WO2005088344A1 - Verfahren zur spurerkennung einer fahrspur für ein kraftfahrzeug - Google Patents

Verfahren zur spurerkennung einer fahrspur für ein kraftfahrzeug Download PDF

Info

Publication number
WO2005088344A1
WO2005088344A1 PCT/EP2005/001345 EP2005001345W WO2005088344A1 WO 2005088344 A1 WO2005088344 A1 WO 2005088344A1 EP 2005001345 W EP2005001345 W EP 2005001345W WO 2005088344 A1 WO2005088344 A1 WO 2005088344A1
Authority
WO
WIPO (PCT)
Prior art keywords
lane
camera
vehicle
detection
traffic lane
Prior art date
Application number
PCT/EP2005/001345
Other languages
English (en)
French (fr)
Inventor
Axel Gern
Rainer Möbus
Volker Oltmann
Reinhold Schöb
Bernd Woltermann
Zoltan Zomotor
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Publication of WO2005088344A1 publication Critical patent/WO2005088344A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/04Systems determining the presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/588Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S7/4972Alignment of sensor

Definitions

  • the invention relates to a method for lane detection of a lane for a motor vehicle according to the preamble of patent claim 1.
  • Lane detection is to be carried out by means of the camera.
  • the obstacles detected by means of the LIDAR sensor are then to be evaluated to determine whether these obstacles are in the lane or next to the lane.
  • the sensor signal is evaluated for detected obstacles as well as their direction and distance to the vehicle. The course of the lane recognized by the camera is then used to assess whether these obstacles are in the lane or not.
  • the present invention is based on the object of improving the detection of a lane.
  • the LIDAR sensor has at least one detection plane which is at an acute angle in front of the driver. Stuff points to the ground and that the signal originating from this level additionally detects a lane in the vicinity of the vehicle.
  • a lidar sensor to perform lane detection by evaluating the reflected signal. This detection is based on the fact that the lane markings reflect the signals more than the usual road surface. By recognizing corresponding patterns in the reflected signals, a recognition of the lane markings and thus also a position of the lane relative to the vehicle can be determined. For this purpose, reference is made, for example, to DE 199 54 361 AI.
  • lane detection should also be implemented in the immediate vicinity in front of the vehicle.
  • ACC system existing sensor equipment of the vehicle can advantageously be used if the vehicle is already equipped with a system for obstacle detection and collision avoidance (so-called ACC system).
  • a system for obstacle detection and collision avoidance such a system can be implemented, for example, with an inexpensive lidar sensor.
  • Additional sensors can be provided, for example, in connection with the detection of the lane of vehicles.
  • vehicles can be equipped with a camera. Lane detection can then be used for a warning when leaving the lane (so-called lane departure warning) or in assistance systems for automatic lane guidance (so-called lane keeping).
  • lane keeping Such a camera can also be used for other assistance or security functions.
  • Good track detection is a prerequisite for most functions. This applies, for example, to systems for obstacle detection and collision avoidance for lane assignment of vehicles driving ahead, a system for warning of leaving the lane or a system for automatic lane guidance.
  • the calculation of the driving corridor on the basis of the evaluation of inertial sensors or the evaluation of vehicles traveling in front represent possibilities for estimating the course of the lane.
  • the evaluation of images which are recorded by cameras installed in vehicles represent a reliable and more accurate alternative.
  • lane estimation based on image evaluation can be prone to errors, especially in bad weather, low sun or similar conditions. If the camera has a telephoto lens, determining the position of the vehicle in the lane can be problematic because there is no information about the surroundings directly in front of the vehicle.
  • the lane detection of the evaluation of the image of the camera is interpreted as a continuation of the lane recognized by the LIDAR sensor.
  • the advantage here is that a sufficiently reliable starting value can be specified for lane detection at a greater distance. This significantly simplifies the orientation of the lane detection in the camera image.
  • the signal of the LIDAR sensor is also used as a reference signal for the sensor adjustment.
  • lidar systems on the market scan the surroundings for obstacles on several levels.
  • the systems are particularly dependent on the reflection properties of the possible obstacle.
  • the various levels can ensure that a possible obstacle can still be reliably detected even when the vehicle nods but also crests and depressions due to the intersection of the scan level with the roadway level.
  • a detection level can thus advantageously be defined such that it intersects the road surface immediately in front of the vehicle.
  • the targeted, directed view of the road can be used for reference purposes for the sensor, for example to detect the loading condition (pitch angle of the vehicle) and to use it in other assistance systems, such as lane detection, and to adjust other sensors.
  • the lowest level of the system is usually very far down on the street. This leads to, that the lidar system also receives reflections from the road markings, which usually have a different reflection property than the road surface.
  • this information is only available for a very small section in front of your own vehicle or only very few measuring points can be generated - which is sufficient, among other things, to execute a lane departure warning application.
  • this information can also be used to support camera-based lane detection. This has already been mentioned in connection with claim 2.
  • the camera-based lane detection can be made easier by placing the lidar-based lane data as an initial value.
  • this support by lidar-based lane detection can be of particular advantage: this means that the camera only takes a relatively long distance from the road and thus the lane mark. and the lidar system can recognize the lane markings shortly before the vehicle, the two systems complement each other perfectly and " you get a continuous recognition of the lane markings by connecting the two sensors.
  • the single figure shows a vehicle 1 with two sensors in the front area 4. On the one hand, this is a camera 2 and a LIDAR sensor 3.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Traffic Control Systems (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Spurer­kennung einer Fahrspur für ein Kraftfahrzeug, das eine Kamera sowie einen LIDAR-Sensor aufweist, wobei die Spurerkennung mittels der Kamera erfolgt, indem das Bild der Kamera zur Spurerkennung ausgewertet wird, wobei der LIDAR-Sensor we­nigstens eine Detektionsebene aufweist, die in spitzem Winkel vor dem Fahrzeug auf den Boden weist und wobei mittels des aus dieser Ebene stammenden Signals zusätzlich eine Spurer­kennung im Nahbereich vor dem Fahrzeug vorgenommen wird.

Description

Verfahren zur Spurerkennung einer Fahrspur für ein Kraftfahrzeug
Die Erfindung betrifft ein Verfahren zur Spurerkennung einer Fahrspur für ein Kraftfahrzeug nach dem Oberbegriff des Patentanspruchs 1.
Aus der DE 196 29 775 AI ist bereits ein derartiges Verfahren bekannt, wonach sowohl eine Kamera als auch ein LIDAR-Sensor vorhanden sind. Mittels der Kamera soll eine Spurerkennung vorgenommen werden. Auf Grund der erkannten Fahrspur sollen dann die mittels des LIDAR-Sensors, die erkannten Hindernisse darauf hin ausgewertet werden, ob sich diese Hindernisse in der Fahrspur befinden oder neben der Fahrspur. Bei der Auswertung des LIDAR-Sensors wird also das Sensorsignal auf erkannte Hindernisse ausgewertet sowie deren Richtung und Entfernung zum Fahrzeug. Mittels des durch die Kamera erkannten Verlaufes der Fahrspur wird dann weiterhin bewertet, ob sich diese Hindernisse in der Fahrspur befinden oder nicht.
Demgegenüber liegt der vorliegenden Erfindung die Aufgabe zu Grunde, die Erkennung einer Fahrspur zu verbessern.
Diese Aufgabe wird nach der vorliegenden Erfindung gemäß Anspruch 1 gelöst, indem der LIDAR-Sensor wenigstens eine Detektionsebene aufweist, die in spitzem Winkel vor dem Fahr- zeug auf den Boden weist und dass mittels des aus dieser Ebene stammenden Signals zusätzlich eine Spurerkennung im Nahbereich vor dem Fahrzeug vorgenommen wird.
Es ist grundsätzlich bekannt, mittels eines Lidar-Sensors durch eine Auswertung der reflektierten Signals eine Spurerkennung durchzuführen. Diese Erkennung basiert darauf, dass die Spurmarkierungen die Signale stärker reflektieren als der übliche Straßenbelag. Durch eine Erkennung entsprechender Muster in den reflektierten Signalen lässt sich also eine Erkennung der Spurmarkierungen und damit auch eine Lage der Fahrspur relativ zum Fahrzeug ermitteln. Hierzu sei beispielsweise auf die DE 199 54 361 AI verwiesen.
Mit der vorliegenden Erfindung soll insbesondere eine Spurerkennung auch im Nahbereich unmittelbar vor dem Fahrzeug realisiert werden.
Dabei kann vorteilhaft eine vorhandene Sensorausrüstung des Fahrzeugs genutzt werden, falls das Fahrzeug bereits ohnehin mit einem System zur Hinderniserkennung und Kollisionsvermeidung (sogenanntes ACC System) ausgerüstet ist. Ein derartiges System kann beispielsweise mit einem kostengünstigen Lidar- Sensor realisiert werden. Weitere Sensorik kann beispielsweise vorgesehen sein im Zusammenhang mit der Erkennung der Fahrspur von Fahrzeugen. In diesem Zusammenhang können Fahrzeuge mit einer Kamera ausgerüstet werden. Die Spurerkennung kann dann genutzt werden für eine Warnung beim verlassen der Fahrspur (sogenanntes Lane-Departure-Warning) bzw. in Assistenzsystemen zur automatischen Spurführung (sogenanntes Lane- Keeping) . Weiterhin kann eine solche Kamera noch für andere Assistenz- bzw. Sicherheitsfunktionen Verwendung finden. Für die meisten Funktionen ist eine gute Spurerkennung Voraussetzung. Dies gilt beispielsweise bei Systemen zur Hinderniserkennung und Kollisionsvermeidung zur Spurzuordnung von voraus fahrenden Fahrzeugen, bei einem System zur Warnung vor dem Verlassen der Spur oder einem System zur automatischen Spurführung .
Die Berechnung des Fahrkorridors auf Basis der Auswertung von Inertialsensorik oder der Auswertung voraus fahrender Fahrzeuge stellen Möglichkeiten zur Spurverlaufsschätzung dar. Die Auswertung von Bildern, die von in Fahrzeugen eingebauten Kameras aufgenommen werden, stellen eine zuverlässige und genauere Alternative dar.
Insbesondere bei schlechtem Wetter, tiefstehender Sonne oder ähnlichen Bedingungen kann eine Spurschätzung auf Basis der Bildauswertung aber fehleranfällig werden. Sofern die Kamera ein Teleobjektiv aufweist, kann die Bestimmung der Position des Fahrzeuges in der Spur problematisch sein, weil keine Informationen über die Umgebung direkt vor dem Fahrzeug vorliegen.
Bei der Ausgestaltung des Verfahrens nach Anspruch 2 wird die Spurerkennung der Auswertung des Bildes der Kamera als Fortsetzung der durch den LIDAR-Sensor erkannten Fahrspur interpretiert .
Insbesondere bei der Verwendung einer Kamera mit Teleobjektiv ergibt sich hier als Vorteil, dass zur Spurerkennung in größerer Entfernung ein hinreichend zuverlässiger Startwert vorgegeben werden kann. Dadurch wird die Orientierung bei der Spurerkennung im Kamerabild wesentlich vereinfacht. Bei der Ausgestaltung nach Anspruch 3 wird das Signal des LIDAR-Sensors weiterhin als Referenzsignal für die Sensorjus- tierung verwendet .
Wird bei der Auswertung des Kamerabildes gegenüber der Spurerkennung mittels des LIDAR-Sensors eine Abweichung in der erkannten Fahrspur erkannt, die beispielsweise auch in einer unterschiedlich erkannten Position des Fahrzeugs in der Spur bestehen kann, kann darauf geschlossen werden, dass eine De- justierung des Sensors vorliegt.
Die meisten auf dem Markt angebotene Lidar Systeme scannen die Umgebung auf mehreren Ebenen nach Hindernissen ab. Dabei sind die Systeme insbesondere auf die Reflektionseigenschaf- ten des möglichen Hindernisses angewiesen. Durch die verschiedenen Ebenen kann sichergestellt werden, dass auch bei Nicken des Fahrzeuges aber auch Kuppen und Senken aufgrund von Schnitt der Scann-Ebene mit der Fahrbahnebene ein mögliches Hindernis weiterhin sicher detektiert werden kann. Vorteilhaft kann also bei einem solchen Sensor eine Detektionsebene so definiert werden, dass diese unmittelbar vor dem Fahrzeug die Fahrbahnoberfläche schneidet.
Es besteht die Möglichkeit, die Detektion zum fahrzeugnahen Boden zusätzlich zu nutzen, ohne dass dies zu bemerkenswerten Einschränkungen beim Fernbereich führen würde.
Beispielsweise kann der gezielte, gerichtete Blick auf die Straße für Referenzzwecke für den Sensor verwendet werden, um beispielsweise den Beladungszustand (Nickwinkel des Fahrzeuges) zu detektieren und in weiteren Assistenzsystemen, z.B. der Spurerkennung zu nutzen und dabei andere Sensoren zu justieren. Hierfür ist dann die unterste Ebene des Systems meist sehr weit nach unten auf die Straße geneigt. Das führt dazu, dass das Lidar System auch Reflektionen von den Fahrbahnmarkierungen bekommt, die meist eine andere Reflektionseigen- schaft besitzen als der Fahrbahnbelag.
Durch das Tracken dieser Signale erhält man sehr gute Spurmarkierungsinformation und damit die Information über die Spurbreite und auch über die eigene Fahrzeugposition (Offset, Gierwinkel) in der Spur (analog zur kamerabasierten Fahrspurerkennung) . Dazu können Verfahren angewendet werden, wie sie bereits aus der optischen Spurerkennung bekannt sind.
Im Vergleich zur kamerabasierten Erkennung steht diese Information aber nur für ein sehr kleines Teilstück vor dem eigenen Fahrzeug zur Verfügung bzw. es können nur sehr wenige Messpunkte generiert werden - was aber ausreichend ist, um u.a. eine Lane-Departure-Warning Applikation auszuführen.
Neben der Verwendung der Daten direkt in der Applikation, kann man diese Information aber auch zur Stützung der kamerabasierten Spurerkennung nutzen. Dies ist bereits im Zusammenhang mit Anspruch 2 angesprochen. Einmal kann der kamerabasierten Spurerkennung das neue Aufsetzen auf die Spur erleichtert werden, indem man die lidarbasierten Spurdaten als Initialwert vorgibt .
Zusätzlich kann man durch eine Fusion der beiden Daten eine deutliche Performancesteigerung erwarten, da sich die beiden Systeme gegenseitig kontrollieren können. Dies ist im Zusammenhang mit Anspruch 3 angesprochen.
Bei der Verwendung einer Kamera mit einem Teleobjektiv kann diese Stützung durch eine lidarbasierte Spurerkennung von besonderem Vorteil sein: dadurch das die Kamera erst in einer relativ großen Entfernung die Straße und damit die Spurmar- kierungen sieht und das Lidarsystem bereits kurz vor dem Fahrzeug die Fahrbahnmarkierung erkennen kann, ergänzen sich die beiden System hervorragend und man" bekommt eine durchgängige Erkennung der Spurmarkierungen über die Verbindung der beiden Sensoren.
Die einzige Figur zeigt ein Fahrzeug 1 mit zwei Sensoren im Frontbereich 4. Es handelt sich dabei einerseits um eine Kamera 2 und um einen LIDAR-Sensor 3.
Zur Auswertung der Signale sei auf die vorstehenden Ausführungen verwiesen.

Claims

Patentansprüche
1. Verfahren zur Spurerkennung einer Fahrspur für ein Kraftfahrzeug (1) , das eine Kamera (2) sowie einen LIDAR- Sensor (3) aufweist, wobei die Spurerkennung mittels der Kamera (2) erfolgt, indem das Bild der Kamera (2) zur Spurerkennung ausgewertet wird, dadurch gekennzeichnet, dass der LIDAR-Sensor (3) wenigstens eine Detektionsebene aufweist, die in spitzem Winkel vor dem Fahrzeug (1) auf den Boden weist und dass mittels des aus dieser Ebene stammenden Signals zusätzlich eine Spurerkennung im Nahbereich vor dem Fahrzeug (1) vorgenommen wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Spurerkennung der Auswertung des Bildes der Kamera (2) als Fortsetzung der durch den LIDAR-Sensor (3) erkannten Fahrspur interpretiert wird.
3. Verfahren nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass das Signal des LIDAR-Sensors (3) als Referenzsignal für die Sensorjustierung verwendet wird.
PCT/EP2005/001345 2004-02-20 2005-02-10 Verfahren zur spurerkennung einer fahrspur für ein kraftfahrzeug WO2005088344A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004008868.3 2004-02-20
DE102004008868A DE102004008868A1 (de) 2004-02-20 2004-02-20 Verfahren zur Spurerkennung einer Fahrspur für ein Kraftfahrzeug

Publications (1)

Publication Number Publication Date
WO2005088344A1 true WO2005088344A1 (de) 2005-09-22

Family

ID=34832996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/001345 WO2005088344A1 (de) 2004-02-20 2005-02-10 Verfahren zur spurerkennung einer fahrspur für ein kraftfahrzeug

Country Status (2)

Country Link
DE (1) DE102004008868A1 (de)
WO (1) WO2005088344A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015106913A1 (de) 2014-01-16 2015-07-23 Bayerische Motoren Werke Aktiengesellschaft Verfahren und system zum schätzen eines fahrspurverlaufs
TWI665114B (zh) * 2017-08-25 2019-07-11 Institute For Information Industry 車輛行駛偵測方法及車輛行駛偵測系統
CN110967024A (zh) * 2019-12-23 2020-04-07 苏州智加科技有限公司 可行驶区域的检测方法、装置、设备及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4687563B2 (ja) * 2006-05-23 2011-05-25 株式会社デンソー 車両用レーンマーク認識装置
DE202007000327U1 (de) * 2007-01-10 2007-04-12 Sick Ag Optoelektronischer Scanner
DE102019211207B4 (de) * 2019-07-29 2021-07-29 Zf Friedrichshafen Ag Verfahren und Sensorsystem zur Fahrbahnmarkierungserkennung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19629775A1 (de) * 1995-11-17 1997-05-22 Mitsubishi Electric Corp Verfahren und Vorrichtung zur Überwachung der Umgebung eines Fahrzeugs und zur Erfassung eines Ausfalls der Überwachungsvorrichtung
DE19954362A1 (de) * 1998-11-12 2000-06-29 Denso Corp Autoradar zur Erfassung einer Fahrspurmarkierung und eines voraus befindlichen Hindernisses
US6151539A (en) * 1997-11-03 2000-11-21 Volkswagen Ag Autonomous vehicle arrangement and method for controlling an autonomous vehicle
US6580385B1 (en) * 1999-05-26 2003-06-17 Robert Bosch Gmbh Object detection system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2646146B2 (ja) * 1990-03-28 1997-08-25 三菱電機株式会社 車間距離制御装置
US5293162A (en) * 1992-03-09 1994-03-08 Bachalo William D Laser based tracking device for detecting the distance between a vehicle and a roadway marker
US5875408A (en) * 1995-07-17 1999-02-23 Imra America, Inc. Automated vehicle guidance system and method for automatically guiding a vehicle
DE19934670B4 (de) * 1999-05-26 2004-07-08 Robert Bosch Gmbh Objektdetektionssystem
DE10149115A1 (de) * 2001-10-05 2003-04-17 Bosch Gmbh Robert Objekterfassungsvorrichtung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19629775A1 (de) * 1995-11-17 1997-05-22 Mitsubishi Electric Corp Verfahren und Vorrichtung zur Überwachung der Umgebung eines Fahrzeugs und zur Erfassung eines Ausfalls der Überwachungsvorrichtung
US6151539A (en) * 1997-11-03 2000-11-21 Volkswagen Ag Autonomous vehicle arrangement and method for controlling an autonomous vehicle
DE19954362A1 (de) * 1998-11-12 2000-06-29 Denso Corp Autoradar zur Erfassung einer Fahrspurmarkierung und eines voraus befindlichen Hindernisses
US6580385B1 (en) * 1999-05-26 2003-06-17 Robert Bosch Gmbh Object detection system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015106913A1 (de) 2014-01-16 2015-07-23 Bayerische Motoren Werke Aktiengesellschaft Verfahren und system zum schätzen eines fahrspurverlaufs
DE102014200638A1 (de) 2014-01-16 2015-07-30 Bayerische Motoren Werke Aktiengesellschaft Verfahren und System zum Schätzen eines Fahrspurverlaufs
TWI665114B (zh) * 2017-08-25 2019-07-11 Institute For Information Industry 車輛行駛偵測方法及車輛行駛偵測系統
CN110967024A (zh) * 2019-12-23 2020-04-07 苏州智加科技有限公司 可行驶区域的检测方法、装置、设备及存储介质

Also Published As

Publication number Publication date
DE102004008868A1 (de) 2005-09-08

Similar Documents

Publication Publication Date Title
EP1614585B1 (de) Verfahren und Vorrichtung zum Vermessen einer Parklücke für ein Einparkassistenzsystem eines Kraftfahrzeugs
EP2788245B1 (de) Verfahren und vorrichtung zur lokalisation einer vordefinierten parkposition
DE102004006133B4 (de) Vorrichtung zur Leuchtweitenregulierung eines Kraftfahrzeugs
EP3254138A1 (de) Verfahren zur ermittlung einer querpositionsinformation eines kraftfahrzeugs auf einer fahrbahn und kraftfahrzeug
DE102004057296A1 (de) Lane-Departure-Warning mit Unterscheidung zwischen Fahrbahnrandmarkierung und baulicher Begrenzung des Fahrbahnrandes
DE102011121722A1 (de) Vorrichtung zur Einparksteuerung
WO2007033870A1 (de) Verfahren und fahrerassistenzsystem zur sensorbasierten anfahrtsteuerung eines kraftfahrzeugs
DE102008062708A1 (de) Verfahren zur Bestimmung der Fahrbahnebene einer Parklücke
DE102005039895A1 (de) System für Spurverlassenswarnung und/oder Spurhaltefunktion
DE19536000B4 (de) Niveaueinstellung für Abstandsmessgeräte in Fahrzeugen
WO2005088344A1 (de) Verfahren zur spurerkennung einer fahrspur für ein kraftfahrzeug
DE102015207026A1 (de) Verfahren und Vorrichtung zum Steuern eines Erfassungssystems zum Erfassen eines Umfelds eines Fahrzeugs
WO2018141340A1 (de) Erkennung von strassenunebenheiten anhand einer situationsanalyse
EP1787847A2 (de) Fahrerassistenzsystem mit Abstandserfassung
EP1308751A2 (de) Verfahren zum Betreiben eines Nahbereichserkennungssystems und Nahbereichserkennungssystem
DE102005027642A1 (de) Verfahren und Vorrichtung zur Unterstützung eines Einparkvorgangs eines Fahrzeugs
DE102015122413B4 (de) Verfahren zum Betreiben eines Ultraschallsensors eines Kraftfahrzeugs, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102016109850B4 (de) Verfahren zum Erkennen einer Neigung in einer Fahrbahn eines Kraftfahrzeugs, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102018216109B4 (de) Verfahren zur Umfelderfassung eines Fahrzeugs und Fahrzeug
EP1333296B1 (de) Verfahren zur Bestimmung eines Abstandes zwischen im Wesentlichen in einer Ebene sich befindenden Gegenständen
DE102006055145B4 (de) On-Board-Nebelbestimmungsvorrichtung
DE102015010441A1 (de) Verfahren und kameraunterstütztes System zur Fahrspurverlaufsermittlung für ein Kraftfahrzeug
EP0892281A2 (de) Verfahren und Vorrichtung zur Erfassung der Fahrsituation eines Kraftfahrzeuges
DE102017124962A1 (de) Vermeidung von falschen Objekterfassungen bei Hindernissen oberhalb eines Fahrzeugs
DE102004035539B4 (de) Vorrichtung in einem Fahrzeug zum Erkennen von Parklücken

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase