WO2005090953A1 - Method of stabilizing output of resistance type oxygen sensor utilizing cerium oxide - Google Patents

Method of stabilizing output of resistance type oxygen sensor utilizing cerium oxide Download PDF

Info

Publication number
WO2005090953A1
WO2005090953A1 PCT/JP2005/005034 JP2005005034W WO2005090953A1 WO 2005090953 A1 WO2005090953 A1 WO 2005090953A1 JP 2005005034 W JP2005005034 W JP 2005005034W WO 2005090953 A1 WO2005090953 A1 WO 2005090953A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
oxygen sensor
type oxygen
output
oxide
Prior art date
Application number
PCT/JP2005/005034
Other languages
French (fr)
Japanese (ja)
Inventor
Noriya Izu
Norimitsu Murayama
Woosuck Shin
Ichiro Matsubara
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Publication of WO2005090953A1 publication Critical patent/WO2005090953A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer

Definitions

  • the present invention relates to a method for stabilizing the output of a resistance-type oxygen sensor having a gas detection portion made of an oxide semiconductor whose resistance value changes according to the oxygen partial pressure of an atmospheric gas. Specifically, the output stabilization of a resistance-type oxygen sensor that measures oxygen partial pressure, used in an air-fuel ratio feedback control system that controls the air-fuel ratio of automobile exhaust gas to improve exhaust gas purification efficiency and fuel efficiency.
  • the present invention relates to a dani method.
  • the present invention relates to a technical field of a resistance-type oxygen sensor based on measuring a partial pressure of oxygen in an atmosphere using a change in resistivity or electric conductivity of an oxide semiconductor. Considering the problem that the output of the sensor fluctuates with respect to sulfur dioxide (SO) gas having a concentration of, for example, 500 ppm or lppm,
  • SO sulfur dioxide
  • the present invention is applied to, for example, a vehicle exhaust gas catalyst deterioration detection system for detecting deterioration of a vehicle exhaust gas purification catalyst, an air-fuel ratio feedback control system for optimizing combustion efficiency of a boiler, and the like. It is useful as one suitably applied as an output stabilization technique for a resistance type oxygen sensor or the like to be used.
  • the present inventors have been conducting research and development on a resistance-type oxygen sensor using cerium oxide as an oxide semiconductor, but cerium oxide has a diffusion coefficient of oxygen. This is because it is expected that the response speed is higher than that of titanium oxide.
  • a resistance-type oxygen sensor using cerium oxide reducing the particle size of cerium oxide to 200 nm has been a component of improving response speed (see Patent Document 3).
  • the resistance type oxygen sensor using cerium oxide has a problem that the output of the sensor fluctuates with respect to sulfur dioxide (SO 2) gas having a concentration of 500 ppm or lppm.
  • Patent Document 1 JP-A-55-137334
  • Patent Document 2 JP-A-62-174644
  • Patent Document 3 JP 2003-149189 A
  • the present inventors have made it possible to stabilize the output of a resistance-type oxygen sensor using cerium oxide in view of the above conventional technology.
  • the addition of oxidized oxides containing tetravalent metal ions to reduce the resistance to cerium oxide, an oxide semiconductor We found that the intended purpose could be achieved, and conducted further research to complete the present invention o
  • the present invention for solving the above-mentioned problems is directed to a resistance-type oxygen sensor using cerium oxide as a main component as an oxide semiconductor, for reducing the resistance of the oxide semiconductor.
  • a method for stabilizing the output of a resistance-type oxygen sensor characterized in that by adding an oxide having a tetravalent metal ion, the fluctuation of the sensor output with respect to sulfur dioxide is suppressed and the sensor output is stabilized. is there.
  • the present method includes: (1) an oxide having tetravalent metal ions, an oxide having zirconium ions or hafnium ions, and (2) an air-fuel ratio of an automobile or a boiler.
  • the resistance type oxygen sensor is used in a feedback control system, and (3) the resistance type oxygen sensor is a resistance type oxygen sensor used in an automobile exhaust gas catalyst deterioration system.
  • the present invention provides a resistance-type oxygen sensor using cerium oxide as a main component as an oxide semiconductor, by adding an oxide containing a tetravalent metal ion for reducing resistance to the oxide semiconductor.
  • the present invention is characterized in that the fluctuation of the sensor output with respect to sulfur dioxide is suppressed and the sensor output is stabilized.
  • a method of adding an acid compound having a tetravalent metal ion for lowering resistance to cerium oxide is optional. Forces such as knotting and sedimentation methods are not limited to these.
  • the oxide containing the tetravalent metal ion and the cerium oxide need to be dissolved in a solid solution instead of merely mechanically mixing the oxide containing the tetravalent metal ion with the cerium oxide to reduce the resistance.
  • the structure of the oxide semiconductor is also arbitrary, and examples thereof include a thin film, a thick film, a barta, a dense body, and a porous body.
  • the surface area per unit weight is as small as possible!
  • the effect of sulfur diacid is considered to be the effect on the outermost surface, the effect of the surface is reduced if the surface area per unit weight is small.
  • the oxidizing compound having a tetravalent metal ion for reducing the resistance to cerium oxynitride added to the oxide semiconductor include, for example, zirconium oxidization and hafnium oxidization. It should be noted that the present invention is not limited to these, and any equivalent or similar one having the same function can be used.
  • a tetravalent metal ion for reducing the resistance to cerium oxide is added to the oxide semiconductor.
  • the following shows the concentration of the soybean noodles.
  • An oxide having a tetravalent metal ion generally has a chemical composition of MO 2.
  • M is a tetravalent metal element.
  • the upper limit of X is 50 mol%. If it exceeds 50 mol%, the characteristics of MO are considered to be more remarkable than cerium oxide, and the characteristics of cerium oxide are lost.
  • the lower limit is not particularly limited numerically. Compared to cerium with no MO
  • Cerium can be in either a single phase or two phases.
  • the structure and form of the resistance type oxygen sensor are arbitrary, and the present invention is also applicable to a resistance type oxygen sensor having a temperature compensating material.
  • H 2 O in the atmosphere is also adsorbed to generate H +, which is
  • output fluctuations with respect to sulfur dioxide of 500 ppm or less, more effectively 1 ppm or less, can be suppressed.
  • a resistance-type oxygen sensor using cerium oxide as an oxide semiconductor as a main component it is possible to stabilize the sensor output with respect to sulfur dioxide.
  • the method of the present invention is suitably used, for example, as a resistance-type oxygen sensor used in an air-fuel ratio feedback control system of an automobile or a boiler, and an output stabilization technique of a resistance-type oxygen sensor used in an automobile exhaust gas catalyst deterioration system. be able to.
  • an oxide having a tetravalent metal ion for lowering resistance is added to cerium oxide cerium, which is an oxide semiconductor, so that cerium oxide with respect to sulfur dioxide gas is added. It is possible to suppress the fluctuation of the output of the resistance type oxygen sensor using lithium.2) The fluctuation of the output for sulfur dioxide below several hundred ppm is eliminated.3) The sulfur dioxide adheres to the surface of the oxide semiconductor. 4) A small and simple oxygen sensor can be provided.5)
  • the method of the present invention is a vehicle or boiler air-fuel ratio feedback control system or a vehicle exhaust gas catalyst deterioration system. It has a special effect that it can be applied to a resistance type oxygen sensor used for
  • a cerium nitrate aqueous solution having a concentration of 0.1 OlOmolZdm 3 was sprayed, introduced into an electric furnace heated to 973 K, thermally decomposed, and recovered to obtain a powder of cerium oxide.
  • the particle size of the obtained powder was about 200 nm to 300 nm.
  • a paste obtained by mixing the obtained fine particle powder and a vehicle of an organic solvent (a mixture of ethyl cellulose and terbineol) was printed by screen printing on an aluminum oxide substrate.
  • the printed matter was heated at 773 K in the air, and subsequently heated at 1473 K in the air to obtain a thick film.
  • the obtained thick film was a porous body and had a particle size of 200 nm to 300 nm.
  • An electrode was needed to measure the resistivity of the oxygen gas detection part, and a comb-shaped platinum electrode was provided by screen printing.
  • a resistance type oxygen sensor (CelOO) using cerium oxide was manufactured.
  • a measuring chamber capable of changing the oxygen partial pressure P (0), the SO partial pressure P (SO), and the temperature T is provided with a cell.
  • FIG. 1 shows the output change (resistance) of the CelOO oxygen sensor.
  • the gas was switched to A, B, C or C, B, A.
  • the output may fluctuate.
  • the powder was prepared by a precipitation method and had a primary particle size of 20 nm or less. Also,
  • the CeO powder is a pale yellow color.
  • reaction phase When annealing at a lower temperature of 823K, the reaction phase increased a little more.
  • the reaction phase is only a small part of the surface, and the powder is taken out so as to contain a large amount of it, and XRD analysis shows that the reaction phase is a mixture of Ce (SO) 4 ⁇ , CeOSO, Ce (SO) 4 ⁇ O, etc. Do you know
  • phase response was unobservable. That is, in exhaust gas containing less than lppm SO,
  • the resistivity of reactants such as O 2) is very high. This indicates that the resistance at 873K is low.
  • the resistance was 500 ppm SO + 10% O + N gas in 873K, which was over the detection limit of the voltmeter (120 ⁇ ).
  • the resistance between the electrodes was measured at room temperature to show 70 ⁇ .
  • the detection limit was again exceeded (120 ⁇ ). From this, it is necessary to anneal in 500 ppm SO + 10% O + N gas, so that a conductive substance adheres.
  • the details of the conductive substance are not known, but it is expected that the substance is a composite adsorbate of SO adsorbed on the oxide semiconductor surface and H 2 O adsorbed simultaneously from the atmosphere.
  • the charge carrier may be the force that is the H + of this adsorbate.
  • Powder of an oxidized product containing cerium ions and zirconium ions was produced by the following procedure. Cerium nitrate aqueous solution and zirconium oxynitrate aqueous solution at the specified concentration (X)
  • the mixed aqueous solution in which the concentration of the sum of cerium ions and zirconium ions is 0.1 OlOmol Zdm 3 .
  • the mixed aqueous solution was sprayed, introduced into an electric furnace heated to 973K, thermally decomposed, and recovered to obtain a fine powder of an oxide containing cerium ions and zirconium ions.
  • the ZrO concentration of the oxide powder is the ZrO
  • the particle size of the obtained powder was about 200 nm and 300 nm.
  • a paste in which the obtained fine particle powder and a vehicle of an organic solvent (a mixture of ethyl cellulose and terbineol) were mixed was printed on an aluminum substrate by screen printing.
  • the printed matter was heated at 773K in the air and subsequently at 1473K in the air to obtain a thick film.
  • the obtained thick film was a porous body and had a particle size of 200 nm to 300 nm.
  • An electrode was required to measure the resistivity of the oxygen gas detection part, and a comb-shaped platinum electrode was provided by a screen printing method.
  • a resistance type oxygen sensor (Z20) using cerium oxidized to which 20 mol% of oxidized zirconium was added was produced. Zirconium oxide and cerium oxide were completely solid-solved and were single-phase cubic crystals.
  • Figure 3 shows the experimental results. Compared to the CelOO resistor at the same temperature, the resistance of the Z20 was more than an order of magnitude lower. Since the thick film shape of CelOO and Z20 are the same and the electrode shape is also the same, it can be concluded that the resistivity of Z20 is at least one order of magnitude lower than that of CelOO. With the Z20, 873K: almost no power except for 500ppmSO. 873K: Even at 500ppmSO, CelO
  • Cerium oxide powder and hafnium oxide powder were mixed with cerium ions and hafnium ions. The ratio was measured to 9: 1, and the mixture was wet-mixed using an agate mortar and ethanol as a dispersion medium. After mixing, the dried powder was press-molded to obtain a molded body. The molded body was fired in the air at 1400 ° C for 10 hours and solid-phase sintered. After cooling to room temperature, the sintered body was pulverized to obtain a powder. A paste in which the obtained powder and a vehicle of an organic solvent were mixed was previously printed by screen printing on an aluminum substrate on which a platinum comb-shaped electrode was formed. Next, the film was heated in air at 500 ° C and subsequently in air at 1300 ° C to obtain a thick film.
  • the resistance of the resistance-type oxygen sensor (Hf10) using hafnium-doped cerium oxynitride having a hafnium ion concentration of 10 mol% is determined by the resistance-type oxygen sensor (Ce100) using undoped oxidized cerium. The resistance was 30 times lower than that of the above, and it was confirmed that the resistance was reduced by the hafnium sardine-added kamuri.
  • the present invention relates to a method for stabilizing the output of a resistance type oxygen sensor using cerium oxide, and according to the present invention, it is intended to reduce the resistance to cerium oxide, which is an oxide semiconductor.
  • cerium oxide which is an oxide semiconductor.
  • the present invention it is necessary to provide a filter for preventing output fluctuation with respect to sulfur dioxide at a concentration of several hundred ppm or less and preventing the sulfur dioxide from adhering to the surface of the semiconductor.
  • the advantages are that it is important and that a small and simple oxygen sensor can be provided.
  • the method of the present invention can be suitably applied to a resistance-type oxygen sensor used in an air-fuel ratio feedback control system of an automobile or a boiler or an automobile exhaust gas catalyst deterioration system.
  • FIG. 1 shows a change in output of an oxygen sensor according to the related art with respect to SO gas.
  • the XRD pattern of the sample obtained by annealing at 22h in 222 is shown.
  • (A) is the result at 873K
  • (b) is the result at 1073K.
  • FIG. 3 shows an output change with respect to SO gas of an oxygen sensor stabilized by the method of the present invention.
  • zirconium oxide was added with 20 mol% to reduce the resistance. This was described as Z20.
  • FIG. 4 shows that the oxygen sensor stabilized by the method of the present invention with respect to SO gas at 1073 K

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

With respect to a resistance type oxygen sensor utilizing an oxide semiconductor composed mainly of cerium oxide, there is provided a method of stabilizing the output of resistance type oxygen sensor, comprising adding an oxide containing tetravelent metal ion for resistance lowering to the oxide semiconductor so as to inhibit any variation of sensor output to sulfur dioxide, thereby attaining stabilization of sensor output. This method can appropriately be used as an output stabilization technique for resistance type oxygen sensor for use in an air/fuel ratio feedback control system for automobiles and boilers, or an automobile exhaust gas catalyst deterioration system.

Description

明 細 書  Specification
酸化セリウムを使用した抵抗型酸素センサの出力安定化方法  Output stabilization method of resistance type oxygen sensor using cerium oxide
技術分野  Technical field
[0001] 本発明は、雰囲気ガスの酸素分圧に応じて抵抗値が変化する酸化物半導体から なるガス検出部分を有している抵抗型酸素センサの出力安定ィ匕方法に関するもので あり、更に詳しくは、排ガスの浄ィ匕率向上や燃費向上のための、自動車排ガスの空 燃比を制御するための空燃比フィードバック制御システムに使用される、酸素分圧を 測定する抵抗型酸素センサの出力安定ィ匕方法に関するものである。  The present invention relates to a method for stabilizing the output of a resistance-type oxygen sensor having a gas detection portion made of an oxide semiconductor whose resistance value changes according to the oxygen partial pressure of an atmospheric gas. Specifically, the output stabilization of a resistance-type oxygen sensor that measures oxygen partial pressure, used in an air-fuel ratio feedback control system that controls the air-fuel ratio of automobile exhaust gas to improve exhaust gas purification efficiency and fuel efficiency. The present invention relates to a dani method.
[0002] 本発明は、酸化物半導体の抵抗率あるいは電気伝導度の変化を利用して雰囲気 の酸素分圧を測定することを基本原理とする抵抗型酸素センサの技術分野において 、従来のセンサでは、センサの出力が、例えば、 500ppmや lppmの濃度を有する二 酸化硫黄 (SO )ガスに対して変動するという問題点があったことを踏まえ、そのよう  The present invention relates to a technical field of a resistance-type oxygen sensor based on measuring a partial pressure of oxygen in an atmosphere using a change in resistivity or electric conductivity of an oxide semiconductor. Considering the problem that the output of the sensor fluctuates with respect to sulfur dioxide (SO) gas having a concentration of, for example, 500 ppm or lppm,
2  2
な問題点を抜本的に解決することを可能とする新しいセンサ出力安定ィ匕技術を提供 するものである。  It is intended to provide a new sensor output stabilization technique capable of drastically solving various problems.
[0003] 本発明は、例えば、自動車排ガス浄ィ匕用触媒の劣化を検知するための自動車排ガ ス触媒劣化検知システム、ボイラーなどの燃焼効率最適化のための空燃比フィード バック制御システム等に使用される抵抗型酸素センサ等の出力安定ィ匕技術として好 適に適用されるものとして有用である。  [0003] The present invention is applied to, for example, a vehicle exhaust gas catalyst deterioration detection system for detecting deterioration of a vehicle exhaust gas purification catalyst, an air-fuel ratio feedback control system for optimizing combustion efficiency of a boiler, and the like. It is useful as one suitably applied as an output stabilization technique for a resistance type oxygen sensor or the like to be used.
背景技術  Background art
[0004] 従来、自動車用の酸素ガスセンサとして、例えば、先行技術文献に記載されている ように、主として、固体電解質のものが用いられてきた (特許文献 1参照)。このタイプ のセンサは、基準極と測定極の酸素分圧の違いを起電力として測定するものであり、 必ず基準極が必要である。そのため、この種のセンサは、構造が複雑であり、小型化 が困難であると!、う問題点を有して!/、た。  [0004] Conventionally, as an oxygen gas sensor for automobiles, for example, a solid electrolyte sensor has been mainly used as described in a prior art document (see Patent Document 1). This type of sensor measures the difference in oxygen partial pressure between the reference electrode and the measurement electrode as an electromotive force, and therefore requires a reference electrode. Therefore, this type of sensor has a problem that the structure is complicated and miniaturization is difficult! /
[0005] この問題点を克服するために、例えば、先行技術文献に記載されているような、基 準極を必要としな ヽ抵抗型酸素ガスセンサが開発されて!ヽる (特許文献 2参照)。こ の抵抗型酸素ガスセンサの測定原理を簡単に説明すると、まず、雰囲気の酸素分圧 が変化したときに、酸ィ匕物半導体の酸素空孔濃度が変化する。酸化物半導体の抵 抗率あるいは電気伝導度は、酸素空孔濃度と 1対 1の対応関係があり、酸素空孔濃 度の変化に伴い、酸化物半導体の抵抗率が変化する。その抵抗率を測定することに より、雰囲気の酸素分圧を知ることができる。 [0005] In order to overcome this problem, for example, a resistance-type oxygen gas sensor that does not require a reference electrode, as described in a prior art document, has been developed (see Patent Document 2). . To briefly explain the measurement principle of this resistance type oxygen gas sensor, first, the oxygen partial pressure of the atmosphere Changes, the oxygen vacancy concentration of the oxide semiconductor changes. The resistivity or electrical conductivity of an oxide semiconductor has a one-to-one correspondence with the oxygen vacancy concentration, and the resistivity of the oxide semiconductor changes with a change in the oxygen vacancy concentration. By measuring the resistivity, the oxygen partial pressure of the atmosphere can be known.
[0006] 本発明者らは、これまで、酸化物半導体として酸化セリウムを用いた抵抗型酸素セ ンサの研究開発を行ってきたが、それというのも、酸ィ匕セリウムは酸素の拡散係数が 酸ィ匕チタンより大きぐ応答速度の速いことが期待されるためである。酸化セリウムを 用いた抵抗型酸素センサにおいて、酸ィ匕セリウムの粒径を 200nmまで小さくすること により、応答速度が改善されることが分力つた (特許文献 3参照)。  The present inventors have been conducting research and development on a resistance-type oxygen sensor using cerium oxide as an oxide semiconductor, but cerium oxide has a diffusion coefficient of oxygen. This is because it is expected that the response speed is higher than that of titanium oxide. In a resistance-type oxygen sensor using cerium oxide, reducing the particle size of cerium oxide to 200 nm has been a component of improving response speed (see Patent Document 3).
[0007] し力しながら、酸ィ匕セリウムを使った抵抗型酸素センサは、センサの出力が、 500pp mや lppmの濃度を有する二酸化硫黄 (SO )ガスに対して変動すると!/、う問題があり  [0007] However, the resistance type oxygen sensor using cerium oxide has a problem that the output of the sensor fluctuates with respect to sulfur dioxide (SO 2) gas having a concentration of 500 ppm or lppm. There is
2  2
(図 1を参照)、当技術分野では、その解決が求められていた。  (See FIG. 1), a solution in the art was sought.
[0008] 特許文献 1:特開昭 55— 137334号公報 [0008] Patent Document 1: JP-A-55-137334
特許文献 2:特開昭 62- 174644号公報  Patent Document 2: JP-A-62-174644
特許文献 3 :特開 2003— 149189号公報  Patent Document 3: JP 2003-149189 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] このような状況の中で、本発明者らは、上記従来技術に鑑みて、酸化セリウムを使 つた抵抗型酸素センサにお 、て、センサの出力を安定ィ匕することを可能とする新 ヽ 技術を開発することを目標として鋭意研究を進める過程で、酸化物半導体である酸 化セリウムに、抵抗を下げるための 4価金属イオンを有する酸ィ匕物を添加することによ り所期の目的を達成しうることを見出し、更に研究を重ねて、本発明を完成するに至 つた o [0009] Under such circumstances, the present inventors have made it possible to stabilize the output of a resistance-type oxygen sensor using cerium oxide in view of the above conventional technology. In the process of conducting intensive research with the goal of developing new technologies, the addition of oxidized oxides containing tetravalent metal ions to reduce the resistance to cerium oxide, an oxide semiconductor, We found that the intended purpose could be achieved, and conducted further research to complete the present invention o
[0010] 本発明は、二酸化硫黄ガスに対する、酸ィ匕セリウムを使った抵抗型酸素センサの出 力の変動を抑制する方法を提供することを目的とするものである。  [0010] It is an object of the present invention to provide a method for suppressing a change in output of a resistance type oxygen sensor using cerium oxide on sulfur dioxide gas.
課題を解決するための手段  Means for solving the problem
[0011] 上記課題を解決するための本発明は、酸ィ匕物半導体として酸ィ匕セリウムを主成分と して使用した抵抗型酸素センサにおいて、当該酸化物半導体に、抵抗を下げるため の 4価金属イオンを有する酸化物を添加することにより、二酸化硫黄に対するセンサ 出力の変動を抑制して、センサ出力を安定化させることを特徴とする抵抗型酸素セン サの出力安定化方法、である。 [0011] The present invention for solving the above-mentioned problems is directed to a resistance-type oxygen sensor using cerium oxide as a main component as an oxide semiconductor, for reducing the resistance of the oxide semiconductor. A method for stabilizing the output of a resistance-type oxygen sensor, characterized in that by adding an oxide having a tetravalent metal ion, the fluctuation of the sensor output with respect to sulfur dioxide is suppressed and the sensor output is stabilized. is there.
[0012] 本方法は、(1) 4価金属イオンを有する酸ィ匕物力、ジルコニウムイオン又はハフ-ゥ ムイオンを有する酸化物であること、(2)抵抗型酸素センサ力 自動車又はボイラー の空燃比フィードバック制御システムに使われる抵抗型酸素センサであること、 (3)抵 抗型酸素センサが、自動車排ガス触媒劣化システムに使われる抵抗型酸素センサで あること、を好ましい態様としている。  [0012] The present method includes: (1) an oxide having tetravalent metal ions, an oxide having zirconium ions or hafnium ions, and (2) an air-fuel ratio of an automobile or a boiler. In a preferred embodiment, the resistance type oxygen sensor is used in a feedback control system, and (3) the resistance type oxygen sensor is a resistance type oxygen sensor used in an automobile exhaust gas catalyst deterioration system.
[0013] 次に、本発明について、更に詳細に説明する。  Next, the present invention will be described in more detail.
本発明は、酸化物半導体として酸化セリウムを主成分として使用した抵抗型酸素セ ンサにおいて、当該酸化物半導体に、抵抗を下げるための 4価金属イオンを有する 酸ィ匕物を添加することにより、二酸ィ匕硫黄に対するセンサ出力の変動を抑制して、セ ンサ出力を安定ィ匕させることを特徴とするものである。  The present invention provides a resistance-type oxygen sensor using cerium oxide as a main component as an oxide semiconductor, by adding an oxide containing a tetravalent metal ion for reducing resistance to the oxide semiconductor. The present invention is characterized in that the fluctuation of the sensor output with respect to sulfur dioxide is suppressed and the sensor output is stabilized.
[0014] 本発明において、酸ィ匕物半導体である酸ィ匕セリウムに、抵抗を下げるための 4価金 属イオンを有する酸ィヒ物を添加する方法は任意であり、例えば、固相焼結法、沈殿 法などが挙げられる力 これらに限定されるものではない。ただし、抵抗を下げるため の 4価金属イオンを有する酸ィ匕物を酸ィ匕セリウムに単に機械的に混合するのではなく 、当該 4価金属イオンを有する酸化物と酸化セリウムが固溶する必要がある。また、酸 化物半導体の構造も任意であり、薄膜、厚膜、バルタ、緻密体、及び多孔質体などが 例示される。  [0014] In the present invention, a method of adding an acid compound having a tetravalent metal ion for lowering resistance to cerium oxide, which is an oxide semiconductor, is optional. Forces such as knotting and sedimentation methods are not limited to these. However, the oxide containing the tetravalent metal ion and the cerium oxide need to be dissolved in a solid solution instead of merely mechanically mixing the oxide containing the tetravalent metal ion with the cerium oxide to reduce the resistance. There is. The structure of the oxide semiconductor is also arbitrary, and examples thereof include a thin film, a thick film, a barta, a dense body, and a porous body.
[0015] ただし、できるだけ単位重量に対する表面積は小さ!/、方が好ま U、。それと!/、うのも 、二酸ィヒ硫黄の影響は最表面での影響であると考えられるから、単位重量に対する 表面積が小さければ表面の影響が小さくなるためである。酸化物半導体に添加する 、酸ィ匕セリウムに抵抗を下げるための 4価金属イオンを有する酸ィ匕物として、好適に は、例えば、酸ィ匕ジルコニウム、及び酸ィ匕ハフニウムなどが挙げられる力 これらに限 定されるものではなぐこれらと同等あるいは類似のもので同様の機能を有するもの であれば同様に使用することができる。  [0015] However, the surface area per unit weight is as small as possible! In addition, since the effect of sulfur diacid is considered to be the effect on the outermost surface, the effect of the surface is reduced if the surface area per unit weight is small. Preferable examples of the oxidizing compound having a tetravalent metal ion for reducing the resistance to cerium oxynitride added to the oxide semiconductor include, for example, zirconium oxidization and hafnium oxidization. It should be noted that the present invention is not limited to these, and any equivalent or similar one having the same function can be used.
[0016] 酸化物半導体に添加する、酸ィ匕セリウムに抵抗を下げるための 4価金属イオンを有 する酸ィ匕物の濃度について、次に示す。 4価金属イオンを有する酸化物は、一般に、 MO の化学組成を有する。ここで、 Mは 4価金属元素である。 MOの濃度を Xmol[0016] A tetravalent metal ion for reducing the resistance to cerium oxide is added to the oxide semiconductor. The following shows the concentration of the soybean noodles. An oxide having a tetravalent metal ion generally has a chemical composition of MO 2. Here, M is a tetravalent metal element. X concentration of MO
2 2 twenty two
%とすると、 Xの上限は 50mol%である。それというのも、 50mol%を超えると、酸化 セリウムよりも MOの特性が顕著になると考えられ、もはや酸化セリウムの特長を失う  %, The upper limit of X is 50 mol%. If it exceeds 50 mol%, the characteristics of MO are considered to be more remarkable than cerium oxide, and the characteristics of cerium oxide are lost.
2  2
ためである。  That's why.
[0017] 下限は特に数値的に限定されない。 MOを添カ卩していない酸ィ匕セリウムに比べて  [0017] The lower limit is not particularly limited numerically. Compared to cerium with no MO
2  2
、抵抗率を半分以下に下げることが可能な濃度であればよい。 MOを添加した酸ィ匕  Any concentration may be used as long as the resistivity can be reduced to half or less. MO with added acid
2  2
セリウムは、単相、 2相共存、いずれでも可能である。抵抗型酸素センサの構造や形 態は任意であり、また、温度補償材を有する抵抗型酸素センサにも本発明は適用可 能である。  Cerium can be in either a single phase or two phases. The structure and form of the resistance type oxygen sensor are arbitrary, and the present invention is also applicable to a resistance type oxygen sensor having a temperature compensating material.
[0018] 次に、本発明の作用について説明すると、 SOを導入すると酸化物半導体表面に  Next, the operation of the present invention will be described.
2  2
SO が吸着し、それと同時に雰囲気中の H Oも吸着し、 H+が生じ、それが電荷担 SO is adsorbed, and at the same time, H 2 O in the atmosphere is also adsorbed to generate H +, which is
2 2 twenty two
体となると考えられる。この導電率は、何も添加していない酸ィ匕セリウムの導電率より 大きいと考えられ、電流は表面を流れるため、全体の抵抗は下がってしまうと考えら れる。しかし、抵抗を下げるための 4価金属イオンを有する酸ィ匕物を添加することによ り、酸化物半導体の導電率は、 SO  It is thought to be a body. This conductivity is considered to be higher than the conductivity of cerium oxide without any addition, and since the current flows through the surface, the overall resistance is considered to decrease. However, by adding an oxide containing a tetravalent metal ion for reducing resistance, the conductivity of the oxide semiconductor becomes
2導入により表面に生じる生成物のそれよりも大き いため、全体の抵抗は変動せず、 SOによる出力変動は抑制できるものと考えられる  (2) The total resistance does not fluctuate because it is larger than that of the product generated on the surface by introduction, and it is thought that output fluctuation due to SO can be suppressed
2  2
[0019] 本発明の方法により、 500ppm以下、より効果的には lppm以下の二酸ィ匕硫黄に 対する出力変動を抑制できる。本発明の方法により、酸化物半導体として酸化セリウ ムを主成分として使用した抵抗型酸素センサにおいて、二酸化硫黄に対するセンサ 出力を安定化させることが可能となる。本発明の方法は、例えば、自動車又はボイラ 一の空燃比フィードバック制御システムに使われる抵抗型酸素センサ、自動車排ガス 触媒劣化システムに使われる抵抗型酸素センサの出力安定ィ匕技術として好適に使 用することができる。 According to the method of the present invention, output fluctuations with respect to sulfur dioxide of 500 ppm or less, more effectively 1 ppm or less, can be suppressed. According to the method of the present invention, in a resistance-type oxygen sensor using cerium oxide as an oxide semiconductor as a main component, it is possible to stabilize the sensor output with respect to sulfur dioxide. The method of the present invention is suitably used, for example, as a resistance-type oxygen sensor used in an air-fuel ratio feedback control system of an automobile or a boiler, and an output stabilization technique of a resistance-type oxygen sensor used in an automobile exhaust gas catalyst deterioration system. be able to.
発明の効果  The invention's effect
[0020] 本発明によれば、 1)酸ィ匕物半導体である酸ィ匕セリウムに抵抗を下げるための 4価 金属イオンを有する酸化物を添加することにより、二酸化硫黄ガスに対する、酸化セ リウムを使った抵抗型酸素センサの出力の変動を抑制することが可能となる、 2)数百 ppm以下の二酸化硫黄に対する出力変動がなくなる、 3)二酸化硫黄が酸化物半導 体の表面に付着しないようにするためのフィルターが不必要となる、 4)小型で構造が 簡単な酸素センサを提供できる、 5)本発明の方法は、自動車又はボイラーの空燃比 フィードバック制御システム又は自動車排ガス触媒劣化システムに使われる抵抗型 酸素センサに適用できる、という格別の効果が奏される。 According to the present invention, 1) an oxide having a tetravalent metal ion for lowering resistance is added to cerium oxide cerium, which is an oxide semiconductor, so that cerium oxide with respect to sulfur dioxide gas is added. It is possible to suppress the fluctuation of the output of the resistance type oxygen sensor using lithium.2) The fluctuation of the output for sulfur dioxide below several hundred ppm is eliminated.3) The sulfur dioxide adheres to the surface of the oxide semiconductor. 4) A small and simple oxygen sensor can be provided.5) The method of the present invention is a vehicle or boiler air-fuel ratio feedback control system or a vehicle exhaust gas catalyst deterioration system. It has a special effect that it can be applied to a resistance type oxygen sensor used for
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例 によって何ら限定されるものではな 、。 Next, the present invention will be specifically described based on examples, but the present invention is not limited by the following examples.
[0022] 以下に、まず、本発明に至った経緯について、参考例 1から 4に基づいて説明する 参考例 1 Hereinafter, first, the background to the present invention will be described based on Reference Examples 1 to 4. Reference Example 1
濃度 0. OlOmolZdm3である硝酸セリウム水溶液を噴霧させ、 973Kに加熱した電 気炉に導入し、熱分解させ、回収し、酸ィ匕セリウムの粉末を得た。得られた粉末の粒 径は、約 200nmから 300nmであった。得られた微粒子粉末と有機溶媒のビヒクル( ェチルセルロースとテルビネオールの混合物)とを混合したペーストを、酸化アルミ- ゥム基板上にスクリーン印刷により印刷した。 A cerium nitrate aqueous solution having a concentration of 0.1 OlOmolZdm 3 was sprayed, introduced into an electric furnace heated to 973 K, thermally decomposed, and recovered to obtain a powder of cerium oxide. The particle size of the obtained powder was about 200 nm to 300 nm. A paste obtained by mixing the obtained fine particle powder and a vehicle of an organic solvent (a mixture of ethyl cellulose and terbineol) was printed by screen printing on an aluminum oxide substrate.
[0023] 次に、印刷物を空気中 773Kで加熱し、引き続き、空気中 1473Kで加熱し、厚膜を 得た。得られた厚膜は多孔質体であり、粒径は 200nmから 300nmであった。酸素ガ ス検出部分の抵抗率を測定するために、電極が必要であり、スクリーン印刷法により 櫛型の白金電極を設けた。以上の方法により、酸化セリウムを用いた抵抗型酸素セ ンサ (CelOO)を作製した。  Next, the printed matter was heated at 773 K in the air, and subsequently heated at 1473 K in the air to obtain a thick film. The obtained thick film was a porous body and had a particle size of 200 nm to 300 nm. An electrode was needed to measure the resistivity of the oxygen gas detection part, and a comb-shaped platinum electrode was provided by screen printing. By the above method, a resistance type oxygen sensor (CelOO) using cerium oxide was manufactured.
[0024] 酸素分圧 P (0 )、 SO分圧 P (SO )及び温度 Tを変えることのできる測定室に、セ  [0024] A measuring chamber capable of changing the oxygen partial pressure P (0), the SO partial pressure P (SO), and the temperature T is provided with a cell.
2 2 2  2 2 2
ンサを置き、直流二端子法により上記白金電極間の電気抵抗をセンサ出力として測 定した。図 1に、 CelOOの酸素センサの出力変化 (抵抗)をそれぞれ示す。 873又は 1073Kにおいて、ガスを A, B, C又は C,, B, Aと切り換えた。  The electric resistance between the platinum electrodes was measured as a sensor output by a DC two-terminal method. Figure 1 shows the output change (resistance) of the CelOO oxygen sensor. At 873 or 1073 K, the gas was switched to A, B, C or C, B, A.
[0025] ここで、 Aは 100%O (P (O ) = 105Pa)、 Bは 10%O +N (P (O ) = 104Pa)、 C [0025] Here, A is 100% O (P (O) = 10 5 Pa), B is 10% O + N (P (O) = 10 4 Pa), C
2 2 2 2 2  2 2 2 2 2
は lppmSO + 10%O +N (P (0 ) = 104Paゝ P (SO ) =0. lPa)ゝ C,は 500ppm SO + 10%O +N (P (0 ) = 10 Pa、P (SO ) = 50Pa)である。 Is lppmSO + 10% O + N (P (0) = 10 4 Pa ゝ P (SO) = 0. LPa) ゝ C is 500 ppm SO + 10% O + N (P (0) = 10 Pa, P (SO) = 50 Pa).
2 2 2 2 4 2  2 2 2 2 4 2
[0026] ガスを Aから Bに切り換えた場合、酸素分圧が 1桁変わったため、酸素センサの出 力が変化した。これは、正常な応答である。次に、 B力も C又は C'へガスを切り換えた 。このとき、 SO ガスの影響が無ければ、酸素分圧が変化していないため、抵抗は  When the gas was switched from A to B, the output of the oxygen sensor changed because the oxygen partial pressure changed by one digit. This is a normal response. Next, the B force also switched the gas to C or C '. At this time, if there is no influence of SO gas, the resistance is not changed because the oxygen partial pressure has not changed.
2  2
変化しないはずである力 結果は異なり、 C又は C'へ切り換えた後、抵抗は変化した [0027] すなわち、 CelOOiま、 873又 ίま 1073K【こお!ヽて、 lppmSO及び 500ppmSOの  Force that should not change The result is different, the resistance changes after switching to C or C '. [0027] That is, CelOOi, 873 or 1073K
2 2 影響があり、特に、 1073K、 lppmSO以外の条件では、 SO の影響が大き力つた  2 2 There is an effect, especially under conditions other than 1073K and lppmSO,
2 2  twenty two
。このため、排ガスに lppm程度以上の SOが含まれている場合、出力の変動が生じ  . For this reason, if the exhaust gas contains SO at lppm or more, the output may fluctuate.
2  2
ることが分かった。  I found out.
[0028] 参考例 2 Reference Example 2
SOと CeOの反応生成物を調べるため、 CeO微粉末を 500ppmSO + 10%O To investigate the reaction product of SO and CeO, fine powder of CeO was added to 500ppmSO + 10% O
2 2 2 2 22 2 2 2 2
+ N中でァニールさせ、反応生成物を XRDにより評価した。この試験で用いた CeOAnnealed in + N and the reaction products were evaluated by XRD. CeO used in this test
2 2
粉末は、沈殿法で作製されたものであり、 1次粒子径が 20nm以下であった。また、 The powder was prepared by a precipitation method and had a primary particle size of 20 nm or less. Also,
2 2
比較のため、巿販試薬である Ce (SO ) · 8Η Οを、 773Κ空気中でァニールさせた  For comparison, a commercial reagent, Ce (SO) · 8Η, was annealed in 773Κ air.
2 4 3 2  2 4 3 2
[0029] 図 2の(a)及び(b)に、 CeO微粉末をそれぞれ 1073及び 873Kで 500ppmSO [0029] In Fig. 2 (a) and (b), the CeO fine powder was added to 500 ppm SO at 1073 and 873K, respectively.
2 2 twenty two
+ 10%O +N中 24hでァニールさせ得た試料の XRDパターンを示す。 1073Kで 9 shows the XRD pattern of a sample obtained by annealing in + 10% O + N for 24 hours. At 1073K
2 2  twenty two
ァニール後の試料では、表面の変色及び反応相は全く観察されな力つた。  In the sample after annealing, no surface discoloration and no reaction phase was observed.
[0030] CeO 粉末は淡い黄色である力 873Kでァニール後の試料では、ガスの流れに [0030] The CeO powder is a pale yellow color.
2  2
さらされている表面のほんのわず力な部分が白く変色した。それを多く含むところを 取り出し、 XRDで調べたところ、☆印で示された反応相があった。白く変色したものを 含まな 、試料では、☆印の反応相は観察されな力つた。  Only a very weak part of the exposed surface turned white. When a portion containing a large amount of it was taken out and examined by XRD, there was a reaction phase indicated by ☆. In the sample containing no white discoloration, the reaction phase marked with a star was not observed.
[0031] より低温の 823Kでァニールすると、もう少し反応相は増加した。反応相は、表面の ほんの一部であり、これを多く含むように粉末を取り出し、 XRD分析すると、反応相は 、 Ce (SO ) ·4Η Οや CeOSO、 Ce (SO ) ·4Η Oなどの混合物であることが分かWhen annealing at a lower temperature of 823K, the reaction phase increased a little more. The reaction phase is only a small part of the surface, and the powder is taken out so as to contain a large amount of it, and XRD analysis shows that the reaction phase is a mixture of Ce (SO) 4Η, CeOSO, Ce (SO) 4ΗO, etc. Do you know
2 4 3 2 4 4 2 2 4 3 2 4 4 2
つた。これは、 Ce (SO ) · 8Η Οを、空気中 773Κでァニールしたものと同じであつ [0032] lppmSO + 10%O +N中では、 873K, 1073Kいずれの温度においても、反I got it. This is the same as Ce (SO) · 8Η ァ which is annealed at 773Κ in air. [0032] In lppmSO + 10% O + N, the reaction temperature was
2 2 2 2 2 2
応相は観察されな力つた。すなわち、 lppm以下の SOを含む排ガス中では、反応  The phase response was unobservable. That is, in exhaust gas containing less than lppm SO,
2  2
相は生じないことが確認できた。また、 lppmSO中では、酸ィ匕セリウムに反応相が生  It was confirmed that no phase occurred. In lppmSO, a reaction phase is formed on cerium oxide.
2  2
じないにもかかわらず、参考例 1で示した SOガスによる酸ィ匕セリウム(CelOO)の出  Despite this, the production of cerium (CelOO) by SO gas shown in Reference Example 1
2  2
力変動が生じることから、出力変動と反応相生成とは、無関係であることが示された。  The occurrence of force fluctuations indicated that the power fluctuations and the reaction phase formation were independent.
[0033] 参考例 3 [0033] Reference Example 3
Ce (SO ) · 8Η Οの成型体(9. 9mm , 11. 66mmL)を 873Κ, lOhで焼鈍し Ce (SO) · 8Η Η molded body (9.9mm, 11.66mmL) is annealed at 873Κ, lOh
2 4 3 2 2 4 3 2
、 873 Kにおけるその抵抗を測定し、導電率を求めたところ、 1. 4x10— 6SZmであ つた。この温度における CeOの導電率は 1x10— 4— 5x10— 4SZmであるので、 Ce (S , And measuring the resistance at 873 K, was determined conductivity, 1. 4x10- 6 SZm der ivy. The conductivity of CeO at this temperature 1x10- 4 - since it is 5x10- 4 SZm, Ce (S
2 2 twenty two
O )などの反応物の抵抗率は非常に大きい。このことからも、 873Kにおける抵抗低The resistivity of reactants such as O 2) is very high. This indicates that the resistance at 873K is low.
4 3 4 3
下が Ce (SO )などの反応物の生成とは無関係であることが確認された。  It was confirmed that the bottom was unrelated to the formation of reactants such as Ce (SO).
2 4 3  2 4 3
[0034] 以上の参考例 2及び 3から、 SOガスによる酸ィ匕セリウムの抵抗低下は、反応相の  [0034] From the above Reference Examples 2 and 3, the decrease in the resistance of cerium oxide by the SO gas was caused by the reaction phase.
2  2
生成とは無関係であることが確認された。  It was confirmed that it was not related to generation.
[0035] 参考例 4 Reference Example 4
酸ィ匕アルミニウム基板に電極をつけ、室温で抵抗を測ると、電圧測定器の検出限 界(120Μ Ω )以上であった力 873K中 500ppmSO + 10%O +Nガス中でァ- When an electrode was attached to the aluminum substrate and the resistance was measured at room temperature, the resistance was 500 ppm SO + 10% O + N gas in 873K, which was over the detection limit of the voltmeter (120ΜΩ).
2 2 2 2 2 2
ールさせ、室温中で電極間の抵抗を測定すると、 70Μ Ωを示した。エタノールで基 板表面上を拭くと、再び検出限界(120Μ Ω )以上であった。このことから、 500ppm SO + 10%O +Nガス中でァニールすることにより、導電性の物質が付着すること And the resistance between the electrodes was measured at room temperature to show 70ΜΩ. When the surface of the substrate was wiped with ethanol, the detection limit was again exceeded (120 Ω). From this, it is necessary to anneal in 500 ppm SO + 10% O + N gas, so that a conductive substance adheres.
2 2 2 2 2 2
が分かった。  I understood.
[0036] 導電性の物質については、その詳細はわからないが、酸化物半導体表面に吸着し た SOとそれと同時に雰囲気から吸着した H Oとの複合吸着物であると予想している [0036] The details of the conductive substance are not known, but it is expected that the substance is a composite adsorbate of SO adsorbed on the oxide semiconductor surface and H 2 O adsorbed simultaneously from the atmosphere.
2 2 twenty two
。電荷担体は、この吸着物の H+である力もしれない。 CelOOにおいて、 SOの影響  . The charge carrier may be the force that is the H + of this adsorbate. The impact of SO on CelOO
2 が出たのは、この導電性物質の抵抗率は CelOOよりは小さいためと考えられた。した がって、酸化物半導体の抵抗率を下げることができれば、 SOの影響が抑制できるこ  The reason why 2 was given was considered to be that the resistivity of this conductive material was lower than that of CelOO. Therefore, if the resistivity of an oxide semiconductor can be reduced, the influence of SO can be suppressed.
2  2
とを見出すに至り、本発明に到達した。  And reached the present invention.
実施例 1  Example 1
[0037] セリウムイオンとジルコニウムイオンを含む酸ィ匕物の粉末を、次の手順で作製した。 硝酸セリウム水溶液とォキシ硝酸ジルコニウム水溶液を所定の濃度 (X ) [0037] Powder of an oxidized product containing cerium ions and zirconium ions was produced by the following procedure. Cerium nitrate aqueous solution and zirconium oxynitrate aqueous solution at the specified concentration (X)
Zr Z (x + X Zr Ce Zr Z (x + X Zr Ce
: 20mol%)で混合し、セリウムイオンとジルコニウムイオンの和の濃度が 0. OlOmol Zdm3である混合水溶液を得た。次に、その混合水溶液を噴霧させ、 973Kに加熱 した電気炉に導入し、熱分解させ、回収し、セリウムイオンとジルコニウムイオンを含 む酸化物の微粉末を得た。ここで、酸化物粉末の ZrO濃度は、混合水溶液での Zr : 20 mol%) to obtain a mixed aqueous solution in which the concentration of the sum of cerium ions and zirconium ions is 0.1 OlOmol Zdm 3 . Next, the mixed aqueous solution was sprayed, introduced into an electric furnace heated to 973K, thermally decomposed, and recovered to obtain a fine powder of an oxide containing cerium ions and zirconium ions. Here, the ZrO concentration of the oxide powder is the ZrO
2  2
イオン濃度と同じであった。得られた粉末の粒径は、約 200nm力ら 300nmであった  It was the same as the ion concentration. The particle size of the obtained powder was about 200 nm and 300 nm.
[0038] 得られた微粒子粉末と有機溶媒のビヒクル (ェチルセルロースとテルビネオールの 混合物)とを混合したペーストを、酸ィ匕アルミニウム基板上にスクリーン印刷により印 刷した。次に、印刷物を空気中 773Kで加熱し、引き続き、空気中 1473Kで加熱し、 厚膜を得た。得られた厚膜は、多孔質体であり、粒径は、 200nmから 300nmであつ た。酸素ガス検出部分の抵抗率を測定するために、電極が必要であり、スクリーン印 刷法により櫛型の白金電極を設けた。以上の方法により、酸ィ匕ジルコニウムを 20mol %添加した酸ィ匕セリウムを用いた抵抗型酸素センサ (Z20)を作製した。酸化ジルコ -ゥムと酸ィ匕セリウムは完全に固溶し、単相の立方晶であった。 [0038] A paste in which the obtained fine particle powder and a vehicle of an organic solvent (a mixture of ethyl cellulose and terbineol) were mixed was printed on an aluminum substrate by screen printing. Next, the printed matter was heated at 773K in the air and subsequently at 1473K in the air to obtain a thick film. The obtained thick film was a porous body and had a particle size of 200 nm to 300 nm. An electrode was required to measure the resistivity of the oxygen gas detection part, and a comb-shaped platinum electrode was provided by a screen printing method. By the above-mentioned method, a resistance type oxygen sensor (Z20) using cerium oxidized to which 20 mol% of oxidized zirconium was added was produced. Zirconium oxide and cerium oxide were completely solid-solved and were single-phase cubic crystals.
[0039] 参考例 1と同様の装置を用 、て実験を行った。ガスの条件も参考例 1と同じである。  An experiment was performed using the same device as in Reference Example 1. The gas conditions are the same as in Reference Example 1.
その実験結果を図 3に示す。同じ温度の CelOOの抵抗と比べると、 Z20の抵抗は 1 桁以上小さ力つた。 CelOOと Z20の厚膜形状は同じであり、電極形状も同じであるの で、 Z20の抵抗率は CelOOのそれと比べて 1桁以上小さいと結論できた。 Z20では 8 73K:、 500ppmSO以外ほとんど景響力無力、つた。 873K:、 500ppmSOでも CelO  Figure 3 shows the experimental results. Compared to the CelOO resistor at the same temperature, the resistance of the Z20 was more than an order of magnitude lower. Since the thick film shape of CelOO and Z20 are the same and the electrode shape is also the same, it can be concluded that the resistivity of Z20 is at least one order of magnitude lower than that of CelOO. With the Z20, 873K: almost no power except for 500ppmSO. 873K: Even at 500ppmSO, CelO
2 2  twenty two
0の 873 :、 500ppmSOより影響力 S/Jヽさ力つた。  0 of 873: Influence from 500ppmSO.
2  2
[0040] 排ガスの SO 濃度は lppm以下であることが知られている〔F. Hashimoto, T. T  [0040] It is known that the SO concentration in exhaust gas is lppm or less [F. Hashimoto, T. T.
2  2
anaka, O. Asami, Development of continuous high— sensitivity exnaust S O analyzer, R&D Review of Toyota CRDL, 34 [3] , (1999) 9— 16〕。した力 S anaka, O. Asami, Development of continuous high-sensitivity exnaust S O analyzer, R & D Review of Toyota CRDL, 34 [3], (1999) 9-16]. Force S
2 2
つて、 Z20では、実環境の 873K、 1073Kのいずれの温度においても影響が無いこ とが確認でき、本発明の効果が実証された。  With Z20, it was confirmed that there was no effect at any temperature of 873K and 1073K in the real environment, and the effect of the present invention was demonstrated.
実施例 2  Example 2
[0041] 酸化セリウムの粉末と酸化ハフニウムの粉末をセリウムイオンとハフニウムイオンの 比が 9 : 1になるように測りとり、メノウ乳鉢を使って、エタノールを分散媒として湿式で 混合した。混合後、乾燥させた粉末をプレス成型し、成型体を得た。成型体を 1400 °C空気中で 10時間焼成し、固相焼結させた。室温に冷却後、焼結体を粉砕し、粉末 を得た。得られた粉末と有機溶媒のビヒクルとを混合したペーストを、予め、白金の櫛 型の電極が形成された酸ィ匕アルミニウム基板上にスクリーン印刷により印刷した。次 に、空気中 500°Cで加熱し、引き続き、空気中 1300°Cで加熱し、厚膜を得た。 [0041] Cerium oxide powder and hafnium oxide powder were mixed with cerium ions and hafnium ions. The ratio was measured to 9: 1, and the mixture was wet-mixed using an agate mortar and ethanol as a dispersion medium. After mixing, the dried powder was press-molded to obtain a molded body. The molded body was fired in the air at 1400 ° C for 10 hours and solid-phase sintered. After cooling to room temperature, the sintered body was pulverized to obtain a powder. A paste in which the obtained powder and a vehicle of an organic solvent were mixed was previously printed by screen printing on an aluminum substrate on which a platinum comb-shaped electrode was formed. Next, the film was heated in air at 500 ° C and subsequently in air at 1300 ° C to obtain a thick film.
[0042] 1300°Cで焼成後の厚膜の組織を走査電子顕微鏡により観察したところ、粒径が 1から 2 mである多孔質体であった。また、膜厚は、 20 mであった。焼成後の厚 膜の X線回折分析を行ったところ、ハフニウムイオンが固溶して!/ヽることが確認できた 。実施例 1と同様の装置を用いて実験を行った。ガスの条件も実施例 1と同じである。 1073Kにおける実験結果を図 4に示す。比較例として、無添加酸ィ匕セリウムの抵抗 変化も併せて示す。 When the structure of the thick film after firing at 1300 ° C. was observed with a scanning electron microscope, it was a porous body having a particle size of 1 to 2 m. The thickness was 20 m. An X-ray diffraction analysis of the fired thick film confirmed that hafnium ions were in solid solution! / ヽ. An experiment was performed using the same device as in Example 1. The gas conditions are the same as in Example 1. Figure 4 shows the experimental results at 1073K. As a comparative example, the change in resistance of cerium oxide without additive is also shown.
[0043] ハフニウムイオン濃度が 10mol%であるハフニウム添加酸ィ匕セリウムを用いた抵抗 型酸素センサ (Hf 10)の抵抗は、無添加酸ィ匕セリウムを用いた抵抗型酸素センサ (C e 100)の抵抗より 30分の 1であり、ハフニウム酸ィ匕物添カ卩により抵抗が減少すること が確認された。  [0043] The resistance of the resistance-type oxygen sensor (Hf10) using hafnium-doped cerium oxynitride having a hafnium ion concentration of 10 mol% is determined by the resistance-type oxygen sensor (Ce100) using undoped oxidized cerium. The resistance was 30 times lower than that of the above, and it was confirmed that the resistance was reduced by the hafnium sardine-added kamuri.
[0044] CelOOの抵抗は、 500ppmSOのガスが導入されるとすぐに小さくなり、上記参考  [0044] The resistance of CelOO decreases as soon as 500 ppm SO gas is introduced,
2  2
例 1と同様に、 soの影響が認められた。一方、ハフニウム添加酸素センサの抵抗は  As in Example 1, the effect of so was observed. On the other hand, the resistance of the hafnium-added oxygen sensor is
2  2
500ppmSOを導入してもほとんど抵抗は変化せず、 SOの影響が無いことが確認  Even if 500 ppm SO is introduced, the resistance hardly changes, confirming that there is no influence of SO
2 2  twenty two
でき、本発明の効果が実証された。  As a result, the effect of the present invention was demonstrated.
産業上の利用可能性  Industrial applicability
[0045] 本発明は、酸ィ匕セリウムを使用した抵抗型酸素センサの出力安定ィ匕方法に係るも のであり、本発明により、酸ィ匕物半導体である酸ィ匕セリウムに抵抗を下げるための 4価 金属イオンを有する酸化物を添加することにより、二酸化硫黄ガスに対する、酸化セ リウムを使った抵抗型酸素センサの出力の変動を抑制することが可能となる。  The present invention relates to a method for stabilizing the output of a resistance type oxygen sensor using cerium oxide, and according to the present invention, it is intended to reduce the resistance to cerium oxide, which is an oxide semiconductor. By adding an oxide having a tetravalent metal ion, it is possible to suppress fluctuations in the output of a resistance-type oxygen sensor using cerium oxide with respect to sulfur dioxide gas.
[0046] また、本発明では、数百 ppm以下の二酸ィ匕硫黄に対する出力変動がなくなること、 二酸ィ匕硫黄が酸ィ匕物半導体の表面に付着しないようにするためのフィルターが不必 要となること、小型で構造が簡単な酸素センサを提供できること等の利点が得られる 。本発明の方法は、自動車又はボイラーの空燃比フィードバック制御システム又は自 動車排ガス触媒劣化システムに使われる抵抗型酸素センサに好適に適用できる。 図面の簡単な説明 Further, in the present invention, it is necessary to provide a filter for preventing output fluctuation with respect to sulfur dioxide at a concentration of several hundred ppm or less and preventing the sulfur dioxide from adhering to the surface of the semiconductor. The advantages are that it is important and that a small and simple oxygen sensor can be provided. . The method of the present invention can be suitably applied to a resistance-type oxygen sensor used in an air-fuel ratio feedback control system of an automobile or a boiler or an automobile exhaust gas catalyst deterioration system. Brief Description of Drawings
[図 1]従来技術における酸素センサの SOガスに対する出力変化を示す。 FIG. 1 shows a change in output of an oxygen sensor according to the related art with respect to SO gas.
2  2
[図 2]酸化セリウム微粉末を 873又は 1073Kで 500ppmSO + 10%O +Nのガス  [Figure 2] Cerium oxide fine powder at 873 or 1073K, 500ppmSO + 10% O + N gas
2 2 2 中 24hでァニールさせて得た試料の XRDパターンを示す。 (a)は 873K、(b)は 107 3Kにおける結果である。  The XRD pattern of the sample obtained by annealing at 22h in 222 is shown. (A) is the result at 873K, (b) is the result at 1073K.
[図 3]本発明の方法で安定化させた酸素センサの SOガスに対する出力変化を示す  FIG. 3 shows an output change with respect to SO gas of an oxygen sensor stabilized by the method of the present invention.
2  2
。この場合、抵抗を下げるため、酸ィ匕ジルコニウムを 20mol%添カ卩した。これを Z20と 記載した。  . In this case, zirconium oxide was added with 20 mol% to reduce the resistance. This was described as Z20.
[図 4]本発明の方法で安定ィ匕させた酸素センサの 1073Kにおける SOガスに対する  FIG. 4 shows that the oxygen sensor stabilized by the method of the present invention with respect to SO gas at 1073 K
2  2
出力変化を示す。この場合、抵抗を下げるため、酸ィ匕ハフニウムを 10mol%添加した 。これを Hf 10と記載した。 Indicates output change. In this case, 10 mol% of hafnium oxide was added to reduce the resistance. This was described as Hf10.

Claims

請求の範囲 The scope of the claims
[1] 酸化物半導体として酸化セリウムを主成分として使用した抵抗型酸素センサにおい て、当該酸化物半導体に、抵抗を下げるための 4価金属イオンを有する酸ィ匕物を添 加することにより、二酸ィ匕硫黄に対するセンサ出力の変動を抑制して、センサ出力を 安定化させることを特徴とする抵抗型酸素センサの出力安定ィ匕方法。  [1] In a resistance-type oxygen sensor using cerium oxide as an oxide semiconductor as a main component, an oxide semiconductor having a tetravalent metal ion for lowering resistance is added to the oxide semiconductor. A method for stabilizing the output of a resistance-type oxygen sensor, characterized by suppressing the fluctuation of the sensor output with respect to sulfur dioxide and stabilizing the sensor output.
[2] 4価金属イオンを有する酸化物が、ジルコニウムイオン又はハフニウムイオンを有す る酸ィ匕物である請求項 1に記載の抵抗型酸素センサの出力安定化方法。  2. The method for stabilizing the output of a resistance-type oxygen sensor according to claim 1, wherein the oxide having a tetravalent metal ion is an oxide having a zirconium ion or a hafnium ion.
[3] 抵抗型酸素センサが、自動車又はボイラーの空燃比フィードバック制御システムに 使われる抵抗型酸素センサである請求項 1又は 2に記載の抵抗型酸素センサの出力 安定化方法。  3. The method for stabilizing the output of a resistance-type oxygen sensor according to claim 1, wherein the resistance-type oxygen sensor is a resistance-type oxygen sensor used in an air-fuel ratio feedback control system of an automobile or a boiler.
[4] 抵抗型酸素センサが、自動車排ガス触媒劣化システムに使われる抵抗型酸素セン サである請求項 1又は 2に記載の抵抗型酸素センサの出力安定ィ匕方法。  4. The method for stabilizing the output of a resistance-type oxygen sensor according to claim 1, wherein the resistance-type oxygen sensor is a resistance-type oxygen sensor used in an automobile exhaust gas catalyst deterioration system.
PCT/JP2005/005034 2004-03-22 2005-03-18 Method of stabilizing output of resistance type oxygen sensor utilizing cerium oxide WO2005090953A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004082566 2004-03-22
JP2004-082566 2004-03-22
JP2004-304795 2004-10-19
JP2004304795A JP4431680B2 (en) 2004-03-22 2004-10-19 Output stabilization method for resistive oxygen sensor using cerium oxide

Publications (1)

Publication Number Publication Date
WO2005090953A1 true WO2005090953A1 (en) 2005-09-29

Family

ID=34993824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005034 WO2005090953A1 (en) 2004-03-22 2005-03-18 Method of stabilizing output of resistance type oxygen sensor utilizing cerium oxide

Country Status (3)

Country Link
JP (1) JP4431680B2 (en)
TW (1) TWI295371B (en)
WO (1) WO2005090953A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113219009A (en) * 2021-04-29 2021-08-06 西安交通大学苏州研究院 Sulfur dioxide gas-sensitive material, preparation method thereof, sulfur dioxide gas-sensitive element and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149189A (en) * 2001-08-28 2003-05-21 National Institute Of Advanced Industrial & Technology Resistance type oxygen sensor
JP2004085549A (en) * 2002-06-27 2004-03-18 National Institute Of Advanced Industrial & Technology Resistance oxygen sensor, oxygen sensor unit employing it and air-fuel ratio control system
JP2004093547A (en) * 2002-07-08 2004-03-25 National Institute Of Advanced Industrial & Technology Resistance type oxygen sensor, oxygen sensor system, and air-fuel ratio control system using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149189A (en) * 2001-08-28 2003-05-21 National Institute Of Advanced Industrial & Technology Resistance type oxygen sensor
JP2004085549A (en) * 2002-06-27 2004-03-18 National Institute Of Advanced Industrial & Technology Resistance oxygen sensor, oxygen sensor unit employing it and air-fuel ratio control system
JP2004093547A (en) * 2002-07-08 2004-03-25 National Institute Of Advanced Industrial & Technology Resistance type oxygen sensor, oxygen sensor system, and air-fuel ratio control system using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IZU N. ET AL: "Zr Ion Doped CeO2-kei Kagobutsu o Tsukatta Teikogata Sanso Sensor", CHEMICAL SENSORS, vol. 19, no. B, 2003, pages 160 - 162, XP002992462 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113219009A (en) * 2021-04-29 2021-08-06 西安交通大学苏州研究院 Sulfur dioxide gas-sensitive material, preparation method thereof, sulfur dioxide gas-sensitive element and preparation method thereof

Also Published As

Publication number Publication date
JP4431680B2 (en) 2010-03-17
TW200537092A (en) 2005-11-16
TWI295371B (en) 2008-04-01
JP2005308711A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
Izu et al. Development of resistive oxygen sensors based on cerium oxide thick film
Brosha et al. Mixed potential sensors using lanthanum manganate and terbium yttrium zirconium oxide electrodes
JP3524980B2 (en) Nitrogen oxide sensor
US5389340A (en) Module and device for detecting NOX gas
US20030057109A1 (en) Hydrogen sensing process and apparatus
Zhong et al. Ce incorporated pyrochlore Pr2Zr2O7 solid electrolytes for enhanced mild-temperature NO2 sensing
WO2016040963A1 (en) Amperometric solid electrolyte sensor and method for detecting nh3 and nox
Woo et al. Effect of electrode material and design on sensitivity and selectivity for high temperature impedancemetric NO x sensors
US7236083B2 (en) Resistance type oxygen sensor and oxygen sensor device using it and air/fuel ratio control system
Badwal et al. Performance of zirconia membrane oxygen sensors at low temperatures with nonstoichiometric oxide electrodes
JP3870261B2 (en) Resistance oxygen sensor, oxygen sensor device using the same, and air-fuel ratio control system
White et al. Effect of electrode microstructure on the sensitivity and response time of potentiometric NOx sensors
US20060213772A1 (en) Sensing element and method of making
Izu et al. Resistive oxygen gas sensors using ceria-zirconia thick films
WO2005090953A1 (en) Method of stabilizing output of resistance type oxygen sensor utilizing cerium oxide
Meixner et al. Sensors for monitoring environmental pollution
JP4625930B2 (en) Resistive oxygen sensor and air-fuel ratio control system using it
JP3589384B2 (en) Carbon monoxide sensor and its aging method
JP4153238B2 (en) Electrochemical oxygen pump cell and nitrogen oxide detector using the same
Xuchen et al. Preparation and characterization of LaNiO3 A/F ratio-sensitive thin film by sol–gel process based on amorphous citrate precursors
EP3719486B1 (en) Carbon dioxide gas sensor
JP2005083817A (en) Ammonia sensor
Cvejin et al. Synthesis of perovskite Sr doped lanthanide cobaltites and ferrites and application for oxygen sensors: a comparative study
JP2004085549A (en) Resistance oxygen sensor, oxygen sensor unit employing it and air-fuel ratio control system
JP2001099810A (en) Nitrogen oxide gas sensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase