WO2005093416A1 - Substrate for disposing beads and bead disposing method using the same - Google Patents

Substrate for disposing beads and bead disposing method using the same Download PDF

Info

Publication number
WO2005093416A1
WO2005093416A1 PCT/JP2005/005339 JP2005005339W WO2005093416A1 WO 2005093416 A1 WO2005093416 A1 WO 2005093416A1 JP 2005005339 W JP2005005339 W JP 2005005339W WO 2005093416 A1 WO2005093416 A1 WO 2005093416A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
beads
magnetic
bead
micro
Prior art date
Application number
PCT/JP2005/005339
Other languages
French (fr)
Japanese (ja)
Inventor
Takanori Ichiki
Hiroaki Aizawa
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to JP2006511486A priority Critical patent/JPWO2005093416A1/en
Publication of WO2005093416A1 publication Critical patent/WO2005093416A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles

Definitions

  • the present invention relates to a substrate for arranging beads and a method of arranging beads using the same.
  • the present invention relates to a bead placing substrate capable of placing beads in a plurality of micro-reaction tanks of the bead placing substrate with high efficiency and achieving stable placement, and a bead placing method using the same.
  • DNA chips are made by directly immobilizing biomolecules on a substrate.
  • Non-Patent Document 1 discloses a technique in which a micro semiconductor block is separated from an original substrate, and is dispersed at an arbitrary position on the substrate by spraying the micro semiconductor block on a target substrate in a liquid. Has been disclosed. It is reported that by fixing a biomolecule to a small semiconductor block and using the method described in Non-Patent Document 1, the biomolecule can be arranged at an arbitrary position on a substrate.
  • Non-Patent Document l H. Yeh and J. Smith, IEEE Photon. Tech. Lett., Vol. 6, .706, 1994 Disclosure of the invention
  • an object of the present invention is to arrange beads capable of immobilizing biomolecules and the like in a short time and with high efficiency at an arbitrary place, and to stably arrange the beads without detachment from an arbitrary place. It is an object of the present invention to provide a substrate for arranging beads, and a method for arranging beads using the same.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, have found that the above object can be achieved by combining a magnetic bead with a bead arrangement substrate having a magnetic thin film. Was completed.
  • the bead disposing substrate of the present invention is a bead disposing substrate for disposing magnetic beads in a micro-reaction tank, and comprises a substrate material and a magnetic thin film disposed on the substrate material. And a plurality of minute reaction vessels disposed on the magnetic thin film.
  • the magnetic beads are attracted into the micro-reaction tank by the action of the magnetic force of the magnetic beads and the magnetic thin film, so that the magnetic beads can be easily arranged and a stable arrangement can be obtained.
  • the magnetic beads can maintain a stable arrangement since the magnetization of the magnetic thin film remains after the magnet is removed, the magnetic beads can maintain a stable arrangement.
  • a magnetic bead on which a biomolecule is immobilized can be controlled by an external magnetic field and can be easily and reliably filled in a microreactor. It becomes possible to form a large number of micro reaction vessels.
  • FIG. 1 is a schematic view showing a process for producing a substrate for fixing beads according to an embodiment of the present invention.
  • FIG. 2 is an enlarged photograph of a micro-reaction tank formed on a substrate for arranging beads.
  • FIG. 3 is a schematic view of an apparatus used for observing an array of magnetic beads using an optical microscope.
  • FIG. 4 is a schematic view showing a step of producing a substrate for fixing beads according to another embodiment of the present invention.
  • FIG. 5 is (a) a microphotograph of magnetic beads under irradiation of white light and (b) a microphotograph of magnetic beads under irradiation of green light in Example 4.
  • the substrate material that can be used for the substrate for arranging beads of the present invention is preferably a transparent glass or a plastic material, more preferably a material that does not emit fluorescence.
  • Transparent board By using the material, optical observation of the biopolymer arbitrarily adsorbed on the surface of the magnetic beads becomes possible. In addition, by using a material that does not emit fluorescence for the substrate material, the accuracy of the optical measurement can be improved.
  • the magnetic beads can be fixed in the minute reaction tank.
  • the material of the magnetic thin film metals such as nickel, nickel alloys, iron and iron alloys can be suitably used. In the present invention, it is preferable to use a magnetic material having a large remanent magnetization. .
  • the thickness of the magnetic thin film is preferably 0.2 to 2 x m for the purpose.
  • an adhesive layer of chromium or the like can be provided between the substrate material and the magnetic thin film provided thereon to enhance the adhesiveness between the two.
  • the plurality of micro-reaction tanks provided on the magnetic thin film can be formed by using a known photolithography technique, which is a fine processing technique cultivated in the semiconductor industry.
  • a transparent photoresist As a material for forming the micro-reaction tank, a transparent photoresist, polydimethylsiloxane (PDMS), or the like can be suitably used.
  • PDMS polydimethylsiloxane
  • the filling rate of the magnetic beads into the reaction vessel depends on the diameter of the reaction vessel, and the larger the diameter of the reaction vessel is slightly larger than the diameter of the magnetic beads, the higher the filling rate is. Is 112 times the diameter of the magnetic beads. Further, in filling one magnetic bead into one microreactor, the depth of the microreactor is preferably 112 times the diameter of the magnetic beads.
  • the surface of the substrate for arranging beads and the inner wall of the microreactor of the present invention may be coated with a blocking agent for preventing nonspecific adsorption of biomolecules, for example, polyethylene glycol (PEG) or 2-methacryloyloxetyl phosphorylcholine (MPC). ) Can be suitably coated.
  • a blocking agent for preventing nonspecific adsorption of biomolecules for example, polyethylene glycol (PEG) or 2-methacryloyloxetyl phosphorylcholine (MPC).
  • PEG polyethylene glycol
  • MPC 2-methacryloyloxetyl phosphorylcholine
  • the micro reaction tank is hydrophilized.
  • the liquid magnetic beads dispersed liquid
  • the magnetic thin film at the bottom of the microreactor may be removed by a known method such as wet etching. Observation becomes possible. For example, it becomes possible to determine the expression of cells and proteins by fluorescence.
  • the bead placement method of the present invention when placing the magnetic beads in the microreaction tank of the above-described bead placement substrate, a magnet is placed below the bead placement substrate, and the magnet is placed on the substrate. Then, a dispersion liquid in which magnetic beads are dispersed is dropped. Thereby, the magnetic beads are attracted to the micro-reaction tank by the attraction of the magnet. Furthermore, the magnetic beads are dispersed by appropriately moving the magnet in a direction parallel to the substrate, and the filling rate in the reaction tank is improved.
  • the strength of the magnetic field applied to the bead placement substrate by the magnet is preferably 100 to 10,000 gauss in order to obtain a desired effect.
  • the magnetic thin film is magnetized by the magnet disposed under the substrate, and the magnetic beads remain in the magnetic thin film even after the magnetic beads are attracted to the reaction tank and the magnet is removed. It is possible to keep it fixed.
  • a chromium film is formed as an adhesive layer 2 on a transparent glass substrate material 1 of 20 mm ⁇ 20 mm, and nickel film, which is a magnetic material, has a film thickness of 0.
  • a magnetic thin film 3 was obtained.
  • a negative photoresist SU-8 indicated by reference numeral 4 in the figure was applied so as to have a thickness of 3 ⁇ m (FIG. L (b)).
  • the pattern of 10,000 micro-reactors with a diameter of 3 ⁇ m was transferred by contact exposure, and the circular pattern was removed with a developer to form a micro-reactor 5 (FIG. 1 (c)).
  • Fig. 1 (d) shows an enlarged photograph of the prepared bead placement substrate.
  • a magnetic beam having a diameter of 2.8 / m A dispersion liquid 12 in which the particles 11 were dispersed was dropped.
  • a magnet 13 having a magnetic flux density of 2000 Gauss was arranged on the back surface of the substrate 10 in order to guide the magnetic beads 11 into the micro reaction vessel 5. Further, by appropriately moving the magnet 13 in a direction parallel to the substrate 10, the induction of the magnetic beads 11 into the minute reaction tank 5 was promoted.
  • the arrangement of the magnetic beads 11 is observed with an optical microscope 14 connected to an arithmetic processing unit 15. did.
  • the optical microscope 14 it was confirmed that the magnetic beads 11 were filled one by one into each micro reaction vessel 5 with a high probability of 95% or more.
  • a substrate 10 was prepared in the same manner as in Example 1 except that nickel was not formed as the magnetic thin film 3, and the same test was performed.As a result, the filling rate in the microreactor 5 was 10% or less. Lower and lower values were shown. From this, it was confirmed that the filling rate was improved by the effect of the nickele film.
  • Example 1 As in Example 1, first, a chromium film was formed as an adhesive layer 2 on a transparent glass substrate material 1 of 20 mm ⁇ 20 mm, and nickel was used as a magnetic material so that the film thickness became 0.5 ⁇ . (Fig. L (a)). A negative photoresist SU-8 indicated by reference numeral 4 in the figure was applied to the magnetic thin film 3 of the nickele so as to have a thickness of 3-10 x m (FIG. 1 (b)). Next, the pattern of the circular microreactor 5 having a diameter of 3, 4, 5, 6, 7, and 10 zm was transferred by contact exposure, and the circular pattern was removed with a developer to form the microreactor 5 ( Figure 1 (c)).
  • the surface was subjected to hydrophilization treatment by irradiating the surface with oxygen plasma at 100 mTorr and 200 W for 5 minutes to prepare a substrate for bead placement (Fig. 1 (d) )).
  • a dispersion liquid 12 in which 4 ⁇ 10 6 magnetic beads 11 having a diameter of 2.8 ⁇ m are dispersed on the manufactured substrate 10 is dropped.
  • a magnet 13 was fixed to the back surface of the substrate 10 to guide the magnetic beads 11 into the reaction tank 5. Further, by moving the magnet 13, the induction of the magnetic beads 11 into the microreactor 5 was promoted.
  • Example 1 After cleaning the surface with pure water with the magnet 13 fixed to the back surface of the substrate 10, the same as in Example 1 was performed.
  • the state of the arrangement of the magnetic beads 11 was observed with the optical microscope 14 connected to the arithmetic processing unit 15 as described above. Observation with an optical microscope 14 revealed that the filling rate of the magnetic beads 11 increased in proportion to the diameter of the microreactor 5.
  • a micro-reaction tank having a large diameter was filled with a plurality of magnetic beads 11.
  • the depth of the microreactor 5 was 6 ⁇ m or more, a plurality of magnetic beads 11 were mixed in the longitudinal direction.
  • the diameter of the microreactor 5 was 6 ⁇ m or less, one magnetic bead 11 was filled in one microreactor 5.
  • the magnetic beads 11 are detached from the micro-reaction tank 5 having a diameter substantially the same size as the force of the magnetic beads 11 detached during washing. Not observed. From the above, it was clarified that the depth and diameter of the microreactor 5 were suitably 6 ⁇ m or less.
  • FIG. 4 (a) As in the case of Examples 1 and 2, first, as shown in FIG. 4 (a), on a transparent glass substrate material 1 of 20 mm ⁇ 20 mm, a nickel material, which is a magnetic material, was formed to a thickness of 0.5 ⁇ . Then, a magnetic thin film 3 was obtained. Thereafter, a negative photoresist SU-8 indicated by reference numeral 4 in the figure was applied to a thickness of 3 / im (FIG. 4 (b)). Further, the patterns of 10,000 circular microreactors 5 having a diameter of 3 / im were transferred by contact exposure, and the circular patterns were removed with a developer to form microreactors 5 (FIG. 4 (c)).
  • the magnetic thin film 3 (nickel film) at the bottom of the microreactor 5 was removed by wet etching (Fig. 4 (d)).
  • the surface was subjected to a hydrophilic treatment by irradiating the surface with oxygen plasma at 100 mTorr and 200 W for 5 minutes using a flat-plate inductively coupled plasma generator, and a substrate for bead placement was fabricated (Fig. 4 (e)). ).
  • a substrate for arranging beads was prepared by the method shown in Example 1.
  • Base Quartz glass which does not emit fluorescence in the visible light region with high UV transmittance, was used as the substrate material of the plate.
  • a PEG (polyethylene glycol) film was coated on the substrate surface to prevent nonspecific adsorption of proteins.
  • the obtained bead placement substrate was filled with magnetic beads whose surface was modified with biotin using PEG, and an aqueous solution in which streptavidin serving as a target molecule was dispersed was poured.
  • streptavidin used was fluorescently labeled with Texas Red.
  • the aqueous solution in which streptavidin was dispersed in pure water was washed.
  • Figure 5 shows the results.
  • Figure 5 (a) is a micrograph of magnetic beads under white light irradiation, and (b) is a micrograph of magnetic beads under green light irradiation. Strong red fluorescence was observed from the magnetic beads, confirming that streptavidin, a target molecule, was placed on the magnetic beads fixed in the microreaction tank.
  • the present invention provides a substrate structure and arrangement suitable for immobilizing biomolecules on a magnetic bead surface and then disposing the biomolecules on a substrate instead of directly immobilizing the biomolecules on a substrate like a DNA chip.
  • a large amount of biomolecules can be arranged on a substrate by self-assembly in a short time, and it is also easy to collect a biomolecule at a desired position from the substrate after the arrangement. .
  • This technology can be applied to large-scale parallel screening that is required for evolutionary molecular engineering that rapidly evolves biopolymers to create useful molecules. Therefore, the present invention is expected to contribute to a wide range of industrial fields, such as new drug development, the environment, bioprocesses, and foods, as basic elemental technologies of advanced molecular reactors that realize the theory of advanced molecular engineering.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

A substrate for disposing beads and a bead disposing method using the substrate enabling the beads capable of efficiently fixing biomolecules to any place in a short time to be stably disposed thereon so that these beads are not peeled off from that place. The substrate (10) for disposing the beads for fixing the magnetic beads (11) in minute reaction chambers (5) comprises a substrate material (1), a magnetic body thin-film (3) disposed on the substrate material (1), and the plurality of minute reaction chambers (5) disposed on the magnetic body thin-film (3). The bead disposing method comprises the steps of disposing a magnet (13) under the substrate (10) for disposing the beads and dripping a dispersion (12), in which the magnetic beads (11) are dispersed, on the substrate (10) to fix the magnetic beads (11) in the minute reaction chambers (5) of the substrate (10) for disposing the beads.

Description

明 細 書  Specification
ビーズ配置用基板およびそれを用いたビーズ配置方法  Bead arranging substrate and bead arranging method using the same
技術分野  Technical field
[0001] 本発明はビーズ配置用基板およびそれを用いたビーズ配置方法に関し、詳しくは The present invention relates to a substrate for arranging beads and a method of arranging beads using the same.
、ビーズを高効率でビーズ配置用基板における複数の微小反応槽へ配置し、かつ安 定した配置をとることが可能であるビーズ配置用基板およびそれを用いたビーズ配 置方法に関する。 Also, the present invention relates to a bead placing substrate capable of placing beads in a plurality of micro-reaction tanks of the bead placing substrate with high efficiency and achieving stable placement, and a bead placing method using the same.
背景技術  Background art
[0002] 半導体産業で培われたマイクロ、ナノ微細加工技術をモダンバイオテクノロジーに 応用し、従来試験管内で行ってきた反応プロセスを飛躍的に高速化したり、大規模 並列化する技術の開発が近年、急速に進んでいる。例えば、ガラス基板上に構造の 異なる DNAや酵素を多数配歹して、大規模並列分析を可能にする DNAチップや プロテインチップは既に製品化され、先端バイオ研究の分野で広く用レ、られている。  [0002] In recent years, the application of micro- and nano-microfabrication technologies cultivated in the semiconductor industry to modern biotechnology has dramatically increased the speed of the reaction processes conventionally performed in test tubes, and the development of technologies for large-scale parallelization has recently been developed. Is progressing rapidly. For example, DNA chips and protein chips that enable large-scale parallel analysis by disposing a large number of DNAs and enzymes with different structures on a glass substrate have already been commercialized and widely used in the field of advanced biotechnology research. I have.
DNAチップは生体分子を基板上に直接固定化することにより作られる。  DNA chips are made by directly immobilizing biomolecules on a substrate.
[0003] これに対し、 Yehらは、微小半導体ブロックを元基板から切り離し、これを液体中で ターゲット基板上に散布することにより、基板上の任意の位置に配置する技術を非特 許文献 1に開示している。微小半導体ブロックに生体分子を固定し、非特許文献 1記 載の方法を用いることにより、基板上の任意の位置に生体分子を配置させることが可 能になると報告されている。  [0003] On the other hand, Non-Patent Document 1 discloses a technique in which a micro semiconductor block is separated from an original substrate, and is dispersed at an arbitrary position on the substrate by spraying the micro semiconductor block on a target substrate in a liquid. Has been disclosed. It is reported that by fixing a biomolecule to a small semiconductor block and using the method described in Non-Patent Document 1, the biomolecule can be arranged at an arbitrary position on a substrate.
非特許文献 l : H.Yeh and J.Smith, IEEE Photon.Tech.Lett., Vol.6, .706,1994 発明の開示  Non-Patent Document l: H. Yeh and J. Smith, IEEE Photon. Tech. Lett., Vol. 6, .706, 1994 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しかしながら、従来の方法に従レ、基板上に生体分子を直接固定する方法では、短 時間で大量の生体分子を自己組織化により基板上に配列することは困難であり、更 に、配列後に所望の位置の生体分子を基板から回収することも困難であった。また、 非特許文献 1に記載の方法を用いた場合でも、微小半導体ブロックは基板上へ誘引 および固定されておらず、配置に要する時間も長時間であり、更に、配置後も微小ブ ロックの脱離が起き、安定した配置を維持することは容易ではなかった。 [0004] However, according to the conventional method, it is difficult to arrange a large amount of biomolecules on a substrate in a short time by self-assembly by a method of directly immobilizing biomolecules on a substrate. It was also difficult to recover a biomolecule at a desired position from the substrate after the arrangement. In addition, even when the method described in Non-Patent Document 1 is used, the minute semiconductor block is not attracted and fixed on the substrate, the time required for placement is long, and the minute block is placed after placement. Lock release occurred and it was not easy to maintain a stable configuration.
[0005] そこで本発明の目的は、生体分子等を固定し得るビーズを短時間かつ高効率で任 意の場所へ配置し、さらに任意の場所から脱離を起こすことのない安定した配置をと ることが可能であるビーズ配置用基板およびそれを用いたビーズ配置方法を提供す ることにある。  [0005] Therefore, an object of the present invention is to arrange beads capable of immobilizing biomolecules and the like in a short time and with high efficiency at an arbitrary place, and to stably arrange the beads without detachment from an arbitrary place. It is an object of the present invention to provide a substrate for arranging beads, and a method for arranging beads using the same.
課題を解決するための手段  Means for solving the problem
[0006] 本発明者らは、上記課題を解決すべく鋭意検討した結果、磁気ビーズと、磁性体 薄膜を備えたビーズ配置用基板との組み合わせにより上記目的を達成し得ることを 見出し、本発明を完成するに至った。 The present inventors have conducted intensive studies to solve the above problems, and as a result, have found that the above object can be achieved by combining a magnetic bead with a bead arrangement substrate having a magnetic thin film. Was completed.
[0007] 即ち、本発明のビーズ配置用基板は、磁気ビーズを微小反応槽内に配置するため のビーズ配置用基板であって、基板材料と、該基板材料上に配設された磁性体薄膜 と、該磁性体薄膜上に配設された複数の微小反応槽と、を具備することを特徴とする ものである。 [0007] That is, the bead disposing substrate of the present invention is a bead disposing substrate for disposing magnetic beads in a micro-reaction tank, and comprises a substrate material and a magnetic thin film disposed on the substrate material. And a plurality of minute reaction vessels disposed on the magnetic thin film.
[0008] また、本発明のビーズ配置方法は、上記ビーズ配置用基板の微小反応槽内に磁 気ビーズを配置するにあたり、前記ビーズ配置用基板の下部に磁石を配置し、該基 板上に、磁気ビーズを分散させた分散液を滴下する工程を含むことを特徴とするもの である。  [0008] In addition, in the method for arranging beads according to the present invention, when arranging the magnetic beads in the micro-reaction tank of the substrate for arranging beads, a magnet is arranged below the substrate for arranging beads, And a step of dropping a dispersion liquid in which the magnetic beads are dispersed.
[0009] 本発明においては、磁気ビーズおよび磁性体薄膜による磁力の作用により微小反 応槽内へ磁気ビーズが誘引されることにより配置され易ぐまた、安定した配置を得る こと力 Sできる。また、磁石を取り除いた後も磁性体薄膜の磁化は残るため、磁気ビー ズは安定した配置を保持し続けることが可能である。  In the present invention, the magnetic beads are attracted into the micro-reaction tank by the action of the magnetic force of the magnetic beads and the magnetic thin film, so that the magnetic beads can be easily arranged and a stable arrangement can be obtained. In addition, since the magnetization of the magnetic thin film remains after the magnet is removed, the magnetic beads can maintain a stable arrangement.
発明の効果  The invention's effect
[0010] 本発明によれば、例えば、生体分子が固定化された磁気ビーズでも外部磁場で制 御して微小反応槽内に容易にかつ確実に充填することが可能となり、限られた領域 に多数の微小反応槽の形成が可能となる。  According to the present invention, for example, even a magnetic bead on which a biomolecule is immobilized can be controlled by an external magnetic field and can be easily and reliably filled in a microreactor. It becomes possible to form a large number of micro reaction vessels.
[0011] また、基板上に磁性体薄膜を被覆し、磁性体薄膜の磁化現象を利用することで、大 量の磁気ビーズを同時に磁気ビーズ配置用基板上の複数の微小反応槽に充填する こと力 Sできる。このように、磁気ビーズを効率よく複数の微小反応槽に充填できること により、従来法に比べて充填の簡略化'高速化を実現することができる。また、磁性 体薄膜の残留磁化により、基板表面への磁気ビーズの保持力が増し、流水などによ る磁気ビーズの脱離を防止することができる。 [0011] Furthermore, by coating a magnetic thin film on a substrate and utilizing the magnetization phenomenon of the magnetic thin film, a large amount of magnetic beads can be simultaneously filled in a plurality of minute reaction vessels on a magnetic bead disposing substrate. Power S can. In this way, magnetic beads can be efficiently filled into multiple micro reaction vessels Thereby, simplification of filling and speeding up can be realized as compared with the conventional method. In addition, due to the residual magnetization of the magnetic thin film, the holding power of the magnetic beads on the substrate surface is increased, and the detachment of the magnetic beads due to running water or the like can be prevented.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]本発明の一実施形態に係るビーズ固定用基板の作製工程を示す模式図であ る。  FIG. 1 is a schematic view showing a process for producing a substrate for fixing beads according to an embodiment of the present invention.
[図 2]ビーズ配置用基板に形成した微小反応槽の拡大写真である。  FIG. 2 is an enlarged photograph of a micro-reaction tank formed on a substrate for arranging beads.
[図 3]光学顕微鏡による磁気ビーズの配列の観察に使用した装置の模式図である。  FIG. 3 is a schematic view of an apparatus used for observing an array of magnetic beads using an optical microscope.
[図 4]本発明の他の実施形態に係るビーズ固定用基板の作製工程を示す模式図で ある。  FIG. 4 is a schematic view showing a step of producing a substrate for fixing beads according to another embodiment of the present invention.
[図 5]実施例 4における(a)白色光照射下の磁気ビーズの顕微鏡写真であり、 (b)緑 色光照射下の磁気ビーズの顕微鏡写真である。  FIG. 5 is (a) a microphotograph of magnetic beads under irradiation of white light and (b) a microphotograph of magnetic beads under irradiation of green light in Example 4.
符号の説明  Explanation of symbols
[0013] 1 基板材料 [0013] 1 Substrate material
2 接着層  2 Adhesive layer
3 磁性体薄膜  3 Magnetic thin film
4 ネガティブフォトレジスト SU— 8  4 Negative photoresist SU— 8
5 微小反応槽  5 Micro reaction tank
10 基板  10 substrate
11 磁気ビーズ  11 Magnetic beads
12 分散液  12 Dispersion
13 磁石  13 magnet
14 光学顕微鏡  14 Optical microscope
15 演算処理装置  15 Arithmetic processing unit
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、本発明の実施の形態につき具体的に説明する。 Hereinafter, embodiments of the present invention will be specifically described.
本発明のビーズ配置用基板に使用し得る基板材料は、透明なガラスまたはプラス チック材であることが好ましぐより好ましくは蛍光を発しない材料とする。透明な基板 材料を用いることで、磁気ビーズ表面に任意に吸着させた生体高分子の光学的観察 が可能となる。また、基板材料に蛍光を発しない材料を使用することで、光学的測定 の精度を高めることができる。 The substrate material that can be used for the substrate for arranging beads of the present invention is preferably a transparent glass or a plastic material, more preferably a material that does not emit fluorescence. Transparent board By using the material, optical observation of the biopolymer arbitrarily adsorbed on the surface of the magnetic beads becomes possible. In addition, by using a material that does not emit fluorescence for the substrate material, the accuracy of the optical measurement can be improved.
[0015] 次に、かかる基板材料上に積層される磁性体薄膜は、これを磁化させることにより 微小反応槽内に磁気ビーズを固定することが可能となる。磁性体薄膜の材料として は、ニッケル、ニッケル合金、鉄および鉄合金などの金属を好適に用いることができ、 本発明におレ、ては残留磁化の大きな磁性材料を用いることが好ましレ、。磁性体薄膜 の膜厚は、その目的から、好ましくは 0. 2— 2 x mである。  Next, by magnetizing the magnetic thin film laminated on the substrate material, the magnetic beads can be fixed in the minute reaction tank. As the material of the magnetic thin film, metals such as nickel, nickel alloys, iron and iron alloys can be suitably used. In the present invention, it is preferable to use a magnetic material having a large remanent magnetization. . The thickness of the magnetic thin film is preferably 0.2 to 2 x m for the purpose.
[0016] なお、本発明においては、基板材料とその上に配設される磁性体薄膜との間に両 者の接着性を高めるためにクロム等の接着層を設けることができる。  In the present invention, an adhesive layer of chromium or the like can be provided between the substrate material and the magnetic thin film provided thereon to enhance the adhesiveness between the two.
[0017] 磁性体薄膜上に配設される複数の微小反応槽は、半導体産業で培われた微細加 ェ技術である既知のフォトリソグラフィ技術を用いることにより形成することができる。 微小反応槽の形成材料としては、透明なフォトレジスト、ポリジメチルシロキサン (PD MS)等を好適に採用することができる。  [0017] The plurality of micro-reaction tanks provided on the magnetic thin film can be formed by using a known photolithography technique, which is a fine processing technique cultivated in the semiconductor industry. As a material for forming the micro-reaction tank, a transparent photoresist, polydimethylsiloxane (PDMS), or the like can be suitably used.
[0018] 磁気ビーズの反応槽内への充填率は反応槽の直径に依存し、反応槽の直径が磁 気ビーズの直径よりも若干広い方が充填率が高ぐ好ましくは微小反応槽の径は磁 気ビーズの直径の 1一 2倍である。また、 1個の微小反応槽に 1個の磁気ビーズを充 填する上で、微小反応槽の深さは、好ましくは磁気ビーズの直径の 1一 2倍である。  [0018] The filling rate of the magnetic beads into the reaction vessel depends on the diameter of the reaction vessel, and the larger the diameter of the reaction vessel is slightly larger than the diameter of the magnetic beads, the higher the filling rate is. Is 112 times the diameter of the magnetic beads. Further, in filling one magnetic bead into one microreactor, the depth of the microreactor is preferably 112 times the diameter of the magnetic beads.
[0019] また、本発明のビーズ配置用基板表面および微小反応槽内壁を、生体分子の非 特異吸着防止用ブロッキング剤、例えば、ポリエチレングリコール(PEG)や 2—メタク リロイルォキシェチルホスホリルコリン(MPC)で好適にコーティングすることができる 。力かるブロッキング剤をコーティングすることで、基板表面や微小反応槽の内壁へ の生体分子の非特異吸着を抑制することができる。  Further, the surface of the substrate for arranging beads and the inner wall of the microreactor of the present invention may be coated with a blocking agent for preventing nonspecific adsorption of biomolecules, for example, polyethylene glycol (PEG) or 2-methacryloyloxetyl phosphorylcholine (MPC). ) Can be suitably coated. By coating with a strong blocking agent, non-specific adsorption of biomolecules on the substrate surface or the inner wall of the microreactor can be suppressed.
[0020] さらに、微小反応槽は、親水化されていることが好ましい。微小反応槽を酸素プラズ マ照射などにより親水化処理することにより、反応槽内部への液 (磁気ビーズを分散 させた液)の充填が容易になり、充填率が向上する。  [0020] Further, it is preferable that the micro reaction tank is hydrophilized. By subjecting the microreactor to hydrophilic treatment by irradiation with oxygen plasma or the like, the liquid (magnetic beads dispersed liquid) is easily filled into the reaction tank, and the filling rate is improved.
[0021] さらにまた、微小反応槽底部の磁性体薄膜はウエットエッチング等の既知の手法に より除去してもよく、除去することにより、基板の下方 (裏面)からも微小反応槽内の光 学観察が可能となる。例えば、蛍光による細胞やたんぱく質の発現の判定が可能と なる。 [0021] Furthermore, the magnetic thin film at the bottom of the microreactor may be removed by a known method such as wet etching. Observation becomes possible. For example, it becomes possible to determine the expression of cells and proteins by fluorescence.
[0022] 次に、本発明のビーズ配置方法においては、上述のビーズ配置用基板の微小反 応槽内に磁気ビーズを配置するにあたり、ビーズ配置用基板の下部に磁石を配置し 、該基板上に、磁気ビーズを分散させた分散液を滴下する。これにより、磁石の引力 により微小反応槽へ磁気ビーズが誘引される。さらに、磁石を適宜基板に対し平行 方向に動かすことで磁気ビーズが分散し、反応槽内への充填率が向上する。磁石に よりビーズ配置用基板に印加する磁場の強さは、所望の効果を得る上で、好ましくは 100— 10000ガウスである。  Next, in the bead placement method of the present invention, when placing the magnetic beads in the microreaction tank of the above-described bead placement substrate, a magnet is placed below the bead placement substrate, and the magnet is placed on the substrate. Then, a dispersion liquid in which magnetic beads are dispersed is dropped. Thereby, the magnetic beads are attracted to the micro-reaction tank by the attraction of the magnet. Furthermore, the magnetic beads are dispersed by appropriately moving the magnet in a direction parallel to the substrate, and the filling rate in the reaction tank is improved. The strength of the magnetic field applied to the bead placement substrate by the magnet is preferably 100 to 10,000 gauss in order to obtain a desired effect.
[0023] なお、上記のように、微小反応槽を親水化することにより反応槽内部への液の充填 が容易となるが、同様の効果を界面活性剤を利用しても得ることができる。  [0023] As described above, the filling of the inside of the reaction tank with the liquid is facilitated by making the micro reaction tank hydrophilic, but the same effect can be obtained by using a surfactant.
[0024] また、本発明においては、基板下部に配した磁石により磁性体薄膜が磁化し、磁気 ビーズを反応槽に引き付け、磁石を取り除いた後も磁性体薄膜の磁化は残るため、 磁気ビーズを固定し続けることが可能である。  Further, in the present invention, the magnetic thin film is magnetized by the magnet disposed under the substrate, and the magnetic beads remain in the magnetic thin film even after the magnetic beads are attracted to the reaction tank and the magnet is removed. It is possible to keep it fixed.
実施例  Example
[0025] 以下に本発明の実施例を挙げ、更に詳細に説明するが、本発明は以下の実施例 に限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
実施例 1  Example 1
先ず、図 1 (a)に示すように、 20mm X 20mmの透明ガラス基板材料 1上に、接着 層 2としてクロムを成膜し、その上に磁性体であるニッケノレを膜厚が 0. となるよ うに成膜し、磁性体薄膜 3を得た。その後、図中の符号 4として示すネガティブフォト レジスト SU—8を厚さ 3 x mになるように塗布した(図 l (b) )。更に、 10000個の直径 3 μ m円形微小反応槽のパターンをコンタクト露光により転写し、現像液で円形パター ンを取り除くことにより、微小反応槽 5を形成した(図 1 (c) )。最後に、平板型誘導結 合プラズマ発生装置を用いて、表面に 100mTorr、 200Wで 5分間、酸素プラズマ 照射を行うことにより親水化処理を行い、ビーズ配置用基板を作製した(図 1 (d) )。図 2に作製したビーズ配置用基板の拡大写真図を示す。  First, as shown in FIG. 1 (a), a chromium film is formed as an adhesive layer 2 on a transparent glass substrate material 1 of 20 mm × 20 mm, and nickel film, which is a magnetic material, has a film thickness of 0. Thus, a magnetic thin film 3 was obtained. Thereafter, a negative photoresist SU-8 indicated by reference numeral 4 in the figure was applied so as to have a thickness of 3 × m (FIG. L (b)). Further, the pattern of 10,000 micro-reactors with a diameter of 3 μm was transferred by contact exposure, and the circular pattern was removed with a developer to form a micro-reactor 5 (FIG. 1 (c)). Finally, the surface was subjected to hydrophilization by irradiating the surface with oxygen plasma at 100 mTorr, 200 W for 5 minutes using a flat-plate inductively coupled plasma generator, and a substrate for bead placement was fabricated (Fig. 1 (d)). ). Fig. 2 shows an enlarged photograph of the prepared bead placement substrate.
[0026] 次に、図 3に模式的に示すように、作製した基板 10上に、直径 2. 8 / mの磁気ビー ズ 11を分散させた分散液 12を滴下し、その際、微小反応槽 5内へ磁気ビーズ 11を 誘導するため、基板 10の裏面に磁束密度 2000ガウスの磁石 13を配置した。さらに その磁石 13を基板 10と平行方向に適宜移動させることにより、微小反応槽 5内への 磁気ビーズ 11の誘導を促進させた。 Next, as schematically shown in FIG. 3, a magnetic beam having a diameter of 2.8 / m A dispersion liquid 12 in which the particles 11 were dispersed was dropped. At this time, a magnet 13 having a magnetic flux density of 2000 Gauss was arranged on the back surface of the substrate 10 in order to guide the magnetic beads 11 into the micro reaction vessel 5. Further, by appropriately moving the magnet 13 in a direction parallel to the substrate 10, the induction of the magnetic beads 11 into the minute reaction tank 5 was promoted.
[0027] 基板 10の裏面に磁石 13を固定した状態で基板 10の表面を純水で洗浄した後、磁 気ビーズ 11の配列の様子を、演算処理装置 15に接続された光学顕微鏡 14で観察 した。光学顕微鏡 14で観察した結果、 95%以上の高い確率で各微小反応槽 5に 1 個ずつ磁気ビーズ 11が充填されてレ、ることが確認できた。  After the surface of the substrate 10 is washed with pure water while the magnet 13 is fixed to the back surface of the substrate 10, the arrangement of the magnetic beads 11 is observed with an optical microscope 14 connected to an arithmetic processing unit 15. did. As a result of observation with the optical microscope 14, it was confirmed that the magnetic beads 11 were filled one by one into each micro reaction vessel 5 with a high probability of 95% or more.
[0028] 比較例 1  Comparative Example 1
磁性体薄膜 3としてニッケノレを成膜しなかった以外は実施例 1と同様にして基板 10 を作製し、上記と同様の試験を行った結果、微小反応槽 5内への充填率は 10%以 下と低い値を示した。このことから、ニッケノレ膜の効果により充填率が向上しているこ とが確認された。  A substrate 10 was prepared in the same manner as in Example 1 except that nickel was not formed as the magnetic thin film 3, and the same test was performed.As a result, the filling rate in the microreactor 5 was 10% or less. Lower and lower values were shown. From this, it was confirmed that the filling rate was improved by the effect of the nickele film.
[0029] 実施例 2 Example 2
実施例 1と同様に、先ず、 20mm X 20mmの透明ガラス基板材料 1上に接着層 2と してクロムを成膜し、さらに磁性体であるニッケノレを膜厚が 0. 5 μ ΐηとなるように成膜 した(図 l (a) )。そのニッケノレの磁性体薄膜 3上に、図中の符号 4として示すネガティ ブフォトレジスト SU—8を厚さが 3— 10 x mになるように塗布した(図 1 (b) )。次に、直 径が 3、 4、 5、 6、 7、 10 z mの円形微小反応槽 5のパターンをコンタクト露光により転 写し、現像液で円形パターンを取り除くことにより微小反応槽 5を形成した(図 1 (c) )。 最後に、平板型誘導結合プラズマ発生装置を用いて、表面に 100mTorr、 200Wで 5分間、酸素プラズマ照射を行うことにより親水化処理を行レ、、ビーズ配置用基板を 作製した(図 1 (d) )。  As in Example 1, first, a chromium film was formed as an adhesive layer 2 on a transparent glass substrate material 1 of 20 mm × 20 mm, and nickel was used as a magnetic material so that the film thickness became 0.5 μΐη. (Fig. L (a)). A negative photoresist SU-8 indicated by reference numeral 4 in the figure was applied to the magnetic thin film 3 of the nickele so as to have a thickness of 3-10 x m (FIG. 1 (b)). Next, the pattern of the circular microreactor 5 having a diameter of 3, 4, 5, 6, 7, and 10 zm was transferred by contact exposure, and the circular pattern was removed with a developer to form the microreactor 5 ( Figure 1 (c)). Finally, using a flat plate type inductively coupled plasma generator, the surface was subjected to hydrophilization treatment by irradiating the surface with oxygen plasma at 100 mTorr and 200 W for 5 minutes to prepare a substrate for bead placement (Fig. 1 (d) )).
[0030] 次に、図 3に模式的に示すように、作製した基板 10上に 4 X 106個の直径 2. 8 u m の磁気ビーズ 11を分散させた分散液 12を滴下し、微小反応槽 5内へ磁気ビーズ 11 を誘導するため、基板 10裏面に磁石 13を固定した。さらにその磁石 13を動かすこと により、微小反応槽 5内への磁気ビーズ 11の誘導を促進させた。 Next, as schematically shown in FIG. 3, a dispersion liquid 12 in which 4 × 10 6 magnetic beads 11 having a diameter of 2.8 μm are dispersed on the manufactured substrate 10 is dropped. A magnet 13 was fixed to the back surface of the substrate 10 to guide the magnetic beads 11 into the reaction tank 5. Further, by moving the magnet 13, the induction of the magnetic beads 11 into the microreactor 5 was promoted.
[0031] 基板 10裏面に磁石 13を固定した状態で表面を純水で洗浄した後、実施例 1と同 様に磁気ビーズ 11の配列の様子を、演算処理装置 15に接続された光学顕微鏡 14 で観察した。光学顕微鏡 14で観察した結果、磁気ビーズ 11の充填率は微小反応槽 5の直径に比例して上昇することが明らかになった。また、直径が大きい微小反応槽 には複数の磁気ビーズ 11が充填された。 After cleaning the surface with pure water with the magnet 13 fixed to the back surface of the substrate 10, the same as in Example 1 was performed. The state of the arrangement of the magnetic beads 11 was observed with the optical microscope 14 connected to the arithmetic processing unit 15 as described above. Observation with an optical microscope 14 revealed that the filling rate of the magnetic beads 11 increased in proportion to the diameter of the microreactor 5. In addition, a micro-reaction tank having a large diameter was filled with a plurality of magnetic beads 11.
[0032] また、微小反応槽 5の深さが 6 μ m以上では縦方向に複数の磁気ビーズ 11が混入 した。微小反応槽 5の直径が 6 μ m以下では一つの微小反応槽 5に対し一つの磁気 ビーズ 11が充填された。また、直径の大きな微小反応槽 5では、洗浄の際に磁気ビ ーズ 11が脱離した力 磁気ビーズ 11とほぼ同じサイズの直径である微小反応槽 5か らは磁気ビーズ 11の脱離は観察されなかった。以上のことから、微小反応槽 5の深さ 、直径ともに 6 μ m以下が適してレ、ること力 S半 IJ明した。  [0032] When the depth of the microreactor 5 was 6 µm or more, a plurality of magnetic beads 11 were mixed in the longitudinal direction. When the diameter of the microreactor 5 was 6 μm or less, one magnetic bead 11 was filled in one microreactor 5. In addition, in the micro-reaction tank 5 having a large diameter, the magnetic beads 11 are detached from the micro-reaction tank 5 having a diameter substantially the same size as the force of the magnetic beads 11 detached during washing. Not observed. From the above, it was clarified that the depth and diameter of the microreactor 5 were suitably 6 μm or less.
[0033] 実施例 3  Example 3
実施例 1および 2と同様に、先ず、図 4 (a)に示すように、 20mm X 20mmの透明ガ ラス基板材料 1上に磁性体であるニッケノレを膜厚が 0. 5 μ ηとなるように成膜し、磁 性体薄膜 3を得た。その後、図中の符号 4として示すネガティブフォトレジスト SU— 8を 厚さ 3 /i mになるように塗布した(図 4 (b) )。更に、 10000個の直径 3 /i mの円形微小 反応槽 5のパターンをコンタクト露光により転写し、現像液で円形パターンを取り除く ことにより、微小反応槽 5を形成した(図 4 (c) )。磁気ビーズの充填の様子を倒立顕 微鏡で観察するため、微小反応槽 5底部の磁性体薄膜 3 (二ッケノレ膜)をウエットエツ チングにより除去した(図 4 (d) )。最後に、平板型誘導結合プラズマ発生装置を用い て、表面に 100mTorr、 200Wで 5分間、酸素プラズマ照射を行うことにより親水化処 理を行い、ビーズ配置用基板を作製した(図 4 (e) )。  As in the case of Examples 1 and 2, first, as shown in FIG. 4 (a), on a transparent glass substrate material 1 of 20 mm × 20 mm, a nickel material, which is a magnetic material, was formed to a thickness of 0.5 μη. Then, a magnetic thin film 3 was obtained. Thereafter, a negative photoresist SU-8 indicated by reference numeral 4 in the figure was applied to a thickness of 3 / im (FIG. 4 (b)). Further, the patterns of 10,000 circular microreactors 5 having a diameter of 3 / im were transferred by contact exposure, and the circular patterns were removed with a developer to form microreactors 5 (FIG. 4 (c)). In order to observe the filling of the magnetic beads with an inverted microscope, the magnetic thin film 3 (nickel film) at the bottom of the microreactor 5 was removed by wet etching (Fig. 4 (d)). Finally, the surface was subjected to a hydrophilic treatment by irradiating the surface with oxygen plasma at 100 mTorr and 200 W for 5 minutes using a flat-plate inductively coupled plasma generator, and a substrate for bead placement was fabricated (Fig. 4 (e)). ).
[0034] 次に、作製した基板上に 4 X 106個の直径 2. 8 μ mの磁気ビーズを分散させた水 分散液を滴下し、磁気ビーズの配列の様子を基板の底部から光学顕微鏡で観察し た。倒立型光学顕微鏡で観察した結果、磁気ビーズが微小反応槽内に充填される 様子を観察することができた。 Next, an aqueous dispersion in which 4 × 10 6 magnetic beads of 2.8 μm in diameter were dispersed was dropped on the prepared substrate, and the arrangement of the magnetic beads was observed from the bottom of the substrate with an optical microscope. Observed. As a result of observation with an inverted optical microscope, it was possible to observe the state in which the magnetic beads were filled in the micro reaction tank.
[0035] 実施例 4  Example 4
水溶液中でのァフィ二ティーによる生体分子スクリーニングのモデル実験として、以 下の実験を行った。まず、実施例 1に示す方法でビーズ配置用基板を作製した。基 板の基板材料には紫外線の透過率が高 可視光領域の蛍光を発しない石英ガラ スを用いた。また、タンパク質の非特異吸着を防止するために、基板表面に PEG (ポ リエチレングリコール)膜を被膜した。 The following experiment was performed as a model experiment of biomolecule screening by affinity in an aqueous solution. First, a substrate for arranging beads was prepared by the method shown in Example 1. Base Quartz glass, which does not emit fluorescence in the visible light region with high UV transmittance, was used as the substrate material of the plate. In addition, a PEG (polyethylene glycol) film was coated on the substrate surface to prevent nonspecific adsorption of proteins.
[0036] 次に、得られたビーズ配置用基板に、表面に PEGを用いてビォチンを修飾した磁 気ビーズを充填し、ターゲット分子となるストレプトアビジンを分散させた水溶液を流し 込んだ。光学観察を容易に行えるように、ストレプトアビジンはテキサスレッドで蛍光 標識しているものを使用した。最後に、純水でストレプトアビジンを分散させた水溶液 を洗浄した。  Next, the obtained bead placement substrate was filled with magnetic beads whose surface was modified with biotin using PEG, and an aqueous solution in which streptavidin serving as a target molecule was dispersed was poured. To facilitate optical observation, streptavidin used was fluorescently labeled with Texas Red. Finally, the aqueous solution in which streptavidin was dispersed in pure water was washed.
[0037] 洗浄後の磁気ビーズを蛍光顕微鏡で観察を行った。その結果を図 5に示す。図 5 の(a)は白色光照射下の磁気ビーズの顕微鏡写真であり、 (b)は緑色光照射下の磁 気ビーズの顕微鏡写真である。磁気ビーズから赤色の強い蛍光が観察され、微小反 応槽内に固定された磁気ビーズ上でターゲット分子であるストレプトアビジンが配置さ れてレ、ることが確認された。  [0037] The washed magnetic beads were observed with a fluorescence microscope. Figure 5 shows the results. Figure 5 (a) is a micrograph of magnetic beads under white light irradiation, and (b) is a micrograph of magnetic beads under green light irradiation. Strong red fluorescence was observed from the magnetic beads, confirming that streptavidin, a target molecule, was placed on the magnetic beads fixed in the microreaction tank.
産業上の利用可能性  Industrial applicability
[0038] 本発明は、生体分子を DNAチップのように基板上に直接固定するのではな 磁 気ビーズ表面に生体分子を固定化したのち基板上に配置するために適した基板構 造と配置方法を提供する。この方法を用いると、短時間で大量の生体分子を自己組 織化により基板上に配列することが可能であり、さらに、配列後に所望の位置の生体 分子を基板から回収することも容易である。この技術は、生体高分子を高速進化させ て有用分子の創製を行う進化分子工学で必要とされる大規模並列スクリーニングに 応用することが可能である。したがって、本発明は進化分子工学理論を実現する進 化分子リアクターの基盤要素技術として、新薬開発、環境、バイオプロセス、食品など の広範な産業分野に貢献することが期待される。 The present invention provides a substrate structure and arrangement suitable for immobilizing biomolecules on a magnetic bead surface and then disposing the biomolecules on a substrate instead of directly immobilizing the biomolecules on a substrate like a DNA chip. Provide a way. By using this method, a large amount of biomolecules can be arranged on a substrate by self-assembly in a short time, and it is also easy to collect a biomolecule at a desired position from the substrate after the arrangement. . This technology can be applied to large-scale parallel screening that is required for evolutionary molecular engineering that rapidly evolves biopolymers to create useful molecules. Therefore, the present invention is expected to contribute to a wide range of industrial fields, such as new drug development, the environment, bioprocesses, and foods, as basic elemental technologies of advanced molecular reactors that realize the theory of advanced molecular engineering.

Claims

請求の範囲  The scope of the claims
[I] 磁気ビーズを微小反応槽内に配置するためのビーズ配置用基板であって、基板材 料と、該基板材料上に配設された磁性体薄膜と、該磁性体薄膜上に配設された複数 の微小反応槽と、を具備することを特徴とするビーズ配置用基板。  [I] A bead arrangement substrate for disposing magnetic beads in a micro-reaction tank, comprising: a substrate material; a magnetic thin film provided on the substrate material; and a magnetic thin film provided on the magnetic thin film. And a plurality of micro reaction tanks.
[2] 前記基板材料と磁性体薄膜との間に接着層を有する請求項 1記載のビーズ配置用 基板。  2. The substrate for arranging beads according to claim 1, further comprising an adhesive layer between the substrate material and the magnetic thin film.
[3] 前記基板材料が透明なガラスまたはプラスチック材であり、かつ蛍光を発しない材 料である請求項 1記載のビーズ配置用基板。  3. The substrate for arranging beads according to claim 1, wherein the substrate material is a transparent glass or plastic material, and is a material that does not emit fluorescence.
[4] 前記微小反応槽の径が磁気ビーズの直径の 1一 2倍である請求項 1記載のビーズ 配置用基板。 [4] The substrate for arranging beads according to claim 1, wherein the diameter of the minute reaction tank is 112 times the diameter of the magnetic beads.
[5] 前記微小反応槽の深さが磁気ビーズの直径の 1一 2倍である請求項 1記載のビー ズ配置用基板。  5. The substrate for arranging beads according to claim 1, wherein the depth of the micro-reaction tank is 112 times the diameter of the magnetic beads.
[6] 前記微小反応槽が透明なフォトレジストまたはポリジメチルシロキサン (PDMS)によ り形成されている請求項 1記載のビーズ配置用基板。  6. The bead placement substrate according to claim 1, wherein the micro-reaction tank is formed of a transparent photoresist or polydimethylsiloxane (PDMS).
[7] 前記磁性体薄膜がニッケル、ニッケル合金、鉄および鉄合金からなる群から選択さ れる磁性体である請求項 1記載のビーズ配置用基板。 7. The bead placement substrate according to claim 1, wherein the magnetic thin film is a magnetic material selected from the group consisting of nickel, a nickel alloy, iron, and an iron alloy.
[8] 基板表面および前記微小反応槽内壁に生体分子の非特異吸着防止用ブロッキン グ剤が被覆されている請求項 1記載のビーズ配置用基板。 [8] The substrate for arranging beads according to claim 1, wherein the substrate surface and the inner wall of the microreactor are coated with a blocking agent for preventing nonspecific adsorption of biomolecules.
[9] 前記微小反応槽が親水化されている請求項 1記載のビーズ配置用基板。 9. The substrate for arranging beads according to claim 1, wherein the micro-reaction tank is hydrophilized.
[10] 前記微小反応槽底部の磁性体薄膜が除去されている請求項 1記載のビーズ配置 用基板。 10. The bead placing substrate according to claim 1, wherein the magnetic thin film at the bottom of the minute reaction tank is removed.
[I I] 請求項 1記載のビーズ配置用基板の微小反応槽内に磁気ビーズを配置するにあ たり、前記ビーズ配置用基板の下部に磁石を配置し、該基板上に、磁気ビーズを分 散させた分散液を滴下する工程を含むことを特徴とするビーズ配置方法。  [II] In arranging the magnetic beads in the micro-reaction tank of the bead arrangement substrate according to claim 1, a magnet is arranged below the bead arrangement substrate, and the magnetic beads are dispersed on the substrate. A method for arranging beads, comprising a step of dropping the dispersion liquid.
[12] 前記磁石を基板に対して平行方向に適宜移動させ、磁気ビーズを前記微小反応 槽に誘導する請求項 11記載のビーズ配置方法。  12. The bead arrangement method according to claim 11, wherein the magnet is appropriately moved in a direction parallel to the substrate to guide the magnetic beads to the micro reaction vessel.
[13] 前記磁石によりビーズ配置用基板に印加する磁場の強さが 100— 10000ガウスで ある請求項 11記載のビーズ配置方法。 13. The bead placing method according to claim 11, wherein the strength of the magnetic field applied to the bead placing substrate by the magnet is 100 to 10,000 Gauss.
PCT/JP2005/005339 2004-03-26 2005-03-24 Substrate for disposing beads and bead disposing method using the same WO2005093416A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006511486A JPWO2005093416A1 (en) 2004-03-26 2005-03-24 Bead placement substrate and bead placement method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-093655 2004-03-26
JP2004093655 2004-03-26

Publications (1)

Publication Number Publication Date
WO2005093416A1 true WO2005093416A1 (en) 2005-10-06

Family

ID=35056305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005339 WO2005093416A1 (en) 2004-03-26 2005-03-24 Substrate for disposing beads and bead disposing method using the same

Country Status (2)

Country Link
JP (1) JPWO2005093416A1 (en)
WO (1) WO2005093416A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025085A (en) * 2007-07-18 2009-02-05 Kobe Univ Manufacturing method for sensing chip of target molecule
WO2014007034A1 (en) * 2012-07-06 2014-01-09 株式会社 日立ハイテクノロジーズ Analysis device and analysis method
JP2017138306A (en) * 2016-01-31 2017-08-10 アークレイ株式会社 Analysis tool and analysis
WO2019050017A1 (en) * 2017-09-07 2019-03-14 三菱瓦斯化学株式会社 Substrate for biochip, biochip, method for manufacturing biochip, and method for preserving biochip

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249706A (en) * 1999-02-26 2000-09-14 Hokuto Kagaku Sangyo Kk New biological chip and analytical method
WO2002043855A1 (en) * 2000-11-29 2002-06-06 Comissariat A L'energie Atomique Static micro-array of biological or chemical probes immobilised on a support by magnetic attraction
JP2002525579A (en) * 1998-09-11 2002-08-13 トラスティーズ・オブ・タフツ・カレッジ Target analyte sensor using microspheres
JP2004037338A (en) * 2002-07-05 2004-02-05 Yokogawa Electric Corp Method for immobilizing biological polymers to substrate using magnetic beads, and biological polymer measuring apparatus employing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002525579A (en) * 1998-09-11 2002-08-13 トラスティーズ・オブ・タフツ・カレッジ Target analyte sensor using microspheres
JP2000249706A (en) * 1999-02-26 2000-09-14 Hokuto Kagaku Sangyo Kk New biological chip and analytical method
WO2002043855A1 (en) * 2000-11-29 2002-06-06 Comissariat A L'energie Atomique Static micro-array of biological or chemical probes immobilised on a support by magnetic attraction
JP2004037338A (en) * 2002-07-05 2004-02-05 Yokogawa Electric Corp Method for immobilizing biological polymers to substrate using magnetic beads, and biological polymer measuring apparatus employing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ICHIWARA ET AL: "Jiki Beads Sosa no tame no Micro Jiki Device no Sakusei.", OYO BUTSURIGAKU KANKEI RENGO KOENKAI KOEN YOKOSHU., no. 3, 2003, pages 1398, XP002998318 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025085A (en) * 2007-07-18 2009-02-05 Kobe Univ Manufacturing method for sensing chip of target molecule
WO2014007034A1 (en) * 2012-07-06 2014-01-09 株式会社 日立ハイテクノロジーズ Analysis device and analysis method
CN104471380A (en) * 2012-07-06 2015-03-25 株式会社日立高新技术 Analysis device and analysis method
JPWO2014007034A1 (en) * 2012-07-06 2016-06-02 株式会社日立ハイテクノロジーズ Analysis apparatus and analysis method
CN104471380B (en) * 2012-07-06 2017-11-17 株式会社日立高新技术 Analytical equipment and analysis method
US9964539B2 (en) 2012-07-06 2018-05-08 Hitachi High-Technologies Corporation Analysis device and analysis method
EP2871464B1 (en) * 2012-07-06 2021-07-28 Hitachi High-Tech Corporation Analysis device and analysis method
JP2017138306A (en) * 2016-01-31 2017-08-10 アークレイ株式会社 Analysis tool and analysis
WO2019050017A1 (en) * 2017-09-07 2019-03-14 三菱瓦斯化学株式会社 Substrate for biochip, biochip, method for manufacturing biochip, and method for preserving biochip
JPWO2019050017A1 (en) * 2017-09-07 2020-10-22 三菱瓦斯化学株式会社 Biochip substrate, biochip, biochip manufacturing method and storage method

Also Published As

Publication number Publication date
JPWO2005093416A1 (en) 2008-02-14

Similar Documents

Publication Publication Date Title
US11278859B2 (en) Patterning device
van Dommelen et al. Surface self-assembly of colloidal crystals for micro-and nano-patterning
JP4316677B2 (en) Method for producing structured self-organized monolayer of single molecular species, especially substance library
JP5645836B2 (en) Magnetic patterning method and system
US20070292312A1 (en) Method of manufacture of a plate of releasable elements and its assembly into a cassette
JP2007268692A (en) Carbon nanotube connected body, its manufacturing method, and element and method for detecting target
Wang et al. Single-cell patterning technology for biological applications
CN112543678B (en) Patterned microfluidic devices and methods of making the same
WO2005093416A1 (en) Substrate for disposing beads and bead disposing method using the same
KR101596991B1 (en) Fabrication method of hydrogel having multi probe submicrostructures and biomolecular nano-patterning method using hydrogel multi probes
KR100867851B1 (en) A manufacturing process of microfluidics applied devices those are made of plastics
JP4214233B2 (en) Fine processing method and fine structure of transparent material
CN110591903A (en) Gene sequencing substrate, manufacturing method thereof and gene sequencing chip
Wang et al. Assembling and patterning of diatom frustules onto PDMS substrates using photoassisted chemical bonding
Aggarwal et al. Microarray fabrication techniques for multiplexed bioassay applications
Fritz et al. Microcontact printing of substrate-bound protein patterns for cell and tissue culture
CN101693514A (en) Method for preparing magnetic suspended coding micro-block array chips and method for applying the preparation method
Chen et al. Surface-tension-confined droplet microfluidics☆
Larramendy et al. Surface modification for patterned cell growth on substrates with pronounced topographies using sacrificial photoresist and parylene-C peel-off
JP2023524553A (en) Career system and method
JP2008527722A (en) Supporting substrate indexed topographically
KR101124707B1 (en) The formative method of functional nano pattern
EP3807002A1 (en) Patterned microfluidic devices and methods for manufacturing the same
JP2006115775A (en) Kit for bio-separation and use thereof
Paik et al. Single-molecule optical-trapping measurements with DNA anchored to an array of gold nanoposts

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006511486

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase