including a first sub-step of irradiating with a high-frequency ultrasonic wave an object around which liquid is partly present at least in a region and producing cavitation air bubbles in a region containing the object, a second sub-step of irradiating the object with a low-frequency ultrasonic wave, breaking the cavitation air bubbles, and imparting high energy to the object, and a third sub-step of taking an interval time after the second sub-step and a second step of collecting sound waves emitted from cavitation air bubbles, signal-processing the sound waves, and controlling the ultrasonic wave irradiation condition. The second step includes judging whether or not stable cloud cavitation is produced, whether or not the crush position is adequate, whether or not the crush pressure is adequate, and whether or not the number of residual air bubbles is small enough.

Description

明 細 書  Specification
超音波照射方法及び超音波照射装置  Ultrasonic irradiation method and ultrasonic irradiation device
技術分野  Technical field
[0001] 本発明は、超音波照射方法及び超音波照射装置に係り、詳しくは、キヤビテーシヨン 気泡の崩壊圧を利用した対象物の破砕、洗浄、表面改質等に関するものである。本 明細書にお ヽては、一つの好まし 、態様である結石破砕に基づ ヽて本発明を説明 するが、本発明は、結石破砕等の医療アプリケーションのみならず、超音波洗浄ゃキ ャビテーシヨン'ピー-ング等の工業アプリケーションにおいても有用である。  The present invention relates to an ultrasonic irradiation method and an ultrasonic irradiation device, and more particularly to crushing, cleaning, surface modification, and the like of an object using the collapse pressure of cavitation bubbles. In the present specification, the present invention will be described based on one preferred embodiment, calculus crushing, but the present invention is not limited to medical applications such as calculus crushing, but is also applied to ultrasonic cleaning. It is also useful in industrial applications such as cavitation 'peening.
背景技術  Background art
[0002] 衝撃波結石破砕術 (SWL: Shock Wave Lithotripsy)は、現在においてほぼ確立され た治療技術としてとらえられることが多い。しかしながら、結石破砕片が比較的大きく 、またキヤビテーシヨンによって正常組織が損傷されると 、う未解決問題を抱えて 、る ことも事実である。体組織の損傷は、キヤビテーシヨン気泡が急激につぶれる(崩壊 する)時に発生する大きな衝撃圧が原因である。一方で、キヤビテーシヨン気泡の崩 壊圧力は結石を削り取るのに十分な力を持っていることも確かである。とすれば、結 石表面だけに局在化してキヤビテーション気泡を発生させ、さらには効果的にその崩 壊を引き起こしてやることができれば、正常組織に与えるダメージを最小限に抑えつ つ、結石のみを破砕することが可能であると考えられる。  [0002] Shock wave lithotripsy (SWL) is often regarded as an almost established treatment technique at present. However, it is true that calculus fragments are relatively large, and that normal tissue can be damaged by cavitation, leaving unsolved problems. Damage to body tissue is caused by the high impact pressure that occurs when the cavitation bubbles collapse rapidly (collapse). On the other hand, it is clear that the collapse pressure of the cavitation bubbles is strong enough to scrape stones. If it can be localized only on the stone surface and generate cavitation bubbles, and even more effectively cause its collapse, it will minimize damage to normal tissue. It is thought that it is possible to crush only calculi.
[0003] 本出願の発明者等は、 2種類の集束超音波によって、超音波キヤビテーシヨンをコン トロールし、結石のみを表面から削り取るように破砕する手法を開発した。本方法は、 衝撃波による高圧を用いずに、超音波キヤビテーシヨンの崩壊現象によるエロージョ ンで、結石のみを破砕するものである。キヤビテーシヨンを生成させる圧力波としては 、 SWLによる衝撃波と比べ、 1オーダーほど波長が短い集束超音波を用い、局在化さ れた領域にキヤビテーシヨンを生成させて崩壊を弓 Iき起こすことにより、結石表面の みでの高圧力.高エネルギーの集中を導く。これにより、現存 SWLの問題点である比 較的大き 、破砕片、キヤビテーシヨン損傷による体組織の損傷の双方を解決し得る 結石破砕手法を開発した。 [0004] これまで、 2種類の超音波を用いた手法においては、経験的に適切だと思われる超 音波出力および超音波照射時間を与えることによってシーケンシャルな制御を行つ ていた。例えばキヤビテーシヨン生成に必要な時間を 50 s、消滅に必要な時間を 50msとしていた。しかしながら、高周波数超音波によって安定なキヤビテーシヨンを生 成し、それを後に続く低周波数超音波でそれを崩壊させ、非常に限定された時空間 領域で非常に高い圧力を得るという本手法においては、キヤビテーシヨンの状態を常 に把握し、常に最適な状態を保つようにすることが重要である。特に、医療応用を考 える際には、 1)患部以外にキヤビテーシヨンの崩壊圧を作用させずに 2)患部におい てはキヤビテーシヨンの崩壊を最大限 (最適に)引き出すことが重要となる。 [0003] The inventors of the present application have developed a method of controlling ultrasonic cavitation using two types of focused ultrasonic waves and crushing so that only calculi are scraped off from the surface. In this method, only the calculus is crushed by erosion due to the collapse phenomenon of ultrasonic cavitation without using high pressure due to shock waves. As a pressure wave for generating cavitation, focused ultrasonic waves having a wavelength that is about one order of magnitude shorter than a shock wave generated by SWL are used, and cavitation is generated by generating cavitation in a localized region and causing collapse. High pressure only at the surface. This leads to high energy concentration. In this way, we have developed a calculus crushing method that can solve both the problems of existing SWLs: the relatively large size, crushed fragments, and damage to body tissues due to damage to the cavitation. [0004] Until now, in the method using two types of ultrasonic waves, sequential control has been performed by giving an ultrasonic output and an ultrasonic irradiation time that are considered to be empirically appropriate. For example, the time required for cavitation generation was 50 s, and the time required for disappearance was 50 ms. However, in this method of generating a stable cavitation by high-frequency ultrasound and then disrupting it by subsequent low-frequency ultrasound, obtaining a very high pressure in a very limited spatiotemporal domain. It is important to keep track of the condition of the cavitation and to always maintain the optimum condition. In particular, when considering medical applications, it is important to 1) apply the collapse pressure of the cavitation to other than the affected area, and 2) maximize (optimally) induce the collapse of the cavitation in the affected area.
[0005] ここで、発明者等の研究によって、破砕力は、安定なクラウドキヤビテーシヨンの生成 の精度に大きく依存し、安定なクラウドキヤビテーシヨンの生成は、焦点での圧力振幅 、溶存ガス濃度、気泡核濃度、飽和蒸気圧などに大きく依存するため、その系での最 適な超音波照射条件はこれらによって大きく変化する、という知見が得られた。ここで 、安定なクラウドキヤビテーシヨンとは図 8に示すように、ある一定の超音波照射時間 を超えたときに、クラウドキヤビテーシヨンの大きさおよび形状の変化率が著しく減少し ている状態を指す。また、単位時間あたりの破砕量は、安定なクラウドキヤビテーショ ンの単位時間あたりの崩壊回数、すなわち、高周波数超音波と低周波数超音波の繰 り返し周波数に大きく依存し、繰り返し周波数はクラウドキヤビテーシヨン崩壊後の残 留気泡の消滅時間に大きく依存する。 2種類の超音波を用いた手法を、より高度な超 音波治療装置に利用するためには、集束超音波音場における音響キヤビテーシヨン の発生から崩壊、消失までの一連の挙動を、物理的に把握しその高圧 ·高エネルギ 一の集中をコントロールすることが必要となる。  [0005] Here, according to the studies of the inventors, the crushing force largely depends on the accuracy of generating a stable cloud cavitation, and the generation of a stable cloud cavitation depends on the pressure amplitude at the focal point, It has been found that the optimum ultrasonic irradiation conditions in the system greatly vary depending on the dissolved gas concentration, bubble nucleus concentration, saturated vapor pressure, etc. Here, stable cloud cavitation means that the rate of change in the size and shape of the cloud cavitation is significantly reduced when a certain ultrasonic irradiation time is exceeded, as shown in FIG. Refers to the state in which In addition, the amount of crushing per unit time greatly depends on the number of collapses of the stable cloud cavitation per unit time, that is, the repetition frequency of high-frequency ultrasonic waves and low-frequency ultrasonic waves. It largely depends on the extinction time of residual bubbles after cloud cavitation collapse. In order to apply the technique using two types of ultrasonic waves to more advanced ultrasonic therapy equipment, a series of behaviors from generation, collapse, and disappearance of acoustic cavitation in a focused ultrasonic sound field are physically grasped. It is necessary to control the concentration of high pressure and high energy.
特許文献 1:特開 2004— 33476  Patent Document 1: JP 2004-33476
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明は、高周波数の超音波によってキヤビテーシヨンを生成し、それを後に続く低 周波数の超音波で崩壊させ、限定された時空間領域で非常に高!、エネルギーを生 成する手段にぉ 、て、生成されたキヤビテーシヨン気泡の挙動力も得られる情報を用 いて、超音波照射の最適化を図ることを目的とするものである。エネルギーの集中効 率は、安定なクラウドキヤビテーシヨンの生成の精度に大きく依存し、安定なクラウドキ ャビテーシヨンの生成は、焦点での圧力振幅、溶存ガス濃度、気泡核濃度、飽和蒸 気圧などに大きく依存するため、その系での最適な超音波照射方法はこれらによつ て大きく変化する。また、単位時間あたり集中されるエネルギーの総量は、安定なクラ ウドキヤビテーシヨンの単位時間あたりの崩壊回数、すなわち、高周波数超音波と低 周波数超音波の繰り返し周波数に大きく依存し、繰り返し周波数はクラウドキヤビテ ーシヨン崩壊後の残留気泡の消滅時間に大きく依存する。そのため、超音波によるキ ャビテーシヨンの発生力 崩壊、消失までの一連の挙動を常に把握しながら、そのェ ネルギ一の集中をコントロールすることが必要となる。 [0006] The present invention provides a means for generating cavitation by high-frequency ultrasonic waves, disintegrating the cavitation with subsequent low-frequency ultrasonic waves, and generating very high energy in a limited spatiotemporal region.情報 In addition, information that can be used to obtain the behavioral force of the generated cavitation bubbles is used. Therefore, it is an object to optimize the ultrasonic irradiation. The energy concentration efficiency greatly depends on the accuracy of stable cloud cavitation generation.Stable cloud cavitation generation depends on the pressure amplitude at the focal point, dissolved gas concentration, bubble nucleus concentration, saturated vapor pressure, etc. Because of the large dependence, the optimal ultrasonic irradiation method in the system greatly changes depending on these. In addition, the total amount of energy concentrated per unit time greatly depends on the number of times a stable cloud cavity collapses per unit time, that is, the repetition frequency of high-frequency ultrasonic waves and low-frequency ultrasonic waves. Depends greatly on the disappearance time of the residual bubbles after the collapse of the cloud cavitation. For this reason, it is necessary to control the concentration of the energy while constantly grasping the series of behaviors from the generation of ultrasonic power to the collapse and disappearance of the cavitation.
課題を解決するための手段  Means for solving the problem
[0007] 力かる課題を達成するために本発明が採用した技術手段は、高周波数の超音波を 周囲の少なくとも一部に液体が存在する対象物に向けて照射し、該対象物を含む領 域にキヤビテーシヨン気泡を生成させる第 1ステップと、低周波数の超音波を該対象 物に向けて照射し、該キヤビテーシヨン気泡を崩壊させて、該対象物に高エネルギー を付与する第 2ステップと、第 2ステップの後のインターバル時間 (インターバル工程) である第 3ステップと、を有する第 1工程と、該キヤビテーシヨン気泡から放出される音 波を取得し、該音波を信号処理することで超音波照射条件を制御する第 2工程と、を 有する。好ましくは、キヤビテーシヨン気泡は、対象物近傍の局所領域に生成され、 該キヤビテーシヨン気泡を崩壊させることで、該対象物に局所的に高エネルギーを付 与する。好ましい態様では、第 1工程の第 3ステップは、第 2ステップの後に、超音波 を対象物に向けて照射しな 、、あるいは気泡の発生及び成長を誘発しな 、程度の強 度の超音波のみを照射するインターバル時間である。  [0007] In order to achieve a powerful task, a technical means adopted by the present invention is to irradiate high frequency ultrasonic waves toward an object in which liquid is present in at least a part of its surroundings, and to irradiate a region including the object. A first step of generating cavitation bubbles in the region, a second step of irradiating the object with low-frequency ultrasonic waves to break the cavitation bubbles and apply high energy to the object, and A first step having an interval time (interval step) after the two steps, a first step, and a sound wave emitted from the cavitation bubble are acquired, and the sound wave is subjected to signal processing to obtain ultrasonic irradiation conditions. And a second step of controlling Preferably, the cavitation bubbles are generated in a local region near the object, and the cavitation bubbles are collapsed to locally apply high energy to the object. In a preferred embodiment, the third step of the first step comprises, after the second step, ultrasonic waves of a moderate intensity without irradiating the object with ultrasonic waves or inducing the generation and growth of bubbles. This is the interval time during which only irradiation is performed.
[0008] 一つの好ましい態様では、該第 2工程の信号処理は、第 1工程第 1ステップによって 安定なキヤビテーシヨン気泡が生成された力否かの判定を含み、制御される超音波 照射条件は高周波数の超音波の出力および Zあるいは照射時間である。判定結果 力 s「否」の場合には、高周波数の超音波の出力および Zあるいは照射時間を再設定 する。制御される超音波照射条件は、高周波数の超音波の周波数を含んでもよい。 制御される超音波照射条件は、さらに、超音波照射装置の位置調整 (位相を含む)を 含んでもよい。 [0008] In one preferred embodiment, the signal processing in the second step includes determining whether or not a force has been generated by the first step in the first step to generate stable cavitation bubbles, and the controlled ultrasonic irradiation condition is high. The output of the ultrasonic wave at the frequency and the Z or irradiation time. Judgment result If the force s is “No”, reset the output of high frequency ultrasonic wave and Z or irradiation time. The controlled ultrasonic irradiation condition may include a frequency of a high frequency ultrasonic wave. The controlled ultrasonic irradiation conditions may further include position adjustment (including phase) of the ultrasonic irradiation device.
[0009] 安定なキヤビテーシヨン気泡が生成された力否かの判定は、一つの好ましい態様で は、受信信号の、圧力振幅および Zあるいは圧力の大きさを用いることで行う。また、 他の好ま 、態様では、安定なキヤビテーシヨン気泡が生成された力否かの判定は、 受信信号の周波数成分を用いることで行う。  [0009] In one preferred embodiment, the determination as to whether or not a force has generated a stable cavitation bubble is performed by using the pressure amplitude and Z or the magnitude of the pressure of the received signal. In another preferred embodiment, the determination as to whether or not the force has generated stable cavitation bubbles is made by using the frequency component of the received signal.
[0010] 本発明の一つの好ましい態様では、該第 2工程の信号処理は、第 1工程第 2ステップ によるキヤビテーシヨン気泡の崩壊位置が適切であるかの判定を含み、制御される超 音波照射条件は、位置決め (位相を含む)である。判定結果が「否」の場合には、装 置の位置調整を行う。キヤビテーシヨン気泡の崩壊位置が適切であるかの判定は、低 周波の超音波の送信から崩壊圧による音波の受信までの時間を測定することで行う [0010] In one preferred embodiment of the present invention, the signal processing in the second step includes a determination as to whether the collapse position of the cavitation bubble in the second step in the first step is appropriate, and the ultrasonic irradiation conditions to be controlled are controlled. Is positioning (including phase). If the judgment result is “No”, the position of the device is adjusted. The determination of whether the collapse position of the cavitation bubble is appropriate is made by measuring the time from the transmission of the low-frequency ultrasonic wave to the reception of the sound wave due to the collapse pressure.
[0011] 本発明の一つの好ましい態様では、該第 2工程の信号処理は、第 1工程第 2ステップ によるキヤビテーシヨン気泡の崩壊圧が適切であるかの判定 (破砕効率が適切である かの判定)を含み、制御される超音波照射条件は、低周波数の超音波の出力、波数 、立ち上がりの時定数、立ち上がりの位相、周波数の少なくともいずれか一つを含む 。さらに、制御される超音波照射条件は、高周波の超音波のパラメータ(出力、照射 時間、周波数)、位置決め、位相補正の少なくとも一つを含んでもよい。キヤビテーシ ヨン気泡の崩壊圧が適切であるかの判定は、一つの好ましい態様では、崩壊圧によ る音波の受信信号の、圧力振幅および Zあるいは圧力の大きさの測定によって行う。 [0011] In one preferred embodiment of the present invention, the signal processing in the second step includes determining whether the collapse pressure of the cavitation bubbles in the second step in the first step is appropriate (determining whether the crushing efficiency is appropriate). ), And the controlled ultrasonic irradiation conditions include at least one of the output, wave number, rising time constant, rising phase, and frequency of the low frequency ultrasound. Further, the controlled ultrasonic irradiation conditions may include at least one of parameters (output, irradiation time, frequency) of high-frequency ultrasonic waves, positioning, and phase correction. In one preferred embodiment, the determination as to whether the collapse pressure of the cavitation bubble is appropriate is made by measuring the pressure amplitude and Z or the magnitude of the pressure of the sound wave reception signal based on the collapse pressure.
[0012] 本発明の一つの好ましい態様では、該第 2工程の信号処理は、第 1工程第 3ステップ の残留気泡が十分少ないか否かの判定を含み、制御される超音波照射条件は、繰り 返し周波数である。該判定は、好ましい態様では、残留気泡の崩壊圧および Zある いは崩壊時刻によって行う。  [0012] In one preferred embodiment of the present invention, the signal processing in the second step includes a determination as to whether or not residual bubbles in the first step and the third step are sufficiently small. The repetition frequency. In a preferred embodiment, the determination is made based on the collapse pressure of residual bubbles and Z or collapse time.
[0013] 本発明において、該キヤビテーシヨン気泡力 生成される音波の処理は、音波に基 づくキヤビテーシヨン気泡の画像の取得を含んでもよい。さらには、該方法は対象物 、および Zあるいは、対象物の周囲の環境力 の音波を取得して信号処理するステ ップを含んでもよい。そして、該信号処理は、対象物、および Zあるいは、対象物の 周囲の環境力もの音波の信号を用いた該対象物および zあるいは、対象物の周囲 の画像を取得することを含んでもょ 、。 In the present invention, the processing of the generated acoustic wave force generated sound wave may include obtaining an image of the cavity sound bubble based on the sound wave. Further, the method may include the step of acquiring and signal processing the object and Z or sound waves of the environmental forces around the object. Then, the signal processing is performed on the object and Z or the object. Surrounding environmental forces may also include acquiring an image of the object and the z using the sound wave signal, or an image of the surrounding of the object.
[0014] 本発明において、該第 1工程第 2ステップは、好ましい幾つかの態様では、対象物の 破砕、対象物からの異物の剥離、対象物の表面改質、対象物の熱的変性を含む。  [0014] In the present invention, the first step and the second step may include, in some preferred embodiments, crushing of an object, separation of foreign matter from the object, surface modification of the object, and thermal denaturation of the object. Including.
[0015] 本発明は、超音波照射装置としても提供される。本発明に係る超音波照射装置は、 設定された超音波照射条件に基づいて対象物に超音波を照射する超音波照射部と 、音波受信部と、音波受信部で受信した信号を処理する信号処理部と、超音波照射 部の超音波照射条件を制御する制御部とを有し、該超音波照射部は、該制御部に よって、高周波数の超音波を周囲の少なくとも一部に液体が存在する対象物に向け て照射し、該対象物を含む領域にキヤビテーシヨン気泡を生成させ、次いで、低周波 数の超音波を該対象物に向けて照射し、該キヤビテーシヨン気泡を崩壊させて、該 対象物に高工ネルギーを付与するように制御されており、該音波受信部は、該キヤビ テーシヨン気泡力 放出される音波を受信し、受信した音波を該信号処理部で処理 することで、信号処理結果に基づいて該制御部によって超音波照射条件を制御する ように構成されている。  [0015] The present invention is also provided as an ultrasonic irradiation device. An ultrasonic irradiation device according to the present invention includes an ultrasonic irradiation unit that irradiates an ultrasonic wave to an object based on set ultrasonic irradiation conditions, a sound wave reception unit, and a signal that processes a signal received by the sound wave reception unit. A processing unit, and a control unit that controls the ultrasonic irradiation conditions of the ultrasonic irradiation unit. The ultrasonic irradiation unit sends the high-frequency ultrasonic wave to at least a part of the surroundings by the control unit. Irradiate toward an existing object to generate cavitation bubbles in a region including the object, and then irradiate low-frequency ultrasonic waves toward the object to disintegrate the cavitation bubbles. The sound wave receiving unit is controlled so as to impart high energy to the object, receives the sound wave emitted from the cavitation bubble force, and processes the received sound wave by the signal processing unit to generate a signal. The control based on the processing result The unit is configured to control the ultrasonic irradiation conditions.
[0016] 好ましい態様では、該音波受信部は超音波プローブおよび Zあるいはハイド口フォン である。  [0016] In a preferred embodiment, the sound wave receiving section is an ultrasonic probe and a Z or hide mouth phone.
[0017] 一つの好ましい態様では、該信号処理部は、受信した音波の音圧分析部を含むもの である。音圧分析部によって、圧力振幅、圧力の大きさ、崩壊位置、崩壊時刻、崩壊 圧等を分析することができる。  [0017] In one preferred embodiment, the signal processing unit includes a sound pressure analyzing unit for the received sound wave. The sound pressure analyzer can analyze pressure amplitude, pressure magnitude, collapse position, collapse time, collapse pressure, and the like.
[0018] 他の好ましい態様では、該信号処理部は、受信した音波の周波数分析部を含むもの である。周波数分析部によって、圧力振幅、圧力の大きさ、崩壊圧等を分析すること ができる。  [0018] In another preferred aspect, the signal processing unit includes a frequency analysis unit for the received sound wave. The frequency analyzer can analyze pressure amplitude, pressure magnitude, collapse pressure, and the like.
[0019] 一つの好ましい態様では、該装置は、さらに、気泡の発生及び成長を誘発しない程 度の強度の超音波を照射する手段を含み、対象物および Zあるいは対象物の周囲 の環境および Zあるいはキヤビテーシヨン気泡力 の該超音波の反射音波を音波受 信部で処理するように構成されて 、る。  [0019] In one preferred embodiment, the apparatus further includes a means for irradiating an ultrasonic wave having such an intensity that does not induce the generation and growth of bubbles, so that the object and Z or the environment and Z around the object are irradiated. Alternatively, it is configured such that the reflected sound wave of the ultrasonic wave having the cavitation force is processed by the sound wave receiving unit.
[0020] 一つの好ま 、態様では、該信号処理部は、受信した音波に基づ!、て画像情報を 得る画像処理部を含むものである。 [0020] In one preferred embodiment, the signal processing unit converts image information based on a received sound wave. It includes an image processing unit to be obtained.
[0021] 超音波照射条件は、限定されない好ましい例では、高周波数超音波の出力、高周 波数超音波の照射時間、高周波数超音波の周波数、対象物に対する超音波照射 部の位置決め、繰り返し周波数、低周波数超音波の出力、波数、立ち上がりの時定 数、立ち上がりの位相、周波数力もなる群力も選択された一つあるいは複数を含むも のである。  [0021] The ultrasonic irradiation conditions are preferably, but not limited to, the output of high-frequency ultrasonic waves, the irradiation time of high-frequency ultrasonic waves, the frequency of high-frequency ultrasonic waves, the positioning of the ultrasonic irradiation unit with respect to the object, and the repetition frequency. It includes one or more selected low-frequency ultrasonic power, wave number, rising time constant, rising phase, and group force including frequency force.
[0022] 他の好ましい態様では、該装置は、記憶部を有し、該記憶部には、前記超音波照射 条件と物理的条件との関係を示す情報が格納されている。  [0022] In another preferred aspect, the device has a storage unit, and the storage unit stores information indicating a relationship between the ultrasonic irradiation condition and the physical condition.
発明の効果  The invention's effect
[0023] 本発明によれば、生成されたキヤビテーシヨン気泡の挙動カゝら得られる情報を用いて 、安定なクラウドキヤビテーシヨンが生成されている力否力 崩壊位置は適切であるか 、崩壊圧は適切であるか、残留気泡は十分少ないか等を判定することができ、判定 結果に基づいて、確実に安定なクラウドキヤビテーシヨンを生成し、安定なクラウドキ ャビテーシヨンを、確実にかつ正確な時刻および位置で崩壊に導き、最適な繰り返し 周波数に超音波照射条件を再設定することができる。  According to the present invention, by using the information obtained from the behavior of the generated cavitation bubbles, the force or force at which the stable cloud cavitation is generated is determined whether the collapse position is appropriate or not. It is possible to determine whether the pressure is appropriate, whether the residual air bubbles are sufficiently small, etc., based on the result of the determination, reliably generate a stable cloud cavitation, and reliably and accurately obtain a stable cloud cavitation. It can lead to disintegration at an appropriate time and position, and reset the ultrasonic irradiation conditions to the optimal repetition frequency.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] [A] 2種類の周波数を用いた超音波照射手法 [A] Ultrasonic irradiation method using two kinds of frequencies
先ず、本発明に係る 2種類の周波数を用いた超音波照射について説明する。最初に 、結石破砕装置の基本構成について説明する。図 1に、本発明に係る超音波キヤビ テーシヨン実験装置の概略図を示す。集束超音波の発生源として、アクリル水槽に固 定された開口径 80mm、焦点距離 80 mmの凹面 PZT (ジルコン酸チタン酸鉛)トランス デューサを用いた。 PZT素子は共振周波数 1.08MHzと 545kHzを持つものの二種類を 用いた。 PZT素子の特性として、基本モードの共振周波数以外に、 (2n+l)倍の高次 モードの共振点が存在し、他の周波数と比べ、高い出力が可能である。  First, ultrasonic irradiation using two types of frequencies according to the present invention will be described. First, the basic configuration of the calculus breaking device will be described. FIG. 1 shows a schematic diagram of an ultrasonic cavitation experimental apparatus according to the present invention. As a source of focused ultrasound, a concave PZT (lead zirconate titanate) transducer with an aperture of 80 mm and a focal length of 80 mm fixed to an acrylic water tank was used. Two types of PZT devices, one with a resonance frequency of 1.08 MHz and one with 545 kHz, were used. As a characteristic of the PZT element, in addition to the fundamental mode resonance frequency, there are (2n + l) times higher-order mode resonance points, and higher output is possible compared to other frequencies.
[表 1] Table 1 Resonant frequency of PZT elements that are used in the experiment [table 1] Table 1 Resonant frequency of PZT elements that are used in the experiment
1st mode 2nd mode 3 rd mode 4th mode1 st mode 2 nd mode 3 rd mode 4 th mode
545 kHz 1.64 MHz 2.75 MHz 3.82 MHz545 kHz 1.64 MHz 2.75 MHz 3.82 MHz
1.08 MHz 3.27 MHz Not use Not use 1.08 MHz 3.27 MHz Not use Not use
[0025] PZTトランスデューサカもアクリル水槽中に発信される超音波の波形は PC上で作成さ れた後、任意波形発生装置 (Agilent, 33120A)にて発生、超音波帯域のアンプ(T&C Power Conversion, AG 1024)によって増幅され、 PZT素子に送られる。発信された超 音波は凹面 PZT素子の幾何学焦点である 80 mmの位置に集束する。 AG1024の最大 出力は、正弦波連続発信時で電力 2 kW、パルス発信時の電圧振幅で 800 Vである。 [0025] In the PZT transducer, the waveform of the ultrasonic wave transmitted into the acrylic water tank is created on a PC, then generated by an arbitrary waveform generator (Agilent, 33120A), and an ultrasonic band amplifier (T & C Power Conversion) is used. , AG 1024) and sent to the PZT element. The transmitted ultrasonic wave is focused at the position of 80 mm, which is the geometric focal point of the concave PZT element. The maximum output of AG1024 is 2 kW for continuous sine wave transmission and 800 V for voltage amplitude during pulse transmission.
[0026] キヤビテーシヨン現象の観測には DRS Hadland社のフレームモードの超高速度カメラ 、 IMACON 200を用いた。 IMACON 200は最小で 5 nsの露光時間、 5 nsのインターフ レームでの撮影が可能であり、 MHzオーダの超音波によって発生するキヤビテーショ ン現象をとらえるのに十分な性能を有する。また、高速度カメラに、長距離顕微鏡 (Quester, QM100,焦点距離 150〜350  [0026] The IMACON 200, a frame mode super high-speed camera manufactured by DRS Hadland, was used for observation of the phenomenon of cavitation. The IMACON 200 has a minimum exposure time of 5 ns and an interframe of 5 ns, and has sufficient performance to capture the cavitation phenomenon generated by ultrasonic waves on the order of MHz. In addition, a high-speed camera is equipped with a long-distance microscope (Quester, QM100, focal length 150-350).
mm)を取り付けることにより、 0.33mm X 0.40mm〜2.50mm X 3.06mの領域を 1200pix X 980Pixの CCD画像に撮影した。キヤビテーシヨン生成範囲への採光は、最大 200 J/flashの光量を持つ、高輝度ストロボ点光源(日進電子、 SA200F)を用いて行った。 点光源からの光を、レンズ系により平行光に変換した後テストセクションに導き、超音 波キヤビテーシヨンの現象観測、および崩壊による衝撃波のシャドウグラフ撮影を行 つた。キヤビテーシヨン崩壊による音圧は、衝撃波測定用ハイド口フォン (IMOTEC, Type 80-0.5-4.0,立ち上がり時間 50ns)により測定した。また、音圧測定と高速度カメ ラによる現象撮影との同期したデータを、任意波形発生装置力 のトリガ信号を基準 として行った。キヤビテーシヨンを成長させる固体壁面としては、アルミニウム球を用い た。また、水槽中の水は、溶存酸素濃度において 1.0〜2.0ppmに、連続脱気されてい る状態で実験が行われた。 By attaching a mm), were taken region of 0.33mm X 0.40mm~2.50mm X 3.06m to CCD image 1200pix X 980 P ix. Light was collected in the cavitation generation range using a high-intensity strobe point light source (Nisshin Electronics, SA200F) having a maximum light intensity of 200 J / flash. The light from the point light source was converted to parallel light by the lens system, and then led to the test section, where observation of the phenomenon of ultrasonic cavitation and shadowgraph photography of the shock wave due to collapse were performed. The sound pressure due to the cavitation collapse was measured with a shock wave measuring hood (IMOTEC, Type 80-0.5-4.0, rise time 50ns). In addition, data synchronized with sound pressure measurement and phenomena shooting with a high-speed camera were performed based on the trigger signal of the power of the arbitrary waveform generator. Aluminum spheres were used as solid walls for growing cavitation. The experiment was performed with the water in the water tank being continuously degassed to a dissolved oxygen concentration of 1.0 to 2.0 ppm.
[0027] 図 2にキヤビテーシヨン制御手法のスキーム概略図と、音響キヤビテーシヨン制御に 用いられた超音波パルス波形の概略を示す。音響キヤビテーシヨンの制御は二種類 の周波数をもつ集束超音波によってなされる。一方は狭い領域にキヤビテーシヨンを 発生させる高周波(1ΜΗζ〜4ΜΗζ程度)の超音波である (図 2-1、 2)。高周波超音波 は焦点領域に、多数の微小気泡で構成されるクラウドキヤビテーシヨンを発生させる。 もう片方の超音波は、前記の高周波の超音波周波数より 1オーダー程度低い、クラウ ド気泡の群としての共振周波数近辺の周波数を持つ低周波の超音波(100kHz〜l MHz程度)であり、図 2下に示されるように、高周波の超音波がストップした後、直ちに 印加される。この低周波の超音波は、高周波で生成されたクラウドを強制振動させ崩 壊を導く (図 2-3、 4)。振動圧力場中におかれたクラウドの内部には衝撃波が集束し、 中心部では、気泡は激しく崩壊する (図 2-5、 6)。この一連のスキームの結果、空間的 に制御された位置にクラウドキヤビテーシヨンが生成し、さらに、その崩壊を誘導する ことにより、効率よい結石破砕が実現され得る。 [0027] Fig. 2 is a schematic diagram of the cavitation control method and a diagram of the acoustic cavitation control. The outline of the ultrasonic pulse waveform used is shown. The control of the acoustic cavitation is done by focused ultrasound with two different frequencies. One is high-frequency (about 1 to 4 mm) ultrasonic waves that generate cavitation in a narrow area (Figs. 2-1 and 2). High-frequency ultrasonic waves generate cloud cavitation in the focal region, which is composed of many microbubbles. The other ultrasonic wave is a low-frequency ultrasonic wave (approximately 100 kHz to 1 MHz) having a frequency near the resonance frequency as a group of cloud bubbles, which is lower by about one order than the high-frequency ultrasonic frequency. 2 As shown below, high-frequency ultrasonic waves are applied immediately after stopping. This low-frequency ultrasonic wave forcibly vibrates the cloud generated at high frequency, leading to collapse (Figs. 2-3 and 4). The shock wave is focused inside the cloud placed in the oscillating pressure field, and the bubble collapses violently in the center (Fig. 2-5, 6). As a result of this series of schemes, cloud cavitation is generated at spatially controlled locations, and its collapse can be induced to achieve efficient lithotripsy.
[0028] 次に、クラウドキヤビテーシヨンの崩壊挙動について説明する。図 3は、実際に上記の 手法を用いて集束超音波による音響キヤビテーシヨンを生成 '崩壊させたときのキヤ ビテーシヨンの挙動を示している。図 3(a)は 2.75MHzの高周波超音波によって作られ るクラウドキヤビテーシヨンが 545kHzの低周波超音波によって崩壊に導かれる様子で ある。 Next, the collapse behavior of the cloud cavitation will be described. Figure 3 shows the behavior of the cavitation when the acoustic cavitation is actually generated and collapsed by focused ultrasound using the above method. Figure 3 (a) shows how cloud cavitation created by 2.75MHz high-frequency ultrasound is guided to collapse by 545kHz low-frequency ultrasound.
[0029] 図 3(a)の 1フレーム目に見られるような半楕円球状のクラウドキヤビテーシヨンは、高 周波超音波の周波数が同じであれば、安定したサイズ'形状を保って生成することが 出来る。また、異なる周波数で生成したクラウドキヤビテーシヨンは、超音波の波長に 強く依存することがわ力つており、高周波の周波数を変えることによって、結石表面の 局在的な領域に任意のサイズのクラウドキヤビテーシヨンを生成することができる。こ のことについて補足する。 100〜200 sの時間、連続して超音波を照射した後に、壁 面上に発達したクラウドキヤビテーシヨンの様子を観測した。図 26Aはさまざまな周波 数における、集束超音波によってつくられる、サイズ'形状が安定な半楕円球状のク ラウドキヤビテーシヨンを撮影したものである。 1.67, 2.75, 3.27, 3.82 MHzのいずれ の周波数においても、固体壁面上の超音波の焦点領域に安定な半楕円体状のクラ ウドキヤビテーシヨンが形成された。また、図 26Aに示されるようなクラウドキヤビテー シヨンの、代表長さを周波数に対してプロットしたものが図 26Bである。代表長さとし ては、固体壁面の法線方向のクラウドの最大長さを用いた。図 26Bより、超音波によ つて固体壁面上に発生するクラウドキヤビテーシヨンの長さは超音波の波長と強い相 関が見られ、波長の 4分の 1倍の線に非常によくフィットしている。波長によって気泡ク ラウドサイズが一意に決まるという結果は、固体壁近傍の定在波のつくる音場が、クラ ウド生成領域に対して大きく影響を及ぼして 、るからであると考えられる。結果として 、図 26A,26Bは、集束超音波によって固体壁面上に発達するクラウドキヤビテーショ ンは、その発生領域を超音波の波長によって制御可能であることを示している。また 、特に 1.0 MHz以上の超音波であれば、 1.0 mm以下の局在的な領域に導くことが可 能であることがわかった。 [0029] A semi-elliptical cloud cavitation as seen in the first frame of Fig. 3 (a) is generated while maintaining a stable size 'shape if the frequency of the high frequency ultrasonic wave is the same. I can do it. In addition, it is known that cloud cavitations generated at different frequencies strongly depend on the wavelength of ultrasonic waves. Cloud cavitation can be generated. Supplement this. After continuous ultrasonic irradiation for 100 to 200 s, the state of cloud cavitation developed on the wall was observed. Figure 26A shows a semi-elliptic spherical cloud cavity of stable size and shape created by focused ultrasound at various frequencies. At all frequencies of 1.67, 2.75, 3.27, and 3.82 MHz, a stable semi-ellipsoidal cloud cavity was formed in the focal region of the ultrasonic wave on the solid wall. In addition, cloud cavities as shown in Figure 26A FIG. 26B shows the representative length of the chillon plotted against the frequency. The maximum length of the cloud in the direction normal to the solid wall was used as the representative length. According to Figure 26B, the length of the cloud cavitation generated on the solid wall surface by the ultrasonic wave has a strong correlation with the wavelength of the ultrasonic wave, and fits very well to the line that is a quarter of the wavelength. are doing. It is considered that the reason that the bubble cloud size is uniquely determined by the wavelength is that the sound field generated by the standing wave near the solid wall greatly affects the cloud generation region. As a result, FIGS. 26A and 26B show that the cloud cavitation developed on the solid wall surface by the focused ultrasonic wave can control the generation region by the wavelength of the ultrasonic wave. In addition, it was found that an ultrasonic wave of 1.0 MHz or more can be guided to a localized area of 1.0 mm or less.
[0030] 図 3(a)の 2、 3フレーム目では、半楕円球状のクラウドキヤビテーシヨン力 545 kHzの 超音波の正圧部において、クラウドを構成する一つ一つの気泡の体積を減少させ崩 壊している様子が確認できる。このとき、クラウドキヤビテーシヨンの中心部においては 多数の気泡が激しく崩壊し、固体表面に対して非常に高い圧力を及ぼしていると考 えられる。すなわち、クラウドキヤビテーシヨンを崩壊させることによって、高い圧力を 空間的に制御して、結石表面のみに集束することができる。  [0030] In the second and third frames in Fig. 3 (a), the volume of each bubble constituting the cloud is reduced in the positive pressure part of the semi-elliptical cloud cavitation force 545 kHz ultrasonic wave. It can be seen that it has collapsed. At this time, it is considered that many bubbles are violently collapsed in the center of the cloud cavitation, exerting a very high pressure on the solid surface. That is, by breaking down the cloud cavitation, high pressure can be spatially controlled and focused only on the calculus surface.
[0031] 図 3(b)は、図 3(a)に続いて発生するクラウドキヤビテーシヨンの崩壊による衝撃波伝播 の様子のシャドウグラフ (影絵)画像である。超音波周波数は異なる力 図 3の 3フレー ム目においてクラウドキヤビテーシヨンが崩壊した直後の現象に対応している。高周 波の超音波としては 3.82MHz、続いて印加する低周波の周波数は 545 kHzである。 図 3(b)では、気泡クラウドを中心とした球面波が、外に伝播してゆく様子がわかる。シ ャドウグラフ画像においては、密度変化の傾きが大きいところが、黒'白の濃淡となつ て現れる。すなわち、図 3(b)に見られる衝撃波の陰影は、その場所において非常に 高い圧力が発生していることを示している。実際に、このときの衝撃圧を遠方におい て測定したところ、単一のキヤビテーシヨン気泡がそれぞれ崩壊したときの衝撃圧と比 ベ 3倍以上の圧力値を観測して 、る。  FIG. 3 (b) is a shadow graph (shadow picture) image of the state of shock wave propagation due to the collapse of the cloud cavitation that occurs subsequent to FIG. 3 (a). The ultrasonic frequency corresponds to the phenomenon immediately after the collapse of the cloud cavitation in the third frame in Fig. 3 at different forces. The high frequency ultrasonic wave is 3.82 MHz, and the low frequency applied subsequently is 545 kHz. In Fig. 3 (b), it can be seen that the spherical wave centered on the bubble cloud propagates outside. In the shadow graph image, a portion where the gradient of the density change is large appears as a shade of black and white. That is, the shadow of the shock wave shown in Fig. 3 (b) indicates that a very high pressure is generated at that location. Actually, when the impact pressure at this time was measured from a distance, it was observed that the pressure value was at least three times greater than the impact pressure at the time when each single cavitation bubble collapsed.
[0032] さらに、図 3(a)、(b)の現象は、高速度カメラ撮影のほぼ同一フレームにおいて毎回観 測されており、遠方で計った衝撃圧センサにおいても、クラウドキヤビテーシヨンの崩 壊の信号のばらつきは ± 100 n秒であった。このことより、本手法によれば時間的にも 非常にコントロールされた領域に高圧力 ·高エネルギーを集束させることが可能であ ることがわかった。 [0032] Furthermore, the phenomena in Figs. 3 (a) and 3 (b) are observed every time in almost the same frame taken by a high-speed camera, and even in a shock pressure sensor measured at a long distance, the cloud cavitation. Collapse The variability of the breaking signal was ± 100 nsec. From this, it was found that according to this method, it is possible to focus high pressure and high energy in a time-controlled region.
[0033] 破砕実験について説明する。ここでは、上記手法を用いて、実際にモデル結石'腎 臓結石の破砕の適応可能性を確かめた結果について述べる。図 4(a)、(b)はモデル 結石に対して、本手法を適用した結果である。図 4(a)は、超音波照射時間ごとのモデ ル結石の様子であり、図 4(b)は削り取られた破砕片の様子である。キヤビテーシヨン制 御波形は、図 2に示したものと同様であり、高周波 +低周波のひとまとまりを 1パルスと し、繰り返し周波数 25Hzで超音波を照射した。すなわち、結石表面では 1分間に 1500 回、クラウドキヤビテーシヨンの崩壊を起こしている。  [0033] A crushing experiment will be described. Here, we describe the results of confirming the applicability of model stones' kidney stone crushing using the above method. Figures 4 (a) and 4 (b) show the results of applying this method to model calculi. Fig. 4 (a) shows the model stones for each ultrasonic irradiation time, and Fig. 4 (b) shows the crushed pieces. The cavitation control waveform was the same as that shown in Fig. 2. A group of high frequency and low frequency was defined as one pulse, and ultrasonic waves were irradiated at a repetition frequency of 25Hz. In other words, cloud cavitation collapses 1500 times per minute on the stone surface.
[0034] 図 4(a)より、結石は、表面より削り取られるように破砕されている様子がわかる。 12分後 にモデル結石はその質量のほぼ 3分の 1を削り取られており、 30〜40分でモデル結石 は完全に破砕された。これは、現存 SWL機器によるトータルの治療時間(60〜120分) と比べても劣らない効率である。また、図 4(b)より、破砕片はキヤビテーシヨンエロージ ヨンによって削り取られるように破砕されていることがわかる。すべての破砕片は 1 mm 以下であり、尿道を無痛で通過するに十分なサイズであると考えられる。  [0034] From FIG. 4 (a), it can be seen that the calculus is crushed so as to be scraped off from the surface. Twelve minutes later, the model stone had lost almost one-third of its mass, and in 30-40 minutes the model stone was completely crushed. This is as efficient as the total treatment time with existing SWL devices (60-120 minutes). Also, from FIG. 4 (b), it can be seen that the crushed pieces have been crushed so as to be scraped off by the cavitation erosion. All fragments are less than 1 mm and are considered large enough to pass painlessly through the urethra.
[0035] 図 4(c)は腎臓結石の中でも最も硬ぐ現存 SWL機器での破砕が困難であるとされてい るシスチン結石に本手法を適応したものである。モデル結石の場合と同様に、非常に 細力 、破砕片に結石が削り取られていることがわかる。本手法によれば、 1)結石はキ ャビテーシヨンエロージョンにより削り取られ、破砕片を非常に細力べすることができ、 2)破砕をもたらす超音波キヤビテーシヨンは、結石表面のみに局在化される。よって 現存 SWL機器が抱える問題点である、結石破砕片が比較的大きいこと、破砕時に体 内の正常組織に損傷を与えること、の 2点を解決しうる可能性を持つ。尚、 2種類の周 波数を用いた超音波照射手法にっ 、ては、特開 2004— 33476の記載を適宜参照 することができる。  [0035] Fig. 4 (c) shows the application of this method to cystine stones, which are the hardest kidney stones and are considered difficult to crush with existing SWL equipment. As in the case of the model stone, it can be seen that the stone has been scraped off to the crushed piece, very finely. According to this method, 1) stones are removed by cavitation erosion, and crushed pieces can be very finely focused.2) Ultrasonic cavitation that causes crushing is localized only on the stone surface. Is done. Therefore, it has the potential to solve two problems of existing SWL devices: the relatively large size of calculus fragments and the damage to normal tissue in the body during crushing. For the ultrasonic irradiation method using two kinds of frequencies, the description of JP-A-2004-33476 can be appropriately referred to.
[0036] [B]フィードバック制御を用いたシステム  [B] System Using Feedback Control
[B—1]フィードバック制御の背景  [B-1] Background of feedback control
上述の 2種類の周波数を用いた超音波照射手法において、キヤビテーシヨンの崩壊 を導くためには、キヤビテーシヨンの生成プロセスにおいて、 目的とする安定なクラウ ドキヤビテーシヨンが的確に生成されている必要がある。発明者等が鋭意研究したと ころ、破砕力は、安定なクラウドキヤビテーシヨンの生成に大きく依存することがわかつ た。また、安定なクラウドキヤビテーシヨンを生成できる範囲は限られており、例えば、 図 1に示される本実験系では、図 8, 9に示すように、安定なクラウドキヤビテーシヨン の生成は超音波の照射時間あるいは Zおよび超音波の出力という超音波照射条件 に依存することもわ力つた。ここで、超音波出力の大きさは、焦点での超音波の圧力 振幅の大きさと強い相関があるが、超音波の伝播過程における反射,屈折,散乱の影 響が無視できない場合も多い。さらに、焦点での圧力振幅と安定なクラウドキヤビテ ーシヨンの生成の関係は、焦点での溶存ガス濃度、焦点での気泡核濃度、焦点での 飽和蒸気圧、焦点での雰囲気圧力に大きく依存するため、その系での最適な超音波 照射条件はこれらによって大きく変化する。したがって、「安定なキヤビテーシヨンの 生成を確実に実行する」こと一つとつても、キヤビテーシヨンの状態をモニタリングし、 フィードバックをかけることが重要になってくる。 In the ultrasonic irradiation method using the above two types of frequencies, the collapse of the cavitation In order to derive this, it is necessary that the desired stable cloud cavitation is accurately generated in the cavitation generation process. The inventors have conducted extensive studies and found that the crushing force largely depends on the generation of stable cloud cavitation. In addition, the range in which stable cloud cavitation can be generated is limited.For example, in the experimental system shown in Fig. 1, as shown in Figs. It was also clear that it depends on the ultrasonic irradiation conditions such as the ultrasonic irradiation time or the Z and ultrasonic output. Here, the magnitude of the ultrasonic output has a strong correlation with the magnitude of the pressure amplitude of the ultrasonic wave at the focal point, but in many cases, the effects of reflection, refraction, and scattering in the ultrasonic wave propagation process cannot be ignored. Furthermore, the relationship between the pressure amplitude at the focal point and the formation of a stable cloud cavitation is highly dependent on the dissolved gas concentration at the focal point, the bubble nucleus concentration at the focal point, the saturated vapor pressure at the focal point, and the atmospheric pressure at the focal point. The optimum ultrasonic irradiation conditions in the system vary greatly depending on these. Therefore, it is important to monitor the state of the cavitation and provide feedback, even when it comes to "stable execution of stable cavitation".
[0037] 一方、安定なクラウドキヤビテーシヨンの生成過程では、キヤビテーシヨン力 発生す る音波が特徴的な変化をすることもわかった。したがって、キヤビテーシヨン力も発生 する音波を用いてフィードバックをかけることにより、様々な条件下で適切なクラウドキ ャビテーシヨンを生成するように制御することが可能である。さらに、キヤビテーシヨン から発生する音波は、その崩壊現象および崩壊後の残留気泡振動の情報も持って いるため、これを解析し、フィードバックをかけることで適切な崩壊圧、適切な超音波 照射の繰り返し周波数 (これは破砕効率に直結する)を得ることも可能である。  [0037] On the other hand, it was also found that in the process of generating a stable cloud cavitation, the sound wave generated by the cavitation force changes characteristically. Therefore, it is possible to control so as to generate an appropriate cloud cavitation under various conditions by applying feedback using a sound wave that also generates a cavitation force. In addition, the sound waves generated from the cavitation also have information on the collapse phenomenon and residual bubble vibrations after the collapse, and by analyzing this and applying feedback, the appropriate collapse pressure and the appropriate repetition frequency of ultrasonic irradiation are obtained. (This is directly related to the crushing efficiency).
[0038] 本発明では、具体的なモニタリング手法としては、一つの好ましい態様として、キヤビ テーシヨン力も発生される音波を用いることができる。キヤビテーシヨンからの発生音 を図 7に示す。この音を処理することで、焦点位置のターゲット、キヤビテーシヨンが生 成しているかどうか、破砕が十分行われているかどうか、超音波の繰り返し周波数の 最適化、のすベてを行うことが出来る。図 7に示すように、クラウドが安定化されると高 周波数超音波の照射時間に相当する信号に変化がみられる。したがって、信号の変 化を監視することで安定なクラウドキヤビテーシヨンが生成されているかの判定が行わ れる。クラウドが崩壊するとその崩壊の強さに応じた衝撃圧が観測される。衝撃圧に よる音波の受信信号の、圧力振幅および Zあるいは圧力の大きさから崩壊圧を推定 し、破砕効率が適切力否かの判定ができる。尚、本技術では対象物(結石)ェロージ ヨンで削り取られるように破砕されるので、対象物(結石)がどのくらいの速度で削り取 られるかと言うことが重要である。よって破砕効率とは、たとえば単位時間あたり削り取 られる重量 (mg/分)などの量である。また、残留気泡は、 100-200 s後に崩壊し、音 波を発生する。音波の受信信号の、圧力振幅および Zあるいは圧力の大きさ、およ び崩壊時刻から、最適な繰り返し周波数が決定される。 In the present invention, as a specific monitoring method, as one preferable embodiment, a sound wave that also generates a cavitation force can be used. Figure 7 shows the sound generated from the cavitation. By processing this sound, the target at the focal position, whether or not the cavitation is generated, whether or not crushing is sufficiently performed, and optimization of the repetition frequency of the ultrasonic wave can be all performed. As shown in Fig. 7, when the cloud is stabilized, the signal corresponding to the irradiation time of the high-frequency ultrasonic wave changes. Therefore, it is determined whether stable cloud cavitation is generated by monitoring the signal change. It is. When the cloud collapses, an impact pressure corresponding to the strength of the collapse is observed. The collapse pressure is estimated from the pressure amplitude and Z or the magnitude of the pressure of the sound wave reception signal due to the impact pressure, and it can be determined whether the crushing efficiency is appropriate. In this technology, since the object (calculus) is crushed so that it can be scraped off by the erosion, it is important to say at what speed the object (calculus) is scraped off. Therefore, the crushing efficiency is, for example, the amount of weight (mg / min) scraped off per unit time. Also, the residual bubbles collapse after 100-200 s, generating acoustic waves. The optimal repetition frequency is determined from the pressure amplitude and Z or the magnitude of the pressure of the sound wave reception signal, and the collapse time.
[0039] [B— 2]システムの全体構成  [0039] [B-2] Overall configuration of the system
システムの全体構成につ 、て説明する。キヤビテーシヨンの崩壊圧を利用した結石 破碎法(CCL:Cavitation Control Lithotripsy)は図 5のように構成される。システム は、結石の捕捉と結石の破砕の 2つに大きく分けられる。結石の捕捉は、結石の位置 の測定、超音波発生装置の粗動'微動、超音波発生装置の位相補正を含む。結石 の破砕には、高周波超音波の照射と低周波超音波の照射の 2ステップが含まれる。 結石の破砕過程は、キヤビテーシヨン気泡の生成力も消滅までの過程と関連しており 、具体的には、安定なクラウドキヤビテーシヨンの生成、クラウドキヤビテーシヨンの崩 壊、クラウドキヤビテーシヨンの消滅が重要となる。  The overall configuration of the system will be described. The calculus breaking method (CCL: Cavitation Control Lithotripsy) using the collapse pressure of the cavity is configured as shown in Fig. 5. The system can be broadly divided into stone capture and stone crushing. Calculus capture includes calculus position measurement, coarse / fine movement of the ultrasonic generator, and phase correction of the ultrasonic generator. Fracture of a calculus involves two steps: high-frequency ultrasonic irradiation and low-frequency ultrasonic irradiation. The calculus crushing process is related to the process until the generation of cavitation bubbles also disappears. Disappearance is important.
[0040] 高周波超音波の照射は、安定なクラウドキヤビテーシヨンの生成と関連しており、高周 波超音波の照射中あるいは照射後 (低周波超音波照射後を含む)に、キヤビテーショ ンの生成状態をモニタリングすることで、安定なクラウドキヤビテーシヨンが生成されて いる力否かを判定する。低周波超音波の照射は、クラウドキヤビテーシヨンの崩壊と 関連しており、低周波超音波の照射中あるいは照射後に、崩壊現象をモニタリング することで、適切な崩壊が行われている力判定する。さらに、低周波超音波の照射後 に、残留気泡をモニタリングすることで、キヤビテーシヨン気泡が消滅しているかどうか (もしくは十分に少ないかどうか)を判定する。図 6に示すフローチャート中のステップ (1)〜(2)が結石の捕捉ブロックに相当し、ステップ (3)〜(8)が結石の破砕ブロックに相 当する。  [0040] Irradiation of high-frequency ultrasonic waves is related to generation of stable cloud cavitation, and is performed during or after irradiation of high-frequency ultrasonic waves (including after irradiation of low-frequency ultrasonic waves). By monitoring the generation state of the cloud, it is determined whether or not the force is generating stable cloud cavitation. The irradiation of low-frequency ultrasonic waves is related to the collapse of cloud cavitation, and by monitoring the collapse phenomenon during or after the irradiation of low-frequency ultrasonic waves, it is possible to determine the force at which appropriate collapse is performed. I do. In addition, the residual bubbles are monitored after irradiation with the low-frequency ultrasonic wave to determine whether or not the cavitation bubbles have disappeared (or are sufficiently small). Steps (1) and (2) in the flowchart shown in FIG. 6 correspond to a calculus capturing block, and steps (3) to (8) correspond to a calculus crushing block.
[0041] 本発明に係る超音波照射装置は、キヤビテーシヨン気泡力 放出される音波を受信 する手段を有する。図 1の実験装置では、音波の受信手段としてハイド口フォンを用 いているが、受信手段の一つの好ましい形態は超音波プローブである。図 12に、受 信手段として 3形態を例示する。図 12の左図は、高周波数および Zあるいは低周波 の超音波を照射する圧電素子の内側に超音波プローブを設置したもの、中央図は、 高周波数および Zあるいは低周波の超音波を照射する圧電素子の外側に超音波プ ローブを設置したもの、右図の、高周波数および Zあるいは低周波の超音波を照射 する圧電素子もしくは該圧電素子が複数のセグメントに分かれているタイプでは、そ れらのセグメントのいくつ力が、受信機能を担うものである。これらの形態は、単独もし くはそれらの組み合わせで音波を受信する。受信は、キヤビテーシヨン気泡のモニタ リングの機能と、結石 '組織のイメージングを行う通常の超音波診断としての機能を兼 ね備えることができる。また、これらの受信手段を兼ね備えた上で、治療装置の形態 力 Sフェーズドアレイ方式 (位相補正で焦点位置を変えられるもの)である力、単一焦点 の方式であるかが変わる。音圧信号受信プローブは、キヤビテーシヨン気泡力 放出 される音波を受動的に受信しても良いし、プローブ自身が、超音波を送信し (プロ一 ブには波形生成装置が接続されている)、その超音波に対するキヤビテーシヨン気泡 力 の反射波を受信しても良い。 [0041] The ultrasonic irradiation apparatus according to the present invention receives the emitted sound waves. Have means to do so. In the experimental apparatus of FIG. 1, a hide-and-mouth phone is used as a sound wave receiving means. One preferred form of the receiving means is an ultrasonic probe. FIG. 12 illustrates three types of receiving means. The left figure in Fig. 12 shows an ultrasonic probe installed inside a piezoelectric element that irradiates high frequency and Z or low frequency ultrasonic waves.The center figure irradiates high frequency and Z or low frequency ultrasonic waves. An ultrasonic probe is installed outside the piezoelectric element.For a piezoelectric element that emits high-frequency and Z- or low-frequency ultrasonic waves or a type in which the piezoelectric element is divided into multiple segments as shown in the right figure, The power of these segments is responsible for the receiving function. These forms receive sound waves alone or in combination. Reception can have both the function of monitoring the cavitation bubbles and the function of normal ultrasound diagnosis for imaging of calculus' tissue. In addition, the combination of these receiving means changes the form of the treatment device, whether it is the S phased array system (the focal position can be changed by phase correction) or the single focus system. The sound pressure signal receiving probe may passively receive the sound wave emitted by the cavitation bubble force, or the probe itself may transmit the ultrasonic wave (the waveform generating device is connected to the probe), A reflected wave of the cavitation bubble force with respect to the ultrasonic wave may be received.
[0042] 超音波プローブで受信された音圧信号は、信号処理部において信号処理される。信 号処理部には、受信された音圧信号の圧力振幅および Zあるいは圧力の大きさを得 る手段と、音圧信号を解析する (周波数フィルターによる周波数成分の抽出、 FFT等 のフーリエ変換による周波数解析が例示される)ことによって周波数成分を得る手段 と、音圧信号から画像情報を得る手段が含まれる。音圧信号の圧力振幅および Zあ るいは圧力の大きさ、音圧信号の周波数成分は、フィードバックループ内のパラメ一 タとして用いることができる。また、音圧信号力 取得した画像情報は表示部に表示 され、画像情報をフィードバック制御に用いることもできる。 [0042] The sound pressure signal received by the ultrasonic probe is subjected to signal processing in a signal processing unit. The signal processing unit has means for obtaining the pressure amplitude and Z or the magnitude of the pressure of the received sound pressure signal, and analyzes the sound pressure signal (frequency component extraction by frequency filter, Fourier transform such as FFT) Frequency analysis), and a means for obtaining image information from a sound pressure signal. The pressure amplitude of the sound pressure signal, the magnitude of Z or pressure, and the frequency component of the sound pressure signal can be used as parameters in the feedback loop. In addition, the acquired image information is displayed on the display unit, and the image information can be used for feedback control.
[0043] [B - 3]フィードバックシステムを用いた破砕の手順 [0043] [B-3] Crushing procedure using feedback system
フィードバックシステムを用いた破砕法の一連の流れをフローチャートに基づ 、て説 明する。機器の記憶部には、超音波パラメータに対する物理的なパラメータの依存 関係がデータベースとして保存されている。ここで、超音波パラメータは超音波発生 装置の焦点位置も含めたパラメータを意味し、具体的には超音波発生装置および受 信装置の位置 (位相補正によるものを含む)、高周波数の超音波の出力 ·照射時間 · 周波数、低周波数の超音波の出力'波数'立ち上がりの時定数'立ち上がりの位相' 周波数、第 1工程の繰り返し周波数である。物理的パラメータとしては、媒質の状態と して、溶存ガス濃度、液体の種類、液体の温度、気泡核濃度、飽和蒸気圧、雰囲気 圧力等力 S、その他にも対象物の音響インピーダンスや表面の粗さなどが含まれる。 A series of flow of the crushing method using the feedback system will be described based on a flowchart. The dependence of the physical parameters on the ultrasonic parameters is stored as a database in the storage unit of the device. Where the ultrasonic parameters are Means parameters including the focal position of the device, specifically the position of the ultrasonic generator and receiver (including those due to phase correction), the output of high-frequency ultrasonic waves, irradiation time, frequency, low frequency The ultrasonic wave output 'wave number' rise time constant 'rise phase' frequency and repetition frequency of the first step. Physical parameters include dissolved gas concentration, liquid type, liquid temperature, bubble nucleus concentration, saturated vapor pressure, atmospheric pressure, etc.S, and other factors such as the acoustic impedance and surface impedance of the object. Includes roughness and the like.
[0044] データベースおよび結石位置の情報に基づいて超音波パラメータの設定を行う(ス テツプ 1)。結石位置の情報は、例えば超音波診断によって得られる。このステップで は、例えば、まず位置決めをし、次に高周波数と低周波数の超音波のパラメータおよ び繰り返し周波数を暫定的に設定した後、実際に高周波数の超音波のみを連続で 照射してキヤビテーシヨンからの音波を受信し、後述のステップ 5のフィードバック手 法を用いて高周波数の超音波のパラメータを再設定し、低周波数の超音波および繰 り返し周波数の最適化はステップ 2〜8のループ内で行うという手法が考えられる。  [0044] The ultrasonic parameters are set based on the database and the information on the calculus position (Step 1). Information on the calculus position is obtained, for example, by ultrasonic diagnosis. In this step, for example, positioning is first performed, then the parameters of the high-frequency and low-frequency ultrasonic waves and the repetition frequency are provisionally set, and then only the high-frequency ultrasonic waves are actually continuously irradiated. Receiving the sound waves from the cavitation, and resetting the parameters of the high-frequency ultrasonic waves using the feedback method of step 5 described later, and optimizing the low-frequency ultrasonic waves and the repetition frequency are performed in steps 2 to 8. This is performed in a loop.
[0045] 結石の移動に追従するため、再び結石の位置を測定し、装置の位置決め(位相補正 によるものを含む)を行う(ステップ 2)。このとき、結石の移動にリアルタイムに追従す ることが不可能な場合には、再びステップ 1に戻って最初力も超音波パラメータを設 定し直すこともあり得る。  [0045] In order to follow the movement of the calculus, the position of the calculus is measured again, and the apparatus is positioned (including that obtained by phase correction) (step 2). At this time, if it is impossible to follow the movement of the calculus in real time, it is possible to return to step 1 again and set the initial force and the ultrasonic parameters again.
[0046] 高周波超音波を照射し、安定なクラウドキヤビテーシヨンを生成する (ステップ 3)。高 周波超音波の照射は、ステップ 1で設定されたパラメータに基づいて行う。高周波の 範囲は、 100kHz以上であり、好ましくは、 500kHz〜10MHzである。  Irradiate high frequency ultrasonic waves to generate stable cloud cavitation (step 3). Irradiation of high frequency ultrasound is performed based on the parameters set in step 1. The range of the high frequency is 100 kHz or more, preferably 500 kHz to 10 MHz.
[0047] 続いて低周波超音波を照射し、クラウドキヤビテーシヨンを崩壊に導き、結石を破砕 する (ステップ 4)。低周波の範囲は、ステップ 3で照射される超音波の周波数の 2分 の 1以下である。  [0047] Subsequently, low-frequency ultrasonic waves are applied to induce cloud cavitation to collapse and crush stones (Step 4). The low frequency range is less than half the frequency of the ultrasonic wave applied in step 3.
[0048] 安定なクラウドキヤビテーシヨンが生成されて 、るかを判定する (ステップ 5)。ステップ 3のプロセスは例えば 50 sという非常に短い時間で終了するため、キヤビテーシヨン 生成のモニタリングはステップ 4の後になる。これは、キヤビテーシヨンからの音波の発 生力も受信するまでに 50 s程度力かるためである。もちろん、異なる系にこの技術を 用いた場合はこの限りではなぐ可能であればこのプロセスはステップ 3のすぐ後に 行うのが望ましい。ここでは、例えば、キヤビテーシヨン発生時の特徴的な音波や安 定なキヤビテーシヨンからの特徴的な音波などを用いてキヤビテーシヨンのモニタリン グを行う。安定なキヤビテーシヨンが生成されていると判定された場合には、ステップ[0048] It is determined whether a stable cloud cavitation has been generated (step 5). Since the process of step 3 is completed in a very short time, for example 50 s, the monitoring of the cavitation generation is after step 4. This is because it takes about 50 seconds to receive the sound wave generation power from the cavitation. Of course, if this technique is used for different systems, this is not the case. It is desirable to do. Here, for example, the monitoring of the cavitation is performed using the characteristic sound wave at the time of the generation of the cavitation or the characteristic sound wave from the stable cavitation. If it is determined that stable cavitation has been generated, step
6に進む。安定なキヤビテーシヨンが生成されていないと判定された場合には、ステツ プ 2に戻る。 Proceed to 6. If it is determined that stable cavitation has not been generated, the process returns to step 2.
[0049] キヤビテーシヨン気泡の崩壊位置および Zある 、は崩壊時刻が正し 、かを判定する( ステップ 6)。崩壊圧による音波の受信タイミングから、崩壊が焦点距離だけ離れた位 置で起きて!/、るかどうかを確認することができる。例えば焦点手前のサイドローブで崩 壊が起こっている状態を知覚することができる。さらには、キヤビテーシヨン気泡の崩 壊位置が正しいと判定された場合には、ステップ 7に進む。キヤビテーシヨン気泡の 崩壊位置が正しくないと判定された場合には、ステップ 2に戻る。  It is determined whether or not the collapse position and Z of the cavitation bubble have the correct collapse time (step 6). From the sound wave reception timing by the collapsing pressure, it can be confirmed whether or not the collapsing occurs at a position apart by the focal length! /. For example, it is possible to perceive that a collapse has occurred in the side lobe just before the focal point. Furthermore, if it is determined that the collapse position of the cavitation bubble is correct, the process proceeds to step 7. If it is determined that the collapse position of the cavitation bubble is not correct, return to step 2.
[0050] キヤビテーシヨン気泡の崩壊圧が適切かを判定する (ステップ 7)。崩壊圧による音波 の圧力振幅および Zあるいは圧力の大きさ値から、焦点での崩壊圧を推測すること ができる。これによつて、破砕するのに必要な圧力(もしくは圧力振幅)が得られてい るかを調べることができる。崩壊圧が適切であると判定された場合には、ステップ 8に 進む。崩壊圧が適切でないと判定された場合には、ステップ 2に戻る。  [0050] It is determined whether the collapse pressure of the cavitation bubble is appropriate (step 7). From the pressure amplitude of the sound wave due to the collapse pressure and the Z or pressure magnitude value, the collapse pressure at the focal point can be estimated. This makes it possible to check whether the pressure (or pressure amplitude) required for crushing has been obtained. If the collapse pressure is determined to be appropriate, proceed to step 8. If it is determined that the collapse pressure is not appropriate, return to step 2.
[0051] 残留気泡が十分少ないかを判定する (ステップ 8)。崩壊後の残留気泡からの音波を 受信することにより、残留気泡の状態をモニタリングすることができる。気泡からの音 波の受信は、受信のみでも、送受信でもよいし、またそれらの組み合わせでもよい。  [0051] It is determined whether the residual air bubbles are sufficiently small (Step 8). By receiving the sound waves from the residual bubbles after collapse, the state of the residual bubbles can be monitored. The reception of the sound wave from the bubble may be reception only, transmission / reception, or a combination thereof.
[0052] [B— 4]キヤビテーション気泡生成のモニタリング  [0052] [B-4] Monitoring of cavitation bubble formation
安定なクラウドキヤビテーシヨンが生成されている力否かは、 音圧振幅の変化'音圧 振幅の安定化'気泡から発生する高調波信号の検出'さらには低周波で実際 にクラウドの崩壊信号が得られる力否か等の複数の手法が考えられる。これらの情報 は、キヤビテーシヨン気泡力 の受信音圧の信号を処理することで取得することがで きる。  The power of stable cloud cavitation is determined by the change in sound pressure amplitude 'stabilization of sound pressure amplitude' detection of harmonic signals generated from bubbles' and the actual collapse of the cloud at low frequencies A plurality of methods such as whether or not a signal can be obtained are conceivable. This information can be obtained by processing the signal of the received sound pressure of the cavitation bubble force.
[0053] 正常なキヤビテーシヨン制御のサイクルの好ましい一つの例は、(1)キヤビテーシヨン の発生、(2)安定なクラウドキヤビテーシヨンの生成、(3)安定なクラウドキヤビテーシヨン の崩壊、(4)キヤビテーシヨンの消失、力もなる。このうち、(1)、(2)、(3)のプロセスが安 定なクラウドキヤビテーシヨンの生成と相互に影響しあう部分であり、このプロセスで安 定なクラウドキヤビテーシヨンの生成をチェックすることが可能である。 [0053] One preferable example of a normal cavitation control cycle is (1) generation of cavitation, (2) generation of stable cloud cavitation, (3) collapse of stable cloud cavitation, ( 4) The cavitation disappears and the power becomes stronger. Of these, processes (1), (2) and (3) are cheaper. It is a part that interacts with the generation of a stable cloud cavitation, and it is possible to check the generation of a stable cloud cavitation in this process.
[0054] (1)では、キヤビテーシヨンの発生を検知し、発生していたら、あとどれくらいの照射時 間で安定なクラウドキヤビテーシヨンが生成される力を予測できる。(2)ではクラウドキヤ ビテーシヨンが安定してきているかを確認する。ただし、安定なクラウドキヤビテーショ ンカもの音波が検知しにくい場合は、検知しにく 、と 、う特徴を使うことも可能であり、 さらに、確度を上げるためには (1)、(3)のプロセスでの確認も重要になってくると考えら れる。(3)では、データベース通りの (もしくは十分に大きな)崩壊が起こっていれば、 結果的に安定なクラウドキヤビテーシヨンが生成できて 、たのだろうと 、うことを確認 できる。  [0054] In (1), the occurrence of cavitation is detected, and if it has occurred, it is possible to predict how long the irradiation time will lead to the generation of a stable cloud cavitation. In (2), confirm whether the cloud cab is stable. However, if it is difficult to detect the sound wave of a stable cloud cavitation, it is possible to use a feature that makes it difficult to detect it. In order to increase the accuracy, it is possible to use (1), (3) It is thought that confirmation in the process of) will also be important. In (3), it can be confirmed that if the collapse according to the database (or sufficiently large) has occurred, a stable cloud cavitation can be generated as a result.
[0055] 具体的な判定方法としては、音波の圧力と周波数成分で行う。圧力値を用いることに ついて図 7に基づいて説明する。図 7には、キヤビテーシヨンクラウドから放出される 音の受信信号の音圧と時間との関係が示してある。図 7に示すように、クラウドが安定 化されると高周波数の超音波を照射している間の信号に変化がみられる。例えば図 7では、圧力振幅が一度変動と伴いながら大きくなつた後に、時間の経過とともにそ の値を小さくし、ほぼ一定の圧力振幅において安定ィ匕している。このような信号の変 化を監視することで安定なクラウドキヤビテーシヨンが生成されているかの判定が行わ れる。クラウドが崩壊するとその崩壊の強さに応じた衝撃圧が観測される。データべ ース通りの崩壊が起こっていれば、結果的に安定なクラウドキヤビテーシヨンが生成 できて 、たであろうと判定できる。  As a specific determination method, the determination is performed based on the pressure and frequency components of the sound wave. The use of the pressure value will be described with reference to FIG. FIG. 7 shows the relationship between the sound pressure of the received signal of the sound emitted from the cavitation cloud and time. As shown in Fig. 7, when the cloud is stabilized, there is a change in the signal during irradiation of high-frequency ultrasonic waves. For example, in FIG. 7, after the pressure amplitude once increases with a change, the value is reduced with time, and the pressure amplitude is stabilized at a substantially constant pressure amplitude. By monitoring such a signal change, it is determined whether a stable cloud cavitation is generated. When the cloud collapses, an impact pressure corresponding to the strength of the collapse is observed. If the collapse according to the database has occurred, it can be determined that a stable cloud cavitation can be generated as a result.
[0056] 周波数成分については、例えば、キヤビテーシヨンの発生過程において放出される 音圧信号は広い周波数帯域をもっため、照射超音波の周波数よりも低い周波数や 高い周波数で検出することが可能である。これが安定なキヤビテーシヨンになると、周 波数成分は照射した超音波の整数倍の高調波成分にほぼ限定されることになる。し たがって、 (1)周波数成分の分布 (広がり、ばらつき具合)や、 (2)ある特定の周波数 成分 (1/2倍の分数調波成分や 2倍の高調波成分など)を調べることで判定することが できる。  As for the frequency component, for example, since the sound pressure signal emitted in the process of generating the cavitation has a wide frequency band, it can be detected at a frequency lower or higher than the frequency of the irradiation ultrasonic wave. If this becomes a stable cavitation, the frequency component is almost limited to a harmonic component that is an integral multiple of the irradiated ultrasonic wave. Therefore, by examining (1) the distribution (spread and variation) of frequency components, and (2) specific frequency components (such as 1/2 times subharmonic components and 2 times higher harmonic components) It can be determined.
[0057] 安定なクラウドキヤビテーシヨンが生成されて 、るかの判定が「否」の場合のフィード バック制御の対象となるパラメータは高周波の超音波パラメータ (高周波の照射時間[0057] A feed when stable cloud cavitation is generated and the determination as to whether it is "no" The parameters to be back-controlled are high-frequency ultrasonic parameters (high-frequency irradiation time
、高周波の出力)である。図 8には、安定なクラウドキヤビテーシヨンに必要な最低出 力と最低照射時間の関係が示してある。安定なクラウドキヤビテーシヨンの生成は、高 周波の超音波の出力や超音波の照射時間に依存する。さらに、高周波の周波数も 制御対象となる。これによつて、生成するクラウドキヤビテーシヨンのサイズを変化させ ることができ、破砕力(パワーや範囲など)を変化させることができる。 , High frequency output). Figure 8 shows the relationship between the minimum output required for stable cloud cavitation and the minimum irradiation time. The generation of a stable cloud cavitation depends on the output of high-frequency ultrasonic waves and the irradiation time of ultrasonic waves. Furthermore, high-frequency frequencies are also controlled. As a result, the size of the cloud cavitation to be generated can be changed, and the crushing force (power, range, etc.) can be changed.
[0058] 安定なクラウドキヤビテーシヨンが生成されているかの判定力 ^否」の場合は、例えば 、高周波の照射時間および Zあるいは高周波の出力を長く'大きくする。しかしながら 、必ずしも、判定力 ^否」の場合に、高周波の照射時間および Zあるいは高周波の出 力を長ぐ大きくするのみとは限らない。例えば、安定な状況を通り越して、気泡が目 的としな!/、場所にも発生してしまって 、る場合は、高周波の照射時間および Zある ヽ は高周波の出力を短ぐ小さくすることになる。  [0058] In the case of "judgment of whether or not stable cloud cavitation is generated", for example, the irradiation time of high frequency and the output of Z or high frequency are made longer and larger. However, in the case of “judgment power”, it is not always the case that the irradiation time of the high frequency and the Z or the output of the high frequency are merely increased for a long time. For example, if the bubble is not the target after passing a stable situation! / If it is also generated in a place, the high-frequency irradiation time and Z Become.
[0059] 同様に、周波数を変更させる時に、安定なクラウドキヤビテーシヨンが生成されている 力の判定力 ^否」の場合は、基本的には周波数を低くするが、気泡が目的としない場 所にも発生してしまっている場合は、体組織の損傷を抑える、また効率を上げるという 意味でも周波数を高くする必要がある。この「気泡が目的としな 、場所にも発生する」 ということについては、超音波診断の要領でイメージングを行えば精度よぐし力もそ の位置までを判定することが可能である。ただし、いつでもそれが可能とは限らない ので、 (1)安定なクラウドキヤビテーシヨン力もの音波が安定な状態で保たれているか どうか、また、 (2)崩壊圧が複数の位置力も得られていないかどうか (受信タイミングで チェックする)ということから、発生していることをまず判定することも必要になると考え られる。最終的には医者が (3)超音波イメージング画像上での判断をするという実施 形態もあり得る。  [0059] Similarly, when the frequency is changed, a stable cloud cavitation is generated. In the case of the force judgment power "No", the frequency is basically lowered, but the bubble is not the target. If it occurs in some places, it is necessary to increase the frequency in order to reduce damage to body tissues and increase efficiency. Regarding the fact that "bubbles are generated at the place where they are not intended", if the imaging is performed in the manner of ultrasonic diagnosis, it is possible to determine the accuracy and the force up to that position. However, since this is not always possible, (1) stable cloud cavitation force, whether the sound waves are kept in a stable state, and (2) multiple positional forces with collapse pressure can be obtained. Therefore, it is necessary to first determine whether the error has occurred because it is not checked (checked at the reception timing). Ultimately, there may be an embodiment in which the doctor makes a decision on the (3) ultrasonic imaging image.
[0060] 図 6に示すフローチャートにおいては、厳密には、高周波の出力'照射時間を変  In the flowchart shown in FIG. 6, strictly speaking, the high-frequency output ′ irradiation time is changed.
化させるというループが存在する。図の簡便のためステップ 8からステップ 2に戻って いるが、先ず、超音波パラメータ高周波の出力'照射時間を変化させ、高周波の出力 •照射時間を十分大きぐ長くしてもクラウドが発生しなければ、位置決めをし直すとこ ろ力もやり直すことになる。その他のパラメータとしては、フェーズドアレイ方式であれ ば、個々の素子間の位相の変化がパラメータとなる。 Loop exists. For simplicity of the figure, the process returns from step 8 to step 2.However, first, the output of the ultrasonic parameter high-frequency irradiation time is changed, and the high-frequency output For example, re-positioning will also redo the force. Other parameters include phased array For example, a change in phase between individual elements is a parameter.
[0061] [B— 5]キヤビテーシヨン気泡崩壊現象のモニタリング  [0061] [B-5] Monitoring of bubble collapse phenomenon of cavitation
キヤビテーシヨン気泡崩壊現象のモニタリングすることで、崩壊位置が適切である力 崩壊圧が適切であるかを判定する。崩壊位置の判定において、「崩壊圧による音波 の受信時刻から、崩壊が焦点距離だけ離れた位置で起きているかどうかの確認」は、 低周波の発信から崩壊圧の受信までの時間を測定することによって行う。測定は、直 接その時間を測定してもよぐ例えば高周波の照射時刻はわかっているので、高周 波の発信力 の時間を測定することで間接的に測定しても構わない。  By monitoring the cavitation bubble collapse phenomenon, it is determined whether the collapse position is appropriate and the force collapse pressure is appropriate. In the determination of the collapse position, `` confirmation of whether or not collapse has occurred at a position separated by the focal length from the sound wave reception time by the collapse pressure '' means measuring the time from low-frequency transmission to reception of the collapse pressure. Done by The time may be measured directly, for example, since the irradiation time of a high frequency is known, it may be measured indirectly by measuring the time of the transmitting power of a high frequency.
[0062] キヤビテーシヨン気泡の崩壊位置が正しくない場合には、マニュアルの位置決めの場 合、フィードバック制御によって装置の位置を調整する。フェーズドアレイ方式の場合 、位置決めのパラメータとして、各素子の位相もパラメータとなる。  [0062] When the collapse position of the cavitation bubble is incorrect, in the case of manual positioning, the position of the device is adjusted by feedback control. In the case of the phased array system, the phase of each element is also a parameter as a positioning parameter.
[0063] 焦点での崩壊圧の推定は、結石自体の破砕効率と受信音圧の関係から行う。(崩壊 圧自体の計測はできないため受信音圧を持って崩壊圧に依存したパラメータと考え る)。最終的に得た 、情報は結石の破砕効率と体組織へのダメージの大きさである。 これらはともに崩壊圧と強い相関があるので、受信音圧から予測される崩壊圧を介し て、それぞれの関係をデータベース化することも可能であり、直接受信音圧と破砕効 率およびダメージの大きさの関係をデータベース化することも可能である。  [0063] The collapse pressure at the focal point is estimated from the relationship between the crushing efficiency of the calculus itself and the received sound pressure. (Because the collapse pressure itself cannot be measured, the received sound pressure is considered to be a parameter that depends on the collapse pressure.) The information we finally obtained is the calculus breaking efficiency and the amount of damage to body tissue. Since both of these have a strong correlation with the collapse pressure, it is also possible to create a database of each relationship through the collapse pressure predicted from the received sound pressure, and directly receive the sound pressure and the crushing efficiency and the magnitude of damage. It is also possible to make a database of the relationships between the two.
[0064] 適切な崩壊圧が得られていない場合には、フィードバック制御の対象としては、低周 波の出力、波数を変化させること、低周波の立ち上がりの時定数を変化させること、 低周波の立ち上がりの位相を変化させること、低周波の周波数を変化させること、が ある。このような低周波パラメータにカ卩えて、高周波パラメータ、繰り返し周波数、位置 決め、(位相補正が可能な装置ならば)位相補正のいずれか、もしくは複数の組み合 わせも制御対象となる。例えば、まずは低周波のパラメータの調整を行い、それでも 適切な崩壊圧が得られていない場合は高周波パラメータ、位置決め、位相補正など と組み合わせて目標とする状態を達成する。  [0064] When an appropriate collapse pressure is not obtained, the object of feedback control is to change the output and wave number of the low frequency, to change the time constant of the low frequency rise, There are two ways to change the rising phase and the low frequency. In addition to the low-frequency parameters, any one of the high-frequency parameters, the repetition frequency, the positioning, and the phase correction (if the phase correction is possible), or a combination of a plurality of them is also a control target. For example, first adjust the low frequency parameters, and if the appropriate collapse pressure is still not obtained, combine the high frequency parameters, positioning, and phase correction to achieve the target state.
[0065] [B 6]キヤビテーシヨン残留気泡のモニタリング  [B 6] Monitoring of residual bubbles in cavitation
本技術では、キヤビテーシヨンを狭 、領域に限定して利用することがポイントの一つ である。しかし、キヤビテーシヨン崩壊後の残留気泡は安定なクラウドキヤビテーシヨン を生成する領域以外にも発生もしくは拡散しているため、そのまま高周波力 始まる サイクルを繰り返しても、局所的な領域で制御をすることができなくなってしまう。その ため、最も効率的なのは残留気泡が無視できる程度に少なぐ小さくなつたときに次 のサイクルを開始することである。そのために残留気泡のモニタリングを行い、次のサ イタルまでの時間(すなわち繰り返し周波数)を決定することになる。 In the present technology, one of the points is to use the cavitation limited to a narrow area. However, the residual bubbles after the collapse of the cavitation are stable cloud cavitation. Is generated or diffused in the region other than the region where the high frequency force is generated, so even if the cycle starting with the high frequency force is repeated as it is, it becomes impossible to control in a local region. Therefore, it is most efficient to start the next cycle when the residual bubbles have become negligibly small. Therefore, monitoring of the residual air bubbles is performed, and the time until the next cycle (that is, the repetition frequency) is determined.
[0066] 崩壊後の残留気泡からの音波を受信することにより、残留気泡の状態をモニタリング する。残留気泡の状態とは、残留気泡の大きさ、総体積を意味する。これらのパラメ ータは、残留気泡からの崩壊圧 (音波)の大きさ、その崩壊圧の発生する時間間隔か ら予測することができる。さら〖こ、残留気泡の発生および成長を誘発しない程度の強 度の超音波を残留気泡に照射し、残留気泡力 反射される音波を受信することによ つて残留気泡の状態をモニタリングする手法も有効な手法となる。残留気泡からの崩 壊圧の大きさは、そのまま、残留気泡の体積の大きさを示している。なぜならば単一 気泡の崩壊圧は、気泡半径が大きいほど、高くなる力もである。また、崩壊圧の発生 時刻が遅いこと、また、崩壊圧の発生時刻の間隔が長いことも、残留気泡の体積の 大きさが大きいことを意味する。気泡が大きければ、当然その気泡振動の固有振動 数が下がる力 である。  [0066] The state of the residual bubbles is monitored by receiving a sound wave from the residual bubbles after the collapse. The state of the residual bubbles means the size and the total volume of the residual bubbles. These parameters can be predicted from the magnitude of the collapse pressure (sound wave) from the residual bubbles and the time interval at which the collapse pressure occurs. In addition, there is also a method of irradiating the residual bubbles with ultrasonic waves that do not induce the generation and growth of residual bubbles, and monitoring the state of the residual bubbles by receiving the reflected sound waves. This is an effective method. The magnitude of the collapse pressure from the residual bubbles directly indicates the magnitude of the volume of the residual bubbles. This is because the collapse pressure of a single bubble increases as the bubble radius increases. In addition, the fact that the collapse pressure generation time is slow and the interval between the collapse pressure generation times is long also mean that the volume of the residual bubble is large. If the bubble is large, it is a force that naturally lowers the natural frequency of the bubble vibration.
[0067] 残留気泡のモニタリングによって、キヤビテーシヨン気泡の消失が不十分であると判 定された場合には、繰り返し周波数を低く再設定する。また、キヤビテーシヨン気泡の 消失が十分に早いと判定された場合には、繰り返し周波数を高く再設定する。  [0067] If it is determined by the monitoring of the residual bubbles that the disappearance of the cavitation bubbles is insufficient, the repetition frequency is reset to a low value. If it is determined that the cavitation bubbles disappear quickly enough, the repetition frequency is set to a higher value.
[0068] 残留気泡のモニタリングと繰り返し周波数の再設定との関係について説明する。残留 気泡が多ければ (大きければ)繰り返し周波数を低くしなければならな 、。逆に残留 気泡が少なければ、繰り返し周波数を上げ破砕効率を上げることができる。繰り返し 周波数を 2倍にできれば、治療時間は 1/2に短くなる、と、直に破砕効率に効いてくる ためこのプロセスは非常に重要なシークェンスである。  [0068] The relationship between the monitoring of the residual bubbles and the resetting of the repetition frequency will be described. The more (if larger) the residual air bubbles, the lower the repetition frequency must be. Conversely, if the residual bubbles are small, the repetition frequency can be increased and the crushing efficiency can be increased. If the repetition rate can be doubled, the treatment time will be shortened by half, and this will have a direct effect on the crushing efficiency, so this process is a very important sequence.
[0069] 図 11は、超音波照射と超音波受信のプロトコルのタイムチャートを示して 、る。本発 明に係る 2段階の超音波照射力 なる 1パルス間のインターバルは、キヤビテーシヨン 気泡のモニタリング時間を除いて、 10000〜40000 5の待ち時間カぁる。したがつ て、待ち時間を利用して、例えば、 PRF (パルス繰り返し周波数) 5kHzの超音波を 5 0— 200ラスター照射することで、結石本体および周囲組織のモニタリングを行うこと が可能である。 FIG. 11 shows a time chart of a protocol of ultrasonic irradiation and ultrasonic reception. The interval between two pulses of the ultrasonic irradiation power according to the present invention, ie, the waiting time of 10,000 to 40,005, excluding the monitoring time of the cavitation bubble, varies. Therefore, using the waiting time, for example, an ultrasonic wave of 5 kHz PRF (pulse repetition frequency) can be used. By irradiating 0-200 rasters, it is possible to monitor the calculus body and surrounding tissue.
実施例  Example
[0070] [C]実施例の概略 [C] Outline of Example
高周波数の超音波および低周波数の超音波によるキヤビテーシヨン挙動のデータ ベース(一連のスキーム中のキヤビテーシヨン挙動の特性)を作成し、データベースに 対応して、実際の崩壊挙動確認の実験を行った。  A database of cavitation behavior by high-frequency and low-frequency ultrasonic waves (characteristics of cavitation behavior in a series of schemes) was created, and an experiment was performed to confirm the actual collapse behavior corresponding to the database.
具体的には、  In particular,
(1)キヤビテーシヨン挙動データベースの作成(高周波フ ーズ);  (1) Creation of a behavioral behavior database (high frequency food);
高周波フェーズにおけるキヤビテーシヨン挙動の 3種類の分類(図 14、図 15、図 16 Three types of cavitation behavior in the high-frequency phase (Fig. 14, Fig. 15, Fig. 16
) )
(2)キヤビテーシヨン挙動に応じた音圧信号取得 (高周波フ ーズ);  (2) Acquisition of sound pressure signal according to the cavitation behavior (high-frequency food);
高周波フェーズの音波モニタリング、および 3種類のキヤビテーシヨン挙動との対応 実施例(図 17、 図 18、 図 19、 図 20)  Sound wave monitoring in high frequency phase and correspondence with three types of cavitation behavior Examples (Fig. 17, Fig. 18, Fig. 19, Fig. 20)
(3)崩壊圧データベースの作成 (低周波フェーズ);  (3) Creation of collapse pressure database (low frequency phase);
低周波フェーズにおける崩壊圧検出と 3種類のキヤビテーシヨン挙動との対応( 図 21、図 22);  Correlation between collapse pressure detection in the low frequency phase and three types of cavitation behavior (Figures 21 and 22);
低周波フェーズにおける崩壊圧のモニタリングによる最適崩壊圧を導く条件の 抽出(図 23) ;  Monitoring the collapse pressure in the low frequency phase to extract the conditions that lead to the optimal collapse pressure (Figure 23);
(1)、 (2)、 (3)に基づいた、感圧シート実験および結石破砕実験(図 24、図 25) ; を行った。  A pressure-sensitive sheet experiment and a calculus crushing experiment (FIGS. 24 and 25) based on (1), (2), and (3) were performed.
高周波フェーズにおいて出力の大きさによって、低 '中 ·高の 3パターンにキヤビテ ーシヨンを分類し、その分類に対応した特徴的なモニタリング音圧波形を計測した。 さらに 3種類のうち中程度の出力にお 、て、最適に崩壊圧力が発生することを明らか にし、低周波フェーズにおける崩壊圧のモニタリングのためのデータベースの一例を 作成した。これらの結果を基に、感圧シートによる 2次元的な高圧発生領域の確認お よび結石破砕実験の 2通りの確認試験を行った。  In the high frequency phase, cavities were classified into three patterns of low, medium, and high according to the magnitude of output, and characteristic monitoring sound pressure waveforms corresponding to the classification were measured. In addition, it was clarified that the collapse pressure was generated optimally at the medium output of the three types, and an example of a database for monitoring the collapse pressure in the low frequency phase was created. Based on these results, two types of confirmation tests were performed: a two-dimensional high-pressure generation region using a pressure-sensitive sheet and a calculus crushing experiment.
[0071] [C 1]実験装置 図 13は本実施例に用いられた実験装置の概略図であり、実験装置は、体外からの モニタリングを模擬した位置に超音波センサを配した実験系である。図 13は本実施 例に用いられた実験装置の概略図である。超音波発生源は、開口径 100[mm]、焦点 距離 80[mm]の凹面型 PZTトランスデューサを用いた。トランスデューサの共振周波数 は 555[kHz]であり、 3.89[MHz]に 4次の高調波モードを有する。キヤビテーシヨンコント ロールの高周波、低周波の周波数としては以上の 2周波数、すなわち、高周波フエ一 ズにおいては 3.89 [MHz]を、低周波フェーズにおいては 555 [kHz]を用いている。 キヤビテーシヨンの挙動撮影には高速度カメラ IMACON2000 (本実験では露光 10[nsec]、インターフレーム 10[ms])、を用いた。キヤビテーシヨンからの放出音圧のモ 二タリングには、開口径 12[mm]、焦点距離 78.3[mm]の凹面型ハイド口フォンを用いた 。この凹面型ハイド口フォンはほぼ PZTトランスデューサと同じ焦点距離をもち、焦点 で起きるキヤビテーシヨン現象に起因する放出音圧を感度よく受信することが可能で ある(本実験では、この凹面型ハイド口フォンは Passive Cavitation Detectorとして用 いているため、以後 PCDと略記することとする)。 PCDの共振周波数は 20[MHz]であり 、本実験で対象とするく 10 [MHz]の帯域においては、フラットな応答かつ十分な感 度を持つ。 [C 1] Experimental apparatus FIG. 13 is a schematic diagram of the experimental apparatus used in this example. The experimental apparatus is an experimental system in which an ultrasonic sensor is arranged at a position simulating monitoring from outside the body. FIG. 13 is a schematic diagram of the experimental apparatus used in this example. The ultrasonic source used was a concave PZT transducer with an aperture diameter of 100 [mm] and a focal length of 80 [mm]. The resonance frequency of the transducer is 555 [kHz] and has a fourth harmonic mode at 3.89 [MHz]. The above two frequencies are used as the high frequency and low frequency of the cavitation control, that is, 3.89 [MHz] for the high frequency phase and 555 [kHz] for the low frequency phase. A high-speed camera IMACON2000 (exposure 10 [nsec], inter-frame 10 [ms] in this experiment) was used to photograph the behavior of the cavitation. For monitoring the sound pressure emitted from the cavitation, a concave-type closed-mouth phone with an aperture of 12 [mm] and a focal length of 78.3 [mm] was used. This concave-type microphone has almost the same focal length as the PZT transducer, and can receive the emitted sound pressure due to the cavitation phenomenon occurring at the focal point with high sensitivity. Since it is used as Passive Cavitation Detector, it will be abbreviated as PCD hereafter.) The PCD has a resonance frequency of 20 [MHz], and has a flat response and sufficient sensitivity in the 10 [MHz] band that is the target of this experiment.
[C 2]高周波(3.89[MHz])フェーズにおけるキヤビテーシヨン気泡群の分類(高周 波フェーズデータベース) [C 2] Classification of cavitation bubbles in the high frequency (3.89 [MHz]) phase (high frequency phase database)
図 14は壁面に 3.89 [MHz]の高周波フェーズにおいて、発生、成長する気泡群の状 態を高速度カメラによって撮影した結果である。様々な超音波出力における、超音波 照射時間 0-130 [ μ s] (0-506 [周期])の固体壁面のキヤビテーシヨン気泡群の挙動と なっている。なお、グラフ中における超音波出力(縦軸)は焦点における最大負圧の 大きさ(|p」 = 4.8— 11.7[MPa])となっている。この結果によって、キヤビテーシヨン気泡 群の挙動が大きく 3タイプに分類することができることがわかる。  Figure 14 shows the results of a high-speed camera photographing the state of bubbles that occur and grow in the high frequency phase of 3.89 [MHz] on the wall. The behavior of the cavitation bubbles on the solid wall at the ultrasonic irradiation time of 0-130 [μs] (0-506 [period]) at various ultrasonic outputs. The ultrasonic output (vertical axis) in the graph is the magnitude of the maximum negative pressure at the focal point (| p) = 4.8-11.7 [MPa]. From these results, it is understood that the behavior of the cavitation bubble group can be largely classified into three types.
すなわち、  That is,
(A)低音圧域(|p」〈6.5[MPa]):キヤビテーシヨンが発生していないもしくは、カメラで 確認することのできな 、微細なキヤビテーシヨンが発生して 、る状態;  (A) Low sound pressure range (| p "<6.5 [MPa]): A state in which no cavitation has occurred or a minute cavitation that cannot be confirmed by the camera has occurred;
(B)中音圧域 (7.4く |p」〈9.6[MPa]):半楕円球状の安定した形状、サイズを保った気 泡群 (クラウドキヤビテーシヨン)が発生して 、る状態; (B) Medium sound pressure range (7.4 | p "<9.6 [MPa]): Stable shape and size of semi-elliptical sphere A state in which bubbles (cloud cavitation) are generated;
(C)高音圧域(10.5[MPaK|p」:形状'サイズが不安定なキヤビテーシヨンが発生して いる状態、特に、中音圧域で発生するような半楕円球状の気泡群の周囲を、不規則 に発生する比較的径の大きな気泡もしくは気泡群が覆って 、る状態;  (C) High sound pressure range (10.5 [MPaK | p]: In the state where the shape and size of the cavity are unstable, especially around the semi-elliptical spherical bubbles that occur in the medium sound pressure range, A state where irregularly generated relatively large bubbles or bubbles are covered;
である。 It is.
これらの挙動は、キヤビテーシヨン気泡群力 発せられる放出音圧、さらには低周波 フェーズにおける崩壊圧それぞれと密接に関わっている。図 15、図 16において、こ の分類について詳しく示す。  These behaviors are closely related to the sound pressure emitted by the cavitation bubbles and the collapse pressure in the low-frequency phase. Figures 15 and 16 show this classification in detail.
なお、(A)、(B)、(C)の音圧域はこの図の場合上記のように値を記している力 これら の閾値は媒質の状態 (溶存ガス濃度、液体の種類、液体の温度、気泡核濃度、飽和 蒸気圧、雰囲気圧力、不純物濃度等)、固体壁面の音響インピーダンスや粗さなど によって変化する。そのため、絶対値そのものが重要なのではなぐあくまでキヤビテ ーシヨン挙動が (A)→(B)→(C)と超音波出力を上げていくことによって遷移するという "特性"が重要であることを付しておく。 "特性"とその"特性に対する特徴的な応答"さ えわかれば、 "特徴的な応答"をモニタリングすることによってキヤビテーシヨンの状態 を特定することが可能であるからである。なおこの高周波フェーズにおける (A)、(B)、 ( C)の 3状態に対応する"特徴的な応答"のモニタリング例は、図 19、 20に示した。  Note that the sound pressure ranges of (A), (B), and (C) indicate the values as described above in the case of this figure. These thresholds depend on the state of the medium (dissolved gas concentration, liquid type, liquid Temperature, bubble nucleus concentration, saturated vapor pressure, ambient pressure, impurity concentration, etc.), acoustic impedance and roughness of the solid wall. Because the absolute value itself is important, it is important to note that the "characteristic" that the cavitation behavior transitions by increasing the ultrasonic output from (A) to (B) to (C) is important. Keep it. In other words, by monitoring the "characteristic" and its "characteristic response to the characteristic", it is possible to identify the state of the cavitation by monitoring the "characteristic response". FIGS. 19 and 20 show examples of monitoring the "characteristic response" corresponding to the three states (A), (B) and (C) in this high-frequency phase.
[C 3]高周波超音波照射時間に対するキヤビテーシヨン気泡群代表長さ(時間 径グラフ) [C 3] Typical length of cavitation bubble group against high-frequency ultrasonic irradiation time (time diameter graph)
図 15は図 14と同様の撮影におけるキヤビテーシヨン気泡群の写真において、超音 波伝播方向(固体壁面の法線方向)の代表長さを計測した結果である。すなわち、図 14における、横軸方向に対応する長さを計測している。条件は図 14と同様であり、 ( A)低音圧域: 4.7[MPa]、(B)中音圧域: 8.7[MPa]、(C)高音圧域: 11.7[MPa]、における 計測結果となっている。図 15中の横軸は超音波照射時間 (ただし、最初の超音波が トランスデューサ力 発信された瞬間の時刻をゼロとしているため、焦点に超音波が たどり着いた時刻は約 54[ sec])となっており、それぞれの出力において、キヤビテ ーシヨン気泡群が成長してゆく様子を示している。図中 "〇"印は固体壁面力も成長 する半楕円球状のキヤビテーシヨン気泡群の長さであり、固体壁面に接している一つ の気泡群と見なせるキヤビテーシヨンの代表長さを計測している。また図中 "▲"印はFig. 15 shows the result of measuring the representative length in the ultrasonic wave propagation direction (normal direction of the solid wall surface) in a photograph of the cavitation bubble group in the same photographing as in Fig. 14. That is, the length corresponding to the horizontal axis direction in FIG. 14 is measured. The conditions are the same as in Fig. 14. (A) Low sound pressure range: 4.7 [MPa], (B) Medium sound pressure range: 8.7 [MPa], (C) High sound pressure range: 11.7 [MPa]. Has become. The horizontal axis in Fig. 15 is the ultrasonic irradiation time (however, the time when the first ultrasonic wave was transmitted by the transducer force was set to zero, so the time when the ultrasonic wave reached the focal point was about 54 [sec]). This shows that the cavitation bubble group grows at each output. In the figure, the symbol “〇” indicates the length of the semi-elliptical cavitation bubble group where the solid wall force also grows. The representative length of the cavitation, which can be regarded as a bubble group, is measured. Also, the "▲" mark in the figure
、半楕円球状の気泡群を覆うように発生している、 2次的なキヤビテーシヨンまで含め た長さをとつている。 It has a length that covers the semi-elliptic bubbles and covers the secondary cavitation.
(A)「低音圧域」において気泡群はグラフ中 100[ sec]をすぎても確認できていない 。 110[ sec]をすぎたあたりから、キヤビテーシヨン気泡が確認されはじめ、時間を経 るにつれ成長してゆくが、最終的なキヤビテーシヨン代表長さは短ぐ 30 - 40 [ m]程 度である。  (A) In the “low sound pressure range”, no bubbles were confirmed even after 100 [sec] in the graph. After about 110 [sec], cavitation bubbles begin to be seen and grow over time, but the typical cavitation length is short, about 30-40 [m].
(B)「中音圧域」において気泡群は安定した形状、サイズを形作る。 80 sec]の時点 でキヤビテーシヨン気泡が確認されはじめ、 lSO^ sec]においては、 50- 60[ /ζ πι]程度 の安定したキヤビテーシヨン気泡群を形作っている。ただし、 150 [ sec]あたりから、 半楕円球状の安定したサイズの気泡群を覆うように 2次的なキヤビテーシヨン気泡が 生成するケースもある。  (B) In the "medium sound pressure range", the bubbles form a stable shape and size. At 80 sec], cavitation bubbles began to be confirmed, and at lSO ^ sec], a stable cavitation bubble group of about 50-60 [/ ζπι] was formed. However, from around 150 [sec], secondary cavitation bubbles may be generated to cover the semi-elliptical spheres of stable size.
(C)「高音圧域」においてはキヤビテーシヨン気泡が発生した直後 (85[ sec])に、半 楕円球状の気泡群の周囲を覆うように 2次的なキヤビテーシヨン気泡が生成している。 このような不規則なキヤビテーシヨン気泡の存在は、固体壁面への効果的な高圧の 集中を妨げることが考えられるため、本技術においては、一般的にこの音圧領域はコ ントロールという観点力 好ましくないと考えられる。ただし、これらの気泡群をまとめ て崩壊しうるに十分低い周波数と十分大きな圧力振幅をもった低周波フェーズの超 音波を用いることによって、簡便に大きな崩壊圧力も可能である。すなわち、そのよう なパラメータの条件においては高周波数および低周波の超音波出力は、大きければ 大きいほどよぐ制御の工程数を減らすことができるからである.  (C) In the “high sound pressure range”, immediately after the generation of the cavitation bubbles (85 [sec]), secondary cavitation bubbles are generated so as to cover the periphery of the semi-elliptical sphere bubbles. Since the presence of such irregular cavitation bubbles may hinder the effective concentration of high pressure on the solid wall surface, in the present technology, this sound pressure region is generally unfavorable in terms of control. it is conceivable that. However, a large collapse pressure can be easily achieved by using a low-frequency phase ultrasonic wave having a sufficiently low frequency and a sufficiently large pressure amplitude so that these bubble groups can collapse together. That is, under such parameter conditions, the higher the output of the high-frequency and low-frequency ultrasonic waves, the more the number of control steps can be reduced.
[C 4]高周波超音波照射時間に対するキヤビテーシヨン気泡群代表長さ(出力 径グラフ) [C 4] Typical length of cavitation bubble group against high frequency ultrasonic irradiation time (output diameter graph)
図 16は図 15と同様の結果に対し、超音波出力を横軸にとって整理したグラフであ る。超音波照射時間は 233 [周期]印加した時刻である 114[ sec]を選んだ。これによ れば、 6.5[MPa]程度の出力までは徐々に気泡群の径は大きくなつてゆき、 7[MPa]程 度で 50-60[ μ m]程度の半楕円球状の安定した形状 ·サイズのキヤビテーシヨン気泡 群となる。一方 10[MPa]を超えたあたりから、 2次的なキヤビテーシヨン気泡群が発生し 始める。閾値は図 14において述べたように、周囲の様々な条件によって変化するが 、今回の条件においては、 6.5[MPa]までを低音圧域、 6.5[MPa]〜10[MPa]までを中 音圧域、 10[MPa]以上を高音圧域と、キヤビテーシヨン気泡群の異なる 3つの状態の 領域を定めることができる。 FIG. 16 is a graph in which the ultrasonic output is arranged on the horizontal axis for the same result as in FIG. The ultrasonic irradiation time was set to 114 [sec], which is the time when 233 [periods] were applied. According to this, the diameter of the bubble group gradually increases up to an output of about 6.5 [MPa], and a stable shape of a semi-elliptic sphere of about 50 to 60 [μm] at about 7 [MPa] · Size cavitation bubbles. On the other hand, around 10 [MPa], secondary cavitation bubbles are generated. start. As described in FIG. 14, the threshold varies depending on various surrounding conditions. Under this condition, the low sound pressure range is 6.5 [MPa] and the medium sound pressure range is 6.5 [MPa] to 10 [MPa]. A high sound pressure range of 10 [MPa] or more and a range of three different states of the cavitation bubble group can be defined.
[0075] [C 5]キヤビテーシヨン発生時の放出音圧の検出  [0075] [C5] Detection of sound pressure released when cavitation occurs
図 17A、図 17B、図 17Cは、 1.7、 2.8、 3.9[MHz]のそれぞれの各周波数における 、キヤビテーシヨン発生時の高速度カメラ撮影と、放出音圧の検出結果である。キヤビ テーシヨン気泡が、撮影画像に確認されるとほぼ同時に放出音圧が検出されている。  FIGS. 17A, 17B, and 17C show the results of high-speed camera imaging and the detection of emitted sound pressure at the time of occurrence of cavitation at each frequency of 1.7, 2.8, and 3.9 [MHz]. The emitted sound pressure is detected almost at the same time when the cavitation bubbles are confirmed in the photographed image.
[0076] [C 6]高周波フェーズにおける放出音圧のモニタリング波形  [C 6] Monitoring waveform of emission sound pressure in high frequency phase
図 18は、高周波フェーズ全域における放出音圧のモニタリングを示す。図 18A、図 18B、図 18Cは凹面型トランスデューサによって、キヤビテーシヨン気泡群からの音 圧をモニタリングした結果である(このケースにおいては、出力はファンクションジエネ レータの Peak to Peakの振幅で示している。尚、図 19、図 20、図 24も図 18と同じ条 件において実験を行っている)。図 18Aに示すように、 100— 300[mV]の低音圧域に おいては、受信信号に変化が見られない。 350[mV]あたりから、キヤビテーシヨンの放 出音圧が検出されはじめ、図 18Bに示すように、 400— 600[mV]の中音圧域において は、常に受信信号中にキヤビテーシヨン力もの放出音圧が検出される。図 18Cに示 すように、高音圧域の 700— 1000[mV]の領域においても受信信号が検出されるが、 その波形は大きく揺らいでおり、不規則な形状、サイズの気泡群生成を反映している 。一方で、中音圧域の 400— 600[mV]の領域においては、受信信号の波形は、安定 した振幅および崩絡線を示しており、サイズ ·形状の安定したキヤビテーシヨン気泡群 の発生と対応していると考えられる。これらの結果は、キヤビテーシヨン気泡群の音圧 出力の違いによる三種類の"特徴的な発生形態"に対する"特徴的な応答"としての 情報を含んでおり、以下の図 19、図 20においてその定量的な検出の実施例につい て述べる。  Figure 18 shows the monitoring of the emitted sound pressure throughout the high frequency phase. Figures 18A, 18B, and 18C show the results of monitoring the sound pressure from the cavitation bubbles using a concave transducer (in this case, the output is shown as the peak-to-peak amplitude of the function generator). The experiments were performed in the same conditions as in Fig. 18, Fig. 19, Fig. 20, and Fig. 24). As shown in Fig. 18A, in the low sound pressure range of 100-300 [mV], there is no change in the received signal. From around 350 [mV], the emission sound pressure of the cavitation starts to be detected. As shown in Fig. 18B, in the middle sound pressure range of 400-600 [mV], the emission sound pressure of the cavitation force is always included in the received signal. Is detected. As shown in Fig. 18C, the received signal is detected even in the high sound pressure range of 700-1000 [mV], but its waveform fluctuates greatly, reflecting the generation of bubbles with irregular shapes and sizes. are doing . On the other hand, in the region of 400-600 [mV] in the medium sound pressure range, the waveform of the received signal shows stable amplitude and breakthrough lines, and the generation and response of the stable size and shape of the cavitation bubble group it seems to do. These results include information as "characteristic response" to three types of "characteristic generation modes" due to differences in sound pressure output of the cavitation bubble group. An example of a typical detection will be described.
[0077] [C 7]音圧波形の振幅によるモニタリング例:時間平均波形の振幅の大きさ  [C7] Example of monitoring by amplitude of sound pressure waveform: magnitude of amplitude of time averaged waveform
図 19は、図 18と同様のケースのそれぞれの出力における、キヤビテーシヨン気泡 群からの放出音圧の時間平均波形の振幅の絶対値を示したものである。時間平均 波形は、時刻をそろえた同ケースの異なるサンプル受信波形 10ケースをそれぞれ積 算し、サンプル数 10で除した物である。時間平均を行うことによって、ランダムな雑音 の振幅を相対的に小さくすることができる。すなわち、毎回安定した状態のキヤビテ ーシヨン気泡群力 の信号の振幅は大きくなり、不規則で、時間や位相においてラン ダムな挙動をしめすキヤビテーシヨン気泡群からの信号の振幅はそれに対して相対 的に小さくなることが期待される。図 19において、図 18で見られた元波形と対応して 、(A)低音圧域においては、キヤビテーシヨン気泡群が発生していないもしくはごく微 少なキヤビテーシヨンのみ生成しているため受信信号は検出されない; (B)中音圧域 においては、半楕円球状のキヤビテーシヨン気泡群が安定した形状'サイズを保って 生成しているため、受信信号においても振幅、位相のそろった信号を毎回検出し、 結果、時間平均波形の振幅も安定して大きな振幅をとる; (C)高音圧域においては不 規則な成分がキャンセルされることで、圧力振幅の大きさは (B)のケースと比べ小さく なる、という三種類の形態と同期した処理結果を得た。 FIG. 19 shows the absolute value of the amplitude of the time-averaged waveform of the sound pressure emitted from the cavitation bubble group at each output in the same case as in FIG. Time average The waveforms are the sums of 10 different sampled received waveforms of the same case with the same time, and divided by 10 samples. By performing time averaging, the amplitude of random noise can be relatively reduced. In other words, the amplitude of the signal of the cavitation bubble group force in a stable state increases each time, and the amplitude of the signal from the cavitation bubble group, which exhibits irregular behavior and random behavior in time and phase, is relatively small. It is expected to become. In FIG. 19, corresponding to the original waveform shown in FIG. 18, (A) in the low sound pressure range, no reception signal is detected because no cavitation bubbles are generated or only a very small cavitation is generated. (B) In the middle sound pressure range, the semi-elliptical cavitation bubbles are generated while maintaining a stable shape and size, so that even in the received signal, a signal having the same amplitude and phase is detected every time. The amplitude of the time-averaged waveform also stably assumes a large amplitude. (C) In the high sound pressure range, the magnitude of the pressure amplitude is smaller than in the case of (B) by canceling the irregular components. The processing results synchronized with the three types were obtained.
このような受信信号の処理により、焦点領域におけるキヤビテーシヨン気泡群のモ- タリングを行うことが可能であることが分かる。  It can be seen that such reception signal processing makes it possible to monitor the cavitation bubble group in the focal region.
[C 8]音圧波形の周波数成分によるモニタリング例:受信音圧の FFT解析 [C 8] Example of monitoring by frequency component of sound pressure waveform: FFT analysis of received sound pressure
図 20A、図 20B、図 20Cは、図 18と同様のケースのそれぞれの出力における、キ ャビテーシヨン気泡群力もの放出音圧およびその周波数成分を示したものである。図 20Aは、ごく微小なキヤビテーシヨンのみが発生している低音圧域に対応し、そのとき の主な周波数成分は送信周波数である 3.9[MHz]のみとなっている。図 20Bは、半楕 円球状のキヤビテーシヨン気泡群が安定した形状 'サイズを保っている中音圧域に対 応し、このとき 7.8[MHz]などの高調波成分に相当する周波数成分が送信周波数であ る 3.9[MHz]の成分に近い値にまで上昇している。図 20Cは、半楕円球状の気泡群の 周囲を覆うように、不規則な 2次的なキヤビテーシヨン気泡が生成して ヽる高音圧域 に対応し、この不安定なキヤビテーシヨンによって受信信号の崩絡線が乱され、送信 周波数である 3.9[MHz]よりも低周波数の成分の値が上昇している。このように、 PCD での受信信号は図 18での 3種類の形態それぞれに対応して特徴的な周波数成分を もっため、受信信号を周波数解析することによって、もしくはローバスフィルタ、ハイパ スフィルタ、バンドパスフィルタなどの周波数成分に対するフィルターを受信信号に適 用することによって、焦点領域におけるキヤビテーシヨン気泡群のモニタリングを行う ことが可能であることが分かる。 FIGS. 20A, 20B, and 20C show the emission sound pressure and the frequency component of the force of the cavitation bubbles at each output in the same case as in FIG. Fig. 20A corresponds to the low sound pressure range where only minute cavitation occurs. At that time, the main frequency component is only 3.9 [MHz], which is the transmission frequency. Figure 20B corresponds to the medium sound pressure range where the semi-elliptical cavitation bubbles maintain a stable shape and size. At this time, the frequency component corresponding to a harmonic component such as 7.8 [MHz] is the transmission frequency. It rises to a value close to the component of 3.9 [MHz]. Figure 20C shows the high sound pressure range where irregular secondary cavitation bubbles are generated to cover the periphery of the semi-elliptical sphere bubbles.This unstable cavitation causes the reception signal to break down. The line is disturbed, and the value of the component of the frequency lower than 3.9 [MHz] which is the transmission frequency increases. As described above, the received signal at the PCD has characteristic frequency components corresponding to each of the three types in FIG. 18, so that the frequency of the received signal is analyzed, or the low-pass filter and the high-pass filter are used. It can be seen that it is possible to monitor the cavitation bubble group in the focal region by applying a filter for frequency components such as a filter and a bandpass filter to the received signal.
[0079] [C 9]低周波フェーズにおける崩壊圧の検出  [C 9] Detection of collapse pressure in low frequency phase
図 21は高周波の超音波を打ち終わった後の、低周波 (555[kHz])のフェーズにおけ る崩壊圧のモニタリングの実施例である。上段は低周波フェーズの PCD受信音圧の 元波形であり、下段は受信信号から 555[kHz]の低周波成分による反射波をカットし、 キヤビテーシヨン気泡群の崩壊圧そのものを抜き出したものである。左から右に向か つて加えた低周波の圧力振幅は大きくなつて 、つて 、る。すべてのケースにお!、て、 高周波超音波は中音圧域の 9.5[MPa] (最大負圧)であり、安定な形状、サイズの半 楕円球状のクラウドキヤビテーシヨンが生成する条件である。上段を見ると、低周波の 反射波の受信中に気泡群の崩壊圧が観測されていることがわかる。また、低周波の 音圧の増加に伴い、気泡群崩壊の受信音圧も大きくなつていることがわ力る。  Fig. 21 shows an example of monitoring the collapse pressure in the low-frequency (555 [kHz]) phase after the high-frequency ultrasonic wave is completed. The upper part shows the original waveform of the PCD reception sound pressure in the low frequency phase, and the lower part cuts the reflected wave due to the low frequency component of 555 [kHz] from the reception signal and extracts the collapse pressure itself of the cavitation bubble group. The pressure amplitude of the low frequency applied from left to right increases. In all cases! High-frequency ultrasonic waves have a medium sound pressure range of 9.5 [MPa] (maximum negative pressure), under conditions where a stable shape and size of a semi-elliptical spherical cloud cavity are generated. is there. Looking at the upper row, it can be seen that the collapse pressure of the bubbles was observed during the reception of the low-frequency reflected wave. In addition, it can be seen that the received sound pressure of bubble group collapse has increased with the increase in sound pressure at low frequencies.
[0080] [C 10]高周波フェーズで生成されるキヤビテーシヨン気泡群と崩壊圧との関係 図 22にキヤビテーシヨン気泡群と崩壊圧の大きさとの関係を示す。図 22の横軸は" 高周波数の超音波の"圧力振幅である。また、高周波数の超音波の圧力振幅に対す る"低周波フェーズにおける"崩壊圧の大きさ、およびその時の"高周波数の超音波 で"発生するキヤビテーシヨン気泡群の径を同一のグラフに示した。崩壊圧のグラフ は図 21で見られたような気泡群の崩壊圧の信号の大きさを、様々な高周波数の超音 波出力に対してそれぞれ 100ケースのサンプルを取り、絶対値を平均したものである 。図 22により、キヤビテーシヨン気泡群の崩壊圧もまた、高周波フェーズの三種類の キヤビテーシヨンの形態と大きく関連を持つことが分かる。すなわち、(A)低音圧域 (0 -6.5[MPa])においては、キヤビテーシヨン気泡が生成していない、もしくはごく微少 なキヤビテーシヨン気泡のみしか生成して 、な 、為、低周波フェーズにおける崩壊圧 は観測されないかもしくは微少である。(B)中音圧域 (6.5— 10[MPa])においては、キ ャビテーシヨン気泡群は徐々にその大きさを大きくして行き、それに伴い崩壊圧の大 きさも上昇してゆき、 9[MPa]付近に於いて最大値を取る。これは半楕円球状のサイズ •形状の安定した気泡群が発生している領域と一致する。しカゝしながら、 9[MPa]を超 えると崩壊圧の大きさは下降に転じる。(C)高音圧域 (10[MPa]以上)においては半楕 円球状の気泡群が、不規則な 2次的キヤビテーシヨン気泡によって覆われる結果、気 泡群は 555[kHz]の低周波数の超音波によって効果的に崩壊を起こすことができなく なり、崩壊圧が徐々に下がって行く。 10[MPa]を超えて、崩壊圧の大きさが減少して ゆく過程は、ちょうど 2次的なキヤビテーシヨン気泡が生成している領域と対応している 以上、図 22の結果は、 3種類の、高周波フェーズにおいて生成するキヤビテーショ ン気泡群の形態が、低周波フェーズにおける崩壊圧の"特性"にも大きく影響を及ぼ していることが分かる。また、図 21の結果からは、低周波数の超音波出力を増加させ てゆくに従って、崩壊圧の大きさは大きくなつて行くという結果が得られている力 こ れら、図 21、図 22で得られた結果と併せ、低周波フェーズにおける崩壊圧の特性を 現している。再度になる力 この崩壊圧の結果においても、 [C10] Relationship between cavitation bubble group generated in high-frequency phase and collapse pressure FIG. 22 shows a relationship between cavitation bubble group and collapse pressure. The horizontal axis in FIG. 22 is the "high frequency ultrasound" pressure amplitude. In addition, the same graph shows the magnitude of the collapse pressure in the “low-frequency phase” with respect to the pressure amplitude of the high-frequency ultrasonic waves, and the diameter of the cavitation bubble group generated by the “high-frequency ultrasonic waves” at that time. . In the graph of the collapse pressure, the magnitude of the collapse pressure signal of the bubble group as shown in Fig. 21 was obtained by averaging the absolute values by taking 100 cases each for various high-frequency ultrasonic wave outputs. Is the thing. From FIG. 22, it can be seen that the collapse pressure of the cavitation bubbles is also significantly related to the three types of cavitation in the high frequency phase. In other words, (A) in the low sound pressure range (0-6.5 [MPa]), no cavitation bubbles are generated, or only very small cavitation bubbles are generated. Not observed or very small. (B) In the medium sound pressure range (6.5-10 [MPa]), the cavitation bubble group gradually increases in size, and the magnitude of the collapse pressure increases accordingly, and 9 [MPa]. Take the maximum value in the vicinity. This is consistent with the area where bubbles of a semi-elliptical spherical shape and shape are stable. Over 9 [MPa] Then the magnitude of the collapse pressure starts to fall. (C) In the high sound pressure range (10 [MPa] or higher), the semi-elliptical spherical bubbles are covered with irregular secondary cavitation bubbles, and the bubbles are reduced to a low frequency of 555 [kHz]. The sound waves can no longer cause the collapse effectively, and the collapse pressure gradually decreases. The process of decreasing the collapse pressure beyond 10 [MPa] corresponds exactly to the region where secondary cavitation bubbles are generated. It can be seen that the morphology of the cavitation bubbles generated in the high frequency phase has a significant effect on the "characteristics" of the collapse pressure in the low frequency phase. In addition, from the results in Fig. 21, the results show that the magnitude of the collapse pressure increases as the output of the low-frequency ultrasonic wave increases. Together with the obtained results, it shows the characteristics of the collapse pressure in the low frequency phase. The force that comes back again As a result of this collapse pressure,
* 高周波数の超音波が低音圧域:崩壊圧検出なし;  * High frequency ultrasound is in low sound pressure range: no collapse pressure detection;
* 高周波数の超音波が中音圧域:崩壊圧は徐々に上昇し、 2次的な気泡群の発 生に伴い下降に転じる;  * High-frequency ultrasonic waves in the mid-sound pressure range: the collapse pressure gradually increases and then decreases with the generation of secondary bubbles;
* 高周波数の超音波が高音圧域: 2次的な気泡群の影響により、効果的な崩壊 が得られず崩壊圧は中音圧域に比べて小さくなる;  * High-frequency ultrasonic waves at high sound pressure range: Due to the effects of secondary bubbles, effective collapsing cannot be obtained and the collapsing pressure is smaller than that of medium sound pressure region;
* 低周波数の超音波の圧力振幅を増加させると、崩壊圧の大きさは増加する; という、 "特性"そのものが重要であり、それぞれの領域を区切る出力の閾値の絶対値 は周囲の状況によって変化するために重要ではない。制御においては、この"特性" に従って、最適な崩壊圧が得られる方向に出力のパラメータを変化させてゆくという ことになる。すなわち、特性の概形が機器力も参照できればよいことになる。ここで、 その"特性の概形"とは高周波数'低周波数の各超音波出力パラメータ全領域にお V、て、崩壊圧の大きさがどのように分布して 、るかのマッピング結果と!/、うことになる。 図 23にそのマッピングの例を示す。  * Increasing the pressure amplitude of low-frequency ultrasonic waves increases the magnitude of the collapse pressure; that is, the "characteristic" itself is important, and the absolute value of the output threshold that separates each region depends on the surrounding conditions. Not important to change. In the control, the output parameters are changed in the direction to obtain the optimum collapse pressure according to this "characteristic". That is, it is only necessary that the outline of the characteristic can refer to the device power. Here, the “characteristic outline” refers to V and the mapping result of how the magnitude of the collapse pressure is distributed over the entire range of the high-frequency and low-frequency ultrasonic output parameters. ! / Figure 23 shows an example of the mapping.
[C 11]高周波数'低周波数それぞれの超音波の圧力振幅に対する崩壊圧のデー タベース例 [C 11] Example of database of collapse pressure against pressure amplitude of high frequency and low frequency ultrasonic waves
これまでに分力つた、高周波フェーズでのキヤビテーシヨン気泡群の異なる形態、 低周波フェーズにおける、崩壊圧の特性を鑑みて、高周波数の超音波の様々な出 力、低周波数の超音波の様々な出力それぞれに対して、実際の技術の効率を示すDifferent forms of cavitation bubbles in the high frequency phase, Demonstrate the efficiency of the actual technology for various outputs of high frequency ultrasound and various outputs of low frequency ultrasound, taking into account the characteristics of the collapse pressure in the low frequency phase
、崩壊圧の大きさを計測した結果が図 23である。 Figure 23 shows the result of measuring the magnitude of the collapse pressure.
高周波数の超音波の出力に対しては、低音圧域から中音圧域にかけて崩壊圧が 増大し、高音圧域に至ると崩壊圧は減少するということ、また低周波数の超音波の出 力に対しては、出力を大きくしてゆくに従って、崩壊圧は増大する、というこれまでの 例において見られた"本技術の特性"を示している。今回のケースにおいては、高周 波 9.5[MPa]、低周波 30[MPa]において最適な崩壊圧が得られており、実際の機器に おいては、この崩壊圧のピークに向力うように制御対象パラメータを変化させることに より、最適化を行うことができる。  Regarding the output of high-frequency ultrasonic waves, the collapse pressure increases from the low sound pressure range to the medium sound pressure range, and decreases when the sound pressure reaches the high sound pressure range. In contrast to this, the "characteristics of the present technology" shown in the previous examples, where the collapse pressure increases as the output increases. In this case, the optimum collapse pressure was obtained at a high frequency of 9.5 [MPa] and a low frequency of 30 [MPa]. Optimization can be performed by changing the control target parameter.
[0082] [C 12]感圧シート実験 [0082] [C12] Pressure-sensitive sheet experiment
図 23は崩壊圧の遠方におけるモニタリングによる崩壊圧のマッピングの結果であつ た。これが実際に、焦点領域での固体壁面上での高圧発生と一致しているかどうか の確認試験を実施した。対象として、焦点領域に高圧に対して変色を呈する感圧シ ートを設置し、高周波数'低周波数の超音波の出力を図 23と同様に変化させた実験 を行った。図 24において分力るように、高周波数の超音波の出力に対しては、低音 圧域から中音圧域にかけて崩壊圧が大きくなり、中音圧域において、中心部に大き な変色が見られる。一方高音圧域に至ると、中心部だけが、変色が見られないドーナ ッ型の変色域となった。これは 2次的なキヤビテーシヨン気泡力 気泡群の効果的な 崩壊を妨げ、中心部に大きな圧力が集注しな力つたためである。また低周波数の超 音波の出力に対しては、出力を大きくしてゆくに従って、変色域の面積が徐々に大き くなつて行くという結果が得られた。これは、図 23の結果が示す特性と非常によく一 致しており、モニタリングを行うことで、本技術の制御を行うことが可能であることを示 している。図 24Bは輝度分布の断面図であり、 400 mVの中音圧域で、感圧シート中 心部に強い発色が見られ、高音圧域の 800, 1000 mVにおいて、中心部の発色が弱 くなつていることが確認される。  Figure 23 shows the results of mapping the collapse pressure by monitoring the collapse pressure at a distance. A confirmation test was performed to confirm whether this actually corresponds to the generation of high pressure on the solid wall in the focal region. As an object, an experiment was conducted in which a pressure-sensitive sheet that changes color with respect to high pressure was installed in the focal region, and the output of high-frequency and low-frequency ultrasonic waves was changed in the same manner as in Fig. 23. As shown in Fig. 24, for the output of high-frequency ultrasonic waves, the collapse pressure increases from the low sound pressure range to the middle sound pressure range, and a large discoloration is observed at the center in the middle sound pressure range. Can be On the other hand, at the high sound pressure range, only the central part became a donut-shaped discoloration area where no discoloration was observed. This is because the secondary cavitation bubble force prevented the effective collapse of the bubble group and caused a large pressure to collect in the center. In addition, with respect to the output of low-frequency ultrasonic waves, the results showed that the area of the discoloration area gradually increased as the output was increased. This agrees very well with the characteristics shown in the results in Fig. 23, and indicates that control of the present technology can be performed by monitoring. Figure 24B is a cross-sectional view of the luminance distribution.In the middle sound pressure range of 400 mV, strong color development is seen in the center of the pressure-sensitive sheet, and in the high sound pressure range of 800 and 1000 mV, the color development in the center is weak. Is confirmed.
[0083] [C 13]それぞれの音圧域における結石破砕実験結果 [0083] [C 13] Results of calculus breaking experiments in each sound pressure range
最後に、高周波が低音圧'中音圧'高音圧域における、モデル結石の破砕実験を 行った。結果を図 25に示す。中音圧域が低音圧域、高音圧域と比べ効率よく結石を 破砕すると 、う結果であり、これまでの検討を裏付けた。 Finally, a model stone crushing experiment was performed in the high-frequency range where the high went. The results are shown in FIG. The result of crushing stones more efficiently in the middle sound pressure range than in the low and high sound pressure ranges was the result, confirming the previous studies.
産業上の利用可能性  Industrial applicability
[0084] 本発明は、結石破砕などの医療アプリケーションだけでなぐ超音波洗浄やキヤビテ ーシヨン'ピーユングなどの工業アプリケーションにおいても有効である。 [0084] The present invention is also effective in industrial applications such as ultrasonic cleaning and cavitation 'Pyung, which are not limited to medical applications such as calculus crushing.
図面の簡単な説明  Brief Description of Drawings
[0085] [図 1]超音波照射装置の全体システム図である。 FIG. 1 is an overall system diagram of an ultrasonic irradiation apparatus.
[図 2]キヤビテーシヨン制御手法のスキーム概略図と、音響キヤビテーシヨン制御に用 V、られた超音波パルス波形の概略を示す。  FIG. 2 shows a schematic diagram of a cavitation control method and an outline of an ultrasonic pulse waveform used for acoustic cavitation control.
[図 3]実際に上記の手法を用いて集束超音波による音響キヤビテーシヨンを生成-崩 壊させたときのキヤビテーシヨンの挙動を示す。  FIG. 3 shows the behavior of the cavitation when the acoustic cavitation using focused ultrasound is generated and collapsed using the above-described method.
[図 4]モデル結石に対して、本手法を適用した結果を示す図である。  FIG. 4 is a diagram showing a result of applying the present method to a model stone.
[図 5]本発明に係る結石破砕システムの構成を示す図である。  FIG. 5 is a view showing a configuration of a calculus breaking system according to the present invention.
[図 6]キヤビテーシヨンの崩壊圧を利用した結石破砕法のフローチャートである。  FIG. 6 is a flowchart of a calculus breaking method using the collapse pressure of a cavity.
[図 7]キヤビテーシヨンクラウドから放出される音を示す図であり、横軸は時間、縦軸は 音圧である。(1)クラウドが安定化されると高周波領域の信号に変化がみられる。→安 定なクラウドのモニタリングが行われる。(2)気泡クラウドが崩壊するとその崩壊の強さ に応じた衝撃圧が観測される。→ 破砕効率が判定される。(3)残留気泡は、 100-200 FIG. 7 is a diagram showing sound emitted from the cavitation cloud, where the horizontal axis is time and the vertical axis is sound pressure. (1) When the cloud is stabilized, the signal in the high frequency range changes. → Stable cloud monitoring is performed. (2) When the bubble cloud collapses, an impact pressure according to the strength of the collapse is observed. → The crushing efficiency is determined. (3) 100-200 residual air bubbles
IX s後に崩壊し、信号が検出される。→信号強度 ·崩壊時刻から、最適な繰り返し周 波数が決定される。 After IX s, it collapses and a signal is detected. → Signal strength · The optimal repetition frequency is determined from the collapse time.
[図 8A]安定なクラウドキヤビテーシヨンに必要な最低出力を示す図である。縦線 Aは、 キヤビテーシヨン発生の閾値 (最小印加電圧)を示し、縦線 Bは、安定なクラウドキヤビ テーシヨンの閾値 (印加電圧)を示す。尚、印可電圧は物理的には、超音波の圧力振 幅と 1対 1対応する。  FIG. 8A is a diagram showing a minimum output required for stable cloud cavitation. The vertical line A indicates the threshold (minimum applied voltage) of the occurrence of cavitation, and the vertical line B indicates the threshold (applied voltage) of the stable cloud cavitation. The applied voltage physically corresponds to the ultrasonic pressure amplitude on a one-to-one basis.
[図 8B]安定なクラウドキヤビテーシヨンに必要な最低照射時間を示す図である。縦線 FIG. 8B is a diagram showing a minimum irradiation time required for stable cloud cavitation. Vertical line
Cは、安定なクラウドキヤビテーシヨンの閾値 (照射時間)を示す。 C indicates a stable cloud cavitation threshold (irradiation time).
[図 9]安定なクラウドキヤビテーシヨンのモニタリグを説明するフロー図である。  FIG. 9 is a flowchart illustrating a stable cloud calibration monitoring rig.
[図 10]キヤビテーシヨン気泡の崩壊 '消失のモニタリングを示す図である。 圆 11]超音波照射 ·受信プロトコルを示す図である。 FIG. 10 is a diagram showing monitoring of collapse and disappearance of cavitation bubbles. [11] FIG. 11 is a diagram showing an ultrasonic irradiation / reception protocol.
圆 12]音波受信部を例示する概略図である。 FIG. 12 is a schematic diagram illustrating a sound wave receiving unit.
[図 13]実験装置の概略図である。 FIG. 13 is a schematic diagram of an experimental apparatus.
[図 14]高周波フェーズにおけるキヤビテーシヨンの分類 (高周波圧力振幅 4.8-11.7 [MPa])を示す。  FIG. 14 shows the classification of cavitation in the high frequency phase (high frequency pressure amplitude 4.8-11.7 [MPa]).
[図 15A]低音圧域 4.7 [MPa]における、超音波照射時間に対する、キヤビテーシヨン気 泡群代表長さを示す。〇:半楕円球状のクラウドキヤビテーシヨン;▲:半楕円球状の クラウドキヤビテーシヨンを覆うキヤビテーシヨン(Shielding cavitation)である。低音圧 域 4.7 [MPa]では気泡クラウドは成長しきって!/、な!/、。  [Fig. 15A] Shown is the representative length of the cavitation bubble group with respect to the ultrasonic irradiation time in the low sound pressure range of 4.7 [MPa]. 〇: Cloud cavitation with semi-elliptical sphere; ▲: Shielding cavitation that covers cloud cavitation with semi-elliptical sphere. In the low sound pressure range 4.7 [MPa], the bubble cloud has grown up! /, Na! / ,.
[図 15B]中音圧域 8.7 [MPa]における、超音波照射時間に対する、キヤビテーシヨン気 泡群代表長さを示す。〇:半楕円球状のクラウドキヤビテーシヨン;▲:半楕円球状の クラウドキヤビテーシヨンを覆うキヤビテーシヨン(Shielding cavitation)である。中音圧 域 8.7 [MPa]においては 130[ /z s]後あたりで、安定なサイズに達している。  [Fig. 15B] Shown is the representative length of the cavitation bubble group with respect to the ultrasonic irradiation time in the medium sound pressure range of 8.7 [MPa]. 〇: Cloud cavitation with semi-elliptical sphere; ▲: Shielding cavitation that covers cloud cavitation with semi-elliptical sphere. In the middle sound pressure range of 8.7 [MPa], it reaches a stable size after 130 [/ z s].
圆 15C]高音圧域 11.7 [MPa]における、超音波照射時間に対する、キヤビテーシヨン 気泡群代表長さを示す。〇:半楕円球状のクラウドキヤビテーシヨン;▲:半楕円球状 のクラウドキヤビテーシヨンを覆うキヤビテーシヨン(Shielding cavitation)である。高音 圧域 11.7 [MPa]においては、超音波照射直後に半楕円球状の気泡群を覆うように、 多数の気泡が生成する。 [15C] High sound pressure range 11.7 [MPa] Shows the representative length of the cavitation bubble group with respect to the ultrasonic irradiation time. 〇: Cloud cavitation of semi-elliptical sphere; ▲: Shielding cavitation covering cloud cavitation of semi-elliptical sphere. In the high sound pressure range of 11.7 [MPa], a large number of bubbles are generated immediately after the ultrasonic irradiation to cover the semi-elliptical spherical bubbles.
圆 16]高周波数の超音波の圧力振幅に対する、キヤビテーシヨン気泡群の代表長さ( 横軸:高周波数の超音波の圧力振幅,縦軸:気泡群代表長さ)を示す。 圆 16] The representative length of the cavitation bubble group with respect to the pressure amplitude of the high frequency ultrasonic wave (horizontal axis: pressure amplitude of high frequency ultrasonic wave, vertical axis: representative length of bubble group).
[図 17A]1.7[MHz]のそれぞれの各周波数における、キヤビテーシヨン発生時の放出 音圧の検出を示す。 [FIG. 17A] Detection of emitted sound pressure at the occurrence of cavitation at each frequency of 1.7 [MHz].
[図 17B]2.8[MHz]のそれぞれの各周波数における、キヤビテーシヨン発生時の放出 音圧の検出を示す。  [FIG. 17B] Detection of emitted sound pressure when cavitation occurs at each frequency of 2.8 [MHz].
[図 17C]3.9[MHz]のそれぞれの各周波数における、キヤビテーシヨン発生時の放出 音圧の検出を示す。  [FIG. 17C] Detection of emitted sound pressure when cavitation occurs at each frequency of 3.9 [MHz].
圆 18A]低音圧域での放出音圧に関し、ファンクションジェネレータ出力振幅 圆 18A] Function generator output amplitude related to emission sound pressure in low sound pressure range
: 100,200,300[mV]における実験結果を示す。 圆 18B]中音圧域での放出音圧に関し、ファンクションジェネレータ出力振幅 : Shows experimental results at 100, 200, 300 [mV]. 圆 18B] Function generator output amplitude related to the sound pressure emitted in the middle sound pressure range
:400,500,600[mV]における実験結果を示す。 : Experimental results at 400, 500, 600 [mV] are shown.
圆 18C]高音圧域での放出音圧に関し、ファンクションジェネレータ出力振幅 [18C] Function generator output amplitude related to sound pressure emitted in high sound pressure range
:700,800 900,1000[mV]における実験結果を示す。 : 700,800 Shows the experimental results at 900,1000 [mV].
[図 19]音圧波形によるキヤビテーシヨン動態のモニタリング例- 1:時間平均波形の振 幅の大きさを表す。(A)低音圧域においては、信号は検出されない。 (B)中音圧域に おいては振幅、位相のそろった信号のため、時間平均波形の振幅は安定した振幅を とる。 (C)高音圧域においては不規則な成分がキャンセルされることで、圧力振幅の 大きさは小さくなる。  [Figure 19] Example of monitoring the dynamics of cavitation using sound pressure waveform-1: Indicates the amplitude of the time-averaged waveform. (A) No signal is detected in the low sound pressure range. (B) In the medium sound pressure range, the amplitude of the time-average waveform takes a stable amplitude because the signal has the same amplitude and phase. (C) In the high sound pressure range, the magnitude of the pressure amplitude is reduced by canceling the irregular component.
[図 20A]音圧波形によるキヤビテーシヨン動態のモニタリング例- 2:周波数解析 (FFT )を示し、低音圧域に対応する。  [Figure 20A] Example of monitoring the dynamics of cavitation using sound pressure waveform-2: Frequency analysis (FFT) is shown, corresponding to the low sound pressure range.
[図 20B]音圧波形によるキヤビテーシヨン動態のモニタリング例- 2:周波数解析 (FFT )を示し、中音圧域に対応する。  [Figure 20B] Example of monitoring the dynamics of cavitation using sound pressure waveform-2: Frequency analysis (FFT) is shown, corresponding to the medium sound pressure range.
[図 20C]音圧波形によるキヤビテーシヨン動態のモニタリング例- 2:周波数解析 (FFT )を示し、高音圧域に対応する。  [Figure 20C] Example of monitoring the dynamics of cavitation using sound pressure waveform-2: Frequency analysis (FFT) is shown, corresponding to the high sound pressure range.
圆 21]低周波フェーズにおける崩壊圧の検出を示す (上段:受信音圧の生波形、下 段:低周波 (555[kHz])成分の除去後の波形)。すべてのケースにおいて、高周波超 音波は中音圧域の 9.5[MPa] (最大負圧)であり、安定な形状、サイズの半楕円球状の クラウドキヤビテーシヨンが生成する条件である。高周波打ち終わりの後、低周波の反 射波の受信中に気泡群の崩壊圧が観測される。また、低周波の音圧の増加に伴い、 気泡群崩壊の受信音圧も大きくなつていることがわ力る。 圆 21] Indicates detection of collapse pressure in the low-frequency phase (upper row: raw waveform of received sound pressure, lower row: waveform after removal of low-frequency (555 [kHz]) component). In all cases, high-frequency ultrasonic waves have a medium sound pressure range of 9.5 [MPa] (maximum negative pressure), which is a condition for generating a stable shape and size of a semi-elliptical spherical cloud cavity. After the high frequency strike, the collapse pressure of the bubbles is observed during the reception of the low frequency reflected wave. It can also be seen that the received sound pressure of bubble group collapse has increased with the increase in low-frequency sound pressure.
[図 22]低周波フェーズにおける、高周波フェーズで生成されるキヤビテーシヨン気泡 群と崩壊圧との関係を示す。  FIG. 22 shows the relationship between the cavitation bubbles generated in the high frequency phase and the collapse pressure in the low frequency phase.
[図 23]高周波数'低周波数それぞれの超音波の圧力振幅に対する、崩壊圧力のデ ータベース例を示す。  FIG. 23 shows an example of a database of collapse pressure with respect to the ultrasonic pressure amplitude of high frequency and low frequency.
圆 24A]感圧シート実験を示す。図 24Aは、高周波数'低周波数それぞれの振幅に 対する実験結果を示す。 [24A] Pressure-sensitive sheet experiment. FIG. 24A shows the experimental results for the high frequency and low frequency amplitudes.
[図 24B]感圧シート実験を示す。図 24Bは、低周波 26.6[MPa]のケースにおける輝度 分布の断面である。 FIG. 24B shows a pressure-sensitive sheet experiment. Figure 24B shows the luminance in the case of low frequency 26.6 [MPa]. It is a cross section of the distribution.
圆 25]それぞれの音圧域における結石破砕の結果を示す。左が「低音圧域」、中央 が「中音圧域」、右が「高音圧域」である。 [25] The results of calculus crushing in each sound pressure range are shown. The left is “low sound pressure range”, the center is “medium sound pressure range”, and the right is “high sound pressure range”.
[図 26A]さまざまな周波数(1.67, 2.75, 3.27, 3.82 MHz)における、集束超音波によ つてつくられる、サイズ'形状が安定な半楕円球状のクラウドキヤビテーシヨンを示す。  [Fig. 26A] Cloud cavities of semi-elliptical spheres with stable size 'shapes created by focused ultrasound at various frequencies (1.67, 2.75, 3.27, 3.82 MHz).
[図 26B]図 26Aに示されるようなクラウドキヤビテーシヨンの、代表長さを周波数に対し てプロットしたちのである。 FIG. 26B is a plot of the representative length of a cloud cavitation as shown in FIG. 26A versus frequency.

Claims

請求の範囲 The scope of the claims
[1] 高周波数の超音波を周囲の少なくとも一部に液体が存在する対象物に向けて照射 し、該対象物を含む領域にキヤビテーシヨン気泡を生成させる第 1ステップと、 低周波数の超音波を該対象物に向けて照射し、該キヤビテーシヨン気泡を崩壊さ せて、該対象物に高エネルギーを付与する第 2ステップと、  [1] A first step of irradiating a high-frequency ultrasonic wave toward an object in which liquid is present in at least a part of its surroundings to generate cavitation bubbles in a region including the object; A second step of irradiating the object to collapse the cavitation bubbles and impart high energy to the object;
第 2ステップの後のインターバル時間である第 3ステップと、  A third step, which is an interval time after the second step,
を有する第 1工程と、  A first step having
該キヤビテーシヨン気泡から放出される音波を取得し、該音波を信号処理すること で超音波照射条件を制御する第 2工程と、  A second step of acquiring sound waves emitted from the cavitation bubbles and controlling the ultrasonic irradiation conditions by performing signal processing on the sound waves;
を有する超音波照射方法。  Ultrasonic irradiation method having the following.
[2] 請求項 1に記載の方法おいて、第 1工程の第 3ステップは、第 2ステップの後に、超音 波を対象物に向けて照射しな 、、あるいは気泡の発生及び成長を誘発しな 、程度の 強度の超音波のみを照射するインターバル時間であることを特徴とする超音波照射 方法。 [2] In the method according to claim 1, in the third step of the first step, after the second step, do not irradiate the ultrasonic wave toward the object, or induce generation and growth of bubbles. However, an ultrasonic irradiation method characterized in that it is an interval time during which only an ultrasonic wave of a moderate intensity is irradiated.
[3] 請求項 1, 2いずれかに記載の方法において、前記第 2工程は、第 1工程の第 1、第 2 、第 3ステップのいずれの時刻においても行うことができ、該キヤビテーシヨン気泡か ら発生する音波を受動的に受信および Zあるいは照射された超音波に対してキヤビ テーシヨン気泡から反射される音波を受信することによって行われることを特徴とする 超音波照射方法。  [3] The method according to any one of claims 1 and 2, wherein the second step can be performed at any time of the first, second and third steps of the first step. An ultrasonic irradiation method characterized by passively receiving a sound wave generated from the ultrasonic wave and receiving a sound wave reflected from the cavitation bubble with respect to Z or the irradiated ultrasonic wave.
[4] 請求項 1乃至 3いずれかに記載の方法において、該第 2工程の信号処理は、第 1ェ 程の第 1ステップによって安定なキヤビテーシヨン気泡が生成された力否かの判定を 含み、制御される超音波照射条件は高周波数の超音波の出力および Zあるいは照 射時間であることを特徴とする超音波照射方法。  [4] The method according to any one of claims 1 to 3, wherein the signal processing of the second step includes determining whether or not a force has been generated by the first step of the first step to generate a stable cavitation bubble. An ultrasonic irradiation method characterized in that the ultrasonic irradiation conditions to be controlled are the output of high-frequency ultrasonic waves and Z or irradiation time.
[5] 請求項 4に記載の方法において、制御される超音波照射条件は、さらに、高周波数 の超音波の周波数を含むことを特徴とする超音波照射方法。  [5] The ultrasonic irradiation method according to claim 4, wherein the controlled ultrasonic irradiation condition further includes a frequency of a high-frequency ultrasonic wave.
[6] 請求項 4, 5いずれかに記載の方法において、安定なキヤビテーシヨン気泡が生成さ れた力否かの判定は、キヤビテーシヨン気泡からの音波の受信信号の、圧力振幅お よび Zあるいは圧力の大きさを用いることを特徴とする超音波照射方法。 [6] In the method according to any one of claims 4 and 5, the determination as to whether or not a force has generated a stable cavitation bubble is made based on the pressure amplitude and the Z or pressure of the sound wave reception signal from the cavitation bubble. An ultrasonic irradiation method using a size.
[7] 請求項 4乃至 6 、ずれかに記載の方法にぉ 、て、安定なキヤビテーシヨン気泡が生 成された力否かの判定は、キヤビテーシヨン気泡力 の音波の受信信号の周波数成 分を用いることを特徴とする超音波照射方法。 [7] In the method according to any one of claims 4 to 6, the determination as to whether or not a force has generated a stable cavitation bubble uses a frequency component of a received sound wave signal of the cavitation bubble force. An ultrasonic irradiation method, characterized in that:
[8] 請求項 4乃至 7いずれかにおいて、安定なキヤビテーシヨン気泡が生成された力否か の判定は、生成されたキヤビテーシヨン気泡群が中音圧域にあるかを判定することで 行うことを特徴とする超音波照射方法。  [8] The method according to any one of claims 4 to 7, wherein the determination as to whether or not the force has generated stable cavitation bubbles is performed by determining whether or not the generated cavitation bubbles are in the medium sound pressure range. Ultrasonic irradiation method.
[9] 請求項 1乃至 8いずれかに記載の方法において、該第 2工程の信号処理は、第 1ェ 程の第 2ステップによるキヤビテーシヨン気泡の崩壊位置および/あるいは崩壊時刻 が適切であるかの判定を含み、制御される超音波照射条件は、位置決めであること を特徴とする超音波照射方法。  [9] In the method according to any one of claims 1 to 8, the signal processing in the second step is performed by checking whether the collapse position and / or collapse time of the cavitation bubble in the second step in the first step is appropriate. The ultrasonic irradiation method including determination and controlling the ultrasonic irradiation condition is positioning.
[10] 請求項 9に記載の方法において、キヤビテーシヨン気泡の崩壊位置および Zあるい は崩壊時刻が適切であるかの判定は、低周波の超音波の送信力も崩壊圧による音 波の受信までの時間を測定することで行うことを特徴とする超音波照射方法。  [10] In the method according to claim 9, the determination as to whether the cavitation bubble collapse position and the Z or collapse time are appropriate is based on the transmission power of the low-frequency ultrasonic wave and the reception of the sound wave due to the collapse pressure. An ultrasonic irradiation method characterized by measuring time.
[11] 請求項 1乃至 10いずれかに記載の方法において、該第 2工程の信号処理は、第 1ェ 程の第 2ステップによるキヤビテーシヨン気泡の崩壊圧が適切であるかの判定を含み 、制御される超音波照射条件は、低周波数の超音波の出力、波数、立ち上がりの時 定数、立ち上がりの位相、周波数の少なくともいずれか一つを含むことを特徴とする 超音波照射方法。  [11] The method according to any one of claims 1 to 10, wherein the signal processing in the second step includes determining whether the collapse pressure of the cavitation bubbles in the second step in the first step is appropriate. The ultrasonic irradiation condition to be performed includes at least one of an output, a wave number, a rising time constant, a rising phase, and a frequency of a low-frequency ultrasonic wave.
[12] 請求項 11に記載の方法において、制御される超音波照射条件は、さらに、高周波数 の超音波の照射条件、位置決めの少なくとも一つを含むことを特徴とする超音波照 射方法。  12. The ultrasonic irradiation method according to claim 11, wherein the ultrasonic irradiation conditions to be controlled further include at least one of irradiation conditions of high-frequency ultrasonic waves and positioning.
[13] 請求項 11, 12いずれかに記載の方法において、キヤビテーシヨン気泡の崩壊圧が 適切であるかの判定は、崩壊圧による音波の受信信号の、圧力振幅および Zあるい は圧力の大きさの測定によって行うことを特徴とする超音波照射方法。  [13] In the method according to any one of claims 11 and 12, the determination as to whether the collapse pressure of the cavitation bubble is appropriate is based on the pressure amplitude and Z or the magnitude of the pressure of the received sound wave signal due to the collapse pressure. An ultrasonic irradiation method characterized in that the method is carried out by measuring the temperature.
[14] 請求項 1乃至 13いずれかに記載の方法において、該第 2工程の信号処理は、第 1ェ 程の第 3ステップにおける残留気泡が十分少な 、か否かの判定を含み、制御される 超音波照射条件は、請求項 1記載の第 1工程の繰り返し周波数であることを特徴とす る超音波照射方法。 [14] In the method according to any one of claims 1 to 13, the signal processing in the second step includes controlling whether or not the residual bubbles in the third step in the first step are sufficiently small. An ultrasonic irradiation method, wherein the ultrasonic irradiation condition is a repetition frequency of the first step according to claim 1.
[15] 請求項 14に記載の方法おいて、該判定は、残留気泡の崩壊圧および Zあるいは崩 壊時間によって行うことを特徴とする超音波照射方法。 15. The ultrasonic irradiation method according to claim 14, wherein the determination is performed based on the collapse pressure and Z or collapse time of the residual bubbles.
[16] 請求項 14に記載の方法おいて、該判定は、第 1工程第 3ステップにおいて照射され た、気泡の発生及び成長を誘発しない程度の強度の超音波超音波に対して、残留 気泡から反射される音波を受信することによって行うことを特徴とする超音波照射方 法。 [16] In the method according to claim 14, the determination is made based on the ultrasonic waves irradiated in the third step of the first step and having such an intensity that does not induce the generation and growth of bubbles. A method of irradiating ultrasonic waves, which is performed by receiving sound waves reflected from an object.
[17] 請求項 1乃至 16いずれかに記載の方法において、該キヤビテーシヨン気泡力 生成 される音波の処理は、音波に基づくキヤビテーシヨン気泡の画像の取得を含むことを 特徴とする超音波照射方法。  17. The ultrasonic irradiation method according to claim 1, wherein the processing of the sound wave generated by the cavitation bubble force includes acquiring an image of the cavitation bubble based on the sound wave.
[18] 請求項 1乃至 17いずれかに記載の方法において、該方法はさらに、対象物、および[18] The method according to any one of claims 1 to 17, wherein the method further comprises:
Zあるいは、対象物の周囲の環境からの音波を取得して信号処理するステップを含 むことを特徴とする超音波照射方法。 Z or an ultrasonic irradiation method including a step of acquiring a sound wave from an environment around a target object and performing signal processing.
[19] 請求項 18に記載の方法において、該信号処理は、対象物、および Zあるいは、対象 物の周囲の環境からの音波の信号を用いた該対象物および Zあるいは、対象物の 周囲の画像を取得することを含む超音波照射方法。 [19] The method according to claim 18, wherein the signal processing is performed by using a signal of the object and Z or a sound wave from an environment around the object and the object and Z or a surrounding of the object. An ultrasonic irradiation method including obtaining an image.
[20] 請求項 1乃至 19いずれかに記載の方法において、該第 2ステップは、対象物の破砕 を含むことを特徴とする超音波照射方法。 [20] The ultrasonic irradiation method according to any one of claims 1 to 19, wherein the second step includes crushing an object.
[21] 請求項 1乃至 19いずれかに記載の方法において、該第 2ステップは、対象物からの 異物の剥離を含むことを特徴とする超音波照射方法。 [21] The ultrasonic irradiation method according to any one of claims 1 to 19, wherein the second step includes peeling of foreign matter from the object.
[22] 請求項 1乃至 19いずれかに記載の方法において、該第 2ステップは、対象物の表面 改質を含むことを特徴とする超音波照射方法。 22. The ultrasonic irradiation method according to claim 1, wherein the second step includes a surface modification of the object.
[23] 請求項 1乃至 19いずれかに記載の方法において、該第 2ステップは、対象物の熱的 変性を含むことを特徴とする超音波照射方法。 23. The ultrasonic irradiation method according to claim 1, wherein the second step includes thermal denaturation of an object.
[24] 設定された超音波照射条件に基づいて対象物に超音波を照射する超音波照射部 と、 [24] an ultrasonic irradiator that irradiates the object with ultrasonic waves based on the set ultrasonic irradiation conditions;
音波受信部と、  A sound wave receiving unit,
音波受信部で受信した信号を処理する信号処理部と、  A signal processing unit that processes a signal received by the sound wave receiving unit,
超音波照射部の超音波照射条件を制御する制御部とを有し、 該超音波照射部は、該制御部によって、高周波数の超音波を周囲の少なくとも一 部に液体が存在する対象物に向けて照射し、該対象物を含む領域にキヤビテーショ ン気泡を生成させ、次いで、低周波数の超音波を該対象物に向けて照射し、該キヤ ビテーシヨン気泡を崩壊させて、該対象物に高エネルギーを付与するように制御され ており、 Having a control unit to control the ultrasonic irradiation conditions of the ultrasonic irradiation unit, The ultrasonic irradiation unit irradiates high-frequency ultrasonic waves toward an object in which liquid is present in at least a part of the surroundings by the control unit, and generates cavitation bubbles in a region including the object. Then, a low-frequency ultrasonic wave is irradiated toward the object to break down the cavitation bubbles and to control the object to apply high energy,
該音波受信部は、該キヤビテーシヨン気泡力 放出される音波を受信し、受信した 音波を該信号処理部で処理することで、信号処理結果に基づ 、て該制御部によって 超音波照射条件を制御するように構成したことを特徴とする超音波照射装置。  The sound wave receiving unit receives the sound wave emitted by the cavitation bubble force, and processes the received sound wave by the signal processing unit, whereby the control unit controls the ultrasonic irradiation condition based on the signal processing result. An ultrasonic irradiation device characterized in that it is configured to perform
[25] 請求項 24に記載の装置において、該音波受信部は超音波プローブおよび Zあるい はハイド口フォンであることを特徴とする超音波照射装置。  [25] The ultrasonic irradiation apparatus according to claim 24, wherein the sound wave receiving unit is an ultrasonic probe and a Z or hide mouth phone.
[26] 請求項 24, 25いずれかに記載の装置において、該信号処理部は、受信した音波の 音圧分析部を含むことを特徴とする超音波照射装置。  26. The ultrasonic irradiation apparatus according to claim 24, wherein the signal processing unit includes a sound pressure analyzing unit for a received sound wave.
[27] 請求項 24乃至 26いずれかに記載の装置において、該信号処理部は、受信した音 波の周波数分析部を含むことを特徴とする超音波照射装置。  27. The ultrasonic irradiation apparatus according to claim 24, wherein the signal processing unit includes a frequency analysis unit for a received sound wave.
[28] 請求項 23乃至 27いずれかに記載の装置において、該装置は、さらに、気泡の発生 及び成長を誘発しな!ヽ程度の強度の超音波を照射する手段を含み、対象物および Zあるいは対象物の周囲の環境および Zあるいはキヤビテーシヨン気泡からの該超 音波の反射音波を音波受信部で処理するように構成されて 、ることを特徴とする超 音波照射装置。  [28] The apparatus according to any one of claims 23 to 27, further comprising means for irradiating ultrasonic waves having an intensity of about ヽ that does not induce the generation and growth of bubbles, and Alternatively, the ultrasonic irradiation apparatus is configured to process the reflected sound of the ultrasonic waves from the environment around the target object and the Z or cavitation bubbles in a sound wave receiving unit.
[29] 請求項 24乃至 28いずれかに記載の装置において、該信号処理部は、受信した音 波に基づいて画像情報を得る画像処理部を含むことを特徴とする超音波照射装置。  29. The ultrasonic irradiation apparatus according to claim 24, wherein the signal processing unit includes an image processing unit that obtains image information based on a received sound wave.
[30] 請求項 23乃至 29いずれかに記載の装置において、超音波照射条件は、高周波数 超音波の出力、高周波数超音波の照射時間、高周波数超音波の周波数、対象物に 対する超音波照射部の位置決め、繰り返し周波数、低周波数超音波の出力、波数、 立ち上がりの時定数、立ち上がりの位相、周波数からなる群から選択された一つある いは複数を含むことを特徴とする超音波照射装置。  [30] The apparatus according to any one of claims 23 to 29, wherein the ultrasonic irradiation conditions include an output of the high-frequency ultrasonic wave, an irradiation time of the high-frequency ultrasonic wave, a frequency of the high-frequency ultrasonic wave, and an ultrasonic wave to the object. Ultrasound irradiation characterized by including one or more selected from the group consisting of positioning of irradiation part, repetition frequency, output of low frequency ultrasonic wave, wave number, time constant of rising, rising phase, and frequency apparatus.
[31] 請求項 30に記載の装置において、該装置は、記憶部を有し、該記憶部には、前記 超音波照射条件と物理的条件との関係を示す情報が格納されていることを特徴とす る超音波照射装置。 31. The apparatus according to claim 30, wherein the apparatus has a storage unit, and the storage unit stores information indicating a relationship between the ultrasonic irradiation condition and a physical condition. Features Ultrasonic irradiation equipment.
PCT/JP2005/005969 2004-03-31 2005-03-29 Ultrasonic wave irradiating method and ultrasonic wave irradiating device WO2005094701A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006511695A JPWO2005094701A1 (en) 2004-03-31 2005-03-29 Ultrasonic irradiation method and ultrasonic irradiation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004108160 2004-03-31
JP2004-108160 2004-03-31

Publications (1)

Publication Number Publication Date
WO2005094701A1 true WO2005094701A1 (en) 2005-10-13

Family

ID=35063469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005969 WO2005094701A1 (en) 2004-03-31 2005-03-29 Ultrasonic wave irradiating method and ultrasonic wave irradiating device

Country Status (2)

Country Link
JP (1) JPWO2005094701A1 (en)
WO (1) WO2005094701A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075263A1 (en) * 2007-12-11 2009-06-18 Nec Corporation Side channel attack tolerance evaluation device, method and program
WO2010134484A1 (en) 2009-05-18 2010-11-25 オリンパスメディカルシステムズ株式会社 Ultrasonic surgery device and cavitation control method for the ultrasonic surgery device
WO2010140462A1 (en) 2009-06-03 2010-12-09 オリンパスメディカルシステムズ株式会社 Ultrasonic surgery device, ultrasonic surgery system, and method for reducing cavitation
WO2010140461A1 (en) 2009-06-03 2010-12-09 オリンパスメディカルシステムズ株式会社 Ultrasonic surgery device, ultrasonic surgery system provided with ultrasonic surgery device, and method for utilization of cavitation
JP2012035101A (en) * 2011-10-17 2012-02-23 Nippon Medical School Ultrasonic surgical instrument
US8372100B2 (en) 2009-06-19 2013-02-12 Olympus Medical Systems Corp. Ultrasound surgical apparatus and calibration method therefor
JP2013529104A (en) * 2010-05-14 2013-07-18 サバンジ・ウニヴェルシテシ Apparatus for using hydrodynamic cavitation for therapy
JP5253576B2 (en) * 2009-07-06 2013-07-31 オリンパスメディカルシステムズ株式会社 Ultrasonic surgical device
WO2015133852A1 (en) * 2014-03-07 2015-09-11 주식회사 퍼시픽시스템 Gene packaging method using ultrasonic waves and apparatus for implementing same
WO2016038696A1 (en) * 2014-09-10 2016-03-17 株式会社日立製作所 Ultrasound irradiation device
JP2016508808A (en) * 2013-03-06 2016-03-24 インサイテック・リミテッド Frequency optimization in ultrasonic treatment
JP2016515475A (en) * 2013-04-19 2016-05-30 ユニヴァーシティ・オブ・ザ・ウィットウォーターズランド・ヨハネスブルグ System and method for performing laser shock peening on a target having a fluid flow path sandwiched between the solid medium transparent to the laser light and the target
CN109419532A (en) * 2017-08-30 2019-03-05 佳能株式会社 Ultrasonic probe and photo-acoustic device including ultrasonic probe
CN113490459A (en) * 2019-01-24 2021-10-08 艾奥迪可实验室有限责任公司 Device for treating tissue calcification
KR102311834B1 (en) * 2020-04-20 2021-10-15 금오공과대학교 산학협력단 Method for activation of ultrasonic cavitation
WO2021234811A1 (en) * 2020-05-19 2021-11-25 オリンパス株式会社 Laser light irradiation system and laser light irradiation method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2741907B2 (en) * 1988-07-01 1998-04-22 株式会社日立製作所 Therapeutic ultrasound equipment
JPH10510456A (en) * 1995-07-21 1998-10-13 フラウンホーフアー−ゲゼルシヤフト・ツウル・フエルデルンク・デル・アンゲバンテン・フオルシユンク・エー・フアウ Device for detecting calculi and hollow bubbles
JP2000175926A (en) * 1998-12-14 2000-06-27 Toshiba Corp Ultrasonic therapy instrument
JP2001517525A (en) * 1997-09-29 2001-10-09 アンジオソニックス インコーポレイテッド Dissolution method and apparatus
JP2002224127A (en) * 2001-01-19 2002-08-13 Hmt High Medical Technologies Ag Method and apparatus for imparying impact of pressure wave to body of living organism
WO2003047438A1 (en) * 2001-11-29 2003-06-12 Dornier Medtech Gmbh Shock wave or compression wave therapy device, such as a lithotripter
JP3429761B2 (en) * 1992-09-16 2003-07-22 株式会社 日立製作所 Ultrasonic irradiation apparatus and processing apparatus using the same
JP2004033476A (en) * 2002-07-03 2004-02-05 Susumu Yoshizawa Method and device for ultrasonic irradiation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2741907B2 (en) * 1988-07-01 1998-04-22 株式会社日立製作所 Therapeutic ultrasound equipment
JP3429761B2 (en) * 1992-09-16 2003-07-22 株式会社 日立製作所 Ultrasonic irradiation apparatus and processing apparatus using the same
JPH10510456A (en) * 1995-07-21 1998-10-13 フラウンホーフアー−ゲゼルシヤフト・ツウル・フエルデルンク・デル・アンゲバンテン・フオルシユンク・エー・フアウ Device for detecting calculi and hollow bubbles
JP2001517525A (en) * 1997-09-29 2001-10-09 アンジオソニックス インコーポレイテッド Dissolution method and apparatus
JP2000175926A (en) * 1998-12-14 2000-06-27 Toshiba Corp Ultrasonic therapy instrument
JP2002224127A (en) * 2001-01-19 2002-08-13 Hmt High Medical Technologies Ag Method and apparatus for imparying impact of pressure wave to body of living organism
WO2003047438A1 (en) * 2001-11-29 2003-06-12 Dornier Medtech Gmbh Shock wave or compression wave therapy device, such as a lithotripter
JP2004033476A (en) * 2002-07-03 2004-02-05 Susumu Yoshizawa Method and device for ultrasonic irradiation

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075263A1 (en) * 2007-12-11 2009-06-18 Nec Corporation Side channel attack tolerance evaluation device, method and program
JP5397625B2 (en) * 2007-12-11 2014-01-22 日本電気株式会社 Side channel attack resistance evaluation apparatus, method and program thereof
JPWO2009075263A1 (en) * 2007-12-11 2011-04-28 日本電気株式会社 Side channel attack resistance evaluation apparatus, method and program thereof
WO2010134484A1 (en) 2009-05-18 2010-11-25 オリンパスメディカルシステムズ株式会社 Ultrasonic surgery device and cavitation control method for the ultrasonic surgery device
US9028434B2 (en) 2009-05-18 2015-05-12 Olympus Medical Systems Corp. Ultrasound operation apparatus, cavitation control method, and ultrasound transducer control method
WO2010140461A1 (en) 2009-06-03 2010-12-09 オリンパスメディカルシステムズ株式会社 Ultrasonic surgery device, ultrasonic surgery system provided with ultrasonic surgery device, and method for utilization of cavitation
WO2010140462A1 (en) 2009-06-03 2010-12-09 オリンパスメディカルシステムズ株式会社 Ultrasonic surgery device, ultrasonic surgery system, and method for reducing cavitation
US8845537B2 (en) 2009-06-03 2014-09-30 Olympus Medical Systems Corp. Ultrasound operation apparatus, ultrasound operation system, and cavitation utilization method
US8858439B2 (en) 2009-06-03 2014-10-14 Olympus Medical Systems Corp. Ultrasound operation apparatus, ultrasound operation system, and cavitation suppression method
US8372100B2 (en) 2009-06-19 2013-02-12 Olympus Medical Systems Corp. Ultrasound surgical apparatus and calibration method therefor
JP5253576B2 (en) * 2009-07-06 2013-07-31 オリンパスメディカルシステムズ株式会社 Ultrasonic surgical device
JP2013529104A (en) * 2010-05-14 2013-07-18 サバンジ・ウニヴェルシテシ Apparatus for using hydrodynamic cavitation for therapy
KR101431368B1 (en) * 2010-05-14 2014-08-19 사반치 유니버시티 An apparatus for using hydrodynamic cavitation in medical treatment
JP2012035101A (en) * 2011-10-17 2012-02-23 Nippon Medical School Ultrasonic surgical instrument
JP2016508808A (en) * 2013-03-06 2016-03-24 インサイテック・リミテッド Frequency optimization in ultrasonic treatment
JP2016515475A (en) * 2013-04-19 2016-05-30 ユニヴァーシティ・オブ・ザ・ウィットウォーターズランド・ヨハネスブルグ System and method for performing laser shock peening on a target having a fluid flow path sandwiched between the solid medium transparent to the laser light and the target
WO2015133852A1 (en) * 2014-03-07 2015-09-11 주식회사 퍼시픽시스템 Gene packaging method using ultrasonic waves and apparatus for implementing same
WO2016038696A1 (en) * 2014-09-10 2016-03-17 株式会社日立製作所 Ultrasound irradiation device
CN109419532A (en) * 2017-08-30 2019-03-05 佳能株式会社 Ultrasonic probe and photo-acoustic device including ultrasonic probe
CN113490459A (en) * 2019-01-24 2021-10-08 艾奥迪可实验室有限责任公司 Device for treating tissue calcification
KR102311834B1 (en) * 2020-04-20 2021-10-15 금오공과대학교 산학협력단 Method for activation of ultrasonic cavitation
WO2021234811A1 (en) * 2020-05-19 2021-11-25 オリンパス株式会社 Laser light irradiation system and laser light irradiation method

Also Published As

Publication number Publication date
JPWO2005094701A1 (en) 2008-02-14

Similar Documents

Publication Publication Date Title
WO2005094701A1 (en) Ultrasonic wave irradiating method and ultrasonic wave irradiating device
US20230414285A1 (en) Surgical laser systems and laser lithotripsy techniques
US5582578A (en) Method for the comminution of concretions
Vlaisavljevich et al. Histotripsy-induced cavitation cloud initiation thresholds in tissues of different mechanical properties
US20190307472A1 (en) Method for controlling histotripsy using confocal fundamental and harmonic superposition combined with hundred-microsecond ultrasound pulses
Takagi et al. Enhancement of localized heating by ultrasonically induced cavitation in high intensity focused ultrasound treatment
JP2002224127A (en) Method and apparatus for imparying impact of pressure wave to body of living organism
US20050038361A1 (en) Apparatus for improved shock-wave lithotripsy (SWL) using a piezoelectric annular array (PEAA) shock-wave generator in combination with a primary shock wave source
Takagi et al. Cavitation inception by dual-frequency excitation in high-intensity focused ultrasound treatment
TWI382860B (en) Noninvasively low-frequency ultrasonic apparatus for the brain therapy and the method thereof
US20140107536A1 (en) Ultrasonic irradiation apparatus and method for irradiating ultrasonic wave
RU2012110178A (en) PARAMETERS OF THE ULTRASONIC DEVICE WITH THE MEANS OF GENERATION OF THE ULTRASONIC BEAM OF HIGH INTENSITY
Wang et al. Suppressing bubble shielding effect in shock wave lithotripsy by low intensity pulsed ultrasound
ZHONG et al. Transient oscillation of cavitation bubbles near stone surface during electrohydraulic lithotripsy
Tu et al. Evaluation of a shock wave induced cavitation activity both in vitro and in vivo
JP4139916B2 (en) Ultrasonic irradiation method and ultrasonic irradiation apparatus
US20190314045A1 (en) Targeting methods and devices for non-invasive therapy delivery
Maxwell et al. Inception of cavitation clouds by scattered shockwaves
Zhou et al. Characteristics of the secondary bubble cluster produced by an electrohydraulic shock wave lithotripter
Mclaughlan et al. Cavitation detection in ex vivo bovine liver tissue exposed to High Intensity Focued Ultrasound (HIFU)
RU1804315C (en) Device for local attack on biology object structure
US11253731B2 (en) Devices for therapeutic treatment, method of operating a device for therapeutic treatment, and a computer program product
WO2017077605A1 (en) Ultrasound medical device
Takagi et al. Enhancement of ultrasonic heating by ultrasonically localized cavitation for high intensity focused ultrasound treatment
CN113117261B (en) Device for detecting cavitation effect and ultrasonic treatment equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511695

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase