WO2005091619A1 - Mechanism for adjusting image forming position and photographing apparatus - Google Patents

Mechanism for adjusting image forming position and photographing apparatus Download PDF

Info

Publication number
WO2005091619A1
WO2005091619A1 PCT/JP2004/003595 JP2004003595W WO2005091619A1 WO 2005091619 A1 WO2005091619 A1 WO 2005091619A1 JP 2004003595 W JP2004003595 W JP 2004003595W WO 2005091619 A1 WO2005091619 A1 WO 2005091619A1
Authority
WO
WIPO (PCT)
Prior art keywords
main body
imaging
adjustment member
base
ccd
Prior art date
Application number
PCT/JP2004/003595
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichi Masuda
Original Assignee
Cmicro Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cmicro Corporation filed Critical Cmicro Corporation
Priority to JP2006519088A priority Critical patent/JP4372152B2/en
Priority to PCT/JP2004/003595 priority patent/WO2005091619A1/en
Publication of WO2005091619A1 publication Critical patent/WO2005091619A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/13Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with multiple sensors
    • H04N23/16Optical arrangements associated therewith, e.g. for beam-splitting or for colour correction

Definitions

  • the present invention relates to an imaging position adjustment mechanism and an imaging device.
  • an imaging position adjustment mechanism In a photographing apparatus such as an inspection apparatus using a camera or light, an image of an object to be photographed is formed by forming an image on a photographing object such as a CCD film through a lens or a prism. Since the quality of the captured image is greatly affected by the relative position such as the distance between the lens and the image pickup body, the adjustment of the image forming position is very important in the expansion device.
  • the present invention relates to an imaging position adjustment mechanism for adjusting an imaging position of an imaging device, and an imaging device including the imaging position adjustment mechanism.
  • the focus position adjusting mechanism of Conventional Example 1 is provided in a CCD camera unit of a microscope photographing apparatus, and moves the lens barrel having the CCD element mounted in the optical axis direction to move the CCD element and the lens. This is for adjusting the distance in the optical axis direction.
  • the focal position adjusting mechanism of Conventional Example 1 can adjust the distance between the CCD element and the lens in the optical axis direction, that is, the focus can be adjusted, the inclination of the CCD element with respect to the optical axis and the focus on the CCD element The two-dimensional position of can not be adjusted. Therefore, the inclination of the CCD element with respect to the optical axis and the two-dimensional position of the focal point on the CCD element depend on the manufacturing error and mounting accuracy of the lens and other components that hold the CCD element, etc. Therefore, there is a problem in that the processing accuracy and the like must be extremely high, and it is difficult to manufacture each member.
  • Patent Document 2 As a technique for adjusting not only the focus but also the inclination of the CCD element with respect to the optical axis, there is a technique disclosed in Conventional Example 2 (Patent Document 2).
  • the technology of Conventional Example 2 includes a concave glass b having a spherically concave curved surface br and a convex glass a having a convex curved surface ar having the same curvature as the spherical surface of the concave glass.
  • the concave glass b has the rear surface attached to the exit surface of the prism P, and the convex glass a has the CCD light receiving surface attached to the rear surface.
  • the curved surface of the concave glass and the curved surface ar of the convex glass a are matched, it is possible to mount the concave glass a so that there is no gap between them, and the curved surface ar of the convex glass a follows the curved surface br of the concave glass b. Therefore, the inclination of the light receiving surface of the CCD with respect to the optical axis of the light incident through the prism P can be adjusted, and the optical axis and the light receiving surface can be adjusted to be perpendicular.
  • the color of the surface to be inspected cannot be accurately detected unless the areas photographed by the three CCD elements match exactly. If the inspection accuracy is to be performed on the order of m, the deviation of the area photographed by each CCD element must be smaller than the pixel size of the CCD element. For example, if one pixel of the CCD element is 7 m, the deviation must be 0.7 / xm or less. In other words, the position of the focal point on each CCD element within the focal plane must be adjusted with an accuracy of 0.7 or less. However, the technique of Conventional Example 2 cannot adjust the focal position with such precision as described above.
  • the deviation of the focal position within the focal plane is 0.7 zm. It is necessary to be as follows.
  • the resolution of the inspection target that is, the inspection accuracy
  • the lens diameter is increased, the lens itself becomes very expensive.
  • the CCD element instead of using a lens with a small aperture, the CCD element must be placed close to the lens. No. Then, since the space between the CCD element and the lens is reduced, the member holding the CCD element must be configured more compactly.
  • the part that holds the CCD element must be very small, and inevitably the focusing mechanism must be compact.
  • Patent Document 1 Japanese Patent Application Laid-Open No. Hei 7-261067
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-259593 Disclosure of the Invention
  • the present invention can easily adjust the imaging position on the imaging element with high precision, and can easily make fine adjustments even if the position shifts, and focus on temperature changes in the surrounding environment. It is an object of the present invention to provide an imaging position adjusting mechanism and device capable of preventing a positional shift and having a very compact structure.
  • An imaging position adjusting mechanism is an imaging device that forms an image by imaging incident light on an imaging body, and adjusts an imaging position of the incident light on the imaging body.
  • a moving mechanism for moving the base adjustment member along a direction intersecting the optical axis of the incident light is provided.
  • the focus and the inclination of the image pickup body with respect to the optical axis can be adjusted by the base adjustment member of the adjustment mechanism, and the fine adjustment member can be adjusted by the moving mechanism without moving the base adjustment member.
  • the fine adjustment member By moving it, it is possible to adjust the two-dimensional imaging position of the incident light on the imaging body. That is, the two-dimensional imaging position of the incident light on the imaging body can be adjusted independently of the focus and the inclination with respect to the optical axis.
  • the fine adjustment member can be fixed to the base adjustment member by the posture holding means, it is possible to prevent the imaging position from being shifted during imaging.
  • the base adjusting member may A reference surface intersecting the optical axis of the incident light, wherein the fine adjustment member slides along the reference surface of the base adjustment member when the fine adjustment member is moved by the movement mechanism. It is characterized by having.
  • the relative position of the incident light with respect to the base adjustment member in the optical axis direction is kept constant.
  • the fine adjustment member can be moved. For this reason, if the reference plane of the base adjustment member is adjusted so that the light receiving surface of the image pickup body is perpendicular to the optical axis of the incident light, focus can be maintained without changing the inclination of the incident light of the image pickup body with respect to the optical axis. Since the imaging position of the incident light on the imaging body can be adjusted, the imaging position can be adjusted accurately and easily.
  • the moving mechanism includes a pressure receiving surface provided on the fine adjustment member, the pressure receiving surface being orthogonal to the sliding surface, and a pressure receiving surface of the fine adjustment member.
  • a position adjustment unit provided so as to be able to approach and separate.
  • the position adjusting section supporting the urging force is connected to the urging means along the direction of the urging force. If it is made to approach and separate, the fine adjustment member can be made to approach and separate from the urging means in the direction of the urging force. Since the pressure receiving surface is also provided so as to be orthogonal to the sliding surface, the biasing force is applied to the fine adjustment member in parallel with the sliding surface. Therefore, if the sliding surface of the fine adjustment member is brought into surface contact with the reference surface of the base adjustment member, if the fine adjustment member is moved closer to or away from the biasing means by the position adjustment portion, the fine adjustment member becomes the base. The adjustment member can be moved in parallel with the reference plane.
  • the fine adjustment member By providing pressure receiving surfaces orthogonal to each other on the fine adjustment member, and providing a biasing means for biasing each of them and a position adjusting section for supporting the biasing force from each of the biasing means, it is possible to provide other fine adjustment members. Irrespective of the amount of movement, the amount of movement of the fine adjustment member in the urging direction of each urging means can be adjusted independently, so that the image forming position on the imaging body can be accurately adjusted. .
  • the fine adjustment member includes a support surface that intersects a direction of an urging force applied from the urging unit.
  • a cylindrical body having a central axis parallel to a normal line of a reference surface of the base adjusting member, wherein the cylindrical body is parallel to the negative three central axes and is radial to the cylindrical body with respect to the central axis.
  • the center axis of the cylindrical body is offset in the radial direction with respect to the rotation axis thereof, when the cylindrical body is rotated, the urging force applied from the urging means to the fine adjustment member is adjusted.
  • the length from the center axis of the cylinder to the edge on the support surface side in the direction (hereinafter simply referred to as the biasing direction) can be changed. Since the support surface of the fine adjustment member is always in contact with the side surface of the cylindrical body by the urging means.
  • the fine adjustment member By rotating the cylinder, the fine adjustment member can be moved along the biasing direction by the amount of change in the biasing direction length, and the imaging position in the biasing direction of the imaging body is finely adjusted. can do.
  • An imaging position adjusting mechanism is the image forming apparatus according to the first, second, third or fourth aspect, wherein the fine adjustment member includes the sliding surface and a mounting surface that is smooth on the sliding surface.
  • the fine adjustment member includes the sliding surface and a mounting surface that is smooth on the sliding surface.
  • a holding member to which the imaging body is attached, the holding member being movably provided along a mounting surface of the main body member, and a holding member moving unit for moving the holding member along the mounting surface of the main body member. It is characterized by having.
  • the imaging body attached to the holding member together with the holding member can be moved along the mounting surface of the main body member. For this reason, the image formation position of the incident light on the imaging body can be adjusted without changing the focus or the inclination of the incident light with respect to the optical axis of the imaging body, so that the imaging position can be adjusted accurately and easily. it can.
  • the holding member is formed with an elongated hole extending along a direction parallel to a mounting surface of the main body member.
  • a shaft member rotatably attached to the main body member around a rotation axis parallel to a normal to the mounting surface, and provided at one axial end of the shaft member;
  • An operating shaft inserted into the elongated hole, wherein the operating shaft has a center axis parallel to the rotation axis of the shaft member and the shaft member relative to the rotation axis of the shaft member. Offset in the radial direction of In particular, it is installed so that it can be cut.
  • the operating shaft can be moved around the rotation axis.
  • the holding member can be moved relative to the main body member by the moving amount in the width direction of the elongated hole out of the moving amount of the operating shaft.
  • a plurality of shaft-shaped members and a long hole are provided and formed so that the axial directions of the long holes intersect, regardless of the rotation amount of the other shaft-shaped members, in the direction orthogonal to the axial direction of each long hole Since the amount of movement of the holding member can be adjusted independently of each other, it is possible to accurately adjust the imaging position on the imaging body.
  • An imaging position adjusting mechanism according to a seventh aspect, in the fifth or sixth aspect, wherein the holding member is attached to the mounting surface of the main body member so as to be able to approach and separate therefrom, and the holding member moving part is In particular, a mechanism is provided for moving the holding member toward and away from the mounting surface of the main body member.
  • the focus can be adjusted by moving only the holding member, so that the focus adjustment is easy, and when the focus adjustment is performed, another member moves, and the imaging position is shifted. Can be prevented.
  • An imaging position adjusting mechanism is the image forming apparatus according to the second, third or fourth aspect, wherein the fine adjustment member comprises: a main body member having the sliding surface; and the main body member fixed to the base adjustment member.
  • a fine adjustment member fixing means a holding member to which the image pickup body is attached, the holding member being movably provided in a direction parallel to the sliding surface with respect to the main body member; Holding member fixing means for fixing to the main body member, the holding member fixing means being orthogonal to the sliding surface, and the main body member by the fine adjustment member fixing means in the width direction of the imaging body.
  • the holding member fixing means is disposed at a position which is plane-symmetric with respect to a symmetry plane including a center line of a connection position with the base adjustment member. And holding member on the symmetry plane.
  • the optical axis is arranged so as to be included in the plane of symmetry, even if the main body member and the holding member expand and contract due to changes in the temperature of the surrounding environment, the focal point on the imaged object will not change. The position can be prevented from shifting.
  • the holding When the center line of the imaging body is adjusted to be located on the optical axis plane by moving the imaging body with respect to the member, the deviation between the center line of the imaging body and the plane of symmetry can be reduced.
  • a ninth aspect of the present invention is the imaging position adjusting mechanism according to the second, third or fourth aspect, wherein a base fixing means for fixing the base adjusting member to a main body of the photographing apparatus is provided. Fine adjustment member fixing means for fixing a member to the base adjustment member is provided, and the fine adjustment member fixing means is orthogonal to a sliding surface of the fine adjustment member, and is in a width direction of the imaging body.
  • the base fixing means is disposed at a position which is plane-symmetric with respect to a symmetry plane including a center line of a connection position between the main body of the photographing apparatus and the base adjustment member by the base fixing means.
  • the fine adjustment member fixing means connects the fine adjustment member and the base adjustment member at positions symmetrical with respect to the base symmetry plane, so that the optical axis is included in the base symmetry plane. If this is done, it is possible to prevent the position of the focal point on the imaging body from shifting even if the fine adjustment member and the base adjustment member expand and contract due to a change in the temperature of the surrounding environment. Also, even when the optical axis is deviated from the base symmetry plane, if the optical axis and the base symmetry plane are parallel, the fine adjustment member is moved with respect to the base adjustment member so that the center line of the imaging object is moved.
  • the deviation between the center line of the imaging body and the base symmetry plane can be reduced, so that the deviation between the center line of the imaging body and the base symmetrical plane can be reduced. Since the size can be reduced, it is possible to minimize the deviation of the focal position on the imaging body due to the expansion and contraction of the fine adjustment member and the base adjustment member. If the center line of light reception of the imaging body (for example, line CCD) is included on the base symmetry plane, the deviation of the focal position can be further reduced.
  • the imaging position adjusting mechanism of the tenth aspect of the present invention is effective in the case of the first, second, third or fourth aspect.
  • a main body of the photographing device comprising: a mounting surface to which the base adjustment member is mounted, which is orthogonal to an optical axis of the incident light;-between the base adjustment member and a mounting surface of the main body of the imaging device.
  • Base urging means for urging the base adjustment member in a direction away from the main body of the imaging device along the optical axis direction of the incident light while maintaining the base adjustment member parallel to a mounting surface of the main body of the imaging device. It is characterized by having.
  • the base adjustment member can be moved along the optical axis of the incident light while keeping the base adjustment member parallel to the mounting surface of the main body of the imaging device. Focus adjustment can be performed without changing the dimensional imaging position. Therefore, the focus position and the focus can be adjusted independently, and the focus adjustment becomes easy.
  • An imaging device includes: a spectral unit that splits incident light into light of a plurality of wavelengths; and a plurality of imaging bodies on which light of each wavelength split by the spectral unit is imaged.
  • An imaging position adjustment mechanism that adjusts an imaging position of light of each wavelength on the plurality of imaging bodies, wherein the imaging position adjustment mechanism includes:
  • the eleventh invention which is the adjustment mechanism of the second, third, fourth, fifth, sixth, seventh, eighth, ninth or tenth invention, light of each wavelength is concatenated. Since the image position can be adjusted, it is easy to adjust the photographing device. Since the manufacturing error of the spectroscopic means can be absorbed by the imaging position adjusting mechanism, the manufacture of the spectroscopic means and the like can be facilitated, and the cost can be reduced.
  • the imaging device is a 3CCD camera.
  • the image formation state of light incident on each CCD element can be made uniform, so that the quality of a reproduced image can be improved.
  • a photographing apparatus is the imaging device according to the first or the second invention, wherein the imaging body is a line CCD! [
  • FIG. 1 is a schematic side view of a 3 CCD camera to which the imaging position adjusting mechanism 10 of the present embodiment is applied.
  • FIG. 2 is a schematic front view of a 3 CCD camera to which the imaging position adjusting mechanism 10 of the present embodiment is applied.
  • FIG. 3 is a schematic plan view of a 3 CCD camera to which the imaging position adjusting mechanism 10 of the present embodiment is applied.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG.
  • FIGS. 5A and 5B are explanatory diagrams each showing the image forming position adjusting mechanism 10 of the present embodiment alone, wherein FIG. 5A is a schematic plan view, FIG. 5B is a schematic front view, and FIG. FIG. 1 is a view on line C. 6 is (A) a sectional view taken along line VIA-VI in FIG. 5, and (B) is a sectional view taken along line VIB-VIB in FIG.
  • FIG. 7A is an enlarged view of a main part of FIG. 6A
  • FIGS. 7B and 7C are explanatory views of a state where the eccentric port 53 is rotated.
  • FIG. 8A is a plan view of the base adjustment member 21 alone
  • FIG. 8B is a plan view of the main body member 31 of the fine adjustment member 30
  • FIG. 8C is a plan view of the fine adjustment member 30.
  • FIG. 4 is a plan view of the holding member 40 alone.
  • FIG. 9 is a schematic explanatory diagram of the second technique.
  • FIG. 10 is an enlarged explanatory view of a mounting portion between the adjustment mechanism main body 20 and the support frame 11.
  • FIG. 11 is a diagram showing a model in which the adjustment mechanism main body 20 is simplified.
  • FIG. 12 is a view for explaining the movement of the member B.
  • FIG. 13 is a view for explaining the movement of the member C. BEST MODE FOR CARRYING OUT THE INVENTION
  • the imaging position adjusting mechanism of the present invention is for adjusting an imaging position of incident light incident on a light receiving surface of an imaging body in an imaging apparatus having an imaging body such as a CCD or a film. Therefore, do not move an optical system such as a lens disposed between the object to be photographed and the imaging object. It is characterized in that the imaging position can be adjusted.
  • the imaging position adjusting mechanism of the present invention can be applied to a CCD camera, a scanner, and the like.
  • a CCD camera a CCD camera
  • a scanner a CCD camera
  • the imaging position adjusting mechanism is applied to a 3 CCD camera as a representative will be described.
  • FIG. 1 is a schematic side view of a 3 CCD camera to which the imaging position adjusting mechanism 10 of the present embodiment is applied.
  • FIG. 2 is a schematic front view of a 3 CCD camera to which the imaging position adjusting mechanism 10 of the present embodiment is applied.
  • FIG. 3 is a schematic plan view of a 3CCD camera to which the imaging position adjusting mechanism 10 of the present embodiment is applied.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. In FIGS. 2 and 3, the adjustment mechanism main body 20 of the imaging position adjustment mechanism 10 located on the front surface and the rear surface is not shown for easy understanding of the structure.
  • reference numeral BF indicates a main body frame of the camera.
  • the body frame BF has a through hole Fh penetrating the center thereof.
  • a lens L is provided on the outer surface of the main frame BF, and a prism PR is provided on the inner surface of the main frame BF at a position sandwiching the through hole Fh of the main frame BF between the main frame BF and the lens L.
  • the prism PR has three emission surfaces ES, and is supported by the adjustment mechanism main body 20 of the imaging position adjustment mechanism 10 of the present embodiment at a position opposed to the three emission surfaces ES.
  • CCDs are arranged respectively.
  • the incident light is split into light of three wavelengths by the prism PR, and the split light of three wavelengths is emitted from the emission surface ES. Then, since the image is formed on the light receiving surface of the CCD, the light of each wavelength can be detected by the CCD and photographed (Fig. 4).
  • reference numeral 11 denotes a pair of support frames of the imaging position adjusting mechanism 10 of the present embodiment.
  • the pair of support frames 11, 11 are erected on the inner surface of the main body frame BR of the 3C CD camera so as to sandwich the prism PR from the side.
  • Each of the support frames 11 is substantially parallel to the three emission surfaces ES of the prism PR on its upper surface, front surface, and rear surface when attached to the main body frame BF, in other words, emitted from each emission surface ES.
  • the optical axis direction of light It has three mounting surfaces lis that are formed to intersect.
  • the adjusting mechanism main body 20 has a pair of ports inserted through the through holes 21h (see FIG. 5 (A)) provided at the left and right ends of the base adjusting member 21 from the surface of the base adjusting member 21.
  • 21b, 21b is attached to the mounting surface lis by screwing it into a screw hole (not shown) provided on the mounting surface lis.
  • panel members 14 are disposed between the pair of mounting surfaces lis, lis and both ends of the adjusting mechanism main body 20, respectively.
  • the panel member 14 is formed in a substantially trapezoidal shape; the panel member 14 is disposed so that its longitudinal direction is the same as the width direction of the CCD (the left-right direction in FIG. 10A).
  • the panel member 14 has a leg 14a in contact with the mounting surface lis and a head 14b in contact with the adjustment mechanism main body 20, and the leg 14a and the head 14b are parallel to each other. Are formed so that the distance between the leg 14a and the head 14b changes while keeping the distance parallel.
  • the spring member 14 is configured such that its height BL changes while its head 14b is kept parallel to the mounting surface lis.
  • the adjusting mechanism main body 20 can be held in a state separated from the pair of mounting surfaces lis, lis by the panel member 14, and the pair of ports 21b, 21b are provided on the mounting surface lis with a large force. If the screw is unscrewed from the screw hole (not shown), the adjusting mechanism main body 20 can be moved closer to or away from the pair of mounting surfaces lis, lis.
  • the panel member 14 is disposed so that its longitudinal direction is parallel to the width direction of the CCD (the left-right direction in FIG. 10A), when the port 21b is tightened, the CCD Of the adjustment mechanism main body 20 in the width direction can be prevented. Then, by adjusting the tightening force of the pair of bolts 21b, 21b so that the height BL force S of the pair of nonet members 14 and 14 is the same, both ends of the adjustment mechanism body 20 and the pair of mounting surfaces Since the distance between lis and lis can be the same, the adjusting mechanism body 20 and the pair of mounting surfaces lis and lis can be maintained at TO.
  • the distance between the adjusting mechanism body 20 and the pair of mounting surfaces lis, lis, that is, the light receiving surface of the CCD and the emission surface E of the prism PR The distance to S can be adjusted while maintaining the adjustment mechanism body 20 and the pair of mounting surfaces lis and Us in parallel.
  • the adjustment mechanism main body 20 can be moved along the optical axis direction, the focus adjustment of the CCD can be performed without changing the imaging position on the light receiving surface of the CCD. Therefore, since the imaging position and the focus can be adjusted independently, focus adjustment can be facilitated.
  • the spring member 14 is a base biasing means described in the claims, and the pair of ports 21b, 21b is a base fixing means described in the claims.
  • the adjusting mechanism main body 20 can be tilted along the axial direction of the CCD (the vertical direction in FIGS. 2 and 3) with respect to the mounting surface 1 Is of the support frame 11, so that the emission surface ES of the prism PR.
  • the light receiving surface of the CCD can be inclined.
  • the inclination of the light receiving surface of the CCD with respect to the emission surface ES of the prism PR can be adjusted.
  • the force can be adjusted so that light is incident perpendicular to the light receiving surface of the CCD.
  • grooves llg and 20g are provided along the front-rear direction on the lower surface of the mounting surface lis and the base adjustment member 21 of the adjusting mechanism body 20 facing the mounting surface lis, respectively. If the leg 14a and the head 14b of the spring 14 are attached to the grooves 11g and 20g, respectively, the panel member 14 will be oriented in the direction orthogonal to the axial direction, By tilting in the axial direction, the adjustment mechanism main body 20 can be prevented from moving in the axial direction of the CCD.
  • the base urging means is not limited to the panel member 14, but the adjusting mechanism main body 20 and the pair of mounting surfaces lis, lis are kept parallel, and the adjusting mechanism main body 20 is mounted along the optical axis direction.
  • the surface lis force is not particularly limited as long as it can be urged in the separating direction.
  • a plunger 15 may be used, which is disposed on the mounting surface l is such that its outer end protrudes from the mounting surface l is (FIG. 10 (B)). ).
  • two plungers 15 and 15 are provided on one mounting surface lis, If a screw hole into which 2 lb of Porto is screwed is formed between the two plungers 15 and 15, when the Porto 21b is moved forward and backward, the adjusting mechanism main body 20 will have the CCD It can be prevented from leaning in the width direction.
  • the upper end of the support frame 11 is parallel to the normal direction of the mounting surface lis, and the adjusting mechanism main body 20 If the guide plate 12 having an inner surface that comes into contact with the side surface of the adjusting mechanism main body 20 is provided when the pair of ports 21 b, 21 is moved forward and backward, the side surface of the adjusting mechanism main body 20 is guided by the inner surface of the guide plate 12.
  • the adjusting mechanism main body 20 can be reliably moved in parallel along the normal direction of the mounting surface lis.
  • a notch 21c is formed on the side surface of the adjusting mechanism body 20 at right angles to the lower surface of the adjusting mechanism body 20, and a notch at right angles to the mounting surface lis is formed on the side surface of the support frame 11; If the pin P is installed between the notch and the notch, the adjustment mechanism body 20 can be moved more surely along the normal direction of the mounting surface lis.
  • the base urging means may not be provided, and the base adjustment member 21 of the adjustment mechanism body 20 may be provided.
  • the lower surface of the adjusting mechanism main body 20 may be fixed to the supporting frame 11 by directly contacting the lower surface of the supporting frame 11 with the mounting surface lis of the supporting frame 11.
  • the imaging position adjusting mechanism 10 does not need to be provided with the support frame 11, and may have a configuration in which the adjusting mechanism main body 20 is directly mounted on the frame BR. Even in this case, if the base biasing means such as the panel member 14 is provided on the frame BF, the inclination of the light receiving surface of the CCD with respect to the focus and the optical axis can be adjusted.
  • FIGS. 5A and 5B are explanatory views of the image forming position adjusting mechanism 10 of the present embodiment alone, wherein FIG. 5A is a schematic plan view, FIG. 5B is a schematic rear view, and FIG. FIG. 6A is a sectional view taken along the line VIA-VIA in FIG. 5, and FIG. 6B is a sectional view taken along the line VIB-VIB in FIG. 7A is an enlarged view of a main part of FIG. 6A, and FIGS. 7B and 7C are explanatory views of a state in which the eccentric bolt 53 is rotated. Fig.
  • FIG. 8 (A) is a plan view of the base adjustment member 21 alone, (B) is a plan view of the main body member 31 of the fine adjustment member 30 and (C) is a holding of the fine adjustment member 30.
  • FIG. 3 is a plan view of a single member 40.
  • the adjusting mechanism main body 20 includes the above-described base adjusting member 21 and a fine adjusting member 30 attached to the base adjusting member 21.
  • the adjusting member 30 is composed of a main body member 31 and a holding member 40.
  • members 8, B, and C are models in which the base adjustment member 21 of the adjustment mechanism main body 20, the main body member 31 of the fine adjustment member 30, and the holding member 40 are respectively simplified.
  • the member B is provided so as to be movable along the upper surface of the member A with respect to the member A, and the member C is provided so as to be movable along the lower surface of the member B.
  • the symbol S is a spring, and corresponds to a panel of a moving mechanism described later.
  • the panel S has an axial direction provided on the upper surface of the member A and on the right side of the member A, and a member separating the member B from the member A. (Rightward in Fig. 12).
  • Symbol E denotes an eccentric shaft, which corresponds to an eccentric shaft of a moving mechanism described later.
  • the eccentric shaft E has a center axis perpendicular to the upper surface of the member A, and has a center portion E 2 rotatably mounted around the center axis.
  • An eccentric portion E1 having a central axis is provided, and is disposed so as to sandwich the member B between the eccentric portion E1 and the spring S.
  • Reference sign D is an eccentric shaft, which corresponds to a moving unit described later.
  • the eccentric shaft D has a center axis perpendicular to the upper surface of the member B, and a shaft D2 rotatably mounted around the center axis.
  • an eccentric portion D1 having an eccentric central axis.
  • the eccentric portion D1 is inserted into a long hole ch provided in the member C. Next, the operation will be described.
  • the member B is sandwiched between the side (left and right directions in Fig. 12) force by the spring S and the eccentric shaft E, and the side BA of the eccentric shaft E is It is pressed against the eccentric E1. From this state, if the eccentric shaft E is rotated around the center axis of the shaft portion E2, the center axis of the eccentric portion E1 revolves around the center axis of the shaft portion E2 of the eccentric shaft E.
  • the angle ⁇ between the center of the eccentric portion E1 and the line passing through the shaft portion E2 changes with respect to a reference plane CA parallel to the side surface BA of B and passing through the center axis of the shaft portion E2.
  • the member B Conversely, if the eccentric shaft E is rotated so that the distance DL becomes shorter, the member B is pushed back to the right by the biasing force of the spring S by the amount of change L1 and L2 of the distance DL.
  • the member B can be moved leftward by the amount of change L 1, L 2 of DL. In other words, by rotating the eccentric shaft E, the member B can be moved rightward and leftward along a direction perpendicular to the side surface BA.
  • the eccentric shaft D is rotated around the center axis of the shaft portion D 2, the center axis of the eccentric portion D 1 revolves around the center axis of the shaft portion D 2.
  • the angle formed by the line passing through the center of the eccentric portion D1 and the shaft portion D2 changes with respect to the axial direction of the elongated hole ch of the member C and the reference plane CB passing through the TO and the central axis of the shaft portion D2.
  • the eccentric portion D 1 moves the member C in a direction orthogonal to the axial direction of the long hole ch while moving along the long hole ch of the member C, so that the long hole ch of the member C is moved from the reference plane CB.
  • the distance DL to the axis can be changed. And, since the shaft portion D 2 of the eccentric shaft D is attached to the member B, if the eccentric shaft D is rotated, the member C is perpendicular to the member B with respect to the member B. You can move it to the right or to the left along the direction you want to move. As described above, since the members B and C are configured to move with a very simple structure using the eccentric shaft, the adjusting mechanism body 20 of the present embodiment has a compact configuration. Thus, the overall configuration of the imaging position adjusting mechanism 10 can be made compact.
  • the base adjustment member 21 is a plate-shaped member formed in a substantially U shape in plan view.
  • the base adjustment member 21 has a lower surface facing the mounting surface lis of the support frame 11 and an upper surface parallel to the lower surface (hereinafter, referred to as a reference surface 21a).
  • a pair of through holes 21h and 21h penetrating between the lower surface and the reference surface 21a are formed at the left and right ends of the base adjustment member 21.
  • the pair of through holes 21 h 21 W and the pair of ports 21 b, 21b is passed through the reference surface 21a of the base adjustment member 21 and screwed into the screw holes of the pair of support frames 11 1 and 11 to tighten the base adjustment member 21. It can be fixed at 11 or 11 (see Figures 1-4). Next, the fine adjustment member 30 will be described.
  • reference numeral 31 indicates a main body member of the fine adjustment member 30.
  • the main body member 31 is a plate-shaped member, and a holding member 40 for holding a CCD is attached to a substantially central portion of a lower surface thereof. It is.
  • a peripheral portion hereinafter, referred to as a sliding surface 31 a
  • a portion to which the holding member 40 is attached is connected to a light receiving surface of the CCD held by the holding member 40.
  • the sliding surface 31a is formed on a parallel flat surface, and the sliding surface 31a faces the reference surface 21a of the base adjustment member 21 in a state where the holding member 40 is arranged in the cutout portion 21g of the base adjustment member 21. It is installed in contact (see Figure 6).
  • a pair of left and right mounting portions 32, 32 are provided at both left and right end portions of the main body member 31, and the pair of mounting portions 32, 32 are provided on the pair of mounting portions 32, 32.
  • a pair of through holes 32h, 32h penetrating in the thickness direction are respectively formed.
  • the pair of through holes 32h, 32h are formed such that the hole diameter A is larger than the shaft diameter B of the screw portion of the fixed port 32a, which will be described later. The reason is as follows.
  • a pair of the sliding surface 31a of the main body member 31 of the fine adjustment member 30 is brought into surface contact with the reference surface 21a of the base adjustment member 21.
  • a pair of fixed ports 32a, 32a are passed through the through holes 32h, 32h of the fixed port 32a, and a screw portion of the fixed port 32a is screwed into a screw hole 22h (see FIG. 8) provided in the base adjustment member 21 and tightened. Then, the sliding surface 31a of the main body member 31 can be strongly pressed against the reference surface 21a of the base adjustment member 21.
  • the frictional force between the sliding surface 31a of the main body member 31 and the reference surface 21a of the base adjustment member 21 increases, so that the main body member 31 is not moved with respect to the base adjustment member 21. Can be fixed. Therefore, the CCD supported by the holding member 40 via the main body member 31 and the base adjusting member 21 is fixed to the pair of supporting frames 11 1 and 11.
  • the reference surface 21a of the base adjustment member 21 and the sliding surface 31a of the main body member 31 are both formed as flat surfaces, when the pair of fixed ports 32a, 32a are tightened, the main body member 3 1
  • the frictional force between the sliding surface 31a of the base member 2 and the reference surface 2la of the base adjustment member 21 increases, and both can be firmly fixed.
  • the tightening force of the pair of fixed ports 32a, 32a is weakened, the frictional force between the sliding surface 31a of the main body member 31 and the reference surface 21a of the base adjustment member 21 decreases, so that the main body member 3 1 is movable with respect to the base adjustment member 21.
  • the through-hole 32h is formed so that the hole diameter A is larger than the shaft diameter B of the fixed port 32a, the screw portions of the pair of fixing bolts 32a, 32a are screwed into the screw holes 2211.
  • the body member 31 can be moved with respect to the base adjustment member 21 as it is.
  • the sliding surface 31a of the main body member 31 is in contact with the reference surface 21a of the base adjustment member 21 while the tightening force of the pair of fixed ports 32a, 32a is in contact with the sliding surface 31a of the main body member 31. If the force pressing against the reference surface 21a of the base adjustment member 21 is loosened to the extent that the force is no longer applied, the main body member 31 can be moved even if the sliding surface 31a of the base adjustment member 21 is kept in contact with the reference surface 21a. Since the main body member 31 can be moved relative to the base adjustment member 21, the main body member 31 can be surely moved in parallel along the reference surface 21 a. By moving the main body member 31, the CCD supported by the holding member 40 can be moved together with the main body member 31, so that the CCD is moved along the reference surface 2 la of the base adjustment member 21. One and can be moved 5 Ri ⁇ .
  • the focus of the CCD and the inclination of the light receiving surface of the CCD with respect to the optical axis of the incident light are not changed. It is possible to adjust the imaging position of the two-dimensional incident light on the light receiving surface.
  • the pair of fixed ports 32a, 32a is a means for fixing the fine adjustment member as set forth in the claims.
  • an opening 30 h is formed at a position where the holding member 40 is attached, and penetrates the thickness direction of the holding member 40.
  • the opening 301 l is used to connect a CCD wiring (not shown) to the outside. This is for derivation, and the CCD wiring led out from the opening 30h is connected to an external device such as an AZD variable.
  • a moving mechanism for moving the main body member 31 with respect to the base adjustment member 21 will be described in detail.
  • the adjustment mechanism main body 20 of the present embodiment includes a front-rear movement mechanism for moving the main body member 31 in the front-rear direction of the base adjustment member 21 and a left-right movement for moving the main body member 31 in the left-right direction of the base adjustment member 21. Mechanism.
  • a support portion 25 is provided on a reference surface 21a at a central portion of a rear end of the base adjustment member 21.
  • the main body member 31 has a pressure receiving surface 35a orthogonal to the sliding surface 31a at a position facing the front surface of the support portion 25 of the base adjustment member 21 when attached to the base adjustment member 21.
  • a panel 52 (corresponding to panel S in FIG. 10) is provided between the pressure receiving surface 35a of the main body member 31 and the front surface of the support portion 25 of the base adjustment member 21.
  • the spring 52 has a direction perpendicular to the normal line of the reference surface 21a of the base adjustment member 21 and a direction parallel to the front-rear direction (vertical direction in FIG. 5) of the base adjustment member 21 (hereinafter referred to as an urging direction). ) Is arranged to be able to expand and contract along.
  • a support surface 32s (FIG. 10), which is directly connected to the pressure receiving surface 35a and the TO and sliding surface 31a.
  • the base adjustment member 21 has an eccentric port 53 in front of each support surface 32s in a state where the main body member 31 is attached to the base adjustment member 21 (corresponding to the eccentric axis E in FIG. 1 +0). ) Are provided respectively.
  • the eccentric port 53 includes a columnar port head 53a and a screw shaft 53b.
  • the center axis TP of the screw shaft 53b is aligned with the center axis HP of the port head 53a by ffi 1 and the port head. It is formed so as to be offset in the radial direction of 53a.
  • the eccentric port 53 has its screw shaft 53b screwed into a screw hole 231 ⁇ provided on the base adjusting member 21 and having a central axis parallel to the normal line of the reference surface 21a. It is arranged so that the central axis HP of the V-shaped door 53a is ⁇ with respect to the normal line of the reference surface 21a of the base adjustment member 21.
  • the port head 53a is disposed such that its side surface is a cylindrical surface orthogonal to the reference surface 21a.
  • the pressure receiving surface 35 a of the main body member 31 is urged forward by the panel 52, so that the pair of attachment portions 3 2, 3 2 support
  • the holding surfaces 32s, 32s are pressed against the side surface of the pair of eccentric ports 53, 53 facing the supporting surface 32s of the bolt head 53a, in other words, the rear end of the port head 53a.
  • the biasing force of the spring 52 is supported by the pair of eccentric ports 53, 53, the biasing force between the pair of eccentric ports 53, 53 and the support portion 25 of the base adjustment member 21 is provided.
  • the body member 3 1 is held in force.
  • the screw shaft 53b of the eccentric port 53 is disposed so that its central axis TP is offset in the radial direction with respect to the central axis HP of the bolt head 53a. Therefore, if the screw shaft 53b is rotated around its central axis TP, the length from the central axis TP of the screw shaft 53b of the eccentric port 53 in the biasing direction to the rear end of the port head 53a (hereinafter simply referred to as bias) The length L2 in the direction (corresponding to the distance DL in FIG. 10) changes according to the rotation angle of the screw shaft 53b.
  • the main body member 31 is constantly urged forward by the panel 52, and the support surfaces 32a, 32a of the pair of mounting portions 32, 32 always maintain the eccentric port 53 of the port head. Since the screw shaft 53b of the eccentric port 53 is rotated by rotating the screw shaft 53b of the eccentric port 53 to change the biasing direction length L2, the mounting portion 32 is biased in accordance with the change. Can be moved along.
  • the pair of eccentric bolts 53 and 53 are arranged such that the inclinations 0 1 (FIGS. 7B and 7C) of the long diameter LD of the pair of eccentric bolts 53 and 53 become the same angle. If the amount of rotation of the screw shafts 53b, 53b is adjusted, the amount of movement of each mounting portion 32 in the biasing direction becomes the same, so that the main body member 31 is connected to the pair of eccentric ports 5 3, 5 3 The main body member 31 can be translated in the urging direction while being held between the base adjustment member 21 and the support portion 25.
  • the length L2 in the biasing direction changes, but the length L3 is the same as the change amount L3.
  • Only the main body member 31 can be moved along the biasing direction, so that the imaging position on the light receiving surface of the CCD is eccentric in the direction opposite to the moving direction of the main body member 31 along the biasing direction.
  • the port 53 can be moved by the same length as the change amount L 3 of the length L 2 in the biasing direction of the port 5 3.
  • the left-right moving mechanism has substantially the same configuration as the front-rear moving mechanism.
  • a side support portion 26 is provided on the door surface 21a.
  • the pressure receiving portion orthogonal to the sliding surface 31 a is located at a position facing the right side surface of the side support portion 26 of the base adjustment member 21.
  • a surface (hereinafter referred to as a side pressure receiving surface 35b) is provided.
  • a spring 56 (corresponding to the spring S in FIG. 10) is provided between the side pressure receiving surface 35b of the main body member 31 and the right side surface of the support portion 25 of the base adjustment member 21. .
  • the spring 56 is perpendicular to the normal of the reference surface 2 la of the base adjustment member 21 and is parallel to the left-right direction (the left-right direction in FIG. 5) of the base adjustment member 21 (hereinafter referred to as lateral biasing). (Referred to as direction).
  • the base adjustment member 21 has an eccentric port 57 (to the eccentric shaft E in FIG. 10) to the right of the side support surface 36 s. (Applicable).
  • the eccentric port 57 has substantially the same configuration as the eccentric port 53 of the front-rear moving mechanism, and has a screw shaft 57b provided on the base adjusting member 21 and a normal line to the reference surface 21a. It is screwed into a screw hole 27h having a central axis, and is disposed such that the side surface of the port head 57a is a cylindrical surface orthogonal to the reference surface 21a.
  • the side pressure receiving surface 35 b of the main body member 31 is urged to the right by the panel 56, so that the side support surface is provided. Since the main body member 31 is held between the eccentric port 57 and the support portion 26 of the base adjustment member 21 with the 36b pressed against the left end of the port head 57a of the eccentric port 57, is there.
  • the length in the side biasing direction (corresponding to the distance DL in FIG. 10)) changes according to the rotation angle of the screw shaft 57b, but the body member 31 is always rightward by the spring 56. Has been energized. Therefore, if the length of the side urging direction is changed by rotating the screw shaft 57b of the eccentric port 57, the body member 31 can be accurately moved in the side urging direction by the amount of the change. Can be moved.
  • CCD light reception The imaging position on the surface is moved along the side urging direction in the direction opposite to the moving direction of the main body member 31 by the same amount as the amount of change in the length of the eccentric port 57 in the side urging direction. I can do it.
  • the left and right moving mechanism has only one eccentric port 57, but when the main body member 31 is moved in the lateral biasing direction by the left and right moving mechanism, the pair of mounting portions 3 2 and 3 2 Since the support surfaces 32s, 32s move while being in contact with the rear end of the port head 53a of the eccentric port 53 of the longitudinal movement mechanism 51, the main body member 31 is moved laterally even with one eccentric port 57. Able to move securely by ⁇ 1 along the biasing direction.
  • the main body member 31 can be independently moved in the directions orthogonal to each other (the biasing direction and the lateral biasing direction) by the forward and backward moving mechanism and the left and right moving mechanism. Irrespective of the rotation of the eccentric ports 53, 57 in the moving mechanism, the amount of movement of the main body member 31 in the urging direction and the side urging direction can be adjusted accurately. Then, the two-dimensional imaging position on the light receiving surface of the CCD can be moved independently along the urging direction and the lateral energizing direction.
  • the eccentric port 53 of the front-rear movement mechanism and the eccentric bolt 57 of the left-right movement mechanism are the position adjustment parts referred to in the claims, and
  • the panel 52 of the mechanism and the panel 56 of the left-right moving mechanism are the urging means described in the claims.
  • the urging means is not limited to the panel, and is not particularly limited as long as it can urge the main body member 31 in the urging direction or the side urging direction. It may be.
  • the position adjusting portion is not limited to the eccentric bolt 53, and is not particularly limited as long as the main body member 31 can be moved in the urging direction or the side urging direction in parallel. It may be a screw or the like.
  • the pair of ports 21b, 21b are rotated to adjust the tightening state, and the entire adjustment mechanism main body 20 is moved closer to and away from the emission surface ES of the prism PR, so as to be on the light receiving surface of each CCD. Focus on.
  • the pair of fixed ports 32a, 32a are loosened so that the main body member 31 is movable with respect to the base adjustment member 21.
  • the pair of fixed ports 32a J2a are moved in parallel along the reference surface 21a of the base adjustment member 21 without the sliding surface 31a of the main body member 31 being separated from the reference surface 21a of the base adjustment member 21. It is most suitable to loosen as much as possible.
  • the pair of eccentric ports 53, 53 of the longitudinal movement mechanism 51 are rotated to move the main body member 31 in the biasing direction. Then, the test pattern formed on the light receiving surface of the CCD moves on the light receiving surface of the CCD in a direction opposite to the moving direction of the main body member 31. Then, when the imaging position of the test pattern moves to a desired position in the biasing direction, the rotation of the pair of eccentric ports 53 and 53 is stopped. Then, the main body member 31 is connected to the port head 53a of the pair of eccentric ports 53, 53 and the support portion of the base adjustment member 21. 25, and is held at the position where rotation of the pair of eccentric ports 53, 53 is stopped.
  • the main body member 31 is moved in the side urging direction, and the image forming position of the test pattern in the side urging direction is moved to a desired position. Then, the main body member 31 is held.
  • the main body member 31 is fixed to the base adjustment member 21 with the test pattern arranged at a desired position on the light receiving surface of the CCD. The adjustment of the focal position and the focus is completed.
  • the focal position and the focus of the CCD held by each adjustment mechanism main body 20 can be adjusted.
  • the image position adjustment mechanism 10 is used in a three-CCD camera, the imaging position of each CCD can be adjusted independently of the imaging position adjustment state of the other CCDs. Even so, the focus position and focus can be easily adjusted. Since the imaging state of light incident on each CCD can be finely adjusted independently, the difference in the imaging state between each CCD can be reduced. Therefore, the uniformity of the imaging state in all CCDs can be improved, and the quality of the reproduced image can be improved.
  • the focus position and focus can be individually adjusted for each CCD, manufacturing errors of the prism PR and other members can be absorbed by each adjusting mechanism body 20. Therefore, the tolerance of the manufacturing error required for the prism PR and the like is widened, so that the manufacturing of the prism PR and the like can be facilitated and the manufacturing cost can be reduced.
  • the width of the light receiving surface of the CCD becomes very narrow, so that the imaging position must be adjusted very precisely and finely. If 10 is used, it is possible to reliably form an image on the light receiving surface even for a line CCD with a very narrow light receiving surface.
  • the 3 CCD camera adopts the imaging position adjusting mechanism 10 of the present embodiment, the focus adjustment of each CCD can be performed easily and accurately. Therefore, it is possible to adopt a line CCD as an imaging body. Then, a 3 CCD camera equipped with a line CCD can be used for a device that captures images at a high speed, for example, a device that inspects for defects in a continuously conveyed sheet. Even for sheets, the accuracy of inspection for defects can be increased.
  • the eccentric bolts 53, 57 are used as the position adjusting parts, and the springs 52, 56 are used as the biasing means, so that the configuration of the moving mechanism can be made very simple. Since the adjustment mechanism main body 20 of the present embodiment can have a compact configuration, it is possible to arrange the light receiving surface of the CCD very close to the emission surface ES of the prism PR. Since the CCD light receiving surface can be placed close to the lens L, the number of pixels of the CCD element existing in the focal point on the CCD light receiving surface can be increased even if a small-diameter lens L is used. The resolution of the object, that is, the inspection accuracy, can be improved.
  • the holding member 40 of the fine adjustment member 30 is provided so as to be movable with respect to the main body member 31 as described below, the imaging state of light incident on the CCD can be adjusted more accurately. be able to.
  • the main body member 31 of the fine adjustment member 30 has a pair of holding portion mounting members penetrating in the thickness direction between the opening 31h and the pair of through holes 32h, 32h. Holes 3111 and 31h are provided.
  • a mounting surface 31s which is a flat surface parallel to the sliding surface 31a, is provided in a substantially central portion of the lower surface of the main body member 31 and between the pair of holding portion mounting holes 3111 and 31h. (Fig. 6 (B)).
  • the holding member 40 has a flat upper surface 40s, that is, a surface facing the mounting surface 31s of the main body member 31.
  • the holding member 40 is provided with a CCD mounting portion 40g at the center thereof. When the CCD is mounted on the CCD mounting portion 40g, the light receiving surface of the CCD is set to be the upper surface 40s and ⁇ . Is formed.
  • a pair of screw holes 40h and 401 ⁇ are formed in the upper surface 40s of the holding member 40 at both left and right ends thereof.
  • the pair of screw holes 40h, 40h are inserted into the pair of holding portion mounting holes 3111, 31h from the surface of the main body member 31.
  • ⁇ ⁇ The pair of holding member fixing ports 41, 41 passed through are screwed together.
  • the pair of holding member fixing ports 41, 41 have shaft diameters of a pair of holding portion mounting holes 3 lh, 3 lh. Those smaller than the L diameter are used.
  • the holding member 40 is strongly pressed with its upper surface 40s against the mounting surface 31s of the main body member 31, and the frictional force between the two is reduced. Since it becomes larger, the holding member 40 can be fixed so as not to move with respect to the main body member 31.
  • the upper surface 40s of the holding member 40 and the mounting surface 31s of the main body member 31 are both formed as flat surfaces, when the pair of holding member fixing bolts 41, 41 are tightened, there is a gap between them. The generated friction force increases, and both can be firmly fixed.
  • the holding member 40 can be moved with respect to the main body member 31.
  • a pair of holding member fixing ports 41, 41 have a shaft diameter smaller than that of the pair of holding portion mounting holes 31h, 31h, a pair of holding members are used. If the fixing port 4 1, 4 1 is loosened to the extent that the upper surface 40 s of the holding member 40 is pressed against the mounting surface 3 Is of the main body member 31, the pair of screw holes 40 h, 401 ⁇ of the holding member 40 is loosened.
  • the holding member 40 can be moved relative to the main body member 31 even when the pair of holding member fixing bolts 41 and 41 are screwed together.
  • the holding member 40 can be moved while its upper surface 40s is in contact with the mounting surface 3Is of the main body member 31. Therefore, the holding member 40 can be surely moved in parallel along the mounting surface 31s. Since the mounting surface 31s of the main body member 31 is parallel to the sliding surface 31a, if the sliding surface 31a is brought into surface contact with the reference surface 2la of the base adjusting member 21, The holding member 40 can be moved in parallel along the reference surface 2la of the base adjustment member 21. Then, even if the holding member 40 is moved, the focus of the CCD held by the holding member 40 does not change the inclination of the light receiving surface with respect to the optical axis of the incident light.
  • the holding member 40 can be moved toward or away from or inclined to the mounting surface 31s of the main body member 31. Yes, it is possible to adjust the inclination of the light receiving surface with respect to the optical axis of the CCD focus / incident light. Then, since the focus can be adjusted by moving only the holding member 40, the focus adjustment becomes easy, and when the focus adjustment is performed, the other members move and the image formation position shifts. Can be prevented.
  • the holding member 40 is configured such that the CCD light receiving surface protrudes from the lower surface of the body member 31 when the CCD is mounted on the CCD mounting portion 40g of the CCD mounting portion, the light receiving surface of the CCD can be prism-shaped.
  • the release surface of the PR can be placed very close to the ES.
  • the number of pixels of the CCD element existing in the focal point on the light receiving surface of the CCD can be increased even if a small-diameter lens is used.
  • the resolution of the inspection target that is, the inspection accuracy can be improved.
  • a pair of screw holes 3 lb, 3 lb penetrating the main body member 31 in the thickness direction are formed at both front ends of the main body member 31.
  • the pair of screw holes 3 lb and 31b are disposed so that the central axis thereof is parallel to the normal line of the mounting surface 31s, and the forward and backward moving portions 42 of the holding member moving portion (the eccentric shaft in FIG. 10). (Corresponding to D) is screwed.
  • An operating shaft 42b is provided at a lower end of the shaft-like member 42a of the front-rear moving part 42.
  • the operating shaft 42b is arranged so that its central axis is parallel to the central axis of the shaft-like member 42a and offset in its radial direction.
  • a pair of long holes 40b, 40b (corresponding to the long holes ch in FIG. 10) are formed at both front ends thereof.
  • the axial direction of the pair of elongated holes 40b, 40b is parallel to the left-right direction of the holding member 40, and the length in the width direction is equal to the shaft diameter of the operating shaft 42b of the front and rear moving part 42. It is formed so that it becomes.
  • the operating shaft 42b of the front-rear moving part 42 is inserted into each of the pair of long holes 40b.
  • the shaft member 42a of the front-rear moving part 42 is rotated, the center axis of the screw hole 31b is The operating shaft 42b can be moved around, in other words, around the rotation axis of the shaft-shaped member 42a. Then, the operating shaft 42b moves in the width direction of the elongated hole 40b while moving in the elongated hole 40b along the axial direction thereof. By rotating the member 42a, the holding member 40 can be moved only in the width direction of the elongated hole 40b.
  • the holding member 40 can be moved in the front-rear direction of the main body member 31 by rotating the shaft-shaped member 42a of the front-rear moving part 42, so that the image-forming position on the light receiving surface of the CCD is changed.
  • the operating shaft 42 b can be moved in the direction opposite to the moving direction of the holding member 40 by the amount of movement of the main body member 31 in the longitudinal direction.
  • a screw hole 31c is formed on the rear left side of the main body member 31 so as to penetrate the main body member 31 in the thickness direction.
  • the screw hole 31c is disposed so that the center axis thereof is parallel to the normal line of the mounting surface 31s, and the side moving portion 43 of the holding member moving portion (corresponding to the eccentric shaft D in FIG. 10).
  • An operating shaft 43b is provided at the lower end of the shaft member 43a of the side moving portion 43.
  • the operating shaft 43b is provided at the center thereof.
  • the shaft is arranged so as to be parallel to the central axis of the shaft-like member 42a and offset in the radial direction.
  • a long hole 40c (corresponding to the long hole ch in FIG. 10) is formed on the rear left side.
  • the axial direction of the elongated hole 40c is parallel to the front-rear direction of the holding member 40, that is, the direction orthogonal to the axial direction of the elongated hole 40b, and the length in the width direction is the operation of the side moving portion 43.
  • the shaft 43b is formed to have the same diameter as the shaft diameter. The operating shaft 43b of the side moving portion 43 is inserted into the elongated hole 40c.
  • the operating shaft 43b can be moved around the center axis of the screw hole 31c, in other words, around the rotation axis of the shaft member 43a. . Then, the operating shaft 42b moves in the width direction of the elongated hole 40c while moving along the axial direction of the elongated hole 40c, so that the operating shaft 42b moves, that is, the axial shape of the front-rear moving part 42. By rotating the member 42a, the holding member 40 can be moved only in the width direction of the elongated hole 40c.
  • the holding member 40 can be moved in the left-right direction of the main body member 31, so that the imaging position on the light receiving surface of the CCD can be improved.
  • the position of the holding member 40 can be moved along the left-right direction of the main body member 31 by the amount of the left-right movement of the main body member 31 of the operating shaft 43b.
  • the holding member 40 can be independently moved along the direction perpendicular to each other by the front-rear moving part 42 and the side moving part 43, so that the shaft-shaped part of the other moving part Regardless of the rotation of the members 42a and 43a, the amount of movement of the holding member 40 in the front-rear direction and the left-right direction can be adjusted accurately. Then, the two-dimensional imaging position on the light receiving surface of the CCD can be independently moved along the front-rear direction and the left-right direction of the holding member 40. It is possible to accurately adjust the two-dimensional imaging position at.
  • the moving direction of the body ⁇ ⁇ material 31 by the longitudinal movement mechanism 51 and the longitudinal movement part 4 2 The moving direction of the holding member 40 by the left and right moving mechanism 55 can be matched with the moving direction of the holding member 40 by the lateral moving portion 43. Therefore, the movement of the CCD held by the holding member 40 can be adjusted more accurately and easily.
  • the distance between the center axis of the shaft member 42a and the center axis of the operating shaft 42b in the radial direction of the shaft member 42a in the front-rear moving part 42 is determined by the long diameter LD of the eccentric port 53 (see FIG. 7). And the distance between the center axis of the shaft member 43a and the center axis of the operating shaft 43b in the radial direction of the shaft member 43a in the side moving portion 43 is defined as an eccentric port. If the length of the major axis is shorter than the length of the long axis, the amount of movement of the CCD due to the rotation of the shaft member 42a will be reduced even if the shaft member 42a and the eccentric port 53 are rotated by the same angle.
  • the amount of movement of the CCD due to rotation can be made smaller than the amount of movement of the CCD due to rotation.Even if the power shaft member 43a and the eccentric port 57 are rotated by the same angle, the CCD movement amount due to the rotation of the shaft member 43a is 57 Make the amount of movement of the CCD smaller than the rotation of 7 ::
  • the imaging position can be finely adjusted by the holding member moving section. Quick adjustment and accurate adjustment can both be achieved.
  • the imaging position adjustment mechanism 10 of the present embodiment can be applied to imaging bodies of various devices.
  • the adjustment mechanism when applied to equipment that requires very high-precision inspection, for example, equipment that requires accuracy on the order of zm, the adjustment mechanism itself due to temperature changes in the place where the equipment is installed 2 Due to the expansion and contraction of 0, the focal position on the imaging body may be shifted. Therefore, the following configuration is preferable because the focal position shift due to expansion and contraction of the adjustment mechanism main body 20 can be minimized, and a line CCD with a narrow light receiving surface is used as the imaging body. Especially suitable for
  • the base adjustment member 21 is provided with a pair of screw holes 22 ⁇ 22h into which the screw portions of the pair of fixing ports 32a, 32a of the fine adjustment member fixing means are screwed.
  • a pair of through-holes 32h, 32h through which a pair of fixing ports 32a, 32a penetrate, and a pair of holding member fixing ports 41, 41 are attached to both left and right end portions of the main body member 31.
  • the pair of holding portion mounting holes 3 Hi Jlh has a symmetrical surface RS in which a line connecting the central axes thereof passes through the center lines of the pair of through holes 32 h and 32 h and is directly perpendicular to the sliding surface 31 a. It is arranged so as to be located above.
  • the center axis of the light receiving surface of the CCD passes through a line (hereinafter, referred to as a center line 40L) connecting the center axes of the pair of screw holes 40h, 40h of the holding member 40, and It is mounted so that it is located on a surface perpendicular to the upper surface 40s, in other words, a surface orthogonal to the sliding surface 31a, and a line connecting the central axes of the pair of screw holes 2211 22h (hereinafter referred to as a central line 20L).
  • the main body member 31 and the holding member 40 are fixed by the pair of fixing ports 32a, 32a and the pair of holding member fixing bolts 41, 41 so that the center line 40L is located on the symmetry plane RS.
  • Both the main body member 31 and the holding member 40 can be connected at symmetrical positions on the symmetry plane RS.
  • the optical axis is arranged so as to be included in the symmetry plane RS, even if the main body member 31 and the holding member 40 expand and contract due to a temperature change in the surrounding environment, the central axis of the CCD light receiving surface is , Can be arranged on the symmetry plane RS. Therefore, it is possible to prevent the position of the focal point on the light receiving surface of the CCD from being shifted due to a temperature change in the surrounding environment.
  • the holding member 40 is moved with respect to the main body member 31 to receive the CCD.
  • the deviation between the center line of the light receiving surface of the CCD and the symmetry plane RS is shifted only by the length of the movement of the holding member 40, and the amount can be reduced.
  • the length of the main member 31 and the holding member 40 is shifted only by the length obtained by multiplying the length by which the holding member 40 is moved by the temperature difference of the surrounding environment and the coefficient of thermal expansion of the material of the holding member 40.
  • the displacement of the focal position on the light receiving surface of the CCD due to expansion and contraction can be minimized.
  • a total of four fixing ports 32 a two at each end, are used.
  • the main body member 31 and the holding member 40 are fixed at two places at both ends of the main body member 31 in other words, in other words, two holding members are fixed at each end, for a total of four holding members
  • the main body member 31 has two through holes 32h and two holding portion mounting holes 3lh at both ends thereof.
  • the symmetry plane RS is defined by the perpendicular bisector of the line connecting the central axes of the two through holes 32h at each end and the central axis of the two holding portion mounting holes 31h at each end. Since this is a plane including the perpendicular bisector of the connecting line, the perpendicular bisector of the line connecting the central axes of the two screw holes 401 ⁇ at each end of the holding member 40 on this plane of symmetry RS. If the perpendicular bisector of the line connecting the central axes of the two screw holes 22h at each end of the base adjustment member 21 is arranged, the same effect as the above configuration can be obtained. it can.
  • the base adjustment member 21 when the base adjustment member 21 is mounted on the mounting surface lis by the pair of ports 21b, 21b, the plane including the center axis of the pair of ports 21b, 21b (base symmetry plane) coincides with the symmetry plane RS. Then, even if the base adjustment member 21 expands and contracts, the center axis of the light receiving surface of the CCD can be arranged on the symmetry plane RS, so that the focus on the light receiving surface of the CCD due to the temperature change of the surrounding environment. Position deviation can be further reduced.
  • the adjustment is made so that the center line of the light receiving surface of the CCD and the optical axis coincide.
  • the deviation between the center line of the light receiving surface of the CCD and the plane of symmetry in the width direction of the light receiving surface of the CCD can be reduced, the expansion of the base adjusting member 21, the main body member 31, and the holding member 40 can be achieved. The displacement of the focal position on the light receiving surface of the CCD due to contraction can be minimized.
  • the imaging position adjustment mechanism of the present invention is not only used for adjusting the position of a CCD in a CCD camera, but also for an imaging apparatus having an imaging body such as a film or a scanner, which adjusts incident light incident on a light receiving surface of the imaging body. It is possible to apply the imaging position to the adjustment.

Abstract

A mechanism for adjusting an image forming position and a photographing apparatus in which an image forming position on an photographing element can be adjusted easily and with high accuracy and positional shift can be adjusted easily and finely. In the apparatus for photographing an image formed on an imaging body by an incident light, the mechanism for adjusting the image forming position of the incident light on the imaging body comprises a base adjusting member (21) movable relatively to the body of the photographing apparatus along the direction of the optical axis of the incident light while adjusting the inclination to the optical axis of the incident light, a fine adjusting member (30) movable relatively to the base adjusting member (21) along the direction intersecting the optical axis of the incident light and being fixed with the imaging body, and a mechanism for moving the fine adjusting member (30) relatively to the base adjusting member (21) along the direction intersecting the optical axis of the incident light.

Description

明細書 結像位置調整機構および膨装置 技術分野  Description Imaging position adjustment mechanism and expansion device
本発明は、 結像位置調整機構および撮影装置に関する。 カメラや光を用いた検査 装置等の撮影装置では、 撮影する対象を、 レンズやプリズム等を通して C CDゃフ イルム等の撮像体の上に結像させる とによって、 その画像を撮影している。 撮影 される画像の質はレンズ等と撮像体との距離等の相対的な位置の影響を大きく受け るため、 膨装置においては、 結像位置の調整が非常に重要である。  The present invention relates to an imaging position adjustment mechanism and an imaging device. 2. Description of the Related Art In a photographing apparatus such as an inspection apparatus using a camera or light, an image of an object to be photographed is formed by forming an image on a photographing object such as a CCD film through a lens or a prism. Since the quality of the captured image is greatly affected by the relative position such as the distance between the lens and the image pickup body, the adjustment of the image forming position is very important in the expansion device.
本発明は、 撮影装置の結像位置を調整する結像位置調整機構および、 この結像位 置調整機構を備えた撮影装置に関する。 背景技術  The present invention relates to an imaging position adjustment mechanism for adjusting an imaging position of an imaging device, and an imaging device including the imaging position adjustment mechanism. Background art
従来から、 撮像体上の結像位置を調整する方法として、 入射される光の光軸方向 に沿ってレンズや撮像体を移動させることが行われている (例えば、 特許文献 1 : 従細 1 )  2. Description of the Related Art Conventionally, as a method of adjusting an image forming position on an image pickup body, a lens or an image pickup body is moved along an optical axis direction of incident light (for example, Patent Document 1: Subordinate 1) )
従来例 1の焦点位置調整機構は、 顕微鏡撮影装置の C CDカメラュニッ卜に設け られており、 C C D素子が取り付けられた鏡筒を光軸方向に移動させることによつ て C C D素子とレンズとの光軸方向の距離を調整するものである。  The focus position adjusting mechanism of Conventional Example 1 is provided in a CCD camera unit of a microscope photographing apparatus, and moves the lens barrel having the CCD element mounted in the optical axis direction to move the CCD element and the lens. This is for adjusting the distance in the optical axis direction.
しかるに、 従来例 1の焦点位置調整機構は、 C CD素子とレンズとの光軸方向の 距離、 つまり、 ピント調整はできるが、 C CD素子の光軸に対する傾きや、 C CD —素子上における焦点の 2次元的な位置は調整することはできない。 したがって、 C CD素子の光軸に対する傾きや、 C CD素子上における焦点の 2次元的な位置はレ ンズと C CD素子等を保持する部材等の製作誤差や取付精度に依存するため、 各部 材の加工精度等を非常に高くしなければならず、 各部材の製造が難しぐ 製作コス 卜が高くなるという問題がある。  However, although the focal position adjusting mechanism of Conventional Example 1 can adjust the distance between the CCD element and the lens in the optical axis direction, that is, the focus can be adjusted, the inclination of the CCD element with respect to the optical axis and the focus on the CCD element The two-dimensional position of can not be adjusted. Therefore, the inclination of the CCD element with respect to the optical axis and the two-dimensional position of the focal point on the CCD element depend on the manufacturing error and mounting accuracy of the lens and other components that hold the CCD element, etc. Therefore, there is a problem in that the processing accuracy and the like must be extremely high, and it is difficult to manufacture each member.
ピントだけでなく、 C CD素子の光軸に対する傾きを調整する技術として、 従来 例 2に示す技術 (特許文献 2 ) がある。 従来例 2の技術は、 図 9に示すように、 球面状に凹んだ曲面 br を有する凹ガラス bと、 凹ガラスの球面と同じ曲率を有する凸の曲面 arを有する凸ガラス aを備えて レる。 凹ガラス bは、 その背面がプリズム Pの出射面に取り付けられており、 凸ガ ラス aの背面には C CDの受光面が取り付けられている。 このため、 凹ガラス の 曲面 と凸ガラス aの曲面 ar とを合わせれば、 両者の間に隙間ができないように 取り付けることができ、 しかも、 凸ガラス aの曲面 ar を凹ガラス bの曲面 br に沿 つて自由に移動させることができるから、 プリズム Pを通して入光される光の光軸 に対する C CDの受光面の傾きを調整することができ、 光軸と受光面が垂直になる ように調整できる。 As a technique for adjusting not only the focus but also the inclination of the CCD element with respect to the optical axis, there is a technique disclosed in Conventional Example 2 (Patent Document 2). As shown in FIG. 9, the technology of Conventional Example 2 includes a concave glass b having a spherically concave curved surface br and a convex glass a having a convex curved surface ar having the same curvature as the spherical surface of the concave glass. You. The concave glass b has the rear surface attached to the exit surface of the prism P, and the convex glass a has the CCD light receiving surface attached to the rear surface. For this reason, if the curved surface of the concave glass and the curved surface ar of the convex glass a are matched, it is possible to mount the concave glass a so that there is no gap between them, and the curved surface ar of the convex glass a follows the curved surface br of the concave glass b. Therefore, the inclination of the light receiving surface of the CCD with respect to the optical axis of the light incident through the prism P can be adjusted, and the optical axis and the light receiving surface can be adjusted to be perpendicular.
しかるに、 従来例 2の技術では、 C CDの受光面をプリズム Pの出射面に対して 傾斜させることしかできないため、 光軸に対する C CDの受光面の傾きを変えれば 、 受光面上において焦点が形成される位置、 つまり、 焦点の 2次元的な位置も変化 してしまう。 このため、 C CDの受光面の光軸に対する傾きを保ったまま、 焦点の 2次元的な位置を別々に調整することはできない。 すると、 焦点の 2次元的な位置 を微調整することが非常に難しくなるため、 C CD素子が直線状に配列されたライ ン C CDにおける焦点を調整することは事実上困難である。 なぜなら、 ライン C C Dは、 C CD素子の配列方向はその受光面が長いため焦点の位置が若干ずれても受 光面上に結像させることができるが、 C CD素子の配列方向と交差する方向、 つま り、 C CD素子の幅方向はその長さが短いため焦点のズレに対して許容範囲が狭く 、 焦点の位置を微調整しなければ受光面上に結像させることができないからである したがって、 従来例 2の技術は、 C CD素子が格子状に配列されたような受光面 力 S広く焦点のズレに対して許容範囲が広い撮像体を使用する装置の結像位置調整に は使用できても、 ライン C CDのごとく受光面が狭く焦点のズレに対して許容範囲 が狭い撮像体を使用する装置の結像位置調整には使用することはできない。 言い換 えれば、 従来例 2の技術は、 焦点のズレに対する許容範囲が狭ぐ 焦点の位置を微 調整しなければならないような装置では使用すること困難である。  However, in the technology of the conventional example 2, since the light receiving surface of the CCD can only be inclined with respect to the exit surface of the prism P, if the inclination of the light receiving surface of the CCD with respect to the optical axis is changed, the focal point on the light receiving surface is changed. The formed position, that is, the two-dimensional position of the focal point also changes. For this reason, it is not possible to adjust the two-dimensional position of the focal point separately while maintaining the inclination of the light receiving surface of the CCD with respect to the optical axis. Then, it becomes very difficult to fine-tune the two-dimensional position of the focal point, and it is practically difficult to adjust the focal point in a line CCD in which the CCD elements are linearly arranged. This is because line CCDs can form an image on the light receiving surface even if the focus position is slightly shifted because the light receiving surface is long in the CCD element array direction, but the direction intersects the CCD element array direction. In other words, since the width of the CCD element is short in the width direction, the allowable range for the focus shift is narrow, and an image cannot be formed on the light receiving surface without fine adjustment of the focus position. Therefore, the technology of Conventional Example 2 is used for adjusting the imaging position of a device that uses an imaging body that has a wide range of tolerance for wide-focus defocus, such as a light receiving surface force with CCD elements arranged in a grid. Even if it can be done, it cannot be used to adjust the imaging position of an apparatus that uses an image pickup body that has a narrow light-receiving surface such as a line CCD and has a narrow tolerance for defocus. In other words, the technique of Conventional Example 2 is difficult to use in an apparatus that requires a fine adjustment of the position of the focal point where the tolerance for the focal point deviation is narrow.
また、 従来例 2の技術では、 各部材は全て接着剤によって固定されるが、 接着剤 が固化するときに接着剤自体の収縮等によつて各部材の相対的な位置がズレる可能 性があり、 高精度の位置調整は困難である。 そして、 各部材を接着剤により固定す るため、 各部材間の位置を再調 ることは非常に困難であるという問題がある。 近年、 液晶パネルや電池フィルムの生産の増大、 高精度化に伴って、 これらの 検査を高速かつ高精度で行なう技術が求められているが、 液晶パネル等の検査に おいては、 xmオーダの精度でその表面の色や傷を検査しなければならない。 色 と傷を同時に検出する場合、 赤、 緑、 青の 3波長の光を受光する 3つの CCD素 子を備えた 3 CCD装置が使用されるが、 3 CCD装置は、 色ズレがないという 利点はあるが、 3つの C CD素子が撮影している領域を正確に一致させなければ 、 検査対象の表面の色を正確に検出できない。 そして、 検査精度を mオーダの 精度で行なう場合には、 各 CCD素子が撮影している領域のズレを、 CCD素子 のピクセルサイズ以下にしなければならない。 例えば、 CCD素子の 1ピクセル が 7 mであれば、 ズレは 0. 7 /xm以下にしなければならない。 いいかえれば 、 各 CCD素子上における焦点の焦点面内位置を、 0. 7 以下の精度で調整 しなければならない。 しかし、 従来例 2の技術では、 上記のごとくかかる精度で 焦点位置を調整することはできない。 In the technology of Conventional Example 2, all the members are fixed by the adhesive, but when the adhesive is solidified, the relative positions of the members may be shifted due to shrinkage of the adhesive itself. And high-precision position adjustment is difficult. In addition, since each member is fixed by an adhesive, there is a problem that it is very difficult to readjust the position between the members. In recent years, as the production of liquid crystal panels and battery films has increased and the precision has increased, the technology for performing these inspections at high speed and with high accuracy has been demanded. The color and scratches on the surface must be inspected with precision. When detecting color and flaws at the same time, a 3 CCD device equipped with three CCD elements that receive light of three wavelengths, red, green, and blue, is used. However, the color of the surface to be inspected cannot be accurately detected unless the areas photographed by the three CCD elements match exactly. If the inspection accuracy is to be performed on the order of m, the deviation of the area photographed by each CCD element must be smaller than the pixel size of the CCD element. For example, if one pixel of the CCD element is 7 m, the deviation must be 0.7 / xm or less. In other words, the position of the focal point on each CCD element within the focal plane must be adjusted with an accuracy of 0.7 or less. However, the technique of Conventional Example 2 cannot adjust the focal position with such precision as described above.
また、 C CD素子を保持する部材は周囲の温度変化によって膨張 ·収縮してい るため、 周囲の温度変化によって材料が膨張 ·収縮しても焦点位置の焦点面内に おけるズレが 0. 7 zm以下となるようにする必要がある。  In addition, since the material holding the CCD element expands and contracts due to changes in the surrounding temperature, even if the material expands and contracts due to changes in the surrounding temperature, the deviation of the focal position within the focal plane is 0.7 zm. It is necessary to be as follows.
さらに、 レンズの分解能の範囲内における CCD素子のピクセル数が多いほど 、 言い換えれば、 結像範囲に存在する CCD素子のピクセル数力 ^多いほど、 検査 対象の分解能、 つまり検査精度を向上させることができるが、 この分解能を向上 させるためには、 レンズの口径を大きくするかレンズと C C D素子の距離を短く する必要がある。 しかし、 レンズ口径を大きくするとレンズ自体が非常に高価と なるため、 コストを抑えつつ精度を向上するには、 口径の小さいレンズを使用す る代わりに、 CCD素子をレンズに近づけて配置しなければならない。 すると、 C CD素子をレンズとの間のスペースが小さくなるため、 CCD素子を保持する 部材をよりコンパクトに構成しなければならない。 また、 CCD素子の単位長さ 当りのピクセル数を多くする方法もあるが、 CCD素子の単位長さ当りのピクセ ル数を多くしょうとすると、 CCD素子自体が小さくなる。 したがって、 レンズ 等の費用、 つまり装置の費用を抑え、 検査精度を向上させるには、 装置におけるFurthermore, as the number of pixels of the CCD element within the range of the resolution of the lens increases, in other words, as the number of pixels of the CCD element existing in the imaging range increases, the resolution of the inspection target, that is, the inspection accuracy, can be improved. To improve this resolution, it is necessary to increase the aperture of the lens or shorten the distance between the lens and the CCD element. However, if the lens diameter is increased, the lens itself becomes very expensive.In order to reduce cost and improve accuracy, instead of using a lens with a small aperture, the CCD element must be placed close to the lens. No. Then, since the space between the CCD element and the lens is reduced, the member holding the CCD element must be configured more compactly. There is also a method of increasing the number of pixels per unit length of the CCD element, but if the number of pixels per unit length of the CCD element is increased, the size of the CCD element itself becomes smaller. Therefore, the lens In order to reduce the cost of the equipment, that is, the cost of the equipment and improve the inspection accuracy,
C C D素子を保持する部分を非常に小さくしなければならず、 必然的に、 焦点調 整機構もコンパク卜にしなければならない。 The part that holds the CCD element must be very small, and inevitably the focusing mechanism must be compact.
【特許文献 1】 特開平 7— 2 6 1 0 6 7号  [Patent Document 1] Japanese Patent Application Laid-Open No. Hei 7-261067
【特許文献 2】特開 2 0 0 3— 2 5 9 3 8 4号 発明の開示  [Patent Document 2] Japanese Patent Application Laid-Open No. 2003-259593 Disclosure of the Invention
本発明は上記事情に鑑み、 撮影素子上における結像位置を高精度力つ容易に調整 することができ、 位置がズレても容易に微調整することができ、 周囲環境の温度変 化による焦点位置のズレを防ぐことができ、 しかも非常にコンパク卜な構造とする ことができる結像位置調整機構および 装置を提供することを目的とする。  In view of the above circumstances, the present invention can easily adjust the imaging position on the imaging element with high precision, and can easily make fine adjustments even if the position shifts, and focus on temperature changes in the surrounding environment. It is an object of the present invention to provide an imaging position adjusting mechanism and device capable of preventing a positional shift and having a very compact structure.
第 1発明の結像位置調整機構は、 入射された光を撮像体上に結像させて画像を撮 影する撮影装置において、 前記撮像体上における入射光の結像位置を調整するため の調整機構であって、 該調整機構が、 前記撮影装置の本体に対して、 前記入射光の 光軸方向に沿つて移動可能カゝっ前記入射光の光軸に対する傾きが調整可能に設けら れたベース調整部材と、 該ベース調整部材に対して、 前記入射光の光軸と交差す る方向に沿つて移動可能に設けられた、 前記撮像体が取り付けられる微調整部材 と、 該微調整部材を前記ベース調整部材に対して、 前記入射光の光軸と交差する 方向に沿って移動させる移動機構とを備えていることを' とする。  An imaging position adjusting mechanism according to a first aspect of the present invention is an imaging device that forms an image by imaging incident light on an imaging body, and adjusts an imaging position of the incident light on the imaging body. A mechanism, wherein the adjusting mechanism is provided so as to be movable with respect to a main body of the photographing device along an optical axis direction of the incident light so that an inclination of the incident light with respect to an optical axis can be adjusted. A base adjustment member, a fine adjustment member to which the imaging body is attached, the fine adjustment member being provided movably with respect to the base adjustment member along a direction intersecting the optical axis of the incident light; A moving mechanism for moving the base adjustment member along a direction intersecting the optical axis of the incident light is provided.
第 1発明によれば、 調整機構のベース調整部材によってピントおよび撮像体の光 軸に対する傾きを調整することができ、 しかも、 ベース調整部材を移動させなくて も移動機構にょゥて微調整部材を移動させれば撮像体上における入射光の 2次元的 な結像位置を調整することができる。 つまり、 撮像体上における入射光の 2次元的 な結像位置を、 ピントや光軸に対する傾きとを独立して調整することができる。 よ つて、 受光部分が狭い撮像体であっても、 その受光部分に入射光が結像されるよう に確実かつ簡単に調整することができる。 しかも、 姿勢保持手段によって微調整部 材をベース調整部材に固定することができるから、 結像位置が撮影中にズレること を防ぐことができる。  According to the first invention, the focus and the inclination of the image pickup body with respect to the optical axis can be adjusted by the base adjustment member of the adjustment mechanism, and the fine adjustment member can be adjusted by the moving mechanism without moving the base adjustment member. By moving it, it is possible to adjust the two-dimensional imaging position of the incident light on the imaging body. That is, the two-dimensional imaging position of the incident light on the imaging body can be adjusted independently of the focus and the inclination with respect to the optical axis. Thus, even if the imaging body has a narrow light receiving portion, it can be reliably and easily adjusted so that the incident light is imaged on the light receiving portion. In addition, since the fine adjustment member can be fixed to the base adjustment member by the posture holding means, it is possible to prevent the imaging position from being shifted during imaging.
第 2発明の結像位置調整機構は、 第 1発明において、 前記ベース調整部材が、 前 記入射光の光軸と交差する基準面を備えており、 前記微調整部材が、 前記移動機構 によつて移動されたときに、 前記ベース調整部材の基準面に沿つて摺動する摺動面 を備えていることを特徴とする。 In the imaging position adjusting mechanism according to a second aspect, in the first aspect, the base adjusting member may A reference surface intersecting the optical axis of the incident light, wherein the fine adjustment member slides along the reference surface of the base adjustment member when the fine adjustment member is moved by the movement mechanism. It is characterized by having.
第 2発明によれば、 ベース調整部材の基準面に沿って微調整部材を移動させれば 、 ベース調整部材に対する入射光の光軸方向における相対的な位置を一定に保つた まま、 ベース調整部材に対して微調整部材を移動させることができる。 このため、 撮像体の受光面が入射光の光軸と垂直になるようにベース調整部材の基準面を調整 しておけば、 ピントゃ撮像体の入射光の光軸に対する傾きを変化させることなく、 撮像体上における入射光の結像位置を調整することができるから、 結像位置を正確 かつ簡単に調整することができる。  According to the second aspect, if the fine adjustment member is moved along the reference plane of the base adjustment member, the relative position of the incident light with respect to the base adjustment member in the optical axis direction is kept constant. The fine adjustment member can be moved. For this reason, if the reference plane of the base adjustment member is adjusted so that the light receiving surface of the image pickup body is perpendicular to the optical axis of the incident light, focus can be maintained without changing the inclination of the incident light of the image pickup body with respect to the optical axis. Since the imaging position of the incident light on the imaging body can be adjusted, the imaging position can be adjusted accurately and easily.
第 3発明の結像位置調整機構は、 第 2発明において、 前記移動機構が、 前記微調 整部材に設けられた、 前記摺動面と直交する受圧面と、 該微調整部材の受圧面をそ の法線方向に沿って付勢する付勢手段と、 該付勢手段から前記微調整部材に対して 加わる付勢力を支持し、 該付勢手段に対して、 その付勢力の方向に沿って接近離間 可能に設けられた位置調整部とを備えていることを特徴とする。  In the imaging position adjusting mechanism according to a third aspect, in the second aspect, the moving mechanism includes a pressure receiving surface provided on the fine adjustment member, the pressure receiving surface being orthogonal to the sliding surface, and a pressure receiving surface of the fine adjustment member. A biasing means for biasing the fine adjustment member from the biasing means along the direction of the normal line, and a biasing force applied to the fine adjustment member from the biasing means along the direction of the biasing force. A position adjustment unit provided so as to be able to approach and separate.
第 3発明によれば、 付勢手段によって微調整部材が常時付勢されているから、 そ の付勢力を支持する位置調整部を、 付勢手段に対してその付勢力の方向に沿って接 近離間させれば、 微調整部材を、 付勢手段に対してその付勢力の方向に沿って接近 離間させることができる。 しカゝも、 受圧面が、 摺動面と直交するように設けられて いるから、 付勢力は微調整部材に対して摺動面と平行に加わる。 よって、 微調整部 材の摺動面をベース調整部材の基準面に面接触させておけば、 位置調整部によって 微調整部材を付勢手段に対して接近離間させれば、 微調整部材をベース調整部材の 基準面と平行に移動させることができる。 そして、 微調整部材に互いに直交する受 圧面を設け、 それぞれを付勢する付勢手段と、 各付勢手段からの付勢力を支持する 位置調整部をそれぞれ設ければ、 他の位置調整部の移動量に係わらず、 各付勢手段 の付勢方向における微調整部材の移動量を、 それぞれ独立して調整することができ るから、 撮像体上の結像位置を正確に調整することができる。  According to the third aspect, since the fine adjustment member is constantly urged by the urging means, the position adjusting section supporting the urging force is connected to the urging means along the direction of the urging force. If it is made to approach and separate, the fine adjustment member can be made to approach and separate from the urging means in the direction of the urging force. Since the pressure receiving surface is also provided so as to be orthogonal to the sliding surface, the biasing force is applied to the fine adjustment member in parallel with the sliding surface. Therefore, if the sliding surface of the fine adjustment member is brought into surface contact with the reference surface of the base adjustment member, if the fine adjustment member is moved closer to or away from the biasing means by the position adjustment portion, the fine adjustment member becomes the base. The adjustment member can be moved in parallel with the reference plane. By providing pressure receiving surfaces orthogonal to each other on the fine adjustment member, and providing a biasing means for biasing each of them and a position adjusting section for supporting the biasing force from each of the biasing means, it is possible to provide other fine adjustment members. Irrespective of the amount of movement, the amount of movement of the fine adjustment member in the urging direction of each urging means can be adjusted independently, so that the image forming position on the imaging body can be accurately adjusted. .
第 4発明の結像位置調整機構は、 第 3発明において、 前記微調整部材が、 前記付 勢手段から加わる付勢力の方向と交差する支持面を備えており、 前記位置調整部が 、 前記ベース調整部材の基準面の法線と平行な中心軸を有する円柱体を備えており 、 該円柱体が、 嫌 3中心軸と平行かつ該中心軸に対して該円柱体の半径方向にオフ セットしている回転軸まわりに回転可能であって、 前記付勢手段によって前記微調 整部材が付勢された状態において、 その側面に対して、 該微調整部材の支持面が常 時翻虫した状態となるように配設されていることを特徴とする。 In the imaging position adjusting mechanism according to a fourth aspect, in the third aspect, the fine adjustment member includes a support surface that intersects a direction of an urging force applied from the urging unit. A cylindrical body having a central axis parallel to a normal line of a reference surface of the base adjusting member, wherein the cylindrical body is parallel to the negative three central axes and is radial to the cylindrical body with respect to the central axis. When the fine adjustment member is urged by the urging means, the supporting surface of the fine adjustment member is always rotatable around the offset rotation axis. It is characterized in that it is arranged so as to be in a state in which it is set.
第 4発明によれば、 円柱体の中心軸がその回転軸に対して半径方向にオフセット しているので、 円柱体を回転させれば、 微調整部材に対して付勢手段から加わる付 勢力の方向 (以下、 単に付勢方向という) における円柱体の中心軸から支持面側の 端縁までの長さ (以下、 単に付勢方向長さという) を変えることができる。 そして 、 付勢手段によつて微調整部材の支持面を円柱体の側面に常に接触させているから According to the fourth invention, since the center axis of the cylindrical body is offset in the radial direction with respect to the rotation axis thereof, when the cylindrical body is rotated, the urging force applied from the urging means to the fine adjustment member is adjusted. The length from the center axis of the cylinder to the edge on the support surface side in the direction (hereinafter simply referred to as the biasing direction) can be changed. Since the support surface of the fine adjustment member is always in contact with the side surface of the cylindrical body by the urging means.
、 円柱体を回転させれば、 付勢方向長さの変化量の分だけ、 微調整部材を付勢方向 に沿つて移動させることができ、 撮像体の付勢方向における結像位置を微調整する ことができる。 By rotating the cylinder, the fine adjustment member can be moved along the biasing direction by the amount of change in the biasing direction length, and the imaging position in the biasing direction of the imaging body is finely adjusted. can do.
第 5発明の結像位置調整機構は、 第 1、 2、 3または 4発明において、 前記微調 整部材が、 前記摺動面と該摺動面に ¥ί亍な取付面とを備えた本体部材と、 該本体部 材の取付面に沿つて移動可能に設けられた、 前記撮像体が取り付けられる保持部材 と、 該保持部材を本体部材の取付面に沿って移動させる保持部材移動部とを備えて いることを特徴とする。  An imaging position adjusting mechanism according to a fifth aspect of the present invention is the image forming apparatus according to the first, second, third or fourth aspect, wherein the fine adjustment member includes the sliding surface and a mounting surface that is smooth on the sliding surface. A holding member to which the imaging body is attached, the holding member being movably provided along a mounting surface of the main body member, and a holding member moving unit for moving the holding member along the mounting surface of the main body member. It is characterized by having.
第 5発明によれば、 保持部材移動部によって保持部材を移動させれば、 保持部材 とともに保持部材に取付けられた撮像体を、 本体部材の取付け面に沿って移動させ ることができる。 このため、 撮像体上における入射光の結像位置をピントや撮像体 の入射光の光軸に対する傾きを変化させることなく調整することができるから、 結 像位置を正確かつ簡単に調整することができる。  According to the fifth aspect, if the holding member is moved by the holding member moving section, the imaging body attached to the holding member together with the holding member can be moved along the mounting surface of the main body member. For this reason, the image formation position of the incident light on the imaging body can be adjusted without changing the focus or the inclination of the incident light with respect to the optical axis of the imaging body, so that the imaging position can be adjusted accurately and easily. it can.
第 6発明の結像位置調整機構は、 第 5発明において、 前記保持部材に、 前記本体 部材の取付面と平行な方向に沿って延びた長孔が形成されており、 前記保持部材移 動部が、 前記本体部材に、 その取付面の法線と平行な回転軸まわりに回転可能に取 り付けられた軸状部材と、 該軸状部材の軸方向の一端に設けられ、 前記保持部材の 長孔に揷入される作動軸とを備えており、 該作動軸が、 その中心軸が、 前記軸状部 材の回転軸と平行かつ該軸状部材の回転軸に対して該軸状部材の半径方向にオフセ ッ卜するように配設されていることを特 ί敷とする。 In the imaging position adjusting mechanism according to a sixth aspect of the present invention, in the fifth aspect, the holding member is formed with an elongated hole extending along a direction parallel to a mounting surface of the main body member. A shaft member rotatably attached to the main body member around a rotation axis parallel to a normal to the mounting surface, and provided at one axial end of the shaft member; An operating shaft inserted into the elongated hole, wherein the operating shaft has a center axis parallel to the rotation axis of the shaft member and the shaft member relative to the rotation axis of the shaft member. Offset in the radial direction of In particular, it is installed so that it can be cut.
第 6発明によれば、 軸状部材を回転軸まわりに回転させれば、 その回転軸まわり に作動軸を周回移動させることができる。 このため、 作動軸の移動量のうち、 長孔 の幅方向の移動量の分だけ保持部材を本体部材に対して移動させることができる。 そして、 複数の軸状部材と長孔を設け、 長孔の軸方向が交差するように形成すれば 、 他の軸状部材の回転量に係わらず、 各長孔の軸方向と直交する方向における保持 部材の移動量を、 それぞれ独立して調整することができるから、 撮像体上の結像位 置を正確に調整することができる。  According to the sixth aspect, by rotating the shaft-like member around the rotation axis, the operating shaft can be moved around the rotation axis. For this reason, the holding member can be moved relative to the main body member by the moving amount in the width direction of the elongated hole out of the moving amount of the operating shaft. And if a plurality of shaft-shaped members and a long hole are provided and formed so that the axial directions of the long holes intersect, regardless of the rotation amount of the other shaft-shaped members, in the direction orthogonal to the axial direction of each long hole Since the amount of movement of the holding member can be adjusted independently of each other, it is possible to accurately adjust the imaging position on the imaging body.
第 7発明の結像位置調整機構は、 第 5または第 6発明において、 前記保持部材が 、 前記本体部材の取付面に対して接近離間可能に取り付けられており、 前記保持部 材移動部が、 前記保持部材を前記本体部材の取付面に対して接近離間させる機構を 備えていることを特 ί敷とする。  An imaging position adjusting mechanism according to a seventh aspect, in the fifth or sixth aspect, wherein the holding member is attached to the mounting surface of the main body member so as to be able to approach and separate therefrom, and the holding member moving part is In particular, a mechanism is provided for moving the holding member toward and away from the mounting surface of the main body member.
第 7発明によれば、 保持部材だけを移動させてピントを合わせることができるか ら、 ピント調整が容易になるし、 ピント調整するときに他の部材が移動して、 結像 位置がズレたりすることを防ぐことができる。  According to the seventh aspect, the focus can be adjusted by moving only the holding member, so that the focus adjustment is easy, and when the focus adjustment is performed, another member moves, and the imaging position is shifted. Can be prevented.
第 8発明の結像位置調整機構は、 第 2、 3または第 4発明において、 前記微調整 部材が、 前記摺動面が形成された本体部材と、 該本体部材を、 前記ベース調整部材 に固定する微調整部材固定手段と、 該本体部材に対して、 前記摺動面と平行な方 向に沿って移動可能に設けられた、 前記撮像体が取り付けられる保持部材と、 該 保持部材を、 前記本体部材に固定する保持部材固定手段とを備えており、 該保持 部材固定手段が、 前記摺動面と直交し、 かつ、 前記撮像体の幅方向における前記微 調整部材固定手段による前記本体部材と前記ベース調整部材との連結位置の中心 線を含む対称面に対して、 面対称となる位置に配設されていることを特徴とする 第 8発明によれば、 保持部材固定手段が、 本体部材と保持部材を、 対称面上に 対して対称な位置で連結するから、 光軸が対称面に含まれるように配置されてい れば、 周囲環境の温度変化によって本体部材および保持部材が膨張収縮しても撮 像体上における焦点の位置がずれることを防ぐことができる。 また、 光軸が対称面 カ^ずれている場合においても、 光軸と対称面が平行であれば、 保持部材を本体 部材に対して移動させて撮像体の中心線が光軸面上に位置するように調整したと きに、 撮像体の中心線と対称面とのズレを小さくすることができるから、 本体部 材および保持部材の膨張収縮による撮像体上における焦点の位置のズレを、 最小限 に抑えることができる, そして、 対称面上に撮像体 (例えば、 ライン C CD) の受 光中心線が含まれるようにしておけば、 より一層、 焦点の位置のズレを小さくでき る。 とくに、 受光面の幅が狭いライン C CDを撮像体として使用する場合には、 効 果的である。 An imaging position adjusting mechanism according to an eighth aspect of the present invention is the image forming apparatus according to the second, third or fourth aspect, wherein the fine adjustment member comprises: a main body member having the sliding surface; and the main body member fixed to the base adjustment member. A fine adjustment member fixing means, a holding member to which the image pickup body is attached, the holding member being movably provided in a direction parallel to the sliding surface with respect to the main body member; Holding member fixing means for fixing to the main body member, the holding member fixing means being orthogonal to the sliding surface, and the main body member by the fine adjustment member fixing means in the width direction of the imaging body. According to an eighth aspect of the present invention, the holding member fixing means is disposed at a position which is plane-symmetric with respect to a symmetry plane including a center line of a connection position with the base adjustment member. And holding member on the symmetry plane When the optical axis is arranged so as to be included in the plane of symmetry, even if the main body member and the holding member expand and contract due to changes in the temperature of the surrounding environment, the focal point on the imaged object will not change. The position can be prevented from shifting. Even if the optical axis deviates from the symmetry plane, if the optical axis and the symmetry plane are parallel, the holding When the center line of the imaging body is adjusted to be located on the optical axis plane by moving the imaging body with respect to the member, the deviation between the center line of the imaging body and the plane of symmetry can be reduced. In addition, it is possible to minimize the displacement of the focal point position on the imaging body due to the expansion and contraction of the holding member, and to include the light receiving center line of the imaging body (eg, line CCD) on the plane of symmetry. If this is set, the deviation of the focal position can be further reduced. This is particularly effective when a line CCD having a narrow light receiving surface is used as an imaging body.
第 9発明の結像位置調整機構は、 第 2、 3または第 4発明において、 前記ベース 調整部材を、 前記撮影装置の本体に固定するべ一ス固定手段が設けられており、 前 記微調整部材を、 前記ベース調整部材に固定する微調整部材固定手段が設けられ ており、 該微調整部材固定手段が、 前記微調整部材の摺動面と直交し、 かつ、 前 記撮像体の幅方向における前記ベース固定手段による前記撮影装置の本体と前記べ ース調整部材との連結位置の中心線を含む対称面に対して、 面対称となる位置に 配設されていることを特徴とする。  A ninth aspect of the present invention is the imaging position adjusting mechanism according to the second, third or fourth aspect, wherein a base fixing means for fixing the base adjusting member to a main body of the photographing apparatus is provided. Fine adjustment member fixing means for fixing a member to the base adjustment member is provided, and the fine adjustment member fixing means is orthogonal to a sliding surface of the fine adjustment member, and is in a width direction of the imaging body. Wherein the base fixing means is disposed at a position which is plane-symmetric with respect to a symmetry plane including a center line of a connection position between the main body of the photographing apparatus and the base adjustment member by the base fixing means.
第 9発明によれば、 微調整部材固定手段が、 微調整部材とベース調整部材を、 ベース対称面に対して対称な位置で連結するから、 光軸がベース対称面に含まれ るように配置されていれば、 周囲環境の温度変化によって微調整部材およびべ一 ス調整部材が膨張収縮しても撮像体上における焦点の位置がずれることを防ぐこと ができる。 また、 光軸がベース対称面からずれている場合においても、 光軸とベ ース対称面が平行であれば、 微調整部材をベース調整部材に対して移動させて撮 像体の中心線が光軸面上に位置するように調整したときに、 撮像体の中心線とベ —ス対称面とのズレを小さくすることができるから、 撮像体の中心線とベース対 称面とのズレを小さくすることができるから、 微調整部材およびベース調整部材 の膨張収縮による撮像体上における焦点の位置のズレを、 最小限に抑えることがで きる。 そして、 ベース対称面上に撮像体 (例えば、 ライン C CD) の受光中心線が 含まれるようにしておけば、 より一層、 焦点の位置のズレを小さくできる。 とくに 、 受光面の幅が狭いライン C CDを撮像体として使用する場合には、 効果的である 第 1 0発明の結像位置調整機構は、 第 1、 2、 3または第 4発明において、 前記 撮影装置の本体が、 前記入射光の光軸と直交し、 前記ベース調整部材が取付けら れる取付面を備えており、-前記ベース調整部材と前記撮影装置の本体の取付面と の間に、 前記ベース調整部材を、 前記撮影装置の本体の取付面と平行に保ち、 か つ前記入射光の光軸方向に沿つて前記撮影装置の本体から離間する方向に付勢す るベース付勢手段を備えていることを特徴とする。 According to the ninth aspect, the fine adjustment member fixing means connects the fine adjustment member and the base adjustment member at positions symmetrical with respect to the base symmetry plane, so that the optical axis is included in the base symmetry plane. If this is done, it is possible to prevent the position of the focal point on the imaging body from shifting even if the fine adjustment member and the base adjustment member expand and contract due to a change in the temperature of the surrounding environment. Also, even when the optical axis is deviated from the base symmetry plane, if the optical axis and the base symmetry plane are parallel, the fine adjustment member is moved with respect to the base adjustment member so that the center line of the imaging object is moved. When adjusted to be located on the optical axis plane, the deviation between the center line of the imaging body and the base symmetry plane can be reduced, so that the deviation between the center line of the imaging body and the base symmetrical plane can be reduced. Since the size can be reduced, it is possible to minimize the deviation of the focal position on the imaging body due to the expansion and contraction of the fine adjustment member and the base adjustment member. If the center line of light reception of the imaging body (for example, line CCD) is included on the base symmetry plane, the deviation of the focal position can be further reduced. In particular, when a line CCD having a narrow light receiving surface is used as an imaging body, the imaging position adjusting mechanism of the tenth aspect of the present invention is effective in the case of the first, second, third or fourth aspect. A main body of the photographing device, comprising: a mounting surface to which the base adjustment member is mounted, which is orthogonal to an optical axis of the incident light;-between the base adjustment member and a mounting surface of the main body of the imaging device. Base urging means for urging the base adjustment member in a direction away from the main body of the imaging device along the optical axis direction of the incident light while maintaining the base adjustment member parallel to a mounting surface of the main body of the imaging device. It is characterized by having.
第 1 0発明によれば、 ベース調整部材を、 撮影装置の本体の取付面と平行に保つ たまま、 入射光の光軸に沿って移動させることができるから、 撮像体上における入 射光の 2次元的な結像位置を変化させることなく、 ピント調整を行うことができる 。 よって、 焦点の位置と、 ピントを独立して調整できるから、 ピント調整が容易に なる。  According to the tenth aspect, the base adjustment member can be moved along the optical axis of the incident light while keeping the base adjustment member parallel to the mounting surface of the main body of the imaging device. Focus adjustment can be performed without changing the dimensional imaging position. Therefore, the focus position and the focus can be adjusted independently, and the focus adjustment becomes easy.
第 1 1発明の撮影装置は、 入射された光を複数の波長の光に分光する分光手段と 、 該分光手段によつて分光された各波長の光が結像される複数の撮像体を備えた撮 影装置であって、 該撮影装置が、 前記複数の撮像体上における各波長の光の結像位 置を調整する結像位置調整機構を備えており、 該結像位置調整機構が、 第ュ、 2、 3、 4、 5、 6、 7、 8、 9または第 1 0発明の調整機構であることを特徴とする 第 1 1発明によれば、 個々の波長の光について、 それぞれ結像位置を調整できる から、 撮影装置の調整が容易になる。 そして、 分光手段の製作誤差を結像位置調整 機構によって吸収できるから、 分光手段等の製造が容易になるし、 コストも下げる ことができる。  An imaging device according to an eleventh aspect of the present invention includes: a spectral unit that splits incident light into light of a plurality of wavelengths; and a plurality of imaging bodies on which light of each wavelength split by the spectral unit is imaged. An imaging position adjustment mechanism that adjusts an imaging position of light of each wavelength on the plurality of imaging bodies, wherein the imaging position adjustment mechanism includes: According to the eleventh invention, which is the adjustment mechanism of the second, third, fourth, fifth, sixth, seventh, eighth, ninth or tenth invention, light of each wavelength is concatenated. Since the image position can be adjusted, it is easy to adjust the photographing device. Since the manufacturing error of the spectroscopic means can be absorbed by the imaging position adjusting mechanism, the manufacture of the spectroscopic means and the like can be facilitated, and the cost can be reduced.
第 1 2発明の撮影装置は、 第 1 1発明において、 前記撮影装置が、 3 C CDカメ ラであることを特徴とする。  According to a twelfth invention, in the twelfth invention, in the twelfth invention, the imaging device is a 3CCD camera.
' 第 1 2発明によれば、 各 C CD素子に入射される光の結像状態を均一にすること ができるから、 再生画像の質を向上させることができる。  According to the twelfth aspect, the image formation state of light incident on each CCD element can be made uniform, so that the quality of a reproduced image can be improved.
第 1 3発明の撮影装置は、 第 1 1または第 1 2発明において、 前記撮像体が、 ラ イン C CDであることを特! [とする。  A photographing apparatus according to a thirteenth invention is the imaging device according to the first or the second invention, wherein the imaging body is a line CCD! [
第 1 3発明によれば、 観された画像、 つまり C C D素子が検出した信号の処理 速度を速くすることができるから、 高速画像の 影を可能にすることができる。 図面の簡単な説明 According to the thirteenth aspect, it is possible to increase the processing speed of the observed image, that is, the signal detected by the CCD element, so that high-speed image shadowing can be performed. Brief Description of Drawings
図 1は、 本実施形態の結像位置調整機構 1 0を適用した 3 C CDカメラの概略側面 図である。 FIG. 1 is a schematic side view of a 3 CCD camera to which the imaging position adjusting mechanism 10 of the present embodiment is applied.
図 2は、 本実施形態の結像位置調整機構 1 0を適用した 3 C CDカメラの概略正面 図である。 FIG. 2 is a schematic front view of a 3 CCD camera to which the imaging position adjusting mechanism 10 of the present embodiment is applied.
図 3は、 本実施形態の結像位置調整機構 1 0を適用した 3 C CDカメラの概略平面 図である。 FIG. 3 is a schematic plan view of a 3 CCD camera to which the imaging position adjusting mechanism 10 of the present embodiment is applied.
図 4は、 図 3の IV— IV線断面矢視図である。 FIG. 4 is a sectional view taken along line IV-IV in FIG.
図 5は、 本実施形態の結像位置調整機構 1 0の単体説明図であつて、 ( A) 概略平 面図であり、 (B) 概略正面図であり、 (C) (B) の C一 C線矢視図である。 図 6は、 (A) 図 5の VIA -VI 線矢視図であり、 (B) 図 5の VIB -VIB線断面 矢視図である。 FIGS. 5A and 5B are explanatory diagrams each showing the image forming position adjusting mechanism 10 of the present embodiment alone, wherein FIG. 5A is a schematic plan view, FIG. 5B is a schematic front view, and FIG. FIG. 1 is a view on line C. 6 is (A) a sectional view taken along line VIA-VI in FIG. 5, and (B) is a sectional view taken along line VIB-VIB in FIG.
図 7は、 (A) は図 6 (A) の要部拡大図であり、 (B) 、 (C) は偏心ポルト 5 3を回転させた状態の説明図である。 7A is an enlarged view of a main part of FIG. 6A, and FIGS. 7B and 7C are explanatory views of a state where the eccentric port 53 is rotated.
図 8は、 (A) はベース調整部材 2 1の単体平面図であり、 (B) は微調整部材 3 0の本体部材 3 1の単体平面図であり、 ( C ) は微調整部材 3 0の保持部材 4 0の 単体平面図である。 8A is a plan view of the base adjustment member 21 alone, FIG. 8B is a plan view of the main body member 31 of the fine adjustment member 30, and FIG. 8C is a plan view of the fine adjustment member 30. FIG. 4 is a plan view of the holding member 40 alone.
図 9は、 従細 2の技術の概略説明図である。 FIG. 9 is a schematic explanatory diagram of the second technique.
図 1 0は、 調整機構本体 2 0と支持フレーム 1 1との取付け部分の拡大説明図であ る。 FIG. 10 is an enlarged explanatory view of a mounting portion between the adjustment mechanism main body 20 and the support frame 11.
図 1 1は、 調整機構本体 2 0を簡 匕したモデルを示した図である。 FIG. 11 is a diagram showing a model in which the adjustment mechanism main body 20 is simplified.
図 1 2は、 部材 Bの動きを説明した図である。 FIG. 12 is a view for explaining the movement of the member B.
図 1 3は、 部材 Cの動きを説明した図である。 発明を実施するための最良の形態 FIG. 13 is a view for explaining the movement of the member C. BEST MODE FOR CARRYING OUT THE INVENTION
つぎに、 本発明の実施形態を図面に基づき説明する。  Next, an embodiment of the present invention will be described with reference to the drawings.
本発明の結像位置調整機構は、 C CDやフィルム等の撮像体を備えた撮影装置に おいて、 撮像体の受光面に入射される入射光の結像位置を調整するためのものであ つて、 撮影対象と撮像体との間に配置されるレンズ等の光学系を移動させることな く結像位置を調整することができることに特徴を有するものである。 The imaging position adjusting mechanism of the present invention is for adjusting an imaging position of incident light incident on a light receiving surface of an imaging body in an imaging apparatus having an imaging body such as a CCD or a film. Therefore, do not move an optical system such as a lens disposed between the object to be photographed and the imaging object. It is characterized in that the imaging position can be adjusted.
本発明の結像位置調整機構は、 C CDカメラやスキャナ等に適用することが可能 であるが、 以下には、 代表として、 3 C CDカメラに適用した例を説明する。  The imaging position adjusting mechanism of the present invention can be applied to a CCD camera, a scanner, and the like. Hereinafter, an example in which the imaging position adjusting mechanism is applied to a 3 CCD camera as a representative will be described.
図 1は本実施形態の結像位置調整機構 1 0を適用した 3 C CDカメラの概略側面 図である。 図 2は本実施形態の結像位置調整機構 1 0を適用した 3 C CDカメラの 概略正面図である。 図 3は本実施形態の結像位置調整機構 1 0を適用レた 3 C CD カメラの概略平面図である。 図 4は図 3の IV— IV線断面矢視図である。 なお、 図 2 〜図 3では、 構造を分かり易くす ために、 正面および背面に位置する結像位置調 整機構 1 0の調整機構本体 2 0は記載していない。  FIG. 1 is a schematic side view of a 3 CCD camera to which the imaging position adjusting mechanism 10 of the present embodiment is applied. FIG. 2 is a schematic front view of a 3 CCD camera to which the imaging position adjusting mechanism 10 of the present embodiment is applied. FIG. 3 is a schematic plan view of a 3CCD camera to which the imaging position adjusting mechanism 10 of the present embodiment is applied. FIG. 4 is a sectional view taken along line IV-IV in FIG. In FIGS. 2 and 3, the adjustment mechanism main body 20 of the imaging position adjustment mechanism 10 located on the front surface and the rear surface is not shown for easy understanding of the structure.
まず、 本実施形態の結像位置調整機構 1 0を説明する前に、 本実施形態の結像位 置調整機構 1 0が適用される 3 C CDカメラの概略を説明する。  First, before describing the imaging position adjusting mechanism 10 of the present embodiment, an outline of a 3 CCD camera to which the imaging position adjusting mechanism 10 of the present embodiment is applied will be described.
図 1〜図 4において、 符号 B Fはカメラの本体フレームを示している。 この本体 フレーム B Fには、 その中央を貫通する貫通孔 F hが形成されている。 この本体フ レーム B Fの外面にはレンズ Lが設けられており、 本体フレーム B Fの内面には、 レンズ Lとの間に本体フレーム B Fの貫通孔 F hを挟む位置に、 プリズム P Rが配 設されている。 そして、 プリズム P Rは 3つの放出面 E Sを備えており、 この 3つ の放出面 E Sと相対する位置には、 本実施形態の結像位置調整機構 1 0の調整機構 本体 2 0によって支持された C CDがそれぞれ配置されている。  In FIGS. 1 to 4, reference numeral BF indicates a main body frame of the camera. The body frame BF has a through hole Fh penetrating the center thereof. A lens L is provided on the outer surface of the main frame BF, and a prism PR is provided on the inner surface of the main frame BF at a position sandwiching the through hole Fh of the main frame BF between the main frame BF and the lens L. ing. The prism PR has three emission surfaces ES, and is supported by the adjustment mechanism main body 20 of the imaging position adjustment mechanism 10 of the present embodiment at a position opposed to the three emission surfaces ES. CCDs are arranged respectively.
このため、 レンズ Lを通して光がプリズム P R入射されると、 入射された光はプ リズム P Rによって 3つの波長の光に分光され、 分光された 3つの波長の光がそれ ぞれ放出面 E Sから放出され、 C CDの受光面上に結像されるので、 各波長光を C CDによって検出し、 撮影することができるのである (図 4) 。  Therefore, when light enters the prism PR through the lens L, the incident light is split into light of three wavelengths by the prism PR, and the split light of three wavelengths is emitted from the emission surface ES. Then, since the image is formed on the light receiving surface of the CCD, the light of each wavelength can be detected by the CCD and photographed (Fig. 4).
さて、 本実施形態の結像位置調整機構 1 0を説明する。  Now, the imaging position adjusting mechanism 10 of the present embodiment will be described.
図 1〜図 4において、 符号 1 1は、 本実施形態の結像位置調整機構 1 0の一対の 支持フレームを示している。 この一対の支持フレーム 1 1, 1 1は、 前記 3 C CD カメラの本体フレーム B Rの内面に、 プリズム P Rをその側方から挟むように立設 されている。 各支持フレーム 1 1は、 前記本体フレーム B Fに取り付けられた状態 において、 その上面、 正面および背面に、 前記プリズム P Rの 3つの放出面 E Sと ほぼ平行、 言い換えれば、 各放出面 E Sから放出される光の光軸方向とそれぞれ直 交するように形成された 3つの取付面 lis を備えている。 1 to 4, reference numeral 11 denotes a pair of support frames of the imaging position adjusting mechanism 10 of the present embodiment. The pair of support frames 11, 11 are erected on the inner surface of the main body frame BR of the 3C CD camera so as to sandwich the prism PR from the side. Each of the support frames 11 is substantially parallel to the three emission surfaces ES of the prism PR on its upper surface, front surface, and rear surface when attached to the main body frame BF, in other words, emitted from each emission surface ES. Directly to the optical axis direction of light It has three mounting surfaces lis that are formed to intersect.
前記一対の支持フレーム 1 1 , 1 1における対応する一対の取付面 lis , lis間に は、 3つの調整機構本体 2 0が、 各調整機構本体 2 0に保持された C CDの受光面 が前記プリズム P Rの放出面 E Sと対向するよう〖こ配設されている (図 2、 図 4) 。 そして、 調整機構本体 2 0は、 そのベース調整部材 2 1の左右両端に設けられて いる貫通孔 21h (図 5 (A) 参照) にベース調整部材 2 1の表面から挿通された一 対のポルト 21b , 21b を、 取付面 lis に設けられている図示しないネジ孔に螺合す ることによって、 取付面 lis に取付けられている。  Between the pair of corresponding mounting surfaces lis, lis of the pair of support frames 11, 11, three adjusting mechanism bodies 20 are provided, and the light receiving surface of the CCD held by each adjusting mechanism body 20 is It is arranged so as to face the emission surface ES of the prism PR (Figs. 2 and 4). The adjusting mechanism main body 20 has a pair of ports inserted through the through holes 21h (see FIG. 5 (A)) provided at the left and right ends of the base adjusting member 21 from the surface of the base adjusting member 21. 21b, 21b is attached to the mounting surface lis by screwing it into a screw hole (not shown) provided on the mounting surface lis.
そして、 図 2、 図 1 0に示すように、 一対の取付面 lis, lisと調整機構本体 2 0 の両端との間には、 それぞれパネ部材 1 4が配設されている。 このパネ部材 1 4は 、 略台形上に形成されており; その長手方向が C CDの幅方向 (図 1 0 (A) では 左右方向) と ¥ίΐになるように配設されている。 そして、 このパネ部材 1 4は、 取 付面 lis に接触する脚部 14a と調整機構本体 2 0に接触する頭部 14b とが互いに平 行であって、 かつ、 脚部 14a と頭部 14b とが平行に保たれたまま、 脚部 14a と頭部 14b との距離が変化するように形成されている。 言い換えれば、 バネ部材 1 4は、 その頭部 14bが取付面 lis と平行に保たれたまま、 その高さ B Lが変化するように 構成されている。  As shown in FIGS. 2 and 10, panel members 14 are disposed between the pair of mounting surfaces lis, lis and both ends of the adjusting mechanism main body 20, respectively. The panel member 14 is formed in a substantially trapezoidal shape; the panel member 14 is disposed so that its longitudinal direction is the same as the width direction of the CCD (the left-right direction in FIG. 10A). The panel member 14 has a leg 14a in contact with the mounting surface lis and a head 14b in contact with the adjustment mechanism main body 20, and the leg 14a and the head 14b are parallel to each other. Are formed so that the distance between the leg 14a and the head 14b changes while keeping the distance parallel. In other words, the spring member 14 is configured such that its height BL changes while its head 14b is kept parallel to the mounting surface lis.
このため、 パネ部材 1 4によって調整機構本体 2 0を一対の取付面 lis , lisから 離した状態で保持することができ、 し力も、 一対のポルト 21b , 21b を取付面 lis に設けられている図示しないネジ孔に対して螺進螺退させれば、 調整機構本体 2 0 を一対の取付面 lis , lisに接近離間させることができる。  For this reason, the adjusting mechanism main body 20 can be held in a state separated from the pair of mounting surfaces lis, lis by the panel member 14, and the pair of ports 21b, 21b are provided on the mounting surface lis with a large force. If the screw is unscrewed from the screw hole (not shown), the adjusting mechanism main body 20 can be moved closer to or away from the pair of mounting surfaces lis, lis.
また、 パネ部材 1 4が、 その長手方向が C CDの幅方向 (図 1 0 (A) では左右 方向) と平行になるように配設されているから、 ポルト 21bを締め付けたときに、 C C Dの幅方向における調整機構本体 2 0の傾きを発生することを防ぐことができ る。 そして、 一対のノネ部材 1 4, 1 4の高さ B L力 S同じになるように、 一対のボ ルト 21b , 21bの締め付け力を調整すれば、 調整機構本体 2 0の両端と一対の取付 面 lis , lisとの距離を同じ長さにすることができるから、 調整機構本体 2 0と一対 の取付面 lis, lisを TOに保つことができる。 すると、 調整機構本体 2 0と一対の 取付面 lis , lisとの間の距離、 つまり、 C CDの受光面とプリズム P Rの放出面 E Sとの距離を、 調整機構本体 2 0と一対の取付面 lis, Usとを平行に保ったまま調 整することができる。 言い換えれば、 調整機構本体 2 0を光軸方向に沿って移動さ せることができるから、 C CDの受光面上における結像位置を変化させることなく 、 C CDのピント調整を行うことができる。 よって、 結像位置と、 ピントを独立し て調整できるから、 ピント調整を容易にすることができる。 In addition, since the panel member 14 is disposed so that its longitudinal direction is parallel to the width direction of the CCD (the left-right direction in FIG. 10A), when the port 21b is tightened, the CCD Of the adjustment mechanism main body 20 in the width direction can be prevented. Then, by adjusting the tightening force of the pair of bolts 21b, 21b so that the height BL force S of the pair of nonet members 14 and 14 is the same, both ends of the adjustment mechanism body 20 and the pair of mounting surfaces Since the distance between lis and lis can be the same, the adjusting mechanism body 20 and the pair of mounting surfaces lis and lis can be maintained at TO. Then, the distance between the adjusting mechanism body 20 and the pair of mounting surfaces lis, lis, that is, the light receiving surface of the CCD and the emission surface E of the prism PR The distance to S can be adjusted while maintaining the adjustment mechanism body 20 and the pair of mounting surfaces lis and Us in parallel. In other words, since the adjustment mechanism main body 20 can be moved along the optical axis direction, the focus adjustment of the CCD can be performed without changing the imaging position on the light receiving surface of the CCD. Therefore, since the imaging position and the focus can be adjusted independently, focus adjustment can be facilitated.
上記のバネ部材 1 4が、 特許請求の範囲にいうベース付勢手段であり、 一対のポ ル卜 21b, 21bが、 特許請求の範囲にいうベース固定手段である。  The spring member 14 is a base biasing means described in the claims, and the pair of ports 21b, 21b is a base fixing means described in the claims.
なお、 一対のポルト 21b , 21bの締付状態に差をつければ、 調整機構本体 2 0に おいて、 その一端 (図 2 , 3では下端) の下面と支持フレーム 1 1の取付面 lis と の間の距離を、 その他端 (図 2, 3では上端) の下面と支持フレーム 1 1の取付面 l is との間の距離よりも長くしたり短くしたりすることができる。 すると、 支持フ レーム 1 1の取付面 1 Is に対して調整機構本体 2 0を C C Dの軸方向 (図 2 , 3で は上下方向) に沿って傾けることができるから、 プリズム P Rの放出面 E Sに対し て、 C CDの受光面を傾けることができる。 よって、 プリズム P Rの放出面 E Sか ら放出される光の光軸が放出面 E Sの法線方向に対して傾いても、 プリズム P Rの 放出面 E Sに対する C CDの受光面の傾きを調整すれば、 C CDの受光面に垂直に 光が入射するように調整すること力できる。  In addition, if a difference is made in the tightening state of the pair of ports 21b, 21b, the lower surface of one end (the lower end in FIGS. 2 and 3) of the adjusting mechanism body 20 and the mounting surface lis of the support frame 11 are different. The distance between them can be longer or shorter than the distance between the lower surface of the other end (the upper end in FIGS. 2 and 3) and the mounting surface lis of the support frame 11. Then, the adjusting mechanism main body 20 can be tilted along the axial direction of the CCD (the vertical direction in FIGS. 2 and 3) with respect to the mounting surface 1 Is of the support frame 11, so that the emission surface ES of the prism PR. In contrast, the light receiving surface of the CCD can be inclined. Therefore, even if the optical axis of the light emitted from the emission surface ES of the prism PR is inclined with respect to the normal direction of the emission surface ES, the inclination of the light receiving surface of the CCD with respect to the emission surface ES of the prism PR can be adjusted. The force can be adjusted so that light is incident perpendicular to the light receiving surface of the CCD.
さらになお、 図 2に示すように、 取付面 l isおよび、 取付面 l is と対向する調整 機構本体 2 0のベース調整部材 2 1の下面に、 それぞれ前後方向に沿って溝 llg , 20gを設けておき、 その溝 l lg, 20gに、 バネ 1 4の脚部 14a、 頭部 14b をそれぞ れ取付けるようにすれば、 パネ部材 1 4が、 その軸方向と直交する方向、 つまり、 C C Dの軸方向に傾いて、 調整機構本体 2 0が C CDの軸方向に移動することを防 ぐことができる。  Furthermore, as shown in FIG. 2, grooves llg and 20g are provided along the front-rear direction on the lower surface of the mounting surface lis and the base adjustment member 21 of the adjusting mechanism body 20 facing the mounting surface lis, respectively. If the leg 14a and the head 14b of the spring 14 are attached to the grooves 11g and 20g, respectively, the panel member 14 will be oriented in the direction orthogonal to the axial direction, By tilting in the axial direction, the adjustment mechanism main body 20 can be prevented from moving in the axial direction of the CCD.
さらになお、 ベース付勢手段は、 パネ部材 1 4に限られず、 調整機構本体 2 0と 一対の取付面 lis, lisとを平行に保ち、 かつ光軸方向に沿って調整機構本体 2 0 を取付面 lis力 離間する方向に付勢することができるものであれば、 特に限定 はない。 例えば、 ベース付勢手段として、 取付面 l is にその外端が取付面 l isから 突出した状態となるように配設されたプランジャー 1 5を使用してもよい (図 1 0 (B) ) 。 この場合、 1つの取付面 lis に 2つのプランジャー 1 5 , 1 5を設け、 ポルト 2 lbが螺合されるネジ孔を、 2つのプランジャー 1 5, 1 5の間に形成して おけば、 ポルト 21bを進退させたときに、 調整機構本体 2 0が、 その C CDの幅方 向に傾くことを防ぐことができる。 Furthermore, the base urging means is not limited to the panel member 14, but the adjusting mechanism main body 20 and the pair of mounting surfaces lis, lis are kept parallel, and the adjusting mechanism main body 20 is mounted along the optical axis direction. The surface lis force is not particularly limited as long as it can be urged in the separating direction. For example, as the base urging means, a plunger 15 may be used, which is disposed on the mounting surface l is such that its outer end protrudes from the mounting surface l is (FIG. 10 (B)). ). In this case, two plungers 15 and 15 are provided on one mounting surface lis, If a screw hole into which 2 lb of Porto is screwed is formed between the two plungers 15 and 15, when the Porto 21b is moved forward and backward, the adjusting mechanism main body 20 will have the CCD It can be prevented from leaning in the width direction.
調整機構本体 2 0が C CDの幅方向に傾くことを確実に防ぐ場合には、 支持フレ ーム 1 1の上端に、 取付面 lis の法線方向と平行であって、 調整機構本体 2 0の側 面に接触する内面を有する案内板 1 2を設けておけば、 一対のポルト 21b , 21 を 進退させたときに、 調整機構本体 2 0はその側面が案内板 1 2の内面に案内された 状態で移動するから、 調整機構本体 2 0を取付面 lis の法線方向に沿って確実に平 行移動させることができる。  In order to prevent the adjusting mechanism main body 20 from inclining in the width direction of the CCD, the upper end of the support frame 11 is parallel to the normal direction of the mounting surface lis, and the adjusting mechanism main body 20 If the guide plate 12 having an inner surface that comes into contact with the side surface of the adjusting mechanism main body 20 is provided when the pair of ports 21 b, 21 is moved forward and backward, the side surface of the adjusting mechanism main body 20 is guided by the inner surface of the guide plate 12. The adjusting mechanism main body 20 can be reliably moved in parallel along the normal direction of the mounting surface lis.
そして、 調整機構本体 2 0の側面に、 調整機構本体 2 0の下面と直交する切り欠 き 21c を形成し、 支持フレーム 1 1の側面に取付面 lis と直交する切り欠きを形成 し、 案内板 1 2と切り欠きとの間に、 ピン Pを取付けておけば、 調整機構本体 2 0 を取付面 lis の法線方向に沿ってより確実に ¥!亍移動させることができる。  A notch 21c is formed on the side surface of the adjusting mechanism body 20 at right angles to the lower surface of the adjusting mechanism body 20, and a notch at right angles to the mounting surface lis is formed on the side surface of the support frame 11; If the pin P is installed between the notch and the notch, the adjustment mechanism body 20 can be moved more surely along the normal direction of the mounting surface lis.
さらになお、 ピントゃ光軸に対する C CDの受光面の傾きを調整する必要がない 場合には、 ベース付勢手段を設けなくてもよく、 調整機構本体 2 0のべ一ス調整部 材 2 1の下面を支持フレ一ム 1 1の取付面 lis に直接接触させて調整機構本体 2 0 を支持フレーム 1 1に固定させる構成としてもよい。  Furthermore, when it is not necessary to adjust the inclination of the light receiving surface of the CCD with respect to the focus optical axis, the base urging means may not be provided, and the base adjustment member 21 of the adjustment mechanism body 20 may be provided. The lower surface of the adjusting mechanism main body 20 may be fixed to the supporting frame 11 by directly contacting the lower surface of the supporting frame 11 with the mounting surface lis of the supporting frame 11.
さらになお、 結像位置調整機構 1 0は、 支持フレーム 1 1を設けなくてもよく、 フレーム B Rに直接調整機構本体 2 0を取付けるような構成としてもよい。 この場 合でも、 パネ部材 1 4等のベース付勢手段をフレーム B Fに設ければ、 ピントや光 軸に対する C CDの受光面の傾きを調整することができる。  Furthermore, the imaging position adjusting mechanism 10 does not need to be provided with the support frame 11, and may have a configuration in which the adjusting mechanism main body 20 is directly mounted on the frame BR. Even in this case, if the base biasing means such as the panel member 14 is provided on the frame BF, the inclination of the light receiving surface of the CCD with respect to the focus and the optical axis can be adjusted.
つぎに、 調整機構本体 2 0について詳細に説明する。  Next, the adjustment mechanism main body 20 will be described in detail.
図 5は本実施形態の結像位置調整機構 1 0の単体説明図であって、 (A) 概略平 面図であり、 (B) 概略背面図であり、 (C) (B) の C— C線矢視図である。 図 6は (A) 図 5の VIA -VIA線矢視図であり、 (B) 図 5の VIB— VIB線断面矢視 図である。 図 7は (A) は図 6 (A) の要部拡大図であり、 (B) 、 (C) は偏心 ボルト 5 3を回転させた状態の説明図である。 図 8 (A) はベース調整部材 2 1の 単体平面図であり、 (B) は微調整部材 3 0の本体部材 3 1の単体平面図であり、 (C) は微調整部材 3 0の保持部材 4 0の単体平面図である。 図 5および図 6に示すように、 調整機構本体 2 0は、 前述したベース調整部材 2 1と、 ベース調整部材 2 1に取り付けられた微調整部材 3 0とから構成されており 、 また、 微調整部材 3 0は、 本体部材 3 1と、 保持部材 4 0とから構成されている ' まず、 調整機構本体 2 0の具体的な構成を説明する前に、 調整機構本体 2 0の構 造およびその動作を、 単純ィ匕したモデルにより説明する。 FIGS. 5A and 5B are explanatory views of the image forming position adjusting mechanism 10 of the present embodiment alone, wherein FIG. 5A is a schematic plan view, FIG. 5B is a schematic rear view, and FIG. FIG. 6A is a sectional view taken along the line VIA-VIA in FIG. 5, and FIG. 6B is a sectional view taken along the line VIB-VIB in FIG. 7A is an enlarged view of a main part of FIG. 6A, and FIGS. 7B and 7C are explanatory views of a state in which the eccentric bolt 53 is rotated. Fig. 8 (A) is a plan view of the base adjustment member 21 alone, (B) is a plan view of the main body member 31 of the fine adjustment member 30 and (C) is a holding of the fine adjustment member 30. FIG. 3 is a plan view of a single member 40. As shown in FIGS. 5 and 6, the adjusting mechanism main body 20 includes the above-described base adjusting member 21 and a fine adjusting member 30 attached to the base adjusting member 21. The adjusting member 30 is composed of a main body member 31 and a holding member 40. First, before describing the specific configuration of the adjusting mechanism main body 20, the structure of the adjusting mechanism main body 20 and The operation will be described using a simplified model.
図 1 1において、 部材八, B, Cは、 それぞれ調整機構本体 2 0のベース調整部 材 2 1、 微調整部材 3 0の本体部材 3 1、 保持部材 4 0を単純ィ匕したモデルであり 、 部材 Bが部材 Aに対して部材 Aの上面に沿って移動可能に設けられており、 部材 Cが部材 Bの下面に沿って移動可能に設けられている。  In FIG. 11, members 8, B, and C are models in which the base adjustment member 21 of the adjustment mechanism main body 20, the main body member 31 of the fine adjustment member 30, and the holding member 40 are respectively simplified. The member B is provided so as to be movable along the upper surface of the member A with respect to the member A, and the member C is provided so as to be movable along the lower surface of the member B.
符号 Sは、 バネであり、 後述する移動機構のパネに該当するこのパネ Sは、 その 軸方向が、 部材 Aの上面と ¥!亍に設けられており、 部材 Bを部材 Aから離間する方 向 (図 1 2では右方向) に付勢するように配設されている。  The symbol S is a spring, and corresponds to a panel of a moving mechanism described later. The panel S has an axial direction provided on the upper surface of the member A and on the right side of the member A, and a member separating the member B from the member A. (Rightward in Fig. 12).
符号 Eは、 偏心軸であり、 後述する移動機構の偏心軸に該当する。 この偏心軸 E は、 この部材 Aに対して、 その上面と直交する中心軸を有しその中心軸まわりに回 転可能に取付けられた軸部 E 2と、 軸部 E 2に対して偏心した中心軸を有する偏心 部 E 1を備えており、 前記バネ Sとの間に部材 Bを挟むように配設されている。 符号 Dは、 偏心軸であり、 後述する移動部に該当する。 この偏心軸 Dは、 この部 材 Bに対して、 その上面と直^ Tる中心軸を有しその中心軸まわりに回転可能に取 付けられた軸部 D 2と、 軸部 D 2に対して偏心した中心軸を有する偏心部 D 1を備 えている。 そして、 偏心部 D 1は、 部材 Cに設けられた長孔 c hに挿入されている つぎに、 動作を説明する。  Symbol E denotes an eccentric shaft, which corresponds to an eccentric shaft of a moving mechanism described later. The eccentric shaft E has a center axis perpendicular to the upper surface of the member A, and has a center portion E 2 rotatably mounted around the center axis. An eccentric portion E1 having a central axis is provided, and is disposed so as to sandwich the member B between the eccentric portion E1 and the spring S. Reference sign D is an eccentric shaft, which corresponds to a moving unit described later. The eccentric shaft D has a center axis perpendicular to the upper surface of the member B, and a shaft D2 rotatably mounted around the center axis. And an eccentric portion D1 having an eccentric central axis. The eccentric portion D1 is inserted into a long hole ch provided in the member C. Next, the operation will be described.
図 1 2に示すように、 部材 Bは、 バネ Sと偏心軸 Eによって側方 (図 1 2では左 右方向) 力、ら挟まれており、 その側面 B Aが、 パネ Sによって偏心軸 Eの偏心部 E 1に押し付けられている。 この状態から、 偏心軸 Eをその軸部 E 2の中心軸まわり に回転させれば、 偏心軸 Eの軸部 E 2の中心軸周りに偏心部 E 1の中心軸が公転す るから、 部材 Bの側面 B Aと平行かつ軸部 E 2の中心軸を通る基準面 CAに対して 、 偏心部 E 1の中心と軸部 E 2を通る線のなす角度 Θが変化する。 すると、 偏心部 E 1と側面 B Aとの接触位置から基準面 CAまでの距離 D Lが長くなるように偏心 軸 Eを回転させれば、 距離 D Lの変化量 L l, L 2の分だけ部材 Bが左方向に押さ れる。 すると、 パネ Sが収縮して、 距離 D Lの変化量 L l, L 2の分だけ部材 Bが 左方向に移動させることができる。 As shown in Fig. 12, the member B is sandwiched between the side (left and right directions in Fig. 12) force by the spring S and the eccentric shaft E, and the side BA of the eccentric shaft E is It is pressed against the eccentric E1. From this state, if the eccentric shaft E is rotated around the center axis of the shaft portion E2, the center axis of the eccentric portion E1 revolves around the center axis of the shaft portion E2 of the eccentric shaft E. The angle す between the center of the eccentric portion E1 and the line passing through the shaft portion E2 changes with respect to a reference plane CA parallel to the side surface BA of B and passing through the center axis of the shaft portion E2. Then, the eccentric part If the eccentric axis E is rotated so that the distance DL from the contact position between E1 and the side surface BA to the reference plane CA becomes longer, the member B moves to the left by the amount of change Ll, L2 of the distance DL. Pressed. Then, the panel S contracts, and the member B can be moved to the left by the amount of change Ll, L2 of the distance DL.
逆に、 距離 D Lが短くなるように偏心軸 Eを回転させれば、 距離 D Lの変化量 L 1 , L 2の分だけ、 バネ Sの付勢力によって部材 Bが右方向に押し戻されるから、 距離 D Lの変化量 L 1 , L 2の分だけ部材 Bが左方向に移動させることができる。 つまり、 偏心軸 Eを回転させれば、 部材 Bをその側面 B Aと垂直な方向に沿って 、 右方向にも左方向にも移動させることができるのである。  Conversely, if the eccentric shaft E is rotated so that the distance DL becomes shorter, the member B is pushed back to the right by the biasing force of the spring S by the amount of change L1 and L2 of the distance DL. The member B can be moved leftward by the amount of change L 1, L 2 of DL. In other words, by rotating the eccentric shaft E, the member B can be moved rightward and leftward along a direction perpendicular to the side surface BA.
また、 図 1 3に示すように、 偏心軸 Dをその軸部 D 2の中心軸まわりに回転させ れば、 軸部 D 2の中心軸周りに偏心部 D 1の中心軸が公転するから、 部材 Cの長孔 c hの軸方向と TOかつ軸部 D 2の中心軸を通る基準面 C Bに対して、 偏心部 D 1 の中心と軸部 D 2を通る線のなす角度が変化する。 すると、 偏心部 D 1は、 部材 C の長孔 c hに沿つて移動しながら、 部材 Cを長孔 c hの軸方向と直交する方向に移 動させるから、 基準面 C Bから部材 Cの長孔 c hの軸までの距離 D Lが変化させる ことができる。 そして、 偏心軸 Dの軸部 D 2は、 部材 Bに取付けられているから、 偏心軸 Dを回転させれば、 部材 Cを部材 Bに対して、 部材 Cの長孔 c hの軸方向と 直交する方向に沿って、 右方向にも左方向にも移動させることができるのである。 上記のごとく、 偏心軸を利用した非常に単純な構造で、 部材 Bおよび部材 Cを移 動させるように構成しているので、 本実施形態の調整機構本体 2 0はコンパク卜な 構成とすることができ、 そして、 結像位置調整機構 1 0全体の構成もコンパクトに 構成することができるのである。  Further, as shown in FIG. 13, if the eccentric shaft D is rotated around the center axis of the shaft portion D 2, the center axis of the eccentric portion D 1 revolves around the center axis of the shaft portion D 2. The angle formed by the line passing through the center of the eccentric portion D1 and the shaft portion D2 changes with respect to the axial direction of the elongated hole ch of the member C and the reference plane CB passing through the TO and the central axis of the shaft portion D2. Then, the eccentric portion D 1 moves the member C in a direction orthogonal to the axial direction of the long hole ch while moving along the long hole ch of the member C, so that the long hole ch of the member C is moved from the reference plane CB. The distance DL to the axis can be changed. And, since the shaft portion D 2 of the eccentric shaft D is attached to the member B, if the eccentric shaft D is rotated, the member C is perpendicular to the member B with respect to the member B. You can move it to the right or to the left along the direction you want to move. As described above, since the members B and C are configured to move with a very simple structure using the eccentric shaft, the adjusting mechanism body 20 of the present embodiment has a compact configuration. Thus, the overall configuration of the imaging position adjusting mechanism 10 can be made compact.
さて、 調整機構本体 2 0を構成する各部材の詳細を説明する。  Now, details of each member constituting the adjustment mechanism main body 20 will be described.
まず、 ベース調整部材 2 1を説明する。  First, the base adjustment member 21 will be described.
図 6および図 8に示すように、 ベース調整部材 2 1は平面視で略 U字状に形成さ れた板状の部材である。 このべ一ス調整部材 2 1は、 前記支持フレーム 1 1の取付 面 lis と対向する下面と、 この下面と平行かつ平坦な上面 (以下、 基準面 21a とい う) を備えている。 このベース調整部材 2 1の左右方向の端部には、 その下面と基 準面 21a との間を貫通する一対の貫通孔 2 lh , 21hが形成されている。 このため、 ベース調整部材 2 1の下面を前記一対の支持フレーム 1 1 , 1 1の取 付面 l is , lisと対向させた状態で、 一対の貫通孔 21h 21Wこ前述した一対のポルト 21b,21bを、 ベース調整部材 2 1の基準面 21a側から揷通し、 一対の支持フレーム 1 1 , 1 1のネジ孔にそれぞれ螺合させて締め付ければ、 ベース調整部材 2 1を一 対の支持フレーム 1 1 , 1 1に固定する とができるのである (図 1〜4参照) 。 つぎに、 微調整部材 3 0を説明する。 As shown in FIGS. 6 and 8, the base adjustment member 21 is a plate-shaped member formed in a substantially U shape in plan view. The base adjustment member 21 has a lower surface facing the mounting surface lis of the support frame 11 and an upper surface parallel to the lower surface (hereinafter, referred to as a reference surface 21a). A pair of through holes 21h and 21h penetrating between the lower surface and the reference surface 21a are formed at the left and right ends of the base adjustment member 21. Therefore, with the lower surface of the base adjusting member 21 facing the mounting surfaces lis, lis of the pair of support frames 11 1, 11, the pair of through holes 21 h 21 W and the pair of ports 21 b, 21b is passed through the reference surface 21a of the base adjustment member 21 and screwed into the screw holes of the pair of support frames 11 1 and 11 to tighten the base adjustment member 21. It can be fixed at 11 or 11 (see Figures 1-4). Next, the fine adjustment member 30 will be described.
図 5、 図 6および図 8において、 符号 3 1は、 微調整部材 3 0の本体部材を示し ている。 図 5、 図 6および図 8に示すように、 本体部材 3 1は、 板状の部材であつ て、 その下面の略中央部分には、 C CDを保持する保持部材 4 0が取り付けられた ものである。 この本体部材 3 1は、 その下面において、 保持部材 4 0が取り付けら れている部分の周辺部分 (以下、 摺動面 31a という) が、 保持部材 4 0に保持され た C CDの受光面と平行な平坦面に形成されており、 保持部材 4 0をベース調整部 材 2 1の切り欠き部 21gに配置した状態において、 この摺動面 31aをベース調整部 材 2 1の基準面 21aに面接触させた状態で取付けられている (図 6参照) 。  5, FIG. 6, and FIG. 8, reference numeral 31 indicates a main body member of the fine adjustment member 30. As shown in FIGS. 5, 6, and 8, the main body member 31 is a plate-shaped member, and a holding member 40 for holding a CCD is attached to a substantially central portion of a lower surface thereof. It is. On the lower surface of the main body member 31, a peripheral portion (hereinafter, referred to as a sliding surface 31 a) of a portion to which the holding member 40 is attached is connected to a light receiving surface of the CCD held by the holding member 40. The sliding surface 31a is formed on a parallel flat surface, and the sliding surface 31a faces the reference surface 21a of the base adjustment member 21 in a state where the holding member 40 is arranged in the cutout portion 21g of the base adjustment member 21. It is installed in contact (see Figure 6).
また、 図 5および図 8示すように、 本体部材 3 1の左右両端部には、 左右一対の 取付部 3 2 , 3 2が設けられており、 この一対の取付部 3 2, 3 2には厚さ方向を 貫通する一対の貫通孔 32h, 32hがそれぞれ形成されている。 この一対の貫通孔 32h , 32hは、 その孔径 Aが後述する固定ポルト 32aのネジ部の軸径 Bよりも大きくなる ように形成されているが、 その理由は碰する。  As shown in FIGS. 5 and 8, a pair of left and right mounting portions 32, 32 are provided at both left and right end portions of the main body member 31, and the pair of mounting portions 32, 32 are provided on the pair of mounting portions 32, 32. A pair of through holes 32h, 32h penetrating in the thickness direction are respectively formed. The pair of through holes 32h, 32h are formed such that the hole diameter A is larger than the shaft diameter B of the screw portion of the fixed port 32a, which will be described later. The reason is as follows.
上記のごとき構成を有するから、 微調整部材 3 0の本体部材 3 1の摺動面 31aを ベース調整部材 2 1の基準面 21aに面接触させた状態で、 本体部材 3 1の上面から 、 一対の貫通孔 32h , 32h に一対の固定ポルト 32a , 32aを揷通し、 固定ポルト 32a のネジ部をベース調整部材 2 1に設けられているネジ孔 22h (図 8参照) に螺合さ せて締め付ければ、 本体部材 3 1の摺動面 31aをベース調整部材 2 1の基準面 21a に強く押し付けることができる。 すると、 本体部材 3 1の摺動面 31a とベース調整 部材 2 1の基準面 21a との間の摩擦力が大きくなるため、 本体部材 3 1を、 ベース 調整部材 2 1に対して移動しないように固定することができる。 このため、 本体部 材 3 1、 ベース調整部材 2 1を介して保持部材 4 0に支持された C CDがー対の支 持フレーム 1 1 , 1 1に固定される。 しかも、 ベース調整部材 2 1の基準面 21a と本体部材 3 1の摺動面 31aがいずれ も平坦面に形成されているから、 一対の固定ポルト 32a, 32a を締め付けたときに は本体部材 3 1の摺動面 31a とベース調整部材 2 1の基準面 2 la との間の摩擦力が 大きくなり、 両者をしつかりと固定できる。 With the configuration as described above, a pair of the sliding surface 31a of the main body member 31 of the fine adjustment member 30 is brought into surface contact with the reference surface 21a of the base adjustment member 21. A pair of fixed ports 32a, 32a are passed through the through holes 32h, 32h of the fixed port 32a, and a screw portion of the fixed port 32a is screwed into a screw hole 22h (see FIG. 8) provided in the base adjustment member 21 and tightened. Then, the sliding surface 31a of the main body member 31 can be strongly pressed against the reference surface 21a of the base adjustment member 21. Then, the frictional force between the sliding surface 31a of the main body member 31 and the reference surface 21a of the base adjustment member 21 increases, so that the main body member 31 is not moved with respect to the base adjustment member 21. Can be fixed. Therefore, the CCD supported by the holding member 40 via the main body member 31 and the base adjusting member 21 is fixed to the pair of supporting frames 11 1 and 11. In addition, since the reference surface 21a of the base adjustment member 21 and the sliding surface 31a of the main body member 31 are both formed as flat surfaces, when the pair of fixed ports 32a, 32a are tightened, the main body member 3 1 The frictional force between the sliding surface 31a of the base member 2 and the reference surface 2la of the base adjustment member 21 increases, and both can be firmly fixed.
また、 一対の固定ポルト 32a , 32aの締め付け力を弱めれば、 本体部材 3 1の摺動 面 31a とべ一ス調整部材 2 1の基準面 21a との間の摩擦力が小さくなるから、 本体 部材 3 1がベース調整部材 2 1に対して移動可能となる。 ここで、 貫通孔 32hは、 その孔径 Aが固定ポルト 32aの軸径 Bよりも大きくなるように形成されているから 、 一対の固定ボルト 32a , 32aのネジ部をネジ孔 2211に螺合させたままでも、 本体部 材 3 1をべ一ス調整部材 2 1に対して移動させることができる。  Also, if the tightening force of the pair of fixed ports 32a, 32a is weakened, the frictional force between the sliding surface 31a of the main body member 31 and the reference surface 21a of the base adjustment member 21 decreases, so that the main body member 3 1 is movable with respect to the base adjustment member 21. Here, since the through-hole 32h is formed so that the hole diameter A is larger than the shaft diameter B of the fixed port 32a, the screw portions of the pair of fixing bolts 32a, 32a are screwed into the screw holes 2211. The body member 31 can be moved with respect to the base adjustment member 21 as it is.
しかも、 一対の固定ポルト 32a , 32aの締め付け力を、 本体部材 3 1の摺動面 31a はベース調整部材 2 1の基準面 21aに接触しているが、 本体部材 3 1の摺動面 31a をベース調整部材 2 1の基準面 21a に押し付けている力がなくなる程度までゆるめ れば、 本体部材 3 1を、 そのベース調整部材 2 1の摺動面 31aを基準面 21aに接触 させたままでも、 ベース調整部材 2 1に対して移動させることができるから、 本体 部材 3 1を基準面 21a .に沿って確実に平行移動させることができる。 そして、 本体 部材 3 1を移動させれば、 保持部材 4 0に支持された C C Dを本体部材 3 1ととも に移動させることができるから、 C C Dをベース調整部材 2 1の基準面 2 laに沿つ て5 Ρί亍移動させることができる。 In addition, the sliding surface 31a of the main body member 31 is in contact with the reference surface 21a of the base adjustment member 21 while the tightening force of the pair of fixed ports 32a, 32a is in contact with the sliding surface 31a of the main body member 31. If the force pressing against the reference surface 21a of the base adjustment member 21 is loosened to the extent that the force is no longer applied, the main body member 31 can be moved even if the sliding surface 31a of the base adjustment member 21 is kept in contact with the reference surface 21a. Since the main body member 31 can be moved relative to the base adjustment member 21, the main body member 31 can be surely moved in parallel along the reference surface 21 a. By moving the main body member 31, the CCD supported by the holding member 40 can be moved together with the main body member 31, so that the CCD is moved along the reference surface 2 la of the base adjustment member 21. One and can be moved 5 Ri亍.
したがって、 本体部材 3 1をべ一ス調整部材 2 1に対して移動させることによつ て、 C C Dのピントゃ入射光の光軸に対する C C Dの受光面の傾きを変化させるこ となく、 C C Dの受光面上における 2次元的な入射光の結像位置を調整することが できる。  Therefore, by moving the main body member 31 with respect to the base adjustment member 21, the focus of the CCD and the inclination of the light receiving surface of the CCD with respect to the optical axis of the incident light are not changed. It is possible to adjust the imaging position of the two-dimensional incident light on the light receiving surface.
上記の一対の固定ポルト 32a, 32aが、 特許請求の範囲にいう微調整部材固定手 段である。  The pair of fixed ports 32a, 32a is a means for fixing the fine adjustment member as set forth in the claims.
なお、 本体部材 3 1において、 保持部材 4 0が取り付けられる位置には、 その厚 さ方向を貫通する開口部 30hが形成されているが、 この開口部 301ιは、 図示しない C C Dの配線を外部に導出するためのものであり、 開口部 30hから導出された C C Dの配線は AZD変 m§等の外部機器に接続されている。 つぎに、 本体部材 3 1をベース調整部材 2 1に対して移動させる移動機構を詳細 に説明する。 本実施形態の調整機構本体 2 0は、 本体部材 3 1をベース調整部材 2 1の前後方向に移動させる前後移動機構と、 本体部材 3 1をベース調整部材 2 1の 左右方向に移動させる左右移動機構とを備えている。 In the main body member 31, an opening 30 h is formed at a position where the holding member 40 is attached, and penetrates the thickness direction of the holding member 40. The opening 301 l is used to connect a CCD wiring (not shown) to the outside. This is for derivation, and the CCD wiring led out from the opening 30h is connected to an external device such as an AZD variable. Next, a moving mechanism for moving the main body member 31 with respect to the base adjustment member 21 will be described in detail. The adjustment mechanism main body 20 of the present embodiment includes a front-rear movement mechanism for moving the main body member 31 in the front-rear direction of the base adjustment member 21 and a left-right movement for moving the main body member 31 in the left-right direction of the base adjustment member 21. Mechanism.
まず、 前後移動機構を説明する。  First, the longitudinal movement mechanism will be described.
図 5および図 8に示すように、 前記ベース調整部材 2 1の後端中央部には、 その 基準面 21a上に支持部 2 5が設けられている。 一方、 本体部材 3 1には、 ベース調 整部材 2 1に取り付けられた状態においてベース調整部材 2 1の支持部 2 5の前面 と対向する位置に、 摺動面 31a と直交する受圧面 35aが設けられている。 この本体 部材 3 1の受圧面 35a とベース調整部材 2 1の支持部 2 5の前面との間には、 パネ 5 2 (図 1 0におけるパネ Sに該当する) が設けられている。 このバネ 5 2は、 ベ ース調整部材 2 1の基準面 21aの法線と直交しかつベース調整部材 2 1の前後方向 (図 5では上下方向) と平行な方向 (以下、 付勢方向という) に沿って伸縮可能に 配設されている。  As shown in FIGS. 5 and 8, a support portion 25 is provided on a reference surface 21a at a central portion of a rear end of the base adjustment member 21. On the other hand, the main body member 31 has a pressure receiving surface 35a orthogonal to the sliding surface 31a at a position facing the front surface of the support portion 25 of the base adjustment member 21 when attached to the base adjustment member 21. Is provided. A panel 52 (corresponding to panel S in FIG. 10) is provided between the pressure receiving surface 35a of the main body member 31 and the front surface of the support portion 25 of the base adjustment member 21. The spring 52 has a direction perpendicular to the normal line of the reference surface 21a of the base adjustment member 21 and a direction parallel to the front-rear direction (vertical direction in FIG. 5) of the base adjustment member 21 (hereinafter referred to as an urging direction). ) Is arranged to be able to expand and contract along.
図 5および図 7に示すように、 本体部材 3 1の一対の取付部 3 2 , 3 2の前面に は、 前記受圧面 35a と TOかつ摺動面 31a と直 る支持面 32s (図 1 0における側 面 B Aに該当する) がそれぞれ設けられている。 一方、 ベース調整部材 2 1には、 本体部材 3 1をべ一ス調整部材 2 1に取り付けた状態における各支持面 32s の前方 に偏心ポルト 5 3 (図 1 +0における偏心軸 Eに該当する) がそれぞれ配設されてい る。 この偏心ポルト 5 3は、 円柱状のポルトヘッド 53a とネジ軸 53b とから構成さ れており、 ネジ軸 53bの中心軸 T Pが、 ポルトヘッド 53aの中心軸 H Pと ffi1かつポ ルトへッド 53aの半径方向にオフセッ卜するように形成されたものである。 そして、 この偏心ポルト 5 3は、 そのネジ軸 53bが、 ベース調整部材 2 1に設けられた、 基 準面 21aの法線と平行な中心軸を有するネジ孔 231ιに螺合しており、 そのポルトへ Vド 53aの中心軸 H Pがベース調整部材 2 1の基準面 21aの法線と 亍となるように 配設されている。 言い換えれば、 ポルトヘッド 53aは、 その側面が基準面 21a と直交 する円筒状の面となるように配設されている。 As shown in FIGS. 5 and 7, on the front surfaces of the pair of mounting portions 32, 32 of the main body member 31, a support surface 32s (FIG. 10), which is directly connected to the pressure receiving surface 35a and the TO and sliding surface 31a. (Corresponding to the side surface BA). On the other hand, the base adjustment member 21 has an eccentric port 53 in front of each support surface 32s in a state where the main body member 31 is attached to the base adjustment member 21 (corresponding to the eccentric axis E in FIG. 1 +0). ) Are provided respectively. The eccentric port 53 includes a columnar port head 53a and a screw shaft 53b. The center axis TP of the screw shaft 53b is aligned with the center axis HP of the port head 53a by ffi 1 and the port head. It is formed so as to be offset in the radial direction of 53a. The eccentric port 53 has its screw shaft 53b screwed into a screw hole 231ι provided on the base adjusting member 21 and having a central axis parallel to the normal line of the reference surface 21a. It is arranged so that the central axis HP of the V-shaped door 53a is 亍 with respect to the normal line of the reference surface 21a of the base adjustment member 21. In other words, the port head 53a is disposed such that its side surface is a cylindrical surface orthogonal to the reference surface 21a.
このため、 本体部材 3 1をべ一ス調整部材 2 1に取り付けると、 パネ 5 2によつ て本体部材 3 1の受圧面 35aが前方に付勢されるから、 一対の取付部 3 2 , 3 2の支 持面 32s , 32sが前記一対の偏心ポルト 5 3 , 5 3のボルトへッド 53aの支持面 32s と 対向する側面、 言い換えればポルトヘッド 53aの後端に押し付けられる。 すると、 バ ネ 5 2による付勢力は一対の偏心ポルト 5 3 , 5 3によって支持されるから、 一対 の偏心ポルト 5 3, 5 3とべ一ス調整部材 2 1の支持部 2 5との間に本体部材 3 1 力保持されるのである。 For this reason, when the main body member 31 is attached to the base adjustment member 21, the pressure receiving surface 35 a of the main body member 31 is urged forward by the panel 52, so that the pair of attachment portions 3 2, 3 2 support The holding surfaces 32s, 32s are pressed against the side surface of the pair of eccentric ports 53, 53 facing the supporting surface 32s of the bolt head 53a, in other words, the rear end of the port head 53a. Then, since the biasing force of the spring 52 is supported by the pair of eccentric ports 53, 53, the biasing force between the pair of eccentric ports 53, 53 and the support portion 25 of the base adjustment member 21 is provided. The body member 3 1 is held in force.
また、 図 7に示すように、 偏心ポルト 5 3のネジ軸 53bは、 その中心軸 T Pがボ ルトへッド 53aの中心軸 H Pに対してその半径方向にオフセットするように配設され ているため、 ネジ軸 53bをその中心軸 T Pまわりに回転させれば、 付勢方向における 偏心ポルト 5 3のネジ軸 53bの中心軸 T Pからポルトヘッド 53aの後端までの長さ (以下、 単に付勢方向長さ L 2という (図 1 0における距離 D Lに該当する) ) は 、 ネジ軸 53bの回転角度に応じて変化することになる。  As shown in FIG. 7, the screw shaft 53b of the eccentric port 53 is disposed so that its central axis TP is offset in the radial direction with respect to the central axis HP of the bolt head 53a. Therefore, if the screw shaft 53b is rotated around its central axis TP, the length from the central axis TP of the screw shaft 53b of the eccentric port 53 in the biasing direction to the rear end of the port head 53a (hereinafter simply referred to as bias) The length L2 in the direction (corresponding to the distance DL in FIG. 10) changes according to the rotation angle of the screw shaft 53b.
前述したように、 本体部材 3 1は、 パネ 5 2によって常時前方に付勢されており 、 その一対の取付部 3 2, 3 2の支持面 32a , 32aは、 常に偏心ポルト 5 3のポルト ヘッド 53aの後端に接触しているから、 偏心ポルト 5 3のネジ軸 53b を回転させて 付勢方向長さ L 2を変化させれば、 その変化に併せて、 取付部 3 2を付勢方向に沿 つて移動させることができる。  As described above, the main body member 31 is constantly urged forward by the panel 52, and the support surfaces 32a, 32a of the pair of mounting portions 32, 32 always maintain the eccentric port 53 of the port head. Since the screw shaft 53b of the eccentric port 53 is rotated by rotating the screw shaft 53b of the eccentric port 53 to change the biasing direction length L2, the mounting portion 32 is biased in accordance with the change. Can be moved along.
このため、 一対の偏心ボルト 5 3 , 5 3の長径 L Dの付勢方向に対する傾き 0 1 (図 7 (B) 、 (C) ) が同じ角度となるように一対の偏心ポルト 5 3 , 5 3のネ ジ軸 53b , 53bの回転量を調整すれば、 各取付部 3 2の付勢方向への移動量が同じに なるから、 本体部材 3 1を、 一対の偏心ポルト 5 3 , 5 3とベース調整部材 2 1の 支持部 2 5との間に保持したままで、 本体部材 3 1を付勢方向に沿って平行移動さ せることができる。  For this reason, the pair of eccentric bolts 53 and 53 are arranged such that the inclinations 0 1 (FIGS. 7B and 7C) of the long diameter LD of the pair of eccentric bolts 53 and 53 become the same angle. If the amount of rotation of the screw shafts 53b, 53b is adjusted, the amount of movement of each mounting portion 32 in the biasing direction becomes the same, so that the main body member 31 is connected to the pair of eccentric ports 5 3, 5 3 The main body member 31 can be translated in the urging direction while being held between the base adjustment member 21 and the support portion 25.
また、 図 7 (B) 、 (C) に示すように偏心ポルト 5 3のポルトヘッド 53aを回 転させると、 付勢方向長さ L 2が変化するが、 その変化量 L 3と同じ長さだけ本体 部材 3 1を付勢方向に沿って移動させることができるから、 C C Dの受光面上にお ける結像位置を、 付勢方向に沿って本体部材 3 1の移動方向と逆向きに偏心ポルト 5 3の付勢方向長さ L 2の変化量 L 3と同じ長さだけ移動させることができる。 つぎに、 左右移動機構を説明する。  When the port head 53a of the eccentric port 53 is rotated as shown in FIGS. 7B and 7C, the length L2 in the biasing direction changes, but the length L3 is the same as the change amount L3. Only the main body member 31 can be moved along the biasing direction, so that the imaging position on the light receiving surface of the CCD is eccentric in the direction opposite to the moving direction of the main body member 31 along the biasing direction. The port 53 can be moved by the same length as the change amount L 3 of the length L 2 in the biasing direction of the port 5 3. Next, the left-right moving mechanism will be described.
この左右移動機構は、 前記前後移動機構と実質同様の構成を有しているが、 図 5 および図 8に示すように、 前記ベース調整部材 2 1の後端左側には、 その扉面 21a 上に側方支持部 2 6が設けられている。 一方、 本体部材 3 1には、 ベース調整部材 2 1に取り付けられた状態において、 ベース調整部材 2 1の側方支持部 2 6の右側 面と対向する位置に、 摺動面 31a と直交する受圧面 (以下、 側方受圧面 35b という ) が設けられている。 この本体部材 3 1の側方受圧面 35b とベース調整部材 2 1の 支持部 2 5の右側面との間には、 バネ 5 6 (図 1 0におけるバネ Sに該当する) が 設けられている。 このバネ 5 6は、 ベース調整部材 2 1の基準面 2 laの法線と直交 しかつべ一ス調整部材 2 1の左右方向 (図 5では左右方向) と平行な方向 (以下、 側方付勢方向という) に沿って伸縮可能に配設されている。 The left-right moving mechanism has substantially the same configuration as the front-rear moving mechanism. As shown in FIG. 8, on the left side of the rear end of the base adjustment member 21, a side support portion 26 is provided on the door surface 21a. On the other hand, when the main body member 31 is attached to the base adjustment member 21, the pressure receiving portion orthogonal to the sliding surface 31 a is located at a position facing the right side surface of the side support portion 26 of the base adjustment member 21. A surface (hereinafter referred to as a side pressure receiving surface 35b) is provided. A spring 56 (corresponding to the spring S in FIG. 10) is provided between the side pressure receiving surface 35b of the main body member 31 and the right side surface of the support portion 25 of the base adjustment member 21. . The spring 56 is perpendicular to the normal of the reference surface 2 la of the base adjustment member 21 and is parallel to the left-right direction (the left-right direction in FIG. 5) of the base adjustment member 21 (hereinafter referred to as lateral biasing). (Referred to as direction).
図 5および図 7に示すように、 本体部材 3 1の右側面には、 前記側方受圧面 35b と平行かつ摺動面 31a と直交する側方支持面 36s (図 1 0における側面 B Aに該当 する) が設けられている。 一方、 ベース調整部材 2 1には、 本体部材 3 1をべ一ス 調整部材 2 1に取り付けた状態において、 側方支持面 36s の右方に偏心ポルト 5 7 (図 1 0における偏心軸 Eに該当する) が配設されている。 この偏心ポルト 5 7は 、 前記前後移動機構の偏心ポルト 5 3と実質同様の構成を有しており、 そのネジ軸 57bがベース調整部材 2 1に設けられた、 基準面 21a の法線と ¥ fな中心軸を有す るネジ孔 27hに螺合しており、 ポルトヘッド 57aの側面が基準面 21a と直交する円筒 状の面となるように配設されている。  As shown in FIGS. 5 and 7, on the right side of the main body member 31, a side support surface 36s parallel to the side pressure receiving surface 35b and orthogonal to the sliding surface 31a (corresponding to the side surface BA in FIG. 10). ) Is provided. On the other hand, when the main body member 31 is attached to the base adjustment member 21, the base adjustment member 21 has an eccentric port 57 (to the eccentric shaft E in FIG. 10) to the right of the side support surface 36 s. (Applicable). The eccentric port 57 has substantially the same configuration as the eccentric port 53 of the front-rear moving mechanism, and has a screw shaft 57b provided on the base adjusting member 21 and a normal line to the reference surface 21a. It is screwed into a screw hole 27h having a central axis, and is disposed such that the side surface of the port head 57a is a cylindrical surface orthogonal to the reference surface 21a.
このため、 本体部材 3 1をべ一ス調整部材 2 1に取り付けると、 パネ 5 6によつ て本体部材 3 1の側方受圧面 35bが右方に付勢されるからその側方支持面 36bが偏 心ポルト 5 7のポルトへッド 57a の左端に押し付けられた状態で、 偏心ポルト 5 7 とベース調整部材 2 1の支持部 2 6との間に本体部材 3 1が保持されるのである。 また、 偏心ポルト 5 7のネジ軸 57b をその中心軸まわりに回転させれば、 側方付 勢方向における偏心ボルト 5 7のネジ軸 57b の中心軸からポルトヘッド 57a の左端 までの長さ (以下、 側方付勢方向長さという (図 1 0における距離 D Lに該当する ) ) はネジ軸 57bの回転角度に応じて変化することになるが、 本体部材 3 1はバネ 5 6によって常時右方に付勢されている。 このため、 偏心ポルト 5 7のネジ軸 57b を回転させて側方付勢方向長さを変化させれば、 その変化量の分だけ、 本体部材 3 1を側方付勢方向に沿って正確に移動させることができる。 つまり、 C CDの受光 面上における結像位置を、 側方付勢方向に沿って本体部材 3 1の移動方向と逆向き に偏心ポルト 5 7の側方付勢方向長さの変化量と同じ長さだけ移動させることがで きる。 For this reason, when the main body member 31 is attached to the base adjustment member 21, the side pressure receiving surface 35 b of the main body member 31 is urged to the right by the panel 56, so that the side support surface is provided. Since the main body member 31 is held between the eccentric port 57 and the support portion 26 of the base adjustment member 21 with the 36b pressed against the left end of the port head 57a of the eccentric port 57, is there. If the screw shaft 57b of the eccentric port 57 is rotated around its center axis, the length from the center axis of the screw shaft 57b of the eccentric bolt 57 in the lateral biasing direction to the left end of the port head 57a (hereinafter referred to as “ The length in the side biasing direction (corresponding to the distance DL in FIG. 10)) changes according to the rotation angle of the screw shaft 57b, but the body member 31 is always rightward by the spring 56. Has been energized. Therefore, if the length of the side urging direction is changed by rotating the screw shaft 57b of the eccentric port 57, the body member 31 can be accurately moved in the side urging direction by the amount of the change. Can be moved. In other words, CCD light reception The imaging position on the surface is moved along the side urging direction in the direction opposite to the moving direction of the main body member 31 by the same amount as the amount of change in the length of the eccentric port 57 in the side urging direction. I can do it.
なお、 左右移動機構は偏心ポルト 5 7を 1個しか備えていないが、 左右移動機構 によって本体部材 3 1が側方付勢方向に沿って移動するときには、 一対の取付部 3 2 , 3 2の支持面 32s , 32sが前後移動機構 5 1の偏心ポルト 5 3のポルトへッド 53a の後端に接触した状態で移動するから、 偏心ポルト 5 7を 1個でも、 本体部材 3 1 を側方付勢方向に沿って確実に ¥1亍移動させること力 きる。  The left and right moving mechanism has only one eccentric port 57, but when the main body member 31 is moved in the lateral biasing direction by the left and right moving mechanism, the pair of mounting portions 3 2 and 3 2 Since the support surfaces 32s, 32s move while being in contact with the rear end of the port head 53a of the eccentric port 53 of the longitudinal movement mechanism 51, the main body member 31 is moved laterally even with one eccentric port 57. Able to move securely by ¥ 1 along the biasing direction.
上記のごとく、 前後移動機構と左右移動機構によって、 本体部材 3 1を互いに直 交する方向 (付勢方向および側方付勢方向) に沿って独立して移動させることがで きるから、 他の移動機構における偏心ポル卜 5 3 , 5 7の回転に係わらず、 付勢方 向および側方付勢方向における本体部材 3 1の移動量をそれぞれ正確に調整するこ とができる。 すると、 C CDの受光面上における 2次元的な結像位置を、 付勢方向 および側方付勢方向に沿つてそれぞれ独立して移動させることができるから、 C C Dの受光面上における 2次元的な結像位置を正確に調整することができるのである 上記の前後移動機構の偏心ポル卜 5 3および左右移動機構の偏心ボルト 5 7が特 許請求の範囲にいう位置調整部であり、 前後移動機構のパネ 5 2および左右移動機 構のパネ 5 6が特許請求の範囲にいう付勢手段である。  As described above, the main body member 31 can be independently moved in the directions orthogonal to each other (the biasing direction and the lateral biasing direction) by the forward and backward moving mechanism and the left and right moving mechanism. Irrespective of the rotation of the eccentric ports 53, 57 in the moving mechanism, the amount of movement of the main body member 31 in the urging direction and the side urging direction can be adjusted accurately. Then, the two-dimensional imaging position on the light receiving surface of the CCD can be moved independently along the urging direction and the lateral energizing direction. The eccentric port 53 of the front-rear movement mechanism and the eccentric bolt 57 of the left-right movement mechanism are the position adjustment parts referred to in the claims, and The panel 52 of the mechanism and the panel 56 of the left-right moving mechanism are the urging means described in the claims.
なお、 付勢手段はパネに限られず、 本体部材 3 1を、 付勢方向または側方付勢方 向に沿って付勢することができるものであればとくに限定はなぐ 例えば、 ネジゃ ゴム等であってもよい。  The urging means is not limited to the panel, and is not particularly limited as long as it can urge the main body member 31 in the urging direction or the side urging direction. It may be.
さらになお、 位置調整部は偏心ボルト 5 3に限られず、 本体部材 3 1を、 付勢方 向または側方付勢方向と平行に移動させることができるものであればとくに限定は なく、 例えば、 ネジ等であってもよい。  Further, the position adjusting portion is not limited to the eccentric bolt 53, and is not particularly limited as long as the main body member 31 can be moved in the urging direction or the side urging direction in parallel. It may be a screw or the like.
つぎに、 本実施形態の結像位置調整機構 1 0によって、 3 C CDカメラの各 C C Dの受光面上における焦点位置およびピントを調整する方法を説明する。  Next, a method of adjusting the focus position and the focus on the light receiving surface of each CCD of the 3CCD camera by the imaging position adjusting mechanism 10 of the present embodiment will be described.
焦点位置およびピントを調整する場合、 3 C C Dカメラによってテストパターン などを撮影するが、 テス卜パターンを撮影すると、 テストパターンで反射した光が 、 レンズ Lを通ってプリズム P Rに入射される。 すると、 入射した光はプリズム P Rによって分光された後 3つの波長の光がそれぞれ放射面 E Sから放射されるから 、 テストパターンが C C Dの受光面上に結像される。 C CDの受光面を構成する C CD素子が感知したテストパターンに対応する光の強度の強弱は、 C CD素子から 配線を通して電気信号として図示しない外部機器に送信されるから、 外部機器によ つて、 人が、 C CDの受光面上における結像状態を確認することができ、 この結像 状態を見ながら各 C CDの受光面上における焦点位置およびピントを調整すること ができる。 When adjusting the focal position and focus, 3 photograph a test pattern with a CCD camera, but when the test pattern is photographed, the light reflected by the test pattern Then, the light enters the prism PR through the lens L. Then, after the incident light is split by the prism PR, light of three wavelengths is respectively emitted from the emission surface ES, so that the test pattern is imaged on the light receiving surface of the CCD. The intensity of light corresponding to the test pattern detected by the CCD element constituting the light receiving surface of the CCD is transmitted as an electrical signal from the CCD element through wiring to an external device (not shown). A person can check the image formation state on the light receiving surface of the CCD, and can adjust the focus position and the focus on the light receiving surface of each CCD while watching the image formation state.
さて、 各 C C Dの受光面上における焦点位置およびピントの調整方法を説明する が、 まず、 一対の支持フレーム 1 1 , 1 1に取り付けられている調整機構本体 2 0 において、 それぞれ一対の固定ポルト 32a, 32aを締め付けて、 本体部材 3 1がべ一 ス調整部材 2 1に対して移動しない状態としておく。  Now, a method of adjusting the focal position and the focus on the light receiving surface of each CCD will be described. First, in the adjustment mechanism body 20 attached to the pair of support frames 11, 11, a pair of fixed ports 32 a are respectively provided. , 32a so that the main body member 31 does not move with respect to the base adjustment member 21.
つぎに、 一対のポルト 21b , 21bを回転させて、 その締め付け状態を調整して、 調 整機構本体 2 0全体をプリズム P Rの放出面 E Sに接近離間させて、 各 C CDの受 光面上におけるピントを合わせる。  Next, the pair of ports 21b, 21b are rotated to adjust the tightening state, and the entire adjustment mechanism main body 20 is moved closer to and away from the emission surface ES of the prism PR, so as to be on the light receiving surface of each CCD. Focus on.
このとき、 テストパターンの歪みなどがある場合には、 一対のポルト 21b , 2 lbの 締め付け状態を調整して、 C CDの受光面のプリズム P Rの放出面 E Sに対する傾 きを調整し、 テストパターンの歪みを補正する。  At this time, if the test pattern is distorted, adjust the tightening condition of the pair of Ports 21b and 2 lb to adjust the inclination of the light receiving surface of the CCD with respect to the emission surface ES of the prism PR. To correct the distortion.
ピント調整が終了すると、 一対の固定ポルト 32a , 32aをゆるめて本体部材 3 1を ベース調整部材 2 1に対して移動可能な状態にする。 このとき、 一対の固定ポルト 32a J2aを、 本体部材 3 1の摺動面 31aが、 ベース調整部材 2 1の基準面 21aから 離間はしないがベース調整部材 2 1の基準面 21aに沿って平行移動はさせることが できる程度に緩めるのが、 最も好適である。  When the focus adjustment is completed, the pair of fixed ports 32a, 32a are loosened so that the main body member 31 is movable with respect to the base adjustment member 21. At this time, the pair of fixed ports 32a J2a are moved in parallel along the reference surface 21a of the base adjustment member 21 without the sliding surface 31a of the main body member 31 being separated from the reference surface 21a of the base adjustment member 21. It is most suitable to loosen as much as possible.
ついで、 前後移動機構 5 1の一対の偏心ポルト 5 3, 5 3を回転させて、 本体部 材 3 1を付勢方向に沿って移動させる。 すると、 C CDの受光面上に結像されてい るテストパターンが、 C CDの受光面上を本体部材 3 1の移動方向と逆方向に移動 する。 そして、 テストパターンの結像位置が、 付勢方向における所望の位置まで移 動すると、 一対の偏心ポルト 5 3, 5 3の回転を停止する。 すると、 本体部材 3 1 は、 一対の偏心ポルト 5 3, 5 3のポルトへッド 53aとベース調整部材 2 1の支持部 25との間に保持されて、 一対の偏心ポルト 53 , 53の回転を停止したときの位 置で保持される。 Next, the pair of eccentric ports 53, 53 of the longitudinal movement mechanism 51 are rotated to move the main body member 31 in the biasing direction. Then, the test pattern formed on the light receiving surface of the CCD moves on the light receiving surface of the CCD in a direction opposite to the moving direction of the main body member 31. Then, when the imaging position of the test pattern moves to a desired position in the biasing direction, the rotation of the pair of eccentric ports 53 and 53 is stopped. Then, the main body member 31 is connected to the port head 53a of the pair of eccentric ports 53, 53 and the support portion of the base adjustment member 21. 25, and is held at the position where rotation of the pair of eccentric ports 53, 53 is stopped.
同様に、 左右移動機構 55の偏心ポルト 57を回転させて、 本体部材 31を側方 付勢方向に移動させ、 側方付勢方向におけるテストパターンの結像位置を所望の位 置まで移動しさせて、 本体部材 31を保持させる。  Similarly, by rotating the eccentric port 57 of the left and right moving mechanism 55, the main body member 31 is moved in the side urging direction, and the image forming position of the test pattern in the side urging direction is moved to a desired position. Then, the main body member 31 is held.
最後に、 一対の固定ポルト 32a, 32aを締め付ければ、 テストパターンが CCDの 受光面上における所望の位置に配置された状態で、 本体部材 31がベース調整部材 21に固定され、 一つの CCDの焦点位置およびピントを調整が終了する。  Finally, by tightening the pair of fixed ports 32a, 32a, the main body member 31 is fixed to the base adjustment member 21 with the test pattern arranged at a desired position on the light receiving surface of the CCD. The adjustment of the focal position and the focus is completed.
同様の作業を、 他の 2つの調整機構本体 20について行なえば、 各調整機構本体 20に保持されている C CDの焦点位置およびピントを調整を行なうことができる 上記のごとく、 本実施形態の結像位置調整機構 10を 3 CCDカメラに採用すれ ば、 各 C C Dの結像位置調整を、 他の C C Dにおける結像位置調整状態から独立し て調整することができるから、 複数の CCDを有する CCDカメラであっても、 そ の焦点位置およびピントを容易に調整することができる。 そして、 各 CCDに入射 される光の結像状態を、 独立して微調整することができるから、 各 CCD間の結像 状態の差を小さくすることができる。 よって、 全ての CCDにおける結像状態の均 一性を高めるとができるから、 再生画像の質を向上させることができる。  If the same operation is performed for the other two adjustment mechanism main bodies 20, the focal position and the focus of the CCD held by each adjustment mechanism main body 20 can be adjusted. If the image position adjustment mechanism 10 is used in a three-CCD camera, the imaging position of each CCD can be adjusted independently of the imaging position adjustment state of the other CCDs. Even so, the focus position and focus can be easily adjusted. Since the imaging state of light incident on each CCD can be finely adjusted independently, the difference in the imaging state between each CCD can be reduced. Therefore, the uniformity of the imaging state in all CCDs can be improved, and the quality of the reproduced image can be improved.
しカも、 各 C C Dについて個別に焦点位置およびピント調整ができるから、 プリ ズム PRの製作誤差やその他の部材の製作誤差を、 各調整機構本体 20によって吸 収できる。 よって、 プリズム PR等に必要とされる製作誤差の許容範囲が広くなる から、 プリズム PR等の製造が容易になり、 その製造コストも下げることができる とくに、 CCDとして、 CCD素子が直線状に並んだ、 いわゆるライン CCDを 使用する場合には、 CCDの受光面の幅が非常に狭くなるため、 結像位置を非常に 正確かつ微調整しなければならないが、 本実施形態の結像位置調整機構 10を使用 すれば、 受光面の幅が非常に狭いライン CCDであっても、 その受光面上に確実に 結像させることができる。 そして、 本実施形態の結像位置調整機構 10を採用した 3 CCDカメラであれば、 各 CCDの焦点調整を簡単かつ正確に行なうことができ るから、 撮像体としてライン C CDを採用することが可能となる。 すると、 高速で 画像を撮影する装置、 例えば、 連続的に搬送されるシートにおいてその欠陥を検 査する装置等にライン C C Dを備えた 3 C C Dカメラを使用することができるから 、 高速で搬送されるシートであっても、 欠陥を検査の精度を高くすることができ る。 Since the focus position and focus can be individually adjusted for each CCD, manufacturing errors of the prism PR and other members can be absorbed by each adjusting mechanism body 20. Therefore, the tolerance of the manufacturing error required for the prism PR and the like is widened, so that the manufacturing of the prism PR and the like can be facilitated and the manufacturing cost can be reduced. However, when using a so-called line CCD, the width of the light receiving surface of the CCD becomes very narrow, so that the imaging position must be adjusted very precisely and finely. If 10 is used, it is possible to reliably form an image on the light receiving surface even for a line CCD with a very narrow light receiving surface. And, if the 3 CCD camera adopts the imaging position adjusting mechanism 10 of the present embodiment, the focus adjustment of each CCD can be performed easily and accurately. Therefore, it is possible to adopt a line CCD as an imaging body. Then, a 3 CCD camera equipped with a line CCD can be used for a device that captures images at a high speed, for example, a device that inspects for defects in a continuously conveyed sheet. Even for sheets, the accuracy of inspection for defects can be increased.
そして、 上記のごとき、 偏心ボルト 5 3, 5 7を位置調整部として採用し、 バネ 5 2, 5 6を付勢手段とすることによって、 移動機構の構成を非常に簡単な構成と することができるので、 本実施形態の調整機構本体 2 0はコンパクトな構成とする ことができるから、 C CDの受光面をプリズム P Rの放出面 E Sに非常に近づけて 配置させることも可能となる、 すると、 C C Dの受光面をレンズ Lに近づけて配 置することもできるから、 口径の小さいレンズ Lを使用しても、 C CDの受光面 における焦点内に存在する C C D素子のピクセル数を多くでき、 検査対象の分解 能、 つまり検査精度を向上させることができる。  As described above, the eccentric bolts 53, 57 are used as the position adjusting parts, and the springs 52, 56 are used as the biasing means, so that the configuration of the moving mechanism can be made very simple. Since the adjustment mechanism main body 20 of the present embodiment can have a compact configuration, it is possible to arrange the light receiving surface of the CCD very close to the emission surface ES of the prism PR. Since the CCD light receiving surface can be placed close to the lens L, the number of pixels of the CCD element existing in the focal point on the CCD light receiving surface can be increased even if a small-diameter lens L is used. The resolution of the object, that is, the inspection accuracy, can be improved.
また、 微調整部材 3 0の保持部材 4 0を、 以下のごとく本体部材 3 1に対して移 動可能に設ければ、 C CDに入射される光の結像状態を、 さらに精度良く調整する ことができる。  Further, if the holding member 40 of the fine adjustment member 30 is provided so as to be movable with respect to the main body member 31 as described below, the imaging state of light incident on the CCD can be adjusted more accurately. be able to.
図 8に示すように、 微調整部材 3 0の本体部材 3 1には、 開口部 31h と一対の貫 通孔 32h , 32hとの間に、 その厚さ方向を貫通する一対の保持部取付用孔 3111 , 31hが 設けられている。 この本体部材 3 1の下面の略中央部分であって、 前記一対の保持 部取付用孔 3111 , 31hの間の部分には、 前記摺動面 31aと平行な平坦面である取付面 31sが設けられている (図 6 (B) ) 。  As shown in FIG. 8, the main body member 31 of the fine adjustment member 30 has a pair of holding portion mounting members penetrating in the thickness direction between the opening 31h and the pair of through holes 32h, 32h. Holes 3111 and 31h are provided. A mounting surface 31s, which is a flat surface parallel to the sliding surface 31a, is provided in a substantially central portion of the lower surface of the main body member 31 and between the pair of holding portion mounting holes 3111 and 31h. (Fig. 6 (B)).
この本体部材 3 1の取付面 3 Is の下方には、 保持部材 4 0が配設されている。 こ の保持部材 4 0は、 その上面 40s、 つまり本体部材 3 1の取付面 31s と対向する面 が平坦面に形成されている。 また、 保持部材 4 0は、 その中央部に C CD取付け部 40gが設けられており、 この C CD取付け部 40gに C CDを取付けると、 C CDの 受光面が上面 40s と 亍となるように形成されている。  Below the mounting surface 3 Is of the main body member 31, a holding member 40 is provided. The holding member 40 has a flat upper surface 40s, that is, a surface facing the mounting surface 31s of the main body member 31. The holding member 40 is provided with a CCD mounting portion 40g at the center thereof. When the CCD is mounted on the CCD mounting portion 40g, the light receiving surface of the CCD is set to be the upper surface 40s and 亍. Is formed.
そして、 図 5, 図 6および図 8に示すように、 保持部材 4 0の上面 40s には、 そ の左右両端部に一対のネジ孔 40h , 401ιが形成されており、 この保持部材 4 0の一対 のネジ孔 40h , 40hには、 本体部材 3 1の表面から一対の保持部取付用孔 3111 , 31hに 揷通された一対の保持部材固定ポルト 4 1 , 4 1力 螺合されている。 この一対の 保持部材固定ポルト 4 1 , 4 1には、 その軸径がー対の一対の保持部取付用孔 3 lh , 3 lhの? L径よりも小さいものが使用される。 As shown in FIGS. 5, 6, and 8, a pair of screw holes 40h and 401ι are formed in the upper surface 40s of the holding member 40 at both left and right ends thereof. The pair of screw holes 40h, 40h are inserted into the pair of holding portion mounting holes 3111, 31h from the surface of the main body member 31. 一 対 The pair of holding member fixing ports 41, 41 passed through are screwed together. The pair of holding member fixing ports 41, 41 have shaft diameters of a pair of holding portion mounting holes 3 lh, 3 lh. Those smaller than the L diameter are used.
このため、 一対の保持部材固定ポルト 4 1 , 4 1を締め付ければ、 保持部材 4 0 を、 その上面 40s が本体部材 3 1の取付面 31s に強く押し付けられ、 両者の間の摩 擦力が大きくなるから、 保持部材 4 0を、 本体部材 3 1に対して移動レないように 固定することができる。 しかも、 保持部材 4 0の上面 40s と本体部材 3 1の取付面 31s がいずれも平坦面に形成されているから、 一対の保持部材固定ボルト 4 1 , 4 1の締め付けたときに両者の間に発生する摩擦力が大きくなり、 両者をしつかりと 固定できる。  For this reason, when the pair of holding member fixing ports 41, 41 are tightened, the holding member 40 is strongly pressed with its upper surface 40s against the mounting surface 31s of the main body member 31, and the frictional force between the two is reduced. Since it becomes larger, the holding member 40 can be fixed so as not to move with respect to the main body member 31. In addition, since the upper surface 40s of the holding member 40 and the mounting surface 31s of the main body member 31 are both formed as flat surfaces, when the pair of holding member fixing bolts 41, 41 are tightened, there is a gap between them. The generated friction force increases, and both can be firmly fixed.
また、 一対の保持部材固定ポルト 4 1 , 4 1を締め付け力を弱めれば、 保持部材 4 0の上面 40s と本体部材 3 1の取付面 3 Is との間の摩擦力が小さくなるから、 保 持部材 4 0を本体部材 3 1に対して移動可能となる。 ここで、 一対の保持部材固定 ポルト 4 1 , 4 1には、 その軸径がー対の保持部取付用孔 31h , 31hの孔径よりも小 さいものが使用されているから、 一対の保持部材固定ポルト 4 1 , 4 1を保持部材 4 0の上面 40s を本体部材 3 1の取付面 3 Is に押し付けている力がなくなる程度に ゆるめれば、 保持部材 4 0の一対のネジ孔 40h , 401ιに一対の保持部材固定ボルト 4 1 , 4 1螺合させたままでも、 保持部材 4 0を本体部材 3 1に対して移動させるこ とができる。  Also, if the tightening force of the pair of holding member fixing ports 41, 41 is reduced, the frictional force between the upper surface 40s of the holding member 40 and the mounting surface 3Is of the main body member 31 is reduced. The holding member 40 can be moved with respect to the main body member 31. Here, since a pair of holding member fixing ports 41, 41 have a shaft diameter smaller than that of the pair of holding portion mounting holes 31h, 31h, a pair of holding members are used. If the fixing port 4 1, 4 1 is loosened to the extent that the upper surface 40 s of the holding member 40 is pressed against the mounting surface 3 Is of the main body member 31, the pair of screw holes 40 h, 401ι of the holding member 40 is loosened. The holding member 40 can be moved relative to the main body member 31 even when the pair of holding member fixing bolts 41 and 41 are screwed together.
しかも、 一対の保持部材固定ポルト 4 1 , 4 1の締め付け力を弱めたときには、 保持部材 4 0を、 その上面 40s を本体部材 3 1の取付面 3 Is に接触させたままで移 動させることができるから、 保持部材 4 0を、 取付面 31s に沿って確実に平行移動 させることができる。 そして、 本体部材 3 1の取付面 31sは、 その摺動面 31a と平行 であるから、 この摺動面 31a をべ一ス調整部材 2 1の基準面 2 la に面接触させてお けば、 保持部材 4 0を、 ベース調整部材 2 1の基準面 2 laに沿って平行移動させる ことができる。 すると、 保持部材 4 0を移動させても、 保持部材 4 0に保持されて いる C C Dのピントゃ入射光の光軸に対する受光面の傾きが変ィ匕しないから、 C C Dの受光面上における 2次元的な入射光の結像位置を調整することができるのであ る。 なお、 一対の保持部材固定ポルト 4 1 , 4 1の締め付け量を調整すれば、 保持部 材 4 0を本体部材 3 1の取付面 31sに対して接近離間させたり傾けたりすることが可 能であり、 C C Dのピントゃ入射光の光軸に対する受光面の傾きを調整することも できる。 すると、 保持部材 4 0だけを移動させてピントを合わせることができるか ら、 ピント調整が容易になるし、 ピント調整するときに他の部材が移動して、 結像 位置がズレたりすることを防ぐことができる。 Moreover, when the tightening force of the pair of holding member fixing ports 41, 41 is weakened, the holding member 40 can be moved while its upper surface 40s is in contact with the mounting surface 3Is of the main body member 31. Therefore, the holding member 40 can be surely moved in parallel along the mounting surface 31s. Since the mounting surface 31s of the main body member 31 is parallel to the sliding surface 31a, if the sliding surface 31a is brought into surface contact with the reference surface 2la of the base adjusting member 21, The holding member 40 can be moved in parallel along the reference surface 2la of the base adjustment member 21. Then, even if the holding member 40 is moved, the focus of the CCD held by the holding member 40 does not change the inclination of the light receiving surface with respect to the optical axis of the incident light. It is possible to adjust the image forming position of the incident light. By adjusting the amount of tightening of the pair of holding member fixing ports 41, 41, the holding member 40 can be moved toward or away from or inclined to the mounting surface 31s of the main body member 31. Yes, it is possible to adjust the inclination of the light receiving surface with respect to the optical axis of the CCD focus / incident light. Then, since the focus can be adjusted by moving only the holding member 40, the focus adjustment becomes easy, and when the focus adjustment is performed, the other members move and the image formation position shifts. Can be prevented.
さらになお、 保持部材 4 0を、 その C CD取付け部 40gに C CDを取付けると、 C CDの受光面が、 本体部材 3 1下面から突出するような構成としておけば、 C C Dの受光面をプリズム P Rの放出面 E Sに非常に近づけて配置させることができる 。 つまり、 C C Dの受光面をレンズ Lに近づけて配置することができるから、 口 径の小さいレンズしを使用しても、 C CDの受光面における焦点内に存在する C C D素子のピクセル数を多くでき、 検査対象の分解能、 つまり検查精度を向上さ せることができる。  Furthermore, if the holding member 40 is configured such that the CCD light receiving surface protrudes from the lower surface of the body member 31 when the CCD is mounted on the CCD mounting portion 40g of the CCD mounting portion, the light receiving surface of the CCD can be prism-shaped. The release surface of the PR can be placed very close to the ES. In other words, since the light receiving surface of the CCD can be arranged close to the lens L, the number of pixels of the CCD element existing in the focal point on the light receiving surface of the CCD can be increased even if a small-diameter lens is used. In addition, the resolution of the inspection target, that is, the inspection accuracy can be improved.
つぎに、 保持部材 4 0を本体部材 3 1に対して移動させる保持部材移動部を説明 する。  Next, a holding member moving unit that moves the holding member 40 with respect to the main body member 31 will be described.
図 6および図 8に示すように、 本体部材 3 1の前方両端部には、 本体部材 3 1の 厚さ方向を貫通する一対のネジ孔 3 lb , 3 lbが形成されている。 この一対のネジ孔 3 lb , 31bは、 その中心軸が取付面 31s の法線と平行となるように配設されており、 保持 部材移動部の前後移動部 4 2 (図 1 0における偏心軸 Dに該当する) の軸状部材 42a が螺合されている。 この前後移動部 4 2の軸状部材 42aの下端には、 作動軸 42bが 設けられている。 この作動軸 42bは、 その中心軸が、 前記軸状部材 42aの中心軸と 平行であってしかもその半径方向にオフセッ卜するように配設されている。  As shown in FIG. 6 and FIG. 8, a pair of screw holes 3 lb, 3 lb penetrating the main body member 31 in the thickness direction are formed at both front ends of the main body member 31. The pair of screw holes 3 lb and 31b are disposed so that the central axis thereof is parallel to the normal line of the mounting surface 31s, and the forward and backward moving portions 42 of the holding member moving portion (the eccentric shaft in FIG. 10). (Corresponding to D) is screwed. An operating shaft 42b is provided at a lower end of the shaft-like member 42a of the front-rear moving part 42. The operating shaft 42b is arranged so that its central axis is parallel to the central axis of the shaft-like member 42a and offset in its radial direction.
一方、 前記保持部材 4 0において、 その前方両端部には、 一対の長孔 40b, 40b ( 図 1 0における長孔 c hに該当する) が形成されている。 この一対の長孔 40b, 40b は、 その軸方向が保持部材 4 0の左右方向と平行であって、 その幅方向の長さが前 後移動部 4 2の作動軸 42bの軸径と同等となるように形成されている。 そして、 こ の一対の長孔 40b , 40bには、 それぞれ前後移動部 4 2の作動軸 42bが挿入されてい る。  On the other hand, in the holding member 40, a pair of long holes 40b, 40b (corresponding to the long holes ch in FIG. 10) are formed at both front ends thereof. The axial direction of the pair of elongated holes 40b, 40b is parallel to the left-right direction of the holding member 40, and the length in the width direction is equal to the shaft diameter of the operating shaft 42b of the front and rear moving part 42. It is formed so that it becomes. The operating shaft 42b of the front-rear moving part 42 is inserted into each of the pair of long holes 40b.
このため、 前後移動部 4 2の軸状部材 42aを回転させれば、 ネジ孔 31bの中心軸 周りに、 言い換えれば軸状部材 42aの回転軸まわりに作動軸 42bを周回移動させる ことができる。 すると、 作動軸 42bは、 長孔 40b内をその軸方向に沿って移動しな がら、 長孔 40bの幅方向にも移動するから、 作動軸 4¾の移動、 つまり前後移動部 4 2の軸状部材 42a を回転させることによって保持部材 4 0を長孔 40bの幅方向に のみ移動させることができる。 Therefore, if the shaft member 42a of the front-rear moving part 42 is rotated, the center axis of the screw hole 31b is The operating shaft 42b can be moved around, in other words, around the rotation axis of the shaft-shaped member 42a. Then, the operating shaft 42b moves in the width direction of the elongated hole 40b while moving in the elongated hole 40b along the axial direction thereof. By rotating the member 42a, the holding member 40 can be moved only in the width direction of the elongated hole 40b.
よって、 前後移動部 4 2の軸状部材 42aを回転させれば保持部材 4 0を本体部材 3 1の前後方向に移動させることができるから、 C C Dの受光面上における結像位 置を、 本体部材 3 1の前後方向に沿って、 作動軸 42bの本体部材 3 1の前後方向の 移動量の分だけ保持部材 4 0の移動方向と逆向きに移動させることができる。  Accordingly, the holding member 40 can be moved in the front-rear direction of the main body member 31 by rotating the shaft-shaped member 42a of the front-rear moving part 42, so that the image-forming position on the light receiving surface of the CCD is changed. Along the longitudinal direction of the member 31, the operating shaft 42 b can be moved in the direction opposite to the moving direction of the holding member 40 by the amount of movement of the main body member 31 in the longitudinal direction.
また、 図 6および図 8に示すように、 本体部材 3 1の後方左側には、 本体部材 3 1の厚さ方向を貫通するネジ孔 31cが形成されている。 このネジ孔 31cは、 その中 心軸が取付面 31s の法線と平行となるように配設されており、 保持部材移動部の側 方移動部 4 3 (図 1 0における偏心軸 Dに該当する) の軸状部材 43aが螺合されて (^る。 この側方移動部 4 3の軸状部材 43aの下端には、 作動軸 43bが設けられてい る。 この作動軸 43bは、 その中心軸が、 前記軸状部材 42aの中心軸と平行であって しかもその半径方向にオフセットするように配設されている。  As shown in FIGS. 6 and 8, a screw hole 31c is formed on the rear left side of the main body member 31 so as to penetrate the main body member 31 in the thickness direction. The screw hole 31c is disposed so that the center axis thereof is parallel to the normal line of the mounting surface 31s, and the side moving portion 43 of the holding member moving portion (corresponding to the eccentric shaft D in FIG. 10). An operating shaft 43b is provided at the lower end of the shaft member 43a of the side moving portion 43. The operating shaft 43b is provided at the center thereof. The shaft is arranged so as to be parallel to the central axis of the shaft-like member 42a and offset in the radial direction.
—方、 前記保持部材 4 0において、 その後方左側には、 長孔 40c (図 1 0におけ る長孔 c hに該当する) が形成されている。 この長孔 40c は、 その軸方向が保持部 材 4 0の前後方向と平行つまり長孔 40bの軸方向と直交する方向であって、 その幅 方向の長さが側方移動部 4 3の作動軸 43bの軸径と同等となるように形成されてい る。 そして、 この長孔 40cには、 側方移動部 4 3の作動軸 43bが挿入されている。 このため、 側方移動部 4 3の軸状部材 43a を回転させれば、 ネジ孔 31cの中心軸 周りに、 言い換えれば軸状部材 43aの回転軸まわりに作動軸 43bを周回移動させる ことができる。 すると、 作動軸 42bは、 長孔 40c内をその軸方向に沿って移動しな がら、 長孔 40c の幅方向にも移動するから、 作動軸 42bの移動、 つまり前後移動部 4 2の軸状部材 42a を回転させることによって保持部材 4 0を長孔 40c の幅方向に' のみ移動させることができる。  On the other hand, in the holding member 40, a long hole 40c (corresponding to the long hole ch in FIG. 10) is formed on the rear left side. The axial direction of the elongated hole 40c is parallel to the front-rear direction of the holding member 40, that is, the direction orthogonal to the axial direction of the elongated hole 40b, and the length in the width direction is the operation of the side moving portion 43. The shaft 43b is formed to have the same diameter as the shaft diameter. The operating shaft 43b of the side moving portion 43 is inserted into the elongated hole 40c. Therefore, if the shaft member 43a of the side moving portion 43 is rotated, the operating shaft 43b can be moved around the center axis of the screw hole 31c, in other words, around the rotation axis of the shaft member 43a. . Then, the operating shaft 42b moves in the width direction of the elongated hole 40c while moving along the axial direction of the elongated hole 40c, so that the operating shaft 42b moves, that is, the axial shape of the front-rear moving part 42. By rotating the member 42a, the holding member 40 can be moved only in the width direction of the elongated hole 40c.
よって、 側方移動部 4 3の軸状部材 43a を回転させれば保持部材 4 0を本体部材 3 1の左右方向に移動させることができるから、 C C Dの受光面上における結像位 置を、 本体部材 3 1の左右方向に沿って、 作動軸 43bの本体部材 3 1の左右方向の 移動量の分だけ保持部材 4 0の移動方向と逆向きに移動させることができる。 Therefore, by rotating the shaft member 43a of the side moving portion 43, the holding member 40 can be moved in the left-right direction of the main body member 31, so that the imaging position on the light receiving surface of the CCD can be improved. The position of the holding member 40 can be moved along the left-right direction of the main body member 31 by the amount of the left-right movement of the main body member 31 of the operating shaft 43b.
上記のごとく、 前後移動部 4 2と側方移動部 4 3によって、 保持部材 4 0を互い に直交する方向に沿って独立して移動させることができるから、 他の移動部におけ る軸状部材 42a , 43aの回転に係わらず、 保持部材 4 0の前後方向および左右方向の 移動量を、 それぞれ正確に調整することができる。 すると、 C C Dの受光面上にお ける 2次元的な結像位置を、 保持部材 4 0の前後方向および左右方向に沿ってそれ ぞれ独立して移動させることができるから、 C C Dの受光面上における 2次元的な 結像位置を正確に調整することができるのである。  As described above, the holding member 40 can be independently moved along the direction perpendicular to each other by the front-rear moving part 42 and the side moving part 43, so that the shaft-shaped part of the other moving part Regardless of the rotation of the members 42a and 43a, the amount of movement of the holding member 40 in the front-rear direction and the left-right direction can be adjusted accurately. Then, the two-dimensional imaging position on the light receiving surface of the CCD can be independently moved along the front-rear direction and the left-right direction of the holding member 40. It is possible to accurately adjust the two-dimensional imaging position at.
また、 保持部材 4 0の前後方向と、 前述した付勢方向とが平行になるように調整 しておけば、 前後移動機構 5 1による本体咅 β材 3 1の移動方向と前後移動部 4 2に よる保持部材 4 0の移動方向を一致させることができ、 左右移動機構 5 5による本 体部材 3 1の移動方向と側方移動部 4 3による保持部材 4 0の移動方向を一致させ ることができるから、 保持部材 4 0に保持されている C C Dの移動を、 より正確か つ簡単に調整することができる。  In addition, if the longitudinal direction of the holding member 40 and the above-described biasing direction are adjusted so as to be parallel, the moving direction of the body 材 β material 31 by the longitudinal movement mechanism 51 and the longitudinal movement part 4 2 The moving direction of the holding member 40 by the left and right moving mechanism 55 can be matched with the moving direction of the holding member 40 by the lateral moving portion 43. Therefore, the movement of the CCD held by the holding member 40 can be adjusted more accurately and easily.
そして、 前後移動部 4 2において、 その軸状部材 42aの半径方向における軸状部 材 42aの中心軸と作動軸 42bの中心軸との距離を、 偏心ポルト 5 3の長径 L D (図 7参照) の長さよりも短くしておき、 かつ、 側方移動部 4 3において、 その軸状部 材 43aの半径方向における軸状部材 43aの中心軸と作動軸 43bの中心軸との距離を 、 偏心ポルト 5 7の長径の長さよりも短くしておけば、 軸状部材 42a と偏心ポルト 5 3を同じ角度だけ回転させても、 軸状部材 42aの回転による C C Dの移動量を、 偏心ポルト 5 7の回転による C C Dの移動量よりも少なくすることができ、 力つ軸 状部材 43a と偏心ポルト 5 7を同じ角度だけ回転させても、 軸状部材 43aの回転に よる C C Dの移動量を、 偏心ポルト 5 7の回転による C C Dの移動量よりも少なく する::とができる。  The distance between the center axis of the shaft member 42a and the center axis of the operating shaft 42b in the radial direction of the shaft member 42a in the front-rear moving part 42 is determined by the long diameter LD of the eccentric port 53 (see FIG. 7). And the distance between the center axis of the shaft member 43a and the center axis of the operating shaft 43b in the radial direction of the shaft member 43a in the side moving portion 43 is defined as an eccentric port. If the length of the major axis is shorter than the length of the long axis, the amount of movement of the CCD due to the rotation of the shaft member 42a will be reduced even if the shaft member 42a and the eccentric port 53 are rotated by the same angle. The amount of movement of the CCD due to rotation can be made smaller than the amount of movement of the CCD due to rotation.Even if the power shaft member 43a and the eccentric port 57 are rotated by the same angle, the CCD movement amount due to the rotation of the shaft member 43a is 57 Make the amount of movement of the CCD smaller than the rotation of 7 ::
すると、 前後移動機構 5 1および左右移動機構 5 5によって大ま力ぬ結像位置の 調整を行なった後、 保持部材移動部によって結像位置を微調整することができるか ら、 結像位置の迅速化な調整と正確な調整とを両立させることができる。  Then, after roughly adjusting the imaging position by the front-rear movement mechanism 51 and the left-right movement mechanism 55, the imaging position can be finely adjusted by the holding member moving section. Quick adjustment and accurate adjustment can both be achieved.
また、 本実施形態の結像位置調整機構 1 0は、 様々な装置の撮像体に適応するこ とができるが、 非常に高精度の検査が必要とされる装置、 例えば、 zmオーダの精 度が必要な装置に適用された場合、 装置を設けている場所の温度変化による調整機 構本体 2 0の膨張収縮によって、 撮像体上の焦点位置がずれてしまうおそれがある 。 そこで、 以下のごとき構成とすれば、 調整機構本体 2 0の膨張収縮による焦点位 置がずれを最小限に抑えることができるので好適であり、 受光面の幅が狭いライン C C Dを撮像体として使用する場合に、 とくに好適である Further, the imaging position adjustment mechanism 10 of the present embodiment can be applied to imaging bodies of various devices. However, when applied to equipment that requires very high-precision inspection, for example, equipment that requires accuracy on the order of zm, the adjustment mechanism itself due to temperature changes in the place where the equipment is installed 2 Due to the expansion and contraction of 0, the focal position on the imaging body may be shifted. Therefore, the following configuration is preferable because the focal position shift due to expansion and contraction of the adjustment mechanism main body 20 can be minimized, and a line CCD with a narrow light receiving surface is used as the imaging body. Especially suitable for
図 7に示すように、 ベース調整部材 2 1には、 微調整部材固定手段の一対の固定 ポルト 32a, 32aのネジ部が螺合されるを一対のネジ孔 22ίι 22hが設けられている。 また、 本体部材 3 1の左右両端部には、 一対の固定ポルト 32a, 32aが揷通される 一対の貫通孔 32h , 32hおよび、 一対の保持部材固定ポルト 4 1 , 4 1が取付けられ る一対の保持部取付用孔 31h , 31hが設けられている。 この一対の保持部取付用孔 3 Hi Jlhは、 その中心軸同士を結ぶ線が、 前記一対の貫通孔 32h, 32hの中心線を通り、 かつ、 摺動面 31a と直 3^る対称面 R S上に位置するように配設されている。  As shown in FIG. 7, the base adjustment member 21 is provided with a pair of screw holes 22ίι 22h into which the screw portions of the pair of fixing ports 32a, 32a of the fine adjustment member fixing means are screwed. A pair of through-holes 32h, 32h through which a pair of fixing ports 32a, 32a penetrate, and a pair of holding member fixing ports 41, 41 are attached to both left and right end portions of the main body member 31. Holding holes 31h, 31h. The pair of holding portion mounting holes 3 Hi Jlh has a symmetrical surface RS in which a line connecting the central axes thereof passes through the center lines of the pair of through holes 32 h and 32 h and is directly perpendicular to the sliding surface 31 a. It is arranged so as to be located above.
このため、 C C Dを、 その受光面の中心軸が、 保持部材 4 0の一対のネジ孔 40h , 40hの中心軸を結ぶ線 (以下、 中心線 40Lという) を通り、 かつ、 保持部材 4 0の上 面 40s と垂直な面、 言い換えれば、 摺動面 31a と直交する面上に位置するように取 付け、 そして、 一対のネジ孔 2211 22hの中心軸を結ぶ線 (以下、 中心線 20Lという) および中心線 40Lが対称面 R S上に位置するように、 一対の固定ポルト 32a, 32aお よび一対の保持部材固定ボルト 4 1 , 4 1によって本体部材 3 1と保持部材 4 0を 固定すれば、 本体部材 3 1と保持部材 4 0をいずれも対称面 R S上に対して対称 な位置で連結することができる。  For this reason, the center axis of the light receiving surface of the CCD passes through a line (hereinafter, referred to as a center line 40L) connecting the center axes of the pair of screw holes 40h, 40h of the holding member 40, and It is mounted so that it is located on a surface perpendicular to the upper surface 40s, in other words, a surface orthogonal to the sliding surface 31a, and a line connecting the central axes of the pair of screw holes 2211 22h (hereinafter referred to as a central line 20L). And the main body member 31 and the holding member 40 are fixed by the pair of fixing ports 32a, 32a and the pair of holding member fixing bolts 41, 41 so that the center line 40L is located on the symmetry plane RS. Both the main body member 31 and the holding member 40 can be connected at symmetrical positions on the symmetry plane RS.
すると、 光軸が対称面 R Sに含まれるように配置されていれば、 周囲環境の温 度変化によって本体部材 3 1および保持部材 4 0が膨張収縮しても、 C C Dの受光 面の中心軸は、 対称面 R S上に配置しておくことができる。 よって、 周囲環境の 温度変化による C C Dの受光面における焦点の位置がずれることを防ぐことができ る。  Then, if the optical axis is arranged so as to be included in the symmetry plane RS, even if the main body member 31 and the holding member 40 expand and contract due to a temperature change in the surrounding environment, the central axis of the CCD light receiving surface is , Can be arranged on the symmetry plane RS. Therefore, it is possible to prevent the position of the focal point on the light receiving surface of the CCD from being shifted due to a temperature change in the surrounding environment.
また、 光軸が対称面 R Sからずれている場合においても、 光軸と対称面 R Sが 平行となっていれば、 本体部材 3 1に対して保持部材 4 0を移動させて C CDの受 光面の中心線と光軸が一致するように調整したときに、 C CDの受光面の幅方向に おける C CDの受光面の中心線と対称面 R Sとのズレは、 保持部材 4 0を移動させ た長さしかずれず、 その量を小さくすることができる。 すると、 保持部材 4 0を 移動させた長さと、 周囲環境の温度差および保持部材 4 0の素材の熱膨張率を掛け 合わせた長さしかずれないから、 本体部材 3 1および保持部材 4 0が膨張収縮によ る C C Dの受光面上における焦点の位置のズレを、 最小限に抑えることができる。 なお、 ベース調整部材 2 1と本体部材 3 1を、 本体部材 3 1の両端部において、 それぞれ 2力所で固定する場合、 言い換えれば、 各端部で 2本ずつ合計 4本の固定 ポルト 32aで固定し、 本体部材 3 1と保持部材 4 0を、 本体部材 3 1の両端部におい て、 それぞれ 2力所で固定する場合、 言い換えれば、 各端部で 2本ずつ合計 4本の 保持部材固定ポルト 4 1で固定する場合には、 本体部材 3 1は、 その両端に、 それ ぞれ 2つの貫通孔 32hおよび 2つの保持部取付用孔 3 lhを有することになる。 この 場合には、 対称面 R Sは、 各端部における 2つの貫通孔 32hの中心軸を結ぶ線分の 垂直 2等分線および、 各端部における 2つの保持部取付用孔 31hの中心軸を結ぶ線 分の垂直 2等分線を含む面となるから、 この対称面 R S上に、 保持部材 4 0の各端 部における 2つのネジ孔 401ιの中心軸を結ぶ線分の垂直 2等分線および、 ベース調整 部材 2 1の各端部における 2つのネジ孔 22hの中心軸を結ぶ線分の垂直 2等分線が配 置されるようにすれば、 上記構成と同様の効果を得ることができる。 Even when the optical axis is deviated from the symmetry plane RS, if the optical axis and the symmetry plane RS are parallel, the holding member 40 is moved with respect to the main body member 31 to receive the CCD. When adjusted so that the center line of the surface coincides with the optical axis, The deviation between the center line of the light receiving surface of the CCD and the symmetry plane RS is shifted only by the length of the movement of the holding member 40, and the amount can be reduced. Then, the length of the main member 31 and the holding member 40 is shifted only by the length obtained by multiplying the length by which the holding member 40 is moved by the temperature difference of the surrounding environment and the coefficient of thermal expansion of the material of the holding member 40. The displacement of the focal position on the light receiving surface of the CCD due to expansion and contraction can be minimized. When the base adjusting member 21 and the main body member 31 are fixed at two places at both ends of the main body member 31, in other words, a total of four fixing ports 32 a, two at each end, are used. When the main body member 31 and the holding member 40 are fixed at two places at both ends of the main body member 31 in other words, in other words, two holding members are fixed at each end, for a total of four holding members When fixing with the port 41, the main body member 31 has two through holes 32h and two holding portion mounting holes 3lh at both ends thereof. In this case, the symmetry plane RS is defined by the perpendicular bisector of the line connecting the central axes of the two through holes 32h at each end and the central axis of the two holding portion mounting holes 31h at each end. Since this is a plane including the perpendicular bisector of the connecting line, the perpendicular bisector of the line connecting the central axes of the two screw holes 401ι at each end of the holding member 40 on this plane of symmetry RS. If the perpendicular bisector of the line connecting the central axes of the two screw holes 22h at each end of the base adjustment member 21 is arranged, the same effect as the above configuration can be obtained. it can.
また、 一対のポルト 21b, 21bによってベース調整部材 2 1を取付面 l is に取付 けたときに、 一対のポルト 21b , 21bの中心軸を含む面 (ベース対称面) が、 前記 対称面 R Sと一致すれば、 ベース調整部材 2 1が膨張収縮しても、 C CDの受光面 の中心軸を対称面 R S上に配置しておくことができるから、 周囲環境の温度変化 による C C Dの受光面における焦点の位置のズレを、 より一層少なくすることがで きる。  Also, when the base adjustment member 21 is mounted on the mounting surface lis by the pair of ports 21b, 21b, the plane including the center axis of the pair of ports 21b, 21b (base symmetry plane) coincides with the symmetry plane RS. Then, even if the base adjustment member 21 expands and contracts, the center axis of the light receiving surface of the CCD can be arranged on the symmetry plane RS, so that the focus on the light receiving surface of the CCD due to the temperature change of the surrounding environment. Position deviation can be further reduced.
そして、 光軸が対称面 R Sからずれている場合においても、 光軸と対称面 R S が平行となっていれば、 C CDの受光面の中心線と光軸が一致するように調整し たときに、 C CDの受光面の幅方向における C CDの受光面の中心線と対称面との ズレを小さくすることができるから、 ベース調整部材 2 1、 本体部材 3 1および 保持部材 4 0の膨張収縮による C CDの受光面上における焦点の位置のズレを、 最 小限に抑えることができる。 なお、 ベース調整部材 2 1と支持フレーム 1 1を、 ベース調整部材 2 1の両端部 において、 それぞれ 2力所で固定する場合、 言い換えれば、 各端部で 2本ずつ合計 4本のポルト 2 lbで固定する場合には、 前記対称面 R S上に、 ベース調整部材 2 1の 各端部における 2つのポルト 21bの中心軸を結ぶ線分の垂直 2等分線が 置されるよ うにすれば、 上記構成と同様の効果を得ることができる。 産業上の利用可能性 Then, even when the optical axis is deviated from the symmetry plane RS, if the optical axis and the symmetry plane RS are parallel, the adjustment is made so that the center line of the light receiving surface of the CCD and the optical axis coincide. In addition, since the deviation between the center line of the light receiving surface of the CCD and the plane of symmetry in the width direction of the light receiving surface of the CCD can be reduced, the expansion of the base adjusting member 21, the main body member 31, and the holding member 40 can be achieved. The displacement of the focal position on the light receiving surface of the CCD due to contraction can be minimized. If the base adjustment member 21 and the support frame 11 are fixed at two places at both ends of the base adjustment member 21, in other words, a total of four Porto 2 lbs, two at each end. In the case of fixing by using, the perpendicular bisector of the line connecting the central axes of the two ports 21b at each end of the base adjustment member 21 is placed on the symmetry plane RS. The same effect as the above configuration can be obtained. Industrial applicability
本発明の結像位置調整機構は、 C CDカメラにおける C CDの位置調整だけでな く、 フィルムやスキャナ等の撮像体を備えた撮影装置において、 撮像体の受光面に 入射される入射光の結像位置を調整に適用することが可能である。  The imaging position adjustment mechanism of the present invention is not only used for adjusting the position of a CCD in a CCD camera, but also for an imaging apparatus having an imaging body such as a film or a scanner, which adjusts incident light incident on a light receiving surface of the imaging body. It is possible to apply the imaging position to the adjustment.

Claims

請求の範囲 The scope of the claims
1 入射された光を撮像体上に結像させて画像を齓影する齓影装置において、 前記撮 像体上における入射光の結像位置を調整するための調整機構であって、 該調整機構 が、 前記撮影装置の本体に対して、 前記入射光の光軸方向に沿って移動可能かつ該 入射光の光軸に対する傾きが調整可能に設けられたベース調整部材と、 該ベース調 整部材に対して、 前記入射光の光軸と交差する方向に沿って移動可能に設けられ た、 前記撮像体が取り付けられる微調整部材と、 該微調整部材を前記ベース調整 部材に対して、 前記入射光の光軸と交差する方向に沿って移動させる移動機構と を備えていることを特徴とする結像位置調整機構。 (1) An imaging device for imaging an incident light on an imaging body to project an image, comprising: an adjusting mechanism for adjusting an imaging position of the incident light on the imaging body; A base adjustment member provided so as to be movable along the optical axis direction of the incident light with respect to the main body of the imaging device and to be capable of adjusting the inclination of the incident light with respect to the optical axis; On the other hand, a fine adjustment member to which the imaging body is attached, the fine adjustment member being provided movably along a direction intersecting the optical axis of the incident light; And a moving mechanism that moves along a direction that intersects the optical axis of the imaging position.
2 前記ベース調整部材が、 前記入射光の光軸と交差する基準面を備えており、 前記 微調整部材が、 前記移動機構によって移動されたときに、 前記ベース調整部材の基 準面に沿って摺動する摺動面を備えていることを特徴とする請求項 1記載の結像位 置調整機構。  (2) The base adjustment member includes a reference plane that intersects with the optical axis of the incident light. When the fine adjustment member is moved by the moving mechanism, the fine adjustment member moves along the reference plane of the base adjustment member. 2. The imaging position adjusting mechanism according to claim 1, further comprising a sliding surface that slides.
3 前記微調整部材が、 前記摺動面と直交する受圧面を備えており、 前記移動機構が3 The fine adjustment member has a pressure receiving surface orthogonal to the sliding surface, and the moving mechanism is
、 前記微調整部材の受圧面を付勢する付勢手段と、 該付勢手段から前記微調整部材 に対して加わる付勢力を支持し、 該付勢手段に対して、 その付勢力の方向に沿って 接近離間可能に設けられた位置調整部とを備えていることを特徴とする請求項 2記 載の結像位置調整機構。 An urging means for urging the pressure-receiving surface of the fine adjustment member; and supporting an urging force applied from the urging means to the fine adjustment member in a direction of the urging force. 3. The imaging position adjusting mechanism according to claim 2, further comprising: a position adjusting section provided so as to be able to approach and separate along the image.
4 前記微調整部材が、 前記付勢手段から加わる付勢力の方向と交差する支持面を備 えており、 前記位置調整部が、 前記ベース調整部材の基準面の法線と平行な中心軸 を有する円柱体を備えており、 該円柱体が、 前記中心軸と TOかつ該中心軸に対し て該円柱体の半径方向にオフセットしている回転軸まわりに回転可能であって、 前 記付勢手段によって前記微調整部材が付勢された状態において、 その側面に対して 、 該微調整部材の支持面が常時接触した状態となるように配設されていることを特 徴とする請求項 3記載の結像位置調整機構。 (4) The fine adjustment member has a support surface that intersects the direction of the urging force applied from the urging means, and the position adjustment unit has a central axis parallel to a normal to a reference surface of the base adjustment member. A cylindrical body, wherein the cylindrical body is rotatable around a rotational axis that is offset from the central axis by TO and the radial direction of the cylindrical body with respect to the central axis, and 4. The device according to claim 3, wherein, when the fine adjustment member is biased, the support surface of the fine adjustment member is always in contact with a side surface thereof. Imaging position adjustment mechanism.
5 前記微調整部材が、 前記摺動面と該摺動面に 1 な取付面とを備えた本体部材と 、 該本体部材の取付面に沿って移動可能に設けられた、 前記撮像体が取り付けられ る保持部材と、 該保持部材を本体部材の取付面に沿って移動させる保持部材移動部 とを備えていることを特徴とする請求項 1、 2、 3または 4記載の結像位置調整機 構。 -(5) The fine adjustment member is provided with a main body member having the sliding surface and a mounting surface that is unique to the sliding surface, and the imaging body is provided movably along the mounting surface of the main body member. Holding member, and a holding member moving unit that moves the holding member along the mounting surface of the main body member. 5. The imaging position adjusting mechanism according to claim 1, wherein the imaging position adjusting mechanism comprises: -
6 前記保持部材に、 前記本体部材の取付面の法線と直交する方向に沿って延びた長 孔が形成されており、 前記保持部材移動部が、 前記本体部材に、 その取付面の法糸泉 と平行な回転軸まわりに回転可能に取り付けられた軸状部材と、 該軸状部材の軸方 向の一端に設けられ、 前記保持部材の長孔に揷入される作動軸とを備えており、 該 作動軸が、 その中心軸が、 前記軸状部材の回転軸と平行かつ該軸状部材の回転軸に 対して該軸状部材の半径方向にオフセットするように配設されていることを特徴と する請求項 5記載の結像位置調整機構。 6 The holding member is formed with an elongated hole extending along a direction perpendicular to a normal line of a mounting surface of the main body member, and the holding member moving section includes a normal thread of the mounting surface of the main body member. A shaft member rotatably mounted around a rotation axis parallel to the spring; and an operating shaft provided at one axial end of the shaft member and inserted into a long hole of the holding member. The operating shaft is arranged so that its central axis is parallel to the rotation axis of the shaft member and is offset in the radial direction of the shaft member with respect to the rotation axis of the shaft member. 6. The imaging position adjusting mechanism according to claim 5, wherein:
7 前記保持部材が、 前記本体部材の取付面に対して接近離間可能に取り付けられて おり、 前記保持部材移動部が、 前記保持部材を前記本体部材の取付面に対して接近 離間させる機構を備えていることを特徴とする請求項 5または 6記載の結像位置調 整機構。 7 The holding member is attached so as to be capable of approaching and separating from the mounting surface of the main body member, and the holding member moving unit is provided with a mechanism for moving the holding member toward and away from the mounting surface of the main body member. 7. The imaging position adjusting mechanism according to claim 5, wherein:
8 前記微調整部材が、 前記摺動面が形成された本体咅 15材と、 該本体音材を、 前記べ ース調整部材に固 る微調整部材固定手段と、 該本体部材に対して、 前記摺動面 と平行な方向に沿つて移動可能に設けられた、 前記撮像体が取り付けられる保持 部材と、 該保持部材を、 前記本体部材に固定する保持部材固定手段とを備えてお り、 該保持部材固定手段が、 前記摺動面と直交し、 かつ、 前記撮像体の幅方向にお ける前記微調整部材固定手段による前記本体部材と前記ベース調整部材との連結 位置の中心線を含む対称面に対して、 面対称となる位置に配設されていることを 特徴とする請求項 2、 3または 4記載の結像位置調整機構。  8 The fine adjustment member comprises: a main body member 15 on which the sliding surface is formed; a fine adjustment member fixing means for fixing the main body sound material to the base adjustment member; A holding member provided to be movable along a direction parallel to the sliding surface, to which the imaging body is attached; and holding member fixing means for fixing the holding member to the main body member. The holding member fixing means includes a center line of a connection position of the main body member and the base adjustment member by the fine adjustment member fixing means in a width direction of the imaging body, which is orthogonal to the sliding surface. 5. The imaging position adjustment mechanism according to claim 2, wherein the imaging position adjustment mechanism is arranged at a position that is plane-symmetric with respect to the plane of symmetry.
9 前記ベース調整部材を、 前記齓影装置の本体に固 ¾Tるベース固定手段が設けら れており、 前記微調整部材を、 前記ベース調整部材に固定する微調整部材固定手 段が設けられており、 該微調整部材固定手段が、 前記摺動面と直交し、 かつ、 前 記撮像体の幅方向における前記ベース固定手段による前記撮影装置の本体と前記べ —ス調整部材との連結位置の中心線を含むベース対称面に対して、 面対称となる 位置に配設されていることを特徴とする請求項 2、 3または 4記載の結像位置調整 機構。 9 A base fixing means for fixing the base adjustment member to the main body of the imaging device is provided, and a fine adjustment member fixing means for fixing the fine adjustment member to the base adjustment member is provided. Wherein the fine adjustment member fixing means is perpendicular to the sliding surface, and the connecting position between the main body of the photographing apparatus and the base adjustment member by the base fixing means in the width direction of the imaging body. 5. The imaging position adjusting mechanism according to claim 2, wherein the imaging position adjusting mechanism is disposed at a position symmetric with respect to a base symmetry plane including the center line.
10 前記撮影装置の本体が、 前記入射光の光軸と直交し、 前記ベース調整部材が 取付けられる取付面を備えており、 前記ベース調整部材と前記撮影装置の本体の取 付面との間に、 前記ベース調整部材を、 前記撮影装置の本体の取付面と平行に保 ち、 かつ前記入射光の光軸方向に沿って前記撮影装置の本体から離間する方向に 付勢するべ一ス付勢手段を備えていることを特徴とする請求項 1、 2、 3または 4記載の結像位置調整機構。 10 The main body of the photographing device is orthogonal to the optical axis of the incident light, and the base adjustment member is A mounting surface to be mounted, wherein the base adjustment member is provided between the base adjustment member and the mounting surface of the main body of the imaging device, in parallel with the mounting surface of the main body of the imaging device, and 5. The image forming apparatus according to claim 1, further comprising a base urging means for urging the main body of the photographing apparatus in a direction away from the main body of the photographing apparatus along an optical axis direction of the incident light. Position adjustment mechanism.
11 入射された光を複数の波長の光に分光する分光手段と、 該分光手段によって分 光された各波長の光が結像される複数の撮像体を備えた撮影装置であって、 該撮影 装置が、 前記複数の撮像体上における各波長の光の結像位置を調整する結像位置調 整機構を備えており、 該結像位置調整機構が、 請求項 1、 2、 3、 4、 5、 6、 7 、 8、 9または 1 0記載の調整機構であることを特徴とする 影装置。  11 An imaging apparatus comprising: a spectral unit that splits incident light into a plurality of wavelengths of light; and a plurality of imaging bodies on which light of each wavelength split by the spectral unit is formed. The apparatus further includes an imaging position adjustment mechanism that adjusts an imaging position of light of each wavelength on the plurality of imaging bodies, and the imaging position adjustment mechanism includes: An imaging device, which is the adjustment mechanism according to 5, 6, 7, 8, 9, or 10.
12 前記撮影装置が、 3 C CDカメラであることを特徴とする請求項 1 1記載の撮 影装置。  12. The imaging device according to claim 11, wherein the imaging device is a 3C CD camera.
13 前記撮像体が、 ライン C C Dであることを特徴とする請求項 1 1または 1 2記 載の 影装置。  13. The imaging apparatus according to claim 11, wherein the imaging body is a line CCD.
PCT/JP2004/003595 2004-03-17 2004-03-17 Mechanism for adjusting image forming position and photographing apparatus WO2005091619A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006519088A JP4372152B2 (en) 2004-03-17 2004-03-17 Imaging position adjusting mechanism and photographing apparatus
PCT/JP2004/003595 WO2005091619A1 (en) 2004-03-17 2004-03-17 Mechanism for adjusting image forming position and photographing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/003595 WO2005091619A1 (en) 2004-03-17 2004-03-17 Mechanism for adjusting image forming position and photographing apparatus

Publications (1)

Publication Number Publication Date
WO2005091619A1 true WO2005091619A1 (en) 2005-09-29

Family

ID=34994070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003595 WO2005091619A1 (en) 2004-03-17 2004-03-17 Mechanism for adjusting image forming position and photographing apparatus

Country Status (2)

Country Link
JP (1) JP4372152B2 (en)
WO (1) WO2005091619A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016132656A1 (en) * 2015-02-18 2017-11-24 ソニー株式会社 Medical observation apparatus and lens barrel of medical observation apparatus
JP2020145362A (en) * 2019-03-08 2020-09-10 株式会社日本製鋼所 Laser processing apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175068U (en) * 1988-05-30 1989-12-13
JPH06169467A (en) * 1992-11-30 1994-06-14 Sony Corp Method and device for sticking solid-state image pickup element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175068U (en) * 1988-05-30 1989-12-13
JPH06169467A (en) * 1992-11-30 1994-06-14 Sony Corp Method and device for sticking solid-state image pickup element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016132656A1 (en) * 2015-02-18 2017-11-24 ソニー株式会社 Medical observation apparatus and lens barrel of medical observation apparatus
EP3260897A4 (en) * 2015-02-18 2019-03-20 Sony Corporation Medical observation apparatus and lens barrel for medical observation apparatus
JP2020145362A (en) * 2019-03-08 2020-09-10 株式会社日本製鋼所 Laser processing apparatus
JP7184678B2 (en) 2019-03-08 2022-12-06 Jswアクティナシステム株式会社 Laser processing equipment

Also Published As

Publication number Publication date
JPWO2005091619A1 (en) 2007-08-30
JP4372152B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
US7372478B2 (en) Pattern exposure method and pattern exposure apparatus
US7355616B2 (en) Polarization-direction-controlling element and exposure device
EP1003010A2 (en) Interferometer and measuring method using interferometer
US20150292867A1 (en) Apparatus for detecting position of image pickup element
US7907499B2 (en) Optical element, optical element manufacturing method and optical pickup device
US20220214499A1 (en) Device and method for splicing array optical fiber with large-size quartz end cap
WO2005091619A1 (en) Mechanism for adjusting image forming position and photographing apparatus
US7145659B2 (en) Light interference measurement method using computer-generated hologram, and interferometer using this method
US20100321659A1 (en) Illumination Arrangement
US6823599B1 (en) Alignment structure and method for multiple field camera
JP2007148020A (en) Apparatus for adjusting position of imaging device and camera
JP5048939B2 (en) Etalon device and its assembly adjustment method
US11283978B1 (en) Aligning lens elements in a lens module relative to an image sensor
JP2009002673A (en) Alignment device for interferometer
JP2010147917A (en) Image sensor unit and image capturing apparatus
JP2008185832A (en) Optical element and method for assembling optical unit
JP2005292103A (en) Angle measuring apparatus for polygon mirror
JP2004109859A (en) Mirror fixing method and optical device
JP2009168884A (en) Method of manufacturing optical unit, fixture for manufacturing optical unit, and projector
US7221830B2 (en) Method and apparatus for connecting optical transmission module and core position detection method for optical waveguide
JP3809426B2 (en) Mounting structure of solid-state image sensor
JP2011186123A (en) Method of assembling prism unit, and assembling device
JP2010204482A (en) Optical unit, and method for adjusting and inspecting optical axis of optical unit
JP2004128224A (en) Method and device for aligning electronic component
JP2006343628A (en) Wavelength selection switch

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006519088

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase