WO2005091243A1 - Method and system for verifying a traffic violation image - Google Patents
Method and system for verifying a traffic violation image Download PDFInfo
- Publication number
- WO2005091243A1 WO2005091243A1 PCT/ZA2005/000042 ZA2005000042W WO2005091243A1 WO 2005091243 A1 WO2005091243 A1 WO 2005091243A1 ZA 2005000042 W ZA2005000042 W ZA 2005000042W WO 2005091243 A1 WO2005091243 A1 WO 2005091243A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- traffic violation
- image
- verification data
- operational parameters
- violation image
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 238000012795 verification Methods 0.000 claims abstract description 62
- 230000001960 triggered effect Effects 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 5
- 238000005259 measurement Methods 0.000 claims description 5
- 238000010200 validation analysis Methods 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims 1
- 238000001514 detection method Methods 0.000 description 6
- 230000007613 environmental effect Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/052—Detecting movement of traffic to be counted or controlled with provision for determining speed or overspeed
- G08G1/054—Detecting movement of traffic to be counted or controlled with provision for determining speed or overspeed photographing overspeeding vehicles
Definitions
- This invention relates to a method and associated system for verifying a traffic violation image.
- Traffic offences may be repudiated in a court of law.
- the accuracy of the equipment used to capture a traffic violation is often questioned in these cases.
- the following invention seeks to provide more concrete proof that a traffic violation took place.
- a method of verifying a traffic violation image which method includes the following steps, in any order: automatically sensing whether or not a vehicle commits a traffic violation; automatically capturing an image which shows the vehicle committing a traffic violation if it is sensed that the vehicle has committed a traffic violation; obtaining verification data which verifies that the step of sensing is accurate within acceptable limits; and automatically combining the obtained verification data with the captured traffic violation image to provide proof of the accurate sensing of the traffic violation.
- the method facilitates the traceability of calibration to a national or international measuring standard for traffic violation detection equipment used to sense and capture traffic violations, e.g. speed limit infringements, non-compliance with traffic signs, and/or the like.
- the step of sensing may include measuring the speed of a vehicle traveling along a road.
- the step of sensing may include sensing whether a vehicle disobeys a traffic indicator, e.g. a red light, or the like.
- the step of capturing the traffic violation image may include photographically capturing the image on film.
- the step of capturing the traffic violation image may include capturing the image in digital format.
- the captured traffic violation image may be digitally encrypted.
- the captured traffic violation image may be digitally signed.
- the step of obtaining the verification data may include obtaining first calibration data which verifies the calibration history of equipment used to sense the traffic violation and/or second calibration data which verifies the calibration history of equipment used to capture the traffic violation image.
- the first and/or second calibration data may be obtained from an engineer.
- the step of obtaining the first and/or second calibration data may include retrieving the calibration data from an electronic storage means.
- the first and/or second calibration data stored in the storage means may be periodically updated by an engineer.
- the first and/or second calibration data may be automatically generated by suitably configured calibration equipment.
- the first and/or second calibration data may include any set of operations, performed in accordance with a definite, documented procedure that compares the measurements performed by an instrument to those made by a more accurate instrument or standard, for the purpose of detecting and reporting, or eliminating by adjustment, errors in the instrument tested.
- the first and/or second calibration data may include validation by means of a digital signature.
- the equipment used to sense the traffic violation includes any suitable sensor, and the equipment used to capture the image generally includes a camera.
- the step of obtaining the verification data may include obtaining operational parameters of the sensor and/or camera used to capture the traffic violation image.
- the operational parameters may include ambient conditions of the sensor and/or camera used to capture the traffic violation image, such as temperature, humidity, light intensity, and/or similar environmental conditions.
- the operational parameters may include operating levels of components comprising the sensor and/or camera used to capture the traffic violation image, e.g. voltage levels, current levels, and/or the like.
- the operational parameters may include the geographic location where the image is captured. The geographic location may be specified by an engineer installing the sensor and/or camera used to capture the traffic violation image.
- the geographic location may be supplied by a Global Positioning System (GPS).
- GPS Global Positioning System
- the operational parameters may include a unique identifying number of an engineer who installed the sensor and/or camera used to capture the traffic violation image.
- the operational parameters may include identification numbers of components comprising the sensor and/or camera used to capture the traffic violation image.
- the operational parameters may include a preprogrammed speed limit which, when exceeded by a vehicle sensed by the sensor, triggers the step of capturing the traffic violation image.
- the operational parameters may include a grace time period before the step of capturing is triggered by the step of sensing, e.g. the grace time period afforded a motorist after an intersection light has changed before a traffic camera will record if the motorist fails to stop at the intersection.
- the operational parameters may represent real-time values, typically obtained at the same time that the image is captured. Accordingly, the operational parameters typically include the time and date when the violation image is captured.
- the step of obtaining the verification data and the step of capturing the traffic violation image may be performed simultaneously.
- the step of combining the verification data with the traffic violation image may include imposing the verification data onto the traffic violation image.
- the step of combining the verification data may include digitally signing and encrypting the verification data together with a digital violation image.
- the step of combining the verification data with the traffic violation image may include printing the verification data onto the traffic violation image.
- the method may further include the step of storing the verified image on a suitably configured storage means.
- the method may include the step of transmitting the verified image to a remote location.
- a system for verifying a traffic violation image which system includes: A sensor for automatically sensing whether or not a vehicle commits a traffic violation; a camera arranged in communication with the sensor which camera is configured to automatically capture an image of a vehicle committing a traffic violation if it is sensed that the vehicle has committed a traffic violation; and a processor arranged in communication with the camera which processor is configured to obtain verification data which verifies that the sensor senses accurately within acceptable limits, and to combine the obtained verification data with the captured traffic violation image to provide proof of the accurate sensing of the traffic violation.
- the sensor is generally configured to sense whether a vehicle commits a traffic violation, such as, for example exceeding a speed limit, disobeying a road sign, or the like, and may include radar detection, laser detection, an inductive loop, a mechanical switch, an electromechanical switch, piezo-electric sensors, fibre optic sensors, or the like.
- the camera may be a digital camera, i.e. a camera which captures images in electronic format.
- the camera may capture images on photographic film.
- the traffic violation image may be stored in digital format.
- the traffic violation image may be digitally signed.
- the traffic violation image may be digitally encrypted.
- the verification data may include first calibration data for verifying the calibration history of the sensor and/or second calibration data for verifying the calibration history of the camera.
- the system may include a storage means for storing the first and/or second calibration data. Accordingly, the processor may obtain the calibration data from the storage means.
- the first and/or second calibration data stored in the storage means may be periodically updated by an engineer.
- the first and/or second calibration data may include any set of operations, performed in accordance with a definite, documented procedure that compares the measurements performed by an instrument to those made by a more accurate instrument or standard, for the purpose of detecting and reporting, or eliminating by adjustment, errors in the instrument tested.
- the first and/or second calibration data may include validation by means of a digital signature.
- the processor may obtain verification data by obtaining operational parameters of the sensor and/or camera used to capture the traffic violation image.
- the operational parameters may include ambient conditions of the sensor and/or camera used to capture the traffic violation image, such as temperature, humidity, light intensity, and/or similar environmental conditions.
- the operational parameters may include operating levels of components comprising the sensor and/or camera used to capture the traffic violation image, e.g. voltage levels, current levels, and/or the like.
- the operational parameters may include the geographic location where the image is captured.
- the geographic location may be specified by an engineer installing the sensor and/or camera used to capture the traffic violation image.
- the geographic location may be supplied by a Global Positioning System (GPS).
- GPS Global Positioning System
- the operational parameters may include a unique identifying number of an engineer who installed the sensor and/or camera used to capture the traffic violation image.
- the operational parameters may include identification numbers of components comprising the sensor and/or camera used to capture the traffic violation image.
- the operational parameters may include a preprogrammed speed limit which, when exceeded by a vehicle sensed by the sensor, triggers the camera which captures the traffic violation image.
- the operational parameters may include a grace time period before the camera is triggered by the sensor.
- the processor may obtain the operational parameters as real-time values, typically obtained at the same time that the image is captured. Accordingly, the operational parameters typically include the time and date when the violation image is captured.
- the processor may obtain the verification data at the same time that the camera captures the traffic violation image.
- the processor may combine the verification data with the traffic violation image by imposing the verification data onto the traffic violation image.
- the processor may combine the verification data with the image by digitally signing and encrypting the verification data together with the violation image.
- the processor may combine the verification data with the traffic violation image by facilitating the printing of the verification data onto the traffic violation image.
- the system may include a printing means for printing the violation image and the verification data onto a suitable surface.
- the processor may store the verified violation image on the storage means.
- the processor may transmit the verified violation image to a remote location.
- Figure 1 shows a schematic diagram of a method of verifying a traffic violation image, in accordance with the invention
- Figure 2 shows a schematic representation of a system for verifying a traffic violation image, in accordance with the invention.
- a method of verifying a traffic violation image is generally indicated by reference numeral 10
- a system for verifying a traffic violation image is generally indicated by reference numeral 30.
- the method 10 of verifying a traffic violation image includes the steps of automatically sensing 12 whether or not a vehicle commits a traffic violation, automatically capturing 14 an image which shows a vehicle committing a traffic violation if it is sensed 12 that the vehicle has committed a traffic violation, obtaining 16 verification data which verifies that the step of sensing 12 is accurate within acceptable limits; and automatically combining 18 the obtained verification data with the captured traffic violation image to provide proof of the accurate sensing of the traffic violation.
- the step of sensing 12 typically comprises measuring the speed of a vehicle traveling along a road, but may also include sensing 12 whether a vehicle disobeys a traffic indicator, e.g. a red light, or the like.
- the step of sensing 12 is performed by sensor 28 which automatically senses 12 whether or not a vehicle commits a traffic violation.
- the sensor 28 includes any sensor configured to sense 12 whether or not a vehicle commits a traffic violation, and includes radar detection, laser detection, a mechanical switch, a hydraulic switch, a pneumatic switch, an electromechanical switch, or the like. In this embodiment of the invention, the sensor 28 is presented in the form of a piezo-electric sensor 28.
- the step of capturing 14 the traffic violation image is achieved by capturing 14 the image in digital format. It is to be appreciated that, in other embodiments, the image may be photographically captured on film.
- the captured traffic violation image is typically digitally signed and encrypted.
- a digital camera 40 captures the image in electronic format. It is to be appreciated that the camera only captures the image when the camera 40 is triggered by the sensor 28.
- the step of obtaining 16 the verification data includes obtaining 16 calibration data 20 and operational parameters 22 of the sensor 28 and camera 40.
- first calibration data refers to the calibration data used to verify the calibration history of the sensor 28
- second calibration data refers to calibration data used to verify the calibration history of the camera 40.
- calibration data refers to the first and/or second calibration data.
- the calibration data may be retrieved from a storage means 34.
- the calibration data 20 stored in the storage means 34 is generally periodically updated by an engineer who calibrates the sensor 28 and camera 40.
- the calibration data 20 is typically validated by means of a digital signature.
- the calibration data may include any set of operations, performed in accordance with a definite, documented procedure that compares the measurements performed by an instrument to those made by a more accurate instrument or standard, for the purpose of detecting and reporting, or eliminating by adjustment, errors in the instrument tested.
- the operational parameters 22 typically include ambient conditions of the sensor 28 and camera 40 used to capture the traffic violation image, such as temperature, humidity, light intensity, and/or similar environmental conditions.
- the operational parameters 22 further include operating levels of the individual components comprising the sensor 28 and camera 40 used to capture the traffic violation image, e.g. voltage levels, current levels, and the like.
- the operational parameters 22 also include the geographic location where the image is captured. In this embodiment of the invention, the geographic location is programmed by an engineer installing the sensor 28 and camera 40. In other embodiments, the geographic location may be supplied by a Global Positioning System (GPS).
- GPS Global Positioning System
- the operational parameters further include a unique identifying number of the engineer who installed the sensor 28 and the camera 40.
- the operational parameters also include identification numbers of the individual components comprising the sensor 28 and the camera 40.
- the operational parameters 22 generally also include a preprogrammed speed limit which, when exceeded by a vehicle sensed by the sensor 28, triggers the camera 40 to capture an image.
- the operational parameters 22 include a grace time period before the camera 40 is triggered by the sensor 28, e.g. the grace time period afforded a motorist after an intersection light has changed before a traffic camera will record if the motorist fails to stop at the intersection.
- the operational parameters 22 represent real-time values, typically obtained at the same time that the image is captured.
- the processor 38 obtains 16 the operational parameters 22 through monitoring apparatus 36 arranged in communication with the processor 38, the storage means 34, the camera 40, and the sensor 40. It is to be appreciated that the monitoring apparatus facilitates the processor 38 obtaining 16 the operational parameters 22.
- the step of combining 18 the verification data with the traffic violation image is achieved by digitally imposing the verification data onto the traffic violation image.
- the step of combining 18 the verification data may include digitally signing and encrypting the verification data together with a digital violation image, or the step of combining 18 may include printing the verification data onto the traffic violation image.
- the processor 38 digitally imposes the verification data onto the traffic violation image.
- the processor 38 then stores the verified image on the storage means 34.
- the method 10 includes the step of transmitting 26 the verified image to a remote location.
- the system 30 includes a transmitter 42 for transmitting 26 the verified image to a remote location.
- the sensor 28 triggers the camera 40 to capture an image of the violation which image typically shows a vehicle for identification purposes.
- the processor 38 then superimposes the digitally signed calibration data and the operational parameters 22 of the sensor 28 and camera 40 onto the image.
- This combining 18 of the verification data with the image accordingly provides a validated violation image which includes the time and date of the violation, the ambient conditions under which the violation took place, identifying numbers of the components used to capture the violation, location of the violation, digitally signed calibration data of the sensor 28 and camera 40 used to capture the violation, operating levels of the components used to capture the violation, details of the transgression, and an image of a transgressor. This is particularly useful for establishing irrefutable evidence against the transgressor in a court of law.
- the system 30 is integrated into the housing 32 of a traffic camera 40.
- the Inventor regards it as an advantage that the invention enables the establishment of traceability of calibration for equipment used in capturing traffic violations, thereby providing more concrete proof that a traffic transgression has taken place.
- the combining of the verification data into a traffic violation image makes the refuting of the violation by a transgressor much more difficult in a court of law.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05752457A EP1719091B1 (en) | 2004-02-18 | 2005-02-18 | Method and system for verifying a traffic violation image |
US10/598,121 US7528741B2 (en) | 2004-02-18 | 2005-02-18 | Method and system for verifying a traffic violation image |
AU2005223286A AU2005223286B2 (en) | 2004-02-18 | 2005-02-18 | Method and system for verifying a traffic violation image |
DE602005003108T DE602005003108T2 (en) | 2004-02-18 | 2005-02-18 | METHOD AND SYSTEM FOR VERIFYING A TRAFFIC IMPACT PICTURE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ZA2004/1295 | 2004-02-18 | ||
ZA200401295 | 2004-02-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005091243A1 true WO2005091243A1 (en) | 2005-09-29 |
Family
ID=34970869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ZA2005/000042 WO2005091243A1 (en) | 2004-02-18 | 2005-02-18 | Method and system for verifying a traffic violation image |
Country Status (8)
Country | Link |
---|---|
US (1) | US7528741B2 (en) |
EP (1) | EP1719091B1 (en) |
AT (1) | ATE377235T1 (en) |
AU (1) | AU2005223286B2 (en) |
DE (1) | DE602005003108T2 (en) |
ES (1) | ES2294718T3 (en) |
WO (1) | WO2005091243A1 (en) |
ZA (1) | ZA200606007B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021008039A1 (en) * | 2019-07-17 | 2021-01-21 | Zhejiang Dahua Technology Co., Ltd. | Systems and methods for object monitoring |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007059346B4 (en) * | 2007-12-10 | 2009-11-19 | Siemens Ag | Method and device for detecting a speeding violation of a vehicle |
CN101470955A (en) * | 2007-12-26 | 2009-07-01 | 奥城同立科技开发(北京)有限公司 | Integrated control system for road junction traffic |
US20090195651A1 (en) * | 2008-01-31 | 2009-08-06 | Leonard Robert C | Method of providing safety enforcement for school buses |
EP2663971A1 (en) * | 2010-11-15 | 2013-11-20 | Image Sensing Systems, Inc. | Hybrid traffic sensor system and associated method |
US9472097B2 (en) | 2010-11-15 | 2016-10-18 | Image Sensing Systems, Inc. | Roadway sensing systems |
CA2787244A1 (en) * | 2011-08-23 | 2013-02-23 | Ken Nicholson | Highway speed monitoring and penalty display system |
US8760318B2 (en) * | 2011-12-06 | 2014-06-24 | Optotraffic, Llc | Method for traffic monitoring and secure processing of traffic violations |
DE102012102600B3 (en) * | 2012-03-26 | 2013-08-14 | Jenoptik Robot Gmbh | Method for verifying the orientation of a traffic surveillance device |
WO2014160027A1 (en) * | 2013-03-13 | 2014-10-02 | Image Sensing Systems, Inc. | Roadway sensing systems |
DE102016110935B3 (en) * | 2016-06-15 | 2017-09-07 | Jenoptik Robot Gmbh | Method and evaluation device for evaluating case data of a traffic monitoring device |
CN110689726B (en) * | 2019-10-08 | 2021-06-01 | 上海眼控科技股份有限公司 | Traffic violation punishment evidence link completion method and equipment |
CN113094528B (en) * | 2021-04-30 | 2023-09-08 | 安徽江淮汽车集团股份有限公司 | Uploading system and method for traffic violation snapshot |
DE102023103709A1 (en) | 2023-02-15 | 2024-08-22 | Motherson Innovations Company Limited | Camera-based information system with cryptographically secured camera calibration data |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5935190A (en) * | 1994-06-01 | 1999-08-10 | American Traffic Systems, Inc. | Traffic monitoring system |
US20020186297A1 (en) * | 2001-06-05 | 2002-12-12 | Bakewell Charles Adams | Mobile enforcement platform and aimable violation detection and documentation system for multiple types of traffic violations across all lanes in moving traffic supporting immediate or delayed citation generation as well as homeland security monitoring activities |
US20040015289A1 (en) * | 2000-03-22 | 2004-01-22 | Poland Richard J. | Compact speed measurement system with onsite digital image capture, processing, and portable display |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6970102B2 (en) * | 2003-05-05 | 2005-11-29 | Transol Pty Ltd | Traffic violation detection, recording and evidence processing system |
US7986339B2 (en) * | 2003-06-12 | 2011-07-26 | Redflex Traffic Systems Pty Ltd | Automated traffic violation monitoring and reporting system with combined video and still-image data |
-
2005
- 2005-02-18 ES ES05752457T patent/ES2294718T3/en active Active
- 2005-02-18 EP EP05752457A patent/EP1719091B1/en not_active Not-in-force
- 2005-02-18 AU AU2005223286A patent/AU2005223286B2/en not_active Ceased
- 2005-02-18 DE DE602005003108T patent/DE602005003108T2/en active Active
- 2005-02-18 WO PCT/ZA2005/000042 patent/WO2005091243A1/en active Application Filing
- 2005-02-18 US US10/598,121 patent/US7528741B2/en not_active Expired - Fee Related
- 2005-02-18 AT AT05752457T patent/ATE377235T1/en active
-
2006
- 2006-07-20 ZA ZA200606007A patent/ZA200606007B/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5935190A (en) * | 1994-06-01 | 1999-08-10 | American Traffic Systems, Inc. | Traffic monitoring system |
US20040015289A1 (en) * | 2000-03-22 | 2004-01-22 | Poland Richard J. | Compact speed measurement system with onsite digital image capture, processing, and portable display |
US20020186297A1 (en) * | 2001-06-05 | 2002-12-12 | Bakewell Charles Adams | Mobile enforcement platform and aimable violation detection and documentation system for multiple types of traffic violations across all lanes in moving traffic supporting immediate or delayed citation generation as well as homeland security monitoring activities |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021008039A1 (en) * | 2019-07-17 | 2021-01-21 | Zhejiang Dahua Technology Co., Ltd. | Systems and methods for object monitoring |
Also Published As
Publication number | Publication date |
---|---|
US7528741B2 (en) | 2009-05-05 |
AU2005223286B2 (en) | 2009-03-05 |
ATE377235T1 (en) | 2007-11-15 |
EP1719091A1 (en) | 2006-11-08 |
ZA200606007B (en) | 2007-11-28 |
EP1719091B1 (en) | 2007-10-31 |
AU2005223286A1 (en) | 2005-09-29 |
ES2294718T3 (en) | 2008-04-01 |
DE602005003108T2 (en) | 2008-08-14 |
DE602005003108D1 (en) | 2007-12-13 |
US20070247334A1 (en) | 2007-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7528741B2 (en) | Method and system for verifying a traffic violation image | |
WO2020022042A1 (en) | Deterioration diagnosis device, deterioration diagnosis system, deterioration diagnosis method, and storage medium for storing program | |
JP2006525589A (en) | Event detection system | |
JP5734521B2 (en) | In-vehicle device and center device | |
JP7294381B2 (en) | Information processing device, information processing method, program | |
JP2002215029A (en) | Information authentication device and digital camera using the same | |
US20180148898A1 (en) | Road state management apparatus and method | |
KR100906203B1 (en) | System for tracking the vehicles using GIS | |
WO2008097015A1 (en) | A perceive system of harmful-gas emitting vehicles and method thereby | |
JP2008123745A (en) | Detection device of lighting state of lighting lamp | |
JP2010039825A (en) | Parking monitoring method and monitoring device thereof | |
US20130110345A1 (en) | Electronic distance recorder verification | |
EA017679B1 (en) | Method and device for controlling traffic offence by vehicles | |
KR20090053623A (en) | Method and apparatus for acquiring road image information | |
WO2005107148A1 (en) | Authentication system | |
KR100962414B1 (en) | System and method of state information transmittion for car | |
JP2004151523A (en) | Map data update apparatus | |
JP2016021707A (en) | Road image management system | |
JP5279232B2 (en) | Navigation device | |
KR20150120748A (en) | Traffic information system and Traffic information providing method by using over speed camera | |
KR20140062900A (en) | Portable car number plate recognition system | |
CN111210460B (en) | Method and device for matching camera to road section, electronic equipment and storage medium | |
CA2493656A1 (en) | Portable system for detection and management of road traffic and environmental conditions | |
JP2006033650A (en) | Measuring system | |
KR20050086906A (en) | Inspection apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2006/06007 Country of ref document: ZA Ref document number: 200606007 Country of ref document: ZA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005752457 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005223286 Country of ref document: AU |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
ENP | Entry into the national phase |
Ref document number: 2005223286 Country of ref document: AU Date of ref document: 20050218 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2005223286 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10598121 Country of ref document: US |