JP4372152B2 - Imaging position adjusting mechanism and photographing apparatus - Google Patents

Imaging position adjusting mechanism and photographing apparatus Download PDF

Info

Publication number
JP4372152B2
JP4372152B2 JP2006519088A JP2006519088A JP4372152B2 JP 4372152 B2 JP4372152 B2 JP 4372152B2 JP 2006519088 A JP2006519088 A JP 2006519088A JP 2006519088 A JP2006519088 A JP 2006519088A JP 4372152 B2 JP4372152 B2 JP 4372152B2
Authority
JP
Japan
Prior art keywords
main body
imaging
base
adjustment member
ccd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006519088A
Other languages
Japanese (ja)
Other versions
JPWO2005091619A1 (en
Inventor
眞一 増田
Original Assignee
株式会社日本政策投資銀行
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本政策投資銀行 filed Critical 株式会社日本政策投資銀行
Publication of JPWO2005091619A1 publication Critical patent/JPWO2005091619A1/en
Application granted granted Critical
Publication of JP4372152B2 publication Critical patent/JP4372152B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/13Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with multiple sensors
    • H04N23/16Optical arrangements associated therewith, e.g. for beam-splitting or for colour correction

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Focusing (AREA)

Description

【技術分野】
本発明は、結像位置調整機構および撮影装置に関する。カメラや光を用いた検査装置等の撮影装置では、撮影する対象を、レンズやプリズム等を通してCCDやフィルム等の撮像体の上に結像させることによって、その画像を撮影している。撮影される画像の質はレンズ等と撮像体との距離等の相対的な位置の影響を大きく受けるため、撮影装置においては、結像位置の調整が非常に重要である。
本発明は、撮影装置の結像位置を調整する結像位置調整機構および、この結像位置調整機構を備えた撮影装置に関する。
【背景技術】
従来から、撮像体上の結像位置を調整する方法として、入射される光の光軸方向に沿ってレンズや撮像体を移動させることが行われている(例えば、特許文献1:従来例1)。
従来例1の焦点位置調整機構は、顕微鏡撮影装置のCCDカメラユニットに設けられており、CCD素子が取り付けられた鏡筒を光軸方向に移動させることによってCCD素子とレンズとの光軸方向の距離を調整するものである。
しかるに、従来例1の焦点位置調整機構は、CCD素子とレンズとの光軸方向の距離、つまり、ピント調整はできるが、CCD素子の光軸に対する傾きや、CCD素子上における焦点の2次元的な位置は調整することはできない。したがって、CCD素子の光軸に対する傾きや、CCD素子上における焦点の2次元的な位置はレンズとCCD素子等を保持する部材等の製作誤差や取付精度に依存するため、各部材の加工精度等を非常に高くしなければならず、各部材の製造が難しく、製作コストが高くなるという問題がある。
ピントだけでなく、CCD素子の光軸に対する傾きを調整する技術として、従来例2に示す技術(特許文献2)がある。
従来例2の技術は、図9に示すように、球面状に凹んだ曲面br を有する凹ガラスbと、凹ガラスの球面と同じ曲率を有する凸の曲面ar を有する凸ガラスaを備えている。凹ガラスbは、その背面がプリズムPの出射面に取り付けられており、凸ガラスaの背面にはCCDの受光面が取り付けられている。このため、凹ガラスbの曲面br と凸ガラスaの曲面ar とを合わせれば、両者の間に隙間ができないように取り付けることができ、しかも、凸ガラスaの曲面ar を凹ガラスbの曲面br に沿って自由に移動させることができるから、プリズムPを通して入光される光の光軸に対するCCDの受光面の傾きを調整することができ、光軸と受光面が垂直になるように調整できる。
しかるに、従来例2の技術では、CCDの受光面をプリズムPの出射面に対して傾斜させることしかできないため、光軸に対するCCDの受光面の傾きを変えれば、受光面上において焦点が形成される位置、つまり、焦点の2次元的な位置も変化してしまう。このため、CCDの受光面の光軸に対する傾きを保ったまま、焦点の2次元的な位置を別々に調整することはできない。すると、焦点の2次元的な位置を微調整することが非常に難しくなるため、CCD素子が直線状に配列されたラインCCDにおける焦点を調整することは事実上困難である。なぜなら、ラインCCDは、CCD素子の配列方向はその受光面が長いため焦点の位置が若干ずれても受光面上に結像させることができるが、CCD素子の配列方向と交差する方向、つまり、CCD素子の幅方向はその長さが短いため焦点のズレに対して許容範囲が狭く、焦点の位置を微調整しなければ受光面上に結像させることができないからである。
したがって、従来例2の技術は、CCD素子が格子状に配列されたような受光面が広く焦点のズレに対して許容範囲が広い撮像体を使用する装置の結像位置調整には使用できても、ラインCCDのごとく受光面が狭く焦点のズレに対して許容範囲が狭い撮像体を使用する装置の結像位置調整には使用することはできない。言い換えれば、従来例2の技術は、焦点のズレに対する許容範囲が狭く、焦点の位置を微調整しなければならないような装置では使用すること困難である。
また、従来例2の技術では、各部材は全て接着剤によって固定されるが、接着剤が固化するときに接着剤自体の収縮等によって各部材の相対的な位置がズレる可能性があり、高精度の位置調整は困難である。そして、各部材を接着剤により固定するため、各部材間の位置を再調整することは非常に困難であるという問題がある。
近年、液晶パネルや電池フィルムの生産の増大、高精度化に伴って、これらの検査を高速かつ高精度で行なう技術が求められているが、液晶パネル等の検査においては、μmオーダの精度でその表面の色や傷を検査しなければならない。色と傷を同時に検出する場合、赤、緑、青の3波長の光を受光する3つのCCD素子を備えた3CCD装置が使用されるが、3CCD装置は、色ズレがないという利点はあるが、3つのCCD素子が撮影している領域を正確に一致させなければ、検査対象の表面の色を正確に検出できない。そして、検査精度をμmオーダの精度で行なう場合には、各CCD素子が撮影している領域のズレを、CCD素子のピクセルサイズ以下にしなければならない。例えば、CCD素子の1ピクセルが7μmであれば、ズレは0.7μm以下にしなければならない。いいかえれば、各CCD素子上における焦点の焦点面内位置を、0.7μm以下の精度で調整しなければならない。しかし、従来例2の技術では、上記のごとくかかる精度で焦点位置を調整することはできない。
また、CCD素子を保持する部材は周囲の温度変化によって膨張・収縮しているため、周囲の温度変化によって材料が膨張・収縮しても焦点位置の焦点面内におけるズレが0.7μm以下となるようにする必要がある。
さらに、レンズの分解能の範囲内におけるCCD素子のピクセル数が多いほど、言い換えれば、結像範囲に存在するCCD素子のピクセル数が多いほど、検査対象の分解能、つまり検査精度を向上させることができるが、この分解能を向上させるためには、レンズの口径を大きくするかレンズとCCD素子の距離を短くする必要がある。しかし、レンズ口径を大きくするとレンズ自体が非常に高価となるため、コストを抑えつつ精度を向上するには、口径の小さいレンズを使用する代わりに、CCD素子をレンズに近づけて配置しなければならない。すると、CCD素子をレンズとの間のスペースが小さくなるため、CCD素子を保持する部材をよりコンパクトに構成しなければならない。また、CCD素子の単位長さ当りのピクセル数を多くする方法もあるが、CCD素子の単位長さ当りのピクセル数を多くしようとすると、CCD素子自体が小さくなる。したがって、レンズ等の費用、つまり装置の費用を抑え、検査精度を向上させるには、装置におけるCCD素子を保持する部分を非常に小さくしなければならず、必然的に、焦点調整機構もコンパクトにしなければならない。
【先行技術文献】
【特許文献】
【特許文献1】
特開平7−261067号
【特許文献2】
特開2003−259384号
【発明の概要】
【発明が解決しようとする課題】
本発明は上記事情に鑑み、撮影素子上における結像位置を高精度かつ容易に調整することができ、位置がズレても容易に微調整することができ、周囲環境の温度変化による焦点位置のズレを防ぐことができ、しかも非常にコンパクトな構造とすることができる結像位置調整機構および撮影装置を提供することを目的とする。
【課題を解決するための手段】
第1発明の結像位置調整機構は、入射された光を撮像体上に結像させて画像を撮影する撮影装置において、前記撮像体上における入射光の結像位置を調整するための調整機構であって、該調整機構が、前記撮影装置の本体に対して、前記入射光の光軸方向に沿って移動可能かつ該入射光の光軸に対する傾きが調整可能に設けられたベース調整部材と、該ベース調整部材に対して、前記入射光の光軸と交差する方向に沿って移動可能に設けられた、前記撮像体が取り付けられる微調整部材と、該微調整部材を前記ベース調整部材に対して、前記入射光の光軸と交差する方向に沿って移動させる移動機構とを備えており、前記ベース調整部材が、前記入射光の光軸と交差する平坦な基準面を備えており、前記微調整部材が、前記移動機構によって移動されたときに、前記ベース調整部材の基準面に沿って2次元的に摺動し得る平坦な摺動面を備えていることを特徴とする。
発明の結像位置調整機構は、第1発明において、前記移動機構が、前記微調整部材に設けられた、前記摺動面と直交する受圧面と、該微調整部材の受圧面をその法線方向に沿って付勢する付勢手段と、該付勢手段から前記微調整部材に対して加わる付勢力を支持し、該付勢手段に対して、その付勢力の方向に沿って接近離間可能に設けられた位置調整部とを備えていることを特徴とする。
発明の結像位置調整機構は、第発明において、前記微調整部材が、前記付勢手段から加わる付勢力の方向と交差する支持面を備えており、前記位置調整部が、前記ベース調整部材の基準面の法線と平行な中心軸を有する円柱体を備えており、該円柱体が、前記中心軸と平行かつ該中心軸に対して該円柱体の半径方向にオフセットしている回転軸まわりに回転可能であって、前記付勢手段によって前記微調整部材が付勢された状態において、その側面に対して、該微調整部材の支持面が常時接触した状態となるように配設されていることを特徴とする。
発明の結像位置調整機構は、第1、2または第3発明において、前記微調整部材が、前記摺動面と該摺動面に平行な取付面とを備えた本体部材と、該本体部材の取付面に沿って移動可能に設けられた、前記撮像体が取り付けられる保持部材と、該保持部材を本体部材の取付面に沿って移動させる保持部材移動部とを備えていることを特徴とする。
発明の結像位置調整機構は、第発明において、前記保持部材に、前記本体部材の取付面と平行な方向に沿って延びた長孔が形成されており、前記保持部材移動部が、前記本体部材に、その取付面の法線と平行な回転軸まわりに回転可能に取り付けられた軸状部材と、該軸状部材の軸方向の一端に設けられ、前記保持部材の長孔に挿入される作動軸とを備えており、該作動軸が、その中心軸が、前記軸状部材の回転軸と平行かつ該軸状部材の回転軸に対して該軸状部材の半径方向にオフセットするように配設されていることを特徴とする。
発明の結像位置調整機構は、第4または第5発明において、前記保持部材が、前記本体部材の取付面に対して接近離間可能に取り付けられており、前記保持部材移動部が、前記保持部材を前記本体部材の取付面に対して接近離間させる機構を備えていることを特徴とする。
発明の結像位置調整機構は、第1、2または第3発明において、前記微調整部材が、前記摺動面が形成された本体部材と、該本体部材を、前記ベース調整部材に固定する微調整部材固定手段と、該本体部材に対して、前記摺動面と平行な方向に沿って移動可能に設けられた、前記撮像体が取り付けられる保持部材と、該保持部材を、前記本体部材に固定する保持部材固定手段とを備えており、該保持部材固定手段が、前記摺動面と直交し、かつ、前記撮像体の幅方向における前記微調整部材固定手段による前記本体部材と前記ベース調整部材との連結位置の中心線を含む対称面に対して、面対称となる位置に配設されていることを特徴とする。
発明の結像位置調整機構は、第1、2または第3発明において、前記ベース調整部材を、前記撮影装置の本体に固定するベース固定手段が設けられており、前記微調整部材を、前記ベース調整部材に固定する微調整部材固定手段が設けられており、該微調整部材固定手段が、前記微調整部材の摺動面と直交し、かつ、前記撮像体の幅方向における前記ベース固定手段による前記撮影装置の本体と前記ベース調整部材との連結位置の中心線を含む対称面に対して、面対称となる位置に配設されていることを特徴とする。
発明の結像位置調整機構は、第1、2または第3発明において、前記撮影装置の本体が、前記入射光の光軸と直交し、前記ベース調整部材が取付けられる取付面を備えており、前記ベース調整部材と前記撮影装置の本体の取付面との間に、前記ベース調整部材を、前記撮影装置の本体の取付面と平行に保ち、かつ前記入射光の光軸方向に沿って前記撮影装置の本体から離間する方向に付勢するベース付勢手段を備えていることを特徴とする。
10発明の撮影装置は、入射された光を複数の波長の光に分光する分光手段と、該分光手段によって分光された各波長の光が結像される複数の撮像体を備えた撮影装置であって、該撮影装置が、前記複数の撮像体上における各波長の光の結像位置を調整する結像位置調整機構を備えており、該結像位置調整機構が、1、2、3、4、5、6、7、8または第9発明の調整機構であることを特徴とする。
11発明の撮影装置は、第10発明において、前記撮影装置が、3CCDカメラであることを特徴とする。
12発明の撮影装置は、第10または第11発明において、前記撮像体が、ラインCCDであることを特徴とする。
【発明の効果】
第1発明によれば、調整機構のベース調整部材によってピントおよび撮像体の光軸に対する傾きを調整することができる。しかも、ベース調整部材の基準面に沿って微調整部材を移動させれば、ベース調整部材に対する入射光の光軸方向における相対的な位置を一定に保ったまま、ベース調整部材に対して微調整部材を移動させることができる。つまり、ベース調整部材を移動させなくても移動機構によって微調整部材を移動させれば撮像体上における入射光の2次元的な結像位置を、ピントや光軸に対する傾きとを独立して調整することができる。このため、撮像体の受光面が入射光の光軸と垂直になるようにベース調整部材の基準面を調整しておけば、ピントや撮像体の入射光の光軸に対する傾きを変化させることなく、撮像体上における入射光の結像位置を調整することができるから、結像位置を正確かつ簡単に調整することができる。しかも、姿勢保持手段によって微調整部材をベース調整部材に固定することができるから、結像位置が撮影中にズレることを防ぐことができる。
発明によれば、付勢手段によって微調整部材が常時付勢されているから、その付勢力を支持する位置調整部を、付勢手段に対してその付勢力の方向に沿って接近離間させれば、微調整部材を、付勢手段に対してその付勢力の方向に沿って接近離間させることができる。しかも、受圧面が、摺動面と直交するように設けられているから、付勢力は微調整部材に対して摺動面と平行に加わる。よって、微調整部材の摺動面をベース調整部材の基準面に面接触させておけば、位置調整部によって微調整部材を付勢手段に対して接近離間させれば、微調整部材をベース調整部材の基準面と平行に移動させることができる。そして、微調整部材に互いに直交する受圧面を設け、それぞれを付勢する付勢手段と、各付勢手段からの付勢力を支持する位置調整部をそれぞれ設ければ、他の位置調整部の移動量に係わらず、各付勢手段の付勢方向における微調整部材の移動量を、それぞれ独立して調整することができるから、撮像体上の結像位置を正確に調整することができる。
発明によれば、円柱体の中心軸がその回転軸に対して半径方向にオフセットしているので、円柱体を回転させれば、微調整部材に対して付勢手段から加わる付勢力の方向(以下、単に付勢方向という)における円柱体の中心軸から支持面側の端縁までの長さ(以下、単に付勢方向長さという)を変えることができる。そして、付勢手段によって微調整部材の支持面を円柱体の側面に常に接触させているから、円柱体を回転させれば、付勢方向長さの変化量の分だけ、微調整部材を付勢方向に沿って移動させることができ、撮像体の付勢方向における結像位置を微調整することができる。
発明によれば、保持部材移動部によって保持部材を移動させれば、保持部材とともに保持部材に取付けられた撮像体を、本体部材の取付け面に沿って移動させることができる。このため、撮像体上における入射光の結像位置をピントや撮像体の入射光の光軸に対する傾きを変化させることなく調整することができるから、結像位置を正確かつ簡単に調整することができる。
発明によれば、軸状部材を回転軸まわりに回転させれば、その回転軸まわりに作動軸を周回移動させることができる。このため、作動軸の移動量のうち、長孔の幅方向の移動量の分だけ保持部材を本体部材に対して移動させることができる。そして、複数の軸状部材と長孔を設け、長孔の軸方向が交差するように形成すれば、他の軸状部材の回転量に係わらず、各長孔の軸方向と直交する方向における保持部材の移動量を、それぞれ独立して調整することができるから、撮像体上の結像位置を正確に調整することができる。
発明によれば、保持部材だけを移動させてピントを合わせることができるから、ピント調整が容易になるし、ピント調整するときに他の部材が移動して、結像位置がズレたりすることを防ぐことができる。
発明によれば、保持部材固定手段が、本体部材と保持部材を、対称面上に対して対称な位置で連結するから、光軸が対称面に含まれるように配置されていれば、周囲環境の温度変化によって本体部材および保持部材が膨張収縮しても撮像体上における焦点の位置がずれることを防ぐことができる。また、光軸が対称面からずれている場合においても、光軸と対称面が平行であれば、保持部材を本体部材に対して移動させて撮像体の中心線が光軸面上に位置するように調整したときに、撮像体の中心線と対称面とのズレを小さくすることができるから、本体部材および保持部材の膨張収縮による撮像体上における焦点の位置のズレを、最小限に抑えることができる。そして、対称面上に撮像体(例えば、ラインCCD)の受光中心線が含まれるようにしておけば、より一層、焦点の位置のズレを小さくできる。とくに、受光面の幅が狭いラインCCDを撮像体として使用する場合には、効果的である。
発明によれば、微調整部材固定手段が、微調整部材とベース調整部材を、ベース対称面に対して対称な位置で連結するから、光軸がベース対称面に含まれるように配置されていれば、周囲環境の温度変化によって微調整部材およびベース調整部材が膨張収縮しても撮像体上における焦点の位置がずれることを防ぐことができる。また、光軸がベース対称面からずれている場合においても、光軸とベース対称面が平行であれば、微調整部材をベース調整部材に対して移動させて撮像体の中心線が光軸面上に位置するように調整したときに、撮像体の中心線とベース対称面とのズレを小さくすることができるから、撮像体の中心線とベース対称面とのズレを小さくすることができるから、微調整部材およびベース調整部材の膨張収縮による撮像体上における焦点の位置のズレを、最小限に抑えることができる。そして、ベース対称面上に撮像体(例えば、ラインCCD)の受光中心線が含まれるようにしておけば、より一層、焦点の位置のズレを小さくできる。とくに、受光面の幅が狭いラインCCDを撮像体として使用する場合には、効果的である。
発明によれば、ベース調整部材を、撮影装置の本体の取付面と平行に保ったまま、入射光の光軸に沿って移動させることができるから、撮像体上における入射光の2次元的な結像位置を変化させることなく、ピント調整を行うことができる。よって、焦点の位置と、ピントを独立して調整できるから、ピント調整が容易になる。
10発明によれば、個々の波長の光について、それぞれ結像位置を調整できるから、撮影装置の調整が容易になる。そして、分光手段の製作誤差を結像位置調整機構によって吸収できるから、分光手段等の製造が容易になるし、コストも下げることができる。
11発明によれば、各CCD素子に入射される光の結像状態を均一にすることができるから、再生画像の質を向上させることができる。
12発明によれば、撮影された画像、つまりCCD素子が検出した信号の処理速度を速くすることができるから、高速画像の撮影を可能にすることができる。
【図面の簡単な説明】
【図1】本実施形態の結像位置調整機構10を適用した3CCDカメラの概略側面図である。
【図2】本実施形態の結像位置調整機構10を適用した3CCDカメラの概略正面図である。
【図3】本実施形態の結像位置調整機構10を適用した3CCDカメラの概略平面図である。
【図4】図3のIV−IV線断面矢視図である。
【図5】本実施形態の結像位置調整機構10の単体説明図であって、(A)概略平面図であり、(B)概略正面図であり、(C)(B)のC−C線矢視図である。
【図6】(A)図5のVIA −VIA 線矢視図であり、(B)図5のVIB −VIB 線断面矢視図である。
【図7】(A)は図6(A)の要部拡大図であり、(B)、(C)は偏心ボルト53を回転させた状態の説明図である。
【図8】(A)はベース調整部材21の単体平面図であり、(B)は微調整部材30の本体部材31の単体平面図であり、(C)は微調整部材30の保持部材40の単体平面図である。
【図9】従来例2の技術の概略説明図である。
【図10】調整機構本体20と支持フレーム11との取付け部分の拡大説明図である。
【図11】調整機構本体20を簡略化したモデルを示した図である。
【図12】部材Bの動きを説明した図である。
【図13】部材Cの動きを説明した図である。
【発明を実施するための形態】
つぎに、本発明の実施形態を図面に基づき説明する。
本発明の結像位置調整機構は、CCDやフィルム等の撮像体を備えた撮影装置において、撮像体の受光面に入射される入射光の結像位置を調整するためのものであって、撮影対象と撮像体との間に配置されるレンズ等の光学系を移動させることなく結像位置を調整することができることに特徴を有するものである。
本発明の結像位置調整機構は、CCDカメラやスキャナ等に適用することが可能であるが、以下には、代表として、3CCDカメラに適用した例を説明する。
図1は本実施形態の結像位置調整機構10を適用した3CCDカメラの概略側面図である。図2は本実施形態の結像位置調整機構10を適用した3CCDカメラの概略正面図である。図3は本実施形態の結像位置調整機構10を適用した3CCDカメラの概略平面図である。図4は図3のIV−IV線断面矢視図である。なお、図2〜図3では、構造を分かり易くするために、正面および背面に位置する結像位置調整機構10の調整機構本体20は記載していない。
まず、本実施形態の結像位置調整機構10を説明する前に、本実施形態の結像位置調整機構10が適用される3CCDカメラの概略を説明する。
図1〜図4において、符号BFはカメラの本体フレームを示している。この本体フレームBFには、その中央を貫通する貫通孔Fhが形成されている。この本体フレームBFの外面にはレンズLが設けられており、本体フレームBFの内面には、レンズLとの間に本体フレームBFの貫通孔Fhを挟む位置に、プリズムPRが配設されている。そして、プリズムPRは3つの放出面ESを備えており、この3つの放出面ESと相対する位置には、本実施形態の結像位置調整機構10の調整機構本体20によって支持されたCCDがそれぞれ配置されている。
このため、レンズLを通して光がプリズムPR入射されると、入射された光はプリズムPRによって3つの波長の光に分光され、分光された3つの波長の光がそれぞれ放出面ESから放出され、CCDの受光面上に結像されるので、各波長光をCCDによって検出し、撮影することができるのである(図4)。
さて、本実施形態の結像位置調整機構10を説明する。
図1〜図4において、符号11は、本実施形態の結像位置調整機構10の一対の支持フレームを示している。この一対の支持フレーム11,11は、前記3CCDカメラの本体フレームBRの内面に、プリズムPRをその側方から挟むように立設されている。各支持フレーム11は、前記本体フレームBFに取り付けられた状態において、その上面、正面および背面に、前記プリズムPRの3つの放出面ESとほぼ平行、言い換えれば、各放出面ESから放出される光の光軸方向とそれぞれ直交するように形成された3つの取付面11s を備えている。
前記一対の支持フレーム11,11における対応する一対の取付面11s ,11s間には、3つの調整機構本体20が、各調整機構本体20に保持されたCCDの受光面が前記プリズムPRの放出面ESと対向するように配設されている(図2、図4)。そして、調整機構本体20は、そのベース調整部材21の左右両端に設けられている貫通孔21h (図5(A)参照)にベース調整部材21の表面から挿通された一対のボルト21b ,21b を、取付面11s に設けられている図示しないネジ孔に螺合することによって、取付面11s に取付けられている。
そして、図2、図10に示すように、一対の取付面11s ,11sと調整機構本体20の両端との間には、それぞれバネ部材14が配設されている。このバネ部材14は、略台形上に形成されており、その長手方向がCCDの幅方向(図10(A)では左右方向)と平行になるように配設されている。そして、このバネ部材14は、取付面11s に接触する脚部14a と調整機構本体20に接触する頭部14b とが互いに平行であって、かつ、脚部14a と頭部14b とが平行に保たれたまま、脚部14a と頭部14b との距離が変化するように形成されている。言い換えれば、バネ部材14は、その頭部14b が取付面11s と平行に保たれたまま、その高さBLが変化するように構成されている。
このため、バネ部材14によって調整機構本体20を一対の取付面11s ,11sから離した状態で保持することができ、しかも、一対のボルト21b ,21b を取付面11s に設けられている図示しないネジ孔に対して螺進螺退させれば、調整機構本体20を一対の取付面11s ,11sに接近離間させることができる。
また、バネ部材14が、その長手方向がCCDの幅方向(図10(A)では左右方向)と平行になるように配設されているから、ボルト21b を締め付けたときに、CCDの幅方向における調整機構本体20の傾きを発生することを防ぐことができる。そして、一対のバネ部材14,14の高さBLが同じになるように、一対のボルト21b ,21b の締め付け力を調整すれば、調整機構本体20の両端と一対の取付面11s ,11sとの距離を同じ長さにすることができるから、調整機構本体20と一対の取付面11s ,11sを平行に保つことができる。すると、調整機構本体20と一対の取付面11s ,11sとの間の距離、つまり、CCDの受光面とプリズムPRの放出面ESとの距離を、調整機構本体20と一対の取付面11s ,11sとを平行に保ったまま調整することができる。言い換えれば、調整機構本体20を光軸方向に沿って移動させることができるから、CCDの受光面上における結像位置を変化させることなく、CCDのピント調整を行うことができる。よって、結像位置と、ピントを独立して調整できるから、ピント調整を容易にすることができる。
上記のバネ部材14が、特許請求の範囲にいうベース付勢手段であり、一対のボルト21b ,21b が、特許請求の範囲にいうベース固定手段である。
なお、一対のボルト21b ,21b の締付状態に差をつければ、調整機構本体20において、その一端(図2,3では下端)の下面と支持フレーム11の取付面11s との間の距離を、その他端(図2,3では上端)の下面と支持フレーム11の取付面11s との間の距離よりも長くしたり短くしたりすることができる。すると、支持フレーム11の取付面11s に対して調整機構本体20をCCDの軸方向(図2,3では上下方向)に沿って傾けることができるから、プリズムPRの放出面ESに対して、CCDの受光面を傾けることができる。よって、プリズムPRの放出面ESから放出される光の光軸が放出面ESの法線方向に対して傾いても、プリズムPRの放出面ESに対するCCDの受光面の傾きを調整すれば、CCDの受光面に垂直に光が入射するように調整することができる。
さらになお、図2に示すように、取付面11s および、取付面11s と対向する調整機構本体20のベース調整部材21の下面に、それぞれ前後方向に沿って溝11g ,20g を設けておき、その溝11g ,20g に、バネ14の脚部14a 、頭部14b をそれぞれ取付けるようにすれば、バネ部材14が、その軸方向と直交する方向、つまり、CCDの軸方向に傾いて、調整機構本体20がCCDの軸方向に移動することを防ぐことができる。
さらになお、ベース付勢手段は、バネ部材14に限られず、調整機構本体20と一対の取付面11s ,11sとを平行に保ち、かつ光軸方向に沿って調整機構本体20を取付面11s から離間する方向に付勢することができるものであれば、特に限定はない。例えば、ベース付勢手段として、取付面11s にその外端が取付面11s から突出した状態となるように配設されたプランジャー15を使用してもよい(図10(B))。この場合、1つの取付面11s に2つのプランジャー15,15を設け、ボルト21b が螺合されるネジ孔を、2つのプランジャー15,15の間に形成しておけば、ボルト21b を進退させたときに、調整機構本体20が、そのCCDの幅方向に傾くことを防ぐことができる。
調整機構本体20がCCDの幅方向に傾くことを確実に防ぐ場合には、支持フレーム11の上端に、取付面11s の法線方向と平行であって、調整機構本体20の側面に接触する内面を有する案内板12を設けておけば、一対のボルト21b ,21b を進退させたときに、調整機構本体20はその側面が案内板12の内面に案内された状態で移動するから、調整機構本体20を取付面11s の法線方向に沿って確実に平行移動させることができる。
そして、調整機構本体20の側面に、調整機構本体20の下面と直交する切り欠き21c を形成し、支持フレーム11の側面に取付面11s と直交する切り欠きを形成し、案内板12と切り欠きとの間に、ピンPを取付けておけば、調整機構本体20を取付面11s の法線方向に沿ってより確実に平行移動させることができる。
さらになお、ピントや光軸に対するCCDの受光面の傾きを調整する必要がない場合には、ベース付勢手段を設けなくてもよく、調整機構本体20のベース調整部材21の下面を支持フレーム11の取付面11s に直接接触させて調整機構本体20を支持フレーム11に固定させる構成としてもよい。
さらになお、結像位置調整機構10は、支持フレーム11を設けなくてもよく、フレームBRに直接調整機構本体20を取付けるような構成としてもよい。この場合でも、バネ部材14等のベース付勢手段をフレームBFに設ければ、ピントや光軸に対するCCDの受光面の傾きを調整することができる。
つぎに、調整機構本体20について詳細に説明する。
図5は本実施形態の結像位置調整機構10の単体説明図であって、(A)概略平面図であり、(B)概略背面図であり、(C)(B)のC−C線矢視図である。図6は(A)図5のVIA −VIA 線矢視図であり、(B)図5のVIB −VIB 線断面矢視図である。図7は(A)は図6(A)の要部拡大図であり、(B)、(C)は偏心ボルト53を回転させた状態の説明図である。図8(A)はベース調整部材21の単体平面図であり、(B)は微調整部材30の本体部材31の単体平面図であり、(C)は微調整部材30の保持部材40の単体平面図である。
図5および図6に示すように、調整機構本体20は、前述したベース調整部材21と、ベース調整部材21に取り付けられた微調整部材30とから構成されており、また、微調整部材30は、本体部材31と、保持部材40とから構成されている。
まず、調整機構本体20の具体的な構成を説明する前に、調整機構本体20の構造およびその動作を、単純化したモデルにより説明する。
図11において、部材A,B,Cは、それぞれ調整機構本体20のベース調整部材21、微調整部材30の本体部材31、保持部材40を単純化したモデルであり、部材Bが部材Aに対して部材Aの上面に沿って移動可能に設けられており、部材Cが部材Bの下面に沿って移動可能に設けられている。
符号Sは、バネであり、後述する移動機構のバネに該当するこのバネSは、その軸方向が、部材Aの上面と平行に設けられており、部材Bを部材Aから離間する方向(図12では右方向)に付勢するように配設されている。
符号Eは、偏心軸であり、後述する移動機構の偏心軸に該当する。この偏心軸Eは、この部材Aに対して、その上面と直交する中心軸を有しその中心軸まわりに回転可能に取付けられた軸部E2と、軸部E2に対して偏心した中心軸を有する偏心部E1を備えており、前記バネSとの間に部材Bを挟むように配設されている。
符号Dは、偏心軸であり、後述する移動部に該当する。この偏心軸Dは、この部材Bに対して、その上面と直交する中心軸を有しその中心軸まわりに回転可能に取付けられた軸部D2と、軸部D2に対して偏心した中心軸を有する偏心部D1を備えている。そして、偏心部D1は、部材Cに設けられた長孔chに挿入されている。
つぎに、動作を説明する。
図12に示すように、部材Bは、バネSと偏心軸Eによって側方(図12では左右方向)から挟まれており、その側面BAが、バネSによって偏心軸Eの偏心部E1に押し付けられている。この状態から、偏心軸Eをその軸部E2の中心軸まわりに回転させれば、偏心軸Eの軸部E2の中心軸周りに偏心部E1の中心軸が公転するから、部材Bの側面BAと平行かつ軸部E2の中心軸を通る基準面CAに対して、偏心部E1の中心と軸部E2を通る線のなす角度θが変化する。すると、偏心部E1と側面BAとの接触位置から基準面CAまでの距離DLが長くなるように偏心軸Eを回転させれば、距離DLの変化量L1,L2の分だけ部材Bが左方向に押される。すると、バネSが収縮して、距離DLの変化量L1,L2の分だけ部材Bが左方向に移動させることができる。
逆に、距離DLが短くなるように偏心軸Eを回転させれば、距離DLの変化量L1,L2の分だけ、バネSの付勢力によって部材Bが右方向に押し戻されるから、距離DLの変化量L1,L2の分だけ部材Bが左方向に移動させることができる。
つまり、偏心軸Eを回転させれば、部材Bをその側面BAと垂直な方向に沿って、右方向にも左方向にも移動させることができるのである。
また、図13に示すように、偏心軸Dをその軸部D2の中心軸まわりに回転させれば、軸部D2の中心軸周りに偏心部D1の中心軸が公転するから、部材Cの長孔chの軸方向と平行かつ軸部D2の中心軸を通る基準面CBに対して、偏心部D1の中心と軸部D2を通る線のなす角度が変化する。すると、偏心部D1は、部材Cの長孔chに沿って移動しながら、部材Cを長孔chの軸方向と直交する方向に移動させるから、基準面CBから部材Cの長孔chの軸までの距離DLが変化させることができる。そして、偏心軸Dの軸部D2は、部材Bに取付けられているから、偏心軸Dを回転させれば、部材Cを部材Bに対して、部材Cの長孔chの軸方向と直交する方向に沿って、右方向にも左方向にも移動させることができるのである。
上記のごとく、偏心軸を利用した非常に単純な構造で、部材Bおよび部材Cを移動させるように構成しているので、本実施形態の調整機構本体20はコンパクトな構成とすることができ、そして、結像位置調整機構10全体の構成もコンパクトに構成することができるのである。
さて、調整機構本体20を構成する各部材の詳細を説明する。
まず、ベース調整部材21を説明する。
図6および図8に示すように、ベース調整部材21は平面視で略U字状に形成された板状の部材である。このベース調整部材21は、前記支持フレーム11の取付面11s と対向する下面と、この下面と平行かつ平坦な上面(以下、基準面21a という)を備えている。このベース調整部材21の左右方向の端部には、その下面と基準面21a との間を貫通する一対の貫通孔21h ,21hが形成されている。
このため、ベース調整部材21の下面を前記一対の支持フレーム11 ,11の取付面11s ,11sと対向させた状態で、一対の貫通孔21h 21hに前述した一対のボルト21b ,21bを、ベース調整部材21の基準面21a 側から挿通し、一対の支持フレーム11 ,11のネジ孔にそれぞれ螺合させて締め付ければ、ベース調整部材21を一対の支持フレーム11 ,11に固定することができるのである(図1〜4参照)。
つぎに、微調整部材30を説明する。
図5、図6および図8において、符号31は、微調整部材30の本体部材を示している。図5、図6および図8に示すように、本体部材31は、板状の部材であって、その下面の略中央部分には、CCDを保持する保持部材40が取り付けられたものである。この本体部材31は、その下面において、保持部材40が取り付けられている部分の周辺部分(以下、摺動面31a という)が、保持部材40に保持されたCCDの受光面と平行な平坦面に形成されており、保持部材40をベース調整部材21の切り欠き部21g に配置した状態において、この摺動面31a をベース調整部材21の基準面21a に面接触させた状態で取付けられている(図6参照)。
また、図5および図8示すように、本体部材31の左右両端部には、左右一対の取付部32,32が設けられており、この一対の取付部32,32には厚さ方向を貫通する一対の貫通孔32h ,32h がそれぞれ形成されている。この一対の貫通孔32h ,32hは、その孔径Aが後述する固定ボルト32a のネジ部の軸径Bよりも大きくなるように形成されているが、その理由は後述する。
上記のごとき構成を有するから、微調整部材30の本体部材31の摺動面31a をベース調整部材21の基準面21a に面接触させた状態で、本体部材31の上面から、一対の貫通孔32h ,32h に一対の固定ボルト32a ,32aを挿通し、固定ボルト32a のネジ部をベース調整部材21に設けられているネジ孔22h (図8参照)に螺合させて締め付ければ、本体部材31の摺動面31a をベース調整部材21の基準面21a に強く押し付けることができる。すると、本体部材31の摺動面31a とベース調整部材21の基準面21a との間の摩擦力が大きくなるため、本体部材31を、ベース調整部材21に対して移動しないように固定することができる。このため、本体部材31、ベース調整部材21を介して保持部材40に支持されたCCDが一対の支持フレーム11 ,11に固定される。
しかも、ベース調整部材21の基準面21a と本体部材31の摺動面31a がいずれも平坦面に形成されているから、一対の固定ボルト32a ,32a を締め付けたときには本体部材31の摺動面31a とベース調整部材21の基準面21a との間の摩擦力が大きくなり、両者をしっかりと固定できる。
また、一対の固定ボルト32a ,32aの締め付け力を弱めれば、本体部材31の摺動面31a とベース調整部材21の基準面21a との間の摩擦力が小さくなるから、本体部材31がベース調整部材21に対して移動可能となる。ここで、貫通孔32h は、その孔径Aが固定ボルト32a の軸径Bよりも大きくなるように形成されているから、一対の固定ボルト32a ,32aのネジ部をネジ孔22h に螺合させたままでも、本体部材31をベース調整部材21に対して移動させることができる。
しかも、一対の固定ボルト32a ,32aの締め付け力を、本体部材31の摺動面31a はベース調整部材21の基準面21a に接触しているが、本体部材31の摺動面31a をベース調整部材21の基準面21a に押し付けている力がなくなる程度までゆるめれば、本体部材31を、そのベース調整部材21の摺動面31a を基準面21a に接触させたままでも、ベース調整部材21に対して移動させることができるから、本体部材31を基準面21a に沿って確実に平行移動させることができる。そして、本体部材31を移動させれば、保持部材40に支持されたCCDを本体部材31とともに移動させることができるから、CCDをベース調整部材21の基準面21a に沿って平行移動させることができる。
したがって、本体部材31をベース調整部材21に対して移動させることによって、CCDのピントや入射光の光軸に対するCCDの受光面の傾きを変化させることなく、CCDの受光面上における2次元的な入射光の結像位置を調整することができる。
上記の一対の固定ボルト32a ,32a が、特許請求の範囲にいう微調整部材固定手段である。
なお、本体部材31において、保持部材40が取り付けられる位置には、その厚さ方向を貫通する開口部30h が形成されているが、この開口部30h は、図示しないCCDの配線を外部に導出するためのものであり、開口部30h から導出されたCCDの配線はA/D変換器等の外部機器に接続されている。
つぎに、本体部材31をベース調整部材21に対して移動させる移動機構を詳細に説明する。本実施形態の調整機構本体20は、本体部材31をベース調整部材21の前後方向に移動させる前後移動機構と、本体部材31をベース調整部材21の左右方向に移動させる左右移動機構とを備えている。
まず、前後移動機構を説明する。
図5および図8に示すように、前記ベース調整部材21の後端中央部には、その基準面21a 上に支持部25が設けられている。一方、本体部材31には、ベース調整部材21に取り付けられた状態においてベース調整部材21の支持部25の前面と対向する位置に、摺動面31a と直交する受圧面35a が設けられている。この本体部材31の受圧面35a とベース調整部材21の支持部25の前面との間には、バネ52(図10におけるバネSに該当する)が設けられている。このバネ52は、ベース調整部材21の基準面21a の法線と直交しかつベース調整部材21の前後方向(図5では上下方向)と平行な方向(以下、付勢方向という)に沿って伸縮可能に配設されている。
図5および図7に示すように、本体部材31の一対の取付部32,32の前面には、前記受圧面35a と平行かつ摺動面31a と直交する支持面32s(図10における側面BAに該当する)がそれぞれ設けられている。一方、ベース調整部材21には、本体部材31をベース調整部材21に取り付けた状態における各支持面32s の前方に偏心ボルト53(図10における偏心軸Eに該当する)がそれぞれ配設されている。この偏心ボルト53は、円柱状のボルトヘッド53a とネジ軸53b とから構成されており、ネジ軸53b の中心軸TPが、ボルトヘッド53aの中心軸HPと平行かつボルトヘッド53aの半径方向にオフセットするように形成されたものである。そして、この偏心ボルト53は、そのネジ軸53b が、ベース調整部材21に設けられた、基準面21a の法線と平行な中心軸を有するネジ孔23h に螺合しており、そのボルトヘッド53aの中心軸HPがベース調整部材21の基準面21a の法線と平行となるように配設されている。言い換えれば、ボルトヘッド53aは、その側面が基準面21a と直交する円筒状の面となるように配設されている。
このため、本体部材31をベース調整部材21に取り付けると、バネ52によって本体部材31の受圧面35aが前方に付勢されるから、一対の取付部32,32の支持面32s ,32sが前記一対の偏心ボルト53,53のボルトヘッド53aの支持面32s と対向する側面、言い換えればボルトヘッド53aの後端に押し付けられる。すると、バネ52による付勢力は一対の偏心ボルト53,53によって支持されるから、一対の偏心ボルト53,53とベース調整部材21の支持部25との間に本体部材31が保持されるのである。
また、図7に示すように、偏心ボルト53のネジ軸53b は、その中心軸TPがボルトヘッド53aの中心軸HPに対してその半径方向にオフセットするように配設されているため、ネジ軸53bをその中心軸TPまわりに回転させれば、付勢方向における偏心ボルト53のネジ軸53b の中心軸TPからボルトヘッド53a の後端までの長さ(以下、単に付勢方向長さL2という(図10における距離DLに該当する))は、ネジ軸53b の回転角度に応じて変化することになる。
前述したように、本体部材31は、バネ52によって常時前方に付勢されており、その一対の取付部32,32の支持面32a ,32aは、常に偏心ボルト53のボルトヘッド53a の後端に接触しているから、偏心ボルト53のネジ軸53b を回転させて付勢方向長さL2を変化させれば、その変化に併せて、取付部32を付勢方向に沿って移動させることができる。
このため、一対の偏心ボルト53 ,53の長径LDの付勢方向に対する傾きθ1(図7(B)、(C))が同じ角度となるように一対の偏心ボルト53 ,53のネジ軸53b ,53bの回転量を調整すれば、各取付部32の付勢方向への移動量が同じになるから、本体部材31を、一対の偏心ボルト53,53とベース調整部材21の支持部25との間に保持したままで、本体部材31を付勢方向に沿って平行移動させることができる。
また、図7(B)、(C)に示すように偏心ボルト53のボルトヘッド53a を回転させると、付勢方向長さL2が変化するが、その変化量L3と同じ長さだけ本体部材31を付勢方向に沿って移動させることができるから、CCDの受光面上における結像位置を、付勢方向に沿って本体部材31の移動方向と逆向きに偏心ボルト53の付勢方向長さL2の変化量L3と同じ長さだけ移動させることができる。
つぎに、左右移動機構を説明する。
この左右移動機構は、前記前後移動機構と実質同様の構成を有しているが、図5および図8に示すように、前記ベース調整部材21の後端左側には、その基準面21a 上に側方支持部26が設けられている。一方、本体部材31には、ベース調整部材21に取り付けられた状態において、ベース調整部材21の側方支持部26の右側面と対向する位置に、摺動面31a と直交する受圧面(以下、側方受圧面35b という)が設けられている。この本体部材31の側方受圧面35b とベース調整部材21の支持部25の右側面との間には、バネ56(図10におけるバネSに該当する)が設けられている。このバネ56は、ベース調整部材21の基準面21a の法線と直交しかつベース調整部材21の左右方向(図5では左右方向)と平行な方向(以下、側方付勢方向という)に沿って伸縮可能に配設されている。
図5および図7に示すように、本体部材31の右側面には、前記側方受圧面35b と平行かつ摺動面31a と直交する側方支持面36s (図10における側面BAに該当する)が設けられている。一方、ベース調整部材21には、本体部材31をベース調整部材21に取り付けた状態において、側方支持面36s の右方に偏心ボルト57(図10における偏心軸Eに該当する)が配設されている。この偏心ボルト57は、前記前後移動機構の偏心ボルト53と実質同様の構成を有しており、そのネジ軸57b がベース調整部材21に設けられた、基準面21a の法線と平行な中心軸を有するネジ孔27h に螺合しており、ボルトヘッド57aの側面が基準面21a と直交する円筒状の面となるように配設されている。
このため、本体部材31をベース調整部材21に取り付けると、バネ56によって本体部材31の側方受圧面35b が右方に付勢されるからその側方支持面36b が偏心ボルト57のボルトヘッド57a の左端に押し付けられた状態で、偏心ボルト57とベース調整部材21の支持部26との間に本体部材31が保持されるのである。
また、偏心ボルト57のネジ軸57b をその中心軸まわりに回転させれば、側方付勢方向における偏心ボルト57のネジ軸57b の中心軸からボルトヘッド57a の左端までの長さ(以下、側方付勢方向長さという(図10における距離DLに該当する))はネジ軸57b の回転角度に応じて変化することになるが、本体部材31はバネ56によって常時右方に付勢されている。このため、偏心ボルト57のネジ軸57b を回転させて側方付勢方向長さを変化させれば、その変化量の分だけ、本体部材31を側方付勢方向に沿って正確に移動させることができる。つまり、CCDの受光面上における結像位置を、側方付勢方向に沿って本体部材31の移動方向と逆向きに偏心ボルト57の側方付勢方向長さの変化量と同じ長さだけ移動させることができる。
なお、左右移動機構は偏心ボルト57を1個しか備えていないが、左右移動機構によって本体部材31が側方付勢方向に沿って移動するときには、一対の取付部32,32の支持面32s ,32sが前後移動機構51の偏心ボルト53のボルトヘッド53a の後端に接触した状態で移動するから、偏心ボルト57を1個でも、本体部材31を側方付勢方向に沿って確実に平行移動させることができる。
上記のごとく、前後移動機構と左右移動機構によって、本体部材31を互いに直交する方向(付勢方向および側方付勢方向)に沿って独立して移動させることができるから、他の移動機構における偏心ボルト53 ,57の回転に係わらず、付勢方向および側方付勢方向における本体部材31の移動量をそれぞれ正確に調整することができる。すると、CCDの受光面上における2次元的な結像位置を、付勢方向および側方付勢方向に沿ってそれぞれ独立して移動させることができるから、CCDの受光面上における2次元的な結像位置を正確に調整することができるのである。
上記の前後移動機構の偏心ボルト53および左右移動機構の偏心ボルト57が特許請求の範囲にいう位置調整部であり、前後移動機構のバネ52および左右移動機構のバネ56が特許請求の範囲にいう付勢手段である。
なお、付勢手段はバネに限られず、本体部材31を、付勢方向または側方付勢方向に沿って付勢することができるものであればとくに限定はなく、例えば、ネジやゴム等であってもよい。
さらになお、位置調整部は偏心ボルト53に限られず、本体部材31を、付勢方向または側方付勢方向と平行に移動させることができるものであればとくに限定はなく、例えば、ネジ等であってもよい。
つぎに、本実施形態の結像位置調整機構10によって、3CCDカメラの各CCDの受光面上における焦点位置およびピントを調整する方法を説明する。
焦点位置およびピントを調整する場合、3CCDカメラによってテストパターンなどを撮影するが、テストパターンを撮影すると、テストパターンで反射した光が、レンズLを通ってプリズムPRに入射される。すると、入射した光はプリズムPRによって分光された後3つの波長の光がそれぞれ放射面ESから放射されるから、テストパターンがCCDの受光面上に結像される。CCDの受光面を構成するCCD素子が感知したテストパターンに対応する光の強度の強弱は、CCD素子から配線を通して電気信号として図示しない外部機器に送信されるから、外部機器によって、人が、CCDの受光面上における結像状態を確認することができ、この結像状態を見ながら各CCDの受光面上における焦点位置およびピントを調整することができる。
さて、各CCDの受光面上における焦点位置およびピントの調整方法を説明するが、まず、一対の支持フレーム11 ,11に取り付けられている調整機構本体20において、それぞれ一対の固定ボルト32a ,32aを締め付けて、本体部材31がベース調整部材21に対して移動しない状態としておく。
つぎに、一対のボルト21b ,21bを回転させて、その締め付け状態を調整して、調整機構本体20全体をプリズムPRの放出面ESに接近離間させて、各CCDの受光面上におけるピントを合わせる。
このとき、テストパターンの歪みなどがある場合には、一対のボルト21b ,21bの締め付け状態を調整して、CCDの受光面のプリズムPRの放出面ESに対する傾きを調整し、テストパターンの歪みを補正する。
ピント調整が終了すると、一対の固定ボルト32a ,32aをゆるめて本体部材31をベース調整部材21に対して移動可能な状態にする。このとき、一対の固定ボルト32a ,32aを、本体部材31の摺動面31a が、ベース調整部材21の基準面21a から離間はしないがベース調整部材21の基準面21a に沿って平行移動はさせることができる程度に緩めるのが、最も好適である。
ついで、前後移動機構51の一対の偏心ボルト53,53を回転させて、本体部材31を付勢方向に沿って移動させる。すると、CCDの受光面上に結像されているテストパターンが、CCDの受光面上を本体部材31の移動方向と逆方向に移動する。そして、テストパターンの結像位置が、付勢方向における所望の位置まで移動すると、一対の偏心ボルト53,53の回転を停止する。すると、本体部材31は、一対の偏心ボルト53,53のボルトヘッド53aとベース調整部材21の支持部25との間に保持されて、一対の偏心ボルト53,53の回転を停止したときの位置で保持される。
同様に、左右移動機構55の偏心ボルト57を回転させて、本体部材31を側方付勢方向に移動させ、側方付勢方向におけるテストパターンの結像位置を所望の位置まで移動しさせて、本体部材31を保持させる。
最後に、一対の固定ボルト32a ,32aを締め付ければ、テストパターンがCCDの受光面上における所望の位置に配置された状態で、本体部材31がベース調整部材21に固定され、一つのCCDの焦点位置およびピントを調整が終了する。
同様の作業を、他の2つの調整機構本体20について行なえば、各調整機構本体20に保持されているCCDの焦点位置およびピントを調整を行なうことができる。
上記のごとく、本実施形態の結像位置調整機構10を3CCDカメラに採用すれば、各CCDの結像位置調整を、他のCCDにおける結像位置調整状態から独立して調整することができるから、複数のCCDを有するCCDカメラであっても、その焦点位置およびピントを容易に調整することができる。そして、各CCDに入射される光の結像状態を、独立して微調整することができるから、各CCD間の結像状態の差を小さくすることができる。よって、全てのCCDにおける結像状態の均一性を高めるとができるから、再生画像の質を向上させることができる。
しかも、各CCDについて個別に焦点位置およびピント調整ができるから、プリズムPRの製作誤差やその他の部材の製作誤差を、各調整機構本体20によって吸収できる。よって、プリズムPR等に必要とされる製作誤差の許容範囲が広くなるから、プリズムPR等の製造が容易になり、その製造コストも下げることができる。
とくに、CCDとして、CCD素子が直線状に並んだ、いわゆるラインCCDを使用する場合には、CCDの受光面の幅が非常に狭くなるため、結像位置を非常に正確かつ微調整しなければならないが、本実施形態の結像位置調整機構10を使用すれば、受光面の幅が非常に狭いラインCCDであっても、その受光面上に確実に結像させることができる。そして、本実施形態の結像位置調整機構10を採用した3CCDカメラであれば、各CCDの焦点調整を簡単かつ正確に行なうことができるから、撮像体としてラインCCDを採用することが可能となる。すると、高速で画像を撮影する装置、例えば、連続的に搬送されるシートにおいてその欠陥を検査する装置等にラインCCDを備えた3CCDカメラを使用することができるから、高速で搬送されるシートであっても、欠陥を検査の精度を高くすることができる。
そして、上記のごとき、偏心ボルト53,57を位置調整部として採用し、バネ52,56を付勢手段とすることによって、移動機構の構成を非常に簡単な構成とすることができるので、本実施形態の調整機構本体20はコンパクトな構成とすることができるから、CCDの受光面をプリズムPRの放出面ESに非常に近づけて配置させることも可能となる、すると、CCDの受光面をレンズLに近づけて配置することもできるから、口径の小さいレンズLを使用しても、CCDの受光面における焦点内に存在するCCD素子のピクセル数を多くでき、検査対象の分解能、つまり検査精度を向上させることができる。
また、微調整部材30の保持部材40を、以下のごとく本体部材31に対して移動可能に設ければ、CCDに入射される光の結像状態を、さらに精度良く調整することができる。
図8に示すように、微調整部材30の本体部材31には、開口部31h と一対の貫通孔32h ,32hとの間に、その厚さ方向を貫通する一対の保持部取付用孔31h ,31hが設けられている。この本体部材31の下面の略中央部分であって、前記一対の保持部取付用孔31h ,31hの間の部分には、前記摺動面31a と平行な平坦面である取付面31sが設けられている(図6(B))。
この本体部材31の取付面31s の下方には、保持部材40が配設されている。この保持部材40は、その上面40s 、つまり本体部材31の取付面31s と対向する面が平坦面に形成されている。また、保持部材40は、その中央部にCCD取付け部40g が設けられており、このCCD取付け部40g にCCDを取付けると、CCDの受光面が上面40s と平行となるように形成されている。
そして、図5,図6および図8に示すように、保持部材40の上面40s には、その左右両端部に一対のネジ孔40h ,40hが形成されており、この保持部材40の一対のネジ孔40h ,40hには、本体部材31の表面から一対の保持部取付用孔31h ,31hに挿通された一対の保持部材固定ボルト41 ,41が、螺合されている。この一対の保持部材固定ボルト41 ,41には、その軸径が一対の一対の保持部取付用孔31h ,31hの孔径よりも小さいものが使用される。
このため、一対の保持部材固定ボルト41 ,41を締め付ければ、保持部材40を、その上面40s が本体部材31の取付面31s に強く押し付けられ、両者の間の摩擦力が大きくなるから、保持部材40を、本体部材31に対して移動しないように固定することができる。しかも、保持部材40の上面40s と本体部材31の取付面31s がいずれも平坦面に形成されているから、一対の保持部材固定ボルト41 ,41の締め付けたときに両者の間に発生する摩擦力が大きくなり、両者をしっかりと固定できる。
また、一対の保持部材固定ボルト41 ,41を締め付け力を弱めれば、保持部材40の上面40s と本体部材31の取付面31s との間の摩擦力が小さくなるから、保持部材40を本体部材31に対して移動可能となる。ここで、一対の保持部材固定ボルト41 ,41には、その軸径が一対の保持部取付用孔31h ,31hの孔径よりも小さいものが使用されているから、一対の保持部材固定ボルト41 ,41を保持部材40の上面40s を本体部材31の取付面31s に押し付けている力がなくなる程度にゆるめれば、保持部材40の一対のネジ孔40h ,40hに一対の保持部材固定ボルト41 ,41螺合させたままでも、保持部材40を本体部材31に対して移動させることができる。
しかも、一対の保持部材固定ボルト41 ,41の締め付け力を弱めたときには、保持部材40を、その上面40s を本体部材31の取付面31s に接触させたままで移動させることができるから、保持部材40を、取付面31s に沿って確実に平行移動させることができる。そして、本体部材31の取付面31sは、その摺動面31a と平行であるから、この摺動面31a をベース調整部材21の基準面21a に面接触させておけば、保持部材40を、ベース調整部材21の基準面21a に沿って平行移動させることができる。すると、保持部材40を移動させても、保持部材40に保持されているCCDのピントや入射光の光軸に対する受光面の傾きが変化しないから、CCDの受光面上における2次元的な入射光の結像位置を調整することができるのである。
なお、一対の保持部材固定ボルト41 ,41の締め付け量を調整すれば、保持部材40を本体部材31の取付面31sに対して接近離間させたり傾けたりすることが可能であり、CCDのピントや入射光の光軸に対する受光面の傾きを調整することもできる。すると、保持部材40だけを移動させてピントを合わせることができるから、ピント調整が容易になるし、ピント調整するときに他の部材が移動して、結像位置がズレたりすることを防ぐことができる。
さらになお、保持部材40を、そのCCD取付け部40g にCCDを取付けると、CCDの受光面が、本体部材31下面から突出するような構成としておけば、CCDの受光面をプリズムPRの放出面ESに非常に近づけて配置させることができる。つまり、CCDの受光面をレンズLに近づけて配置することができるから、口径の小さいレンズLを使用しても、CCDの受光面における焦点内に存在するCCD素子のピクセル数を多くでき、検査対象の分解能、つまり検査精度を向上させることができる。
つぎに、保持部材40を本体部材31に対して移動させる保持部材移動部を説明する。
図6および図8に示すように、本体部材31の前方両端部には、本体部材31の厚さ方向を貫通する一対のネジ孔31b ,31bが形成されている。この一対のネジ孔31b ,31bは、その中心軸が取付面31s の法線と平行となるように配設されており、保持部材移動部の前後移動部42(図10における偏心軸Dに該当する)の軸状部材42aが螺合されている。この前後移動部42の軸状部材42a の下端には、作動軸42b が設けられている。この作動軸42b は、その中心軸が、前記軸状部材42a の中心軸と平行であってしかもその半径方向にオフセットするように配設されている。
一方、前記保持部材40において、その前方両端部には、一対の長孔40b ,40b(図10における長孔chに該当する)が形成されている。この一対の長孔40b ,40bは、その軸方向が保持部材40の左右方向と平行であって、その幅方向の長さが前後移動部42の作動軸42b の軸径と同等となるように形成されている。そして、この一対の長孔40b ,40bには、それぞれ前後移動部42の作動軸42b が挿入されている。
このため、前後移動部42の軸状部材42a を回転させれば、ネジ孔31b の中心軸周りに、言い換えれば軸状部材42a の回転軸まわりに作動軸42b を周回移動させることができる。すると、作動軸42b は、長孔40b 内をその軸方向に沿って移動しながら、長孔40b の幅方向にも移動するから、作動軸42b の移動、つまり前後移動部42の軸状部材42a を回転させることによって保持部材40を長孔40b の幅方向にのみ移動させることができる。
よって、前後移動部42の軸状部材42a を回転させれば保持部材40を本体部材31の前後方向に移動させることができるから、CCDの受光面上における結像位置を、本体部材31の前後方向に沿って、作動軸42b の本体部材31の前後方向の移動量の分だけ保持部材40の移動方向と逆向きに移動させることができる。
また、図6および図8に示すように、本体部材31の後方左側には、本体部材31の厚さ方向を貫通するネジ孔31c が形成されている。このネジ孔31c は、その中心軸が取付面31s の法線と平行となるように配設されており、保持部材移動部の側方移動部43(図10における偏心軸Dに該当する)の軸状部材43a が螺合されている。この側方移動部43の軸状部材43a の下端には、作動軸43b が設けられている。この作動軸43b は、その中心軸が、前記軸状部材42a の中心軸と平行であってしかもその半径方向にオフセットするように配設されている。
一方、前記保持部材40において、その後方左側には、長孔40c (図10における長孔chに該当する)が形成されている。この長孔40c は、その軸方向が保持部材40の前後方向と平行つまり長孔40b の軸方向と直交する方向であって、その幅方向の長さが側方移動部43の作動軸43b の軸径と同等となるように形成されている。そして、この長孔40c には、側方移動部43の作動軸43b が挿入されている。
このため、側方移動部43の軸状部材43a を回転させれば、ネジ孔31c の中心軸周りに、言い換えれば軸状部材43a の回転軸まわりに作動軸43b を周回移動させることができる。すると、作動軸42b は、長孔40c 内をその軸方向に沿って移動しながら、長孔40c の幅方向にも移動するから、作動軸42b の移動、つまり前後移動部42の軸状部材42a を回転させることによって保持部材40を長孔40c の幅方向にのみ移動させることができる。
よって、側方移動部43の軸状部材43a を回転させれば保持部材40を本体部材31の左右方向に移動させることができるから、CCDの受光面上における結像位置を、本体部材31の左右方向に沿って、作動軸43b の本体部材31の左右方向の移動量の分だけ保持部材40の移動方向と逆向きに移動させることができる。
上記のごとく、前後移動部42と側方移動部43によって、保持部材40を互いに直交する方向に沿って独立して移動させることができるから、他の移動部における軸状部材42a ,43aの回転に係わらず、保持部材40の前後方向および左右方向の移動量を、それぞれ正確に調整することができる。すると、CCDの受光面上における2次元的な結像位置を、保持部材40の前後方向および左右方向に沿ってそれぞれ独立して移動させることができるから、CCDの受光面上における2次元的な結像位置を正確に調整することができるのである。
また、保持部材40の前後方向と、前述した付勢方向とが平行になるように調整しておけば、前後移動機構51による本体部材31の移動方向と前後移動部42による保持部材40の移動方向を一致させることができ、左右移動機構55による本体部材31の移動方向と側方移動部43による保持部材40の移動方向を一致させることができるから、保持部材40に保持されているCCDの移動を、より正確かつ簡単に調整することができる。
そして、前後移動部42において、その軸状部材42a の半径方向における軸状部材42a の中心軸と作動軸42b の中心軸との距離を、偏心ボルト53の長径LD(図7参照)の長さよりも短くしておき、かつ、側方移動部43において、その軸状部材43a の半径方向における軸状部材43a の中心軸と作動軸43b の中心軸との距離を、偏心ボルト57の長径の長さよりも短くしておけば、軸状部材42a と偏心ボルト53を同じ角度だけ回転させても、軸状部材42a の回転によるCCDの移動量を、偏心ボルト57の回転によるCCDの移動量よりも少なくすることができ、かつ軸状部材43a と偏心ボルト57を同じ角度だけ回転させても、軸状部材43a の回転によるCCDの移動量を、偏心ボルト57の回転によるCCDの移動量よりも少なくすることができる。
すると、前後移動機構51および左右移動機構55によって大まかな結像位置の調整を行なった後、保持部材移動部によって結像位置を微調整することができるから、結像位置の迅速化な調整と正確な調整とを両立させることができる。
また、本実施形態の結像位置調整機構10は、様々な装置の撮像体に適応することができるが、非常に高精度の検査が必要とされる装置、例えば、μmオーダの精度が必要な装置に適用された場合、装置を設けている場所の温度変化による調整機構本体20の膨張収縮によって、撮像体上の焦点位置がずれてしまうおそれがある。そこで、以下のごとき構成とすれば、調整機構本体20の膨張収縮による焦点位置がずれを最小限に抑えることができるので好適であり、受光面の幅が狭いラインCCDを撮像体として使用する場合に、とくに好適である
図7に示すように、ベース調整部材21には、微調整部材固定手段の一対の固定ボルト32a,32aのネジ部が螺合されるを一対のネジ孔22h 22hが設けられている。
また、本体部材31の左右両端部には、一対の固定ボルト32a,32aが挿通される一対の貫通孔32h ,32hおよび、一対の保持部材固定ボルト41 ,41が取付けられる一対の保持部取付用孔31h ,31hが設けられている。この一対の保持部取付用孔31h ,31hは、その中心軸同士を結ぶ線が、前記一対の貫通孔32h ,32hの中心線を通り、かつ、摺動面31a と直交する対称面RS上に位置するように配設されている。
このため、CCDを、その受光面の中心軸が、保持部材40の一対のネジ孔40h ,40hの中心軸を結ぶ線(以下、中心線40Lという)を通り、かつ、保持部材40の上面40s と垂直な面、言い換えれば、摺動面31a と直交する面上に位置するように取付け、そして、一対のネジ孔22h 22hの中心軸を結ぶ線(以下、中心線20Lという)および中心線40Lが対称面RS上に位置するように、一対の固定ボルト32a,32aおよび一対の保持部材固定ボルト41 ,41によって本体部材31と保持部材40を固定すれば、本体部材31と保持部材40をいずれも対称面RS上に対して対称な位置で連結することができる。
すると、光軸が対称面RSに含まれるように配置されていれば、周囲環境の温度変化によって本体部材31および保持部材40が膨張収縮しても、CCDの受光面の中心軸は、対称面RS上に配置しておくことができる。よって、周囲環境の温度変化によるCCDの受光面における焦点の位置がずれることを防ぐことができる。
また、光軸が対称面RSからずれている場合においても、光軸と対称面RSが平行となっていれば、本体部材31に対して保持部材40を移動させてCCDの受光面の中心線と光軸が一致するように調整したときに、CCDの受光面の幅方向におけるCCDの受光面の中心線と対称面RSとのズレは、保持部材40を移動させた長さしかずれず、その量を小さくすることができる。すると、保持部材40を移動させた長さと、周囲環境の温度差および保持部材40の素材の熱膨張率を掛け合わせた長さしかずれないから、本体部材31および保持部材40が膨張収縮によるCCDの受光面上における焦点の位置のズレを、最小限に抑えることができる。
なお、ベース調整部材21と本体部材31を、本体部材31の両端部において、それぞれ2カ所で固定する場合、言い換えれば、各端部で2本ずつ合計4本の固定ボルト32aで固定し、本体部材31と保持部材40を、本体部材31の両端部において、それぞれ2カ所で固定する場合、言い換えれば、各端部で2本ずつ合計4本の保持部材固定ボルト41で固定する場合には、本体部材31は、その両端に、それぞれ2つの貫通孔32h および2つの保持部取付用孔31h を有することになる。この場合には、対称面RSは、各端部における2つの貫通孔32h の中心軸を結ぶ線分の垂直2等分線および、各端部における2つの保持部取付用孔31h の中心軸を結ぶ線分の垂直2等分線を含む面となるから、この対称面RS上に、保持部材40の各端部における2つのネジ孔40hの中心軸を結ぶ線分の垂直2等分線および、ベース調整部材21の各端部における2つのネジ孔22hの中心軸を結ぶ線分の垂直2等分線が配置されるようにすれば、上記構成と同様の効果を得ることができる。
また、一対のボルト21b ,21b によってベース調整部材21を取付面11s に取付けたときに、一対のボルト21b ,21b の中心軸を含む面(ベース対称面)が、前記対称面RSと一致すれば、ベース調整部材21が膨張収縮しても、CCDの受光面の中心軸を対称面RS上に配置しておくことができるから、周囲環境の温度変化によるCCDの受光面における焦点の位置のズレを、より一層少なくすることができる。
そして、光軸が対称面RSからずれている場合においても、光軸と対称面RSが平行となっていれば、CCDの受光面の中心線と光軸が一致するように調整したときに、CCDの受光面の幅方向におけるCCDの受光面の中心線と対称面とのズレを小さくすることができるから、ベース調整部材21、本体部材31および保持部材40の膨張収縮によるCCDの受光面上における焦点の位置のズレを、最小限に抑えることができる。
なお、ベース調整部材21と支持フレーム11を、ベース調整部材21の両端部において、それぞれ2カ所で固定する場合、言い換えれば、各端部で2本ずつ合計4本のボルト21bで固定する場合には、前記対称面RS上に、ベース調整部材21の各端部における2つのボルト21bの中心軸を結ぶ線分の垂直2等分線が配置されるようにすれば、上記構成と同様の効果を得ることができる。
【産業上の利用可能性】
本発明の結像位置調整機構は、CCDカメラにおけるCCDの位置調整だけでなく、フィルムやスキャナ等の撮像体を備えた撮影装置において、撮像体の受光面に入射される入射光の結像位置を調整に適用することが可能である。
【Technical field】
The present invention relates to an image forming position adjusting mechanism and a photographing apparatus. In an imaging apparatus such as a camera or an inspection apparatus using light, an image is captured by forming an image of an object to be imaged on an imaging body such as a CCD or a film through a lens, a prism, or the like. Since the quality of the captured image is greatly affected by the relative position such as the distance between the lens and the imaging body, it is very important to adjust the imaging position in the imaging apparatus.
The present invention relates to an imaging position adjustment mechanism that adjusts the imaging position of an imaging apparatus, and an imaging apparatus that includes the imaging position adjustment mechanism.
[Background]
Conventionally, as a method of adjusting the imaging position on the image pickup body, a lens or an image pickup body is moved along the optical axis direction of incident light (for example, Patent Document 1: Conventional Example 1). ).
The focal position adjustment mechanism of Conventional Example 1 is provided in the CCD camera unit of the microscope photographing apparatus, and the lens barrel to which the CCD element is attached is moved in the optical axis direction to move the CCD element and the lens in the optical axis direction. The distance is adjusted.
However, the focal position adjusting mechanism of the conventional example 1 can adjust the distance in the optical axis direction between the CCD element and the lens, that is, the focus, but the inclination of the CCD element with respect to the optical axis and the two-dimensional focus on the CCD element. The correct position cannot be adjusted. Accordingly, since the inclination of the CCD element relative to the optical axis and the two-dimensional position of the focal point on the CCD element depend on the manufacturing error and mounting accuracy of the member that holds the lens and the CCD element, the processing accuracy of each member, etc. There is a problem that it is difficult to manufacture each member and the manufacturing cost becomes high.
As a technique for adjusting not only the focus but also the inclination of the CCD element with respect to the optical axis, there is a technique shown in Conventional Example 2 (Patent Document 2).
As shown in FIG. 9, the technique of Conventional Example 2 includes a concave glass b having a spherically curved surface br and a convex glass a having a convex curved surface ar having the same curvature as the spherical surface of the concave glass. . The back surface of the concave glass b is attached to the exit surface of the prism P, and the light receiving surface of the CCD is attached to the back surface of the convex glass a. For this reason, if the curved surface br of the concave glass b and the curved surface ar of the convex glass a are combined, they can be attached so that there is no gap between them, and the curved surface ar of the convex glass a is curved br of the concave glass b. Therefore, the inclination of the light receiving surface of the CCD with respect to the optical axis of the light incident through the prism P can be adjusted, and the optical axis and the light receiving surface can be adjusted to be perpendicular to each other. .
However, in the technique of Conventional Example 2, since the light receiving surface of the CCD can only be inclined with respect to the emission surface of the prism P, if the inclination of the light receiving surface of the CCD with respect to the optical axis is changed, a focal point is formed on the light receiving surface. The two-dimensional position of the focal point also changes. For this reason, the two-dimensional position of the focal point cannot be adjusted separately while maintaining the inclination of the light receiving surface of the CCD with respect to the optical axis. Then, since it becomes very difficult to finely adjust the two-dimensional position of the focal point, it is practically difficult to adjust the focal point in the line CCD in which the CCD elements are linearly arranged. This is because the line CCD has a long light receiving surface in the arrangement direction of the CCD elements, so that it can be imaged on the light receiving surface even if the focus position is slightly shifted, but in a direction intersecting with the arrangement direction of the CCD elements, that is, This is because the width of the CCD element is short, so that the allowable range is narrow with respect to the shift of the focal point, and an image cannot be formed on the light receiving surface unless the focal point is finely adjusted.
Therefore, the technique of the conventional example 2 can be used for adjusting the imaging position of an apparatus using an image pickup body having a wide light receiving surface in which CCD elements are arranged in a lattice shape and a wide allowable range with respect to a focus shift. However, it cannot be used for adjusting the imaging position of an apparatus using an image pickup body having a narrow light-receiving surface and a tolerance range with respect to a focus shift like a line CCD. In other words, the technique of Conventional Example 2 is difficult to use in an apparatus that has a narrow tolerance range with respect to the focus shift and that requires fine adjustment of the focus position.
Further, in the technique of Conventional Example 2, all the members are fixed by the adhesive. However, when the adhesive is solidified, there is a possibility that the relative position of each member may be shifted due to shrinkage of the adhesive itself. Accurate position adjustment is difficult. And since each member is fixed with an adhesive agent, there exists a problem that it is very difficult to readjust the position between each member.
In recent years, along with the increase in production and accuracy of liquid crystal panels and battery films, there has been a demand for technologies for performing these inspections at high speed and with high precision. The surface color and scratches must be inspected. When simultaneously detecting color and scratches, a 3CCD device having three CCD elements that receive light of three wavelengths of red, green, and blue is used, but the 3CCD device has an advantage that there is no color shift. The color of the surface to be inspected cannot be accurately detected unless the areas photographed by the three CCD elements are exactly matched. When the inspection accuracy is performed on the order of μm, the deviation of the area taken by each CCD element must be equal to or smaller than the pixel size of the CCD element. For example, if one pixel of the CCD element is 7 μm, the deviation must be 0.7 μm or less. In other words, the focal plane position on each CCD element must be adjusted with an accuracy of 0.7 μm or less. However, the technique of Conventional Example 2 cannot adjust the focal position with such accuracy as described above.
In addition, since the member holding the CCD element expands and contracts due to a change in ambient temperature, even if the material expands and contracts due to a change in ambient temperature, the deviation of the focal position in the focal plane becomes 0.7 μm or less. It is necessary to do so.
Furthermore, as the number of pixels of the CCD element within the lens resolution range increases, in other words, as the number of pixels of the CCD element present in the imaging range increases, the resolution of the inspection object, that is, the inspection accuracy can be improved. However, in order to improve this resolution, it is necessary to increase the lens aperture or shorten the distance between the lens and the CCD element. However, if the lens aperture is increased, the lens itself becomes very expensive. To improve accuracy while reducing costs, the CCD element must be placed close to the lens instead of using a lens with a small aperture. . Then, since the space between the CCD element and the lens becomes small, the member for holding the CCD element must be made more compact. There is also a method of increasing the number of pixels per unit length of the CCD element. However, when the number of pixels per unit length of the CCD element is increased, the CCD element itself becomes smaller. Therefore, in order to reduce the cost of the lens, that is, the cost of the apparatus and improve the inspection accuracy, it is necessary to make the part holding the CCD element in the apparatus very small and inevitably make the focus adjustment mechanism compact. There must be.
[Prior Art]
[Patent Literature]
[Patent Document 1]
JP-A-7-261067
[Patent Document 2]
JP 2003-259384 A
Summary of the Invention
[Problems to be solved by the invention]
In view of the above circumstances, the present invention can easily adjust the imaging position on the imaging element with high accuracy, easily adjust even if the position is shifted, and adjust the focal position due to temperature changes in the surrounding environment. An object of the present invention is to provide an imaging position adjusting mechanism and a photographing apparatus that can prevent misalignment and can have a very compact structure.
[Means for Solving the Problems]
An image forming position adjusting mechanism according to a first aspect of the present invention is an adjusting mechanism for adjusting an image forming position of incident light on the image pickup body in a photographing apparatus that forms an image of incident light on the image pickup body and takes an image. A base adjusting member provided so that the adjusting mechanism is movable along the optical axis direction of the incident light with respect to the main body of the photographing apparatus and the inclination of the incident light with respect to the optical axis is adjustable; A fine adjustment member to which the imaging body is attached, which is movably provided along a direction intersecting the optical axis of the incident light with respect to the base adjustment member, and the fine adjustment member is used as the base adjustment member. On the other hand, a moving mechanism that moves along the direction intersecting the optical axis of the incident light is provided, and the base adjustment member intersects the optical axis of the incident light. Flat A reference surface, and when the fine adjustment member is moved by the moving mechanism, along the reference surface of the base adjustment member Two-dimensionally Sliding Can be flat It has a sliding surface.
First 2 The imaging position adjusting mechanism according to the present invention is the first invention, wherein the moving mechanism includes a pressure receiving surface that is provided on the fine adjustment member and that is perpendicular to the sliding surface, and a pressure receiving surface of the fine adjustment member that is normal to the pressure receiving surface. An urging means for urging along the direction and an urging force applied from the urging means to the fine adjustment member are supported, and the urging means can be approached and separated along the direction of the urging force. And a position adjusting unit provided on the head.
First 3 The imaging position adjustment mechanism of the invention is the first 2 In the present invention, the fine adjustment member includes a support surface that intersects the direction of the urging force applied from the urging means, and the position adjustment unit is a central axis that is parallel to the normal line of the reference surface of the base adjustment member The cylindrical body is rotatable about a rotation axis that is parallel to the central axis and offset in a radial direction of the cylindrical body with respect to the central axis, and the biasing force In a state where the fine adjustment member is biased by the means, the support surface of the fine adjustment member is always in contact with the side surface thereof.
First 4 The imaging position adjustment mechanism of the invention is the first 1, 2 or 3 In the present invention, the fine adjustment member includes a main body member provided with the sliding surface and a mounting surface parallel to the sliding surface, and the imaging body provided to be movable along the mounting surface of the main body member. And a holding member moving section that moves the holding member along the attachment surface of the main body member.
First 5 The imaging position adjustment mechanism of the invention is the first 4 In the present invention, the holding member is formed with a long hole extending along a direction parallel to the mounting surface of the main body member, and the holding member moving portion is connected to the normal line of the mounting surface on the main body member. A shaft-shaped member rotatably mounted around a parallel rotation shaft, and an operation shaft provided at one end in the axial direction of the shaft-shaped member and inserted into a long hole of the holding member. The shaft is disposed such that a central axis thereof is parallel to a rotation axis of the shaft-shaped member and is offset in a radial direction of the shaft-shaped member with respect to the rotation axis of the shaft-shaped member. .
First 6 The imaging position adjustment mechanism of the invention is the first 4th or 5th In the present invention, the holding member is attached so as to be able to approach and separate from the attachment surface of the main body member, and the holding member moving section moves the holding member closer to and away from the attachment surface of the main body member. It is characterized by having.
First 7 The imaging position adjustment mechanism of the invention is the first 1, 2 or 3 In the present invention, the fine adjustment member includes a main body member on which the sliding surface is formed, fine adjustment member fixing means for fixing the main body member to the base adjustment member, and the sliding relative to the main body member. A holding member that is provided so as to be movable along a direction parallel to the surface and to which the imaging body is attached; and a holding member fixing means that fixes the holding member to the main body member. The means is perpendicular to the sliding surface, and a symmetry plane including a center line of a connection position between the main body member and the base adjustment member by the fine adjustment member fixing means in the width direction of the imaging body. It is arranged at a position that is plane-symmetric.
First 8 The imaging position adjustment mechanism of the invention is the first 1, 2 or 3 In the invention, a base fixing means for fixing the base adjustment member to the main body of the photographing apparatus is provided, and a fine adjustment member fixing means for fixing the fine adjustment member to the base adjustment member is provided. The fine adjustment member fixing means is orthogonal to the sliding surface of the fine adjustment member, and the center of the connection position between the main body of the photographing apparatus and the base adjustment member by the base fixing means in the width direction of the imaging body It arrange | positions in the position used as plane symmetry with respect to the symmetry plane containing a line.
First 9 The imaging position adjustment mechanism of the invention is the first 1, 2 or 3 In the present invention, the main body of the photographing apparatus includes an attachment surface that is orthogonal to the optical axis of the incident light and to which the base adjustment member is attached, and between the base adjustment member and the attachment surface of the main body of the photographing apparatus. And a base urging means for urging the base adjusting member in a direction away from the main body of the photographing apparatus along the optical axis direction of the incident light while keeping the base adjustment member parallel to the mounting surface of the main body of the photographing apparatus. It is characterized by having.
First 10 An imaging device of the invention is an imaging device including a spectroscopic unit that splits incident light into light having a plurality of wavelengths, and a plurality of imaging bodies on which light of each wavelength split by the spectroscopic unit is imaged. The imaging apparatus includes an imaging position adjustment mechanism that adjusts an imaging position of light of each wavelength on the plurality of imaging bodies, and the imaging position adjustment mechanism includes: 1, 2, 3, 4, 5, 6, 7, 8 or 9 It is an adjustment mechanism of the invention.
First 11 The photographing device of the invention is the first 10 In the present invention, the photographing device is a 3CCD camera.
First 12 The photographing device of the invention is the first 10th or 11th In the present invention, the imaging body is a line CCD.
【The invention's effect】
According to the first aspect of the invention, the focus and the inclination of the image pickup body relative to the optical axis can be adjusted by the base adjustment member of the adjustment mechanism. Moreover, if the fine adjustment member is moved along the reference surface of the base adjustment member, the fine adjustment with respect to the base adjustment member is performed while the relative position of the incident light with respect to the base adjustment member in the optical axis direction is kept constant. The member can be moved. In other words, if the fine adjustment member is moved by the moving mechanism without moving the base adjustment member, the two-dimensional imaging position of incident light on the image pickup body is adjusted independently of the focus and the inclination with respect to the optical axis. can do. For this reason, if the reference surface of the base adjustment member is adjusted so that the light receiving surface of the imaging body is perpendicular to the optical axis of the incident light, the focus and the inclination of the incident light of the imaging body with respect to the optical axis are not changed. Since the imaging position of incident light on the imaging body can be adjusted, the imaging position can be adjusted accurately and easily. In addition, since the fine adjustment member can be fixed to the base adjustment member by the posture holding means, it is possible to prevent the imaging position from being shifted during photographing.
First 2 According to the invention, since the fine adjustment member is constantly urged by the urging means, the position adjusting portion that supports the urging force can be moved closer to and away from the urging means in the direction of the urging force. Thus, the fine adjustment member can be moved closer to and away from the urging means along the direction of the urging force. Moreover, since the pressure receiving surface is provided so as to be orthogonal to the sliding surface, the urging force is applied to the fine adjustment member in parallel with the sliding surface. Therefore, if the sliding surface of the fine adjustment member is in surface contact with the reference surface of the base adjustment member, the fine adjustment member is adjusted to the base by moving the fine adjustment member closer to and away from the urging means by the position adjustment unit. It can be moved parallel to the reference plane of the member. Then, if the pressure adjusting surfaces orthogonal to each other are provided on the fine adjustment member, an urging means for urging each, and a position adjusting part for supporting the urging force from each urging means are provided, respectively. Regardless of the amount of movement, the amount of movement of the fine adjustment member in the urging direction of each urging means can be adjusted independently, so that the imaging position on the imaging body can be accurately adjusted.
First 3 According to the invention, since the central axis of the cylindrical body is offset in the radial direction with respect to the rotation axis, the direction of the urging force applied from the urging means to the fine adjustment member ( Hereinafter, the length from the center axis of the cylindrical body in the biasing direction) to the edge on the support surface side (hereinafter simply referred to as the biasing direction length) can be changed. Since the supporting surface of the fine adjustment member is always in contact with the side surface of the cylindrical body by the urging means, if the cylindrical body is rotated, the fine adjustment member is attached by the amount of change in the urging direction length. It can be moved along the urging direction, and the imaging position in the urging direction of the imaging body can be finely adjusted.
First 4 According to the invention, if the holding member is moved by the holding member moving portion, the image pickup body attached to the holding member together with the holding member can be moved along the attachment surface of the main body member. For this reason, the imaging position of the incident light on the imaging body can be adjusted without changing the focus or the tilt of the incident light with respect to the optical axis of the imaging body, so that the imaging position can be adjusted accurately and easily. it can.
First 5 According to the invention, if the shaft-like member is rotated around the rotation axis, the operation shaft can be moved around the rotation axis. For this reason, the holding member can be moved relative to the main body member by the amount of movement of the long hole in the width direction out of the amount of movement of the operating shaft. And if a plurality of shaft-like members and long holes are provided and formed so that the axial directions of the long holes intersect, regardless of the amount of rotation of the other shaft-like members, in the direction orthogonal to the axial direction of each long hole Since the amount of movement of the holding member can be adjusted independently, the imaging position on the imaging body can be accurately adjusted.
First 6 According to the invention, it is possible to adjust the focus by moving only the holding member. Therefore, it is easy to adjust the focus, and when adjusting the focus, the other members move and the imaging position shifts. Can be prevented.
First 7 According to the invention, since the holding member fixing means connects the main body member and the holding member at a symmetrical position with respect to the symmetry plane, if the optical axis is arranged to be included in the symmetry plane, the surrounding environment Even if the main body member and the holding member expand and contract due to this temperature change, it is possible to prevent the focus position on the image pickup body from shifting. Even when the optical axis is deviated from the symmetry plane, if the optical axis and the symmetry plane are parallel, the holding member is moved with respect to the main body member so that the center line of the imaging body is positioned on the optical axis plane. Since the deviation between the center line of the image pickup body and the symmetry plane can be reduced when the adjustment is performed in this way, the deviation of the focal point position on the image pickup body due to the expansion and contraction of the main body member and the holding member is minimized. be able to. If the light receiving center line of the image pickup body (for example, line CCD) is included on the symmetry plane, the focal position shift can be further reduced. In particular, this is effective when a line CCD having a narrow light receiving surface is used as an image pickup body.
First 8 According to the invention, since the fine adjustment member fixing means connects the fine adjustment member and the base adjustment member at a symmetrical position with respect to the base symmetry plane, the optical axis is disposed so as to be included in the base symmetry plane. For example, even if the fine adjustment member and the base adjustment member expand and contract due to a temperature change in the surrounding environment, it is possible to prevent the focus position on the imaging body from being shifted. Even when the optical axis is deviated from the base symmetry plane, if the optical axis and the base symmetry plane are parallel, the fine adjustment member is moved with respect to the base adjustment member, and the center line of the imaging body is aligned with the optical axis plane. When adjusted to be positioned above, the deviation between the center line of the image pickup body and the base symmetry plane can be reduced, so that the deviation between the center line of the image pickup body and the base symmetry plane can be reduced. Further, it is possible to minimize the shift of the focus position on the image pickup body due to the expansion and contraction of the fine adjustment member and the base adjustment member. If the light receiving center line of the image pickup body (for example, line CCD) is included on the base symmetry plane, the shift of the focal position can be further reduced. In particular, this is effective when a line CCD having a narrow light receiving surface is used as an image pickup body.
First 9 According to the invention, since the base adjustment member can be moved along the optical axis of the incident light while being kept parallel to the mounting surface of the main body of the photographing apparatus, the two-dimensional incident light on the imaging body can be moved. Focus adjustment can be performed without changing the imaging position. Accordingly, since the focus position and the focus can be adjusted independently, the focus adjustment becomes easy.
First 10 According to the present invention, the imaging position can be adjusted for each wavelength of light, so that the adjustment of the photographing apparatus is facilitated. Since the manufacturing error of the spectroscopic means can be absorbed by the imaging position adjusting mechanism, the spectroscopic means and the like can be easily manufactured and the cost can be reduced.
First 11 According to the invention, the image formation state of the light incident on each CCD element can be made uniform, so that the quality of the reproduced image can be improved.
First 12 According to the invention, it is possible to increase the processing speed of the captured image, that is, the signal detected by the CCD element, and thus it is possible to capture a high-speed image.
[Brief description of the drawings]
FIG. 1 is a schematic side view of a 3CCD camera to which an imaging position adjusting mechanism 10 of the present embodiment is applied.
FIG. 2 is a schematic front view of a 3CCD camera to which the imaging position adjusting mechanism 10 of the present embodiment is applied.
FIG. 3 is a schematic plan view of a 3CCD camera to which the imaging position adjusting mechanism 10 of the present embodiment is applied.
4 is a cross-sectional view taken along the line IV-IV in FIG. 3;
FIGS. 5A and 5B are explanatory diagrams of the image forming position adjusting mechanism 10 according to the present embodiment, wherein FIG. 5A is a schematic plan view, FIG. 5B is a schematic front view, and FIGS. FIG.
6A is a cross-sectional view taken along the line VIA-VIA in FIG. 5, and FIG. 6B is a cross-sectional view taken along the line VIB-VIB in FIG.
7A is an enlarged view of a main part of FIG. 6A, and FIGS. 7B and 7C are explanatory views showing a state in which an eccentric bolt 53 is rotated.
8A is a single plan view of the base adjustment member 21, FIG. 8B is a single plan view of the main body member 31 of the fine adjustment member 30, and FIG. 8C is a holding member 40 of the fine adjustment member 30; FIG.
FIG. 9 is a schematic explanatory diagram of the technique of Conventional Example 2;
10 is an enlarged explanatory view of a mounting portion between the adjustment mechanism main body 20 and the support frame 11. FIG.
FIG. 11 is a diagram showing a simplified model of the adjustment mechanism main body 20;
12 is a diagram illustrating the movement of member B. FIG.
FIG. 13 is a diagram illustrating the movement of a member C.
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
The imaging position adjusting mechanism of the present invention is for adjusting the imaging position of incident light incident on the light receiving surface of an imaging body in an imaging apparatus equipped with an imaging body such as a CCD or a film. The image forming position can be adjusted without moving an optical system such as a lens disposed between the object and the imaging body.
The imaging position adjusting mechanism of the present invention can be applied to a CCD camera, a scanner, or the like. Hereinafter, an example applied to a 3 CCD camera will be described as a representative.
FIG. 1 is a schematic side view of a 3CCD camera to which the imaging position adjusting mechanism 10 of the present embodiment is applied. FIG. 2 is a schematic front view of a 3CCD camera to which the imaging position adjusting mechanism 10 of the present embodiment is applied. FIG. 3 is a schematic plan view of a 3CCD camera to which the imaging position adjusting mechanism 10 of the present embodiment is applied. 4 is a cross-sectional view taken along line IV-IV in FIG. 2 to 3 do not show the adjustment mechanism main body 20 of the imaging position adjustment mechanism 10 located on the front surface and the rear surface for easy understanding of the structure.
First, before describing the imaging position adjustment mechanism 10 of this embodiment, an outline of a 3CCD camera to which the imaging position adjustment mechanism 10 of this embodiment is applied will be described.
1 to 4, reference numeral BF denotes a camera body frame. The main body frame BF is formed with a through hole Fh penetrating the center. A lens L is provided on the outer surface of the main body frame BF, and a prism PR is disposed on the inner surface of the main body frame BF at a position sandwiching the through hole Fh of the main body frame BF with the lens L. . The prism PR includes three emission surfaces ES, and CCDs supported by the adjustment mechanism body 20 of the imaging position adjustment mechanism 10 of the present embodiment are respectively positioned at positions opposite to the three emission surfaces ES. Has been placed.
For this reason, when light enters the prism PR through the lens L, the incident light is split into light of three wavelengths by the prism PR, and the split light of the three wavelengths is emitted from the emission surface ES, respectively, and the CCD. Therefore, each wavelength light can be detected and photographed by the CCD (FIG. 4).
Now, the imaging position adjusting mechanism 10 of this embodiment will be described.
1-4, the code | symbol 11 has shown a pair of support frame of the image position adjustment mechanism 10 of this embodiment. The pair of support frames 11 and 11 are erected on the inner surface of the main body frame BR of the 3CCD camera so as to sandwich the prism PR from the side thereof. When each support frame 11 is attached to the main body frame BF, the upper surface, the front surface, and the back surface thereof are substantially parallel to the three emission surfaces ES of the prism PR, in other words, the light emitted from each emission surface ES. There are provided three attachment surfaces 11s formed so as to be orthogonal to the optical axis direction.
Between the corresponding pair of mounting surfaces 11s, 11s in the pair of support frames 11, 11, there are three adjustment mechanism bodies 20, and the light receiving surface of the CCD held in each adjustment mechanism body 20 is the emission surface of the prism PR. It is arranged to face the ES (FIGS. 2 and 4). Then, the adjustment mechanism main body 20 has a pair of bolts 21b and 21b inserted from the surface of the base adjustment member 21 into through holes 21h (see FIG. 5A) provided at both left and right ends of the base adjustment member 21. The attachment surface 11s is attached to the attachment surface 11s by screwing into a screw hole (not shown) provided on the attachment surface 11s.
As shown in FIGS. 2 and 10, spring members 14 are respectively disposed between the pair of attachment surfaces 11 s, 11 s and both ends of the adjustment mechanism main body 20. The spring member 14 is formed in a substantially trapezoidal shape, and is disposed such that its longitudinal direction is parallel to the CCD width direction (the left-right direction in FIG. 10A). The spring member 14 has a leg portion 14a that contacts the mounting surface 11s and a head portion 14b that contacts the adjustment mechanism main body 20, and the leg portion 14a and the head portion 14b are kept parallel to each other. It is formed so that the distance between the leg portion 14a and the head portion 14b can be changed while being leaned. In other words, the spring member 14 is configured such that its height BL changes while its head 14b is kept parallel to the mounting surface 11s.
For this reason, the adjustment mechanism main body 20 can be held by the spring member 14 in a state of being separated from the pair of attachment surfaces 11s, 11s, and the pair of bolts 21b, 21b are provided on the attachment surface 11s by screws (not shown). If the screw is screwed and retreated with respect to the hole, the adjustment mechanism main body 20 can be moved closer to and away from the pair of attachment surfaces 11s and 11s.
Further, since the spring member 14 is disposed so that its longitudinal direction is parallel to the CCD width direction (left-right direction in FIG. 10A), when the bolt 21b is tightened, the CCD width direction is set. It is possible to prevent the adjustment mechanism main body 20 from tilting. If the tightening force of the pair of bolts 21b, 21b is adjusted so that the height BL of the pair of spring members 14, 14 is the same, the both ends of the adjustment mechanism main body 20 and the pair of mounting surfaces 11s, 11s are connected. Since the distance can be made the same length, the adjustment mechanism main body 20 and the pair of mounting surfaces 11s, 11s can be kept parallel. Then, the distance between the adjustment mechanism main body 20 and the pair of attachment surfaces 11s, 11s, that is, the distance between the light receiving surface of the CCD and the emission surface ES of the prism PR is set to the adjustment mechanism main body 20 and the pair of attachment surfaces 11s, 11s. And can be adjusted while keeping them parallel. In other words, since the adjustment mechanism main body 20 can be moved along the optical axis direction, the focus adjustment of the CCD can be performed without changing the imaging position on the light receiving surface of the CCD. Therefore, since the imaging position and the focus can be adjusted independently, the focus adjustment can be facilitated.
The spring member 14 is a base urging means referred to in the claims, and the pair of bolts 21b, 21b is a base fixing means referred to in the claims.
If the tightening state of the pair of bolts 21b, 21b is made different, the distance between the lower surface of one end (the lower end in FIGS. 2 and 3) of the adjusting mechanism body 20 and the mounting surface 11s of the support frame 11 is set. The distance between the lower surface of the other end (the upper end in FIGS. 2 and 3) and the mounting surface 11s of the support frame 11 can be made longer or shorter. Then, the adjustment mechanism main body 20 can be tilted along the axial direction of the CCD (vertical direction in FIGS. 2 and 3) with respect to the mounting surface 11s of the support frame 11, and therefore, the CCD with respect to the emission surface ES of the prism PR. The light receiving surface can be tilted. Therefore, even if the optical axis of the light emitted from the emission surface ES of the prism PR is inclined with respect to the normal direction of the emission surface ES, if the inclination of the light receiving surface of the CCD with respect to the emission surface ES of the prism PR is adjusted, the CCD It is possible to adjust so that light is incident perpendicularly to the light receiving surface.
Furthermore, as shown in FIG. 2, grooves 11g and 20g are provided along the front-rear direction on the lower surface of the base adjustment member 21 of the adjustment mechanism body 20 facing the attachment surface 11s and the attachment surface 11s, respectively. If the legs 14a and the head 14b of the spring 14 are respectively attached to the grooves 11g and 20g, the spring member 14 is inclined in the direction orthogonal to the axial direction, that is, the axial direction of the CCD, and the adjustment mechanism main body. It is possible to prevent 20 from moving in the axial direction of the CCD.
Furthermore, the base urging means is not limited to the spring member 14, and the adjustment mechanism main body 20 and the pair of attachment surfaces 11s, 11s are kept parallel to each other, and the adjustment mechanism main body 20 is removed from the attachment surface 11s along the optical axis direction. There is no particular limitation as long as it can be urged in the separating direction. For example, as the base urging means, a plunger 15 disposed on the mounting surface 11s so that the outer end thereof protrudes from the mounting surface 11s may be used (FIG. 10B). In this case, if two plungers 15 and 15 are provided on one mounting surface 11s and a screw hole into which the bolt 21b is screwed is formed between the two plungers 15 and 15, the bolt 21b is advanced and retracted. When this is done, the adjustment mechanism body 20 can be prevented from tilting in the width direction of the CCD.
In order to reliably prevent the adjustment mechanism main body 20 from tilting in the width direction of the CCD, an inner surface that is parallel to the normal direction of the mounting surface 11s and contacts the side surface of the adjustment mechanism main body 20 at the upper end of the support frame 11. If the guide plate 12 having the above is provided, when the pair of bolts 21b and 21b are advanced and retracted, the adjustment mechanism main body 20 moves in a state in which the side surface thereof is guided by the inner surface of the guide plate 12. 20 can be reliably translated along the normal direction of the mounting surface 11s.
Then, a notch 21c perpendicular to the lower surface of the adjustment mechanism body 20 is formed on the side surface of the adjustment mechanism body 20, and a notch perpendicular to the mounting surface 11s is formed on the side surface of the support frame 11, and the guide plate 12 and the notch are formed. If the pin P is attached between the two, the adjustment mechanism main body 20 can be translated more reliably along the normal direction of the attachment surface 11s.
Furthermore, when it is not necessary to adjust the inclination of the light receiving surface of the CCD with respect to the focus or the optical axis, the base urging means may not be provided, and the lower surface of the base adjustment member 21 of the adjustment mechanism main body 20 is supported on the support frame 11. The adjustment mechanism body 20 may be fixed to the support frame 11 by directly contacting the mounting surface 11s.
Furthermore, the imaging position adjustment mechanism 10 does not need to be provided with the support frame 11 and may be configured such that the adjustment mechanism main body 20 is directly attached to the frame BR. Even in this case, if the base urging means such as the spring member 14 is provided on the frame BF, the inclination of the light receiving surface of the CCD with respect to the focus and the optical axis can be adjusted.
Next, the adjustment mechanism body 20 will be described in detail.
FIGS. 5A and 5B are explanatory views of the image forming position adjusting mechanism 10 according to this embodiment. FIG. 5A is a schematic plan view, FIG. 5B is a schematic rear view, and FIGS. It is an arrow view. 6A is a view taken along the line VIA-VIA in FIG. 5 and FIG. 6B is a cross-sectional view taken along the line VIB-VIB in FIG. 7A is an enlarged view of the main part of FIG. 6A, and FIGS. 7B and 7C are explanatory views of the state where the eccentric bolt 53 is rotated. 8A is a single plan view of the base adjustment member 21, FIG. 8B is a single plan view of the main body member 31 of the fine adjustment member 30, and FIG. 8C is a single view of the holding member 40 of the fine adjustment member 30. It is a top view.
As shown in FIGS. 5 and 6, the adjustment mechanism main body 20 is composed of the base adjustment member 21 described above and the fine adjustment member 30 attached to the base adjustment member 21. The main body member 31 and the holding member 40 are included.
First, before describing the specific configuration of the adjustment mechanism body 20, the structure and operation of the adjustment mechanism body 20 will be described using a simplified model.
In FIG. 11, members A, B, and C are simplified models of the base adjustment member 21 of the adjustment mechanism main body 20, the main body member 31 of the fine adjustment member 30, and the holding member 40, respectively. The member A is provided to be movable along the upper surface of the member A, and the member C is provided to be movable along the lower surface of the member B.
Reference numeral S denotes a spring. The spring S, which corresponds to a spring of a moving mechanism described later, has an axial direction parallel to the upper surface of the member A, and a direction in which the member B is separated from the member A (see FIG. 12 is arranged so as to be biased in the right direction).
Reference numeral E denotes an eccentric shaft, which corresponds to an eccentric shaft of a moving mechanism described later. The eccentric shaft E has a central axis perpendicular to the upper surface of the member A and a shaft portion E2 that is rotatably mounted around the central axis, and a central shaft that is eccentric with respect to the shaft portion E2. The eccentric part E1 which has is provided, and it arrange | positions so that the member B may be pinched | interposed between the said springs S. FIG.
Reference symbol D denotes an eccentric shaft, which corresponds to a moving unit described later. The eccentric shaft D has a central axis perpendicular to the upper surface of the member B and a shaft portion D2 rotatably attached around the central axis, and a central shaft that is eccentric with respect to the shaft portion D2. The eccentric part D1 which has is provided. The eccentric portion D1 is inserted into a long hole ch provided in the member C.
Next, the operation will be described.
As shown in FIG. 12, the member B is sandwiched between the spring S and the eccentric shaft E from the side (left and right in FIG. 12), and the side surface BA is pressed against the eccentric portion E1 of the eccentric shaft E by the spring S. It has been. From this state, if the eccentric shaft E is rotated around the central axis of the shaft portion E2, the central axis of the eccentric portion E1 revolves around the central axis of the shaft portion E2 of the eccentric shaft E. And an angle θ formed by a line passing through the center of the eccentric part E1 and the shaft part E2 with respect to the reference plane CA passing through the central axis of the shaft part E2 changes. Then, if the eccentric shaft E is rotated so that the distance DL from the contact position between the eccentric portion E1 and the side surface BA to the reference plane CA becomes longer, the member B moves leftward by the amount of change L1 and L2 of the distance DL. Pressed. Then, the spring S contracts, and the member B can be moved leftward by the amount of change L1, L2 of the distance DL.
On the contrary, if the eccentric shaft E is rotated so that the distance DL becomes short, the member B is pushed back rightward by the biasing force of the spring S by the amount of change L1 and L2 of the distance DL. The member B can be moved leftward by the amount of change L1, L2.
That is, if the eccentric shaft E is rotated, the member B can be moved in the right direction or the left direction along the direction perpendicular to the side surface BA.
Further, as shown in FIG. 13, if the eccentric shaft D is rotated around the central axis of the shaft portion D2, the central axis of the eccentric portion D1 revolves around the central axis of the shaft portion D2. The angle formed by the line passing through the center of the eccentric part D1 and the shaft part D2 changes with respect to the reference plane CB parallel to the axial direction of the hole ch and passing through the central axis of the shaft part D2. Then, the eccentric part D1 moves the member C in a direction orthogonal to the axial direction of the long hole ch while moving along the long hole ch of the member C, so that the axis of the long hole ch of the member C from the reference plane CB. The distance DL up to can be changed. Since the shaft portion D2 of the eccentric shaft D is attached to the member B, when the eccentric shaft D is rotated, the member C is perpendicular to the axial direction of the long hole ch of the member C with respect to the member B. It can be moved in the right and left directions along the direction.
As described above, since the member B and the member C are configured to move with a very simple structure using an eccentric shaft, the adjustment mechanism body 20 of the present embodiment can be configured in a compact manner. In addition, the overall configuration of the imaging position adjustment mechanism 10 can be made compact.
Now, details of each member constituting the adjustment mechanism main body 20 will be described.
First, the base adjustment member 21 will be described.
As shown in FIGS. 6 and 8, the base adjustment member 21 is a plate-like member formed in a substantially U shape in plan view. The base adjustment member 21 includes a lower surface facing the mounting surface 11s of the support frame 11, and an upper surface parallel to the lower surface (hereinafter referred to as a reference surface 21a). A pair of through holes 21h and 21h that pass through between the lower surface of the base adjustment member 21 and the reference surface 21a are formed at the end in the left-right direction.
For this reason, with the bottom surface of the base adjustment member 21 facing the mounting surfaces 11s, 11s of the pair of support frames 11, 11, the pair of bolts 21b, 21b described above are attached to the pair of through holes 21h 21h. Since the base adjustment member 21 can be fixed to the pair of support frames 11, 11 by being inserted from the reference surface 21 a side of the member 21, screwed into the screw holes of the pair of support frames 11, 11, and tightened. Yes (see FIGS. 1-4).
Next, the fine adjustment member 30 will be described.
5, 6, and 8, reference numeral 31 indicates a main body member of the fine adjustment member 30. As shown in FIGS. 5, 6, and 8, the main body member 31 is a plate-like member, and a holding member 40 that holds a CCD is attached to a substantially central portion of the lower surface thereof. The lower surface of the body member 31 has a flat surface parallel to the light receiving surface of the CCD held by the holding member 40, with a peripheral portion (hereinafter referred to as a sliding surface 31 a) of the portion to which the holding member 40 is attached. In the state where the holding member 40 is formed in the notch 21g of the base adjustment member 21, the sliding surface 31a is attached in a state of being in surface contact with the reference surface 21a of the base adjustment member 21 ( (See FIG. 6).
As shown in FIGS. 5 and 8, a pair of left and right attachment portions 32, 32 are provided at the left and right end portions of the main body member 31, and the pair of attachment portions 32, 32 penetrates the thickness direction. A pair of through-holes 32h and 32h are formed. The pair of through holes 32h and 32h are formed so that the hole diameter A is larger than the shaft diameter B of the threaded portion of the fixing bolt 32a described later, and the reason will be described later.
Since it has the above-described configuration, a pair of through holes 32h is formed from the upper surface of the main body member 31 with the sliding surface 31a of the main body member 31 of the fine adjustment member 30 in surface contact with the reference surface 21a of the base adjustment member 21. , 32h, a pair of fixing bolts 32a, 32a is inserted, and the threaded portion of the fixing bolt 32a is screwed into a screw hole 22h (see FIG. 8) provided in the base adjustment member 21 and tightened to tighten the body member 31. The sliding surface 31a can be strongly pressed against the reference surface 21a of the base adjusting member 21. Then, since the frictional force between the sliding surface 31a of the main body member 31 and the reference surface 21a of the base adjustment member 21 increases, the main body member 31 can be fixed so as not to move with respect to the base adjustment member 21. it can. Therefore, the CCD supported by the holding member 40 via the main body member 31 and the base adjustment member 21 is fixed to the pair of support frames 11 and 11.
Moreover, since both the reference surface 21a of the base adjustment member 21 and the sliding surface 31a of the main body member 31 are formed as flat surfaces, the sliding surface 31a of the main body member 31 is secured when the pair of fixing bolts 32a and 32a are tightened. And the reference surface 21a of the base adjustment member 21 increase in frictional force so that both can be firmly fixed.
Further, if the tightening force of the pair of fixing bolts 32a, 32a is weakened, the frictional force between the sliding surface 31a of the main body member 31 and the reference surface 21a of the base adjusting member 21 is reduced. The adjustment member 21 can be moved. Here, since the through hole 32h is formed so that the hole diameter A is larger than the shaft diameter B of the fixing bolt 32a, the screw portions of the pair of fixing bolts 32a and 32a are screwed into the screw holes 22h. The main body member 31 can be moved with respect to the base adjustment member 21 even if it remains as it is.
In addition, although the sliding force 31a of the main body member 31 is in contact with the reference surface 21a of the base adjusting member 21, the sliding force 31a of the main body member 31 is used as the base adjusting member. When the body member 31 is loosened to such an extent that the pressing force against the reference surface 21a of the base 21 is eliminated, the main body member 31 can be moved relative to the base adjustment member 21 even when the sliding surface 31a of the base adjustment member 21 is kept in contact with the reference surface 21a. Therefore, the main body member 31 can be reliably translated along the reference plane 21a. If the main body member 31 is moved, the CCD supported by the holding member 40 can be moved together with the main body member 31, so that the CCD can be translated along the reference surface 21 a of the base adjustment member 21. .
Therefore, by moving the main body member 31 with respect to the base adjustment member 21, the CCD light receiving surface is tilted in two dimensions without changing the focus of the CCD or the inclination of the light receiving surface of the CCD with respect to the optical axis of the incident light. The imaging position of incident light can be adjusted.
The pair of fixing bolts 32a, 32a is a fine adjustment member fixing means referred to in the claims.
In the main body member 31, an opening 30h penetrating in the thickness direction is formed at a position where the holding member 40 is attached. This opening 30h leads a CCD wiring (not shown) to the outside. Therefore, the CCD wiring derived from the opening 30h is connected to an external device such as an A / D converter.
Next, a moving mechanism that moves the main body member 31 relative to the base adjustment member 21 will be described in detail. The adjustment mechanism main body 20 according to the present embodiment includes a front-rear movement mechanism that moves the main body member 31 in the front-rear direction of the base adjustment member 21 and a left-right movement mechanism that moves the main body member 31 in the left-right direction of the base adjustment member 21. Yes.
First, the back-and-forth movement mechanism will be described.
As shown in FIGS. 5 and 8, a support portion 25 is provided on the reference surface 21 a at the center of the rear end of the base adjustment member 21. On the other hand, the main body member 31 is provided with a pressure-receiving surface 35a orthogonal to the sliding surface 31a at a position facing the front surface of the support portion 25 of the base adjustment member 21 when attached to the base adjustment member 21. A spring 52 (corresponding to the spring S in FIG. 10) is provided between the pressure receiving surface 35 a of the main body member 31 and the front surface of the support portion 25 of the base adjustment member 21. The spring 52 expands and contracts along a direction (hereinafter referred to as an urging direction) perpendicular to the normal line of the reference surface 21a of the base adjustment member 21 and parallel to the front-rear direction (vertical direction in FIG. 5) of the base adjustment member 21. It is arranged to be possible.
As shown in FIGS. 5 and 7, the front surfaces of the pair of attachment portions 32, 32 of the main body member 31 are provided with support surfaces 32s parallel to the pressure receiving surface 35a and orthogonal to the sliding surface 31a (on the side surface BA in FIG. 10). Applicable). On the other hand, the base adjustment member 21 is provided with an eccentric bolt 53 (corresponding to the eccentric shaft E in FIG. 10) in front of each support surface 32s in a state where the main body member 31 is attached to the base adjustment member 21. . The eccentric bolt 53 includes a cylindrical bolt head 53a and a screw shaft 53b. The central axis TP of the screw shaft 53b is parallel to the central axis HP of the bolt head 53a and offset in the radial direction of the bolt head 53a. It is formed to do. The eccentric bolt 53 has a screw shaft 53b screwed into a screw hole 23h provided in the base adjustment member 21 and having a central axis parallel to the normal line of the reference surface 21a, and the bolt head 53a. The center axis HP of the base adjustment member 21 is arranged so as to be parallel to the normal line of the reference surface 21a of the base adjustment member 21. In other words, the bolt head 53a is disposed such that its side surface is a cylindrical surface orthogonal to the reference surface 21a.
For this reason, when the main body member 31 is attached to the base adjustment member 21, the pressure receiving surface 35a of the main body member 31 is urged forward by the spring 52, so that the support surfaces 32s, 32s of the pair of attachment portions 32, 32 are the pair. The eccentric bolts 53, 53 are pressed against the side surface of the bolt head 53a facing the support surface 32s, in other words, against the rear end of the bolt head 53a. Then, since the urging force by the spring 52 is supported by the pair of eccentric bolts 53, 53, the main body member 31 is held between the pair of eccentric bolts 53, 53 and the support portion 25 of the base adjustment member 21. .
Further, as shown in FIG. 7, the screw shaft 53b of the eccentric bolt 53 is disposed so that the center axis TP is offset in the radial direction with respect to the center axis HP of the bolt head 53a. If 53b is rotated around its central axis TP, the length from the central axis TP of the screw shaft 53b of the eccentric bolt 53 to the rear end of the bolt head 53a in the biasing direction (hereinafter simply referred to as the biasing direction length L2). (Corresponding to the distance DL in FIG. 10) changes according to the rotation angle of the screw shaft 53b.
As described above, the main body member 31 is always urged forward by the spring 52, and the support surfaces 32a, 32a of the pair of attachment portions 32, 32 are always at the rear end of the bolt head 53a of the eccentric bolt 53. Since it is in contact, if the screw shaft 53b of the eccentric bolt 53 is rotated to change the urging direction length L2, the attachment portion 32 can be moved along the urging direction in accordance with the change. .
Therefore, the screw shafts 53b, 53b of the pair of eccentric bolts 53, 53 are set so that the inclination θ1 (FIGS. 7B, 7C) of the pair of eccentric bolts 53, 53 with respect to the urging direction of the major axis LD is the same angle. If the amount of rotation of 53b is adjusted, the amount of movement of each mounting portion 32 in the urging direction becomes the same, so the main body member 31 is connected to the pair of eccentric bolts 53 and 53 and the support portion 25 of the base adjustment member 21. The main body member 31 can be translated along the biasing direction while being held in between.
Further, when the bolt head 53a of the eccentric bolt 53 is rotated as shown in FIGS. 7B and 7C, the urging direction length L2 changes, but the main body member 31 has the same length as the change amount L3. Therefore, the image forming position on the light receiving surface of the CCD can be moved in the direction of the biasing direction of the eccentric bolt 53 in the direction opposite to the moving direction of the main body member 31 along the biasing direction. It can be moved by the same length as the change amount L3 of L2.
Next, the left / right moving mechanism will be described.
This left / right movement mechanism has substantially the same configuration as the front / rear movement mechanism, but as shown in FIGS. 5 and 8, on the left side of the rear end of the base adjustment member 21 is on its reference surface 21a. A side support 26 is provided. On the other hand, the main body member 31 has a pressure receiving surface (hereinafter referred to as the following) orthogonal to the sliding surface 31a at a position facing the right side surface of the side support portion 26 of the base adjustment member 21 in a state of being attached to the base adjustment member 21. Side pressure receiving surface 35b). A spring 56 (corresponding to the spring S in FIG. 10) is provided between the side pressure receiving surface 35 b of the main body member 31 and the right side surface of the support portion 25 of the base adjustment member 21. The spring 56 is perpendicular to the normal of the reference surface 21a of the base adjustment member 21 and parallel to the left-right direction (left-right direction in FIG. 5) of the base adjustment member 21 (hereinafter referred to as a lateral biasing direction). It can be expanded and contracted.
As shown in FIGS. 5 and 7, the right side surface of the main body member 31 has a side support surface 36s parallel to the side pressure receiving surface 35b and perpendicular to the sliding surface 31a (corresponding to the side surface BA in FIG. 10). Is provided. On the other hand, the base adjustment member 21 is provided with an eccentric bolt 57 (corresponding to the eccentric shaft E in FIG. 10) to the right of the side support surface 36s in a state where the main body member 31 is attached to the base adjustment member 21. ing. The eccentric bolt 57 has substantially the same configuration as the eccentric bolt 53 of the forward / backward movement mechanism, and the screw shaft 57b is provided on the base adjustment member 21 and is a central axis parallel to the normal line of the reference surface 21a. And the bolt head 57a is disposed so that the side surface of the bolt head 57a becomes a cylindrical surface orthogonal to the reference surface 21a.
For this reason, when the main body member 31 is attached to the base adjustment member 21, the side pressure receiving surface 35 b of the main body member 31 is urged to the right by the spring 56, so that the side support surface 36 b is the bolt head 57 a of the eccentric bolt 57. The main body member 31 is held between the eccentric bolt 57 and the support portion 26 of the base adjustment member 21 while being pressed against the left end of the base adjustment member 21.
Further, if the screw shaft 57b of the eccentric bolt 57 is rotated around its central axis, the length from the central axis of the screw shaft 57b of the eccentric bolt 57 to the left end of the bolt head 57a (hereinafter referred to as a side) in the lateral biasing direction. Although the direction biasing direction length (corresponding to the distance DL in FIG. 10) changes according to the rotation angle of the screw shaft 57b, the main body member 31 is always urged rightward by the spring 56. Yes. Therefore, if the length of the lateral urging direction is changed by rotating the screw shaft 57b of the eccentric bolt 57, the main body member 31 is accurately moved along the lateral urging direction by the amount of the change. be able to. That is, the imaging position on the light receiving surface of the CCD is the same length as the amount of change in the lateral biasing direction length of the eccentric bolt 57 in the direction opposite to the moving direction of the main body member 31 along the lateral biasing direction. Can be moved.
Although the left and right moving mechanism includes only one eccentric bolt 57, when the main body member 31 moves along the lateral biasing direction by the left and right moving mechanism, the support surfaces 32s, Since 32s moves in contact with the rear end of the bolt head 53a of the eccentric bolt 53 of the forward / backward moving mechanism 51, even with one eccentric bolt 57, the main body member 31 is reliably translated along the lateral biasing direction. Can be made.
As described above, the main body member 31 can be independently moved along the directions orthogonal to each other (the urging direction and the side urging direction) by the front-rear moving mechanism and the left-right moving mechanism. Regardless of the rotation of the eccentric bolts 53 and 57, the amount of movement of the main body member 31 in the urging direction and the lateral urging direction can be adjusted accurately. Then, the two-dimensional imaging position on the light receiving surface of the CCD can be moved independently along the urging direction and the side urging direction. The imaging position can be accurately adjusted.
The eccentric bolt 53 of the front / rear moving mechanism and the eccentric bolt 57 of the left / right moving mechanism are the position adjusting portions referred to in the claims, and the spring 52 of the front / rear moving mechanism and the spring 56 of the left / right moving mechanisms are referred to in the claims. It is a biasing means.
The biasing means is not limited to a spring, and is not particularly limited as long as it can bias the main body member 31 along the biasing direction or the lateral biasing direction. There may be.
Furthermore, the position adjusting unit is not limited to the eccentric bolt 53, and is not particularly limited as long as the main body member 31 can be moved in parallel with the urging direction or the side urging direction. There may be.
Next, a method of adjusting the focal position and the focus on the light receiving surface of each CCD of the 3CCD camera by the imaging position adjusting mechanism 10 of the present embodiment will be described.
When adjusting the focus position and focus, a test pattern or the like is photographed by the 3CCD camera. When the test pattern is photographed, light reflected by the test pattern is incident on the prism PR through the lens L. Then, the incident light is split by the prism PR, and then light of three wavelengths is emitted from the radiation surface ES, so that the test pattern is imaged on the light receiving surface of the CCD. Since the intensity of light corresponding to the test pattern sensed by the CCD element constituting the light receiving surface of the CCD is transmitted from the CCD element to an external device (not shown) as an electric signal through a wiring, the external device allows a person to The image forming state on the light receiving surface can be confirmed, and the focal position and focus on the light receiving surface of each CCD can be adjusted while observing the image forming state.
Now, a focus position and focus adjustment method on the light receiving surface of each CCD will be described. First, in the adjustment mechanism main body 20 attached to the pair of support frames 11, 11, a pair of fixing bolts 32 a, 32 a are respectively provided. The body member 31 is not moved relative to the base adjustment member 21 by tightening.
Next, the pair of bolts 21b and 21b are rotated to adjust the tightening state thereof, and the entire adjustment mechanism main body 20 is moved closer to and away from the emission surface ES of the prism PR, thereby focusing on the light receiving surface of each CCD. .
At this time, if there is distortion of the test pattern, the tightening state of the pair of bolts 21b, 21b is adjusted, the inclination of the light receiving surface of the CCD with respect to the emission surface ES of the prism PR is adjusted, and the distortion of the test pattern is corrected. to correct.
When focus adjustment is completed, the pair of fixing bolts 32a and 32a are loosened so that the main body member 31 is movable with respect to the base adjustment member 21. At this time, the pair of fixing bolts 32a and 32a are moved in parallel along the reference surface 21a of the base adjusting member 21, although the sliding surface 31a of the main body member 31 is not separated from the reference surface 21a of the base adjusting member 21. Most preferably, it is loosened to the extent possible.
Next, the pair of eccentric bolts 53, 53 of the forward / backward moving mechanism 51 is rotated to move the main body member 31 along the urging direction. Then, the test pattern imaged on the light receiving surface of the CCD moves in the direction opposite to the moving direction of the main body member 31 on the light receiving surface of the CCD. Then, when the imaging position of the test pattern moves to a desired position in the biasing direction, the rotation of the pair of eccentric bolts 53 and 53 is stopped. Then, the main body member 31 is held between the bolt head 53a of the pair of eccentric bolts 53, 53 and the support portion 25 of the base adjusting member 21, and the position when the rotation of the pair of eccentric bolts 53, 53 is stopped. Held in.
Similarly, the eccentric bolt 57 of the left / right moving mechanism 55 is rotated to move the main body member 31 in the lateral biasing direction, and the test pattern imaging position in the lateral biasing direction is moved to a desired position. The body member 31 is held.
Finally, if the pair of fixing bolts 32a and 32a are tightened, the main body member 31 is fixed to the base adjustment member 21 in a state where the test pattern is arranged at a desired position on the light receiving surface of the CCD, and one CCD is The focus position and focus adjustment are completed.
If the same operation is performed for the other two adjustment mechanism bodies 20, the focus position and focus of the CCD held in each adjustment mechanism body 20 can be adjusted.
As described above, if the imaging position adjustment mechanism 10 of this embodiment is adopted in a 3CCD camera, the imaging position adjustment of each CCD can be adjusted independently from the imaging position adjustment state in other CCDs. Even a CCD camera having a plurality of CCDs can easily adjust its focal position and focus. Since the imaging state of light incident on each CCD can be finely adjusted independently, the difference in imaging state between the CCDs can be reduced. Therefore, since the uniformity of the image formation state in all the CCDs can be improved, the quality of the reproduced image can be improved.
In addition, since the focal position and the focus adjustment can be individually performed for each CCD, the manufacturing error of the prism PR and the manufacturing errors of other members can be absorbed by each adjustment mechanism body 20. Therefore, since the allowable range of manufacturing errors required for the prism PR and the like is widened, the manufacturing of the prism PR and the like is facilitated, and the manufacturing cost can be reduced.
In particular, when a so-called line CCD in which CCD elements are arranged in a straight line is used as the CCD, the width of the light receiving surface of the CCD becomes very narrow, so the imaging position must be adjusted very accurately and finely. However, if the imaging position adjusting mechanism 10 of the present embodiment is used, even a line CCD having a very narrow width of the light receiving surface can be reliably imaged on the light receiving surface. And if it is a 3 CCD camera which employ | adopted the imaging position adjustment mechanism 10 of this embodiment, since the focus adjustment of each CCD can be performed easily and correctly, it becomes possible to employ | adopt a line CCD as an image pick-up body. . Then, since a 3CCD camera equipped with a line CCD can be used for a device that captures images at high speed, for example, a device that inspects defects in continuously transported sheets, Even if it exists, the accuracy of inspection for defects can be increased.
Since the eccentric bolts 53 and 57 are employed as the position adjusting portions and the springs 52 and 56 are used as the urging means as described above, the configuration of the moving mechanism can be very simple. Since the adjustment mechanism main body 20 of the embodiment can have a compact configuration, the light receiving surface of the CCD can be arranged very close to the emission surface ES of the prism PR. Since it can be arranged close to L, even if a lens L with a small aperture is used, the number of pixels of the CCD element existing in the focal point on the light receiving surface of the CCD can be increased, and the resolution of the inspection object, that is, the inspection accuracy can be improved. Can be improved.
Further, if the holding member 40 of the fine adjustment member 30 is provided so as to be movable with respect to the main body member 31 as described below, the imaging state of the light incident on the CCD can be adjusted with higher accuracy.
As shown in FIG. 8, the main body member 31 of the fine adjustment member 30 has a pair of holding portion mounting holes 31h, which pass through the thickness direction between the opening portion 31h and the pair of through holes 32h, 32h. 31h is provided. A mounting surface 31s, which is a flat surface parallel to the sliding surface 31a, is provided at a substantially central portion of the lower surface of the main body member 31 and between the pair of holding portion mounting holes 31h, 31h. (FIG. 6B).
A holding member 40 is disposed below the attachment surface 31 s of the main body member 31. The holding member 40 has a flat upper surface 40s, that is, a surface facing the mounting surface 31s of the main body member 31. The holding member 40 is provided with a CCD mounting portion 40g at the center thereof. When the CCD is mounted on the CCD mounting portion 40g, the light receiving surface of the CCD is formed to be parallel to the upper surface 40s.
As shown in FIGS. 5, 6, and 8, a pair of screw holes 40 h and 40 h are formed on the left and right ends of the upper surface 40 s of the holding member 40. A pair of holding member fixing bolts 41, 41 inserted through the pair of holding portion mounting holes 31 h, 31 h from the surface of the main body member 31 are screwed into the holes 40 h, 40 h. As the pair of holding member fixing bolts 41, 41, those whose shaft diameter is smaller than the diameter of the pair of holding portion mounting holes 31h, 31h are used.
For this reason, if the pair of holding member fixing bolts 41 and 41 are tightened, the holding member 40 is pressed strongly against the mounting surface 31s of the main body member 31 due to its upper surface 40s, and the frictional force between the two increases. The member 40 can be fixed so as not to move with respect to the main body member 31. In addition, since both the upper surface 40s of the holding member 40 and the mounting surface 31s of the main body member 31 are formed as flat surfaces, the frictional force generated between the pair of holding member fixing bolts 41 and 41 when tightened. Can be fixed firmly.
Further, if the tightening force of the pair of holding member fixing bolts 41, 41 is weakened, the frictional force between the upper surface 40s of the holding member 40 and the mounting surface 31s of the main body member 31 is reduced. It becomes movable with respect to 31. Here, as the pair of holding member fixing bolts 41, 41, those having an axial diameter smaller than the hole diameter of the pair of holding portion mounting holes 31h, 31h are used. If 41 is loosened to such an extent that the force pressing the upper surface 40s of the holding member 40 against the mounting surface 31s of the main body member 31 is eliminated, the pair of holding member fixing bolts 41, 41 are inserted into the pair of screw holes 40h, 40h of the holding member 40. The holding member 40 can be moved relative to the main body member 31 even while being screwed.
In addition, when the tightening force of the pair of holding member fixing bolts 41 and 41 is weakened, the holding member 40 can be moved while the upper surface 40s thereof is in contact with the mounting surface 31s of the main body member 31. Can be reliably translated along the mounting surface 31s. Since the mounting surface 31s of the main body member 31 is parallel to the sliding surface 31a, if the sliding surface 31a is brought into surface contact with the reference surface 21a of the base adjusting member 21, the holding member 40 is attached to the base surface 31a. The adjustment member 21 can be translated along the reference surface 21a. Then, even if the holding member 40 is moved, the focus of the CCD held by the holding member 40 and the inclination of the light receiving surface with respect to the optical axis of the incident light do not change, so two-dimensional incident light on the light receiving surface of the CCD. The image forming position can be adjusted.
If the tightening amount of the pair of holding member fixing bolts 41, 41 is adjusted, the holding member 40 can be moved closer to and away from the mounting surface 31s of the main body member 31, and the CCD focus or It is also possible to adjust the inclination of the light receiving surface with respect to the optical axis of the incident light. Then, since it is possible to focus only by moving the holding member 40, it is easy to adjust the focus, and it is possible to prevent the image formation position from being shifted due to other members moving during the focus adjustment. Can do.
Furthermore, when the CCD is mounted on the CCD mounting portion 40g of the holding member 40, if the CCD light receiving surface protrudes from the lower surface of the main body member 31, the CCD light receiving surface is used as the emission surface ES of the prism PR. Can be placed very close to each other. In other words, since the light receiving surface of the CCD can be arranged close to the lens L, the number of pixels of the CCD element existing in the focal point on the light receiving surface of the CCD can be increased even when the lens L having a small aperture is used. The resolution of the object, that is, the inspection accuracy can be improved.
Next, a holding member moving unit that moves the holding member 40 relative to the main body member 31 will be described.
As shown in FIGS. 6 and 8, a pair of screw holes 31 b and 31 b penetrating in the thickness direction of the main body member 31 are formed at both front ends of the main body member 31. The pair of screw holes 31b and 31b are arranged so that the central axis thereof is parallel to the normal line of the mounting surface 31s, and the front-rear moving part 42 (corresponding to the eccentric axis D in FIG. 10) of the holding member moving part. The shaft-like member 42a is screwed. An operating shaft 42b is provided at the lower end of the shaft-like member 42a of the front-rear moving part 42. The operating shaft 42b is disposed such that its central axis is parallel to the central axis of the shaft-like member 42a and is offset in the radial direction.
On the other hand, in the holding member 40, a pair of long holes 40b, 40b (corresponding to the long hole ch in FIG. 10) are formed at both front ends. The pair of long holes 40b, 40b has an axial direction parallel to the left-right direction of the holding member 40, and a length in the width direction equal to the axial diameter of the operating shaft 42b of the front-rear moving part 42. Is formed. The operating shaft 42b of the forward / backward moving part 42 is inserted into the pair of long holes 40b, 40b.
Therefore, if the shaft-like member 42a of the front-rear moving part 42 is rotated, the operating shaft 42b can be moved around the central axis of the screw hole 31b, in other words, around the rotation axis of the shaft-like member 42a. Then, the operating shaft 42b moves in the long hole 40b along the axial direction and also moves in the width direction of the long hole 40b. Therefore, the operating shaft 42b moves, that is, the shaft-like member 42a of the front-rear moving portion 42. , The holding member 40 can be moved only in the width direction of the long hole 40b.
Therefore, the holding member 40 can be moved in the front-rear direction of the main body member 31 by rotating the shaft-like member 42a of the front-rear moving part 42. Along the direction, the moving shaft 42b can be moved in the direction opposite to the moving direction of the holding member 40 by the amount of movement of the main body member 31 in the front-rear direction.
As shown in FIGS. 6 and 8, a screw hole 31 c penetrating in the thickness direction of the main body member 31 is formed on the rear left side of the main body member 31. The screw hole 31c is disposed so that the central axis thereof is parallel to the normal line of the mounting surface 31s, and the side moving portion 43 (corresponding to the eccentric shaft D in FIG. 10) of the holding member moving portion. The shaft-like member 43a is screwed. An operating shaft 43b is provided at the lower end of the shaft-like member 43a of the side moving portion 43. The operating shaft 43b is disposed such that its central axis is parallel to the central axis of the shaft-like member 42a and is offset in the radial direction.
On the other hand, a long hole 40c (corresponding to the long hole ch in FIG. 10) is formed on the rear left side of the holding member 40. The long hole 40c has an axial direction parallel to the longitudinal direction of the holding member 40, that is, a direction perpendicular to the axial direction of the long hole 40b, and the length in the width direction of the operating shaft 43b of the side moving portion 43. It is formed to be equivalent to the shaft diameter. The operating shaft 43b of the side moving portion 43 is inserted into the long hole 40c.
Therefore, if the shaft-like member 43a of the side moving portion 43 is rotated, the operating shaft 43b can be moved around the center axis of the screw hole 31c, in other words, around the rotation axis of the shaft-like member 43a. Then, the operating shaft 42b moves in the long hole 40c along the axial direction and also moves in the width direction of the long hole 40c. Therefore, the operating shaft 42b moves, that is, the shaft-like member 42a of the front-rear moving portion 42. , The holding member 40 can be moved only in the width direction of the long hole 40c.
Therefore, if the shaft-like member 43a of the side moving portion 43 is rotated, the holding member 40 can be moved in the left-right direction of the main body member 31, so that the imaging position on the light receiving surface of the CCD is set to the position of the main body member 31. The moving shaft 43b can be moved in the direction opposite to the moving direction of the holding member 40 by the amount of movement of the main body member 31 of the operating shaft 43b in the left-right direction.
As described above, since the holding member 40 can be independently moved along the directions orthogonal to each other by the front-rear moving part 42 and the side moving part 43, the rotation of the shaft-like members 42a, 43a in the other moving parts. Regardless of this, the amount of movement of the holding member 40 in the front-rear direction and the left-right direction can be adjusted accurately. Then, the two-dimensional imaging position on the light receiving surface of the CCD can be moved independently along the front-rear direction and the left-right direction of the holding member 40, so The imaging position can be accurately adjusted.
Further, if the holding member 40 is adjusted so that the front-rear direction and the biasing direction described above are parallel to each other, the moving direction of the main body member 31 by the front-rear moving mechanism 51 and the movement of the holding member 40 by the front-rear moving part 42 are adjusted. The directions can be matched, and the moving direction of the main body member 31 by the left and right moving mechanism 55 can be matched with the moving direction of the holding member 40 by the side moving portion 43, so that the CCD of the CCD held by the holding member 40 can be matched. The movement can be adjusted more accurately and easily.
In the forward / backward moving part 42, the distance between the central axis of the shaft-like member 42a and the central axis of the operating shaft 42b in the radial direction of the shaft-like member 42a is determined by the length of the major axis LD (see FIG. 7) of the eccentric bolt 53. Also, the distance between the central axis of the shaft-shaped member 43a and the central axis of the operating shaft 43b in the radial direction of the shaft-shaped member 43a is set to the length of the long diameter of the eccentric bolt 57 in the side moving portion 43. If the shaft member 42a and the eccentric bolt 53 are rotated by the same angle, the amount of movement of the CCD due to the rotation of the shaft member 42a is larger than the amount of movement of the CCD due to the rotation of the eccentric bolt 57. Even if the shaft-shaped member 43a and the eccentric bolt 57 are rotated by the same angle, the amount of movement of the CCD due to the rotation of the shaft-shaped member 43a is smaller than the amount of movement of the CCD due to the rotation of the eccentric bolt 57. can do .
Then, after roughly adjusting the imaging position by the back-and-forth movement mechanism 51 and the left-right movement mechanism 55, the imaging position can be finely adjusted by the holding member moving unit. Accurate adjustment can be achieved at the same time.
Further, the imaging position adjusting mechanism 10 of the present embodiment can be applied to an imaging body of various apparatuses, but an apparatus that requires a very high-precision inspection, for example, an accuracy of the order of μm is necessary. When applied to the apparatus, the focus position on the imaging body may be shifted due to expansion and contraction of the adjustment mechanism main body 20 due to a temperature change in a place where the apparatus is provided. Therefore, the following configuration is preferable because the focus position due to expansion and contraction of the adjustment mechanism main body 20 can be minimized, and a line CCD with a narrow light receiving surface is used as the imaging body. Especially suitable for
As shown in FIG. 7, the base adjustment member 21 is provided with a pair of screw holes 22h 22h into which the screw portions of the pair of fixing bolts 32a and 32a of the fine adjustment member fixing means are screwed.
A pair of holding holes for attaching a pair of through holes 32h, 32h through which a pair of fixing bolts 32a, 32a are inserted and a pair of holding member fixing bolts 41, 41 are attached to the left and right ends of the body member 31. Holes 31h and 31h are provided. The pair of holding portion mounting holes 31h, 31h is on a symmetry surface RS in which the line connecting the central axes passes through the center line of the pair of through holes 32h, 32h and is orthogonal to the sliding surface 31a. It arrange | positions so that it may be located.
Therefore, the central axis of the light receiving surface of the CCD passes through a line connecting the central axes of the pair of screw holes 40h, 40h of the holding member 40 (hereinafter referred to as the center line 40L), and the upper surface 40s of the holding member 40 Are mounted so as to be positioned on a plane perpendicular to the sliding surface 31a, in other words, on a plane orthogonal to the sliding surface 31a, and a line connecting the central axes of the pair of screw holes 22h 22h (hereinafter referred to as a center line 20L) and a center line 40L If the main body member 31 and the holding member 40 are fixed by the pair of fixing bolts 32a and 32a and the pair of holding member fixing bolts 41 and 41 so that the main body member 31 and the holding member 40 are positioned, Can also be connected at positions symmetrical with respect to the symmetry plane RS.
Then, if the optical axis is arranged so as to be included in the symmetry plane RS, the central axis of the light receiving surface of the CCD is the symmetry plane even if the main body member 31 and the holding member 40 expand and contract due to the temperature change of the surrounding environment. It can be placed on the RS. Therefore, it is possible to prevent the focus position on the light receiving surface of the CCD from being shifted due to a temperature change in the surrounding environment.
Even when the optical axis is deviated from the symmetry plane RS, if the optical axis and the symmetry plane RS are parallel, the holding member 40 is moved with respect to the main body member 31, and the center line of the light receiving surface of the CCD is obtained. And the optical axis coincide with each other, the deviation between the center line of the CCD light receiving surface and the symmetry plane RS in the width direction of the CCD light receiving surface is shifted only by the length of movement of the holding member 40, The amount can be reduced. Then, only the length obtained by multiplying the length by which the holding member 40 is moved by the temperature difference of the surrounding environment and the thermal expansion coefficient of the material of the holding member 40 is shifted. The shift of the focal position on the light receiving surface can be minimized.
When the base adjustment member 21 and the main body member 31 are fixed at two positions on both ends of the main body member 31, in other words, two at each end are fixed with a total of four fixing bolts 32a. In the case where the member 31 and the holding member 40 are fixed at both ends of the main body member 31 at two locations, in other words, when the two members are fixed at each end portion by a total of four holding member fixing bolts 41, The main body member 31 has two through holes 32h and two holding portion mounting holes 31h at both ends thereof. In this case, the symmetry plane RS has a vertical bisector connecting the central axes of the two through holes 32h at each end and the central axes of the two holding portion mounting holes 31h at each end. Since the surface includes a perpendicular bisector of the connecting line segment, a vertical bisector of the line segment connecting the central axes of the two screw holes 40h at each end of the holding member 40 on the symmetry plane RS, and If the perpendicular bisector of the line segment connecting the central axes of the two screw holes 22h at each end of the base adjustment member 21 is arranged, the same effect as the above configuration can be obtained.
Further, when the base adjusting member 21 is attached to the attachment surface 11s by the pair of bolts 21b, 21b, the surface including the central axis of the pair of bolts 21b, 21b (base symmetry surface) coincides with the symmetry surface RS. Even if the base adjustment member 21 expands and contracts, the central axis of the light receiving surface of the CCD can be arranged on the symmetry plane RS, so that the focal position shift on the light receiving surface of the CCD due to the temperature change of the surrounding environment. Can be further reduced.
Even when the optical axis is deviated from the symmetry plane RS, if the optical axis and the symmetry plane RS are parallel, the center line of the light receiving surface of the CCD is adjusted so that the optical axis coincides. Since the deviation between the center line of the CCD light receiving surface and the symmetrical surface in the width direction of the CCD light receiving surface can be reduced, the base adjustment member 21, the body member 31, and the holding member 40 are expanded and contracted on the CCD light receiving surface. It is possible to minimize the shift of the focus position at.
In addition, when fixing the base adjustment member 21 and the support frame 11 at two positions on both ends of the base adjustment member 21, respectively, in other words, when fixing with two bolts 21b in total, two at each end. If the vertical bisector connecting the central axis of the two bolts 21b at each end of the base adjustment member 21 is arranged on the symmetry plane RS, the same effect as the above configuration is achieved. Can be obtained.
[Industrial applicability]
The imaging position adjustment mechanism of the present invention is not only for adjusting the position of the CCD in the CCD camera, but also in the imaging apparatus having an imaging body such as a film or a scanner, the imaging position of incident light incident on the light receiving surface of the imaging body Can be applied to the adjustment.

Claims (12)

入射された光を撮像体上に結像させて画像を撮影する撮影装置において、前記撮像体上における入射光の結像位置を調整するための調整機構であって、該調整機構が、前記撮影装置の本体に対して、前記入射光の光軸方向に沿って移動可能かつ該入射光の光軸に対する傾きが調整可能に設けられたベース調整部材と、該ベース調整部材に対して、前記入射光の光軸と交差する方向に沿って移動可能に設けられた、前記撮像体が取り付けられる微調整部材と、該微調整部材を前記ベース調整部材に対して、前記入射光の光軸と交差する方向に沿って移動させる移動機構とを備えており、前記ベース調整部材が、前記入射光の光軸と交差する平坦な基準面を備えており、前記微調整部材が、前記移動機構によって移動されたときに、前記ベース調整部材の基準面に沿って2次元的に摺動し得る平坦な摺動面を備えていることを特徴とする結像位置調整機構。In an imaging apparatus for imaging an image by imaging incident light on an imaging body, an adjustment mechanism for adjusting an imaging position of incident light on the imaging body, the adjustment mechanism including the imaging A base adjusting member provided to be movable along the optical axis direction of the incident light with respect to the main body of the apparatus and capable of adjusting an inclination of the incident light with respect to the optical axis; A fine adjustment member, which is provided so as to be movable along a direction intersecting the optical axis of the incident light, to which the imaging body is attached, and the fine adjustment member intersects the optical axis of the incident light with respect to the base adjustment member. A moving mechanism that moves the moving member along a direction in which the base adjusting member moves, and the base adjusting member has a flat reference surface that intersects the optical axis of the incident light, and the fine adjusting member moves by the moving mechanism. The base tone Imaging position adjusting mechanism, characterized in that it comprises a flat sliding surface capable of two-dimensionally slid along the reference surface of the member. 前記微調整部材が、前記摺動面と直交する受圧面を備えており、前記移動機構が、前記微調整部材の受圧面を付勢する付勢手段と、該付勢手段から前記微調整部材に対して加わる付勢力を支持し、該付勢手段に対して、その付勢力の方向に沿って接近離間可能に設けられた位置調整部とを備えていることを特徴とする請求項1記載の結像位置調整機構。  The fine adjustment member includes a pressure receiving surface orthogonal to the sliding surface, and the moving mechanism biases the pressure receiving surface of the fine adjustment member, and the fine adjustment member from the biasing means. 2. A position adjusting portion that supports an urging force applied to the urging unit and is provided so as to be capable of approaching and separating along the direction of the urging force with respect to the urging means. Imaging position adjustment mechanism. 前記微調整部材が、前記付勢手段から加わる付勢力の方向と交差する支持面を備えており、前記位置調整部が、前記ベース調整部材の基準面の法線と平行な中心軸を有する円柱体を備えており、該円柱体が、前記中心軸と平行かつ該中心軸に対して該円柱体の半径方向にオフセットしている回転軸まわりに回転可能であって、前記付勢手段によって前記微調整部材が付勢された状態において、その側面に対して、該微調整部材の支持面が常時接触した状態となるように配設されていることを特徴とする請求項記載の結像位置調整機構。The fine adjustment member includes a support surface that intersects the direction of the urging force applied from the urging means, and the position adjustment portion has a central axis that is parallel to the normal of the reference surface of the base adjustment member. The cylindrical body is rotatable around a rotation axis that is parallel to the central axis and offset in the radial direction of the cylindrical body with respect to the central axis, and 3. The image forming apparatus according to claim 2, wherein the fine adjustment member is disposed so that a support surface of the fine adjustment member is always in contact with a side surface of the fine adjustment member in a biased state. Position adjustment mechanism. 前記微調整部材が、前記摺動面と該摺動面に平行な取付面とを備えた本体部材と、該本体部材の取付面に沿って移動可能に設けられた、前記撮像体が取り付けられる保持部材と、該保持部材を本体部材の取付面に沿って移動させる保持部材移動部とを備えていることを特徴とする請求項1、2または3記載の結像位置調整機構。The fine adjustment member is attached to a main body member having the sliding surface and an attachment surface parallel to the sliding surface, and the imaging body provided to be movable along the attachment surface of the main body member. holding member and the image forming position adjusting mechanism according to claim 1, 2 or 3 further characterized in that the holding member and a holding member moving unit that moves along the mounting surface of the body member. 前記保持部材に、前記本体部材の取付面の法線と直交する方向に沿って延びた長孔が形成されており、前記保持部材移動部が、前記本体部材に、その取付面の法線と平行な回転軸まわりに回転可能に取り付けられた軸状部材と、該軸状部材の軸方向の一端に設けられ、前記保持部材の長孔に挿入される作動軸とを備えており、該作動軸が、その中心軸が、前記軸状部材の回転軸と平行かつ該軸状部材の回転軸に対して該軸状部材の半径方向にオフセットするように配設されていることを特徴とする請求項記載の結像位置調整機構。The holding member is formed with a long hole extending in a direction orthogonal to the normal of the mounting surface of the main body member, and the holding member moving portion is connected to the normal of the mounting surface of the main body member. A shaft-shaped member rotatably mounted around a parallel rotation shaft, and an operation shaft provided at one end in the axial direction of the shaft-shaped member and inserted into a long hole of the holding member. The shaft is disposed such that a central axis thereof is parallel to a rotation axis of the shaft-shaped member and is offset in a radial direction of the shaft-shaped member with respect to the rotation axis of the shaft-shaped member. The imaging position adjusting mechanism according to claim 4 . 前記保持部材が、前記本体部材の取付面に対して接近離間可能に取り付けられており、前記保持部材移動部が、前記保持部材を前記本体部材の取付面に対して接近離間させる機構を備えていることを特徴とする請求項4または5記載の結像位置調整機構。The holding member is attached so as to be able to approach and separate from the attachment surface of the main body member, and the holding member moving portion includes a mechanism for causing the holding member to approach and separate from the attachment surface of the main body member. 6. The imaging position adjusting mechanism according to claim 4, wherein the image forming position adjusting mechanism is provided. 前記微調整部材が、前記摺動面が形成された本体部材と、該本体部材を、前記ベース調整部材に固定する微調整部材固定手段と、該本体部材に対して、前記摺動面と平行な方向に沿って移動可能に設けられた、前記撮像体が取り付けられる保持部材と、該保持部材を、前記本体部材に固定する保持部材固定手段とを備えており、該保持部材固定手段が、前記摺動面と直交し、かつ、前記撮像体の幅方向における前記微調整部材固定手段による前記本体部材と前記ベース調整部材との連結位置の中心線を含む対称面に対して、面対称となる位置に配設されていることを特徴とする請求項1、2または3記載の結像位置調整機構。The fine adjustment member includes a main body member on which the sliding surface is formed, fine adjustment member fixing means for fixing the main body member to the base adjustment member, and parallel to the sliding surface with respect to the main body member. Provided with a holding member to which the image pickup body is attached, and a holding member fixing means for fixing the holding member to the main body member, the holding member fixing means, It is plane-symmetric with respect to a symmetry plane that is orthogonal to the sliding surface and includes a center line of the connection position of the main body member and the base adjustment member by the fine adjustment member fixing means in the width direction of the imaging body. claim 1, 2 or 3 imaging position adjusting mechanism wherein it is disposed at a position where the. 前記ベース調整部材を、前記撮影装置の本体に固定するベース固定手段が設けられており、前記微調整部材を、前記ベース調整部材に固定する微調整部材固定手段が設けられており、該微調整部材固定手段が、前記摺動面と直交し、かつ、前記撮像体の幅方向における前記ベース固定手段による前記撮影装置の本体と前記ベース調整部材との連結位置の中心線を含むベース対称面に対して、面対称となる位置に配設されていることを特徴とする請求項1、2または3記載の結像位置調整機構。Base fixing means for fixing the base adjustment member to the main body of the photographing apparatus is provided, and fine adjustment member fixing means for fixing the fine adjustment member to the base adjustment member is provided. The member fixing means is orthogonal to the sliding surface and has a base symmetry plane including a center line of a connection position between the main body of the photographing apparatus and the base adjustment member by the base fixing means in the width direction of the imaging body. against it, the image forming position adjusting mechanism according to claim 1, 2 or 3, wherein the disposed on the position where the plane of symmetry. 前記撮影装置の本体が、前記入射光の光軸と直交し、前記ベース調整部材が取付けられる取付面を備えており、前記ベース調整部材と前記撮影装置の本体の取付面との間に、前記ベース調整部材を、前記撮影装置の本体の取付面と平行に保ち、かつ前記入射光の光軸方向に沿って前記撮影装置の本体から離間する方向に付勢するベース付勢手段を備えていることを特徴とする請求項1、2または3記載の結像位置調整機構。The main body of the photographing apparatus includes an attachment surface that is orthogonal to the optical axis of the incident light and to which the base adjustment member is attached, and the base adjustment member and the attachment surface of the main body of the photographing apparatus, Base urging means is provided that keeps the base adjustment member parallel to the mounting surface of the body of the photographing apparatus and urges the base adjustment member in a direction away from the body of the photographing apparatus along the optical axis direction of the incident light. The imaging position adjusting mechanism according to claim 1, 2, or 3 . 入射された光を複数の波長の光に分光する分光手段と、該分光手段によって分光された各波長の光が結像される複数の撮像体を備えた撮影装置であって、該撮影装置が、前記複数の撮像体上における各波長の光の結像位置を調整する結像位置調整機構を備えており、該結像位置調整機構が、請求項1、2、3、4、5、6、7、8または9記載の調整機構であることを特徴とする撮影装置。An imaging apparatus comprising: a spectroscopic unit that splits incident light into light having a plurality of wavelengths; and a plurality of imaging bodies on which light of each wavelength split by the spectroscopic unit is imaged. And an imaging position adjusting mechanism that adjusts the imaging positions of light of each wavelength on the plurality of imaging bodies, and the imaging position adjusting mechanism is provided in any one of claims 1, 2, 3, 4, 5, 6 , 7, 8 or 9 . 前記撮影装置が、3CCDカメラであることを特徴とする請求項10記載の撮影装置。The photographing apparatus according to claim 10 , wherein the photographing apparatus is a 3CCD camera. 前記撮像体が、ラインCCDであることを特徴とする請求項10または11記載の撮影装置。The imaging apparatus according to claim 10 or 11 , wherein the imaging body is a line CCD.
JP2006519088A 2004-03-17 2004-03-17 Imaging position adjusting mechanism and photographing apparatus Expired - Fee Related JP4372152B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/003595 WO2005091619A1 (en) 2004-03-17 2004-03-17 Mechanism for adjusting image forming position and photographing apparatus

Publications (2)

Publication Number Publication Date
JPWO2005091619A1 JPWO2005091619A1 (en) 2007-08-30
JP4372152B2 true JP4372152B2 (en) 2009-11-25

Family

ID=34994070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006519088A Expired - Fee Related JP4372152B2 (en) 2004-03-17 2004-03-17 Imaging position adjusting mechanism and photographing apparatus

Country Status (2)

Country Link
JP (1) JP4372152B2 (en)
WO (1) WO2005091619A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132656A1 (en) * 2015-02-18 2016-08-25 ソニー株式会社 Medical observation apparatus and lens barrel for medical observation apparatus
JP7184678B2 (en) * 2019-03-08 2022-12-06 Jswアクティナシステム株式会社 Laser processing equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH089972Y2 (en) * 1988-05-30 1996-03-21 オリンパス光学工業株式会社 Mounting device for solid-state image sensor
JPH06169467A (en) * 1992-11-30 1994-06-14 Sony Corp Method and device for sticking solid-state image pickup element

Also Published As

Publication number Publication date
JPWO2005091619A1 (en) 2007-08-30
WO2005091619A1 (en) 2005-09-29

Similar Documents

Publication Publication Date Title
US7433038B2 (en) Alignment of substrates for bonding
KR100273127B1 (en) Method and apparatus for manufacturing optical module assembly
JP3193724B2 (en) Wavefront measurement system using integrated geometric reference (IGR)
WO2009087974A1 (en) Binocular camera module
US6285456B1 (en) Dimension measurement using both coherent and white light interferometers
JPH0727857B2 (en) Projection optics
JP2000022907A (en) Image sensor module
JP5951793B2 (en) Image sensor position detector
CN111103671B (en) Beam splitting prism assembly for off-axis three-mirror optical system and operation method thereof
CN114428381B (en) Alignment of lens elements in a lens module with an image sensor
JP4372152B2 (en) Imaging position adjusting mechanism and photographing apparatus
US7145659B2 (en) Light interference measurement method using computer-generated hologram, and interferometer using this method
JP2009002673A (en) Alignment device for interferometer
JP2008185832A (en) Optical element and method for assembling optical unit
JP2749734B2 (en) Image recording device
JP4048897B2 (en) Electronic component alignment method and apparatus
US12099238B2 (en) Device and method for splicing array optical fiber with large-size quartz end cap
US20220214499A1 (en) Device and method for splicing array optical fiber with large-size quartz end cap
NL2028376B1 (en) Method of and arrangement for verifying an alignment of an infinity-corrected objective.
CN211206924U (en) Light splitting prism assembly for off-axis three-mirror optical system
JP3206150B2 (en) Assembling device for three-plate imaging block
JP3809426B2 (en) Mounting structure of solid-state image sensor
US7221830B2 (en) Method and apparatus for connecting optical transmission module and core position detection method for optical waveguide
JP3025645B2 (en) Optical adjustment device for scanning device
WO2019233213A1 (en) Optical camera lens, photographic module, and assembling methods therefor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150911

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees