WO2005083502A1 - Optical clock extracting device and method - Google Patents

Optical clock extracting device and method Download PDF

Info

Publication number
WO2005083502A1
WO2005083502A1 PCT/JP2005/003292 JP2005003292W WO2005083502A1 WO 2005083502 A1 WO2005083502 A1 WO 2005083502A1 JP 2005003292 W JP2005003292 W JP 2005003292W WO 2005083502 A1 WO2005083502 A1 WO 2005083502A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
semiconductor laser
mode
pulse
Prior art date
Application number
PCT/JP2005/003292
Other languages
French (fr)
Japanese (ja)
Inventor
Yoichi Hashimoto
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2006510504A priority Critical patent/JP4807514B2/en
Publication of WO2005083502A1 publication Critical patent/WO2005083502A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0075Arrangements for synchronising receiver with transmitter with photonic or optical means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/299Signal waveform processing, e.g. reshaping or retiming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0601Arrangements for controlling the laser output parameters, e.g. by operating on the active medium comprising an absorbing region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0657Mode locking, i.e. generation of pulses at a frequency corresponding to a roundtrip in the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/06835Stabilising during pulse modulation or generation

Definitions

  • the present invention relates to a device that generates clock light used for optical communication, optical measurement, optical information signal processing, and the like.
  • the present invention relates to an apparatus and a method for generating an optical clock reference signal with low phase noise, and a relative timing that is independent of the polarization of the optical signal and has small jitter when generating an optical timing pulse from the optical signal.
  • the present invention relates to an optical clock extracting apparatus and method for generating or extracting an optical clock reference signal with low intensity noise (RIN) with high stability.
  • RIN intensity noise
  • Mode-locked semiconductor lasers are relatively easy and stable at 10-160GHz! Because it can generate a clock pulse train with a pulse width on the order of picoseconds at an extremely high repetition frequency, industrially important clock pulses such as optical communication light sources, optical signal processing light sources, and measurement light sources can be used.
  • Light source is relatively easy and stable at 10-160GHz! Because it can generate a clock pulse train with a pulse width on the order of picoseconds at an extremely high repetition frequency, industrially important clock pulses such as optical communication light sources, optical signal processing light sources, and measurement light sources can be used.
  • Light source is relatively easy and stable at 10-160GHz! Because it can generate a clock pulse train with a pulse width on the order of picoseconds at an extremely high repetition frequency.
  • an MLLD When an MLLD is used as such a clock pulse light source, a method for establishing synchronization with an external reference signal source such as an optical signal or an electric signal and a method for stabilizing the clock light without depending on the external reference signal source are used. Techniques for shading and techniques for reducing phase noise in synchronized clock signals are important.
  • jitter In MLLD, a phenomenon is seen in which the pulse repetition frequency fluctuates randomly. This is called jitter. Jitter is considered to occur because the length of the optical resonator fluctuates at random by determining the repetition frequency of the output optical pulse in the MLLD.
  • the noise power generated in the region of the MLLD that has an optical amplification effect randomly fluctuates the carrier density and refractive index in the MLLD, and as a result, the effective optical cavity length changes randomly. it is conceivable that.
  • a method for establishing synchronization between the clock light output from the MLLD and an external reference signal source, particularly an optical signal, and reducing the phase noise when the clock light is regenerated There are two methods: (1) an optical method that directly injects signal light into the MLLD and synchronizes it, that is, a method that uses optical injection locking, and (2) a method that converts an optical signal into an electrical signal once Techniques for taking time are well known.
  • the former method is an all-optical method because the processing is performed with the optical signal as it is, and the latter method is an electric method because it is converted into an electric signal.
  • FIG. 1A shows an example of a configuration based on light injection locking.
  • an optical signal is injected into an MLLD 91 that passively generates an optical pulse, thereby forcibly modulating the saturable absorption region and gain region of the MLLD with the optical signal.
  • This is a method of achieving synchronization in the output pulse light.
  • a band-pass filter 92 is arranged at the output of the M LLD 91.
  • the phase noise of the clock extraction light reproduced from the MLLD generally does not become better than the phase noise of the incident optical signal, and also strongly depends on the optical signal as an external signal source.
  • phase noise strongly depends on the polarization state of the signal light incident on the MLLD.
  • FIG. 1B shows an example of a configuration of a technique for once converting an optical signal into an electric signal and then achieving synchronization.
  • a high-speed optical receiver 93 such as a high-speed PIN diode is used to convert an optical signal into an electric signal by the high-speed optical receiver 93, and then an electric phase-locked loop ( (PLL) for synchronization.
  • PLL electric phase-locked loop
  • the PLL includes a phase comparator 94 such as an electric mixer that can handle up to high frequencies, a loop filter 95, and a voltage controlled oscillator (VCO) 96 that generates a frequency signal as an electric signal corresponding to up to high frequencies. ing.
  • the phase comparator 94 detects the frequency difference by comparing the phase of the electric signal obtained by converting the input optical signal by the high-speed optical receiver 93 with the signal from the VC096, and detects the signal corresponding to the phase difference. Is output.
  • the signal corresponding to the phase difference is smoothed by the loop filter 95 and supplied to the VC096 as a control signal.
  • the electric high-frequency signal output from the VC096 is fed back to the phase comparator 94 and is applied to the MLLD 98 via the high-frequency amplifier 97 so that the MLLD 98 can be directly modulated.
  • the output frequency of the VC096 matches the frequency of the optical signal after being converted to an electrical signal, which allows the optical signal input to the high-speed receiver 93 and the MLLD9 Synchronization with the output clock light from 8 is established.
  • the phase noise can be reduced by designing a loop filter constituting the PLL.
  • the high-speed light receiver 93, the phase comparator 94, the loop filter 95, the VC096, and the high-frequency amplifier 97 constitute an electric control unit 99, that is, an electric high-frequency circuit.
  • an optical clock extraction device of the PLL system using a high-frequency circuit such as an electric oscillator or a VCO
  • technology for reducing phase noise for example, JB Georges et al., "Stable picosecond pulse generation at 46Griz by modelocking or a semiconductor laser operating in an optoelectronic phaselocked loop, Electronics Letters, Vol. 30, No. 1, pp. 69-71, JP-A-8-340154, H.
  • Ono et al "Low jitter pulse train generation using a regeneratively mode-locked laser diode, "10th International Workshop on Femtosecond Technology, TP-5, pp. 154, Chiba, Japan, July 16-17, 2003.
  • Patent Document 1 JP-A-2-183236
  • Patent Document 2 JP-A-8-340154
  • Non-patent literature 1 J. B. ueorges et al., Staole picosecond pulse generation at 46GHz by modelocking of a semiconductor laser operating in an optoelectronic phaselocked loop, Electronics Letters, Vol. 30, No. 1, pp. 69-71
  • Non-Patent Document 2 H. Ono et al., "Low jitter pulse train generation using a
  • An object of the present invention is to be able to reproduce clock light without depending on the polarization of signal light as a reference signal source, without requiring an electrical high-frequency circuit, and with low phase noise!
  • An object is to provide an optical clock extraction device.
  • Another object of the present invention is to be able to reproduce clock light without depending on the polarization of signal light as a reference signal source, without requiring an electrical high-frequency circuit, and with low phase noise. It is to provide a simple optical clock extraction method.
  • An object of the present invention is to provide an optical clock extracting device for obtaining an optical pulse having an oscillation frequency synchronized with a reference frequency of an incident signal light, wherein the saturable absorption region having a phase modulation effect is provided.
  • a mode-locked semiconductor laser (MLLD) that has a gain region and can change the oscillation frequency that generates optical pulses by the phase modulation effect based on the control voltage applied to the saturable absorption region;
  • Feedback means, and is achieved by an optical clock extraction device that synchronizes the output light pulse of the MLLD with the signal light.
  • Such an optical clock extracting apparatus of the present invention typically has an optical clock that directly injects at least a part of an optical pulse output from one output end face of the MLLD from the other end face of the MLLD.
  • Self-feedback loop In the present invention, by providing such an optical self-feedback loop, the MLLD operates as an optical VCO, and the phase noise in the optical VCO output is reduced.
  • Another object of the present invention is to provide a saturable absorption region and a gain region having a phase modulation effect, and an oscillation frequency for generating an optical pulse by a phase modulation effect by a control voltage applied to the saturable absorption region.
  • This is an optical clock extraction method that synchronizes the oscillation frequency of the output light pulse of the MLLD force with the reference frequency of the incident signal light, and the reference frequency of the signal light and the oscillation frequency of the output light pulse.
  • Obtaining a phase error signal by optically synchronously detecting the synchronization shift of the optical signal, and forming a phase locked loop by negatively feeding back the phase error signal to a region having a phase modulation effect, thereby forming an optical noise and an incident signal light. Synchronizing the optical clock.
  • a phase-locked loop that does not require a high-frequency electric circuit such as an electric VCO can be constructed.
  • a high-frequency electric circuit such as an electric VCO
  • clock extraction can be performed without depending on the speed or polarization state of signal light.
  • other signal processing such as an optical 3R repeater and an optical DEMUX can be simultaneously performed by the optical mixer as the phase comparator.
  • a power using an optical gate switch that can operate at high speed is used as the optical mixer.
  • an optical fiber type optical gate constructed with a polarization independent SOA or a polarization independent configuration is used. This is because the use of the switch enables phase comparison independent of the polarization state of the signal light.
  • the synchronization holding range can be made larger than the fluctuation due to the polarization dependence of the optical mixer. Then, more stable clock extraction can be realized.
  • the optical mixer is a high-speed optical gate switch, once synchronization is established, the optical mixer can perform signal processing at the optimal timing between the signal light and the clock light. Therefore, in addition to generating an error signal, the optical mixer is required to perform optical 3R regeneration processing and optical DEMUX processing. Can be used simultaneously for processing.
  • an optical clock can be extracted by PLL control in multiple stages.
  • FIG. 1A is a block diagram showing a configuration of a conventional optical clock extraction device using light injection locking, which extracts a clock light whose optical signal power is also synchronized therewith.
  • FIG. 1B is a block diagram showing a configuration of a conventional optical clock extraction device using a PLL, which extracts a clock light that is also synchronized with the optical signal power.
  • FIG. 2 is a diagram illustrating an optical clock extraction method based on the present invention for reducing phase noise in pulsed light using an optical VCO by an MLLD having a self-feedback loop.
  • FIG. 3 is a block diagram illustrating an optical clock extraction device according to a first embodiment of the present invention.
  • FIG. 4 is a graph showing an RF spectrum in an optical PLL operation for reducing phase noise in an optical VCO using an MLLD having a self-feedback loop, and an RF spectrum when the PLL operation is performed without self-feedback. .
  • FIG. 6 is a graph showing an RF spectrum of a side band generated by a self-feedback loop.
  • FIG. 7 is a block diagram illustrating an optical clock extraction device according to a second embodiment in which two MLLDs having different wavelengths are provided in a loop for suppressing sideband spectra.
  • FIG. 8 is a block diagram illustrating a clock extraction device according to a third embodiment.
  • FIG. 9A is a block diagram showing a configuration for suppressing a sideband spectrum using wavelength conversion by CW (continuous wave) light.
  • FIG. 9B is a block diagram showing a configuration for suppressing a sideband spectrum by a supercontinuum using an optical fiber.
  • FIG. 3 is a block diagram illustrating a configuration for controlling the power consumption.
  • FIG. 10 is a block diagram showing a configuration in which a phase comparison function is provided to an optical gate unit of an optical 3R repeater in a fourth embodiment.
  • FIG. 11 is a block diagram showing a configuration in which an electro-absorption modulator is used for a phase comparison unit in Embodiment 5.
  • FIG. 12 is a block diagram showing a configuration in a case where PLL control is performed in multiple stages in Embodiment 6.
  • FIG. 2 is a diagram illustrating an optical clock extraction method according to the present invention.
  • phase noise at the optical VCO frequency is reduced by using an MLLD having a self-feedback loop configuration.
  • a saturable absorption region and a gain region having a phase modulation effect are provided, and the oscillation frequency at which an optical pulse is generated is changed by the phase modulation effect by a control voltage applied to the saturable absorption region.
  • the phase error signal is negatively fed back to the saturable absorption region of the MLLD to form a phase locked loop, and the optical pulse and the incident signal light are synchronized to form a clock. Perform the extraction.
  • the oscillation frequency of the output light pulse corresponds to the repetition frequency of the light pulse train.
  • the effective resonator length of the MLLD can be controlled via the carrier density. This makes it possible to control the repetition frequency of the MLLD, and the MLLD can be used as a voltage-Z current controlled oscillator (VCO) that outputs an optical signal.
  • VCO voltage-Z current controlled oscillator
  • the method of reducing the phase noise of the clock light from the MLLD that is, reducing the jitter, as shown in FIG.
  • the optical loop system is constructed by taking out the part and re-injecting the light into the same MLLDIOO, and adopts a configuration in which the clock light self-feeds back.
  • the optical signal portion is indicated by a thick line
  • the electric signal portion is indicated by a thin line.
  • the saturable MLLD is formed.
  • the phase noise of the output clock light can be reduced, and the frequency accuracy of the clock light pulse train can be improved without applying a method of forcibly modulating by applying an electric high-frequency circuit.
  • the external signal light and the reproduced clock light from the optical VCO using the MLLDIOO are connected to the semiconductor optical amplifier (
  • the optical signal is input to the optical mixer 200 using a nonlinear effect such as SOA), and the phase of the external signal light is compared with the reference signal of the optical VCO.
  • the optical beat signal generated by the optical mixer 200 is a signal corresponding to the phase difference between the external signal light and the reproduced clock light, and this signal is converted into an electric signal by the optical receiver 310 which has a strong force such as a PIN diode, and is converted into a loop signal.
  • a clock light synchronized with the external signal light can be obtained by employing the configuration of the phase locked loop.
  • a part that requires high-speed processing such as a phase comparison unit (mixer) and a voltage-controlled oscillator (VCO) is optically configured.
  • a phase difference detection unit, an error amplifier, a loop filter, and a part for performing a sufficient process with a low-speed response on the order of MHz are electrically configured by an electric control unit 300 including a photodetector 310 and a loop filter 320.
  • an electric control unit 300 including a photodetector 310 and a loop filter 320.
  • an optical mixer using a polarization-independent SOA or the like is provided.
  • an optical clock extraction device that does not depend on the polarization state of the external signal light can be realized.
  • optical mixer can have the function of optical identification signal processing at the same time, the operation of optical phase comparison and the operation of optical signal processing such as optical 3R regeneration and optical DEMUX can be performed simultaneously. As a result, their operations can be further optimized.
  • the electrical control unit is only a part that smoothes the signal corresponding to the phase difference with the loop filter, and has a relatively low-speed PIN diode photodetector and a band on the order of MHz. And a loop filter using an operational amplifier.
  • the electrical control unit does not need to be a high frequency circuit, and this part can be configured as an integrated circuit (IC). Therefore, miniaturization, high integration, and low power consumption of the electric control unit can be achieved.
  • the optical clock extraction device has a configuration in which components such as the MLLD, SOA, isolator, PIN, and IC circuit can be easily mounted on the PLC, so that the size can be reduced.
  • the light intensity of the clock light pulse circling the optical loop is adjusted by an amplifier, an attenuator, and the like arranged in a configuration in which feedback is performed by the optical loop system.
  • the timing can be adjusted by changing the optical loop length. This makes it possible to variably control the fundamental frequency of the clock light pulse train that also generates MLLD power, and also to control amplifiers and attenuators as PLL control circuits, thus realizing a multi-stage PLL control circuit. it can.
  • Fig. 3 shows an optical clock extraction device that has an optical VCO using an MLLD with a self-feedback loop configuration and that reduces phase noise at the oscillation frequency of the optical VCO.
  • the illustrated optical clock extraction device includes an optical mixer and a loop filter together with an optical VCO, and an optical PLL is configured by the optical mixer, the optical VCO, and the loop filter.
  • the MLLD 1 used as an optical VCO has at least a gain region 2, a saturable absorption region 3, and a power structure. It is made.
  • the gain region 2 and the saturable absorption region 3 are electrode-separated.
  • a lens 4 and an isolator 5 are arranged close to each other on both end faces of the MLLD1. Then, in order to form an optical self-feedback loop for directly injecting a part of the optical pulse output from one output end face of the MLLD1 to the MLLD1 from the other end face, an optical waveguide 6 that externally connects both end faces is used. In the optical waveguide 6, an optical delay unit 7, an optical amplifier 8, and an optical attenuator 9 are inserted.
  • the optical delay unit 7 is adjusted so that the timing at which the MLLD 1 generates an optical noise and the timing at which the optical north circulates the optical waveguide 6 and enters the other end face of the MLLD 1 are simultaneous. .
  • the absorption saturation phenomenon occurring in the saturable absorption region 3 constituting the MLLD 1, that is, the optical gate operation is made steep, and the phase noise caused by the randomness of the absorption saturation in the saturable absorption region 3 when an optical pulse is generated. , The phase noise in the output clock light is reduced, and the frequency accuracy of the recovered clock light can be increased.
  • an optical mixer MIX
  • an optical attenuator ATT
  • a noise detector 11 An error amplifier 12, a loop filter 13, and a voltage adder 14.
  • MIX optical mixer
  • ATT optical attenuator
  • an error amplifier 12 a loop filter 13
  • a voltage adder 14 In the optical mixer 10, a part of the recovered clock light extracted from the MLLD 1 and the external signal light enter the optical mixer 10, and the output light of the optical mixer 10 passes through the optical attenuator 9 to one of the balance detectors 11. And the balance detector 11 detects a frequency difference between the oscillation frequency of the MLLD1 that is the optical VCO and the reference frequency of the external signal light.
  • a signal corresponding to the phase difference is amplified by the error amplifier 12, smoothed by the loop filter 13, and applied as a control voltage to the saturable region 3 of the MLLD 1, which is an optical VCO, by the voltage adder 14.
  • the recovered clock light synchronized with the external signal light is obtained from the MLLD1.
  • modulation according to the phase difference between the reference frequency of the external signal light and the oscillation frequency of the clock light from the MLLD 1 can be added to both the external signal light and the clock light.
  • intensity modulation according to the phase difference between both the external signal light and the clock light can be added.
  • Either one of these receiving the intensity modulation is output to a balance detector 11 having a low-speed frequency characteristic on the order of several MHz.
  • the high-speed external signal light and clock light are output as DC voltage components, and the intensity modulation component is output as an error signal component. it can.
  • FIG. 4 shows an RF VCO using an MLLD with a self-feedback loop configuration and an RF spectrum in an optical PLL operation when reducing phase noise at an oscillation frequency, and no self-feedback.
  • the RF spectrum when the PLL is operated is shown.
  • self-feed knock + optical PLL shows the spectrum when operating the optical PLL using self-feedback
  • only photoelectric PLL shows the spectrum when self-feedback is not used. I have.
  • the jitter component is reduced by using the self-feedback, a sharp spectrum peak is obtained.
  • the jitter component is large without using the self-feedback, the spectrum peak spreads broadly.
  • FIG. 5 shows a waveform observed by a sampling oscilloscope of the recovered clock light from the optical VCO using the MLLD having the above-described self-feedback loop configuration.
  • the upper waveform 81 is a sampling waveform in the asynchronous state, that is, when the optical PLL operates, and the state is low.
  • the middle waveform 82 is a sampling waveform when the PLL operation is performed without self feedback, and the lower waveform 81 is the lower waveform.
  • Waveform 83 activates both the optical PLL and self-feedback.
  • 7 shows a sampling waveform when the optical PLL is operated so as to reduce the phase noise.
  • FIG. 6 shows an example of the RF spectrum of such a sideband, and shows a sideband generated by a self-feedback loop configuration. Sidebands occur because the wavelength corresponding to the frequency of the MLLD is the same as the wavelength corresponding to the frequency determined by the length of the self-feedback loop, so that a composite resonator is formed. In order to remove the side band, it is important to make the wavelength of the optical pulse output from the MLLD 1 different from the wavelength of the optical pulse circulating in the optical waveguide 6.
  • FIG. 7 shows a configuration of an optical clock extracting apparatus according to the second embodiment, in which two MLLDs having different wavelengths are inserted in the same loop to suppress sideband spectrum. Is shown.
  • two MLLDs 1 and MLLDs 100 having different wavelengths are provided in an optical loop, MLLD 1 is operated as an optical PLL, and a part of the output optical pulse is transmitted to the other MLLD 100.
  • Light injection Since the MLLD 1 outputs an optical pulse with the same polarization, the MLLD 100 on the injection side stably performs light injection locking.
  • the optical delay unit 7 is used so that the timing at which the clock light north is generated from the MLLD 1 and the timing at which the clock light pulse reaches the saturable absorption region of each MLLD around the optical waveguide are synchronized.
  • the absorption saturation phenomenon gate operation
  • phase noise caused by the randomness of absorption saturation is reduced.
  • the wavelength of the optical pulse output from the MLLD 1 is reduced. Since the wavelength of the optical pulse that goes around the optical waveguide 6 and is again injected into the MLLD 1 is different, a synchronized optical pulse around which no sideband spectrum is generated can be created.
  • MLLDs 1 and 100 output clock lights of different wavelengths.
  • Such a configuration that can simultaneously obtain two different wavelengths of clock light is an optimal configuration for a clock light source used for optical signal processing that requires synchronized clock light of two wavelengths, such as an optical 3R repeater. is there.
  • Example 2 In order to prevent only the optical pulse of a specific wavelength from resonating strongly, the method of Example 2 was used as a method for making the optical pulse output from the MLLD 1 different from the wavelength of the optical pulse circulating in the optical waveguide 6. In addition, a method of inserting the wavelength converter 16 into the waveguide 6 is also conceivable.
  • the optical clock extraction device shown in FIG. 8 is the same as the one shown in FIG. 3, an optical filter 15 is provided near the output end face of the MLLD1, and a wavelength converter 16 is inserted into the optical waveguide 6. It is different in that it is.
  • FIG. 9A shows a CW (continuous wave) light source 17 operating at a wavelength different from the oscillation wavelength of the MLLD 1 as the wavelength conversion unit 16 for suppressing the side mode spectrum, a reproduced clock light from the MLLD 1 and a CW light source 17.
  • FIG. 2 shows a configuration having a wavelength conversion 18 to which continuous light is input.
  • the wavelength converter 18 includes an EA (electroabsorption) modulator operating at high speed, an optical gate switch using an SOA, and the like, and is inserted into the optical waveguide 6.
  • EA electroabsorption
  • FIG. 9B shows a wavelength converter 16 using wavelength conversion by super continuum using an optical fiber.
  • the spectrum of the clock light from the MLLD1 is expanded by the nonlinear effect of the optical amplifier 8 and the supercontinuum element (SC) 19 such as an optical fiber and a photonic crystal, and part of the spectrum is filtered by an optical filter. Wavelength conversion is performed by clipping at 15.
  • the SC spectrum is the output spectrum from the supercontinuum element 19, and the seed corresponds to the spectral position of the clock light before magnification.
  • the bandwidth of the optical filter 15 is widened and the optical pulse output from the wavelength conversion unit 16 is compressed so as to shorten the pulse width, the absorption of the MLLD is reduced. Since the sum phenomenon (gate operation) can be made steeper, phase noise caused by the randomness of absorption saturation can be further reduced.
  • FIG. 9C shows the simplest configuration, in which a narrow band optical filter 15 cuts out a part of the optical spectrum from the clock light from the MLLD 1 so that the optical pulse of the MLLD 1 and the self-feedback loop can be obtained.
  • a configuration in which the center wavelength and the band wavelength range of the circulating light pulse are different is called. With such a configuration, the composite resonance effect can be suppressed, and the same effect as when the wavelength is changed can be obtained.
  • Example 4 Configuration in which the optical gate section of the optical 3R repeater has a phase comparison function
  • the optical mixer includes, in addition to the SOA, for example, a polarization-separated symmetric Mach-Zehnder interferometer (hereinafter, referred to as PD-SMZ), a symmetric Mach-Zehnder interferometer (hereinafter, referred to as SMZ), and a nonlinear optical loop.
  • PD-SMZ polarization-separated symmetric Mach-Zehnder interferometer
  • SMZ symmetric Mach-Zehnder interferometer
  • SMZ symmetric Mach-Zehnder interferometer
  • nonlinear optical loop a nonlinear optical loop.
  • High-speed optical switches such as mirrors (NOLM), terahertz optical asymmetric demultiplexers (TOAD), and transmissive cross-phase modulation (T XPM) can be used.
  • optical gate switches such as PD—SMZ, SMZ, NOLM, TOAD, and T XPM can simultaneously perform optical signal processing such as optical 3R
  • FIG. 10 shows a configuration in which the optical gate section of the optical 3R repeater has a phase comparison function.
  • An example in which the optical clock extraction based on the present invention is applied to an optical 3R repeater using the PD-SMZ101 will be described with reference to FIG.
  • the optical clock extracting unit has the same configuration as that described in the second embodiment, and generates two clock lights having different wavelengths and small phase noise.
  • the PD-SMZ 101 includes a polarization controller 20, a calcite (polarizer) 21, an SOA (semiconductor optical amplifier) 22, an optical phase controller 23, and an optical filter 15.
  • the clock light output from the MLLD 1 passes through the polarization controller 20, undergoes a time delay in the first calcite 21, is separated into two polarization states, and enters the SOA 22.
  • the optical pulse of the signal light is adjusted to enter the SOA 22 so that it falls within the delay time, the clock optical pulse that has received the time delay among the two separated clock optical pulses that have entered the SOA 22 Only the phase is modulated. Further, the optical pulse whose phase has been modulated and the optical pulse which has not been phase-modulated are passed through the second calcite 21 to cancel the time delay caused by the first calcite 21. In this way two By generating interference between clock lights, a clock light that has been gated by a logic light can be obtained.
  • the output light of the second calcite 21 reaches the optical filter 15 via the optical phase controller 23 and the polarization controller 20.
  • the positive logic and the negative logic at this time are controlled by the polarization plane of the polarization controller 20.
  • the interference condition of the PD-SMZ 101 may be adjusted so that only clock light that has been optically gated passes through the polarization controller 20 only when phase modulation occurs.
  • the synchronization of the signal light and the clock light is not synchronized, no signal light pulse will enter within the delay time, so that sufficient phase modulation will not be performed, which will deviate from the interference condition, and will be optically gated.
  • the clock light undergoes strong intensity modulation.
  • the optical PLL is operated using this intensity modulated signal as an error signal and a clock extraction operation is performed, the conditions under which the signal light and the clock light are synchronized are the same as the optimal conditions for the optical gate operation. This makes it possible to simultaneously execute clock extraction by the optical PLL and optimal operation of optical signal processing.
  • the optical gated optical signal and the clock light having different wavelengths shown in the second embodiment are made incident on another PD-SMZ 102.
  • the signal processing of the optical 3R repeater can be completed.
  • FIG. 10 illustrates an example in which the signal light that has been optically gated is used as an error signal.
  • the force error signal the signal light directly output from the SOA or the clock separated into two is used. The same processing can be executed with or without using light.
  • FIG. 11 shows a configuration in which an electro-absorption modulator (EA modulator) 103 is used for a phase comparison unit (optical mixer unit). In place of the EA modulator 103, a saturable absorption modulator can be used.
  • EA modulator electro-absorption modulator
  • phase comparison unit optical mixer unit
  • a reverse bias voltage is applied to EA modulator 103 via bias T circuit 140. If the high-speed frequency signal can be extracted from the other terminal of the bias T circuit 140, the clock light output from the MLLD1 will be input to the EA modulator 103 when the clock light An electric signal as a component can be extracted from the terminal of the bias T circuit 140. In this state, when external signal light enters the EA modulator 103, An error signal is superimposed on the electric signal output from the noise T circuit 140. When the frequency of this error signal is amplified by the error amplifier 113 composed of a low-speed operational amplifier or the like, since the high-frequency component appears as a DC component signal, only the error signal can be separated and extracted.
  • the DC component can be canceled by receiving the signal light power clock light by the low-speed light receiver 111 or the like and balancing the signal light by the adder 112 that also has power such as an operational amplifier.
  • the error signal extracted in this way is passed through the loop filter 13 to be smoothed, and is applied as a bias source to the saturable absorption region 3 of the MLLD 1 via the bias T circuit 140 to form a phase locked loop.
  • the signal light and the clock light can be synchronized.
  • the method of feeding back the error signal to the saturable absorption region having the phase modulation effect in order to feed back the error signal to the MLLD 1 has been mainly described.
  • a method of constructing a phase locked loop there is a method other than feeding back the error signal to the saturable absorption region.
  • the loop length of self-feedback is changed according to the error signal
  • the light intensity injected into the MLLD in self-feedback is modulated according to the error signal
  • the gain region 2 of the MLLD Modulation of the applied current according to the error signal (4) PLL control by applying voltage to the cavity length adjustment area 27 (see Fig. 12) newly provided in the MLLD, etc.
  • the oscillation frequency of the MLLD1 can be changed by the multi-stage PLL control.
  • the loop length is set by the time delay unit 7 or the like so that the timing at which the MLLD1 oscillates an optical pulse and the timing at which the optical pulse circulating around the optical waveguide is injected into the MLLD again.
  • the oscillation frequency of the MLLD1 is reduced to a frequency that is an integer multiple of the frequency determined by the loop length in the range of several hundred MHz. This is because the light pulse intensity in the resonator that absorbs and saturates the saturable absorption region 3 plays an important role in the self-excited light pulse oscillation of the MLLD 1, but the injection of the light pulse causes the injection.
  • the generated optical pulse also plays a major role in the self-excited optical pulse oscillation of the MLLD. Therefore, the frequency modulation required for PLL control can be realized by changing the loop length of the self-feedback.
  • the oscillation frequency of MLLD1 can be controlled by the effective resonator length.
  • An effective resonator length can be obtained by changing the refractive index of light according to the carrier density in the semiconductor constituting the MLLD 1.
  • the carrier density in the semiconductor can be controlled to change the frequency. Is possible.
  • an MLLD When an MLLD is newly constructed in which a waveguide having a grating such as a DFB (distributed feedback) structure or a DBR (distributed Bragg reflector) or a cavity length control region 27 of a passive waveguide is added. Also, by controlling the voltage in the resonator length control region 27, the refractive index inside the MLD can be changed, and the oscillation frequency of the MLLD can be controlled.
  • a grating such as a DFB (distributed feedback) structure or a DBR (distributed Bragg reflector) or a cavity length control region 27 of a passive waveguide.

Abstract

An optical clock extracting device for generating an optical pulse having an oscillation frequency synchronizing with the reference frequency of an incident signal light. The optical clock extracting device comprises a mode-locked semiconductor laser which has a saturable absorption region producing a phase modulation effect based on a control voltage applied to the saturable absorption region and a gain region and in which the oscillation frequency to generate an optical pulse can be varied, an optical mixer section for optically synchronously detecting the synchronization error between the reference frequency of the signal light and the oscillation frequency of the output optical pulse of the mode-locked semiconductor laser and thereby generating a phase error signal, and a phase-locked loop for negatively feed-backing the phase error signal to the saturable absorption region.

Description

明 細 書  Specification
光クロック抽出装置及び方法  Optical clock extraction device and method
技術分野  Technical field
[0001] 本発明は、光通信、光計測、光情報信号処理などに用いられるクロック光を発生す る装置に関する。特に本発明は、位相雑音が小さい光クロック基準信号を発生する 装置及び方法、ならびに、光信号から光タイミングパルスを発生させる際に、光信号 の偏光に無依存で、かつ、ジッタが小さぐ相対強度雑音 (RIN)が小さい光クロック 基準信号を高安定に発生あるいは抽出する光クロック抽出装置及び方法に関する。 背景技術  The present invention relates to a device that generates clock light used for optical communication, optical measurement, optical information signal processing, and the like. In particular, the present invention relates to an apparatus and a method for generating an optical clock reference signal with low phase noise, and a relative timing that is independent of the polarization of the optical signal and has small jitter when generating an optical timing pulse from the optical signal. The present invention relates to an optical clock extracting apparatus and method for generating or extracting an optical clock reference signal with low intensity noise (RIN) with high stability. Background art
[0002] モード同期半導体レーザ(MLLD)は、比較的容易かつ安定して、 10— 160GHz と!、つた超高速の繰り返し周波数で、パルス幅がピコ秒オーダのクロックパルス列を 発生させることができることから、光通信用光源、光信号処理用光源、計測用光源な どとして、産業上重要なクロックパルス光源である。  [0002] Mode-locked semiconductor lasers (MLLDs) are relatively easy and stable at 10-160GHz! Because it can generate a clock pulse train with a pulse width on the order of picoseconds at an extremely high repetition frequency, industrially important clock pulses such as optical communication light sources, optical signal processing light sources, and measurement light sources can be used. Light source.
[0003] MLLDをそのようなクロックパルス光源として用いる場合、光信号、電気信号などの 外部基準信号源との同期を確立する手法とともに、外部基準信号源に依存せずにク ロック光を安定ィ匕させるための技術や、同期したクロック信号における位相ノイズを小 さくするための技術などが重要となる。  [0003] When an MLLD is used as such a clock pulse light source, a method for establishing synchronization with an external reference signal source such as an optical signal or an electric signal and a method for stabilizing the clock light without depending on the external reference signal source are used. Techniques for shading and techniques for reducing phase noise in synchronized clock signals are important.
[0004] MLLDにおいては、パルスの繰り返し周波数力 ランダムに揺らぐ現象が見られる 。これをジッタと呼ぶ。ジッタは、 MLLDにおいて出力光パルスの繰り返し周波数を 決定して!/、る光共振器の長さがランダムに揺ら 、で 、るために発生すると考えられる 。もう少し詳細に見ると、 MLLDにおいて光増幅作用をもつ領域で発生する雑音光 力 MLLD内のキャリア密度や屈折率をランダムに揺らし、その結果として、実効的 な光共振器長がランダムに変化するものと考えられる。  [0004] In MLLD, a phenomenon is seen in which the pulse repetition frequency fluctuates randomly. This is called jitter. Jitter is considered to occur because the length of the optical resonator fluctuates at random by determining the repetition frequency of the output optical pulse in the MLLD. In more detail, the noise power generated in the region of the MLLD that has an optical amplification effect randomly fluctuates the carrier density and refractive index in the MLLD, and as a result, the effective optical cavity length changes randomly. it is conceivable that.
[0005] これまで、 MLLDから出力されるクロック光と、外部基準信号源、特に光信号との間 で同期を確立する手法、及び光信号力 クロック光を再生させる際の位相ノイズを小 さくする手法として、(1) MLLDに直接に信号光を注入し、同期をとる光学的手法す なわち光注入同期による手法と、(2)光信号をいつたん電気信号に変換してから同 期をとる手法、がよく知られている。前者の手法は、光信号のままで処理が行われる ので、全光方式の手法であり、後者の手法は、電気信号に変換するので電気方式の 手法である。 [0005] Until now, a method for establishing synchronization between the clock light output from the MLLD and an external reference signal source, particularly an optical signal, and reducing the phase noise when the clock light is regenerated. There are two methods: (1) an optical method that directly injects signal light into the MLLD and synchronizes it, that is, a method that uses optical injection locking, and (2) a method that converts an optical signal into an electrical signal once Techniques for taking time are well known. The former method is an all-optical method because the processing is performed with the optical signal as it is, and the latter method is an electric method because it is converted into an electric signal.
[0006] MLLDに信号光を直接注入して同期をとる光注入同期の手法を用いる構成は、例 えば、特開平 2-183236号公報に開示されている。図 1Aは、光注入同期による構 成の一例を示している。  [0006] A configuration using a light injection locking technique of directly injecting signal light into an MLLD to achieve synchronization is disclosed in, for example, Japanese Patent Application Laid-Open No. 2-183236. FIG. 1A shows an example of a configuration based on light injection locking.
[0007] 光注入同期は、受動的に光パルスを発生している MLLD91に対して光信号を注 入することにより、 MLLDを構成する可飽和吸収領域や利得領域をその光信号で強 制変調させて、出力パルス光における同期を取る手法である。図示したものでは、 M LLD91の出力には、帯域通過フィルタ 92が配置されている。この場合、 MLLDから 再生されるクロック抽出光の位相ノイズは、一般的に、入射してくる光信号の位相ノィ ズより良くなることはなぐまた、外部信号源である光信号に強く依存する。さらに、 M LLDは、それ自身が偏波依存性を持っため、光注入同期では、 MLLDに入射する 信号光の偏波状態にも位相ノイズが強く依存しまう。  [0007] In optical injection locking, an optical signal is injected into an MLLD 91 that passively generates an optical pulse, thereby forcibly modulating the saturable absorption region and gain region of the MLLD with the optical signal. This is a method of achieving synchronization in the output pulse light. In the illustrated example, a band-pass filter 92 is arranged at the output of the M LLD 91. In this case, the phase noise of the clock extraction light reproduced from the MLLD generally does not become better than the phase noise of the incident optical signal, and also strongly depends on the optical signal as an external signal source. Furthermore, since the MLLD itself has polarization dependence, in optical injection locking, phase noise strongly depends on the polarization state of the signal light incident on the MLLD.
[0008] 光信号を、一旦、電気信号に変換してから同期をとる手法の構成の一例が図 1Bに 示されている。この手法では、高速 PINダイオードなどカゝらなる高速受光器 93を使用 し、光信号を高速受光器 93によって電気信号に変換し、その後、その電気信号に対 して電気的な位相同期ループ (PLL)を用いて同期を取るものである。  [0008] FIG. 1B shows an example of a configuration of a technique for once converting an optical signal into an electric signal and then achieving synchronization. In this method, a high-speed optical receiver 93 such as a high-speed PIN diode is used to convert an optical signal into an electric signal by the high-speed optical receiver 93, and then an electric phase-locked loop ( (PLL) for synchronization.
[0009] PLLは、高周波まで対応できる電気的ミキサなどの位相比較器 94と、ループフィル タ 95と、高周波まで対応して電気信号として周波数信号を発生する電圧制御発振器 (VCO) 96とを備えている。位相比較器 94は、入力した光信号を高速受光器 93によ つて変換して得られた電気信号と VC096からの信号との位相比較を行って周波数 差を検知し、位相差に応じた信号を出力する。位相差に応じた信号は、ループフィル タ 95によって平滑化されて VC096に対して制御信号として供給される。 VC096の 出力する電気的高周波信号は、位相比較器 94にフィードバックされるとともに、高周 波増幅器 97を介して MLLD98に加えられ、 MLLD98を直接変調するできるように なっている。この構成では、 VC096の出力周波数は、電気信号に変換された後の 光信号の周波数に一致し、これにより、高速受光器 93に入力する光信号と MLLD9 8からの出力クロック光との間での同期が確立する。またこの構成では、 PLLを構成 するループフィルタの設計によって、位相ノイズを小さくすることができる。高速受光 器 93、位相比較器 94、ループフィルタ 95、 VC096及び高周波増幅器 97は、電気 制御部 99すなわち電気的な高周波回路部分を構成している。 [0009] The PLL includes a phase comparator 94 such as an electric mixer that can handle up to high frequencies, a loop filter 95, and a voltage controlled oscillator (VCO) 96 that generates a frequency signal as an electric signal corresponding to up to high frequencies. ing. The phase comparator 94 detects the frequency difference by comparing the phase of the electric signal obtained by converting the input optical signal by the high-speed optical receiver 93 with the signal from the VC096, and detects the signal corresponding to the phase difference. Is output. The signal corresponding to the phase difference is smoothed by the loop filter 95 and supplied to the VC096 as a control signal. The electric high-frequency signal output from the VC096 is fed back to the phase comparator 94 and is applied to the MLLD 98 via the high-frequency amplifier 97 so that the MLLD 98 can be directly modulated. In this configuration, the output frequency of the VC096 matches the frequency of the optical signal after being converted to an electrical signal, which allows the optical signal input to the high-speed receiver 93 and the MLLD9 Synchronization with the output clock light from 8 is established. Further, in this configuration, the phase noise can be reduced by designing a loop filter constituting the PLL. The high-speed light receiver 93, the phase comparator 94, the loop filter 95, the VC096, and the high-frequency amplifier 97 constitute an electric control unit 99, that is, an electric high-frequency circuit.
[0010] 電気発振器や VCOなどの高周波回路を用いた PLL方式の光クロック抽出装置に おいて、位相ノイズを小さくするための技術力、例えば、 J. B. Georges et al., "Stable picosecond pulse generation at 46Griz by modelocking or a semiconductor laser operating in an optoelectronic phaselocked loop, Electronics Letters, Vol. 30, No. 1, pp. 69-71,特開平 8— 340154号公報, H. Ono et al, "Low jitter pulse train generation using a regeneratively mode-locked laser diode," 10th International Workshop on Femtosecond Technology, TP— 5, pp. 154, Chiba, Japan, July 16—17, 2003に開示されている。 [0010] In an optical clock extraction device of the PLL system using a high-frequency circuit such as an electric oscillator or a VCO, technology for reducing phase noise, for example, JB Georges et al., "Stable picosecond pulse generation at 46Griz by modelocking or a semiconductor laser operating in an optoelectronic phaselocked loop, Electronics Letters, Vol. 30, No. 1, pp. 69-71, JP-A-8-340154, H. Ono et al, "Low jitter pulse train generation using a regeneratively mode-locked laser diode, "10th International Workshop on Femtosecond Technology, TP-5, pp. 154, Chiba, Japan, July 16-17, 2003.
特許文献 1:特開平 2-183236号公報  Patent Document 1: JP-A-2-183236
特許文献 2:特開平 8— 340154号公報  Patent Document 2: JP-A-8-340154
非特干文献 1: J. B. ueorges et al., Staole picosecond pulse generation at 46GHz by modelocking of a semiconductor laser operating in an optoelectronic phaselocked loop, Electronics Letters, Vol. 30, No. 1, pp. 69—71  Non-patent literature 1: J. B. ueorges et al., Staole picosecond pulse generation at 46GHz by modelocking of a semiconductor laser operating in an optoelectronic phaselocked loop, Electronics Letters, Vol. 30, No. 1, pp. 69-71
非特許文献 2 : H. Ono et al., "Low jitter pulse train generation using a  Non-Patent Document 2: H. Ono et al., "Low jitter pulse train generation using a
regeneratively mode-locked laser diode," 10th International Workshop on  regeneratively mode-locked laser diode, "10th International Workshop on
Femtosecond Technology, TP— 5, pp. 154, Chiba, Japan, July 16—17, 2003 発明の開示  Femtosecond Technology, TP— 5, pp. 154, Chiba, Japan, July 16-17, 2003 Disclosure of the Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] 光注入同期によって信号光と出力クロック光との同期を確立する手法では、簡単な 構成で同期をとることができるが、光信号の偏光状態によって同期状態が変動してし まうこと、また、得られるクロック光の位相ノイズが注入光信号の有する位相ノイズに依 存してしまうという課題があった。その理由は、光注入同期が MLLDの可飽和吸収 領域を光学的に変調するといつた効果を利用しているため、 MLLDの発振する光に おける偏波状態と入射する光における偏波状態が同じでないと変調効果が一定せ ず、安定したクロック光を得ることができないからである。また、出力クロック光におけ る周波数を安定される効果は、光注入同期自体は備えていない。 [0011] In the method of establishing synchronization between signal light and output clock light by optical injection locking, synchronization can be achieved with a simple configuration. However, the synchronization state fluctuates depending on the polarization state of the optical signal. Also, there is a problem that the phase noise of the obtained clock light depends on the phase noise of the injected optical signal. The reason is that optical injection locking uses the effect of optically modulating the saturable absorption region of the MLLD, so that the polarization state of the MLLD oscillating light and the polarization state of the incident light are the same. Otherwise the modulation effect will be constant This is because a stable clock light cannot be obtained. Further, the effect of stabilizing the frequency of the output clock light does not include the light injection locking itself.
[0012] 光信号を電気信号にいったん変換する手法では、光信号の偏光状態による同期 変動は生じず、 PLLによって出力クロック光における周波数の安定ィ匕は図られるが、 MLLDを電気的に直接変調するために、高周波基準信号源であるとして電気回路 による VCOを用いているため、クロック周波数が例えば 40GHz以上の光信号には 追随することができなくなるという問題点がある。また、従来の電気的 PLL方式による 光クロック抽出装置では、光クロック抽出装置自体を石英導波路やポリマー光導波路 (PLC)などに集積ィ匕することが困難であるという問題点がある。その理由は、クロック 基準信号が高周波数になるほど、 PLLを構成する高周波基準信号源の価格、消費 電力、及び発熱量が増加するとともに、クロック基準信号の周波数が例えば 40GHz 以上になると、効率のよい高周波配線を設けることが難しくなるためである。  [0012] In the method of once converting an optical signal into an electric signal, there is no synchronization fluctuation due to the polarization state of the optical signal, and the frequency of the output clock light is stabilized by the PLL, but the MLLD is directly electrically modulated. Therefore, since a VCO based on an electric circuit is used as a high-frequency reference signal source, there is a problem that it cannot follow an optical signal having a clock frequency of, for example, 40 GHz or more. In addition, the conventional optical clock extraction device based on the electrical PLL method has a problem that it is difficult to integrate the optical clock extraction device itself into a quartz waveguide, a polymer optical waveguide (PLC), or the like. The reason is that the higher the frequency of the clock reference signal, the higher the price, power consumption, and heat generation of the high-frequency reference signal source constituting the PLL, and the higher the clock reference signal frequency becomes, for example, 40 GHz or higher, the higher the efficiency. This is because it becomes difficult to provide high-frequency wiring.
[0013] 本発明の目的は、基準信号源である信号光の偏光に依存せず、電気的高周波回 路を必要とせず、かつ位相ノイズが小さ!/、クロック光を再生することが可能な光クロッ ク抽出装置を提供することである。  An object of the present invention is to be able to reproduce clock light without depending on the polarization of signal light as a reference signal source, without requiring an electrical high-frequency circuit, and with low phase noise! An object is to provide an optical clock extraction device.
[0014] 本発明の別の目的は、基準信号源である信号光の偏光に依存せず、電気的高周 波回路を必要とせず、かつ位相ノイズが小さ 、クロック光を再生することが可能な光ク ロック抽出方法を提供することである。  Another object of the present invention is to be able to reproduce clock light without depending on the polarization of signal light as a reference signal source, without requiring an electrical high-frequency circuit, and with low phase noise. It is to provide a simple optical clock extraction method.
課題を解決するための手段  Means for solving the problem
[0015] 本発明の目的は、入射してくる信号光の基準周波数と同期した発振周波数を有す る光パルスを得る光クロック抽出装置であって、位相変調効果を持つ可飽和吸収領 域と利得領域とを備え、可飽和吸収領域に印加する制御電圧に基づく位相変調効 果により、光パルスを発生する発振周波数を変化させることができるモード同期半導 体レーザ (MLLD)と、信号光の基準周波数と MLLDの出力光パルスの発振周波数 の同期ずれを光学的に同期検波して位相誤差信号を得る手段と、位相同期ループ を形成するように、位相誤差信号を、可飽和吸収領域に負帰還させる手段と、を有し 、 MLLDの出力光パルスと信号光とを同期させる光クロック抽出装置によって達成さ れる。 [0016] このような本発明の光クロック抽出装置は、典型的には、 MLLDからの一方の出力 端面から出力する光パルスの少なくとも一部を、 MLLDの他方の端面より直接光注 入する光学的な自己フィードバックループを有する。本発明では、このような光学的 な自己フィードバックループを設けることによって、 MLLDを光 VCOとして動作させ るとともに、光 VCO出力における位相ノイズの低減を図っている。 An object of the present invention is to provide an optical clock extracting device for obtaining an optical pulse having an oscillation frequency synchronized with a reference frequency of an incident signal light, wherein the saturable absorption region having a phase modulation effect is provided. A mode-locked semiconductor laser (MLLD) that has a gain region and can change the oscillation frequency that generates optical pulses by the phase modulation effect based on the control voltage applied to the saturable absorption region; Means for obtaining a phase error signal by optically and synchronously detecting the synchronization deviation between the reference frequency and the oscillation frequency of the output light pulse of the MLLD. Feedback means, and is achieved by an optical clock extraction device that synchronizes the output light pulse of the MLLD with the signal light. [0016] Such an optical clock extracting apparatus of the present invention typically has an optical clock that directly injects at least a part of an optical pulse output from one output end face of the MLLD from the other end face of the MLLD. Self-feedback loop. In the present invention, by providing such an optical self-feedback loop, the MLLD operates as an optical VCO, and the phase noise in the optical VCO output is reduced.
[0017] 本発明の別の目的は、位相変調効果を持つ可飽和吸収領域と利得領域とを備え、 可飽和吸収領域に印加する制御電圧による位相変調効果によって、光パルスを発 生する発振周波数を変化させることができる MLLD力 の出力光パルスの発振周波 数を、入射してくる信号光の基準周波数と同期させる光クロック抽出方法であって、 信号光の基準周波数と出力光パルスの発振周波数の同期ずれを光学的に同期検 波して位相誤差信号を得る段階と、位相誤差信号を、位相変調効果をもつ領域に負 帰還して位相同期ループを形成し、光ノ ルスと入射信号光を同期させる段階と、を 有する、光クロック抽出方法によって達成される。  [0017] Another object of the present invention is to provide a saturable absorption region and a gain region having a phase modulation effect, and an oscillation frequency for generating an optical pulse by a phase modulation effect by a control voltage applied to the saturable absorption region. This is an optical clock extraction method that synchronizes the oscillation frequency of the output light pulse of the MLLD force with the reference frequency of the incident signal light, and the reference frequency of the signal light and the oscillation frequency of the output light pulse. Obtaining a phase error signal by optically synchronously detecting the synchronization shift of the optical signal, and forming a phase locked loop by negatively feeding back the phase error signal to a region having a phase modulation effect, thereby forming an optical noise and an incident signal light. Synchronizing the optical clock.
[0018] 本発明によれば、電気的 VCOなどの高周波電気回路を必要としない位相同期ル ープを構築することができ、その結果、小型化、高速化、低消費電力、高集積化、操 作性が向上した光クロック抽出装置が提供される。  According to the present invention, a phase-locked loop that does not require a high-frequency electric circuit such as an electric VCO can be constructed. As a result, miniaturization, high-speed operation, low power consumption, high integration, An optical clock extraction device with improved operability is provided.
[0019] 本発明によれば、信号光の速度や偏光状態に依存しないでクロック抽出を行うこと ができる。また、光 3R中継器や光 DEMUXといった他の信号処理を位相比較器で ある光ミキサに同時に担わせることができる。本発明では、光ミキサには、例えば、高 速に動作可能な光ゲートスィッチを用いる力 この光ゲートスィッチとして、偏光無依 存な SOAや偏光に依存しない構成で構築した光ファイバ型の光ゲートスィッチを用 いることで、信号光の偏光状態に依存しない位相比較が可能になるためである。この とき、ループフィルタの特性を選択することによって位相同期ループの負帰還の同期 保持範囲を適切に設計すれば、具体的には、光ミキサの偏光依存性による揺らぎよ りも同期保持範囲を大きくすれば、より安定なクロック抽出を実現することができる。  According to the present invention, clock extraction can be performed without depending on the speed or polarization state of signal light. In addition, other signal processing such as an optical 3R repeater and an optical DEMUX can be simultaneously performed by the optical mixer as the phase comparator. In the present invention, for example, a power using an optical gate switch that can operate at high speed is used as the optical mixer. As this optical gate switch, an optical fiber type optical gate constructed with a polarization independent SOA or a polarization independent configuration is used. This is because the use of the switch enables phase comparison independent of the polarization state of the signal light. At this time, if the characteristics of the loop filter are selected to properly design the synchronization holding range of the negative feedback of the phase-locked loop, the synchronization holding range can be made larger than the fluctuation due to the polarization dependence of the optical mixer. Then, more stable clock extraction can be realized.
[0020] 光ミキサは高速光ゲートスィッチであるので、同期がいったん確立してしまえば、光 ミキサにおいて、信号光とクロック光との最適なタイミングで信号処理を行うことができ る。そのため、光ミキサを、誤差信号発生のほかに、光 3R再生処理や光 DEMUX処 理のために同時に使用することができる。 Since the optical mixer is a high-speed optical gate switch, once synchronization is established, the optical mixer can perform signal processing at the optimal timing between the signal light and the clock light. Therefore, in addition to generating an error signal, the optical mixer is required to perform optical 3R regeneration processing and optical DEMUX processing. Can be used simultaneously for processing.
[0021] さらに本発明によれば、多段での PLL制御による光クロック抽出を行うことができる 図面の簡単な説明  Further, according to the present invention, an optical clock can be extracted by PLL control in multiple stages.
[0022] [図 1A]光信号力もそれに同期したクロック光を抽出する、光注入同期を用いた従来 の光クロック抽出装置の構成を示すブロック図である。  FIG. 1A is a block diagram showing a configuration of a conventional optical clock extraction device using light injection locking, which extracts a clock light whose optical signal power is also synchronized therewith.
[図 1B]光信号力もそれに同期したクロック光を抽出する、 PLLを用いた従来の光クロ ック抽出装置の構成を示すブロック図である。  FIG. 1B is a block diagram showing a configuration of a conventional optical clock extraction device using a PLL, which extracts a clock light that is also synchronized with the optical signal power.
[図 2]自己フィードバックループを有する MLLDによる光 VCOを用い、パルス光にお ける位相ノイズの低減を図る、本発明に基づく光クロック抽出手法を説明する図であ る。  FIG. 2 is a diagram illustrating an optical clock extraction method based on the present invention for reducing phase noise in pulsed light using an optical VCO by an MLLD having a self-feedback loop.
[図 3]本発明の実施例 1の光クロック抽出装置を説明するブロック図である。  FIG. 3 is a block diagram illustrating an optical clock extraction device according to a first embodiment of the present invention.
[図 4]自己フィードバックループを有する MLLDを用いた光 VCOにおける、位相ノィ ズ低減を図った光 PLL動作における RFスペクトルと、 自己フィードバックなしで PLL 動作させた場合の RFスペクトルとを示すグラフである。  FIG. 4 is a graph showing an RF spectrum in an optical PLL operation for reducing phase noise in an optical VCO using an MLLD having a self-feedback loop, and an RF spectrum when the PLL operation is performed without self-feedback. .
[図 5]自己フィードバックループを有する MLLDを用いた光 VCOにおける、位相ノィ ズ低減を図った光 PLL動作でのサンプリングオシロスコープ波形と、自己フィードバ ックなしで PLL動作させた場合のサンプリングオシロスコープ波形を示す図である。  [Figure 5] Sampling oscilloscope waveforms in an optical PLL operation with reduced phase noise in an optical VCO using an MLLD with a self-feedback loop, and sampling oscilloscope waveforms when the PLL is operated without self-feedback FIG.
[図 6]自己フィードバックループにより生じてしまうサイドバンドの RFスペクトルを示す グラフである。  FIG. 6 is a graph showing an RF spectrum of a side band generated by a self-feedback loop.
[図 7]サイドバンドスペクトルの抑制のために波長の異なる 2つの MLLDを周回ルー プ内に設けた、実施例 2の光クロック抽出装置を示すブロック図である。  FIG. 7 is a block diagram illustrating an optical clock extraction device according to a second embodiment in which two MLLDs having different wavelengths are provided in a loop for suppressing sideband spectra.
[図 8]実施例 3のクロック抽出装置を示すブロック図である。  FIG. 8 is a block diagram illustrating a clock extraction device according to a third embodiment.
[図 9A]CW (連続波)光による波長変換を用いてサイドバンドスペクトルを抑制する構 成を示すブロック図である。  FIG. 9A is a block diagram showing a configuration for suppressing a sideband spectrum using wavelength conversion by CW (continuous wave) light.
[図 9B]光ファイバを用いたスーパーコンティ-ユームによってサイドバンドスペクトルを 抑制する構成を示すブロック図である。  FIG. 9B is a block diagram showing a configuration for suppressing a sideband spectrum by a supercontinuum using an optical fiber.
[図 9C]光フィルタを周回ループ内に配置することによってサイドバンドスペクトルを抑 制する構成を示すブロック図である。 [Figure 9C] Sideband spectrum is suppressed by placing an optical filter in the loop FIG. 3 is a block diagram illustrating a configuration for controlling the power consumption.
[図 10]実施例 4における、光 3R中継器の光ゲート部に位相比較機能を持たせた構 成を示すブロック図である。  FIG. 10 is a block diagram showing a configuration in which a phase comparison function is provided to an optical gate unit of an optical 3R repeater in a fourth embodiment.
[図 11]実施例 5における、位相比較部に電界吸収型変調器を用いた構成を示すプロ ック図である。  FIG. 11 is a block diagram showing a configuration in which an electro-absorption modulator is used for a phase comparison unit in Embodiment 5.
[図 12]実施例 6における、多段で PLL制御を施した場合の構成を示すブロック図であ る。  FIG. 12 is a block diagram showing a configuration in a case where PLL control is performed in multiple stages in Embodiment 6.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 図 2は、本発明に基づく光クロック抽出方法を説明する図である。本発明の光クロッ ク抽出方法では、自己フィードバックのループ構成による MLLDを用いることによつ て、光 VCO周波数における位相ノイズの低減を図って 、る。  FIG. 2 is a diagram illustrating an optical clock extraction method according to the present invention. In the optical clock extraction method of the present invention, phase noise at the optical VCO frequency is reduced by using an MLLD having a self-feedback loop configuration.
[0024] 本発明では、位相変調効果を持つ可飽和吸収領域と利得領域とを備え、可飽和吸 収領域に印加する制御電圧による位相変調効果により、光パルスの発生する発振周 波数を変化させることができる MLLD (モード同期半導体レーザダイオード)を使用 する。そして、 MLLD力もの出力光パルスの発振周波数を、入射してくる信号光の基 準周波数と同期させる際に、信号光の基準周波数と出力光パルスの発振周波数の 同期ずれを光学的に同期検波して、これらの信号の位相誤差信号を得るとともに、位 相誤差信号を、 MLLDの可飽和吸収領域に負帰還させて位相同期ループを形成し 、光パルスと入射信号光とを同期させてクロック抽出を行う。ここで出力光パルスの発 振周波数とは、光パルス列としての繰り返し周波数に相当する。  According to the present invention, a saturable absorption region and a gain region having a phase modulation effect are provided, and the oscillation frequency at which an optical pulse is generated is changed by the phase modulation effect by a control voltage applied to the saturable absorption region. Use an MLLD (mode-locked semiconductor laser diode). Then, when synchronizing the oscillation frequency of the output optical pulse with the MLLD power with the reference frequency of the incident signal light, optically synchronous detection of the synchronization deviation between the reference frequency of the signal light and the oscillation frequency of the output optical pulse is performed. In addition to obtaining the phase error signal of these signals, the phase error signal is negatively fed back to the saturable absorption region of the MLLD to form a phase locked loop, and the optical pulse and the incident signal light are synchronized to form a clock. Perform the extraction. Here, the oscillation frequency of the output light pulse corresponds to the repetition frequency of the light pulse train.
[0025] 半導体中の光の屈折率は、一般にキャリア密度に依存するため、キャリア密度を介 して MLLDの実効的な共振器長を制御することができる。これにより、 MLLDの繰り 返し周波数制御が可能となり、 MLLDを、光信号を出力する電圧 Z電流制御発振 器 (VCO)として使用することができる。ただし、 MLLDを光 VCOとして使用するため には、 MLLD力 の出力クロック光における位相ノイズの低減、つまりジッタを小さく することが重要である。そこで本発明では、電気的な高周波発振器を必要せずに M LLDを光 VCOとして使用するために、 MLLDからのクロック光の位相ノイズの低減、 つまり低ジッタ化の手法として、図 2に示すように、 MLLD100からのクロック光の一 部を取り出し、同じ MLLDIOOに再度光注入するという光ループ系を構築し、クロッ ク光を自己フィードバックさせる構成を採用する。図において、光信号部分は太線で 示されており、電気信号部分は細線で示されている。 [0025] Since the refractive index of light in a semiconductor generally depends on the carrier density, the effective resonator length of the MLLD can be controlled via the carrier density. This makes it possible to control the repetition frequency of the MLLD, and the MLLD can be used as a voltage-Z current controlled oscillator (VCO) that outputs an optical signal. However, in order to use an MLLD as an optical VCO, it is important to reduce the phase noise in the output clock light of the MLLD power, that is, to reduce the jitter. Therefore, in the present invention, since an MLLD is used as an optical VCO without the need for an electrical high-frequency oscillator, the method of reducing the phase noise of the clock light from the MLLD, that is, reducing the jitter, as shown in FIG. Of the clock light from the MLLD100 The optical loop system is constructed by taking out the part and re-injecting the light into the same MLLDIOO, and adopts a configuration in which the clock light self-feeds back. In the figure, the optical signal portion is indicated by a thick line, and the electric signal portion is indicated by a thin line.
[0026] MLLDIOOからクロック光パルスが発生するタイミングと光ループを周回して MLL D100に戻ってきたクロック光パルスのタイミングとが同時になるよう光路長を調整す ることにより、 MLLDを構成する可飽和吸収領域で生じる吸収飽和現象すなわちゲ ート動作が急峻なものとなり、吸収飽和のランダム性や利得飽和による利得領域での 雑音光のランダム性などによって生じる位相ノイズが低減される。これ〖こより、出カク ロック光における位相ノイズを低減でき、電気的な高周波回路を印加して強制的に変 調する手法をとらなくても、クロック光パルス列の周波数の確度を向上することができ る。 [0026] By adjusting the optical path length so that the timing of the generation of the clock light pulse from the MLLDIOO and the timing of the clock light pulse circulating the optical loop and returning to the MLL D100 become the same, the saturable MLLD is formed. The absorption saturation phenomenon that occurs in the absorption region, that is, the gate operation becomes steep, and the phase noise caused by the randomness of absorption saturation and the randomness of noise light in the gain region due to gain saturation is reduced. As a result, the phase noise of the output clock light can be reduced, and the frequency accuracy of the clock light pulse train can be improved without applying a method of forcibly modulating by applying an electric high-frequency circuit. You.
[0027] さらに、本発明では、入力する信号光とを再生クロック光との同期を確立するために 、外部信号光と、 MLLDIOOを用いた光 VCOからの再生クロック光とを、半導体光 増幅器 (SOA)などの非線形効果を利用した光ミキサ 200に入射させ、外部信号光と 光 VCOの基準信号との位相比較を行って 、る。光ミキサ 200で生じた光ビート信号 は、外部信号光と再生クロック光との位相差に応じた信号であり、この信号は、 PINダ ィオードなど力もなる受光器 310によって電気信号に変換され、ループフィルタ 320 によって平滑化され、 MLLDIOOの可飽和領域に制御電圧として印加される。このよ うに本実施形態では、位相同期ループの構成をとることで、外部信号光と同期したク ロック光を得ることができる。  Further, in the present invention, in order to establish synchronization between the input signal light and the reproduced clock light, the external signal light and the reproduced clock light from the optical VCO using the MLLDIOO are connected to the semiconductor optical amplifier ( The optical signal is input to the optical mixer 200 using a nonlinear effect such as SOA), and the phase of the external signal light is compared with the reference signal of the optical VCO. The optical beat signal generated by the optical mixer 200 is a signal corresponding to the phase difference between the external signal light and the reproduced clock light, and this signal is converted into an electric signal by the optical receiver 310 which has a strong force such as a PIN diode, and is converted into a loop signal. It is smoothed by the filter 320 and applied as a control voltage to the saturable region of the MLLDIOO. As described above, in the present embodiment, a clock light synchronized with the external signal light can be obtained by employing the configuration of the phase locked loop.
[0028] 本実施形態では、 PLLの基本構成要素のうち、位相比較部 (ミキサ)や電圧制御発 振器 (VCO)といった高速での処理が必要となる部分を光学的に構成し、一方、位相 差検出部や誤差増幅、ループフィルタと 、つたたかだか MHzオーダの低速な応答 で十分な処理を実行する部分を、受光器 310及びループフィルタ 320からなる電気 制御部 300で電気的に構成している。上述したように、 MLLDの増幅された自然放 出光 (ASE)による周波数揺らぎを抑制するために、 MLLDを光学的に自己フィード バックループする方式を導入し、格段の周波数確度を向上させて ヽる。  In the present embodiment, of the basic constituent elements of the PLL, a part that requires high-speed processing, such as a phase comparison unit (mixer) and a voltage-controlled oscillator (VCO), is optically configured. A phase difference detection unit, an error amplifier, a loop filter, and a part for performing a sufficient process with a low-speed response on the order of MHz are electrically configured by an electric control unit 300 including a photodetector 310 and a loop filter 320. I have. As described above, in order to suppress the frequency fluctuation caused by the amplified spontaneous emission light (ASE) of the MLLD, a method of optically self-feedback looping the MLLD is introduced, and the frequency accuracy is remarkably improved. .
[0029] このようにして本実施形態によれば、偏光無依存な SOAなどを利用した光ミキサを 用いることで、外部信号光の偏光状態に依存しない光クロック抽出装置が実現できるAs described above, according to the present embodiment, an optical mixer using a polarization-independent SOA or the like is provided. By using this, an optical clock extraction device that does not depend on the polarization state of the external signal light can be realized.
。また、光ミキサ及び位相比較器を、 SOA、光ファイバなどの非線形効果を利用した 光スィッチとの組み合わせることにより、動作の高速ィ匕を測ることができる。さらに、光 ミキサ部には、光識別信号処理の機能を同時に持たせることができるため、光位相比 較の動作と、光 3R再生、光 DEMUXといった光信号処理との動作を同時に行うこと ができるようになり、さらに、それらの動作の最適化を図ることができる。 . Also, by combining an optical mixer and a phase comparator with an optical switch utilizing a non-linear effect such as an SOA or an optical fiber, high-speed operation can be measured. Furthermore, since the optical mixer can have the function of optical identification signal processing at the same time, the operation of optical phase comparison and the operation of optical signal processing such as optical 3R regeneration and optical DEMUX can be performed simultaneously. As a result, their operations can be further optimized.
[0030] 本実施形態では、電気的な制御部は、位相差に応じた信号をループフィルタで平 滑化する部分のみであり、比較的低速な PINダイオード受光器と、 MHzオーダの帯 域を有する演算増幅器によるループフィルタとで構成することができる。電気的制御 部は、高周波回路であることを必要とせず、この部分は集積回路 (IC)として構成する ことが可能である。したがって、電気的制御部の、小型化、高集積化、低消費電力化 を図ることができる。このように光クロック抽出装置は、 MLLD、 SOA、アイソレータ、 PIN、 IC回路といった部品を PLC上に容易に実装可能な構成であるため、小型化を 図ることができる。 In the present embodiment, the electrical control unit is only a part that smoothes the signal corresponding to the phase difference with the loop filter, and has a relatively low-speed PIN diode photodetector and a band on the order of MHz. And a loop filter using an operational amplifier. The electrical control unit does not need to be a high frequency circuit, and this part can be configured as an integrated circuit (IC). Therefore, miniaturization, high integration, and low power consumption of the electric control unit can be achieved. As described above, the optical clock extraction device has a configuration in which components such as the MLLD, SOA, isolator, PIN, and IC circuit can be easily mounted on the PLC, so that the size can be reduced.
[0031] さらにこの光クロック抽出装置では、光ループ系により自己フィードバックさせる構成 の中に配置された増幅器、減衰器などよつて、光ループを周回してきたクロック光パ ルスの光強度を調整し、また、光ループ長を変化させてタイミングを調整することがで きる。それによつて、 MLLD力も発生するクロック光パルス列の基本周波数を可変制 御することができ、また、増幅器や減衰器なども PLL制御回路として制御できるため、 多段構成の PLL制御回路を実現することができる。  [0031] Further, in this optical clock extracting device, the light intensity of the clock light pulse circling the optical loop is adjusted by an amplifier, an attenuator, and the like arranged in a configuration in which feedback is performed by the optical loop system. Also, the timing can be adjusted by changing the optical loop length. This makes it possible to variably control the fundamental frequency of the clock light pulse train that also generates MLLD power, and also to control amplifiers and attenuators as PLL control circuits, thus realizing a multi-stage PLL control circuit. it can.
[0032] 以下、本発明について、実施例に基づいてさらに詳しく説明する。  Hereinafter, the present invention will be described in more detail based on examples.
[0033] [実施例 1]  Example 1
図 3は、自己フィードバックのループ構成による MLLDを用いた光 VCOを有し、光 VCOの発振周波数における位相ノイズの低減を図った光クロック抽出装置を示して いる。図示される光クロック抽出装置は、光 VCOとともに、光ミキサゃループフィルタ を備えており、光ミキサ、光 VCO、ループフィルタによって、光 PLLが構成されている  Fig. 3 shows an optical clock extraction device that has an optical VCO using an MLLD with a self-feedback loop configuration and that reduces phase noise at the oscillation frequency of the optical VCO. The illustrated optical clock extraction device includes an optical mixer and a loop filter together with an optical VCO, and an optical PLL is configured by the optical mixer, the optical VCO, and the loop filter.
[0034] 光 VCOとして用いる MLLD1は、少なくとも利得領域 2と可飽和吸収領域 3と力 構 成されている。利得領域 2と可飽和吸収領域 3とは電極分離されている。 MLLD1の 両方の端面のそれぞれには、レンズ 4及びアイソレータ 5が近接して配置されて!、る。 そして、 MLLD1の一方の出力端面から出力する光パルスの一部を他方の端面より MLLD1に直接光注入させる光学的な自己フィードバックループを構成するために、 両方の端面間を外部接続する光導波路 6が設けられており、光導波路 6には、光遅 延器 7、光増幅器 8及び光減衰器 9が挿入されている。 MLLD1が光ノ ルスを発生す るタイミングと、この光ノルスが光導波路 6を周回し、 MLLD1のもう一方の端面に入 射するタイミングとが同時になるように、光遅延器 7は調整されている。この構成により 、 MLLD 1を構成する可飽和吸収領域 3で生じる吸収飽和現象つまり光ゲート動作 が急峻なものとされ、光パルス発生時の可飽和吸収領域 3の吸収飽和のランダム性 によって生じる位相ノイズが低減され、出力クロック光における位相ノイズが低減され 、再生クロック光の周波数確度を高めることができる。 [0034] The MLLD 1 used as an optical VCO has at least a gain region 2, a saturable absorption region 3, and a power structure. It is made. The gain region 2 and the saturable absorption region 3 are electrode-separated. A lens 4 and an isolator 5 are arranged close to each other on both end faces of the MLLD1. Then, in order to form an optical self-feedback loop for directly injecting a part of the optical pulse output from one output end face of the MLLD1 to the MLLD1 from the other end face, an optical waveguide 6 that externally connects both end faces is used. In the optical waveguide 6, an optical delay unit 7, an optical amplifier 8, and an optical attenuator 9 are inserted. The optical delay unit 7 is adjusted so that the timing at which the MLLD 1 generates an optical noise and the timing at which the optical north circulates the optical waveguide 6 and enters the other end face of the MLLD 1 are simultaneous. . With this configuration, the absorption saturation phenomenon occurring in the saturable absorption region 3 constituting the MLLD 1, that is, the optical gate operation is made steep, and the phase noise caused by the randomness of the absorption saturation in the saturable absorption region 3 when an optical pulse is generated. , The phase noise in the output clock light is reduced, and the frequency accuracy of the recovered clock light can be increased.
[0035] 外部信号光と、 MLLD1からの出力クロック光すなわち再生クロック光との同期を確 立するために、さらに、光ミキサ(MIX) 10、光減衰器 (ATT) 9、ノランスディテクタ 1 1、誤差増幅器 12、ループフィルタ 13、電圧加算器 14が設けられている。光ミキサ 1 0には、 MLLD1から取り出した再生クロック光の一部と外部信号光とが光ミキサ 10 に入射し、光ミキサ 10の出力光は、光減衰器 9を介してバランスディテクタ 11の一方 の受光器に入射するようになっており、バランスディテクタ 11では、光 VCOである M LLD1の発振周波数と外部信号光の基準周波数との周波数差が検出される。位相 差に応じた信号が、誤差増幅器 12で増幅され、ループフィルタ 13で平滑ィ匕されて、 電圧加算器 14により、光 VCOである MLLD 1の可飽和領域 3に制御電圧として印加 される。これによつて、外部信号光に同期した再生クロック光が MLLD1から得られる こととなる。 [0035] In order to establish synchronization between the external signal light and the output clock light from the MLLD1, that is, the recovered clock light, an optical mixer (MIX) 10, an optical attenuator (ATT) 9, and a noise detector 11 , An error amplifier 12, a loop filter 13, and a voltage adder 14. In the optical mixer 10, a part of the recovered clock light extracted from the MLLD 1 and the external signal light enter the optical mixer 10, and the output light of the optical mixer 10 passes through the optical attenuator 9 to one of the balance detectors 11. And the balance detector 11 detects a frequency difference between the oscillation frequency of the MLLD1 that is the optical VCO and the reference frequency of the external signal light. A signal corresponding to the phase difference is amplified by the error amplifier 12, smoothed by the loop filter 13, and applied as a control voltage to the saturable region 3 of the MLLD 1, which is an optical VCO, by the voltage adder 14. As a result, the recovered clock light synchronized with the external signal light is obtained from the MLLD1.
[0036] 光ミキサ 10では、外部信号光の基準周波数と MLLD1からのクロック光の発振周 波数との位相差に応じた変調を、外部信号光とクロック光の両方に付加することがで きる。例えば SOAを用いた相互利得変調を用いれば、外部信号光とクロック光の両 方に対し、それらの位相差に応じた強度変調を付加できる。この強度変調を受けたど ちらか一方を、数 MHzオーダの低速の周波数特性を有するバランスディテクタ 11の どちらか一方の受光部で電気信号に変換すると、高速な外部信号光とクロック光は D C電圧成分として出力され、強度変調成分は誤差信号成分として出力されるので、 強度変調成分を分離することができる。 [0036] In the optical mixer 10, modulation according to the phase difference between the reference frequency of the external signal light and the oscillation frequency of the clock light from the MLLD 1 can be added to both the external signal light and the clock light. For example, if mutual gain modulation using SOA is used, intensity modulation according to the phase difference between both the external signal light and the clock light can be added. Either one of these receiving the intensity modulation is output to a balance detector 11 having a low-speed frequency characteristic on the order of several MHz. When converted into an electric signal by one of the light receiving units, the high-speed external signal light and clock light are output as DC voltage components, and the intensity modulation component is output as an error signal component. it can.
[0037] バランスディテクタ 11のもう一方の受光器に対し、 DC電圧成分がキャンセルされる ようにクロック光もしくは外部信号光を入射すると、 DC電圧成分は、キャンセルされ、 誤差信号のみを取り出すことができる。この誤差信号を、誤差増幅器 12で増幅し、ル ープフィルタ 13によって誤差信号に含まれる高周波成分を完全に除去して平滑ィ匕し て、 MLLD1の位相変調領域である可飽和吸収領域 3にバイアス源変調成分として 印加する。このとき、電圧加算器 14により、逆ノ ィァスを可飽和吸収領域 3に印加し て MLLD 1が受動的にパルス光を発生するようにしておくと、安定した光 PLL動作が 行える。 When the clock light or the external signal light is incident on the other light receiver of the balance detector 11 so that the DC voltage component is canceled, the DC voltage component is canceled and only the error signal can be extracted. . This error signal is amplified by an error amplifier 12, and a high-frequency component contained in the error signal is completely removed by a loop filter 13 and smoothed, and a bias source is applied to a saturable absorption region 3, which is a phase modulation region of the MLLD 1. Applied as a modulation component. At this time, if the MLLD 1 passively generates pulsed light by applying a reverse noise to the saturable absorption region 3 by the voltage adder 14, stable optical PLL operation can be performed.
[0038] 図 4は、自己フィードバックのループ構成による MLLDを用いた光 VCOにおいて、 発振周波数における位相ノイズの低減を図った場合の光 PLL動作のときの RFスぺク トルと、自己フィードバックがない場合で PLL動作させた場合の RFスペクトルを示し ている。図 4において、「自己フィードノ ック +光 PLL」は、 自己フィードバックを用い て光 PLL動作させたときのスペクトルを示し、「光電 PLLのみ」は、自己フィードバック を用いない場合のスペクトルを示している。 自己フィードバックを用いることによってジ ッタ成分を小さくした場合には、急峻なスペクトルピークが得られ、自己フィードバック を用いないでジッタ成分が大きい場合には、スペクトルピークががブロードに拡がる。 このように、自己フィードバックを用いる場合の方力 周波数スペクトルにおける信号 対ノイズ比(SNR)が向上し、かつ、ピークが急峻なものとなることが確認できる。図 4 にはさらに、電気的に同期を確立した場合の RFスペクトルと、同期が確立していない 状態での RFスペクトルも描かれて!/、る。  [0038] FIG. 4 shows an RF VCO using an MLLD with a self-feedback loop configuration and an RF spectrum in an optical PLL operation when reducing phase noise at an oscillation frequency, and no self-feedback. The RF spectrum when the PLL is operated is shown. In Fig. 4, "self-feed knock + optical PLL" shows the spectrum when operating the optical PLL using self-feedback, and "only photoelectric PLL" shows the spectrum when self-feedback is not used. I have. When the jitter component is reduced by using the self-feedback, a sharp spectrum peak is obtained. When the jitter component is large without using the self-feedback, the spectrum peak spreads broadly. As described above, it can be confirmed that the signal-to-noise ratio (SNR) in the frequency spectrum when the self-feedback is used is improved and the peak becomes sharp. Figure 4 also shows the RF spectrum when electrical synchronization has been established and the RF spectrum when synchronization has not been established!
[0039] 図 5は、上述した自己フィードバックのループ構成による MLLDを用いた光 VCOか らの再生クロック光のサンプリングオシロスコープによる観測波形を示している。上段 の波形 81は、非同期時すなわち光 PLL動作して 、な 、状態のサンプリング波形で あり、中段の波形 82は、自己フィードバックがない場合で PLL動作させた場合のサン プリング波形であり、下段の波形 83は、光 PLLと自己フィードバックの両方動作させ たとき、すなわち位相ノイズの低減を図るように光 PLL動作させたときのサンプリング 波形である。 FIG. 5 shows a waveform observed by a sampling oscilloscope of the recovered clock light from the optical VCO using the MLLD having the above-described self-feedback loop configuration. The upper waveform 81 is a sampling waveform in the asynchronous state, that is, when the optical PLL operates, and the state is low.The middle waveform 82 is a sampling waveform when the PLL operation is performed without self feedback, and the lower waveform 81 is the lower waveform. Waveform 83 activates both the optical PLL and self-feedback. 7 shows a sampling waveform when the optical PLL is operated so as to reduce the phase noise.
[0040] 一般にサンプリング波形は、ジッタが大きいほど、波形が揺れて見える力 自己フィ ードバックを行った場合のサンプリング波形 83が一番小さい揺らぎになっている。こ れは、周波数スペクトルの SNR向上の効果力 ジッタ低減という形で観測されている ことを意味する。  In general, the greater the jitter of the sampling waveform, the smaller the fluctuation of the sampling waveform 83 when self-feedback is performed, as the jitter is seen. This means that the effect of improving the SNR of the frequency spectrum has been observed in the form of jitter reduction.
[0041] [実施例 2 :サイドバンドスペクトル抑制かつ 2波長同期クロック光発生]  Example 2: Sideband Spectrum Suppression and Two-Wavelength Synchronized Clock Light Generation
実施例 1に示した構成では、光 VCOである MLLDに対して自己注入によって行わ れる自己フィードバックの効果が大きくなりすぎると、自己フィードバックループ長に依 存したサイドバンドスペクトルが生じる可能性がある。図 6は、そのようなサイドバンド の RFスペクトルの一例を示しており、自己フィードバックのループ構成により生じてし まうサイドバンドを示している。サイドバンドは、 MLLDの周波数に対応する波長と、 自己フィードバックループ長で決まる周波数に対応する波長とが同じ波長であるがた めに、複合共振器ができてしまうことから生じる。サイドバンドを除去するためには、 M LLD1から出力される光パルスの波長と、光導波路 6を周回する光パルスの波長とを 異ならせることが重要となる。  In the configuration shown in the first embodiment, if the effect of self-feedback performed by self-injection on the MLLD, which is an optical VCO, becomes too large, a sideband spectrum depending on the self-feedback loop length may be generated. FIG. 6 shows an example of the RF spectrum of such a sideband, and shows a sideband generated by a self-feedback loop configuration. Sidebands occur because the wavelength corresponding to the frequency of the MLLD is the same as the wavelength corresponding to the frequency determined by the length of the self-feedback loop, so that a composite resonator is formed. In order to remove the side band, it is important to make the wavelength of the optical pulse output from the MLLD 1 different from the wavelength of the optical pulse circulating in the optical waveguide 6.
[0042] 図 7は、実施例 2での光クロック抽出装置の構成を示しており、サイドバンドスぺクト ルの抑制のために、波長の異なる 2つの MLLDを同一の周回ループ内に挿入した 構成を示している。実施例 2では、図 7に示すように、光ループ内に、波長の異なる 2 つの MLLD1と MLLD100を備え、 MLLD 1を光 PLLとして動作させ、その出力光 パルスの一部を、もう一方の MLLD100に光注入する。 MLLD1は偏波が揃った光 パルスを出力するので、注入される側の MLLD100では、安定に光注入同期が生じ る。この場合も上述と同様に、 MLLD1からクロック光ノルスが発生するタイミングと、 光導波路を周回して各々の MLLDの可飽和吸収領域にクロック光パルスが達するタ イミングとが同時になるよう光遅延器 7を調整すると、吸収飽和現象 (ゲート動作)が急 峻なものとなり、吸収飽和のランダム性によって生じる位相ノイズが低減される。  FIG. 7 shows a configuration of an optical clock extracting apparatus according to the second embodiment, in which two MLLDs having different wavelengths are inserted in the same loop to suppress sideband spectrum. Is shown. In the second embodiment, as shown in FIG. 7, two MLLDs 1 and MLLDs 100 having different wavelengths are provided in an optical loop, MLLD 1 is operated as an optical PLL, and a part of the output optical pulse is transmitted to the other MLLD 100. Light injection. Since the MLLD 1 outputs an optical pulse with the same polarization, the MLLD 100 on the injection side stably performs light injection locking. In this case, as in the above case, the optical delay unit 7 is used so that the timing at which the clock light north is generated from the MLLD 1 and the timing at which the clock light pulse reaches the saturable absorption region of each MLLD around the optical waveguide are synchronized. By adjusting, the absorption saturation phenomenon (gate operation) becomes sharp, and phase noise caused by the randomness of absorption saturation is reduced.
[0043] このとき、各 MLLDから発生する光パルスのみを透過する光フィルタ 15、光フィル タ 150を光導波路 6内に挿入しておけば、 MLLD1から出力される光パルスの波長と 、光導波路 6を周回し、再び MLLD1に光注入される光パルスの波長が異なるため に、サイドバンドスペクトルが生じることなぐ同期がとれた光パルス周回を作ることが できる。 At this time, if the optical filter 15 and the optical filter 150 that transmit only the optical pulse generated from each MLLD are inserted into the optical waveguide 6, the wavelength of the optical pulse output from the MLLD 1 is reduced. Since the wavelength of the optical pulse that goes around the optical waveguide 6 and is again injected into the MLLD 1 is different, a synchronized optical pulse around which no sideband spectrum is generated can be created.
[0044] この構成では、 MLLD1, 100から異なる波長のクロック光が出力する。このように 異なる 2波長のクロック光を同時に得ることができる構成は、光 3R中継器など、 2波長 の同期したクロック光が必要な光信号処理に使用されるクロック光源としては、最適な 構成である。  In this configuration, MLLDs 1 and 100 output clock lights of different wavelengths. Such a configuration that can simultaneously obtain two different wavelengths of clock light is an optimal configuration for a clock light source used for optical signal processing that requires synchronized clock light of two wavelengths, such as an optical 3R repeater. is there.
[0045] [実施例 3:サイドバンドスペクトル抑制として、波長変換部を自己フィードバックルー プ内に入れた構成]  [Example 3: Configuration in which wavelength conversion unit is placed in self-feedback loop to suppress sideband spectrum]
特定の波長の光パルスのみが強く共振しないように、 MLLD1から出力される光パ ルスと光導波路 6を周回する光パルスの波長とを異ならせる方法として、実施例 2〖こ 示した方法のほかに、導波路 6内に、波長変換部 16を挿入する方法も考えられる。 図 8に示した光クロック抽出装置は図 3に示したものと同様のものである力 MLLD1 の出射端面に近接して光フィルタ 15が設けられるとともに、光導波路 6内に波長変換 部 16が挿入されている点で異なっている。  In order to prevent only the optical pulse of a specific wavelength from resonating strongly, the method of Example 2 was used as a method for making the optical pulse output from the MLLD 1 different from the wavelength of the optical pulse circulating in the optical waveguide 6. In addition, a method of inserting the wavelength converter 16 into the waveguide 6 is also conceivable. The optical clock extraction device shown in FIG. 8 is the same as the one shown in FIG. 3, an optical filter 15 is provided near the output end face of the MLLD1, and a wavelength converter 16 is inserted into the optical waveguide 6. It is different in that it is.
[0046] 図 9Aは、サイドモードスペクトルを抑制する波長変換部 16として、 MLLD1の発振 波長と異なる波長で動作する CW (連続波)光源 17と、 MLLD1からの再生クロック光 と CW光源 17からの連続光とが入力する波長変翻18とを備えたものを示している 。波長変換器 18は、高速で動作する EA (電界吸収)変調器や SOAを使った光ゲー トスイッチなどによって構成されており、光導波路 6内に挿入される。  FIG. 9A shows a CW (continuous wave) light source 17 operating at a wavelength different from the oscillation wavelength of the MLLD 1 as the wavelength conversion unit 16 for suppressing the side mode spectrum, a reproduced clock light from the MLLD 1 and a CW light source 17. FIG. 2 shows a configuration having a wavelength conversion 18 to which continuous light is input. The wavelength converter 18 includes an EA (electroabsorption) modulator operating at high speed, an optical gate switch using an SOA, and the like, and is inserted into the optical waveguide 6.
[0047] 図 9Bは、光ファイバを用いたスーパーコンティ-ユームによる波長変換を用いた波 長変換部 16を示している。この構成では、光増幅器 8と、光ファイバ、フォトニック結 晶などのスーパーコンティ-ユーム素子(SC) 19との非線形効果により、 MLLD1力 らのクロック光のスペクトルを広げ、その一部を光フィルタ 15で切り抜くといった方法 で波長変換を行っている。図において SCスペクトルはスーパーコンティ-ユーム素子 19からの出力スペクトルであり、シード (seed)は、拡大前のクロック光のスペクトル位置 に対応する。このとき、光フィルタ 15の帯域を大きく取り、波長変換部 16から出力さ れる光パルスのパルス幅を短くするように圧縮する構成にすれば、 MLLDの吸収飽 和現象 (ゲート動作)をより急峻なものとすることができるため、吸収飽和のランダム性 によって生じる位相ノイズをさらに低減することができる。 FIG. 9B shows a wavelength converter 16 using wavelength conversion by super continuum using an optical fiber. In this configuration, the spectrum of the clock light from the MLLD1 is expanded by the nonlinear effect of the optical amplifier 8 and the supercontinuum element (SC) 19 such as an optical fiber and a photonic crystal, and part of the spectrum is filtered by an optical filter. Wavelength conversion is performed by clipping at 15. In the figure, the SC spectrum is the output spectrum from the supercontinuum element 19, and the seed corresponds to the spectral position of the clock light before magnification. At this time, if the bandwidth of the optical filter 15 is widened and the optical pulse output from the wavelength conversion unit 16 is compressed so as to shorten the pulse width, the absorption of the MLLD is reduced. Since the sum phenomenon (gate operation) can be made steeper, phase noise caused by the randomness of absorption saturation can be further reduced.
[0048] 図 9Cは、一番簡易な構成として、 MLLD1からのクロック光から、狭帯域な光フィル タ 15で光スペクトルの一部を切り出すことにより、 MLLD1の光パルスと、 自己フィー ドバックループを周回する光パルスの中心波長や帯波長域を異なるようにした構成を 召している、このような構成により、複合共振効果を抑制でき、波長を変化させた場合 と同様の効果が得られる。  FIG. 9C shows the simplest configuration, in which a narrow band optical filter 15 cuts out a part of the optical spectrum from the clock light from the MLLD 1 so that the optical pulse of the MLLD 1 and the self-feedback loop can be obtained. A configuration in which the center wavelength and the band wavelength range of the circulating light pulse are different is called. With such a configuration, the composite resonance effect can be suppressed, and the same effect as when the wavelength is changed can be obtained.
[0049] [実施例 4 :光 3R中継器の光ゲート部に位相比較機能を持たせた構成]  Example 4: Configuration in which the optical gate section of the optical 3R repeater has a phase comparison function
本発明においては、光ミキサには、 SOAのほかに、たとえば偏光分離型対称マツ ハツエンダー干渉計(以下、 PD - SMZと呼ぶ)、対称マッハツェンダー干渉計(以下 、 SMZと呼ぶ)、非線形光ループミラー(NOLM)、テラへルツ光非対称デマルチプ レクサ (TOAD)、透過型相互位相変調 (T XPM)などの高速な光スィッチを使うこ とができる。これと同時に、 PD— SMZ、 SMZ、 NOLM, TOAD, T XPMといった 光ゲートスィッチは、光 3R再生や光 DEMUXといった光信号処理を同時に行うこと が可能である。  In the present invention, the optical mixer includes, in addition to the SOA, for example, a polarization-separated symmetric Mach-Zehnder interferometer (hereinafter, referred to as PD-SMZ), a symmetric Mach-Zehnder interferometer (hereinafter, referred to as SMZ), and a nonlinear optical loop. High-speed optical switches such as mirrors (NOLM), terahertz optical asymmetric demultiplexers (TOAD), and transmissive cross-phase modulation (T XPM) can be used. At the same time, optical gate switches such as PD—SMZ, SMZ, NOLM, TOAD, and T XPM can simultaneously perform optical signal processing such as optical 3R regeneration and optical DEMUX.
[0050] 図 10は、光 3R中継器の光ゲート部に位相比較機能をもたせた場合の構成を示し ている。図 10を参照し、 PD— SMZ101を用いた光 3R中継器に対して本発明に基づ く光クロック抽出を適用する例を説明する。  FIG. 10 shows a configuration in which the optical gate section of the optical 3R repeater has a phase comparison function. An example in which the optical clock extraction based on the present invention is applied to an optical 3R repeater using the PD-SMZ101 will be described with reference to FIG.
[0051] 光クロック抽出部は、上記の実施例 2で説明したものと同様の構成のものであり、波 長が異なり位相ノイズが小さなクロック光を 2つ発生する。 PD— SMZ101は、偏波コ ントローラ 20、カルサイト (偏光子) 21、 SOA (半導体光増幅器) 22、光位相コント口 ーラ 23、光フィルタ 15とを有する。 MLLD1から出力されたクロック光は、偏波コント ローラ 20を通過し、第 1のカルサイト 21で時間遅延を受けて 2つの偏光状態に分離 され、 SOA22に入射する。このとき、遅延時間内に収まるように信号光の光パルスが SOA22に入射するように調整すれば、 SOA22に入射した 2つに分離されたクロック 光パルスのうち、時間遅延を受けたクロック光パルスのみが位相変調される。さらに、 位相変調された光ノルスと位相変調されな 、光パルスを第 2のカルサイト 21に通過 させて、第 1のカルサイト 21による時間遅延をキャンセルさせる。このようにして 2つの クロック光間で干渉を生じさせることで、論理光ゲート動作されたクロック光が得られるThe optical clock extracting unit has the same configuration as that described in the second embodiment, and generates two clock lights having different wavelengths and small phase noise. The PD-SMZ 101 includes a polarization controller 20, a calcite (polarizer) 21, an SOA (semiconductor optical amplifier) 22, an optical phase controller 23, and an optical filter 15. The clock light output from the MLLD 1 passes through the polarization controller 20, undergoes a time delay in the first calcite 21, is separated into two polarization states, and enters the SOA 22. At this time, if the optical pulse of the signal light is adjusted to enter the SOA 22 so that it falls within the delay time, the clock optical pulse that has received the time delay among the two separated clock optical pulses that have entered the SOA 22 Only the phase is modulated. Further, the optical pulse whose phase has been modulated and the optical pulse which has not been phase-modulated are passed through the second calcite 21 to cancel the time delay caused by the first calcite 21. In this way two By generating interference between clock lights, a clock light that has been gated by a logic light can be obtained.
。第 2のカルサイト 21の出力光は、光位相コントロータ 23、偏波コントローラ 20を経て 光フィルタ 15に到達する。 . The output light of the second calcite 21 reaches the optical filter 15 via the optical phase controller 23 and the polarization controller 20.
[0052] このときの正論理、負論理は、偏光コントローラ 20の偏光面で制御される。正論理 で動作させるには、位相変調が生じた場合にのみ、光ゲート動作されたクロック光だ けが偏光コントローラ 20を透過するように、 PD— SMZ101の干渉条件を調整すれば よい。 The positive logic and the negative logic at this time are controlled by the polarization plane of the polarization controller 20. In order to operate with the positive logic, the interference condition of the PD-SMZ 101 may be adjusted so that only clock light that has been optically gated passes through the polarization controller 20 only when phase modulation occurs.
[0053] この場合、信号光とクロック光の同期が揃っていない状態では、遅延時間内に信号 光パルスが入らなくなるため、十分な位相変調がなされず、干渉条件からずれること となり、光ゲートされたクロック光は強い強度変調を受けることとなる。この強度変調信 号を誤差信号として光 PLLを動作させ、クロック抽出動作させると、信号光とクロック 光が同期状態になる条件は、光ゲート動作の最適条件と同じになる。これにより、光 P LLによるクロック抽出と光信号処理の最適な動作とを同時に実行することが可能に なる。 2段目以降では、この光ゲートされた光信号と、実施例 2で示した波長の異なる クロック光とを、もうひとつの PD— SMZ102に入射させている。これによつて、光 3R中 継器の信号処理を完成させることができる。  In this case, if the synchronization of the signal light and the clock light is not synchronized, no signal light pulse will enter within the delay time, so that sufficient phase modulation will not be performed, which will deviate from the interference condition, and will be optically gated. The clock light undergoes strong intensity modulation. When the optical PLL is operated using this intensity modulated signal as an error signal and a clock extraction operation is performed, the conditions under which the signal light and the clock light are synchronized are the same as the optimal conditions for the optical gate operation. This makes it possible to simultaneously execute clock extraction by the optical PLL and optimal operation of optical signal processing. In the second and subsequent stages, the optical gated optical signal and the clock light having different wavelengths shown in the second embodiment are made incident on another PD-SMZ 102. Thus, the signal processing of the optical 3R repeater can be completed.
[0054] 図 10では、光ゲート動作された信号光を誤差信号として利用した例を記述している 力 誤差信号としては、 SOAから直接出力される信号光や、あるいは 2つに分離され たクロック光を用いてもよぐそのようにしても同様の処理を実行させることができる。  FIG. 10 illustrates an example in which the signal light that has been optically gated is used as an error signal. As the force error signal, the signal light directly output from the SOA or the clock separated into two is used. The same processing can be executed with or without using light.
[0055] [実施例 5: EA変調器を位相比較として用いた光 PLL回路]  [Example 5: Optical PLL circuit using EA modulator as phase comparison]
図 11は、位相比較部(光ミキサ部)に電界吸収型変調器 (EA変調器) 103を用い た構成を示している。 EA変調器 103の代わりに、可飽和吸収変調器を用いることも できる。  FIG. 11 shows a configuration in which an electro-absorption modulator (EA modulator) 103 is used for a phase comparison unit (optical mixer unit). In place of the EA modulator 103, a saturable absorption modulator can be used.
[0056] EA変調器 103には、バイアス T回路 140を介して、逆バイアス電圧が印加されてい る。バイアス T回路 140のもう一方の端子から高速な周波数信号を取り出すことがで きる状態にしておくと、 MLLD1から出力されたクロック光を EA変調器 103に入射さ せた際に、クロック光の周波数成分である電気信号をバイアス T回路 140のその端子 力 取り出すことができる。この状態で、 EA変調器 103に外部信号光を入射すると、 ノ ィァス T回路 140が出力する電気信号に誤差信号が重畳される。この誤差信号の 周波数を低速な演算増幅器などで構成した誤差増幅器 113で増幅すると、高周波 成分は DC成分の信号として現れるので、誤差信号のみを分離して取り出すことがで きる。 DC成分については、低速な受光器 111などで信号光力クロック光を受光し、演 算増幅器など力もなる加算器 112でバランスさせてやれば、キャンセルすることがで きる。このようにして抽出した誤差信号を、ループフィルタ 13を通過させて平滑ィ匕させ 、バイアス T回路 140を介して MLLD1の可飽和吸収領域 3にバイアス源として印加 すれば、位相同期ループが構成されたことにより、信号光とクロック光との同期を取る ことができる。 A reverse bias voltage is applied to EA modulator 103 via bias T circuit 140. If the high-speed frequency signal can be extracted from the other terminal of the bias T circuit 140, the clock light output from the MLLD1 will be input to the EA modulator 103 when the clock light An electric signal as a component can be extracted from the terminal of the bias T circuit 140. In this state, when external signal light enters the EA modulator 103, An error signal is superimposed on the electric signal output from the noise T circuit 140. When the frequency of this error signal is amplified by the error amplifier 113 composed of a low-speed operational amplifier or the like, since the high-frequency component appears as a DC component signal, only the error signal can be separated and extracted. The DC component can be canceled by receiving the signal light power clock light by the low-speed light receiver 111 or the like and balancing the signal light by the adder 112 that also has power such as an operational amplifier. The error signal extracted in this way is passed through the loop filter 13 to be smoothed, and is applied as a bias source to the saturable absorption region 3 of the MLLD 1 via the bias T circuit 140 to form a phase locked loop. As a result, the signal light and the clock light can be synchronized.
[0057] [実施例 6]  Example 6
上述した実施例 1一 5では、 MLLD1へ誤差信号をフィードバックするために、位相 変調効果をもつ可飽和吸収領域へ誤差信号をフィードバックする手法を中心に説明 してきた。位相同期ループを構築する方法としては、可飽和吸収領域へ誤差信号を フィードバックする以外の方法もある。例えば、(1)自己フィードバックのループ長を 誤差信号に応じて変化させる、 (2)自己フィードバックにおける MLLDへの注入光強 度を誤差信号に応じて変調する、 (3) MLLDの利得領域 2に印加する電流を誤差信 号に応じて変調する、(4) MLLD内に新たに設けられた共振器長調整領域 27 (図 1 2参照)に対する電圧印加により PLL制御する、などの方法を用いることによって、多 段構成の PLL制御により MLLD1の発振周波数を変化させることができる。  In the first to fifth embodiments described above, the method of feeding back the error signal to the saturable absorption region having the phase modulation effect in order to feed back the error signal to the MLLD 1 has been mainly described. As a method of constructing a phase locked loop, there is a method other than feeding back the error signal to the saturable absorption region. For example, (1) the loop length of self-feedback is changed according to the error signal, (2) the light intensity injected into the MLLD in self-feedback is modulated according to the error signal, (3) the gain region 2 of the MLLD Modulation of the applied current according to the error signal, (4) PLL control by applying voltage to the cavity length adjustment area 27 (see Fig. 12) newly provided in the MLLD, etc. Thus, the oscillation frequency of the MLLD1 can be changed by the multi-stage PLL control.
[0058] MLLD1の自己フィードバックにおいては、 MLLD1が光パルスを発振するタイミン グと、光導波路を周回した光パルスを再び MLLDに注入するタイミングとが一致する ように、時間遅延器 7などでループ長を変化させると、周回ループ長で決まる周波数 の整数倍のある周波数に、 MLLD1の発振周波数は数 100MHzオーダの範囲で引 きずられる。これは、 MLLD1が自励光パルス発振する上で可飽和吸収領域 3を吸 収飽和する共振器内の光パルス強度が重要な役割を果たして 、るが、光パルスを注 入したことにより、注入された光パルスも MLLDの自励光パルス発振に大きな役割を 果たすようになる力もである。このため、自己フィードバックのループ長を変化させるこ とで、 PLL制御に必要な周波数変調を実現できる。 [0059] MLLD1の発振周波数は、実効的な共振器長で制御することができる。実効的な 共振器長は、 MLLD 1を構成する半導体中のキャリア密度によって光の屈折率を変 化させることで可能である。つまり、ループ内の光増幅器 8や光減衰器 9で光注入さ れる光パルス強度や、利得領域 2の注入電流を変化させることで、半導体中のキヤリ ァ密度を制御し、周波数を変化させることが可能である。 [0058] In the self-feedback of the MLLD1, the loop length is set by the time delay unit 7 or the like so that the timing at which the MLLD1 oscillates an optical pulse and the timing at which the optical pulse circulating around the optical waveguide is injected into the MLLD again. When the frequency is changed, the oscillation frequency of the MLLD1 is reduced to a frequency that is an integer multiple of the frequency determined by the loop length in the range of several hundred MHz. This is because the light pulse intensity in the resonator that absorbs and saturates the saturable absorption region 3 plays an important role in the self-excited light pulse oscillation of the MLLD 1, but the injection of the light pulse causes the injection. The generated optical pulse also plays a major role in the self-excited optical pulse oscillation of the MLLD. Therefore, the frequency modulation required for PLL control can be realized by changing the loop length of the self-feedback. [0059] The oscillation frequency of MLLD1 can be controlled by the effective resonator length. An effective resonator length can be obtained by changing the refractive index of light according to the carrier density in the semiconductor constituting the MLLD 1. In other words, by changing the optical pulse intensity injected by the optical amplifier 8 and the optical attenuator 9 in the loop and the injection current in the gain region 2, the carrier density in the semiconductor can be controlled to change the frequency. Is possible.
[0060] また、新たに DFB (分布フィードバック)構造や DBR (分布型ブラッグ反射器)のよう なグレーティングを備える導波路や受動導波路による共振器長制御領域 27を付加し た MLLDを構築した場合も、その共振器長制御領域 27での電圧制御によって MLL D内部の屈折率を変化させ、 MLLDの発振周波数を制御することができる。  When an MLLD is newly constructed in which a waveguide having a grating such as a DFB (distributed feedback) structure or a DBR (distributed Bragg reflector) or a cavity length control region 27 of a passive waveguide is added. Also, by controlling the voltage in the resonator length control region 27, the refractive index inside the MLD can be changed, and the oscillation frequency of the MLLD can be controlled.
[0061] 本発明者の実験によれば、制御方法ごとの周波数可変帯域幅の比較をすると、 可飽和吸収領域電圧制御 <光強度制御 <ループ長制御≤利得領域電流制御 < 共振器長調整領域電圧制御  [0061] According to the experiment of the present inventor, when comparing the frequency variable bandwidth for each control method, it is found that saturable absorption region voltage control <light intensity control <loop length control ≤gain region current control <resonator length adjustment region Voltage control
であった。  Met.
[0062] 図 12に示すように、このような周波数可変範囲を有効に制御できるループフィルタ 13、 25、 26、 28、 29を設計し、 MLLD 1に対して多段で PLL制御を実行することで 、広範囲な周波数同期範囲ときめ細かい同期確立とを実現することができる。  As shown in FIG. 12, by designing loop filters 13, 25, 26, 28, and 29 that can effectively control such a frequency variable range, by performing PLL control in multiple stages for MLLD 1, It is possible to realize a wide frequency synchronization range and fine synchronization establishment.

Claims

請求の範囲 The scope of the claims
[1] 入射してくる信号光の基準周波数と同期した発振周波数を有する光パルスを得る 光クロック抽出装置であって、  [1] An optical clock extraction device for obtaining an optical pulse having an oscillation frequency synchronized with a reference frequency of an incident signal light,
位相変調効果を持つ可飽和吸収領域と利得領域とを備え、前記可飽和吸収領域 に印加する制御電圧に基づく位相変調効果により、光パルスを発生する発振周波数 を変化させることができるモード同期半導体レーザと、  A mode-locked semiconductor laser having a saturable absorption region having a phase modulation effect and a gain region, and capable of changing an oscillation frequency for generating an optical pulse by a phase modulation effect based on a control voltage applied to the saturable absorption region. When,
前記信号光の基準周波数と前記モード同期半導体レーザの出力光パルスの発振 周波数の同期ずれを光学的に同期検波して位相誤差信号を得る手段と、  Means for obtaining a phase error signal by optically synchronously detecting a synchronization shift between a reference frequency of the signal light and an oscillation frequency of an output light pulse of the mode-locked semiconductor laser;
位相同期ループを形成するように、前記位相誤差信号を、前記可飽和吸収領域に 負帰還させる手段と、  Means for negatively feeding back the phase error signal to the saturable absorption region so as to form a phase locked loop;
を有し、  Has,
前記モード同期半導体レーザの出力光パルスと前記信号光とを同期させる光クロッ ク抽出装置。  An optical clock extraction device for synchronizing an output light pulse of the mode-locked semiconductor laser with the signal light.
[2] 入射してくる信号光の基準周波数と同期した発振周波数を有する光パルスを得る 光クロック抽出装置であって、  [2] An optical clock extraction device for obtaining an optical pulse having an oscillation frequency synchronized with a reference frequency of an incident signal light,
位相変調効果を持つ可飽和吸収領域と利得領域とを備え、前記可飽和吸収領域 に印加する制御電圧に基づく位相変調効果により、光パルスを発生する発振周波数 を変化させることができるモード同期半導体レーザと、  A mode-locked semiconductor laser having a saturable absorption region having a phase modulation effect and a gain region, and capable of changing an oscillation frequency for generating an optical pulse by a phase modulation effect based on a control voltage applied to the saturable absorption region. When,
前記モード同期半導体レーザ力 の一方の出力端面から出力する光パルスの少な くとも一部を、前記モード同期半導体レーザの他方の端面より直接光注入する光学 的な自己フィードバックループと、  An optical self-feedback loop for directly injecting at least a part of an optical pulse output from one output end face of the mode-locked semiconductor laser from the other end face of the mode-locked semiconductor laser;
前記モード同期半導体レーザ力 出力される出力光パルスの発振周波数と前記信 号光の基準周波数との同期ずれを光学的に同期検波して位相誤差信号を得る手段 と、  Means for obtaining a phase error signal by optically synchronously detecting a synchronization shift between the oscillation frequency of the output light pulse output from the mode-locked semiconductor laser and the reference frequency of the signal light;
位相同期ループを形成するように、前記位相誤差信号を、前記可飽和吸収領域に 負帰還させる手段と、  Means for negatively feeding back the phase error signal to the saturable absorption region so as to form a phase locked loop;
を有し、  Has,
前記モード同期半導体レーザの出力光パルスと前記信号光とを同期させる光クロッ ク抽出装置。 An optical clock for synchronizing the output light pulse of the mode-locked semiconductor laser with the signal light. Extraction equipment.
[3] 相互に電極分離された可飽和吸収領域と利得領域とを備え、光パルスを発生する 発振周波数を制御電圧によって変化させることができるモード同期半導体レーザと、 前記モード同期半導体レーザの繰り返し周波数に近い周波数を基準信号として入 射信号光を同期させる際に、前記入射信号光と前記光パルスの位相誤差を光学的 に検知し、同期ずれ信号を光学的に発生する光ミキサ部と、  [3] A mode-locked semiconductor laser including a saturable absorption region and a gain region separated from each other, and capable of changing an oscillation frequency for generating an optical pulse by a control voltage; and a repetition frequency of the mode-locked semiconductor laser. An optical mixer unit that optically detects a phase error between the incident signal light and the optical pulse and optically generates a synchronization shift signal when synchronizing the incident signal light with a frequency close to the reference signal.
前記同期ずれ信号を、電圧信号である位相誤差信号に変換する受光部と、 前記位相誤差信号を負帰還するためのループフィルタと、  A light receiving unit that converts the synchronization error signal into a phase error signal that is a voltage signal; and a loop filter for negatively feeding back the phase error signal.
前記ループフィルタを介して負帰還される前記位相誤差信号に基づき、前記入射 信号光の繰り返し周波数及び位相に対する前記モード同期半導体レーザからの出 力光パルスの繰り返し周波数及び位相の同期ずれが最小となるように、前記モード 同期半導体レーザの電極に印加される電圧を制御する位相同期ループと、  Based on the phase error signal that is negatively fed back through the loop filter, the synchronization deviation of the repetition frequency and phase of the output light pulse from the mode-locked semiconductor laser with respect to the repetition frequency and phase of the incident signal light is minimized. A phase-locked loop for controlling the voltage applied to the electrodes of the mode-locked semiconductor laser,
を有する光クロック抽出装置。  An optical clock extracting device having:
[4] 相互に電極分離された可飽和吸収領域と利得領域とを備え、光パルスを発生する 発振周波数を制御電圧によって変化させることができ、第 1の波長の光パルスを発振 する第 1のモード同期半導体レーザと、 [4] A saturable absorption region and a gain region separated from each other by electrodes, and an oscillation frequency for generating an optical pulse can be changed by a control voltage, and a first wavelength for oscillating an optical pulse of a first wavelength is provided. A mode-locked semiconductor laser,
相互に電極分離された可飽和吸収領域と利得領域とを備え、前記第 1のモード同 期半導体レーザとは異なる第 2の波長の光パルスを発振する第 2のモード同期半導 体レーザと、  A second mode-locked semiconductor laser including a saturable absorption region and a gain region separated from each other, and oscillating an optical pulse having a second wavelength different from that of the first mode-synchronized semiconductor laser;
前記第 1のモード同期半導体レーザの一方の出力端面力 出力する光パルスの少 なくとも一部を前記第 2のモード同期半導体レーザの一方の端面より直接光注入し、 かつ、前記第 2のモード同期半導体レーザの他方の端面より出力される光パルスを、 前記第 1のモード同期半導体レーザの他方の端面より直接光注入する光学的な自 己フィードバックループと、  At least one output end face force of the first mode-locked semiconductor laser at least a part of the light pulse to be output is directly injected from one end face of the second mode-locked semiconductor laser; and An optical self-feedback loop for directly injecting an optical pulse output from the other end face of the synchronous semiconductor laser from the other end face of the first mode-locked semiconductor laser;
前記自己フィードバックループ内に設けられた光遅延器と、  An optical delay unit provided in the self-feedback loop,
前記第 1のモード同期半導体レーザの繰り返し周波数に近い周波数を基準信号と して入射信号光を同期させる際に、信号光と光パルスの位相誤差を光学的に検知し 、同期ずれ信号を光学的に発生する光ミキサ部と、 前記同期ずれ信号を電圧信号である位相誤差信号に変換する受光部と、 前記位相誤差信号を負帰還するためのループフィルタと、 When synchronizing the incident signal light with a frequency close to the repetition frequency of the first mode-locked semiconductor laser as a reference signal, optically detects the phase error between the signal light and the light pulse, and optically detects the synchronization shift signal. Optical mixer part generated in A light receiving unit that converts the synchronization error signal into a phase error signal that is a voltage signal; and a loop filter for negatively feeding back the phase error signal.
前記ループフィルタを介して負帰還される前記位相誤差信号に基づき、前記入射 信号光の繰り返し周波数及び位相に対する前記第 1のモード同期半導体レーザから の出力光パルスの繰り返し周波数及び位相の同期ずれが最小となるように、前記第 Based on the phase error signal that is negatively fed back through the loop filter, the synchronization deviation of the repetition frequency and phase of the output optical pulse from the first mode-locked semiconductor laser with respect to the repetition frequency and phase of the incident signal light is minimized. So that
1のモード同期半導体レーザの電極に印加される電圧を制御する位相同期ループと を有する光クロック抽出装置。 An optical clock extraction device comprising: a phase-locked loop that controls a voltage applied to an electrode of the mode-locked semiconductor laser.
[5] 相互に電極分離された可飽和吸収領域と利得領域とを備え、光パルスを発生する 発振周波数を制御電圧によって変化させることができ、第 1の波長の光パルスを発振 するモード同期半導体レーザと、  [5] A mode-locked semiconductor that has a saturable absorption region and a gain region separated from each other by electrodes and can change the oscillation frequency for generating an optical pulse by a control voltage, and oscillates an optical pulse of a first wavelength. A laser,
前記第 1の波長とは異なる第 2の波長の連続光を発振する光源と、  A light source that oscillates continuous light having a second wavelength different from the first wavelength,
前記第 1の波長の光パルスを、前記第 2の波長の連続光に転写して第 2の波長の パルス光に変換する波長変換器と、  A wavelength converter that transfers the light pulse of the first wavelength to continuous light of the second wavelength and converts the light pulse into light of a second wavelength;
前記波長変換器で変換された第 2の波長のパルス光を、前記第 1のモード同期半 導体レーザの他方の端面より直接光注入する光学的な自己フィードバックループと、 前記自己フィードバックループ内に設けられた光遅延器と、  An optical self-feedback loop for directly injecting the second wavelength pulsed light converted by the wavelength converter from the other end face of the first mode-locked semiconductor laser; and Optical delay device,
前記モード同期半導体レーザの繰り返し周波数に近い周波数を基準信号として入 射信号光を同期させる際に、前記入射信号光と第 1の波長の光パルスの位相誤差を 光学的に検知し、同期ずれ信号を光学的に発生する光ミキサ部と、  When synchronizing the incident signal light with a frequency close to the repetition frequency of the mode-locked semiconductor laser as a reference signal, the phase error between the incident signal light and the light pulse of the first wavelength is optically detected, and the synchronization error signal is detected. An optical mixer for optically generating
前記同期ずれ信号を電圧信号である位相誤差信号に変換する受光部と、 前記位相誤差信号を負帰還するためのループフィルタと、  A light receiving unit that converts the synchronization error signal into a phase error signal that is a voltage signal; and a loop filter for negatively feeding back the phase error signal.
前記ループフィルタを介して負帰還される前記位相誤差信号に基づき、前記入射 信号光の繰り返し周波数及び位相に対する前記モード同期半導体レーザからの出 力光パルスの繰り返し周波数及び位相の同期ずれが最小となるように、前記モード 同期半導体レーザの電極に印加される電圧を制御する位相同期ループと、  Based on the phase error signal that is negatively fed back through the loop filter, the synchronization deviation of the repetition frequency and phase of the output light pulse from the mode-locked semiconductor laser with respect to the repetition frequency and phase of the incident signal light is minimized. A phase-locked loop for controlling the voltage applied to the electrodes of the mode-locked semiconductor laser,
を有する光クロック抽出装置。  An optical clock extracting device having:
[6] 前記モード同期半導体レーザからの光パルスが入射し、非線形効果により前記入 射した光パルスのスペクトル帯域を広げる光ファイバと、前記光ファイバから出力され る光パルスのスペクトル帯域の一部を切り取って前記モード同期半導体レーザとは 異なる波長の光パルスを発生させるフィルタと、を有し、光パルスの時間幅を圧縮可 能な波長変翻を備える、請求項 1乃至 3のいずれかに 1項に記載の光クロック抽出 装置。 [6] An optical pulse from the mode-locked semiconductor laser is incident, and the input is caused by a nonlinear effect. An optical fiber that broadens the spectrum band of the emitted light pulse, and a filter that cuts out a part of the spectrum band of the light pulse output from the optical fiber and generates a light pulse having a wavelength different from that of the mode-locked semiconductor laser. 4. The optical clock extracting device according to claim 1, wherein the optical clock extracting device has a wavelength conversion capable of compressing a time width of the optical pulse.
[7] 前記モード同期半導体レーザ力 の光パルスのスペクトル帯域の一部を切り取る光 フィルタを有し、前記モード同期半導体レーザと異なる波長の光パルスを発生する波 長変 を備える、請求項 1乃至 3のいずれか 1項に記載の光クロック抽出装置。  7. The mode-locked semiconductor laser according to claim 1, further comprising an optical filter that cuts off a part of a spectrum band of the optical pulse of the mode-locked semiconductor laser, and having a wavelength variation that generates an optical pulse having a wavelength different from that of the mode-locked semiconductor laser. 4. The optical clock extraction device according to any one of 3.
[8] 前記光ミキサ部は光信号処理機能を有する、請求項 3乃至 5のいずれか 1項に記 載の光クロック抽出方法。  [8] The optical clock extraction method according to any one of claims 3 to 5, wherein the optical mixer section has an optical signal processing function.
[9] 前記光信号処理機能は、光 3R再生機能である、請求項 8に記載の光クロック抽出 方法。  [9] The optical clock extracting method according to claim 8, wherein the optical signal processing function is an optical 3R reproducing function.
[10] 位相変調効果を持つ可飽和吸収領域と利得領域とを備え、前記可飽和吸収領域 に印加する制御電圧に基づく位相変調効果により、光パルスを発生する発振周波数 を変化させることができるモード同期半導体レーザと、  [10] A mode in which a saturable absorption region having a phase modulation effect and a gain region are provided, and the oscillation frequency for generating an optical pulse can be changed by the phase modulation effect based on the control voltage applied to the saturable absorption region. A synchronous semiconductor laser,
光信号処理に用いられ、光信号を吸収して光電流を発生することが可能な光吸収 型変調器と、  An optical absorption type modulator used for optical signal processing and capable of absorbing an optical signal to generate a photocurrent;
前記モード同期半導体レーザ力 の一方の出力端面から出力する光パルスの少な くとも一部を、前記モード同期半導体レーザの他方の端面より直接光注入する光学 的な自己フィードバックループと、  An optical self-feedback loop for directly injecting at least a part of an optical pulse output from one output end face of the mode-locked semiconductor laser from the other end face of the mode-locked semiconductor laser;
前記モード同期半導体レーザ力も出力される出力光パルスの発振周波数を、入射 してくる信号光の基準周波数と同期させる際に、前記光吸収型変調器に前記出力光 パルスと前記信号光とを入射させ、光学的に同期ずれを光電流として検波して位相 誤差信号を得る手段と、  When synchronizing the oscillation frequency of the output light pulse from which the mode-locked semiconductor laser power is also output with the reference frequency of the incoming signal light, the output light pulse and the signal light enter the light absorption modulator. Means for optically detecting the out-of-synchronization as a photocurrent to obtain a phase error signal;
位相同期ループを形成するように、前記位相誤差信号を、前記可飽和吸収領域に 負帰還して、前記出力光パルスと前記信号光とを同期させる手段と、  Means for negatively feeding back the phase error signal to the saturable absorption region so as to form a phase locked loop, thereby synchronizing the output light pulse with the signal light;
を有する、光クロック抽出装置。  An optical clock extraction device, comprising:
[11] 前記光吸収型変調器は、光 3R再生機能を有する、請求項 10に記載の光クロック 抽出方法。 11. The optical clock according to claim 10, wherein the light absorption type modulator has an optical 3R reproducing function. Extraction method.
[12] 相互に電極分離された可飽和吸収領域、利得領域及び共振器調整領域を備え、 前記各領域の電極に印加する電圧もしくは電流を制御することにより、光パルスを発 生する発振周波数を変化させることができるモード同期半導体レーザと、  [12] A saturable absorption region, a gain region, and a resonator adjustment region separated from each other by electrodes are provided, and by controlling a voltage or a current applied to the electrodes in each of the regions, an oscillation frequency for generating an optical pulse is reduced. A mode-locked semiconductor laser that can be varied;
前記モード同期半導体レーザ力 の一方の出力端面から出力する光パルスの少な くとも一部を、前記モード同期半導体レーザの他方の端面より直接光注入する光学 的な自己フィードバックループと、  An optical self-feedback loop for directly injecting at least a part of an optical pulse output from one output end face of the mode-locked semiconductor laser from the other end face of the mode-locked semiconductor laser;
前記自己フィードバックループ内に設けられたパルス遅延器と、  A pulse delayer provided in the self-feedback loop,
前記自己フィードバックループ内に設けられた光増幅器と、  An optical amplifier provided in the self-feedback loop;
前記自己フィードバックループ内に設けられた光減衰器と、  An optical attenuator provided in the self-feedback loop,
前記モード同期半導体レーザ力も出力される出力光パルスの発振周波数を、入射 してくる信号光の基準周波数と同期させる際に、  When synchronizing the oscillation frequency of the output light pulse from which the mode-locked semiconductor laser power is also output with the reference frequency of the incident signal light,
前記モード同期半導体レーザ力 出力される出力光パルスの発振周波数と入射す る信号光の基準周波数との同期ずれを光学的に同期検波して位相誤差信号を得る 手段と、  Means for optically synchronously detecting a synchronization shift between the oscillation frequency of the output light pulse output from the mode-locked semiconductor laser and the reference frequency of the incident signal light to obtain a phase error signal;
位相同期ループ制御が行われるように、前記位相誤差信号を、前記利得領域、前 記共振器調整領域、前記パルス遅延器、前記光増幅器及び前記光減衰器の少なく とも 1つに負帰還させて前記出力光パルスと前記信号光の同期させる手段と、 を有する光クロック抽出装置。  The phase error signal is negatively fed back to at least one of the gain region, the resonator adjustment region, the pulse delay device, the optical amplifier, and the optical attenuator so that phase locked loop control is performed. Means for synchronizing the output light pulse with the signal light.
[13] 複数の位相同期ループを有する、請求項 12に記載の光クロック抽出装置。 13. The optical clock extraction device according to claim 12, comprising a plurality of phase locked loops.
[14] 位相変調効果を持つ可飽和吸収領域と利得領域とを備え、前記可飽和吸収領域 に印加する制御電圧による位相変調効果によって、光パルスを発生する発振周波数 を変化させることができるモード同期半導体レーザからの出力光パルスの発振周波 数を、入射してくる信号光の基準周波数と同期させる光クロック抽出方法であって、 前記信号光の基準周波数と前記出力光パルスの発振周波数の同期ずれを光学的 に同期検波して位相誤差信号を得る段階と、 [14] A mode-locking system including a saturable absorption region having a phase modulation effect and a gain region, wherein the oscillation frequency for generating an optical pulse can be changed by the phase modulation effect by a control voltage applied to the saturable absorption region. An optical clock extraction method for synchronizing an oscillation frequency of an output light pulse from a semiconductor laser with a reference frequency of an incident signal light, comprising: a synchronization shift between the reference frequency of the signal light and the oscillation frequency of the output light pulse. Obtaining a phase error signal by optically synchronous detection of
前記位相誤差信号を、前記位相変調効果をもつ領域に負帰還して位相同期ルー プを形成し、前記光パルスと入射信号光を同期させる段階と、 を有する、光クロック抽出方法。 Negatively feeding back the phase error signal to the region having the phase modulation effect to form a phase synchronization loop, and synchronizing the light pulse with an incident signal light; An optical clock extraction method, comprising:
[15] 位相変調効果を持つ可飽和吸収領域と利得領域とを備え、前記可飽和吸収領域 に印加する制御電圧による位相変調効果によって、光パルスを発生する発振周波数 を変化させることができるモード同期半導体レーザからの出力光パルスの発振周波 数を、入射してくる信号光の基準周波数と同期させる光クロック抽出方法であって、 前記モード同期半導体レーザの一方の出力端面力 出力する光パルスの少なくと も一部を、前記モード同期半導体レーザの他方の端面より直接光注入する段階と、 前記モード同期半導体レーザ力 の前記出力光パルスの発振周波数を前記信号 光の基準周波数と同期させる際に、前記信号光の基準周波数と前記出力光パルス の発振周波数の同期ずれを光学的に同期検波して位相誤差信号を得る段階と、 前記位相誤差信号を、前記可飽和吸収領域に負帰還して位相同期ループを形成 し、前記出力光パルスと前記信号光とを同期させる段階と、 [15] A mode lock that includes a saturable absorption region having a phase modulation effect and a gain region, and is capable of changing an oscillation frequency for generating an optical pulse by a phase modulation effect by a control voltage applied to the saturable absorption region. An optical clock extraction method for synchronizing an oscillation frequency of an output light pulse from a semiconductor laser with a reference frequency of an incident signal light, comprising: Partially injecting light directly from the other end face of the mode-locked semiconductor laser, and synchronizing the oscillation frequency of the output light pulse of the mode-locked semiconductor laser with the reference frequency of the signal light. Obtaining a phase error signal by optically synchronously detecting a synchronization shift between a reference frequency of the signal light and an oscillation frequency of the output light pulse; Negatively feeding back the error signal to the saturable absorption region to form a phase locked loop, and synchronizing the output light pulse with the signal light;
を有する光クロック抽出方法。  An optical clock extraction method comprising:
[16] 前記同期ずれを光学的に同期検波する際に、同時に、光信号処理を実行する、請 求項 14または 15に記載の光クロック抽出方法。 16. The optical clock extraction method according to claim 14, wherein an optical signal processing is performed simultaneously with the optical synchronous detection of the synchronization shift.
PCT/JP2005/003292 2004-02-27 2005-02-28 Optical clock extracting device and method WO2005083502A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006510504A JP4807514B2 (en) 2004-02-27 2005-02-28 Optical clock extraction apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-052912 2004-02-27
JP2004052912 2004-02-27

Publications (1)

Publication Number Publication Date
WO2005083502A1 true WO2005083502A1 (en) 2005-09-09

Family

ID=34908719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003292 WO2005083502A1 (en) 2004-02-27 2005-02-28 Optical clock extracting device and method

Country Status (2)

Country Link
JP (1) JP4807514B2 (en)
WO (1) WO2005083502A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008225480A (en) * 2007-03-15 2008-09-25 Furukawa Electric North America Inc Enhanced continuum generation in nonlinear bulk optic material
JP2009139491A (en) * 2007-12-04 2009-06-25 Anritsu Corp Light signal generator
JP2010010315A (en) * 2008-06-26 2010-01-14 Oki Electric Ind Co Ltd Method of driving mode-locked semiconductor laser, and mode-locked semiconductor laser apparatus
JP2010147533A (en) * 2008-12-16 2010-07-01 Oki Electric Ind Co Ltd Method and apparatus for generating optical pulse sequence
JP2011204914A (en) * 2010-03-25 2011-10-13 Sony Corp Optical oscillator and recording device
US9014575B2 (en) 2011-01-31 2015-04-21 Fujitsu Limited Sampling clock synchronizing apparatus, digital coherent receiving apparatus, and sampling clock synchronizing method
JP2019208151A (en) * 2018-05-30 2019-12-05 日本電信電話株式会社 Fiber optic link and relay node
JP2021532409A (en) * 2018-07-25 2021-11-25 シナジー マイクロウェーブ コーポレーションSynergy Microwave Corporation Photoelectron oscillator using monolithically integrated multiple quantum well laser and phase modulator
CN115225246A (en) * 2022-07-11 2022-10-21 北京邮电大学 Phase modulation bidirectional time synchronization device, method and system
CN117673882A (en) * 2024-01-31 2024-03-08 北京中科思远光电科技有限公司 Device for improving stability of amplified laser system and control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07287264A (en) * 1994-02-23 1995-10-31 Nippon Telegr & Teleph Corp <Ntt> Optical correlation detecting circuit and optical clock phase-locked loop circuit
JPH08340154A (en) * 1995-06-09 1996-12-24 Nec Corp Generation of optical pulse and device
JP2003167281A (en) * 2001-12-04 2003-06-13 Nippon Telegr & Teleph Corp <Ntt> Phase locked loop circuit for optical clock

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07287264A (en) * 1994-02-23 1995-10-31 Nippon Telegr & Teleph Corp <Ntt> Optical correlation detecting circuit and optical clock phase-locked loop circuit
JPH08340154A (en) * 1995-06-09 1996-12-24 Nec Corp Generation of optical pulse and device
JP2003167281A (en) * 2001-12-04 2003-06-13 Nippon Telegr & Teleph Corp <Ntt> Phase locked loop circuit for optical clock

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GEORGES J. ET AL.: "Stable picosecond pulse generation at 46GHz by modelocking of a semiconductor laser operating in an optoelectronic phaselocked loop.", ELECTRONICS LETTERS., vol. 30, no. 1, 6 January 1994 (1994-01-06), pages 69 - 71, XP006000048 *
HASHIMOTO Y.ET AL.: "Scalable Hikari Network ni Muketa Zen Handotai Base no Hikari 3R Chukeiki.", NEN THE INSTITUTE OF ELECTRONICS. INFORMATION AND COMMUNICATION ENGINEERS SOGO TAIKAI., 8 March 2004 (2004-03-08), pages 234, XP002991298 *
YAMAMOTO T. ET AL.: "40GHz optical clock extraction from 160Gbit/s data signals using PLL-based clock recovery.", 2002, pages 86 - 87, XP010617644 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008225480A (en) * 2007-03-15 2008-09-25 Furukawa Electric North America Inc Enhanced continuum generation in nonlinear bulk optic material
JP2009139491A (en) * 2007-12-04 2009-06-25 Anritsu Corp Light signal generator
JP2010010315A (en) * 2008-06-26 2010-01-14 Oki Electric Ind Co Ltd Method of driving mode-locked semiconductor laser, and mode-locked semiconductor laser apparatus
JP2010147533A (en) * 2008-12-16 2010-07-01 Oki Electric Ind Co Ltd Method and apparatus for generating optical pulse sequence
JP2011204914A (en) * 2010-03-25 2011-10-13 Sony Corp Optical oscillator and recording device
US9014575B2 (en) 2011-01-31 2015-04-21 Fujitsu Limited Sampling clock synchronizing apparatus, digital coherent receiving apparatus, and sampling clock synchronizing method
JP2019208151A (en) * 2018-05-30 2019-12-05 日本電信電話株式会社 Fiber optic link and relay node
JP7007668B2 (en) 2018-05-30 2022-01-24 日本電信電話株式会社 Fiber optic links and relay nodes
JP2021532409A (en) * 2018-07-25 2021-11-25 シナジー マイクロウェーブ コーポレーションSynergy Microwave Corporation Photoelectron oscillator using monolithically integrated multiple quantum well laser and phase modulator
CN115225246A (en) * 2022-07-11 2022-10-21 北京邮电大学 Phase modulation bidirectional time synchronization device, method and system
CN115225246B (en) * 2022-07-11 2023-12-01 北京邮电大学 Phase modulation bidirectional time synchronization device, method and system
CN117673882A (en) * 2024-01-31 2024-03-08 北京中科思远光电科技有限公司 Device for improving stability of amplified laser system and control method
CN117673882B (en) * 2024-01-31 2024-04-16 北京中科思远光电科技有限公司 Device for improving stability of amplified laser system and control method

Also Published As

Publication number Publication date
JP4807514B2 (en) 2011-11-02
JPWO2005083502A1 (en) 2007-11-22

Similar Documents

Publication Publication Date Title
JP4807514B2 (en) Optical clock extraction apparatus and method
Tsuchida et al. 40-Gb/s optical clock recovery using an injection-locked optoelectronic oscillator
Saruwatari All-optical signal processing for terabit/second optical transmission
Lasri et al. Ultralow timing jitter 40-Gb/s clock recovery using a self-starting optoelectronic oscillator
Tsuchida Simultaneous prescaled clock recovery and serial-to-parallel conversion of data signals using a polarization modulator-based optoelectronic oscillator
von Lerber et al. Optical clock recovery methods: Review
US5987040A (en) Optical and gate
US6701049B1 (en) Optical clock recovery device using non-linear optical waveguides
Salem et al. Broad-band optical clock recovery system using two-photon absorption
Kim et al. 180-GHz clock recovery using a multisection gain-coupled distributed feedback laser
Duan Study of phase-noise properties and timing jitter of 40-GHz all-optical clock recovery using self-pulsating semiconductor lasers
Jiang et al. Synchronization of passively mode-locked erbium-doped fiber lasers and its application to optical communication networks
Hu et al. 40-Gb/s optical clock recovery using a compact traveling-wave electroabsorption modulator-based ring oscillator
Tsuchida 160-Gb/s optical clock recovery using a regeneratively mode-locked laser diode
Arahira et al. Generation of synchronized subterahertz optical pulse trains by repetition-frequency multiplication of a subharmonic synchronous mode-locked semiconductor laser diode using fiber dispersion
Hu et al. 40-Gb/s optical packet clock recovery with simultaneous reshaping using a traveling-wave electroabsorption modulator-based ring oscillator
Parra-Cetina et al. Subharmonic all-optical clock recovery of up to 320 Gb/s signal using a quantum dash Fabry–Perot mode-locked laser
Tsuchida Subharmonic optoelectronic oscillator
JP2007124026A (en) Method and apparatus for extracting optical clock signal
Huo et al. 100-GHz wavelength-tunable all-optical clock recovery with Fabry-Perot filter and semiconductor optical amplifier
Potì et al. Ultrafast optical clock recovery: towards a system perspective
Cartledge et al. All-optical clock recovery using a quantum-dash Fabry-Perot laser
Tsuchida 40-GHz subharmonic optical clock recovery using an injection-locked optoelectronic oscillator
Schreieck et al. All-optical clock extraction at 160 Gbit/s with monolithic mode-locked laser diodes
Mao et al. Ultrafast wavelength and polarization insensitive all-optical clock recovery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510504

Country of ref document: JP

122 Ep: pct application non-entry in european phase