WO2005088814A1 - Power converter, inverter x-ray high voltage unit, fluoroscopic system, x-ray ct system, mri system - Google Patents

Power converter, inverter x-ray high voltage unit, fluoroscopic system, x-ray ct system, mri system Download PDF

Info

Publication number
WO2005088814A1
WO2005088814A1 PCT/JP2005/004172 JP2005004172W WO2005088814A1 WO 2005088814 A1 WO2005088814 A1 WO 2005088814A1 JP 2005004172 W JP2005004172 W JP 2005004172W WO 2005088814 A1 WO2005088814 A1 WO 2005088814A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
voltage
ray
converter
inverter
Prior art date
Application number
PCT/JP2005/004172
Other languages
French (fr)
Japanese (ja)
Inventor
Takatsugu Oketa
Jun Takahashi
Hiroshi Takano
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to JP2006510974A priority Critical patent/JP4526130B2/en
Publication of WO2005088814A1 publication Critical patent/WO2005088814A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • G01R33/3852Gradient amplifiers; means for controlling the application of a gradient magnetic field to the sample, e.g. a gradient signal synthesizer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to an inverter X-ray high-voltage device, an X-ray fluoroscopic device, an X-ray CT device,
  • the present invention relates to a technology for avoiding a failure of a power conversion device and securing high reliability by avoiding the failure.
  • the power converter includes an AC rear turtle connected to a commercial power supply, a converter circuit connected to the AC rear turtle, a capacitor connected to the converter circuit, and an inverter circuit connected to the capacitor. It has a transformer connected to the inverter circuit, a rectifier circuit connected to the transformer, and a load.
  • the converter circuit converts (rectifies) the AC voltage of the AC reactor to DC voltage.
  • the capacitor removes (smooths) the Lipnore component superimposed on the DC voltage rectified by the converter circuit.
  • the inverter circuit converts the DC voltage smoothed by the capacitor into a high-frequency AC voltage.
  • the high-voltage transformer boosts the high-frequency AC voltage converted by the inverter circuit to an AC high voltage.
  • the rectifier circuit rectifies the high AC voltage boosted by the transformer into a high DC voltage.
  • the load is an X-ray tube or a gradient coil of a magnetic resonance imaging apparatus.
  • the capacitor itself generates heat due to the ripple current flowing during each smoothing operation, and depending on the heat generation and the use environment, the dielectric material of the capacitor or the electrolytic solution in the electrolytic capacitor may lose its electrolyte. It deteriorates each time the power converter is used. Deterioration of the capacitor not only causes the smoothing function to stop working, but also allows the inverter circuit to properly operate by supplying the lip-nore component not removed by the smoothing function to the inverter circuit. It does not work and the power converter breaks down.
  • Patent Literature 1 As one method of coping with capacitor deterioration.
  • Patent Document 1 discloses a measuring means for measuring any one of the capacitor's capacitance, tan ⁇ , leakage current, and impedance, and a measurement result obtained by the measuring means.
  • Storage means for sequentially storing the data; and determination means for determining the deterioration of the capacitor based on the result stored in the storage means. Is predicted and displayed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-267708
  • Patent Document 1 only describes that the deterioration determination of the capacitor is performed in time series, and does not explain the urgency and importance of the deterioration determination of the capacitor when used in the power converter. So it is not effective.
  • Patent Document 1 since the deterioration judgment of the capacitor uses the characteristic judgment value of the capacitor stored in the database in advance, the influence of the inherent variation of the capacitor on the deterioration of the capacitor itself is considered. Not.
  • Patent Document 1 after determining deterioration failure of a capacitor, a specific warning notification method is taken into consideration.
  • a power conversion device of the present invention provides a converter for rectifying a commercial AC voltage to a DC voltage, a capacitor for smoothing the DC voltage rectified by the converter, and a DC voltage smoothed by the capacitor for converting the DC voltage to a predetermined voltage.
  • An inverter for converting the voltage into an AC voltage, a measuring means for measuring the charge / discharge characteristics of the capacitor each time the power converter is used, and a charge / discharge characteristic of the capacitor in an initial state in advance measured by the measuring means.
  • That measurement Storage means for storing the charge / discharge characteristics of the capacitor in a defined initial state; charge / discharge characteristics of the capacitor measured by the measuring means each time the capacitor is used; and charge / discharge characteristics of the capacitor in the initial state stored by the storage means.
  • Comparison means for comparing the discharge characteristics; capacitor deterioration determination means for determining the deterioration state of the capacitor based on the result of comparison by the comparison means; and notification of the deterioration state of the capacitor determined by the capacitor deterioration determination means.
  • a notifying means for storing the charge / discharge characteristics of the capacitor in a defined initial state; charge / discharge characteristics of the capacitor measured by the measuring means each time the capacitor is used; and charge / discharge characteristics of the capacitor in the initial state stored by the storage means.
  • FIG. 1 is a block diagram showing a configuration example of an X-ray fluoroscopic apparatus employing a power conversion device of the present invention.
  • FIG. 2 is a block diagram showing a configuration example of an X-ray CT apparatus to which the power converter of the present invention is applied.
  • FIG. 3 is a block diagram showing an embodiment of an inverter type X-ray high voltage device employing the power converter of the present invention.
  • FIG. 4 is a graph showing a comparison of a voltage drop time until a predetermined voltage value is reached in a voltage drop curve across the capacitor in FIG. 3.
  • FIG. 5 is a graph showing a comparison relationship between voltage values at a predetermined falling time in a voltage drop curve across the capacitor in FIG. 3.
  • FIG. 6 is a block diagram showing a configuration example of an MRI apparatus to which the power converter of the present invention is applied.
  • FIG. 7 is a block diagram showing a configuration example of a power converter employed in the MRI apparatus of FIG. 6.
  • Medical diagnostic imaging devices using X-ray tubes include X-ray fluoroscopy devices and X-ray CT devices.
  • the system configuration example of the X-ray fluoroscope is explained using Fig. 1, and the system configuration of the X-ray CT system is shown in Fig. 2. Will be explained.
  • FIG. 1 is an example of an X-ray fluoroscopic apparatus, which is an example of the configuration of a system used for a C-arm type X-ray fluoroscopic apparatus.
  • the C-arm X-ray fluoroscope includes an inverter X-ray high-voltage device 100, a bed 101, an image receiving device 102, a monitor 103 connected to the image receiving device 102, a bed 101, an image receiving device 102, and an X-ray tube.
  • a console 104 connected to 107; a support device 106 for supporting the image receiving device 102 and the X-ray tube 107 in opposition; an X-ray tube 107 connected to the inverter X-ray high-voltage device 100 and a high-voltage cable 105; have.
  • the inverter X-ray high-voltage device 100 is a power conversion device to which an X-ray tube 107 is connected as a load.
  • the bed 101 is a table on which a patient is placed.
  • the image receiving device 102 is a film for receiving an X-ray transmission image transmitted through a patient, an image intensifier (I ⁇ ), an X-ray flat panel detector (FPD), or the like.
  • the monitor 103 displays an X-ray transmission image in the X-ray room.
  • the console 104 has a function of setting X-ray conditions, displaying an X-ray transmission image, and controlling the operations of the X-ray tube 107, the image receiving device 102, and the bed 101.
  • the high voltage cable 105 supplies a high voltage from the inverter X-ray high voltage device 100 to the X-ray tube 107.
  • the support device 106 supports the X-ray tube 107 and the image receiving device 102 so as to face each other.
  • the X-ray tube 107 emits X-rays to the patient.
  • the X-ray fluoroscopic apparatus configured as described above operates the couch 101 and the support device 106 to position the region where the patient is to be imaged, and then sets the X-ray conditions on the console 104, Based on the set X-ray conditions, a DC high voltage (tube voltage) is applied from the inverter X-ray high-voltage device 100 to the X-ray tube 107 via the high-voltage cable 105, and the X-ray tube 107 transfers the bed 101 X-rays are applied to the patient placed on The irradiated X-rays pass through the patient and are received by the image receiving device 102. The transmitted image received by the image receiving device 102 is displayed on the monitor 103 and the monitor attached to the console 104.
  • a DC high voltage tube voltage
  • FIG. 2 shows an example of a system configuration of the X-ray CT apparatus.
  • the X-ray CT apparatus includes an X-ray tube 201, an X-ray finometer 202 and a collimator 203 provided in the X-ray irradiation direction from the X-ray tube 201, a bed top 204, and an input surface direction of the X-ray detector 206.
  • An opening 210 is provided at the center of the gantry 208, and a subject 209 is inserted and arranged therein.
  • An X-ray generation / detection system including the X-ray tube 201, the X-ray filter 202, the collimator 203, the X-ray grid 205, and the X-ray detector 206 is referred to as an imaging system.
  • the photographing system is fixed to a rotating plate 207 and is rotated by a known drive motor (not shown).
  • the rotation axis of the rotation plate 207 is the Z axis.
  • the horizontal and vertical coordinate axes with the rotation center ⁇ as the origin are the X axis and the Y axis, respectively.
  • the rotation angle of the X-ray generation point S with respect to the X axis is ⁇ .
  • X-ray detector 206 is a solid state detector composed of a ceramic scintillator element.
  • each ceramic scintillator element is arranged on an arc approximately equidistant from the X-ray generation point S.
  • the X-ray CT apparatus operates in the following procedure.
  • the examiner sets the measurement area in the Z-axis direction, the imaging mode, and the like of the subject 209 through the measurement condition setting means 211.
  • the measurement condition setting means 211 inputs the information of the set values to the collimator control means 218 and the imaging control means 212.
  • the collimator control means 218 controls the collimator 203 based on the set value and changes the X-ray irradiation area.
  • the imaging control means 212 defines the timing of X-ray generation of the X-ray tube 201 and the imaging timing of the X-ray detector 206 based on the set values.
  • the photographing control unit 212 defines a rotation sequence given to the rotating plate driving unit 213 and a movement sequence given to the bed moving unit 214. Further, the photographing control means 212 also defines a sequence of reading and storing the photographed data to be given to the image collecting means 215.
  • the rotating plate driving unit 213 uses a known driving motor (not shown) based on the rotation sequence given by the photographing control unit 212.
  • the couch moving means 214 uses the known couch drive sequence (not shown) based on the couch moving sequence given to the imaging control means 212 to move the couch top 204 and the subject 209 arranged on the couch top 204 along the Z axis.
  • the X-rays generated from the X-ray tube 201 are irradiated with an X-ray filter 202 to remove low-energy components harmful to the human body, and after the irradiation area is limited by a collimator 203, the X-ray is irradiated on a subject 209.
  • the X-ray transmitted through the subject 209 is detected by the X-ray detector 206 after scattered radiation is removed by the X-ray grid 205, and is converted into an electric signal.
  • the detected electric signal is sent to the image collecting means 215 via a known slip ring mechanism (not shown).
  • the image collecting means 215 converts the detected electric signal into digital data by a known A / D converter (not shown) and stores the digital data.
  • the image processing means 216 reconstructs the CT image based on the stored digital data, and displays the result on the image display means 217.
  • FIG. 3 shows an example of an inverter type X-ray high voltage device in which an X-ray tube is connected to a load of the power converter of the present embodiment.
  • the inverter type X-ray high-voltage device is composed of a voltage step-up converter (301) connected to the commercial voltage, a capacitor (302) connected to the boost converter (301), and a resistor (303) connected to the capacitor (302). , A high voltage transformer 305 connected to the inverter 304, a high voltage rectifier 306 connected to the high voltage transformer 305, and a high voltage rectifier 306 connected to the resistor 303.
  • the 301 is a high power factor converter with a boost function using an IGBT (Insulated Gate Bipolar Transistor) which is a power module.
  • This step-up converter 301 rectifies a 50 Hz or 60 Hz commercial three-phase AC power supply voltage by a PWM (Pulse Width Modulation) operation, and substantially controls the advance or delay of the phase voltage and phase current. By setting it to zero, the power factor is almost 1.
  • the boost converter 301 operates as a full-wave rectifier circuit when the operation of the IGBT is stopped, and the DC output voltage at the time of the full-wave rectification becomes twice the value of the AC input voltage.
  • the capacitor 302 is connected in series to secure a withstand voltage twice as high as the AC input voltage.
  • the resistor 303 is provided to equalize the voltage distribution of the two capacitors 302 connected in series.
  • Inverter 304 is boost converter 301 The DC voltage output from the DC-DC converter is converted into a high-frequency AC voltage.
  • the inverter 304 also has a function of controlling a voltage (tube voltage) applied to the X-ray tube 308 as a load.
  • the high-voltage transformer 305 has its primary winding connected to the output side of the inverter 302, and boosts the AC voltage converted by the inverter 304.
  • the high-voltage rectifier 306 converts the high-frequency high voltage from the secondary winding of the high-voltage transformer 305 into a DC high voltage, the output end of which is connected to the X-ray tube 308, and the DC high voltage is connected to the X-ray tube 8. Is applied to The tube voltage detector 307 detects a voltage applied to the X-ray tube 308.
  • the X-ray tube 308 is supplied with a DC high voltage from the rectifier 306 to generate X-rays.
  • the digital control circuit 312 has a converter control unit 309, a capacitor deterioration monitoring unit 310, and an inverter control unit 311.
  • Converter control section 309 performs switch control on the IGBT in boost converter 301.
  • the capacitor deterioration monitoring unit 310 monitors the deterioration of the capacitor 302.
  • the inverter control unit 311 has a function of detecting the phase current and the output voltage of the boost converter 301, detecting the tube voltage with the tube voltage detector 307, and making it match the target value.
  • the operation unit 313 sets operation conditions such as a tube voltage, a tube current, and an X-ray irradiation time, and commands for the digital control circuit 312. It also has a function to monitor the state of the power converter.
  • the capacitor deterioration monitoring section 310 which is a main part of the present invention, is configured as follows.
  • the capacitor 302 When the power converter operates the boost converter 301 in its initial state (at the time of shipment or installation, etc.) and then stops its operation (non-boost state), the capacitor 302 is discharged via the resistor 303. Then, the state shifts to the full-wave rectification state.
  • the capacitor deterioration monitoring unit 310 detects a characteristic of a voltage drop across the capacitor 302 during a period in which the capacitor 302 shifts from discharging to full-wave rectification. Further, capacitor deterioration monitoring section 310 stores the detected voltage drop characteristic as a voltage drop characteristic in an initial state in a memory in capacitor deterioration diagnosis section 310.
  • the value of the voltage drop after a predetermined time from the stop of the boosting operation of boost converter 301 is stored. Further, as another storage method, as shown in FIG. 5, the voltage drops from the stop of the boost operation of the boost converter 301 until the voltage reaches a predetermined voltage value. The elapsed time at is stored.
  • the capacitor deterioration diagnosis unit 310 starts full-wave rectification from when the boosting operation of the boost converter 301 is stopped.
  • the voltage drop characteristics of the capacitor 302 during the period before transition to the state are detected as the voltage drop characteristics during use.
  • the capacitor deterioration diagnosis unit 310 compares the voltage drop characteristics in the initial state stored in the memory with the voltage drop characteristics during use of the device, and if the comparison result at least satisfies the following items, the capacitor 302 is deteriorated. Judge as having done.
  • the capacitor deterioration monitoring unit 310 generates a warning signal when it is determined that the capacitor 302 has deteriorated.
  • the generated warning signal is transmitted to the warning display unit 314 of the operation unit 313.
  • warning display section 314 When a warning signal is received from capacitor deterioration monitoring section 310, warning display section 314 notifies the operator of the warning.
  • the notification means that the operator of the medical image diagnostic apparatus is notified through the five senses, such as visual information such as display, auditory information such as voice, tactile information by vibration such as a vibrator function of a mobile phone, and the like.
  • the notification at this time is performed on the following items alone or in combination.
  • the warning display section 314 displays a direct message that "deterioration of the capacitor is recognized".
  • the warning display unit 314 may be provided with a separate voice generator and a speaker to generate the message by voice. Further, the warning display unit 314 may vibrate the housing of the warning display unit 314 together with the display of the message or the generation of sound.
  • the warning display section 314 displays an indirect message "Please contact the service center within one week with this warning code" together with the warning code.
  • the warning display unit 314 may be provided with a separate voice generator and a speaker, and generate the message by voice. Further, the warning display unit 314 may vibrate the housing of the warning display unit 314 together with the display of the message or the generation of sound.
  • the warning display section 314 turns on a warning lamp. If this warning lamp imitates an electrolytic capacitor, it is easy to understand intuitively.
  • the warning display unit 314 transmits the deterioration information of the capacitor 302 to the network 315 via an interface capable of transmitting to the network 315 such as the Internet, regardless of the display or non-display of (1)-(3) above.
  • a receiving terminal 316 (such as a personal computer) installed in a service center connected to the network 315 receives the deterioration information of the capacitor 302 transmitted by the transmitting means, and You may let us know the situation.
  • the converter circuit is a step-up converter, a high withstand voltage switch proportional to the voltage applied to the capacitor is not required, which can contribute to the miniaturization of the device.
  • the present embodiment when used for an inverter-type X-ray high-voltage device to which a boost type high power factor converter is applied, the power of the capacitor in an initial state that requires no special components is required. Since the drop characteristic is used as a criterion for the deterioration determination, it is possible to perform the deterioration determination of the capacitor with high accuracy for each capacitor.
  • the converter circuit is a boost converter
  • the converter may not be limited to a boost converter when implementing the present invention.
  • the point of the present invention is to eliminate the influence on the power converter due to the deterioration of the capacitor, so that the frequency of diagnosis of deterioration of the capacitor becomes a problem, and the type of converter is not limited to the boost type. .
  • the present embodiment describes a case where the load of the power converter is a gradient coil of the MRI apparatus.
  • FIG. 6 is a diagram showing an overall outline of an MRI apparatus to which the present invention is applied.
  • This MRI device The static magnetic field magnet 601 that generates a uniform static magnetic field in the space where the subject 612 is placed, the gradient magnetic field coil 602 that forms a magnetic field gradient in this space, and the nuclei of the atoms that make up the tissue of the subject 612
  • the gradient magnetic field coil 602 is connected to a gradient magnetic field power supply 603, and the irradiation coil 604 is connected to a transmission system 605 composed of an oscillator, a modulator, an amplifier, and the like that oscillates a high frequency having the same frequency as the resonance frequency.
  • the receiving coil 606 is connected to a receiving system 607 including an amplifier, a phase detector, an A / D converter, and the like.
  • the gradient magnetic field power supply 603, the transmission system 605, and the reception system 607 are connected to the CPU 608.
  • the CPU 608 controls the operations of the gradient magnetic field power supply 603, the transmission system 605, and the reception system 607, performs signal processing on the NMR signal received by the reception system 607, and performs operations such as image reconstruction.
  • the CPU 608 includes a storage device 611 such as a ROM and a RAM for storing a program for the control and a program for the calculation, a calculation result and the like, a display 609 for displaying an image and the like as a calculation result, and a device.
  • An operation console 610 is provided for inputting commands for operation, imaging conditions, and the like.
  • an imaging sequence such as a gradient echo method is incorporated as a program in advance, and a desired imaging sequence can be selected on console 610.
  • parameters of the imaging conditions for example, the slice thickness / slice encoding number, imaging field of view (FOV), frequency band, asymmetric measurement rate (AMI), sampling number, etc. are set for the slice.
  • a power supply device 701 for generating a gradient magnetic field is a power supply type AC / DC converter connected to a commercial power supply 702. And a capacitor 704 connected to the power supply type AC / DC converter 703, a resistor 705 and a current amplifier 706 connected to the capacitor 704.
  • the power supply type AC / DC converter 703 converts an AC current of the commercial power supply 702 into a DC current.
  • the capacitor 704 smoothes the DC current converted by the AC / DC converter 703.
  • the resistor 705 is connected in parallel with the capacitor 704 to enable the voltage detector 720 to detect the voltage.
  • the current amplifier 706 amplifies the DC current smoothed by the capacitor 704.
  • the gradient coil 707 is driven by the current amplified by the current amplifier 706.
  • the AC / DC converter 703 used here includes a rear turtle 708-710 connected to the commercial power supply 702, a flywheel diode fully connected to the rear turtle 708-710, and a switching connected in parallel to the flywheel diode. IGBT711-716 as elements.
  • the output voltage of such a voltage type AC / DC converter 703 is controlled by a control circuit 717. That is, the control circuit 717 determines the input current to the voltage-type AC / DC converter 703 detected by the current detectors 718 and 719, the voltage of the capacitor 704 detected by the voltage detection means 720, and the voltage input from the outside. The output voltage is feedback-controlled based on the command value. In this control, the smoothing capacitor 704 is charged through the rear turtle 708-710 and the switching elements 711-716 connected to the commercial power supply, and the charging voltage is changed to a high voltage by changing the duty ratio of the switching elements 711-716. Controlling. The output current of the current amplifier 706 is feedback-controlled by the control circuit 721. The control circuit 717 calculates the amplification factor of the current amplifier 706 based on the current value detected by the current detector 722 and the specified current value input from the outside, and controls the current amplifier 706 based on the calculated amplification factor. are doing.
  • the voltage detecting means 720 detects the voltage of the capacitor 704 via the resistor 705 at any time.
  • the capacitor deterioration monitoring unit 723 is provided in the control circuit 717, and discharges the capacitor 704 from the boosted state of the power supply AC / DC converter 703 and shifts the capacity to the non-boosted state. Measure the voltage drop characteristics when both ends are used. Further, similarly to the first embodiment, the capacitor deterioration monitoring unit 723 compares the voltage drop characteristics in the initial state of the power supply for the MRI apparatus and the voltage drop characteristics during the use, which are stored in the memory of the capacitor deterioration monitoring unit 723 in advance. Compare.
  • the capacitor deterioration monitoring unit 723 determines that the capacitor 704 has deteriorated when it is recognized that the voltage drop characteristic during use is shorter than the predetermined value in the voltage drop time from the initial state.
  • the operation unit 724 of the MRI apparatus reports the deterioration state of the capacitor 704 determined by the capacitor deterioration monitoring unit 723.
  • the notification method at this time is performed by the method described in the first embodiment.
  • the present invention when the present invention is applied to the power supply device for MRI, a failure due to deterioration of the capacitor can be prevented beforehand, so that high reliability as a stable power supply to be supplied to the MRI device can be secured.
  • the power in which a three-phase boost converter is used is not limited to this.
  • the present invention is not limited to this and can be applied to a power converter using a single-phase boost converter. Needless to say.
  • the power conversion device of the present invention can prevent a failure due to deterioration of the capacitor beforehand, and thus can secure high reliability as a stable power supply to be supplied to the medical image diagnostic apparatus.

Abstract

A power converter comprising a converter for rectifying a commercial AC voltage to produce a DC voltage, a capacitor for smoothing the DC voltage, an inverter for converting the smoothed DC voltage into an AC voltage of a specified frequency, a means for measuring the charge/discharge characteristics of the capacitor every time when the power converter is used, a storing for previously measuring the charge/discharge characteristics of the capacitor in an initial state by that measuring means and storing the measured characteristics, a means for comparing the charge/discharge characteristics measured every time when the power converter is used with the charge/discharge characteristics in an initial state thus stored, a means for judging deteriorated state of the capacitor based on the comparison results, and a means for informing the deteriorated state of the capacitor. Since a trouble incident to deterioration of the capacitor can be prevented, high reliability can be ensured as a stabilized power supply for a medical image diagnostic system.

Description

明 細 書  Specification
電力変換装置、インバータ X線高電圧装置、 X線透視撮影装置、 X線 CT 装置、 MRI装置  Power conversion equipment, inverter X-ray high-voltage equipment, X-ray fluoroscopy equipment, X-ray CT equipment, MRI equipment
技術分野  Technical field
[0001] 本発明は、インバータ X線高電圧装置、 X線透視撮影装置、 X線 CT装置及び  The present invention relates to an inverter X-ray high-voltage device, an X-ray fluoroscopic device, an X-ray CT device,
MRI(Magnetic Resonance Imaging :磁気共鳴イメージング)装置を含む医用画像診断 装置の電源として用いられる電力変換装置に係り、特にインバータの入力段に設け られるキャパシタの劣化状況を観察し、その観察によりキャパシタ劣化による電力変 換装置の故障を未然に回避し、その故障回避により高い信頼性を確保する技術に 関する。  In the field of power converters used as power supplies for medical image diagnostic equipment including MRI (Magnetic Resonance Imaging) equipment, observe the deterioration of capacitors provided at the input stage of the inverter, and observe the deterioration of the capacitors. The present invention relates to a technology for avoiding a failure of a power conversion device and securing high reliability by avoiding the failure.
背景技術  Background art
[0002] 電力変換装置は、商用電源と接続される交流リアタトルと、この交流リアタトルと接続 されるコンバータ回路と、このコンバータ回路と接続されるキャパシタと、このキャパシ タと接続されるインバータ回路と、このインバータ回路と接続される変圧器と、この変 圧器と接続される整流回路と、負荷とを有している。  [0002] The power converter includes an AC rear turtle connected to a commercial power supply, a converter circuit connected to the AC rear turtle, a capacitor connected to the converter circuit, and an inverter circuit connected to the capacitor. It has a transformer connected to the inverter circuit, a rectifier circuit connected to the transformer, and a load.
[0003] 交流リアタトルは商用電源が供給される。コンバータ回路は交流リアタトルの交流電 圧を直流電圧に変換 (整流)する。キャパシタはコンバータ回路によって整流された直 流電圧に重畳したリプノレ成分を除去 (平滑)する。インバータ回路はキャパシタによつ て平滑された直流電圧を高周波交流電圧に変換する。高電圧変圧器はインバータ 回路によって変換された高周波交流電圧を交流高電圧に昇圧する。整流回路は変 圧器によって昇圧された交流高電圧を直流高電圧に整流する。負荷は、 X線管又は 磁気共鳴イメージング装置の傾斜磁場コイル等である。  [0003] Commercial AC power is supplied to the AC rear turtle. The converter circuit converts (rectifies) the AC voltage of the AC reactor to DC voltage. The capacitor removes (smooths) the Lipnore component superimposed on the DC voltage rectified by the converter circuit. The inverter circuit converts the DC voltage smoothed by the capacitor into a high-frequency AC voltage. The high-voltage transformer boosts the high-frequency AC voltage converted by the inverter circuit to an AC high voltage. The rectifier circuit rectifies the high AC voltage boosted by the transformer into a high DC voltage. The load is an X-ray tube or a gradient coil of a magnetic resonance imaging apparatus.
[0004] ここで、前記キャパシタは毎回の平滑動作時にリプル電流が流れることにより前記キ ャパシタ自身が発熱し、その発熱や使用環境によりそのキャパシタの誘電体やあるい は電解キャパシタでは電解液等が電力変換装置を使用するたびに劣化していく。キ ャパシタの劣化は平滑機能が働かなくなるだけでなぐその平滑機能によって除去さ れなかったリプノレ成分がインバータ回路に供給されることでインバータ回路が適正に 作動せず、上記電力変換装置が故障してしまう。 [0004] Here, the capacitor itself generates heat due to the ripple current flowing during each smoothing operation, and depending on the heat generation and the use environment, the dielectric material of the capacitor or the electrolytic solution in the electrolytic capacitor may lose its electrolyte. It deteriorates each time the power converter is used. Deterioration of the capacitor not only causes the smoothing function to stop working, but also allows the inverter circuit to properly operate by supplying the lip-nore component not removed by the smoothing function to the inverter circuit. It does not work and the power converter breaks down.
そこで、キャパシタ劣化の一つの対処法として [特許文献 1]がある。  Then, there is [Patent Literature 1] as one method of coping with capacitor deterioration.
[0005] [特許文献 1]は、キャパシタの静電容量、 tan δ、漏れ電流、インピーダンスのいず れかのキャパシタの電気的特性値を計測する計測手段と、計測手段で計測した結果 を時系列的に記憶する記憶手段と、記憶手段に記憶された結果に基づいてキャパシ タの劣化を判定する判定手段とを有し、キャパシタの時系列的に計測された電気的 特性値のデータよりキャパシタの劣化を予測して、表示するものである。 [0005] [Patent Document 1] discloses a measuring means for measuring any one of the capacitor's capacitance, tan δ, leakage current, and impedance, and a measurement result obtained by the measuring means. Storage means for sequentially storing the data; and determination means for determining the deterioration of the capacitor based on the result stored in the storage means. Is predicted and displayed.
特許文献 1:特開 2002 - 267708号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2002-267708
[0006] しかし、 [特許文献 1]の対処法は、信号処理回路の基板上に載せられた電解キヤ パシタを回路から外さずにキャパシタの劣化診断を行うことが目的であるため、医用 画像診断装置の電源として適用される電力変換装置の高信頼性の要求に応えるた めには次の項目が依然として不足してレ、る。 [0006] However, the measure of [Patent Document 1] is to diagnose the deterioration of the capacitor without removing the electrolytic capacitor mounted on the substrate of the signal processing circuit from the circuit. The following items are still lacking in order to meet the demand for high reliability of power converters applied as power sources for devices.
(1)電力変換装置では、キャパシタの劣化判定を頻繁に行い、キャパシタの劣化によ る故障が決定的となる前に対処しなければならない。  (1) In the power conversion device, deterioration of the capacitor must be determined frequently, and measures must be taken before failure due to deterioration of the capacitor becomes definitive.
しかし、 [特許文献 1]では、キャパシタの劣化判定を時系列的に行うとだけしか記載 されておらず、電力変換装置で用いる際のキャパシタの劣化判定の緊急性、重要性 が説明されていないので、実効性がない。  However, [Patent Document 1] only describes that the deterioration determination of the capacitor is performed in time series, and does not explain the urgency and importance of the deterioration determination of the capacitor when used in the power converter. So it is not effective.
(2) [特許文献 1]において、キャパシタの劣化判定は、予めデータベースに蓄積して あるキャパシタの特性判定値を使うため、キャパシタの固有のばらつきがそのキャパ シタ自身の劣化に及ぼす影響について考慮されていない。  (2) In [Patent Document 1], since the deterioration judgment of the capacitor uses the characteristic judgment value of the capacitor stored in the database in advance, the influence of the inherent variation of the capacitor on the deterioration of the capacitor itself is considered. Not.
(3) [特許文献 1]では、キャパシタの劣化故障を判断した後、具体的な警告の報知方 法にっレ、て考慮されてレ、なレ、。  (3) In [Patent Document 1], after determining deterioration failure of a capacitor, a specific warning notification method is taken into consideration.
発明の開示  Disclosure of the invention
[0007] 本発明の電力変換装置は、商用交流電圧を直流電圧に整流するコンバータと、こ のコンバータによって整流された直流電圧を平滑するキャパシタと、このキャパシタに よって平滑された直流電圧を所定の周波数の交流電圧に変換するインバータと、電 力変換装置の使用時毎に前記キャパシタの充放電特性を測定する測定手段と、予 め初期状態の前記キャパシタの充放電特性を前記測定手段によって測定し、その測 定された初期状態の前記キャパシタの充放電特性を記憶する記憶手段と、この測定 手段によって前記使用時毎に測定されたキャパシタの充放電特性と前記記憶手段 によって記憶された初期状態のキャパシタの充放電特性を比較する比較手段と、こ の比較手段によって比較された結果に基づき前記キャパシタの劣化状態を判定する キャパシタ劣化判定手段と、このキャパシタ劣化判定手段によって判定されたキャパ シタの劣化状態を報知する報知手段と、を備える。 [0007] A power conversion device of the present invention provides a converter for rectifying a commercial AC voltage to a DC voltage, a capacitor for smoothing the DC voltage rectified by the converter, and a DC voltage smoothed by the capacitor for converting the DC voltage to a predetermined voltage. An inverter for converting the voltage into an AC voltage, a measuring means for measuring the charge / discharge characteristics of the capacitor each time the power converter is used, and a charge / discharge characteristic of the capacitor in an initial state in advance measured by the measuring means. , That measurement Storage means for storing the charge / discharge characteristics of the capacitor in a defined initial state; charge / discharge characteristics of the capacitor measured by the measuring means each time the capacitor is used; and charge / discharge characteristics of the capacitor in the initial state stored by the storage means. Comparison means for comparing the discharge characteristics; capacitor deterioration determination means for determining the deterioration state of the capacitor based on the result of comparison by the comparison means; and notification of the deterioration state of the capacitor determined by the capacitor deterioration determination means. And a notifying means.
これによつて、キャパシタの劣化に伴う故障を未然に防ぐことができるので、医用画 像診断装置に供給する安定した電源として高い信頼性を確保できる。  Accordingly, a failure due to the deterioration of the capacitor can be prevented beforehand, so that high reliability can be secured as a stable power supply to be supplied to the medical image diagnostic apparatus.
図面の簡単な説明  Brief Description of Drawings
[0008] [図 1]本発明の電力変換装置が採用される X線透視撮影装置の構成例を示すブロッ ク図である。  FIG. 1 is a block diagram showing a configuration example of an X-ray fluoroscopic apparatus employing a power conversion device of the present invention.
[図 2]本発明の電力変換装置が採用される X線 CT装置の構成例を示すブロック図で ある。  FIG. 2 is a block diagram showing a configuration example of an X-ray CT apparatus to which the power converter of the present invention is applied.
[図 3]本発明の電力変換装置が採用されるインバータ式 X線高電圧装置の実施例を 示すブロック図である。  FIG. 3 is a block diagram showing an embodiment of an inverter type X-ray high voltage device employing the power converter of the present invention.
[図 4]図 3のキャパシタ両端の電圧降下曲線においてある所定の電圧値に至るまでの 電圧下降時間の比較関係を示すグラフである。  FIG. 4 is a graph showing a comparison of a voltage drop time until a predetermined voltage value is reached in a voltage drop curve across the capacitor in FIG. 3.
[図 5]図 3のキャパシタ両端の電圧降下曲線においてある所定の下降時間における 電圧値の比較関係を示すグラフである。  5 is a graph showing a comparison relationship between voltage values at a predetermined falling time in a voltage drop curve across the capacitor in FIG. 3.
[図 6]本発明の電力変換装置が採用される MRI装置の構成例を示すブロック図である  FIG. 6 is a block diagram showing a configuration example of an MRI apparatus to which the power converter of the present invention is applied.
[図 7]図 6の MRI装置に採用する電力変換装置の構成例を示すブロック図である。 発明を実施するための最良の形態 FIG. 7 is a block diagram showing a configuration example of a power converter employed in the MRI apparatus of FIG. 6. BEST MODE FOR CARRYING OUT THE INVENTION
[0009] 以下、図面に基づいて本発明の実施形態を説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
実施例 1  Example 1
[0010] 本実施例では、電力変換装置の負荷が X線管である場合を説明する。 X線管を用 いた医用画像診断装置は、 X線透視撮影装置、 X線 CT装置がある。 X線透視撮影装 置のシステム構成例は図 1を用いて説明し、 X線 CT装置のシステム構成は図 2を用い て説明する。 In the present embodiment, a case where the load of the power converter is an X-ray tube will be described. Medical diagnostic imaging devices using X-ray tubes include X-ray fluoroscopy devices and X-ray CT devices. The system configuration example of the X-ray fluoroscope is explained using Fig. 1, and the system configuration of the X-ray CT system is shown in Fig. 2. Will be explained.
[0011] 図 1は X線透視撮影装置の一例で Cアーム型 X線透視撮影装置に用いたシステム の構成例である。  FIG. 1 is an example of an X-ray fluoroscopic apparatus, which is an example of the configuration of a system used for a C-arm type X-ray fluoroscopic apparatus.
Cアーム型 X線透視撮影装置は、インバータ X線高電圧装置 100と、寝台 101と、受 像装置 102と、受像装置 102と接続されるモニタ 103と、寝台 101、受像装置 102及び X 線管 107と接続される操作卓 104と、受像装置 102と X線管 107を対向支持する支持装 置 106と、インバータ X線高電圧装置 100と高電圧ケーブル 105によって接続される X 線管 107と、を有している。  The C-arm X-ray fluoroscope includes an inverter X-ray high-voltage device 100, a bed 101, an image receiving device 102, a monitor 103 connected to the image receiving device 102, a bed 101, an image receiving device 102, and an X-ray tube. A console 104 connected to 107; a support device 106 for supporting the image receiving device 102 and the X-ray tube 107 in opposition; an X-ray tube 107 connected to the inverter X-ray high-voltage device 100 and a high-voltage cable 105; have.
[0012] インバータ X線高電圧装置 100は X線管 107が負荷として接続された電力変換装置 である。寝台 101は患者を乗せる台である。受像装置 102は患者を透過した X線透過 像を受けるフィルムや、イメージインテンシファイア (I丄)、 X線平面検出器 (FPD)等であ る。モニタ 103は X線室内にて X線透過像を表示する。操作卓 104は X線条件の設定、 X線透過像の表示、及び X線管 107、受像装置 102、寝台 101のそれぞれの動作を制 御する機能を有する。高電圧ケーブル 105はインバータ X線高電圧装置 100からの高 電圧を X線管 107に供給する。支持装置 106は、 X線管 107と受像装置 102とを対向配 置するように支持する。 X線管 107は患者に X線を照射する。  The inverter X-ray high-voltage device 100 is a power conversion device to which an X-ray tube 107 is connected as a load. The bed 101 is a table on which a patient is placed. The image receiving device 102 is a film for receiving an X-ray transmission image transmitted through a patient, an image intensifier (I 丄), an X-ray flat panel detector (FPD), or the like. The monitor 103 displays an X-ray transmission image in the X-ray room. The console 104 has a function of setting X-ray conditions, displaying an X-ray transmission image, and controlling the operations of the X-ray tube 107, the image receiving device 102, and the bed 101. The high voltage cable 105 supplies a high voltage from the inverter X-ray high voltage device 100 to the X-ray tube 107. The support device 106 supports the X-ray tube 107 and the image receiving device 102 so as to face each other. The X-ray tube 107 emits X-rays to the patient.
[0013] このように構成された X線透視撮影装置は、寝台 101及び支持装置 106を操作して 患者を撮影する部位の位置決めを行った後に、 X線条件を操作卓 104にて設定し、こ の設定された X線条件に基づいてインバータ X線高電圧装置 100から直流高電圧 (管 電圧)が高電圧ケーブル 105を介して X線管 107に印加され、該 X線管 107から寝台 101に載置された患者に対して X線が照射される。照射された X線は患者を透過し、 受像装置 102にて X線を受ける。受像装置 102によって受像された透過像はモニタ 103、及び操作卓 104に取り付けられるモニタに表示される。  [0013] The X-ray fluoroscopic apparatus configured as described above operates the couch 101 and the support device 106 to position the region where the patient is to be imaged, and then sets the X-ray conditions on the console 104, Based on the set X-ray conditions, a DC high voltage (tube voltage) is applied from the inverter X-ray high-voltage device 100 to the X-ray tube 107 via the high-voltage cable 105, and the X-ray tube 107 transfers the bed 101 X-rays are applied to the patient placed on The irradiated X-rays pass through the patient and are received by the image receiving device 102. The transmitted image received by the image receiving device 102 is displayed on the monitor 103 and the monitor attached to the console 104.
[0014] 図 2は X線 CT装置のシステムの構成例である。  FIG. 2 shows an example of a system configuration of the X-ray CT apparatus.
X線 CT装置は、 X線管 201と、 X線管 201からの X線照射方向に設けられる X線フィノレ タ 202及びコリメータ 203と、寝台天板 204と、 X線検出器 206の入力面方向に設けられ る X線グリッド 205と、 X線検出器 206と、回転板 207と、ガントリ 208と、計測条件設定手 段 211と、撮影制御手段 212と、回転板駆動手段 213と、寝台移動手段 214と、画像収 集手段 215と、画像処理手段 216と、画像表示手段 217と、コリメータ制御手段 218と、 を有している。 The X-ray CT apparatus includes an X-ray tube 201, an X-ray finometer 202 and a collimator 203 provided in the X-ray irradiation direction from the X-ray tube 201, a bed top 204, and an input surface direction of the X-ray detector 206. X-ray grid 205, X-ray detector 206, rotating plate 207, gantry 208, measurement condition setting means 211, imaging control means 212, rotating plate driving means 213, bed moving means 214, image collection It has a collection unit 215, an image processing unit 216, an image display unit 217, and a collimator control unit 218.
ガントリ 208の中央部には開口部 210が設けられ、そこに被検者 209が挿入配置され る。  An opening 210 is provided at the center of the gantry 208, and a subject 209 is inserted and arranged therein.
[0015] X線管 201、 X線フィルタ 202、コリメータ 203、 X線グリッド 205及び X線検出器 206から なる X線発生一検出系を撮影系と呼ぶ。撮影系は、回転板 207に固定され、図示しな い既知の駆動モータによって回転される。回転板 207の回転軸は Z軸とする。また、回 転中心〇を原点とする水平および垂直方向の座標軸はそれぞれ X軸、 Y軸とする。さ らに、 X線発生点 Sの X軸に対する回転角度は Θとする。  [0015] An X-ray generation / detection system including the X-ray tube 201, the X-ray filter 202, the collimator 203, the X-ray grid 205, and the X-ray detector 206 is referred to as an imaging system. The photographing system is fixed to a rotating plate 207 and is rotated by a known drive motor (not shown). The rotation axis of the rotation plate 207 is the Z axis. Also, the horizontal and vertical coordinate axes with the rotation center 原点 as the origin are the X axis and the Y axis, respectively. Furthermore, the rotation angle of the X-ray generation point S with respect to the X axis is Θ.
[0016] X線検出器 206はセラミックシンチレータ素子から構成される固体検出器である。ま た、各セラミックシンチレータ素子は X線発生点 Sからほぼ等距離の円弧上に配置さ れる。  [0016] X-ray detector 206 is a solid state detector composed of a ceramic scintillator element. In addition, each ceramic scintillator element is arranged on an arc approximately equidistant from the X-ray generation point S.
[0017] 上記 X線 CT装置は次のような手順で動作する。検者は計測条件設定手段 211を通 して被検者 209の Z軸方向の計測領域、撮影モード等を設定する。計測条件設定手 段 211は、上記設定値の情報をコリメータ制御手段 218及び撮影制御手段 212に入力 する。コリメータ制御手段 218は、前記設定値に基づきコリメータ 203を制御し、 X線の 照射領域を変化する。撮影制御手段 212は、前記設定値に基づき X線管 201の X線発 生のタイミングと X線検出器 206の撮影タイミングを規定する。また、撮影制御手段 212 は、回転板駆動手段 213に与える回転シーケンス及び寝台移動手段 214に与える移 動シーケンスを規定する。さらに、撮影制御手段 212は、画像収集手段 215に与える 撮影データの読み出し '保存のシーケンスをも規定する。ここで、図示を省略した操 作器からスキャン開始指令を操作者が入力すると、回転板駆動手段 213は、撮影制 御手段 212より与えられた回転シーケンスに基づき、図示しない既知の駆動モータを 用いて回転板 207を回転する。寝台移動手段 214は、撮影制御手段 212に与えられた 寝台移動シーケンスに基づき、図示しない既知の駆動モータを用いて寝台天板 204 および寝台天板 204上に配置された被検者 209を Z軸方向に移動する。 X線管 201か ら発生された X線は、 X線フィルタ 202によって人体に有害な低エネルギー成分が除 去され、コリメータ 203によって照射領域が制限された後に被検者 209に照射される。 被検者 209を透過した X線は、 X線グリッド 205により散乱線を除去された後に X線検出 器 206によって検出され、電気信号に変換される。前記検出電気信号は、図示しない 既知のスリップリング機構を介して、画像収集手段 215に送られる。画像収集手段 215 は、図示しない既知の A/D変換器によって前記検出電気信号をデジタルデータに変 換して、保存する。画像処理手段 216は、前記保存されたデジタルデータに基づき、 CT画像の再構成を行レ、、結果を画像表示手段 217に表示する。 [0017] The X-ray CT apparatus operates in the following procedure. The examiner sets the measurement area in the Z-axis direction, the imaging mode, and the like of the subject 209 through the measurement condition setting means 211. The measurement condition setting means 211 inputs the information of the set values to the collimator control means 218 and the imaging control means 212. The collimator control means 218 controls the collimator 203 based on the set value and changes the X-ray irradiation area. The imaging control means 212 defines the timing of X-ray generation of the X-ray tube 201 and the imaging timing of the X-ray detector 206 based on the set values. Further, the photographing control unit 212 defines a rotation sequence given to the rotating plate driving unit 213 and a movement sequence given to the bed moving unit 214. Further, the photographing control means 212 also defines a sequence of reading and storing the photographed data to be given to the image collecting means 215. Here, when the operator inputs a scan start command from an operating device (not shown), the rotating plate driving unit 213 uses a known driving motor (not shown) based on the rotation sequence given by the photographing control unit 212. To rotate the rotating plate 207. The couch moving means 214 uses the known couch drive sequence (not shown) based on the couch moving sequence given to the imaging control means 212 to move the couch top 204 and the subject 209 arranged on the couch top 204 along the Z axis. Move in the direction. The X-rays generated from the X-ray tube 201 are irradiated with an X-ray filter 202 to remove low-energy components harmful to the human body, and after the irradiation area is limited by a collimator 203, the X-ray is irradiated on a subject 209. The X-ray transmitted through the subject 209 is detected by the X-ray detector 206 after scattered radiation is removed by the X-ray grid 205, and is converted into an electric signal. The detected electric signal is sent to the image collecting means 215 via a known slip ring mechanism (not shown). The image collecting means 215 converts the detected electric signal into digital data by a known A / D converter (not shown) and stores the digital data. The image processing means 216 reconstructs the CT image based on the stored digital data, and displays the result on the image display means 217.
[0018] 図 3は本実施形態の電力変換装置の負荷に X線管を接続したインバータ式 X線高 電圧装置の例を示している。  FIG. 3 shows an example of an inverter type X-ray high voltage device in which an X-ray tube is connected to a load of the power converter of the present embodiment.
インバータ式 X線高電圧装置は、商用電圧と接続される昇圧型コンバータ (Voltage step up Converter)301と、昇圧型コンバータ 301と接続されるキャパシタ 302と、キャパ シタ 302と接続される抵抗器 303と、抵抗器 303と接続されるインバータ 304と、インバー タ 304と接続される高電圧変圧器 305と、高電圧変圧器 305と接続される高電圧整流 器 306と、高電圧整流器 306と接続される管電圧検出器 307及び X線管 308と、昇圧型 コンバータ 301と接続されるコンバータ制御部 309と、インバータ 304と接続されるイン バータ制御部 311と、キャパシタ 302及びインバータ制御部 311と接続されキャパシタ 劣化監視部 310を含むデジタル制御回路 312と、デジタル制御回路 312と接続される 操作部 313と、を有している。  The inverter type X-ray high-voltage device is composed of a voltage step-up converter (301) connected to the commercial voltage, a capacitor (302) connected to the boost converter (301), and a resistor (303) connected to the capacitor (302). , A high voltage transformer 305 connected to the inverter 304, a high voltage rectifier 306 connected to the high voltage transformer 305, and a high voltage rectifier 306 connected to the resistor 303. A tube voltage detector 307 and an X-ray tube 308, a converter control unit 309 connected to the boost converter 301, an inverter control unit 311 connected to the inverter 304, a capacitor connected to the capacitor 302 and the inverter control unit 311 It has a digital control circuit 312 including a deterioration monitoring unit 310, and an operation unit 313 connected to the digital control circuit 312.
[0019] 次に、上記構成要素の機能についてそれぞれ簡単に説明する。昇圧型コンバータ  Next, the functions of the above components will be briefly described. Boost converter
301は、パワーモジュールである IGBT(Insulated Gate Bipolar Transistor:絶縁ゲート 型バイポーラトランジスタ)を適用した昇圧機能を持つ高力率コンバータである。この 昇圧型コンバータ 301は、 PWM(Pulse Width Modulation :パルス幅変調)動作によつ て 50Hzまたは 60Hzの商用三相交流電源電圧を整流すると共に、相電圧と相電流の 進み又は遅れを実質的にゼロとすることによって力率をほぼ 1としている。この昇圧型 コンバータ 301は、 IGBTの動作を停止させれば全波整流回路として動作し、その全 波整流時の直流出力電圧は交流入力電圧の 2倍の値になる。  301 is a high power factor converter with a boost function using an IGBT (Insulated Gate Bipolar Transistor) which is a power module. This step-up converter 301 rectifies a 50 Hz or 60 Hz commercial three-phase AC power supply voltage by a PWM (Pulse Width Modulation) operation, and substantially controls the advance or delay of the phase voltage and phase current. By setting it to zero, the power factor is almost 1. The boost converter 301 operates as a full-wave rectifier circuit when the operation of the IGBT is stopped, and the DC output voltage at the time of the full-wave rectification becomes twice the value of the AC input voltage.
[0020] キャパシタ 302は、上記交流入力電圧の 2倍の耐圧を確保するために直列接続で  [0020] The capacitor 302 is connected in series to secure a withstand voltage twice as high as the AC input voltage.
2つ設けられている。抵抗器 303は、前記直列接続された 2つのキャパシタ 302の電圧 分担を均等化するために設けられている。インバータ 304は、昇圧型コンバータ 301か ら出力された直流電圧を高周波交流電圧に変換する。インバータ 304は、負荷である X線管 308に印加する電圧 (管電圧)を制御する機能も有している。 There are two. The resistor 303 is provided to equalize the voltage distribution of the two capacitors 302 connected in series. Inverter 304 is boost converter 301 The DC voltage output from the DC-DC converter is converted into a high-frequency AC voltage. The inverter 304 also has a function of controlling a voltage (tube voltage) applied to the X-ray tube 308 as a load.
[0021] 高電圧変圧器 305は、その一次卷線がインバータ 302の出力側に接続され、インバ ータ 304によって変換された交流電圧を昇圧する。高電圧整流器 306は、高電圧変圧 器 305の二次卷線からの高周波高電圧を直流高電圧に変換し、その出力端は X線管 308に接続され、その直流高電圧が X線管 8に印加される。管電圧検出器 307は X線 管 308に印加される電圧を検出する。 X線管 308は整流器 306から直流高電圧を供給 され X線を発生する。 The high-voltage transformer 305 has its primary winding connected to the output side of the inverter 302, and boosts the AC voltage converted by the inverter 304. The high-voltage rectifier 306 converts the high-frequency high voltage from the secondary winding of the high-voltage transformer 305 into a DC high voltage, the output end of which is connected to the X-ray tube 308, and the DC high voltage is connected to the X-ray tube 8. Is applied to The tube voltage detector 307 detects a voltage applied to the X-ray tube 308. The X-ray tube 308 is supplied with a DC high voltage from the rectifier 306 to generate X-rays.
[0022] デジタル制御回路 312は、コンバータ制御部 309と、キャパシタ劣化監視部 310と、ィ ンバータ制御部 311と、を有している。  The digital control circuit 312 has a converter control unit 309, a capacitor deterioration monitoring unit 310, and an inverter control unit 311.
コンバータ制御部 309は、昇圧型コンバータ 301内の IGBTをスィッチ制御する。キヤ パシタ劣化監視部 310はキャパシタ 302の劣化を監視する。インバータ制御部 311は 相電流と昇圧型コンバータ 301の出力電圧を検出し、管電圧を管電圧検出器 307で 検出してそれを目標値と一致させる機能を有している。  Converter control section 309 performs switch control on the IGBT in boost converter 301. The capacitor deterioration monitoring unit 310 monitors the deterioration of the capacitor 302. The inverter control unit 311 has a function of detecting the phase current and the output voltage of the boost converter 301, detecting the tube voltage with the tube voltage detector 307, and making it match the target value.
操作部 313は、デジタル制御回路 312に対して管電圧'管電流及び X線曝射時間を はじめとする動作条件やその指令等を設定する。また、電力変換装置の状態をモニ タする機能を有している。  The operation unit 313 sets operation conditions such as a tube voltage, a tube current, and an X-ray irradiation time, and commands for the digital control circuit 312. It also has a function to monitor the state of the power converter.
[0023] 次に、本発明の要部であるキャパシタ劣化監視部 310は次のように構成される。 Next, the capacitor deterioration monitoring section 310, which is a main part of the present invention, is configured as follows.
電力変換装置はその初期状態 (出荷時あるいは据付時等)において昇圧型コンパ ータ 301を動作した後、その動作を停止した (非昇圧状態)際、キャパシタ 302は抵抗 器 303を介して放電され、全波整流の状態に移行する。キャパシタ劣化監視部 310は 、キャパシタ 302の放電から全波整流の状態に移行した期間におけるキャパシタ 302 の両端の電圧降下の特性を検知する。さらに、キャパシタ劣化監視部 310は、その検 知された電圧降下特性を初期状態の電圧降下特性としてキャパシタ劣化診断部 310 内のメモリに記憶する。  When the power converter operates the boost converter 301 in its initial state (at the time of shipment or installation, etc.) and then stops its operation (non-boost state), the capacitor 302 is discharged via the resistor 303. Then, the state shifts to the full-wave rectification state. The capacitor deterioration monitoring unit 310 detects a characteristic of a voltage drop across the capacitor 302 during a period in which the capacitor 302 shifts from discharging to full-wave rectification. Further, capacitor deterioration monitoring section 310 stores the detected voltage drop characteristic as a voltage drop characteristic in an initial state in a memory in capacitor deterioration diagnosis section 310.
[0024] この際の記憶方法は、図 4に示すように、昇圧型コンバータ 301の昇圧動作停止か ら所定時間後の電圧降下の値を記憶する。また、別の記憶方法は、図 5に示すように 、昇圧型コンバータ 301の昇圧動作停止から電圧降下して所定の電圧値に達するま での経過時間を記憶する。これらの記憶方法は単独でも組み合わせでも何れであつ てもよい。 As a storage method at this time, as shown in FIG. 4, the value of the voltage drop after a predetermined time from the stop of the boosting operation of boost converter 301 is stored. Further, as another storage method, as shown in FIG. 5, the voltage drops from the stop of the boost operation of the boost converter 301 until the voltage reaches a predetermined voltage value. The elapsed time at is stored. These storage methods may be used alone or in combination.
[0025] 次に、キャパシタ劣化診断部 310は、電力変換装置の使用時 (ここでは、単に「装置 使用時」ともいう)において、前記昇圧型コンバータ 301の昇圧動作を停止した時から 全波整流状態に移行するまでの期間におけるキャパシタ 302の電圧降下特性を使用 時の電圧降下特性として検知する。キャパシタ劣化診断部 310は、前記メモリに記憶 された初期状態の電圧降下特性と装置使用時の電圧降下特性と比較し、その比較 の結果が少なくとも次の項目に該当したならば、キャパシタ 302が劣化したものとして 判断する。  Next, when the power conversion device is used (here, also simply referred to as “when the device is used”), the capacitor deterioration diagnosis unit 310 starts full-wave rectification from when the boosting operation of the boost converter 301 is stopped. The voltage drop characteristics of the capacitor 302 during the period before transition to the state are detected as the voltage drop characteristics during use. The capacitor deterioration diagnosis unit 310 compares the voltage drop characteristics in the initial state stored in the memory with the voltage drop characteristics during use of the device, and if the comparison result at least satisfies the following items, the capacitor 302 is deteriorated. Judge as having done.
(1)装置使用時の電圧降下速度が初期状態より所定値まで増加した場合  (1) When the voltage drop rate when using the device increases from the initial state to a predetermined value
(2)装置使用時の電圧降下速度が使用時測定毎に所定の割合で増した場合  (2) When the voltage drop rate during use of the device increases at a predetermined rate for each measurement during use
キャパシタ劣化監視部 310は、キャパシタ 302が劣化したと判定された場合、警告信 号を生成する。その生成された警告信号は操作部 313の警告表示部 314に送信され る。  The capacitor deterioration monitoring unit 310 generates a warning signal when it is determined that the capacitor 302 has deteriorated. The generated warning signal is transmitted to the warning display unit 314 of the operation unit 313.
[0026] 警告表示部 314は、キャパシタ劣化監視部 310から警告信号を受信したとき、操作 者に対してその警告を報知する。ここで、報知とは、表示などの視覚情報、音声など の聴覚情報、携帯電話のバイブレータ機能などの振動による触覚情報など医用画像 診断装置の操作者にその五感を通じて知らせることを意味している。  When a warning signal is received from capacitor deterioration monitoring section 310, warning display section 314 notifies the operator of the warning. Here, the notification means that the operator of the medical image diagnostic apparatus is notified through the five senses, such as visual information such as display, auditory information such as voice, tactile information by vibration such as a vibrator function of a mobile phone, and the like.
この際の報知は、次の項目が単独又は組み合わせで行われる。  The notification at this time is performed on the following items alone or in combination.
(1)警告表示部 314は「キャパシタの劣化が認められます」との直接的なメッセージを 表示する。また、警告表示部 314は別途音声発生器とスピーカを設け、上記メッセ一 ジを音声で発生させてもよい。さらに、警告表示部 314は上記メッセージの表示又は 音声発生と共に、警告表示部 314の筐体を振動させてもょレ、。  (1) The warning display section 314 displays a direct message that "deterioration of the capacitor is recognized". In addition, the warning display unit 314 may be provided with a separate voice generator and a speaker to generate the message by voice. Further, the warning display unit 314 may vibrate the housing of the warning display unit 314 together with the display of the message or the generation of sound.
(2)警告表示部 314は警告コードと共に「この警告コードを 1週間以内にサービスセンタ に連絡して下さい」との間接的なメッセージを表示する。また、警告表示部 314は別途 音声発生器とスピーカを設け、上記メッセージを音声で発生させてもよい。さらに、警 告表示部 314は上記メッセージの表示又は音声発生と共に、警告表示部 314の筐体 を振動させてもよい。 (3)警告表示部 314は警告ランプを点灯させる。この警告ランプは電解キャパシタを模 した形であれば直感的に理解しやすレ、。 (2) The warning display section 314 displays an indirect message "Please contact the service center within one week with this warning code" together with the warning code. In addition, the warning display unit 314 may be provided with a separate voice generator and a speaker, and generate the message by voice. Further, the warning display unit 314 may vibrate the housing of the warning display unit 314 together with the display of the message or the generation of sound. (3) The warning display section 314 turns on a warning lamp. If this warning lamp imitates an electrolytic capacitor, it is easy to understand intuitively.
(4)警告表示部 314は、上記 (1)一 (3)の表示又は非表示に拘らず、インターネットなど のネットワーク 315に送信可能なインターフェースを介して前記キャパシタ 302の劣化 情報をネットワーク 315に送信し、同様にネットワーク 315に接続されたサービスセンタ に設置された受信端末 316(パーソナルコンピュータなど)が前記送信手段によって送 信されたキャパシタ 302の劣化情報を受信し、電力変換装置のキャパシタの劣化状 況を知らせてもよレ、。  (4) The warning display unit 314 transmits the deterioration information of the capacitor 302 to the network 315 via an interface capable of transmitting to the network 315 such as the Internet, regardless of the display or non-display of (1)-(3) above. Similarly, a receiving terminal 316 (such as a personal computer) installed in a service center connected to the network 315 receives the deterioration information of the capacitor 302 transmitted by the transmitting means, and You may let us know the situation.
[0027] 以上説明した回路構成であれば、キャパシタに対して並列接続する抵抗器とスイツ チを設けることを要しない。  With the circuit configuration described above, it is not necessary to provide a resistor and a switch connected in parallel to the capacitor.
これにより、コンバータ回路が昇圧型コンバータであるため、キャパシタへの印加電 圧に比例した高耐圧スィッチが不要となるので、装置の小型化に寄与できる。  Thus, since the converter circuit is a step-up converter, a high withstand voltage switch proportional to the voltage applied to the capacitor is not required, which can contribute to the miniaturization of the device.
[0028] 以上のように、本実施例は、昇圧型高力率コンバータを適用したインバータ式 X線 高電圧装置に使用すれば、特殊な部品を付加する必要なぐまた初期状態のキャパ シタの電力降下特性を劣化判定の基準としていることから個々のキャパシタに対して 精度の高い前記キャパシタの劣化判定を行うことが可能となる。 As described above, when the present embodiment is used for an inverter-type X-ray high-voltage device to which a boost type high power factor converter is applied, the power of the capacitor in an initial state that requires no special components is required. Since the drop characteristic is used as a criterion for the deterioration determination, it is possible to perform the deterioration determination of the capacitor with high accuracy for each capacitor.
このことにより、電力変換装置の動作中に起こる故障を未然に回避することが可能 となる。  This makes it possible to avoid a failure that occurs during the operation of the power converter.
[0029] 以上説明した回路構成において、コンバータ回路が昇圧型コンバータである例を 説明したが、本発明を実施する場合にコンバータは昇圧型コンバータに限定しない でもよい。  [0029] In the circuit configuration described above, an example in which the converter circuit is a boost converter has been described. However, the converter may not be limited to a boost converter when implementing the present invention.
なぜならば、本発明の要点はキャパシタの劣化による電力変換装置への影響をな くすことにあるため、キャパシタの劣化診断の頻度が問題となるため、コンバータの種 類は昇圧型に限定されないのである。  This is because the point of the present invention is to eliminate the influence on the power converter due to the deterioration of the capacitor, so that the frequency of diagnosis of deterioration of the capacitor becomes a problem, and the type of converter is not limited to the boost type. .
実施例 2  Example 2
[0030] 次に、本実施例は、電力変換装置の負荷が MRI装置の傾斜磁場コイルである場合 を説明する。  Next, the present embodiment describes a case where the load of the power converter is a gradient coil of the MRI apparatus.
[0031] 図 6は、本発明が適用される MRI装置の全体概要を示す図である。この MRI装置は 、被検者 612が置かれる空間に均一な静磁場を発生する静磁場磁石 601と、この空間 に磁場勾配を形成する傾斜磁場コイル 602と、被検者 612の組織を構成する原子の 原子核に、その共鳴周波数と同じ周波数の高周波磁場を照射する照射コイル 604と 、被検者 612から発生する NMR信号を受信する受信コイル 606とを備える。傾斜磁場 コイル 602は傾斜磁場電源 603に接続され、照射コイル 604は前記共鳴周波数と同じ 周波数の高周波を発振する発振器、変調器、増幅器等からなる送信系 605に接続さ れている。また受信コイル 606は、増幅器、位相検波器、 A/D変換器等からなる受信 系 607に接続されている。 FIG. 6 is a diagram showing an overall outline of an MRI apparatus to which the present invention is applied. This MRI device The static magnetic field magnet 601 that generates a uniform static magnetic field in the space where the subject 612 is placed, the gradient magnetic field coil 602 that forms a magnetic field gradient in this space, and the nuclei of the atoms that make up the tissue of the subject 612 An irradiation coil 604 for irradiating a high-frequency magnetic field having the same frequency as the resonance frequency, and a receiving coil 606 for receiving an NMR signal generated from the subject 612. The gradient magnetic field coil 602 is connected to a gradient magnetic field power supply 603, and the irradiation coil 604 is connected to a transmission system 605 composed of an oscillator, a modulator, an amplifier, and the like that oscillates a high frequency having the same frequency as the resonance frequency. The receiving coil 606 is connected to a receiving system 607 including an amplifier, a phase detector, an A / D converter, and the like.
[0032] 傾斜磁場電源 603、送信系 605及び受信系 607は、 CPU608に接続されている。  The gradient magnetic field power supply 603, the transmission system 605, and the reception system 607 are connected to the CPU 608.
CPU608は、傾斜磁場電源 603、送信系 605及び受信系 607の動作を制御するとともに 、受信系 607が受信した NMR信号を信号処理し、画像再構成等の演算を行う。  The CPU 608 controls the operations of the gradient magnetic field power supply 603, the transmission system 605, and the reception system 607, performs signal processing on the NMR signal received by the reception system 607, and performs operations such as image reconstruction.
CPU608には、これら制御のためのプログラムや演算のためのプログラム、演算結果 等を格納するための ROM、 RAM等の記憶装置 611、演算結果である画像等を表示す るためのディスプレイ 609、装置動作させるための指令や撮像条件等を入力するため の操作卓 610が備えられている。  The CPU 608 includes a storage device 611 such as a ROM and a RAM for storing a program for the control and a program for the calculation, a calculation result and the like, a display 609 for displaying an image and the like as a calculation result, and a device. An operation console 610 is provided for inputting commands for operation, imaging conditions, and the like.
[0033] 具体的には、例えばグラディエントエコー法等の撮像シーケンスが予めプログラムと して組み込まれており、操作卓 610において、所望の撮像シーケンスを選択すること ができる。また撮像条件のパラメータとしては、例えばスライスに関してスライス厚ゃス ライスエンコード数、撮像視野 (FOV)、周波数帯域、非対称計測率 (AMI)、サンプリン グ数等が設定される。操作卓 610により撮像シーケンス及び撮像条件が設定されると 、その撮像シーケンスに則った撮像が行われる。  Specifically, for example, an imaging sequence such as a gradient echo method is incorporated as a program in advance, and a desired imaging sequence can be selected on console 610. Further, as parameters of the imaging conditions, for example, the slice thickness / slice encoding number, imaging field of view (FOV), frequency band, asymmetric measurement rate (AMI), sampling number, etc. are set for the slice. When the imaging sequence and imaging conditions are set by console 610, imaging is performed according to the imaging sequence.
[0034] 近年、 MRI装置は、エコーブラナーイメージング法等の高速撮像手法が開発されて いる。電力変換装置は、その高速撮像手法に伴い、磁場発生用電源の出力電流の 増大と電源の立ち上がり時間の短縮が要求され、大電流、高電圧化する動向にある 。磁場発生用電源の出力電流変化速度を向上させるためには、電力変換装置は傾 斜磁場コイルへの入力電圧の高電圧化と高安定化が必要である。そこで、静磁場発 生用や傾斜磁場発生用などの磁場発生用スィッチング電源として、電圧型交流直流 変換器を備えた安定化した MRI装置用電源装置が用レ、られるようになっている。 [0035] 図 7は、図 6の MRI装置傾斜磁場発生用の電源装置の一例を示すブロック図である 傾斜磁場発生用の電源装置 701は、商用電源 702と接続される電源型交流直流変 換器 703と、電源型交流直流変換器 703と接続されるキャパシタ 704と、キャパシタ 704 と接続される抵抗器 705及び電流増幅器 706と、を有してレ、る。 [0034] In recent years, high-speed imaging techniques such as an echo brain imaging method have been developed for the MRI apparatus. Power conversion devices are required to increase the output current of a power supply for generating a magnetic field and to shorten the rise time of the power supply in accordance with the high-speed imaging technique, and there is a trend to increase the current and the voltage. In order to improve the output current change rate of the magnetic field generation power supply, the power converter needs to increase and stabilize the input voltage to the gradient coil. Therefore, as a switching power supply for generating a magnetic field for generating a static magnetic field or a gradient magnetic field, a stabilized power supply for an MRI apparatus having a voltage-type AC / DC converter has been used. FIG. 7 is a block diagram showing an example of a power supply device for generating a gradient magnetic field in the MRI apparatus of FIG. 6. A power supply device 701 for generating a gradient magnetic field is a power supply type AC / DC converter connected to a commercial power supply 702. And a capacitor 704 connected to the power supply type AC / DC converter 703, a resistor 705 and a current amplifier 706 connected to the capacitor 704.
電源型交流直流変換器 703は商用電源 702の交流電流を直流電流に変換する。キ ャパシタ 704は電源型交流直流変換器 703によって変換された直流電流を平滑化す る。抵抗器 705はキャパシタ 704に並列に接続され電圧検出器 720の電圧検出を機能 させる。電流増幅器 706はキャパシタ 704によって平滑された直流電流を増幅する。傾 斜磁場コイル 707は電流増幅器 706によって増幅された電流によって駆動される。  The power supply type AC / DC converter 703 converts an AC current of the commercial power supply 702 into a DC current. The capacitor 704 smoothes the DC current converted by the AC / DC converter 703. The resistor 705 is connected in parallel with the capacitor 704 to enable the voltage detector 720 to detect the voltage. The current amplifier 706 amplifies the DC current smoothed by the capacitor 704. The gradient coil 707 is driven by the current amplified by the current amplifier 706.
[0036] ここで用いる交流直流変換器 703は、商用電源 702と接続されたリアタトル 708— 710 と、リアタトル 708— 710にフルブリッジ接続されたフライホイールダイオードと、フライホ ィールダイオードに並列接続されたスイッチング素子である IGBT711— 716とを備えて いる。 [0036] The AC / DC converter 703 used here includes a rear turtle 708-710 connected to the commercial power supply 702, a flywheel diode fully connected to the rear turtle 708-710, and a switching connected in parallel to the flywheel diode. IGBT711-716 as elements.
[0037] このような電圧型交流直流変換器 703は制御回路 717によってその出力電圧が制御 される。即ち制御回路 717は、電流検出器 718、 719により検出された電圧型交流直流 変換器 703への入力電流と、電圧検出手段 720により検出されたキャパシタ 704の電 圧と、外部から入力される電圧指令値とに基づいて出力電圧をフィードバック制御す る。この制御は、平滑用キャパシタ 704が商用電源に接続されたリアタトル 708— 710と スイッチング素子 711— 716を通して充電され、その充電電圧に対しスイッチング素子 711— 716のデューティ比を変化させることによって高電圧に制御している。また、電 流増幅器 706の出力電流は、制御回路 721によってフィードバック制御される。制御回 路 717は、電流検出器 722により検出された電流値と外部から入力される電流指定値 とに基づいて電流増幅器 706の増幅率を求め、その求められた増幅率によって電流 増幅器 706を制御している。  The output voltage of such a voltage type AC / DC converter 703 is controlled by a control circuit 717. That is, the control circuit 717 determines the input current to the voltage-type AC / DC converter 703 detected by the current detectors 718 and 719, the voltage of the capacitor 704 detected by the voltage detection means 720, and the voltage input from the outside. The output voltage is feedback-controlled based on the command value. In this control, the smoothing capacitor 704 is charged through the rear turtle 708-710 and the switching elements 711-716 connected to the commercial power supply, and the charging voltage is changed to a high voltage by changing the duty ratio of the switching elements 711-716. Controlling. The output current of the current amplifier 706 is feedback-controlled by the control circuit 721. The control circuit 717 calculates the amplification factor of the current amplifier 706 based on the current value detected by the current detector 722 and the specified current value input from the outside, and controls the current amplifier 706 based on the calculated amplification factor. are doing.
[0038] 電圧検出手段 720は、抵抗器 705を介してキャパシタ 704の電圧を随時検出している 。キャパシタ劣化監視部 723は制御回路 717に設けられ、電源交流直流変換器 703の 昇圧状態から前記キャパシタ 704を放電させて非昇圧状態に移行する際のキャパシ タ両端の使用時の電圧降下特性を測定する。また、キャパシタ劣化監視部 723は、実 施例 1と同様に、キャパシタ劣化監視部 723のメモリに予め記憶させてある MRI装置用 電源の初期状態の電圧降下特性と前記使用時の電圧降下特性を比較する。そして 、キャパシタ劣化監視部 723は、前記使用時の電圧降下特性が初期状態よりも所定 よりも電圧降下時間に短縮があつたと認められた時にキャパシタ 704が劣化したと判 定する。 MRI装置の操作部 724はキャパシタ劣化監視部 723によって判定されたキヤ パシタ 704の劣化状態を報知する。このときの報知方法は、実施例 1で説明された方 法で行われる。 The voltage detecting means 720 detects the voltage of the capacitor 704 via the resistor 705 at any time. The capacitor deterioration monitoring unit 723 is provided in the control circuit 717, and discharges the capacitor 704 from the boosted state of the power supply AC / DC converter 703 and shifts the capacity to the non-boosted state. Measure the voltage drop characteristics when both ends are used. Further, similarly to the first embodiment, the capacitor deterioration monitoring unit 723 compares the voltage drop characteristics in the initial state of the power supply for the MRI apparatus and the voltage drop characteristics during the use, which are stored in the memory of the capacitor deterioration monitoring unit 723 in advance. Compare. Then, the capacitor deterioration monitoring unit 723 determines that the capacitor 704 has deteriorated when it is recognized that the voltage drop characteristic during use is shorter than the predetermined value in the voltage drop time from the initial state. The operation unit 724 of the MRI apparatus reports the deterioration state of the capacitor 704 determined by the capacitor deterioration monitoring unit 723. The notification method at this time is performed by the method described in the first embodiment.
[0039] このように、本発明を MRI用電源装置に適用すれば、キャパシタの劣化に伴う故障 を未然に防ぐことができるので、 MRI装置に供給する安定した電源として高い信頼性 を確保できる。  As described above, when the present invention is applied to the power supply device for MRI, a failure due to deterioration of the capacitor can be prevented beforehand, so that high reliability as a stable power supply to be supplied to the MRI device can be secured.
[0040] なお、上記実施例においては、いずれも三相の昇圧型コンバータを取り上げた力 本発明はこれに限らず単相の昇圧型コンバータを用いた電力変換装置に対しても適 用できることは言うまでもない。  [0040] In each of the above-described embodiments, the power in which a three-phase boost converter is used is not limited to this. The present invention is not limited to this and can be applied to a power converter using a single-phase boost converter. Needless to say.
[0041] 以上のように、本発明について複数の実施の形態を説明したが、上記開示した実 施の形態に限定されることなぐ請求の範囲に記載される技術思想を実現する技術 内容は全て本発明に包含されるものである。 As described above, a plurality of embodiments of the present invention have been described. However, the technical contents for realizing the technical idea described in the claims without being limited to the above-described embodiments are all limited. It is included in the present invention.
産業上の利用性  Industrial applicability
[0042] 本発明の電力変換装置は、キャパシタの劣化に伴う故障を未然に防ぐことができる ので、医用画像診断装置に供給する安定した電源として高い信頼性を確保できる。  [0042] The power conversion device of the present invention can prevent a failure due to deterioration of the capacitor beforehand, and thus can secure high reliability as a stable power supply to be supplied to the medical image diagnostic apparatus.

Claims

請求の範囲 The scope of the claims
[1] 商用交流電圧を直流電圧に整流するコンバータと、  [1] a converter for rectifying commercial AC voltage to DC voltage,
このコンバータによって整流された直流電圧を平滑するキャパシタと、  A capacitor for smoothing the DC voltage rectified by the converter,
このキャパシタによって平滑された直流電圧を所定の周波数の交流電圧に変換す るインバータと、  An inverter for converting the DC voltage smoothed by the capacitor into an AC voltage having a predetermined frequency;
電力変換装置の使用時毎に前記キャパシタの充放電特性を測定する測定手段と、 予め初期状態の前記キャパシタの充放電特性を前記測定手段によって測定し、そ の測定された初期状態の前記キャパシタの充放電特性を記憶する記憶手段と、 この測定手段によって前記使用時毎に測定されたキャパシタの充放電特性と前記 記憶手段によって記憶された初期状態のキャパシタの充放電特性を比較する比較 手段と、  Measuring means for measuring the charge / discharge characteristics of the capacitor each time the power conversion device is used; measuring the charge / discharge characteristics of the capacitor in an initial state in advance by the measuring means; Storage means for storing charge / discharge characteristics; comparison means for comparing the charge / discharge characteristics of the capacitor measured by the measuring means for each use with the charge / discharge characteristics of the capacitor in the initial state stored by the storage means;
この比較手段によって比較された結果に基づき前記キャパシタの劣化状態を判定 するキャパシタ劣化判定手段と、  Capacitor deterioration determining means for determining a deterioration state of the capacitor based on a result compared by the comparing means;
このキャパシタ劣化判定手段によって判定されたキャパシタの劣化状態を報知する 報知手段と、  Notifying means for notifying the deterioration state of the capacitor determined by the capacitor deterioration determining means;
を備えたことを特徴とする電力変換装置。  A power conversion device comprising:
[2] 前記測定手段は、前記キャパシタの充電状態から放電状態にかけて前記キャパシ タの両端の電圧降下特性を前記キャパシタの充放電特性として測定することを特徴 とする請求項 1に記載の電力変換装置。  2. The power converter according to claim 1, wherein the measuring unit measures a voltage drop characteristic of both ends of the capacitor as a charge / discharge characteristic of the capacitor from a charge state to a discharge state of the capacitor. .
[3] 前記記憶手段は、前記測定手段によって測定された前記キャパシタの初期状態の 充放電特性を記憶することを特徴とする請求項 1、 2の何れか一項に記載の電力変 換装置。 3. The power conversion device according to claim 1, wherein the storage unit stores charge / discharge characteristics of the capacitor in an initial state measured by the measurement unit.
[4] 前記コンバータが昇圧型コンバータであって、前記記憶手段は、その昇圧型コンパ 一タの昇圧動作停止から所定時間後の電圧降下の値を記憶することを特徴とする請 求項 3に記載の電力変換装置。  [4] The claim 3 wherein the converter is a step-up converter, and the storage means stores a value of a voltage drop after a predetermined time after stopping the step-up operation of the step-up converter. The power converter according to any one of the preceding claims.
[5] 前記コンバータが昇圧型コンバータであって、前記記憶手段は、その昇圧型コンパ 一タの昇圧動作停止から電圧降下して所定の電圧値に達するまでの経過時間を記 憶することを特徴とする請求項 3に記載の電力変換装置。 [5] The converter is a boost converter, and the storage means stores an elapsed time from when the boost operation of the boost converter is stopped to when the voltage drops to a predetermined voltage value. The power converter according to claim 3, wherein
[6] 前記判定手段は、前記比較手段の結果が前記電力変換装置の使用時の電圧降 下速度が初期状態より所定値まで増加した場合に前記キャパシタが劣化したと判定 することを特徴とする請求項 2— 5の何れか一項に記載の電力変換装置。 [6] The determination means determines that the capacitor has deteriorated when the result of the comparison means indicates that the voltage drop rate during use of the power converter has increased from an initial state to a predetermined value. The power converter according to any one of claims 2 to 5.
[7] 前記判定手段は、前記比較手段の結果が前記電力変換装置の使用時の電圧降 下速度が使用時測定毎に所定の割合で増した場合に前記キャパシタが劣化したと 判定することを特徴とする請求項 2— 5の何れか一項に記載の電力変換装置。  [7] The determining means determines that the capacitor is degraded when the result of the comparing means indicates that the voltage drop rate during use of the power converter increases at a predetermined rate every measurement during use. The power converter according to any one of claims 2 to 5, characterized in that:
[8] 前記報知手段は、前記判定手段によって前記キャパシタが劣化したと判定されたと き、その劣化情報をモニタに表示することを特徴とする請求項 1一 7の何れ力 4項に 記載の電力変換装置。  [8] The electric power according to [4], wherein the notifying means displays the deterioration information on a monitor when the judging means judges that the capacitor has deteriorated. Conversion device.
[9] 前記報知手段は、前記劣化情報と共にその対策情報をモニタに表示することを特 徴とする請求項 8に記載の電力変換装置。  9. The power converter according to claim 8, wherein the notifying unit displays the countermeasure information together with the deterioration information on a monitor.
[10] 前記報知手段は、前記劣化情報を前記キャパシタの形状を模式してモニタに表示 することを特徴とする請求項 8に記載の電力変換装置。 10. The power conversion device according to claim 8, wherein the notification unit displays the deterioration information on a monitor by schematically illustrating a shape of the capacitor.
[11] 前記報知手段は、前記判定手段によって前記キャパシタが劣化したと判定されたと き、その劣化情報を音声により報知することを特徴とする請求項 1一 7の何れ力 1項に 記載の電力変換装置。 [11] The electric power according to any one of [17] to [17], wherein the notifying unit notifies the deterioration information by voice when the determining unit determines that the capacitor has deteriorated. Conversion device.
[12] 前記報知手段は、前記判定手段によって前記キャパシタが劣化したと判定されたと き、その劣化情報を振動により報知することを特徴とする請求項 1一 7の何れ力 1項に 記載の電力変換装置。  [12] The electric power according to any one of [17] to [17], wherein the notifying means, when the determining means determines that the capacitor has deteriorated, notifies the deterioration information by vibration. Conversion device.
[13] 前記報知手段は、前記キャパシタの劣化情報をネットワークに送信する送信手段と 、この送信手段と異なる場所のサービスセンタに設置され前記送信手段によって送 信された前記キャパシタの劣化情報を受信する受信手段と、この受信手段によって 受信されたキャパシタの劣化情報を表示する手段と、を備えたことを特徴とする請求 項 1一 7の何れか 1項に記載の電力変換装置。  [13] The notifying unit is a transmitting unit that transmits the deterioration information of the capacitor to a network, and is installed at a service center in a location different from the transmitting unit and receives the deterioration information of the capacitor transmitted by the transmitting unit. The power converter according to any one of claims 17 to 17, further comprising a receiving unit, and a unit configured to display deterioration information of the capacitor received by the receiving unit.
[14] 請求項 1一 13の何れか 1項に記載の電力変換装置と、前記電力変換装置のインバ ータの出力側に接続され前記インバータの出力電圧を昇圧する高電圧変圧器と、こ の高電圧変圧器の出力を直流高電圧に変換する高電圧整流器と、この高電圧整流 器の出力に接続され負荷である X線管と、この X線管の X線の出力条件を設定する 前記操作手段と、を備えたことを特徴とするインバータ X線高電圧装置。 [14] A power converter according to any one of [11] to [13], and a high-voltage transformer connected to an output side of an inverter of the power converter and configured to boost an output voltage of the inverter. A high-voltage rectifier that converts the output of the high-voltage transformer into a DC high-voltage, an X-ray tube that is connected to the output of the high-voltage rectifier and is a load, and sets the X-ray output conditions of this X-ray tube An inverter X-ray high-voltage device comprising: the operating means.
[15] 請求項 14に記載のインバータ X線高電圧装置と、このインバータ X線高電圧装置 力 の高電圧が供給され X線を発生し、その発生された X線を被検者に照射する X線 源と、この X線源と対向配置され前記被検者の透過 X線を受像する受像手段と、この 受像手段によって受像された X線像を表示する表示部と、前記 X線源、前記寝台及 び前記受像手段を制御するための制御量を入力する操作卓と、を備えたことを特徴 とする X線透視撮影装置。 [15] The inverter X-ray high-voltage device according to claim 14, and a high voltage of the inverter X-ray high-voltage device is supplied to generate X-rays and irradiate the generated X-rays to a subject. An X-ray source, an image receiving unit arranged to face the X-ray source and receiving transmitted X-rays of the subject, a display unit for displaying an X-ray image received by the image receiving unit, the X-ray source, An X-ray fluoroscopic apparatus, comprising: a console for inputting a control amount for controlling the bed and the image receiving unit.
[16] 請求項 14に記載のインバータ X線高電圧装置と、このインバータ X線高電圧装置 力 の高電圧が供給され X線を発生し、その発生された X線を被検者に照射する X線 源と、この X線源と前記被検者を挟んで対向配置され前記被検者の透過 X線を投影 データとして検出する X線検出器と、この X線検出器と前記 X線源とを支持して回転 する回転板と、この回転板によって回転され多数方向から得られた投影データから前 記被検者の断層像を画像再構成する画像処理手段と、この画像処理手段によって 画像再構成された前記被検者の断層像を表示する画像表示手段と、を備えたことを 特徴とする X線 CT装置。 [16] The inverter X-ray high-voltage device according to claim 14, and a high voltage of the inverter X-ray high-voltage device is supplied to generate X-rays, and the generated X-rays are irradiated to a subject. An X-ray source, an X-ray detector arranged opposite to the X-ray source with the subject interposed therebetween and detecting transmitted X-rays of the subject as projection data, the X-ray detector and the X-ray source A rotating plate that supports and rotates the image, an image processing unit that reconstructs a tomographic image of the subject from the projection data obtained by rotating the rotating plate from multiple directions, X-ray CT apparatus comprising: image display means for displaying a reconstructed tomographic image of the subject.
[17] 被検者が置かれる空間に均一な静磁場を発生する静磁場磁石と、この空間に磁場 勾配を形成する傾斜磁場コイルと、被検者の組織を構成する原子の原子核に、その 共鳴周波数と同じ周波数の高周波磁場を照射する照射コイルと、被検者から発生す る NMR信号を受信する受信コイルと、この受信コイルによって受信された NMR信号 を信号処理し前記被検者の断層像を画像再構成演算する画像処理手段と、この画 像処理手段によって画像再構成された前記被検者の断層像を表示する画像表示手 段とを備えた MRI装置にぉレ、て、前記傾斜磁場コイルに供給される傾斜磁場電源は 、請求項 1一 13の何れ力、 1項に記載の電力変換装置であることを特徴とする MRI装 置。 [17] A static magnetic field magnet that generates a uniform static magnetic field in the space where the subject is placed, a gradient magnetic field coil that forms a magnetic field gradient in this space, and nuclei of the atoms that make up the tissue of the subject An irradiation coil for irradiating a high-frequency magnetic field having the same frequency as the resonance frequency, a receiving coil for receiving an NMR signal generated from the subject, and a signal processing of the NMR signal received by the receiving coil to obtain a slice of the subject An MRI apparatus comprising: an image processing means for performing image reconstruction calculation of an image; and an image display means for displaying a tomographic image of the subject reconstructed by the image processing means. 14. An MRI apparatus, wherein the gradient magnetic field power supply supplied to the gradient magnetic field coil is the power conversion device according to claim 1, wherein the power is a power conversion apparatus.
PCT/JP2005/004172 2004-03-15 2005-03-10 Power converter, inverter x-ray high voltage unit, fluoroscopic system, x-ray ct system, mri system WO2005088814A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006510974A JP4526130B2 (en) 2004-03-15 2005-03-10 Power conversion device, inverter X-ray high voltage device, X-ray fluoroscopic device, X-ray CT device, MRI device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-072038 2004-03-15
JP2004072038 2004-03-15

Publications (1)

Publication Number Publication Date
WO2005088814A1 true WO2005088814A1 (en) 2005-09-22

Family

ID=34975917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004172 WO2005088814A1 (en) 2004-03-15 2005-03-10 Power converter, inverter x-ray high voltage unit, fluoroscopic system, x-ray ct system, mri system

Country Status (3)

Country Link
JP (1) JP4526130B2 (en)
CN (1) CN100553086C (en)
WO (1) WO2005088814A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013059251A (en) * 2011-09-08 2013-03-28 Abb Technology Ag Multilevel converter and control method of operating the same
JP2014204288A (en) * 2013-04-04 2014-10-27 日本電信電話株式会社 Information communication terminal device deterioration status determination system
JP2016059181A (en) * 2014-09-10 2016-04-21 ファナック株式会社 Pwm rectifier with electrostatic capacity calculation part
JP2020111441A (en) * 2019-01-15 2020-07-27 東芝エレベータ株式会社 Diagnostic device for elevator main circuit

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102340147A (en) * 2011-08-12 2012-02-01 东华大学 Method for weakening impact of startup of CT (computerized tomography) on power grid
JP6472592B2 (en) * 2012-04-18 2019-02-20 キヤノンメディカルシステムズ株式会社 Magnetic resonance imaging apparatus and magnetic resonance imaging method
CN104904322B (en) * 2013-01-10 2017-03-15 东芝医疗系统株式会社 X-ray computed tomograohy apparatus and X-ray generator
JP6821685B2 (en) * 2016-08-24 2021-01-27 東芝三菱電機産業システム株式会社 Energization evaluation test device for input filter for PWM converter
JP6884029B2 (en) * 2017-05-09 2021-06-09 株式会社日立製作所 Power converter and diagnostic method of power converter
CN110579720B (en) * 2018-06-08 2022-08-30 台达电子工业股份有限公司 Power supply monitor
CN109900461B (en) * 2019-02-27 2020-12-01 东软医疗系统股份有限公司 Method and device for testing safety of CT rotating plate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645189A (en) * 1987-06-27 1989-01-10 Sharp Kk Digital iq demodulating system
JPH07163045A (en) * 1993-12-01 1995-06-23 Fuji Electric Co Ltd Inverter
JPH08125899A (en) * 1994-10-26 1996-05-17 Rhythm Watch Co Ltd Monitoring device for life of power source and notifying method for maintenance of power source part in monitor camera
JP2000252094A (en) * 1999-03-03 2000-09-14 Hitachi Medical Corp Inverter type x-ray high-voltage device
JP2002165357A (en) * 2000-11-27 2002-06-07 Canon Inc Power converter and its control method, and power generating system
JP2003070185A (en) * 2001-08-28 2003-03-07 Toshiba Corp Power converter monitor
JP2003079132A (en) * 2001-08-31 2003-03-14 Hitachi Kokusai Electric Inc Electronic device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH105189A (en) * 1996-06-25 1998-01-13 Hitachi Medical Corp Power power unit for magnetic resonance imaging device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645189A (en) * 1987-06-27 1989-01-10 Sharp Kk Digital iq demodulating system
JPH07163045A (en) * 1993-12-01 1995-06-23 Fuji Electric Co Ltd Inverter
JPH08125899A (en) * 1994-10-26 1996-05-17 Rhythm Watch Co Ltd Monitoring device for life of power source and notifying method for maintenance of power source part in monitor camera
JP2000252094A (en) * 1999-03-03 2000-09-14 Hitachi Medical Corp Inverter type x-ray high-voltage device
JP2002165357A (en) * 2000-11-27 2002-06-07 Canon Inc Power converter and its control method, and power generating system
JP2003070185A (en) * 2001-08-28 2003-03-07 Toshiba Corp Power converter monitor
JP2003079132A (en) * 2001-08-31 2003-03-14 Hitachi Kokusai Electric Inc Electronic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013059251A (en) * 2011-09-08 2013-03-28 Abb Technology Ag Multilevel converter and control method of operating the same
JP2014204288A (en) * 2013-04-04 2014-10-27 日本電信電話株式会社 Information communication terminal device deterioration status determination system
JP2016059181A (en) * 2014-09-10 2016-04-21 ファナック株式会社 Pwm rectifier with electrostatic capacity calculation part
US9923477B2 (en) 2014-09-10 2018-03-20 Fanuc Corporation PWM rectifier including capacitance calculation unit
JP2020111441A (en) * 2019-01-15 2020-07-27 東芝エレベータ株式会社 Diagnostic device for elevator main circuit

Also Published As

Publication number Publication date
JPWO2005088814A1 (en) 2008-01-31
CN100553086C (en) 2009-10-21
CN1930766A (en) 2007-03-14
JP4526130B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
JP4526130B2 (en) Power conversion device, inverter X-ray high voltage device, X-ray fluoroscopic device, X-ray CT device, MRI device
JP5666485B2 (en) Power converter, X-ray CT apparatus, and X-ray imaging apparatus
US8588371B2 (en) Phase shift inverter, X-ray high-voltage device using same, X-ray CT device, and X-ray imaging device
JP5063609B2 (en) X-ray generator
JP2005021682A (en) X-ray generator for ct system and slip ring
JP2014147692A (en) X-ray computer tomography apparatus and x-ray beam generator
US20140233708A1 (en) Medical apparatus and x-ray high voltage apparatus
WO2012023267A1 (en) Medical diagnostic imaging device and tabletop movement unit
JP5570746B2 (en) X-ray computed tomography system
JP6858648B2 (en) X-ray high-voltage device, X-ray imaging device, and judgment circuit
JP5685449B2 (en) X-ray high voltage apparatus and X-ray CT apparatus
JP2019102348A (en) X-ray equipment
JP6095281B2 (en) X-ray generator and mobile X-ray imaging apparatus
JP4454079B2 (en) X-ray high voltage apparatus and X-ray apparatus
JP6162108B2 (en) Power conversion apparatus and X-ray imaging apparatus
JP5485592B2 (en) X-ray CT apparatus and high voltage generator for X-ray tube
JP2014073286A (en) X-ray imaging apparatus
JPWO2014097951A1 (en) X-ray high voltage apparatus and X-ray CT apparatus using the same
JP2017157433A (en) X-ray high voltage device and X-ray CT device
JP2018198204A (en) X-ray diagnosis system and anode rotary coil driving device
WO2023068342A1 (en) Control device, control method, and control program
JP5999962B2 (en) X-ray fluoroscopic equipment
JP2007095530A (en) High-voltage generator and x-ray diagnosis apparatus equipped with the same
JP5433371B2 (en) X-ray diagnostic system
JP2003079608A (en) X-ray ct system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510974

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580008291.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase