WO2005086616A2 - Procede et dispositif permettant d'ameliorer le controle des bagages - Google Patents
Procede et dispositif permettant d'ameliorer le controle des bagages Download PDFInfo
- Publication number
- WO2005086616A2 WO2005086616A2 PCT/US2004/029616 US2004029616W WO2005086616A2 WO 2005086616 A2 WO2005086616 A2 WO 2005086616A2 US 2004029616 W US2004029616 W US 2004029616W WO 2005086616 A2 WO2005086616 A2 WO 2005086616A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- articles
- series
- locating
- image
- selecting
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 99
- 238000012216 screening Methods 0.000 title abstract description 12
- 230000000007 visual effect Effects 0.000 claims abstract description 41
- 238000007689 inspection Methods 0.000 claims description 48
- 238000011179 visual inspection Methods 0.000 claims description 13
- 238000004891 communication Methods 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 7
- 230000001755 vocal effect Effects 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 3
- 230000003213 activating effect Effects 0.000 claims 3
- 230000005670 electromagnetic radiation Effects 0.000 claims 3
- 230000001678 irradiating effect Effects 0.000 claims 2
- 101150074844 BAG5 gene Proteins 0.000 description 15
- 230000009471 action Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 8
- 238000009434 installation Methods 0.000 description 8
- 238000013507 mapping Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000004913 activation Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000011017 operating method Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005007 materials handling Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- LZPZPHGJDAGEJZ-AKAIJSEGSA-N regadenoson Chemical class C1=C(C(=O)NC)C=NN1C1=NC(N)=C(N=CN2[C@H]3[C@@H]([C@H](O)[C@@H](CO)O3)O)C2=N1 LZPZPHGJDAGEJZ-AKAIJSEGSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V5/00—Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
- G01V5/20—Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
Definitions
- a screener sees a potential threat object in an x-ray image, he/she typically suspends image scanning and inspection and verbally alerts search personnel stationed in the vicinity of the x-ray machine conveyor to remove the bag/item in question to search for the object. Often the search person is called over to the x- ray image monitor to look at the object on the screen to help in the search of the bag/item. In the meantime, flow of traffic through the security checkpoint halts while this communication is going on. Lines at these x-ray machines are often long and can be quite slow, especially with today's increased threats of terrorism. Current processing rates through a typical security checkpoint are relatively slow and labor costs are high.
- TSA Transportation Security Administration's
- An x-ray image produced from the scanning may show an individual bag, an individual item, or a group of bags and/or items depending upon how they are presented to the scanner (ie. singly or in groups).
- bags/items, bags, baggage, items, articles, or similar reference is meant to include any of single articles as well as grouped articles presented to the scanner.
- the x-ray scanner generates an electronic image of a bag/item being scanned as the bag/item passes through the x-ray scanning region. The image is displayed on the scanner's screener inspection station monitor screen.
- the scanning conveyor is controlled by the screener at the single screener inspection station and is stopped by the screener after each x-ray scan of a bag/item to allow the screener to visually inspect the image and decide whether to clear the bag/item or to call for a manual search of the bag/item.
- the screener activates the scanner conveyor and scans the next bag/item.
- Typical included in the time needed for the screener to complete the screening (inspection) of a bag/item are (1) the time required to start the conveyor and control the conveying of the bag/item through the scan zone to take a scan and then stop the conveyor, (2) the time needed to visually examine the resulting x-ray image, (3) the time required to make a decision to clear the bag/item or call for a manual search, (4) in the event of a decision to call for a manual search the time required to verbally notify search personnel of what to search for, and (5) manipulation of conveyor position so that the searcher can locate and retrieve the bag/item to be searched.
- the x-ray scanning equipment, associated conveying systems, peripheral equipment such as metal detectors and explosives detection systems, and a team of trained security personnel to man and operate the security checkpoint are limited to processing bags/items and their associated persons at a rate limited by time requirements for one screener to perform scanner start and stop operations for every bag/item scanned, time required for that same screener to visually examine every x-ray image produced, time required for that same screener to verbally alert search personnel to any bags/items that need manual search, time required for that same screener to verbally convey to the search personnel what they should be looking for within the suspect bag/item, and time required for that same screener to assist the search personnel in locating and securing the suspect bag/item.
- present day average throughput rate of bags/items through an x-ray scanner is approximately 150 bags/items per hour. They have said that 200 bags/items per hour is top rate during rush periods.
- many more bags/items can be scanned through the system in a given period, and thus pass through the checkpoint, allowing a greater flow of people and their carried items to be cleared through the checkpoint if requirements for a screener to stop/start the scanning operation during each x- ray image inspection is reduced or eliminated.
- multiple screener image inspection stations can be utilized to simultaneously inspect multiple different x-ray images if needed such that bags/items continue to be scanned during the times that x-ray images are being visually inspected, and screeners are relieved of the need to verbally communicate to search personnel information concerning bags/items to be searched.
- the inventive x-ray data handling system and operating method provides for increased processing of persons and their carried baggage/items through security checkpoints thereby reducing capital costs and operating costs for clearing people and their carried baggage/items for entry into secure areas at installations such as airports, federal buildings, seaports, and other sensitive installations.
- Typical security checkpoint x-ray scanning systems such as the Rapiscan series of scanners or the Heimann series of scanners, are designed to produce an x-ray image of a bag/item as it is conveyed through the scanning region.
- the x-ray image resulting from a scan is displayed on the scanner's single screener inspection station visual monitor until replaced by the next x-ray image resulting from the next scan.
- the present invention uses a computer system to record in its memory the scanned image data from the scanner and provides for visual display of the image to a screener when the screener is ready while in the meantime allowing the scanner to be taking additional scans.
- This invention eliminates the need to stop the scanning process and the flow of materials through the scanner between scans.
- the scanning conveyor runs continuously, instead of stopping and starting scanning and the conveyor carrying bags/items through the scanning region for each bag/item inspected, then for a typical scanner conveyor speed of 40 ft/min a conveyed length of approximately 2400 feet flows through the scanning machine in one hour. Placing a bag/item on the continuously flowing conveyor every four feet for example and scanning bags/items as they pass through the scanning region allows the scanner to scan about 600 bags/hr. This rate is approximately four times as many bags as are now processed in a single checkpoint using today's start/stop scanner technology for each x-ray image produced.
- the present invention relieves the screener of these tasks.
- the present invention provides that a series of bags/items can be processed through an x-ray scanner by scanning the bags/items in a series of x-ray scans without stopping scanning and performing image inspection between scans.
- An x-ray image produced from the scanning may be of an individual bag/item or a group of bags/items depending upon how they are presented to the scanner (i.e., singly or in groups).
- the invention provides that image data produced by scanning is acquired by a computer that stores data to produce electronic images in an image data queue in computer memory. This data is preserved in computer memory as the scanner continues to take additional scans. Electronic image data is delivered from the queue for display of its electronic image on a screener station display monitor when a station is ready to receive and display an image for screener inspection.
- the scanner generates a sequence of x-ray measurements and outputs an analog video stream of resulting electronic images for display.
- a computer system acquires the video stream from the scanner and digitizes the analog video stream (in this case originally intended for the scanner's single inspection station monitor).
- An image processing subsystem of the computer system isolates an electronic image of a bag/item or group of bags/items within the digitized data stream and performs an inverse mapping function to extract x-ray data from the electronic image. This data is stored into an electronic image data queue. The data is preserved in computer memory allowing the scanner to continue to take additional scans before screener inspection of the electronic image corresponding to the data is completed.
- a screener inspection station ready to receive an image is selected by the computer system and electronic image data from the queue is routed to an x-ray image enhancement software subsystem.
- the image enhancement software processes the electronic image data and provides a visual display of an electronic image derived from that data on the display monitor at the selected screener inspection station.
- the x-ray image enhancement software further allows the screener at the selected inspection station to manipulate the color map for the electronic image being viewed so to enhance the view with different color mappings at the discretion of the screener during visual inspection.
- Each of the screener inspection stations supported by the computer system can have its own x-ray image enhancement software subsystem running within the computer.
- Each station also can have a physical keyboard with special purpose function keys to select parameters of the color mapping function of the x-ray image enhancement software subsystem that generates the various color mapped image presentations.
- Each station also can have a software keypad, such as touch buttons displayed on a touch screen, to select the parameters of the color mapping function of the x-ray image enhancement software subsystem that generates the various color mapped image presentations.
- the scanner generates scan data corresponding to a bag/item or group of bags/items and this data is stored by a computer system into an electronic image data queue. The data is preserved in computer memory allowing the scanner to continue to take additional scans before screener inspection of the electronic image corresponding to the data is completed.
- a screener inspection station ready to receive an image is selected by the computer system and electronic image data from the queue is routed to an x-ray image enhancement software subsystem.
- the image enhancement software processes the electronic image data and provides a visual display of an electronic image derived from that data on the display monitor at the selected screener inspection station.
- the x-ray image enhancement software further allows the screener at the selected inspection station to manipulate the color map for the electronic image being viewed so to enhance the view with different color mappings at the discretion of the screener during visual inspection.
- Each of the screener inspection stations supported by the computer system can have its own x-ray image enhancement software subsystem running within the computer.
- Each station also can have a physical keyboard with special purpose function keys to select parameters of the color mapping function of the x-ray image enhancement software subsystem that generates the various color mapped image presentations.
- Each station also can have a software keypad, such as touch buttons displayed on a touch screen, to select the parameters of the color mapping function of the x-ray image enhancement software subsystem that generates the various color mapped image presentations.
- the present invention provides that the computer system receiving the scanner data can be connected to one or more screener inspection stations and has capability for distribution of an image to a visual display at one of the screener inspection stations when that station is ready to receive and display an image, irregardless of additional scans being performed by the x-ray scanning machine and irregardless of other images being displayed and visually inspected at other of the connected screener inspection stations.
- x-ray images displayed are not replaced by subsequent scans, as happens with present day scanners, and images can be being visually inspected as subsequent scans of bags/items take place.
- the present invention provides that x-ray images can be distributed among a network of screener inspection stations. This is very advantageous if the volume of scans produced is more than can be effectively inspected at one inspection station.
- the computer system can monitor screener activity at each inspection station and transmit a new image to an inspection station when the screener at that station has completed visual inspection of the image displayed at that inspection station.
- a screener may be visually inspecting an x-ray image over a time interval that overlaps in time with the time intervals for other screeners to visually inspect other x-ray images. In this way multiple x-ray images can be being inspected at the same time.
- the present invention also electronically associates bags/items with their x-ray images and automatically tracks bags/items through the system so that search personnel can easily and accurately locate a bag or item that a screener electronically selects for manual search without additional assistance from the screener.
- the inventors have seen an x-ray scanner system that provides two display monitors for showing x-ray images.
- this system is different from the present invention in that a screener for screening x-ray images uses only one of the display monitors.
- the second display monitor is positioned at a search station and is used to show an x-ray image to assist the searcher in physically searching a bag/item that the screener has determined needs to be searched.
- Another feature of the present invention is that screeners located remotely from the security checkpoint can inspect x-ray images of bags/items scanned at the checkpoint. In this way the screeners can examine x-ray images without the distractions of activities present at the checkpoint.
- An additional advantage to remote placement of screeners is that it can be effective for eliminating collusion between screeners and persons passing through the checkpoint.
- An example of a remote location is, for instance, a quiet room somewhere in an airport where x-ray images generated at security checkpoints within the airport are examined and screener selections of objects of interest, such as for search, electronically transmitted back to the appropriate checkpoints.
- Another example of a remote location is an x-ray image inspection center serving numerous checkpoints or even numerous sensitive installations that is located across town, across the state, or in another city or another state from the sensitive installations.
- the present invention provides method and apparatus to increase throughput rate of people and their carried items through a security checkpoint that utilizes an electromagnetic scanner, such as an x-ray scanner, to help inspect items as they are passed through the checkpoint.
- an electromagnetic scanner such as an x-ray scanner
- the inventive scanner image data handling system, materials handling system, and operating method reduces operating costs and capital costs for clearing people and their carried bags/items for entry into secure areas at installations such as airports, federal buildings, seaports, and other sensitive installations.
- the present invention removes the requirement that the screener operate the scanner and conveyor in addition to performing the visual screening of images as is done with present day systems.
- present day scanning systems used to produce electronic images for visual display and inspection scanning of a subsequent bag/item can not be performed until inspection of the image of a previously scanned bag/item is completed
- Method and means for electronic images from a single scanner to be distributed among more than one screener inspection station, each station displaying a different image, enabling time-overlapping visual inspections of multiple electronic images.
- Present day scanning systems are limited to presentation and visual inspection of one image at a time on a single screener inspection station display.
- Figure 1 is a schematic drawing illustrating x-ray image distribution features of the invention and bag tagging and bag tracking features of the invention.
- Figure 2 is a schematic drawing illustrating the diversion of a bag for searching which has been tagged for search by a screener as illustrated in Figure 1.
- Figure 3 shows two drawings of a computer monitor screen illustrating interactive selection for further treatment of an article displayed on the screen.
- Figure 4 illustrates the image displayed on another computer monitor screen resulting from the transmission of the selection illustrated in Figure 3b to that computer monitor screen.
- Figure 5 is a schematic drawing that illustrates a bag which has been selected for search by a screener, tracked to a diversion location, and highlighted by casting a bright light upon it so to notify search personnel that the bag has been selected for searching.
- Figure 6 is a schematic drawing that illustrates a bag which has been selected for search by a screener, tracked to a diversion location, and automatically diverted from the flow of bags.
- Computer system 8 may be a microprocessor, several microprocessors, a computer, a system of computers, a network of computers, or any combination thereof.
- Electronic connection path 7 may be a unidirectional connection path carrying data from x-ray scanner 1 to computer system 8 or a bidirectional connection path supporting two way communications between computer system 8 and x-ray scanner 1.
- Computer system 8 routs each x-ray image 11 generated to one of computer monitors 10 over electronic connection paths 9 which may be wired or wireless.
- three separate computer monitors 10 for visual display are depicted and shown as 10A, 10B, and 10C although any number of computer monitors may be utilized.
- FIG. 1 In the example of Figure 1, three separate x-ray images 11 A, 1 IB, and 11C are depicted as being displayed on monitors 10 A, 10B, and 10C, an image of a different bag/item 4 on each monitor, having been sent over electronic connection path 9A, 9B, or 9C to monitors 10.
- Paths 9A, 9B, and 9C may be distinct from each other or may be a combined or networked electronic path between computer system 8 and monitors 10.
- Software running on computer system 8 provides that the x-ray image 11 at each monitor 10 may be independently manipulated by an operator (screener) manning the monitor to show different presentations, contrasts, edge enhancements, color maps, density maps, etc.
- the tag 15 can be a physical tag, such as a bar code or radio frequency identification (RFID) tag, which can be read for instance by a tag reader or sensor 16 or a tag reader or sensor 17 or similar readers/sensors positioned throughout the system.
- Tag 15 may alternatively be a software tag electronically associated with its particular bag/item within the memory of computer system 8, or both.
- bag/item 4 position is tracked through the system by computer system 8, based upon conveyor belt position sensing, video tracking, position sensors such as photocell beam sensors stationed along conveyor 3, or inputs from tag reader or sensor 16 or tag reader or sensor 17 or similar readers/sensors positioned throughout the system.
- Tag readers or sensors 16 and/or 17, and/or conveyor belt position sensors, and/or position sensors such as photocell beam sensors stationed along conveyor 3, and/or additional such readers/sensors as needed, provide information to computer system 8 over electronic connection paths 18 and 19 or similar connection paths, inputting the tag identity of each bag/item that is scanned by x-ray scanner 2 and the subsequent locations of the tagged bags/items 4 as they move through the system.
- monitors 10 is manned by a human operator (screener).
- the screener at each monitor visually inspects an x-ray image 11 displayed on that monitor looking for objects of interest such as contraband or threat objects within the bag/item 4 whose x-ray image is being displayed. If a screener determines there is potentially an object of interest within a bag/item 4 whose x-ray image is displayed on a monitor 10 being viewed by that screener, the screener electronically signals computer system 8 over data line 9 or similar data line that the bag/item 4 whose image is being inspected potentially contains an object of interest. Computer system 8 then electronically registers within its memory that particular bag/item 4 for further treatment.
- the screener at monitor 10A visually inspects the x-ray image 11 A of a particular item such as Bag5 13 designated as 13 which is displayed on monitor 10A and determines that Bag5 13 may contain an object of interest.
- the screener then signals 12 computer system 8 over electronic connection 9 A that the screener selected Bag5 13 as potentially containing an object of interest and computer system 8 electronically registers Bag5 13 in computer memory for further consideration.
- the position of Bag5 13 has been advanced by the motion of conveyor 3 to a position downstream from x-ray scanner 1 by the time that the screener signals computer system 8 that the screener selects Bag5 13 as potentially containing an object of interest.
- Computer system 8 utilizes signals from tag readers/sensors 16 and/or 17, and/or from any additional similar readers/sensors within the system, and/or software tags within computer system 8, to recognize selected Bag5 13 as it moves through the system.
- computer system 8 signals diversion station 6 over electronic connection path 14, which may be wired or wireless, of the presence of selected Bag5 13 as a bag/item 4 potentially containing an object of interest. Appropriate action is then taken at diversion station 6 to secure selected Bag5 13 for further treatment.
- conveyor 3 has advanced selected Bag5 13 to diversion station 6 where, responsive to electronic signals from computer system 8 over electronic connection path 14, selected Bag5 13 is, in this example, physically removed from conveyor 3 to a position P off conveyer 3 for further treatment.
- the selected Bag5 13 may be removed manually or by automated means. It is instructive to note in Figure 2 that the x-ray images 11 displayed on monitors 10 in Figure 1, having been inspected during the passage of Bag5 13 through the system and acted upon by the respective screeners at monitors 10, have now been replaced with new x-ray images in Figure 2 for inspection by the screeners at monitors 10.
- Bagl through Bag3 in Figure 1 have been advanced through and out of the system by the time of Figure 2, and are no longer illustrated in Figure 2.
- BaglO through Bag 12 in Figure 2 are bags/items 4 that have been introduced into the system since the time of Figure 1.
- Figures 3 a and 3b illustrate a preferred method utilizing a computerized pointing device such as a touch sensitive screen, computer mouse, light pen, track ball, etc. for a screener to signal to computer system 8 that the screener has identified a potential object of interest 20 within a bag/item, in this example bag/item 13 of Figure 1 and Figure 2.
- a touch sensitive screen or other interactive device is more fully discussed in U.S.
- FIG 3a illustrate a computer monitor 10 which in the present embodiment incorporates a touch sensitive screen as a computerized pointing device.
- An x-ray image 13X of the exemplar bag/item 13 is displayed on the touch sensitive screen of monitor 10 and is visually examined by a screener.
- the x-ray image 13X can be manipulated by the screener manning the monitor to show different presentations, contrasts, edge enhancements, color maps, density maps, etc.
- the screener visually identifies the x-ray image of item 20 as an image of an object of potential interest, such as contraband or a threat object, and touches the touch screen of monitor 10 at a location 21 on the touch screen on or near the image of item 20, as depicted in Figure 3b, which electronically signals computer system 8 that the screener has selected the region in the image in the vicinity of the touch as containing a potential obj ect of interest.
- Computer system 8 causes the region around touched location 21 to be visually highlighted on the screen with a region of interest (ROI) 22.
- ROI region of interest
- a line 22 is drawn around the touched position 21, as feedback of the selection to the screener. Contained near or in the ROI 22 is the image of the object of potential interest 20.
- the screener has an opportunity to review this touch selection at location 21, as highlighted by ROI 22, and cancel the touch selection and ROI 22 if the screener changes his/her mind, or if satisfied with the touch selection at location 21, the screener can electronically submit the touch selection at location 21 to computer system 8. Submitting the touch location 21 by the screener confirms to computer system 8 the presence and approximate location of a potential object of interest within the bag/item 13 whose x-ray image 13X is being displayed on monitor 10, referred to in Figure 1 and Figure 2 in this example as selected Bag5 13.
- Computer system 8 utilizing signals from tag readers/sensors 16 and/or 17, and/or conveyor position sensors or software tags, and/or position sensors such as photocell beam sensors stationed along conveyor 3, and/or other similar readers/sensors in the system, then provide at the appropriate time a notification of the arrival of the selected bag 13 at diversion station 6. This notification can be used as a signal to automatically remove the selected bag 13 from the flow of bags for further examination or otherwise notify personnel of the presence of selected bag 13 at diversion station 6.
- An alternative method for the screener to signal to computer system 8 that the screener has visually identified an object of potential interest 20 within a bag/item 4 includes in the embodiment means for the screener to activate an electrical switch such as pushing a button, touch a touch sensitive screen "button", or otherwise activate a communication to computer system 8 by manual action, verbal action, or other analogous action.
- Computer system 8 can be configured to recognize the signal from the switch or the manual communication activated by the screener as signal from the screener that the screener has identified an object of potential interest within the bag/item 13 whose x-ray image 13X is being displayed on the screener's monitor 10.
- Computer system 8 utilizing input signals from tag readers/sensors 16 and/or 17, and/or conveyor belt position sensors or software tags, and/or position sensors such as photocell beam sensors stationed along conveyor 3, and/or other similar readers/sensors in the system, then provides, at the appropriate time, a notification of the arrival of selected bag 13 at diversion station 6. This notification can be used to initiate removal of the selected bag 13 from the flow of bags on conveyor 3 for further examination or otherwise notify personnel of the presence of selected bag 13 at diversion station 6.
- the location 21 on the screen where the screener touches the x-ray image 13X signals to computer system 8 the approximate location of the image of the potential object of interest 20 within x-ray image 13X and thus with some relativity the location in the inspected bag/item 13.
- computer system 8 can cause the region around touched location 21 to be visually highlighted on the screen as illustrated with a region of interest (ROI) 22. Contained near or in the identified ROI 22 is the image of the potential object of interest 20.
- ROI region of interest
- the position of the x-ray image 20 of the object of interest within the x-ray image 13X of the selected bag/item 13 that was x-ray scanned correlates to the physical location of the potential object of interest within the actual selected bag/item 13. This information can be useful for carrying out further examination of selected bag/item 13 , represented by x-ray image 13X, such as physically searching the contents of selected bag/item 13 to locate and identify the potential object of interest represented by image 20 in x-ray image 13X.
- Computer system 8, conveyor 3, and lamp 25 are coordinated so that computer system 8 activates lamp 25 at the right time so that selected bag 13 is positioned within the illuminated area 26.
- Personnel in the vicinity of diversion station 6 can see the illuminated selected bag 13 and then take action for further examination of selected bag 13, such as removing selected bag 13 from the conveyor 3 and manually searching selected bag 13 for potential objects of interest such as contraband or threat objects.
- an annunciator such as an audible alarm or visual alarm, such as a flashing light or a wireless activated annunciator (such as a vibrating annunciator), may be activated to draw the attention of personnel to selected bag 13 at diversion station 6.
- computer system 8 may cause the motion of conveyor 3 to stop with selected bag 13 held at diversion station 6 until appropriate action is taken.
- the conveyor 3 may be put back into motion upon signal from diversion station 6 that appropriate action has been taken with respect to selected bag 13.
- lamp 25 may be deactivated so that area 26 is no longer illuminated until signal is received from computer system 8 that another selected bag has arrived at diversion station 6 and lamp 25 is again activated. It should be noted that such interruption of the flow of conveyor 3 will slow the overall processing of scanning, it is still significantly enhanced over current conventional methods.
- Figure 6 depicts another alternative method for notification to personnel that a selected bag, such as bag 13, has arrived at diversion station 6 and further initiates the automatic removal of the selected bag 13 from the flow of bags on conveyor 3.
- computer system 8 can signal over electronic connection path 14 causing bag diverter 30 to activate.
- Bag diverter 30 is positioned along conveyor 3 at diversion station 6.
- Computer system 8, bag diverter 30, and conveyor 3 are coordinated so that computer system 8 activates bag diverter 30 at the right time so that selected bag 13 is removed from conveyor 3 by the action of diverting mechanism 31 of bag diverter 30 as shown.
- An annunciator such as an audible alarm or visual alarm such as a flashing light or a wireless activated annunciator (such as a vibrating annunciator) may be activated to annunciate to personnel that selected bag 13 has been removed from conveyor 3.
- computer system 8 may cause the motion of conveyor 3 to stop with selected bag 13 held in position in the path of the diverting mechanism 31 of bag diverter 30 until bag 13 is removed from conveyor 3.
- monitors 10 can be located remotely from the sec ⁇ rity checkpoint which includes x-ray scanner 1, conveyor 3, diversion station 6, and other peripheral equipment. In this way the screeners stationed at monitors 10 can examine x-ray images 11 without the distractions of activities present at the checkpoint.
- An additional advantage to remote placement of screeners is that it can be effective at eliminating collusion between screeners and persons passing through the checkpoint.
- Another advantage is that screeners could be shared among different checkpoints as needed.
- An example of a remote location is, for instance, a quiet room somewhere in an airport where x-ray images generated at security checkpoints within the airport are examined and screener selections of objects of interest transmitted back to the appropriate checkpoints.
- Another example is an x- ray image inspection center serving numerous checkpoints or even numerous sensitive installations that is located across town, across the state, or in another city or state.
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04821375A EP1685574A4 (fr) | 2003-09-10 | 2004-09-10 | Procede et dispositif permettant d'ameliorer le controle des bagages |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US50174103P | 2003-09-10 | 2003-09-10 | |
US50176703P | 2003-09-10 | 2003-09-10 | |
US60/501,767 | 2003-09-10 | ||
US60/501,741 | 2003-09-10 | ||
USPCT/US2004/24607 | 2004-07-30 | ||
PCT/US2004/024607 WO2006022660A2 (fr) | 2004-07-30 | 2004-07-30 | Systeme de visionnage de sacs assiste par ordinateur |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005086616A2 true WO2005086616A2 (fr) | 2005-09-22 |
WO2005086616A3 WO2005086616A3 (fr) | 2006-03-23 |
Family
ID=34976045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2004/029616 WO2005086616A2 (fr) | 2003-09-10 | 2004-09-10 | Procede et dispositif permettant d'ameliorer le controle des bagages |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1685574A4 (fr) |
WO (1) | WO2005086616A2 (fr) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7535989B2 (en) | 2006-10-17 | 2009-05-19 | Innov-X Systems, Inc. | XRF system with novel sample bottle |
DE102009016628A1 (de) | 2008-06-11 | 2009-12-17 | Siemens Aktiengesellschaft | Verfahren und Vorrichtung zum Überwachen des Transports eines Gepäckstücks |
US7734102B2 (en) | 2005-05-11 | 2010-06-08 | Optosecurity Inc. | Method and system for screening cargo containers |
US7899232B2 (en) | 2006-05-11 | 2011-03-01 | Optosecurity Inc. | Method and apparatus for providing threat image projection (TIP) in a luggage screening system, and luggage screening system implementing same |
US7991242B2 (en) | 2005-05-11 | 2011-08-02 | Optosecurity Inc. | Apparatus, method and system for screening receptacles and persons, having image distortion correction functionality |
US8064570B2 (en) | 2006-12-20 | 2011-11-22 | Innov-X-Systems, Inc. | Hand-held XRF analyzer |
US8494210B2 (en) | 2007-03-30 | 2013-07-23 | Optosecurity Inc. | User interface for use in security screening providing image enhancement capabilities and apparatus for implementing same |
US9632206B2 (en) | 2011-09-07 | 2017-04-25 | Rapiscan Systems, Inc. | X-ray inspection system that integrates manifest data with imaging/detection processing |
EP3270342A1 (fr) * | 2016-07-15 | 2018-01-17 | Alitheon, Inc. | Méthode pour la identification et pour suivre la trace d'un objet physique au cours du transport utisilant des entrées dans une base de données et de traîtement électronique des données |
US10192140B2 (en) | 2012-03-02 | 2019-01-29 | Alitheon, Inc. | Database for detecting counterfeit items using digital fingerprint records |
US10302807B2 (en) | 2016-02-22 | 2019-05-28 | Rapiscan Systems, Inc. | Systems and methods for detecting threats and contraband in cargo |
US10740767B2 (en) | 2016-06-28 | 2020-08-11 | Alitheon, Inc. | Centralized databases storing digital fingerprints of objects for collaborative authentication |
US10839528B2 (en) | 2016-08-19 | 2020-11-17 | Alitheon, Inc. | Authentication-based tracking |
US10861026B2 (en) | 2016-02-19 | 2020-12-08 | Alitheon, Inc. | Personal history in track and trace system |
US10867301B2 (en) | 2016-04-18 | 2020-12-15 | Alitheon, Inc. | Authentication-triggered processes |
US10902540B2 (en) | 2016-08-12 | 2021-01-26 | Alitheon, Inc. | Event-driven authentication of physical objects |
US10915612B2 (en) | 2016-07-05 | 2021-02-09 | Alitheon, Inc. | Authenticated production |
US10915749B2 (en) | 2011-03-02 | 2021-02-09 | Alitheon, Inc. | Authentication of a suspect object using extracted native features |
US10963670B2 (en) | 2019-02-06 | 2021-03-30 | Alitheon, Inc. | Object change detection and measurement using digital fingerprints |
US11062118B2 (en) | 2017-07-25 | 2021-07-13 | Alitheon, Inc. | Model-based digital fingerprinting |
US11087013B2 (en) | 2018-01-22 | 2021-08-10 | Alitheon, Inc. | Secure digital fingerprint key object database |
CN113393429A (zh) * | 2021-06-07 | 2021-09-14 | 杭州睿影科技有限公司 | 一种目标检测设备的出口位置的标定方法、目标检测设备 |
US11238146B2 (en) | 2019-10-17 | 2022-02-01 | Alitheon, Inc. | Securing composite objects using digital fingerprints |
US11250286B2 (en) | 2019-05-02 | 2022-02-15 | Alitheon, Inc. | Automated authentication region localization and capture |
US11321964B2 (en) | 2019-05-10 | 2022-05-03 | Alitheon, Inc. | Loop chain digital fingerprint method and system |
US11341348B2 (en) | 2020-03-23 | 2022-05-24 | Alitheon, Inc. | Hand biometrics system and method using digital fingerprints |
US11568683B2 (en) | 2020-03-23 | 2023-01-31 | Alitheon, Inc. | Facial biometrics system and method using digital fingerprints |
US11663849B1 (en) | 2020-04-23 | 2023-05-30 | Alitheon, Inc. | Transform pyramiding for fingerprint matching system and method |
US11700123B2 (en) | 2020-06-17 | 2023-07-11 | Alitheon, Inc. | Asset-backed digital security tokens |
US11915503B2 (en) | 2020-01-28 | 2024-02-27 | Alitheon, Inc. | Depth-based digital fingerprinting |
US11948377B2 (en) | 2020-04-06 | 2024-04-02 | Alitheon, Inc. | Local encoding of intrinsic authentication data |
US11983957B2 (en) | 2020-05-28 | 2024-05-14 | Alitheon, Inc. | Irreversible digital fingerprints for preserving object security |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0390950B1 (fr) * | 1989-04-06 | 1993-01-13 | Heimann Systems GmbH & Co. KG | Dispositif par l'inspection de materiél |
US5319547A (en) * | 1990-08-10 | 1994-06-07 | Vivid Technologies, Inc. | Device and method for inspection of baggage and other objects |
US5253283A (en) * | 1991-12-23 | 1993-10-12 | American Science And Engineering, Inc. | Inspection method and apparatus with single color pixel imaging |
US5692029A (en) * | 1993-01-15 | 1997-11-25 | Technology International Incorporated | Detection of concealed explosives and contraband |
EP0816873B1 (fr) * | 1996-06-27 | 2002-10-09 | Analogic Corporation | Système de détection de tomographie axiale transverse en quadrature |
AU2002303207B2 (en) * | 2001-04-03 | 2009-01-22 | L-3 Communications Security And Detection Systems, Inc. | A remote baggage screening system, software and method |
-
2004
- 2004-09-10 WO PCT/US2004/029616 patent/WO2005086616A2/fr active Application Filing
- 2004-09-10 EP EP04821375A patent/EP1685574A4/fr not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of EP1685574A4 * |
Cited By (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7991242B2 (en) | 2005-05-11 | 2011-08-02 | Optosecurity Inc. | Apparatus, method and system for screening receptacles and persons, having image distortion correction functionality |
US7734102B2 (en) | 2005-05-11 | 2010-06-08 | Optosecurity Inc. | Method and system for screening cargo containers |
US7899232B2 (en) | 2006-05-11 | 2011-03-01 | Optosecurity Inc. | Method and apparatus for providing threat image projection (TIP) in a luggage screening system, and luggage screening system implementing same |
US7535989B2 (en) | 2006-10-17 | 2009-05-19 | Innov-X Systems, Inc. | XRF system with novel sample bottle |
US8064570B2 (en) | 2006-12-20 | 2011-11-22 | Innov-X-Systems, Inc. | Hand-held XRF analyzer |
US8494210B2 (en) | 2007-03-30 | 2013-07-23 | Optosecurity Inc. | User interface for use in security screening providing image enhancement capabilities and apparatus for implementing same |
US7938323B2 (en) | 2008-06-11 | 2011-05-10 | Siemens Aktiengesellschaft | Method and apparatus for monitoring the transportation of a luggage item |
EP2146308A2 (fr) | 2008-06-11 | 2010-01-20 | Siemens Aktiengesellschaft | Procédé et dispositif de surveillance du transport d'un bagage |
DE102009016628A1 (de) | 2008-06-11 | 2009-12-17 | Siemens Aktiengesellschaft | Verfahren und Vorrichtung zum Überwachen des Transports eines Gepäckstücks |
US10872265B2 (en) | 2011-03-02 | 2020-12-22 | Alitheon, Inc. | Database for detecting counterfeit items using digital fingerprint records |
US11423641B2 (en) | 2011-03-02 | 2022-08-23 | Alitheon, Inc. | Database for detecting counterfeit items using digital fingerprint records |
US10915749B2 (en) | 2011-03-02 | 2021-02-09 | Alitheon, Inc. | Authentication of a suspect object using extracted native features |
US9632206B2 (en) | 2011-09-07 | 2017-04-25 | Rapiscan Systems, Inc. | X-ray inspection system that integrates manifest data with imaging/detection processing |
US11099294B2 (en) | 2011-09-07 | 2021-08-24 | Rapiscan Systems, Inc. | Distributed analysis x-ray inspection methods and systems |
US10422919B2 (en) | 2011-09-07 | 2019-09-24 | Rapiscan Systems, Inc. | X-ray inspection system that integrates manifest data with imaging/detection processing |
US10509142B2 (en) | 2011-09-07 | 2019-12-17 | Rapiscan Systems, Inc. | Distributed analysis x-ray inspection methods and systems |
US10830920B2 (en) | 2011-09-07 | 2020-11-10 | Rapiscan Systems, Inc. | Distributed analysis X-ray inspection methods and systems |
US10192140B2 (en) | 2012-03-02 | 2019-01-29 | Alitheon, Inc. | Database for detecting counterfeit items using digital fingerprint records |
US11068909B1 (en) | 2016-02-19 | 2021-07-20 | Alitheon, Inc. | Multi-level authentication |
US11593815B2 (en) | 2016-02-19 | 2023-02-28 | Alitheon Inc. | Preserving authentication under item change |
US11301872B2 (en) | 2016-02-19 | 2022-04-12 | Alitheon, Inc. | Personal history in track and trace system |
US10861026B2 (en) | 2016-02-19 | 2020-12-08 | Alitheon, Inc. | Personal history in track and trace system |
US11682026B2 (en) | 2016-02-19 | 2023-06-20 | Alitheon, Inc. | Personal history in track and trace system |
US11100517B2 (en) | 2016-02-19 | 2021-08-24 | Alitheon, Inc. | Preserving authentication under item change |
US10768338B2 (en) | 2016-02-22 | 2020-09-08 | Rapiscan Systems, Inc. | Systems and methods for detecting threats and contraband in cargo |
US11287391B2 (en) | 2016-02-22 | 2022-03-29 | Rapiscan Systems, Inc. | Systems and methods for detecting threats and contraband in cargo |
US10302807B2 (en) | 2016-02-22 | 2019-05-28 | Rapiscan Systems, Inc. | Systems and methods for detecting threats and contraband in cargo |
US10867301B2 (en) | 2016-04-18 | 2020-12-15 | Alitheon, Inc. | Authentication-triggered processes |
US11830003B2 (en) | 2016-04-18 | 2023-11-28 | Alitheon, Inc. | Authentication-triggered processes |
US11379856B2 (en) | 2016-06-28 | 2022-07-05 | Alitheon, Inc. | Centralized databases storing digital fingerprints of objects for collaborative authentication |
US10740767B2 (en) | 2016-06-28 | 2020-08-11 | Alitheon, Inc. | Centralized databases storing digital fingerprints of objects for collaborative authentication |
US10915612B2 (en) | 2016-07-05 | 2021-02-09 | Alitheon, Inc. | Authenticated production |
US11636191B2 (en) | 2016-07-05 | 2023-04-25 | Alitheon, Inc. | Authenticated production |
EP3270342A1 (fr) * | 2016-07-15 | 2018-01-17 | Alitheon, Inc. | Méthode pour la identification et pour suivre la trace d'un objet physique au cours du transport utisilant des entrées dans une base de données et de traîtement électronique des données |
US10902540B2 (en) | 2016-08-12 | 2021-01-26 | Alitheon, Inc. | Event-driven authentication of physical objects |
US11741205B2 (en) | 2016-08-19 | 2023-08-29 | Alitheon, Inc. | Authentication-based tracking |
US10839528B2 (en) | 2016-08-19 | 2020-11-17 | Alitheon, Inc. | Authentication-based tracking |
US11062118B2 (en) | 2017-07-25 | 2021-07-13 | Alitheon, Inc. | Model-based digital fingerprinting |
US11593503B2 (en) | 2018-01-22 | 2023-02-28 | Alitheon, Inc. | Secure digital fingerprint key object database |
US11843709B2 (en) | 2018-01-22 | 2023-12-12 | Alitheon, Inc. | Secure digital fingerprint key object database |
US11087013B2 (en) | 2018-01-22 | 2021-08-10 | Alitheon, Inc. | Secure digital fingerprint key object database |
US11386697B2 (en) | 2019-02-06 | 2022-07-12 | Alitheon, Inc. | Object change detection and measurement using digital fingerprints |
US11488413B2 (en) | 2019-02-06 | 2022-11-01 | Alitheon, Inc. | Object change detection and measurement using digital fingerprints |
US10963670B2 (en) | 2019-02-06 | 2021-03-30 | Alitheon, Inc. | Object change detection and measurement using digital fingerprints |
US11250286B2 (en) | 2019-05-02 | 2022-02-15 | Alitheon, Inc. | Automated authentication region localization and capture |
US11321964B2 (en) | 2019-05-10 | 2022-05-03 | Alitheon, Inc. | Loop chain digital fingerprint method and system |
US11238146B2 (en) | 2019-10-17 | 2022-02-01 | Alitheon, Inc. | Securing composite objects using digital fingerprints |
US11922753B2 (en) | 2019-10-17 | 2024-03-05 | Alitheon, Inc. | Securing composite objects using digital fingerprints |
US11915503B2 (en) | 2020-01-28 | 2024-02-27 | Alitheon, Inc. | Depth-based digital fingerprinting |
US11341348B2 (en) | 2020-03-23 | 2022-05-24 | Alitheon, Inc. | Hand biometrics system and method using digital fingerprints |
US11568683B2 (en) | 2020-03-23 | 2023-01-31 | Alitheon, Inc. | Facial biometrics system and method using digital fingerprints |
US11948377B2 (en) | 2020-04-06 | 2024-04-02 | Alitheon, Inc. | Local encoding of intrinsic authentication data |
US11663849B1 (en) | 2020-04-23 | 2023-05-30 | Alitheon, Inc. | Transform pyramiding for fingerprint matching system and method |
US11983957B2 (en) | 2020-05-28 | 2024-05-14 | Alitheon, Inc. | Irreversible digital fingerprints for preserving object security |
US11700123B2 (en) | 2020-06-17 | 2023-07-11 | Alitheon, Inc. | Asset-backed digital security tokens |
CN113393429A (zh) * | 2021-06-07 | 2021-09-14 | 杭州睿影科技有限公司 | 一种目标检测设备的出口位置的标定方法、目标检测设备 |
Also Published As
Publication number | Publication date |
---|---|
WO2005086616A3 (fr) | 2006-03-23 |
EP1685574A2 (fr) | 2006-08-02 |
EP1685574A4 (fr) | 2010-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7286634B2 (en) | Method and apparatus for improving baggage screening examination | |
EP1685574A2 (fr) | Procede et dispositif permettant d'ameliorer le controle des bagages | |
US7012256B1 (en) | Computer assisted bag screening system | |
US7558370B2 (en) | Method and apparatus for improving identification and control of articles passing through a scanning system | |
US10275660B2 (en) | Method and system for use in performing security screening | |
US6218943B1 (en) | Contraband detection and article reclaim system | |
US8031903B2 (en) | Networked security system | |
CN100445767C (zh) | 安全检查站 | |
US20040190757A1 (en) | Integrated passenger management system | |
DK2614389T3 (en) | Improved security check method and system | |
WO2006015381A2 (fr) | Poste d'inspection a capacite accrue | |
WO2018023190A1 (fr) | Système de passage au crible à un poste de contrôle de sécurité et procédés associés | |
CN106503761A (zh) | 物品安检判图系统及方法 | |
CN206292821U (zh) | 物品安检判图系统 | |
WO2019239292A1 (fr) | Système d'affichage dynamique pour carrousel à bagages | |
WO2006022660A2 (fr) | Systeme de visionnage de sacs assiste par ordinateur |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004821375 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2004821375 Country of ref document: EP |