WO2005083074A1 - 腫瘍抗原ペプチド - Google Patents

腫瘍抗原ペプチド Download PDF

Info

Publication number
WO2005083074A1
WO2005083074A1 PCT/JP2005/003399 JP2005003399W WO2005083074A1 WO 2005083074 A1 WO2005083074 A1 WO 2005083074A1 JP 2005003399 W JP2005003399 W JP 2005003399W WO 2005083074 A1 WO2005083074 A1 WO 2005083074A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
hla
cells
tumor antigen
derived
Prior art date
Application number
PCT/JP2005/003399
Other languages
English (en)
French (fr)
Inventor
Shuichi Kaneko
Eishiro Mizukoshi
Yasunari Nakamoto
Hirokazu Tsuji
Original Assignee
Kanazawa University Technology Licensing Organization Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University Technology Licensing Organization Ltd. filed Critical Kanazawa University Technology Licensing Organization Ltd.
Priority to JP2006510525A priority Critical patent/JPWO2005083074A1/ja
Publication of WO2005083074A1 publication Critical patent/WO2005083074A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4615Dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/462Cellular immunotherapy characterized by the effect or the function of the cells
    • A61K39/4622Antigen presenting cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464454Enzymes
    • A61K39/464457Telomerase or [telomerase reverse transcriptase [TERT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/46448Cancer antigens from embryonic or fetal origin
    • A61K39/464481Alpha-feto protein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • C12N5/12Fused cells, e.g. hybridomas
    • C12N5/16Animal cells

Definitions

  • the present invention relates to a novel peptide useful as a tumor antigen peptide. More specifically, the present invention relates to a novel tumor antigen peptide restricted to HLA-A24, and a peptide vaccine, a DC vaccine, an antibody, and a cytotoxic T cell using the same.
  • Immunotherapy is the fourth treatment for cancer after surgery, chemotherapy, and radiation therapy.
  • cancer immunotherapy There are various methods for cancer immunotherapy, such as cytodynamic therapy, antibody therapy, cell therapy, peptide vaccine therapy, and gene therapy, but few of them have reached clinical applications due to safety and efficacy issues.
  • Peptide vaccine therapy induces both cell-mediated immunity and humoral immunity by administering a tumor antigen or its epitob portion together with an adjuvant, and its clinical application in many countries due to its simplicity and safety. Is underway. Rosenberg et al. Produced a synthetic peptide with enhanced HLA-A2 binding based on the structure of tumor-associated antigens and administered it to patients with melanoma. have reported (Rosenberg SA et al "immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma Nature Medicine, (1998), 4 (3):..
  • the site has a list of peptide vaccines currently undergoing clinical trials.
  • the target is sarcoma, leukemia, melanoma, myeloma, and a variety of other subjects.3 ⁇ 4 £ (Ribas A. et ai., 'Current developments in cancer vaccines and cellular immunotherapy. "J Clin Oncol. (2003), 21 (12): p2415-32.) 0
  • MHC tumor antigens via MHC (HLA and ⁇ in humans) molecules
  • MHC is a major histocompatibility complex located on the cell surface and is roughly classified into Class I and Class II. Class I molecules are present on almost all cell surfaces, present antigens to CD8-positive T cells and activate them into cytotoxic T cells, and Class II molecules are present on cell surfaces such as macrophages and monocytes. Antigen on CD4 + T cells And activate it to helper T cells. Endogenous tumor cells are eaten by antigen-presenting cells, fragmented (tumor antigen peptide), and then form a complex with MHC Class I molecules and presented to T cells. On the other hand, exogenous tumor antigen peptides bind directly to MHC molecules without undergoing intracellular processing and are presented to T cells. MHC is rich in genetic polymorphisms, and individual differences define individual differences in immune responses.
  • tumor antigen peptides have been identified so far, but their immunogenicity is restricted to the MHC type of the patient.
  • tumor antigens vary within individuals as well.
  • clinical applications require consideration of cross-reactivity with other foreign antigens. Therefore, there is always a need for safe and effective novel tumor antigen peptides, and an object of the present invention is to provide such novel tumor antigen peptides.
  • the present inventors have synthesized various peptides based on the binding motif of the MHC Class I A24 (HLA-A24) molecule and the amino acid sequence of a known tumor antigen. By confirming the immunogenicity and safety of these peptides, a novel peptide useful as a tumor antigen peptide was identified.
  • the present invention relates to SEQ ID NOs: 4, 14, 15, 18, 19, 23, 24, 25, 27, 28, 29, 30, 34, 37, 38, 39, 40, 41, and 44
  • a tumor antigen peptide containing the amino acid sequence described in 1 above is provided.
  • the tumor antigen peptide of the present invention can be used as an antitumor peptide vaccine by administering it to an HLA-A24-positive cancer patient together with an appropriate adjuvant.
  • antigen-presenting cells which are obtained by culturing HLA-A24-positive antigen-presenting cells with the tumor antigen peptide of the present invention and which present the tumor antigen peptide are also used for immunotherapy of HLA-A24-positive cancer patients. Can be used for law.
  • the antigen-presenting cells ⁇ cells are preferable.
  • the present invention also provides such antitumor peptide vaccines and antigen presenting cells.
  • the present invention also relates to SEQ ID NOs: 4, 14, 15, 18, 19, 23, 24, 25, 27, 28, 29, 30, 34, 37, 38, 39, 40, 41, and 44 Provide a nucleic acid molecule comprising a nucleotide sequence encoding the amino acid sequence IJ described in 1 above. These nucleic acid molecules can be used as antitumor agents for HLA-A24 positive cancer patients, including DNA vaccines.
  • the present invention further provides an antibody capable of specifically binding to the tumor antigen peptide of the present invention.
  • the antibody can be used as an antitumor agent, or for screening antitumor agents or detecting and diagnosing cancer.
  • the present invention provides a method for culturing tumor tissue-infiltrating lymphocytes or peripheral blood lymphocytes isolated from HLA-A24-positive patients together with the tumor antigen peptide of the present invention and IL-2. And methods for inducing cytotoxic T cells. Cytotoxic T cells obtained by the above method can also be used for CTL therapy of HLA-A24-positive cancer patients, and the present invention also provides an antitumor agent containing such cytotoxic T cells.
  • a novel peptide useful as a tumor antigen peptide is provided.
  • These peptides can be used for the treatment and diagnosis of HLA-A24-positive cancer patients (particularly liver cancer patients), including peptide vaccines and DC vaccines, and for antitumor drug screening.
  • FIG. 1 shows specific motifs for HLA binding and CTL recognition.
  • FIG. 2 shows the results of an HLA-A24 molecule binding affinity test of AFP-derived peptides (Table 1: Peptide Nos. 27 to 36).
  • Fig. 3 shows the results of IFN- ⁇ ELISPOT assay using PBMCs derived from healthy individuals and derived from AFP-derived peptides.
  • FIG. 4 shows the results of IFN- ⁇ ELISPOT assay using AFP-derived peptide-derived PBMC derived from a liver cancer patient.
  • FIG. 5 shows the results of CTL assay of Peptide No. 27-30.
  • Figure 6 confirms that the cytotoxicity of Peptide Nos. 27 and 30 is HAL-A24-restricted and AFP-specific, and that CTLs induced by these peptides damage liver cancer cells.
  • FIG. 5 shows the results of CTL assay on various liver cancer cell lines for confirmation.
  • FIG. 7-1 shows the results of CTL assay on various liver cancer cell lines to confirm that Peptide No. 30 is restricted to CD8 and HLA-A24 cytotoxicity.
  • FIG. 7-2 shows the results of an examination of the immune response of liver cancer patients before and after liver cancer treatment using Peptide Nos. 27, 29 and 30.
  • FIG. 8 shows the results of a T cell response (IFN-y ELISPOT assay) when Peptide Nos. 27 and 30 were administered as peptide vaccines to HLA-A24 transgenic mice.
  • Fig. 9 shows the results of T cell responses (IFN-y ELISPOT atsey) to each peptide in HLA-A24 transgenic mice to which AFP DNA vaccine was administered.
  • FIG. 10 shows the results of CTL assay using HLA-A24 transgenic mice splenocytes immunized with Peptide No. 30 or AFP DNA vaccine.
  • FIG. 11 is a graph showing IFN- ⁇ obtained using PBMCs derived from healthy subjects and having the peptides listed in Tables 2 and 3.
  • FIG. 12 shows IFN-y obtained by using PBMC derived from a liver cancer patient with the peptides listed in Table 3.
  • FIG. 13 shows the results of CTL assay of the peptides shown in Table 3.
  • CTL XX in the graph indicates CTL induced by stimulation of Peptide No. XX.
  • FIG. 14 shows a difference in T cell response (IFN- ⁇ ELISPOT assay) before and after treatment.
  • FIG. 15 shows the results of an HLA-A24 molecule binding affinity test of hTERT-derived peptides (Table 2: Peptide Nos. 37-46).
  • FIG. 16 shows the results of IFN-y ELISPOT assays using hTERT-derived peptides using PBMCs derived from healthy individuals and liver cancer patients.
  • FIG. 17 shows the results of CTL assay using hTERT-derived peptide from patient peripheral blood lymphocytes.
  • FIG. 18 shows the results of CTL assay using a hTERT-derived peptide liver cancer cell line.
  • Figure 19 shows changes in T cell responses before and after liver cancer treatment using hTERT-derived peptides. The results of the study conducted using ERISPOT Atsushi are shown.
  • Fig. 20 shows the results of T cell response (IFN-y ELISPOT assay) to hTERT-derived peptide in HLA-A24 transgenic mice to which hTERT DNA vaccine was administered.
  • MHC molecules have a groove for the binding of antigenic peptides, and tumor antigenic peptides have specific structural motifs for binding to this groove (Bjorkman, PJ, et al., Nature, 1987, 329, p506). -512; Bjorkman, PJ, et al "Nature, 1987, 329, p512-518; Falk, K, et al., Nature, 1991, 351, p290-296; Rammensee, HG, et al., Curr Opin Immunol, 1993, 5, p35-44; Rammensee, HG, Curr Opin Immunol 1995, 7, p85- 96;
  • Antigen peptides have an anchor site that determines the binding to MHC molecules and an epitope site that is recognized by cytotoxic T cells (CTLs), and thus trigger CTL activation through antigen-presenting cells (Fig. 1 reference).
  • CTLs cytotoxic T cells
  • the tumor antigen peptide according to the present invention can be designed using a computer program (for example, BIMAS) based on the known MHC binding motif and the amino acid sequence of the tumor-associated antigen.
  • BIMAS computer program
  • the database MHCPEP http://wehih.wehi.edu.au/mhcpep/
  • MHCPEP http://wehih.wehi.edu.au/mhcpep/
  • HLA MHC
  • Class 1 molecules are rich in polymorphisms and binding motifs differ depending on their types, it is necessary to first specify the type of HLA to be targeted in tumor antigen peptide design.
  • HLA-A24 expressed in 60% of Japanese is targeted, and a peptide of about 915 amino acids having this HLA-A24 binding motif is used as a tumor antigen peptide. Design as a candidate.
  • the peptide designed by the above method can be easily chemically synthesized by a well-known method such as solid-phase or liquid-phase synthesis by the Fmoc method or the Boc method, and can be obtained at a desired purity by a known method such as HPLC. it can. If necessary, the peptide may be appropriately modified.
  • Peptides can also be prepared by genetic engineering by incorporating the DNA encoding them into a suitable vector and expressing them in host cells.
  • the usefulness of the synthesized peptide as a tumor antigen peptide is evaluated by immunogenicity screening using various Atsuy systems. The evaluation can be performed in three stages: binding affinity to MHC molecule, T cell activation, and peptide-specific cytotoxicity
  • HLA-A24 MHC Class I molecule expressed on the cell surface.
  • the binding affinity to cell surface HLA-A24 is determined by expressing the target HLA-A24 molecule, culturing the test peptide in a cell, and binding the peptide to degrade HLA.
  • the expression level of HLA-A24 remaining on the cells may be measured.
  • the expression level of HLA-A24 on cells should be measured by FACS (registered trademark) using an anti-MHC monoclonal antibody and a secondary antibody (for example, an anti-mouse immunoglobulin antibody labeled with FITC: manufactured by DAKO). Can be.
  • the measured HLA-A24 expression level can be evaluated semi-quantitatively by comparing it to the HLA-A24 expression level of cells to which no peptide was added or cells to which control peptides (negative and positive control groups) were added. it can.
  • the immunogenicity of the synthetic peptide can be evaluated by the ability of CD8-positive T cells activated by the peptide to produce cytotoxicity (interferon ⁇ ).
  • the amount of cytodynamic force secreted by T cells can be measured by a well-known Atsey method such as ELIbA (Enzyme-Linked Immunosorvent Assay) or ELISPOT (Enzyme-Linked Immunospot Assay).
  • ELIbA Enzyme-Linked Immunosorvent Assay
  • ELISPOT Enzyme-Linked Immunospot Assay
  • kits made by MABTECH, etc.
  • such a commercially available kit can be suitably used.
  • the ELISPOT assay is a highly sensitive method for quantifying cytodynamic secretory cells and antibody-producing cells by the immobilized enzyme antibody method based on the principle of ELISA.
  • ELISPOT Atssei secreted antibodies and cytokins are captured in situ by culturing immune cells on a plate on which antigens and antibodies are immobilized in advance, and quantification is performed based on the number of color spots formed by the secondary antibody and the substrate.
  • ELISPOT has higher sensitivity than ELISA (about 20 to 200 times that of ELISA), is easy to operate, has excellent reproducibility, and has the advantage of being able to process multiple samples!
  • Specific cytotoxic activity by activated CTL can be evaluated by the following method
  • target cells stimulated with the test peptide for example, A24-positive cells or cancer cell lines
  • peptide-specific T cells T cells induced by the test peptide
  • the degree of peptide-specific cytotoxic activity can be calculated by subtracting the degree of cytotoxic activity against target cells not stimulated with the peptide from the level of cytotoxic activity against target cells stimulated with the peptide.
  • the cytotoxic activity of T cells against each target cell can be quantitatively compared by comparing the radioactivity released from a certain number of target cells.
  • ELISPOT Atssei can evaluate peptide-specific cytotoxic activity by quantifying granzyme B secreted from trace amounts of CTL with high sensitivity. [0028] 3. Evaluation of pharmacological activity
  • transgenic mice expressing human HLA antigen can be produced, for example, by crossing a mouse in which the endogenous MHC region has been disrupted and a mouse in which the desired HLA coding region has been introduced by a known gene transfer method. .
  • HLA-A24 transgenic mice can be produced based on the report of Gotoh et al. (Gotoh M, et al., Int J Cancer. 2002 Aug 10; 100 (5), p565_70).
  • test peptide is emulsified with an appropriate adjuvant and administered to mice (for example, subcutaneous administration). Mice to which the test peptide has been administered are tested for cytotoxicity production and cytotoxicity according to the above-described method.
  • immunogenicity of a test peptide can be tested by administering to a mouse a test peptide, an antigen derived therefrom, or a DNA vaccine for expressing them.
  • the present inventors have identified a novel peptide useful as an HLA-A24-restricted tumor antigen peptide as a result of immunogenicity screening and a pharmacological effect test using HLA-A24 antigen-expressing transgenic mice. These peptides are shown in SEQ ID NOs: 4, 14, 15, 18, 19, 23, 24, 25, 27, 28, 29, 30, 34, 37, 38, 39, 40, 41, and 44 in the sequence listing. Having an amino acid sequence of
  • the peptide may be appropriately modified depending on its use and within a range that does not impair the object of the present invention.
  • the tumor antigen peptide when used for testing or diagnosis, may be labeled with an appropriate radioactive substance, fluorescent substance, protein, or the like, or may be immobilized on a plate or a capillary.
  • the amino acids constituting the peptide are not limited to natural amino acids, and may be suitable derivatives.
  • the tumor antigen peptide is used after adding an arbitrary amino acid sequence or a carrier (for example, keyhole limpet mosyanin).
  • a carrier for example, keyhole limpet mosyanin
  • the tumor antigen peptide of the present invention can be used as a peptide vaccine for HLA-A24 positive cancer patients (particularly liver cancer patients) by emulsifying with a suitable adjuvant.
  • the adjuvant used is not particularly limited, including Freund's complete or incomplete adjuvant, bacteria and their cell components, mycobacterium, gram-negative bacteria and cell components, gram-positive bacteria and cell components, non-bacterial Adjuvants known in the art, such as substances, polysaccharides of plants and fungi, nucleic acids, fat-soluble vitamins, and mineral oils, can be used.
  • the vaccine may also optionally include other pharmaceutically acceptable carriers.
  • Antigen presentation on which the tumor antigen peptide of the present invention is presented can also be used as an anti-tumor vaccine for HLA-A24-positive cancer patients (particularly liver cancer patients). That is, the HLA-A24-positive antigen-presenting cells isolated from the patient are cultured together with the tumor antigen peptide of the present invention, and the tumor antigen peptide is incorporated into the antigen-presenting cells or directly binds to HLA-A24 on the cell surface. Let me show you. Then, the complex of the tumor antigen peptide and the antigen presenting cell (tumor antigen presenting cell) is returned to the living body of the same patient.
  • the antigen-presenting cell used is not particularly limited as long as it is HLA-A24-positive, but is preferably a dendritic cell having strong antigen-presenting ability.
  • the anti-tumor vaccine containing the antigen-presenting cells or tumor antigen peptide-presenting ⁇ cells that present the tumor antigen peptide of the present invention may contain an appropriate adjuvant or a pharmaceutically acceptable carrier, if necessary.
  • the tumor antigen peptide of the present invention contains an epitope site, and thus an antibody against the peptide can be used as an antitumor agent for HLA-A24-positive cancer patients (particularly liver cancer patients) or for detection and diagnosis of tumors.
  • the antibody of the present invention can be prepared by a conventional method (for example,
  • a derivative obtained by adding an arbitrary amino acid sequence or a carrier to the tumor antigen peptide of the present invention can be used.
  • a protein to be detected is bonded to a keyhole limpet as a carrier using a mosaicin.
  • the obtained antibody is used for detection alone or in combination with a labeled secondary antibody that specifically recognizes the antibody as a primary antibody (recognizes an antibody derived from the animal from which the antibody was produced).
  • a labeled secondary antibody that specifically recognizes the antibody as a primary antibody (recognizes an antibody derived from the animal from which the antibody was produced).
  • labeled secondary antibody includes enzymes (alkaline phosphatase or horseradish peroxidase) or biotin or the like, but are not limited thereto.
  • Various pre-labeled antibodies are commercially available as the labeled secondary antibody.
  • the expression level of the protein to be detected can be measured by Western blotting, dot-Z slot blotting, or ELISA.
  • the antibody is labeled with a radioisotope and measured with a liquid scintillation counter or the like.
  • the present invention provides a nucleic acid molecule comprising a nucleotide sequence encoding the amino acid sequence of the tumor antigen peptide of the present invention.
  • the nucleic acid molecule includes, for example, a nucleic acid (DNA, cDNA, RNA, cRNA) encoding the tumor antigen peptide of the present invention, and a vector containing the nucleic acid.
  • An HLA-A24-positive cancer patient particularly a liver cancer patient
  • the nucleic acid molecule of the present invention may be directly administered to an HLA-A24-positive cancer patient, or may be introduced into the isolated dendritic cells and returned to the patient.
  • the nucleic acid molecule may be DNA or RNA, and may be single-stranded or double-stranded.
  • the nucleic acid encoding the tumor antigen peptide of the present invention can be synthesized according to a method well known in the art.
  • the vector for expressing the tumor antigen peptide of the present invention is prepared by appropriately ligating a promoter, a splice site, a polyadenylation site, a transcription termination sequence and the like upstream of the sequence to be expressed.
  • the type of vector is not particularly limited, but safety and transformation efficiency Adenovirus vector or retrovirus vector is preferred. Methods for producing such vectors are already known in the art.
  • the present invention provides a method for inducing cytotoxic T cells in vivo for CTL (TIL) therapy using the tumor antigen peptide of the present invention.
  • TIL tumor-infiltrating lymphocytes
  • TILs tumor-infiltrating lymphocytes
  • PBMC peripheral blood lymphocytes
  • CTLs having cytotoxic activity are induced by culturing TIL or PBMC from which the ability of HLA-A24-positive cancer patients has been collected in the presence of the tumor antigen peptide of the present invention and IL-2.
  • the induced CTL is cultured and proliferated as appropriate, and administered to the patient. In this case, it may be administered together with a pharmaceutically acceptable carrier!
  • the tumor antigen peptide of the present invention is an epitope of an antigen specifically expressed on tumor cells. Including. Therefore, the tumor antigen peptide of the present invention, ie, an antibody against the peptide, can be used for screening antitumor agents and detecting cancers. For example, by comparing the expression level of the tumor antigen peptide of the present invention before and after administration of the test substance, the effect of the test substance as an antitumor agent can be evaluated. For measurement of the expression level of the tumor antigen peptide, the above-described antibody of the present invention can be used. In addition, cancer can be diagnosed using the expression level of the tumor antigen peptide in the sample as an index.
  • telomerase reverse transcriptase Ten peptides derived from telomerase reverse transcriptase (hTERT) were produced (Table 2).
  • MRP3 NYSVRYRPGL HLA-A24 As control for each assay, it is derived from human immunodeficiency virus (HIV), Epstain-Barr virus (EBV), and cytomegalovirus (CMV). The peptide was reported to have high compatibility, and was prepared (Table 4).
  • tumor markers alpha-fetoprotein; AFP
  • PBMC peripheral blood mononuclear cells
  • a lymphocyte separation tube After collecting 50 ml of patient's venous blood into a heparin blood collection tube (TERUMO, Tokyo, Japan) and diluting it twice with PBS (GibcoBRL, Tokyo, Japan), a lymphocyte separation tube
  • a 96-well plate (MILLIPORE, Tokyo, Japan) was coated with an anti-human interferon-gamma antibody (MABTECH, Nacka, Sweden) at 4 ° C for 12 hours. After aseptically washing four times with 200 1 of PBS per well, blocking was performed at 25 ° C for 1 hour using 10% FCS RPMI medium. Extract the PBMC that are cryopreserved, washed twice with PBS, and resuspended in 10% FCS RPMI medium, 30 hours 3Xl0 5 pieces of per 1 well with peptide (final concentration 10 g / ml), at 37 ° C for Cultured.
  • the plate was washed four times with PBS and four times with l% Tween-PBS, and incubated at 4 ° C for 12 hours using an anti-human interferon-gamma antibody labeled with biotin (MABTECH, Nacka, Sweden). Thereafter, the plate was washed four times with l% Tween-PBS, and streptoavidin-AP (MABTECH, Nacka, Sweden) was added and incubated for 2 hours. After washing the plate 4 times with PBS, NBT / BCIP (nitroblue
  • the number of spots specific to the peptide was calculated by subtracting the number of spots of the well to which no peptide was added from the number of spots of the well to which the peptide was added.
  • PBMCs were cultured in wells containing PMA (SIGMA-ALDRICH, Tokyo, Japan) and Ionomycin (SIGMA-ALDRICH, Tokyo, Japan) as Atsushi controls, and those with 50 or more spots were counted as data.
  • PMA SIGMA-ALDRICH, Tokyo, Japan
  • Ionomycin SIGMA-ALDRICH, Tokyo, Japan
  • the number of specific spots for each peptide of 11 healthy adults was measured, and the average + 2SD was less than 10 spots in each case. Those showing more than twice the number of spots in this case were judged as positive.
  • 96 well round bottom plates were used (BD, NJ, USA) lxlO 5 amino T2-A24 cells per 1 well. After culturing at 25 ° C for 10 hours using 10% FCS RPMI medium, the peptide was administered to each concentration, and the cells were further cultured for 2 hours. Culture was continued at 37 ° C for 2 hours to degrade HLA-A24 molecules not bound to the peptide. After completion of the culture, the mixture was centrifuged at 1700 rpm for 5 minutes, and the supernatant was discarded.
  • HLA-A24 molecule was prepared as a negative control.
  • the expression level of the HLA-A24 molecule was displayed using% mean FI increase or mean FI, and the values of the control peptide and the target peptide were compared and examined.
  • C1RA24 cells stimulated with 10 ⁇ g / ml peptide for 12 hours
  • HLA-A24 positive C1R cells AIDS Research Center, Kumamoto University ⁇ Provided by Professor Masafumi Takiguchi in the field of virus control
  • the cells were labeled with Cr (Amersham-Phamacia, Tokyo, Japan) for 1 hour, washed with PBS, mixed with peptide-specific T cells at various cell ratios, and subjected to a 4-hour cytotoxicity test.
  • HepG2 cells, Huh7 cells, HLE cells, and K562 cells were similarly labeled with 51 Cr of Ci and used as target cells.
  • the degree of the peptide-specific cytotoxic activity was calculated by subtracting the degree of the cytotoxic activity against the target cells stimulated with the peptide from the intensity of the cytotoxic activity against the target cells stimulated with the peptide.
  • the mouse cytotoxicity test Jurkat-A2402 / Kb cells obtained by introducing HLA-A24 / Kb cDNA into Jurkat cells derived from human leukemia cells were used as target cells.
  • HepG2 cells, Huh7 cells, and HLE cells were cultured using 10% FCS D-MEM medium (GibcoBRL, Tokyo, Japan).
  • K562 cells were cultured using 10% FCS RPMI medium.
  • C1RA24 cells were cultured using 10% FCS RPMI medium containing 0.5 mg / ml Hyglomycin (SIGMA-ALDRICH, Tokyo, Japan). 800 g / ml G418 for T2-A24 cells
  • FCS IMDM medium obtained by caulking.
  • Jurkat-A2402 / Kb cells were cultured using 10% FCS RPMI medium containing 0.5 mg / ml G418. Each medium was supplemented with 100 U / ml penicillin and 100 g / ml streptomycin, and cultured at 37 ° C under 5% CO.
  • Induction of peptide-specific T cells from human PBMC by peptide was performed using a 96-well round bottom plate. Using 4 x 10 PBMCs per well, 10 g / ml peptide, rIL-7 (10 ng / ml) (SIGMA-ALDRICH, Tokyo, Japan), rIL-12 (100 pg / ml)
  • mice Safety and immunity of peptide vaccine using HLA-A24 / Kb transgenic mice (Sumitomo Pharmaceutical, Tokyo, Japan: Gotoh M, et al "Int J Cancer. 2002 Aug 10; 100 (5), p565-70)
  • Male mice aged 6-8 weeks were used for the experiments, and 200 ⁇ g of peptide emulsified with IFA (Wako, Osaka, Japan) and 100 ⁇ g of tetanus toxoid were subcutaneously injected into the mice.
  • IFA Wired, Osaka, Japan
  • tetanus toxoid 100 ⁇ g of tetanus toxoid were subcutaneously injected into the mice.
  • the spleen was excised, spleen cells were extracted using 10% FBS RPMI medium, and spleen cells were extracted.
  • a vector (MGC-34639, ATCC, VA, USA) that expresses human AFP protein under the CMV promoter into E. coli, amplified it, and amplified it using QIAGEN (Hilden , Germany) and dissolved in saline at a concentration of 1 ⁇ g / ml.
  • Fig. 4 shows the results of an experiment of binding of an AFP-derived peptide to HLA-A24 molecule.
  • Peptide Nos. 27, 28, 29, 30, 31, 32, and 34 showed relatively strong binding affinities.
  • the positive control 49 showed strong binding and the negative control No. 50 showed no binding.
  • FIG. 3 and FIG. 4 show the results of IFN- ⁇ ELISPOT ATSSE using PBMCs derived from healthy persons and liver cancer patients, respectively.
  • PBMCs derived from healthy individuals no positive response was observed for the AFP-derived peptide, but in PBMCs derived from liver cancer patients, Peptide No. 27, 28, 29, 30, 31 out of 10 peptides , 32,34 showed positive responses.
  • Peptide Nos. 27, 29 and 30 the responses were higher than those of EBV (No. 47) and CMV (No. 48), which showed a high frequency of response.
  • the response to EBV and CMV-derived peptides did not differ in the positive frequency between healthy subjects and liver cancer patients, and the response to HIV-derived peptides was not recognized in healthy subjects and liver cancer patients.
  • lymphocytes that react with the AFP-derived peptide is specific to liver cancer patients, and that these peptides may contain the AFP-derived HLA-A24-restricted CTL epitope.
  • Lymphocytes from liver cancer patients were stimulated using 10 types of AFP-derived peptides to try to induce AFP-specific CTL.
  • Peptide Nos. 27, 28, 29, 30, and 34 were able to induce AFP-specific CTL (Fig. 5).
  • Peptide No. 30 showed strong immunogenicity in healthy individuals
  • Peptide Nos. 27 and 30 are specific to HepG2 cell line only While exhibiting cytotoxic activity, it expressed HLA-A24 and AFP, but did not exhibit cytotoxic activity against other cell lines. Therefore, it was confirmed that the cytotoxic activity of Peptide Nos. 27 and 30 was HLA-A24-restricted and AFP-specific.
  • AFP-derived from the AFP identified this time, changes in the immune response before and after treatment of liver cancer patients were examined using ELISPOT ATSEY (Fig. 7-2). After treatment, the number of AFP-specific CTLs in peripheral blood increased in seven patients. On the other hand, HIV-derived epitope-specific CTLs did not change before and after treatment. CMV-derived epitope-specific CTLs increased only in one person. This indicates that the change of AFP-specific CTL is specific for liver cancer treatment. The epitope identified this time was considered to be useful for analyzing the immune response of such cancer patients before and after treatment.
  • FIG. 8 shows the results of the T cell response (IFN- ⁇ ELISPOT ATSE) of HLA-A24 transgenic mice inoculated with Peptide Nos. 27 and 30.
  • Mice immunized with Peptide No. 27 or 30 showed significant CTL induction compared to mice immunized with the negative control Peptide No. 47. No adverse reactions were observed in all mice against immunization with peptides, confirming the safety of these peptides.
  • FIG. 9 shows the results of an immunogenicity test by DNA vaccine administration.
  • Peptide For No. 30, strong immunogenicity was confirmed.
  • FIG. 10 shows the results of CTL assays using spleen cells of mice immunized with Peptide No. 30 or its DNA vaccine. As is clear from FIG. 10, it was confirmed that even when the peptide vaccine and the DNA vaccine were used, CTLs specific to Peptide No. 30 could be induced.
  • FIGS. 11 and 12 show the results of IFN- ⁇ ELISPOT assays using PBMCs derived from healthy persons and liver cancer patients, respectively. No positive response was observed for any tumor-associated antigen-derived peptide in PBMCs derived from healthy individuals, but in PBMCs derived from liver cancer patients, the frequency of T cells responding to peptides derived from various antigens in parentheses () was recognized. Positive responses were observed at particularly high frequency for the three peptides, Peptide No. 14 derived from SART2, Peptide No. 15 derived from SART3, and Peptide No. 23 derived from MRP3.
  • cytotoxic activity was evaluated for each peptide. As a result, cytotoxic activities were confirmed for some peptides including Peptide Nos. 14, 15, and 23 (FIG. 13).
  • ELISPOT and CTL assays were performed using peripheral blood lymphocytes from 72 liver cancer patients (see next section).
  • a study was performed using lymphocytes from 11 healthy subjects as a control.
  • the clinical background of the subjects is shown in Table 7 below.
  • Diagnosis Patients Mean-SD Mean SD (ng / ml) (B / COthers) (A / B / C) (Large ⁇ mall) (Multiple / Solitary) Invasion ⁇ /-) (Wel / od / Por.'ND) ( (Lll / III ⁇ HIb / IIIc / IV)
  • lymphocytes producing IFN- ⁇ were detected for Peptide Nos. 37, 38, 39, 40, 41, and 44 (Fig. 16).
  • lymphocytes that responded to these peptides were not detected in healthy subjects.
  • No lymphocytes were detected in response to the HIV-derived peptide, and the frequency of positivity for the CMV-derived peptide was comparable.
  • the above results suggest that lymphocytes that react with the hTERT-derived peptide are specifically present in the peripheral blood of liver cancer patients, suggesting that this peptide contains the A24-restricted epitope of hTERT! / .
  • CTLs thus induced exhibited cytotoxic activity against cancer cells was examined using a cultured liver cancer cell line (Fig. 18).
  • CTLs induced by Peptide Nos. 39 and 40 showed strong cytotoxic activity against HepG2 cells, which are cancer cells expressing HLA-A24 and hTERT.
  • strong expression of cytotoxic activity against K562 cells without HLA expression was demonstrated.
  • FIG. 20 shows the results of the T cell response (IFN- ⁇ ELISPOT ATSEY) of the HLA-A24 transgenic mouse.
  • IFN- ⁇ ELISPOT ATSEY T cell response
  • the tumor antigen peptide of the present invention DNA encoding the peptide can be used for peptide vaccine, DC vaccine, DNA vaccine, and CTL therapy for HLA-A24-positive cancer patients (particularly liver cancer patients). Further, the tumor antigen peptide of the present invention—an antibody against the peptide can be used for screening antitumor agents and diagnosing cancer.
  • SEQ ID NO: 1 Description of artificial sequence: ART1-derived synthetic peptide

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Microbiology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Oncology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Pregnancy & Childbirth (AREA)
  • Reproductive Health (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

 本発明は、腫瘍抗原ペプチドとして有用な新規ペプチドに関する。より詳しくは、本発明は、HLA-A24拘束性の新規腫瘍抗原ペプチド、ならびにこれを利用したペプチドワクチン、DCワクチン、抗体、および細胞障害性T細胞に関する。

Description

明 細 書
腫瘍抗原ペプチド
技術分野
[0001] 本発明は、腫瘍抗原ペプチドとして有用な新規ペプチドに関する。より詳しくは、本 発明は、 HLA-A24拘束性の新規腫瘍抗原ペプチド、ならびにこれを利用したぺプチ ドワクチン、 DCワクチン、抗体、および細胞障害性 T細胞に関する。
背景技術
[0002] 外科療法、化学療法、放射線療法に次ぐ癌の第 4の治療法として、免疫療法がある 。癌の免疫療法には、サイト力イン療法、抗体療法、細胞療法、ペプチドワクチン療 法、遺伝子療法など様々な方法があるが、安全性や効果の問題から臨床応用に至 つているものは少ない。
[0003] ペプチドワクチン療法は、腫瘍抗原やそのェピトーブ部分をアジュバントとともに投 与することにより、細胞性免疫と体液性免疫の両方を誘導するもので、簡便さと安全 性から多くの国で臨床応用が進められている。 Rosenbergらは、腫瘍関連抗原の構造 に基づ!/、て HLA-A2結合性を高めた合成ペプチドを作製し、これをメラノーマ患者に 投与することで転移巣の退縮や消失がみられたことを報告している(Rosenberg SA. et al" immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nature Medicine, (1998), 4(3):p321-7) 0 NCIの Web siteには現在臨床試験が進められているペプチドワクチン のリストが掲載されている力 その対象は肉腫、白血病、メラノーマ、ミエローマ等多 岐に ¾£ (Ribas A. et ai., 'Current developments in cancer vaccines and cellular immunotherapy." J Clin Oncol. (2003), 21(12):p2415-32.) 0
[0004] 免疫系による抗腫瘍作用には、 MHC (ヒトの場合は HLAと ヽぅ)分子を介した、腫瘍 抗原の提示が不可欠である。 MHCは細胞表面に存在する主要組織適合性抗原複 合体で、大きく Class Iと Class IIに分類される。 Class I分子はほとんど全ての細胞表面 に存在し、 CD8陽性 T細胞に抗原を提示して細胞障害性 T細胞へと活性化させ、 Class II分子はマクロファージ、単球等の細胞表面に存在し、 CD4陽性 T細胞に抗原 を提示してヘルパー T細胞へと活性ィ匕させる。内在性の腫瘍細胞は、抗原提示細胞 に捕食、断片化 (腫瘍抗原ペプチド)された後、 MHC Class I分子と複合体を形成し て T細胞に提示される。一方、外来性の腫瘍抗原ペプチドは細胞内プロセシングを 受けることなく MHC分子に直接結合し、 T細胞に提示される。 MHCは遺伝的多型に 富み、その個体差が免疫応答の個体差を規定する。
[0005] 現在、国内で開発が進められて 、るペプチドワクチンの多くは解析が進んだ HLA Class I A-2あるいは A-24に特異的な腫瘍抗原を利用したものであり(
JP2003- 000270、 JP2001- 245675、 JP11- 318455、 WO00/32770, WO00/012701, WO00/002907, WO99/029715)、高度進行性の肺癌や大腸癌患者を対象として臨 床試験も進められている。
発明の開示
[0006] これまで多数の腫瘍抗原ペプチドが同定されているが、その免疫原性は患者の MHCタイプに拘束される。また、腫瘍細胞は均一な集団ではなぐ癌の種類や個体 間での相違に加えて、個体内でも腫瘍抗原に多様性がみられることがゎカゝつてきた。 さらに、臨床適用では、他の外来抗原との交差反応を考慮する必要がある。したがつ て、安全で有効な新規腫瘍抗原ペプチドが常に求められており、本発明はそのよう な新規腫瘍抗原ペプチドを提供することを目的とする。
[0007] 本発明者らは、 MHC Class I A24 (HLA-A24)分子の結合モチーフと既知の腫瘍抗 原のアミノ酸配列に基づき、種々のペプチドを合成した。そして、これらペプチドの免 疫原性や安全性を確認することにより、腫瘍抗原ペプチドとして有用な新規ペプチド を同定した。
[0008] すなわち、本発明は、配列番号 4、 14、 15、 18、 19、 23、 24、 25、 27、 28、 29、 3 0、 34、 37、 38、 39、 40、 41、および 44力ら選ば、れる!ヽずれ力 1に記載のアミノ酸酉己 列を含む腫瘍抗原ペプチドを提供する。
[0009] 本発明の腫瘍抗原ペプチドは、適当なアジュバントとともに HLA-A24陽性癌患者 に投与することで、抗腫瘍ペプチドワクチンとして利用することができる。また、 HLA-A24陽性抗原提示細胞を本発明の腫瘍抗原ペプチドと培養して得られる、該 腫瘍抗原ペプチドを提示した抗原提示細胞もまた、 HLA-A24陽性癌患者の免疫療 法に利用することができる。前記抗原提示細胞としては榭状細胞が好ましい。本発明 はこのような、抗腫瘍ペプチドワクチンや抗原提示細胞をも提供する。
[0010] 本発明はまた、配列番号 4、 14、 15、 18、 19、 23、 24、 25、 27、 28、 29、 30、 34 、 37、 38、 39、 40、 41、および 44力ら選ば、れる!ヽずれ力 1に記載のアミノ酸酉己歹 IJをコ ードする塩基配列を含む核酸分子を提供する。これら核酸分子は、 DNAワクチンを 含む HLA-A24陽性癌患者のための抗腫瘍剤として利用することができる。
[0011] さらに本発明は、本発明の腫瘍抗原ペプチドに特異的に結合しうる抗体を提供す る。前記抗体は、抗腫瘍剤として、あるいは抗腫瘍剤のスクリーニングや癌の検出'診 断に利用することができる。
[0012] さらにまた本発明は、 HLA-A24陽性患者力ゝら単離した腫瘍組織浸潤リンパ球もしく は末梢血リンパ球を、本発明の腫瘍抗原ペプチドおよび IL- 2とともに培養することに より、細胞障害性 T細胞を誘導する方法を提供する。前記方法によって取得される細 胞障害性 T細胞も HLA-A24陽性癌患者の CTL療法に利用することができ、本発明は そのような細胞障害性 T細胞を含む抗腫瘍剤も提供する。
[0013] 本発明によれば、腫瘍抗原ペプチドとして有用な新規ペプチドが提供される。これ らのペプチドは、ペプチドワクチン、 DCワクチンをはじめとする HLA-A24陽性癌患者 (特に肝癌患者)の治療や診断、ならびに抗腫瘍剤スクリーニングに利用できる。 図面の簡単な説明
[0014] [図 1]図 1は、 HLA結合および CTL認識のための特異的モチーフを示した図である。
[図 2]図 2は、 AFP由来ペプチド(表 1 : Peptide No.27— 36)の HLA- A24分子結合親和 性試験の結果を示す。
[図 3]図 3は、 AFP由来ペプチドの健常人由来 PBMCを用いた IFN- γ ELISPOTアツ セィの結果を示す。
[図 4]図 4は、 AFP由来ペプチドの肝癌患者由来 PBMCを用いた IFN- γ ELISPOTァ ッセィの結果を示す。
[図 5]図 5は、 Peptide No.27— 30の CTLアツセィの結果を示す。
[図 6]図 6は、 Peptide No.27と 30の細胞障害性が HAL-A24拘束性かつ AFP特異的で あること、およびこれらのペプチドで誘導された CTLが肝癌細胞を障害することを確 認するための、種々の肝癌細胞株に対する CTLアツセィの結果を示す。
[図 7-1]図 7—1は、 Peptide No.30の細胞障害性力 CD8および HLA- A24拘束性である ことを確認するための、種々の肝癌細胞株に対する CTLアツセィの結果を示す。
[図 7-2]図 7— 2は、 Peptide No.27、 29および 30を用いた肝癌治療前後における肝癌 患者の免疫反応の検討結果を示す。
[図 8]図 8は、 Peptide No.27および 30をペプチドワクチンとして HLA- A24トランスジヱ ニックマウスに投与した際の T細胞応答(IFN- y ELISPOTアツセィ)の結果を示す。
[図 9]図 9は、 AFPの DNAワクチンを投与した HLA-A24トランスジエニックマウスにおけ る各ペプチドに対する T細胞応答 (IFN- y ELISPOTアツセィ)の結果を示す。
[図 10]図 10は、 Peptide No.30あるいは AFPの DNAワクチンで免疫した HLA-A24トラ ンスジエニックマウス脾細胞を用 、た CTLアツセィの結果を示す。
[図 11]図 11は、表 2および表 3記載のペプチドの健常人由来 PBMCを用 、た IFN- γ
ELISPOTアツセィの結果を示す。
[図 12]図 12は、表 3記載のペプチドの肝癌患者由来 PBMCを用 、た IFN- y
ELISPOTアツセィの結果を示す。
[図 13]図 13は、表 3記載のペプチドの CTLアツセィの結果を示す。グラフ中の CTL XXは Peptide No.XXの刺激で誘導された CTLを示す。
[図 14]図 14は、治療前後における T細胞応答 (IFN- γ ELISPOTアツセィ)の違いを 示す。
[図 15]図 15は、 hTERT由来ペプチド(表 2 : Peptide No.37— 46)の HLA-A24分子結 合親和性試験の結果を示す。
[図 16]図 16は、 hTERT由来ペプチドの健常人および肝癌患者由来 PBMCを用 Vヽた IFN- y ELISPOTアツセィの結果を示す。
[図 17]図 17は、 hTERT由来ペプチドの患者末梢血リンパ球を用 Vヽた CTLアツセィの 結果を示す。
[図 18]図 18は、 hTERT由来ペプチドの肝癌培養細胞株を用 、た CTLアツセィの結果 を示す。
[図 19]図 19は、肝癌治療前後における T細胞応答の変化を hTERT由来ペプチドを 用いた ERISPOTアツセィで検討した結果を示す。
[図 20]図 20は、 hTERT DNAワクチンを投与した HLA-A24トランスジエニックマウスに おける hTERT由来ペプチドに対する T細胞応答(IFN- y ELISPOTアツセィ)の結果 を示す。
[0015] 本明細書は、本願の優先権の基礎である特願 2004— 56865号の明細書に記載さ れた内容を包含する。
発明を実施するための最良の形態
[0016] 以下、本発明にかかる新規ペプチドの取得と利用方法について詳細に説明する。
[0017] 1.ペプチドの合成
1. 1 コンピュータープログラムによるペプチドデザイン
MHC分子には抗原ペプチドが結合するための溝があり、腫瘍抗原ペプチドにはこ の溝に結合するための特定の構造モチーフがある(Bjorkman, PJ, et al., Nature, 1987, 329, p506- 512; Bjorkman, PJ, et al" Nature, 1987, 329, p512- 518; Falk, K, et al., Nature, 1991, 351, p290— 296; Rammensee, HG, et al., Curr Opin Immunol, 1993, 5, p35-44; Rammensee, HG, Curr Opin Immunol 1995, 7, p85— 96;
Rammensee, HG, et al., Immunogenetics 1995, 41, pl78— 228)。抗原ペプチドは、 MHC分子への結合を決定するアンカー部位と、細胞障害性 T細胞 (CTL)に認識さ れるェピトープ部位を有することで、抗原提示細胞を介した CTL活性ィ匕を引き起こす (図 1参照)。
[0018] 本発明にカゝかる腫瘍抗原ペプチドは、既知の MHC結合モチーフと腫瘍関連抗原 のアミノ酸配列等に基づき、コンピュータープログラム (例えば、 BIMAS等)を用いて 設計することができる。最近では、 MHCに結合する 13000以上のペプチドシーケンス データを納めたデーターベース MHCPEP (http://wehih.wehi.edu.au/mhcpep/)も公 開されており、こうした情報も腫瘍抗原ペプチドの探索に利用できる。
[0019] MHC (HLA) Class 1分子は多型性に富み、そのタイプに応じて結合モチーフも異 なるため、腫瘍抗原ペプチドの設計ではまずターゲットとする HLAのタイプを特定す る必要がある。本発明では日本人の 60%に発現している HLA-A24をターゲットとし、こ の HLA-A24結合モチーフを有する 9一 15アミノ酸程度のペプチドを腫瘍抗原べプチ ド候補として設計する。
[0020] 1. 2 ペプチドの合成
上記方法によって設計されたペプチドは、 Fmoc法あるいは Boc法による固相 '液相 合成等、周知の方法により容易に化学合成でき、また HPLC等の周知の手法により所 望の純度で取得することができる。必要であれば、ペプチドには適当な修飾を施して もよい。ペプチドはまた、これをコードする DNAを適当なベクターに組み込み、宿主細 胞中で発現させて、遺伝子工学的に調製することもできる。
[0021] 2.免疫原性スクリーニング
合成されたペプチドは、種々のアツセィ系を利用した免疫原性スクリーニングにより 、腫瘍抗原ペプチドとしての有用性を評価する。評価は、 MHC分子への結合親和性 、 T細胞活性化、ペプチド特異的細胞障害活性の 3つの段階で評価することができる
[0022] 2. 1 MHC Class I分子への結合親和性
合成ペプチドの細胞表面上に発現している MHC Class I分子(HLA-A24)への実 際の結合親和性を in vitroで評価する。細胞表面 HLA-A24への結合親和性は、標的 とする HLA-A24分子を発現して 、る細胞に被験ペプチドをカ卩えて培養し、ペプチド が結合して 、な 、HLAを分解した後、細胞上に残った HLA-A24の発現量を測定す ればよい。例えば、細胞上の HLA-A24の発現量は、抗 MHCモノクローナル抗体と二 次抗体(例えば、 FITCでラベルした抗マウス immunoglobulin抗体: DAKO製等)を用 いて、 FACS (登録商標)により測定することができる。測定された HLA-A24発現量は 、ペプチドを加えていない細胞やコントロールペプチド(陰性、陽性対照群)を加えた 細胞の HLA-A24発現量と比較することで、半定量的に評価することができる。
[0023] 2. 2 T細胞活性化 (サイト力インアツセィ)
合成ペプチドの免疫原性は、当該ペプチドによって活性ィ匕された CD8陽性 T細胞 のサイト力イン (インターフェロン γ )産生能により評価することができる。例えば、 ELIbA (Enzyme-Linked Immunosorvent Assay)や ELISPOT (Enzyme-Linked Immunospot Assay)等の周知のアツセィ法により、 T細胞が分泌するサイト力イン量を 測定すればょ 、。 ELISAや ELISPOTには種々のキット(MABTECH製等)が販売され ており、本発明ではこうした市販のキットを好適に利用することができる。
[0024] ELISPOTアツセィとは、 ELISAの原理を応用した固相化酵素抗体法によるサイト力 イン分泌細胞および抗体産生細胞の高感度定量法である。 ELISPOTアツセィでは、 予め抗原や抗体を固相化したプレート上で免疫細胞を培養することにより、分泌され る抗体やサイト力インをその場で捉え、二次抗体と基質による発色スポット数から定量 を行う。 ELISPOTは、 ELISAに比べて感度が高く(ELISAの 20— 200倍程度)、操作が 簡便かつ再現性に優れ、多検体処理が可能であると!/、う利点を有する。
[0025] 2. 3 ペプチド特異的細胞障害活性
活性化 CTLによる特異的細胞障害活性は、以下の方法により評価することができる
[0026] (l) 51Cr (クロミゥム)放出アツセィ
51Crラベルした標的細胞カゝら放出される放射活性を測定する特異的細胞障害活性 を測定する方法である。被験ペプチドで刺激した標的細胞 (例えば、 A24陽性細胞や 癌細胞株)を51 Crでラベルした後、ペプチド特異的 T細胞 (被験ペプチドによって誘導 された T細胞)を加え、障害された標的細胞カゝら放出される放射活性を測定する。ぺ プチド特異的細胞障害活性の程度はペプチドで刺激した標的細胞に対する障害活 性の強さからペプチドで刺激していない標的細胞に対する障害活性の程度を差し引 いて計算できる。それぞれの標的細胞に対する T細胞の細胞障害活性は、一定の十 分数の標的細胞から放出される放射活性と比較することにより定量的に比較すること ができる。
[0027] (2)グランザィム B ELISPOTアツセィ
従来の51 Cr放出アツセィは RI (放射性同位元素)を使用しなければならないという問 題があつたが、これに代る方法として最近グランザィム B E1ISPOTアツセィが開発され 、そのためのキットも市販されている(Euroclone製等)。 CTLにより放出される顆粒に は、グランザィム Bとパーフォリンがあり、グランザィム Bはパーフォリンによって孔を開 けられた標的細胞に侵入し、アポトーシスを誘導して細胞障害活性を現す。
ELISPOTアツセィは微量な CTLから分泌されるグランザィム Bを高感度で定量するこ とにより、ペプチド特異的細胞障害活性を評価できる。 [0028] 3. 薬理活性評価
3. 1 HLA抗原発現トランスジヱニックマウスによる評価
in vitroでの免疫原性が確認された合成ペプチドは、目的とするヒト HLA抗原を発現 させたトランスジエニックマウスを用いて in vivoでの薬理活性や安全性を評価する。ヒ ト HLA抗原発現トランスジエニックマウスは、例えば、内因性の MHC領域を破壊した マウスと、所望の HLAコード領域を公知の遺伝子導入法によって導入したマウスを交 配することにより作製することができる。このような HLA抗原発現トランスジエニックマウ スについては既にいくつかの報告( Arnold, B" et al, 1991, Annu. Rev. Immunol. 9, P297-322; Dill, O" et al., 1988, Proc. Natl. Acad. Sci. USA. 85, p5664- 5668等)が あり、当業者はこれらの記載に基づいて当該マウスを作製することができる。例えば、 HLA- A24トランスジエニックマウスは Gotohらの報告(Gotoh M, et al., Int J Cancer. 2002 Aug 10;100(5), p565_70)に基づいて作製することができる。
[0029] 被験ペプチドは適当なアジュバントとともにェマルジヨンィ匕して、マウスに投与(例え ば皮下投与)する。被験ペプチドを投与されたマウスは、前述した手法にしたがって サイト力イン産生や細胞障害性を試験する。また、マウスに被験ペプチドやその由来 抗原、あるいはこれらを発現させるための DNAワクチンを投与することにより、被験ぺ プチドの免疫原性を試験することもできる。
[0030] 3. 2 臨床試験
動物試験によって安全性と薬効が確認されたペプチドは、臨床試験によってさらに 安全性と有効性や有用性を確認する。
[0031] 4.本発明の腫瘍抗原ペプチド
本発明者らは、免疫原性スクリーニングおよび HLA-A24抗原発現トランスジエニック マウスを用いた薬理効果試験の結果、 HLA-A24拘束性の腫瘍抗原ペプチドとして有 用な新規ペプチドを同定した。これらのペプチドは、配列表の配列番号 4、 14、 15、 18、 19、 23、 24、 25、 27、 28、 29、 30、 34、 37、 38、 39、 40、 41、および 44に示 されるアミノ酸配列を有する。
[0032] 前記ペプチドは、その用途に応じて、また本発明の目的を損なわない範囲におい て、適当な修飾を施されていてもよい。例えば、試験や診断に用いる場合、本発明の 腫瘍抗原ペプチドを適当な放射性物質、蛍光物質、蛋白等でラベルしたり、プレート やキヤピラリーに固相化してもよい。また、ペプチドを構成するアミノ酸は天然のァミノ 酸に限定されず、適当な誘導体であってもよい。例えば、本発明の腫瘍抗原べプチ ドに対する抗体を作製する場合、当該腫瘍抗原ペプチドに任意のアミノ酸配列や担 体 (例えば、キーホールリンペットへモシァニン)を付カ卩して用いる。そのような修飾さ れたペプチドや誘導体も、本発明の範囲に含まれる。
[0033] 5.本発明の腫瘍抗原ペプチドの利用方法
5. 1 ペプチドワクチン
本発明の腫瘍抗原ペプチドは、適当なアジュバントとともにェマルジヨンィ匕すること により、 HLA-A24陽性癌患者 (特に肝癌患者)に対するペプチドワクチンとして利用 できる。用いられるアジュバントは特に限定されず、フロイントの完全あるいは不完全 アジュバントをはじめ、細菌およびその菌体成分、マイコバクテリゥム、グラム陰性菌 および菌体成分、グラム陽性菌および菌体成分、非細菌性物質、植物や真菌の多 糖体、核酸、脂溶性ビタミン類、ミネラルオイル等、当該分野で周知のアジュバントを 用いることができる。ワクチンはまた、製薬上許容されるその他の担体を適宜含んで いてもよい。
[0034] 5. 2 榭状細胞(DC)ワクチン
本発明の腫瘍抗原ペプチドを提示させた抗原提示もまた、 HLA-A24陽性癌患者( 特に肝癌患者)のための抗腫瘍ワクチンとして利用することができる。すなわち、患者 力ゝら単離した HLA-A24陽性抗原提示細胞を本発明の腫瘍抗原ペプチドとともに培 養し、腫瘍抗原ペプチドを抗原提示細胞に取り込ませ、あるいは細胞表面の HLA-A24上に直接結合させて提示させる。そして、この腫瘍抗原ペプチドと抗原提 示細胞との複合体 (腫瘍抗原提示細胞)を、同一患者の生体内に戻す。用いる抗原 提示細胞は HLA-A24陽性であれば特に限定されないが、抗原提示能力が強い榭 状細胞が好ま ヽ。本発明の腫瘍抗原ペプチドを提示した抗原提示細胞あるいは腫 瘍抗原ペプチド提示榭状細胞を含む抗腫瘍ワクチンは、必要に応じて、適当なアジ ュバントや製薬上許容される担体を含んで 、てもよ 、。
[0035] 抗原提示細胞 (榭状細胞)を利用した抗腫瘍ワクチンの調製や使用につ ヽては既 報(Nestle, F. O. et al" Nat Med 4, 328—32 (1998); Holtl, L. et al" Lancet 352, 1358 (1998); Geiger, J. et al., Lancet 356, 1163—5 (2000); Morse, M. A. et al., Clin Cancer Res 5, 1331-8 (1999); Murphy, G. P. et al" Prostate 39, 54-9 (1999))を参 考にすることができ、その内容の全てを参照として本明細書中に組み入れる。
[0036] 5. 3 抗体
本発明の腫瘍抗原ペプチドはェピトーブ部位を含み、したがって当該ペプチドに 対する抗体は HLA-A24陽性癌患者 (特に肝癌患者)に対する抗腫瘍剤として、ある いは腫瘍の検出や診断に利用できる。
[0037] 本発明の抗体は、常法により(例えば、新生化学実験講座 1、タンパク質
p.389-397、 1992)、検出すべきタンパク、あるいはそのアミノ酸配列力 選択される任 意のポリペプチドを用いて動物を免疫し、該動物生体内に産生される抗体を採取、 精製することによって得ることができる。また、公知の方法 (例えば、 Kohler and Milstein, Nature 256, 495-497, 1975、 Kennet, R. ed., Monoclonal Antibody p.365-367, 1980, Prenum Press, N.Y.)にしたがって、目的とする抗体を産生する抗 体産生細胞をミエローマ細胞と融合させてハイプリドーマを榭立し、このハイプリドー マ力も得られるモノクローナル抗体を用いてもよ!、。
[0038] 抗体作製にあたっては、本発明の腫瘍抗原ペプチドに任意のアミノ酸配列や担体 を付加した誘導体を用いることができる。特に、検出すべきタンパクの N末端に、キー ホールリンペットへモシァニンを担体として結合させたものが好ましい。
[0039] 得られた抗体は、単独、あるいは該抗体を一次抗体として、これを特異的に認識す る (抗体を作製した動物由来の抗体を認識する)標識二次抗体と組み合わせて検出 に用いられる。標識の種類として好ましいものは、酵素(アルカリホスファターゼまたは 西洋ヮサビペルォキシダーゼ)またはピオチン等である力 これらに限定されない。標 識二次抗体としては、予め標識された抗体が各種市販されている。検出すべきタン パクの発現量は、ウェスタンブロット法やドット Zスロットブロット法、あるいは ELISA 法により測定することができる。 RIAによる検出では、抗体を放射性同位元素で標識 し、液体シンチレーシヨンカウンタ一等で測定する。
[0040] 5. 4 遺伝子療法 本発明は、本発明の腫瘍抗原ペプチドのアミノ酸配列をコードする塩基配列を含 む核酸分子を提供する。前記核酸分子には、例えば、本発明の腫瘍抗原ペプチドを コードする核酸(DNA、 cDNA、 RNA、 cRNA)に加えて、該核酸を含むベクターが含ま れ、 HLA-A24陽性癌患者 (特に肝癌患者)の遺伝子療法に好適に利用することがで きる。本発明の核酸分子は、 HLA-A24陽性癌患者に直接投与してもよいし、あるい は該患者力 単離された榭状細胞に導入してこれを患者に戻してもよい。なお、核酸 分子は DNAであっても RNAであってもよぐまた 1本鎖であっても 2本鎖であってもよい
[0041] 本発明の腫瘍抗原ペプチドをコードする核酸は、当該分野で周知の方法にしたが つて合成することができる。本発明の腫瘍抗原ペプチドを発現させるためのベクター は、発現させようとする配列の上流に、プロモーター、スプライス部位、ポリアデニル 化部位、および転写終結配列等を適宜連結させて作製される。ベクターの種類は特 に限定されないが、安全性と形質転換効率力 アデノウイルスベクターあるいはレトロ ウィルスベクターが好まし 、。こうしたベクターの作製方法は既に当該技術分野で周 知である。
[0042] 5. 5 CTL (TIL)療法
本発明は、本発明の腫瘍抗原ペプチドを利用した CTL (TIL)療法のための in vivo における細胞障害性 T細胞誘導方法を提供する。腫瘍塊、癌性腹水または胸水など 癌の局所に浸潤しているリンパ球は腫瘍細胞に対して特異性を有するリンパ球で、 腫瘍組織浸潤リンパ球(tumor- infiltrating lymphocytes: TIL)と呼ばれている。 CTL療 法では、 TILもしくは末梢血リンパ球 (PBMC)を腫瘍抗原と IL-2の存在下で培養して 、細胞障害性を有する CTLを誘導し、これを患者体内に戻すことにより癌を破壊する 。本発明では、 HLA- A24陽性癌患者力も採取した TILや PBMCを、本発明の腫瘍抗 原ペプチドと IL-2の存在下で培養することにより、細胞障害活性を有する CTLを誘導 する。誘導された CTLは適宜培養'増殖して患者体内に投与されるが、その際製薬 上許容される担体とともに投与してもよ!ヽ。
[0043] 5. 6 その他
本発明の腫瘍抗原ペプチドは腫瘍細胞に特異的に発現される抗原のェピトーブを 含む。したがって、本発明の腫瘍抗原ペプチドゃ該ペプチドに対する抗体は、抗腫 瘍剤のスクリーニングや癌の検出'診断に利用できる。例えば、本発明の腫瘍抗原べ プチドの発現レベルを被験物質の投与前と投与後で比較することにより、当該被験 物質の抗腫瘍剤としての効果を評価することができる。腫瘍抗原ペプチドの発現レべ ルの測定には、前述した本発明の抗体を利用することができる。また、検体中の腫瘍 抗原ペプチドの発現レベルを指標として、癌の診断を行うこともできる。
実施例
[0044] 以下、実施例を用いて本発明をより詳細に説明するが、これらの実施例は本発明 の範囲を限定するものではな 、。
[0045] 〔実施例 1〕 ペプチドの合成
GenBankに登録されているヒト AFP( αフエトプロテイン)のアミノ酸配列をもとにコン ピューターソフト BIMAS(MD, USA)を用いて HLA-A24結合モチーフをもつ 9個のアミノ 酸配列を決定した。これらのアミノ酸配列のうち HLA-A24分子への結合親和性が高 V、と予想される上位 10個の配列をもつペプチドを MIMOTOPE社 (MIMOTOPE, VIC, Australia)にて 80%以上の純度で作製した (表 1)。また、同様の方法にてヒト
telomerase reverse transcriptase (hTERT)由来の 10個のペプチドを作製した (表 2)。
[表 1]
AFP由来 HLA-A24-拘束性べプチド
Peptide ID Amino acid HLA
Protein Amino acid sequence
(SEQ ID No.) position restriction
27 AFP 403 YIQESQAL HLA-A24
28 AFP 424 EYYLQNAFL HLA-A24
29 AFP 434 AYT KAPQL HLA-A24
30 AFP 357 EYSRRHPQL HLA-A24
31 AFP 150 AYEEDRETF HLA-A24
32 AFP 504 SYAN RPCF HLA-A24
33 AFP 591 CFAEEGQ L HLA-A24
34 AFP 414 RSCGLFQKL HLA-A24
35 AFP 7 IFし IFし LNF HLA-A24
36 AFP 322 KPEGLSPNし HLA-A24
[¾2]
hTERT-由来 HLA- 拘束性ぺプチド
P eptid e ID π A mino acid ί
^T Prole in A mino acid sequence
(SEQ ID o.) p□ sitio re s trie : io n
37 hTERT 1088 TY V PLLG Sし tlし A - ί 24
38 hT ER T 845 CY G D M ENK L HLA -/ i 24
39 hTERT 167 AY Q V CG PPL HLA - 24
40 liTERT 461 V Y G FVR A CL H L A 、 24
41 hTERT 324 V YA ETfCH FL H L A 24
42 hTERT 1009 A YR FHAC Vし H LA - 1 t 24
43 hTE R T 385 R Y W Q M RPLF H LA -/ 、24
44 hTE T 637 D Y V V GARTF HLA-/ 24
45 hTERT 622 HFIPKPD GL HLA V 24
4 hTERT 869 D FLL V T PH L HLA -/ 、24 さらに、これまでに報告されている腫瘍抗原もしくは腫瘍関連抗原由来のペプチド
26種類を作製した (表 3)。
3] 既知の腫瘍抗原もしくは腫瘍関連抗原由来のペプチド
Peptide ID HLA
Protein Amino acid sequence
(SEQ ID No.) restriction
1 ART1 EYCL FTKL HLA-A24
2 ART4 AFLRHAAL HLA-A24
3 ART4 DYPSLSATDI HLA-A24
4 Cyp-B KFH VI DF HLA-A24
5 Cyp-B DFMIQGGDF HLA-A24
6 Lck HYTNASDGL HLA^A24
7 Lck TFDYLRSVL HLA-A24
8 Lck DYL SVLEDF HLA-A24
9 MAGE1 NYKHCFPEI HLA-A24
10 MAGE3 IMPKAGLU HLA-A24
11 SART1 EYRGFTQDF HLA-A24
12 SART2 DYSARWNEI HLA-A24
13 SART2 AYDFLYNYL HLA-A24
14 SART2 SYTRLFLIL HLA-A24
15 SART3 VYDYNCHVDL HLA-A24
16 SART3 AYIDFEM I HLA-A24
17 Her-2/neu RWGLLLALL HLA-A24
18 p53 AIY QSQHM HLA-A24
19 p53 EYLDDRNTF HLA-A24
20 p53 TFRHSVVV HLA-A24
21 p53 NYMCNSSCM HLA-A24
22 53 TYSPALNKMF HLA-A24
23 MRP3 VYSDADIFL HLA-A24
24 MRP3 LYAWEPSFL HLA-A24
25 MRP3 AYVPQQAWI HLA-A24
26 MRP3 NYSVRYRPGL HLA-A24 各アツセィ法のコントロールとして、ヒト免疫不全ウィルス (HIV)、 Epstain - Barrウィル ス (EBV)、サイトメガロウィルス (CMV)由来で、これまでに HLA-A24分子への結合親 和性が高 、ことが報告されて 、るペプチドを作製した (表 4)。
[表 4] コントロールぺプチド
Peptide No.
Protein Amino acid sequence HLA ristriction (SEQ ID No)
47 HIV RYLRDQQLL HLA-A24
48 EMV TYGPVFMSL HLA-A24
49 CMV QYDPVAALAF HLA-A24 [実施例 2]
1.試験方法
(1)患者背景
2001年 10月より 2003年 12月までの間に金沢大学医学部附属病院消化器内科へ入 院した患者のうち、血液検査における腫瘍マーカー (alpha-fetoprotein;AFP、
PIVKA-II)の測定、腹部超音波検査、腹部 CTスキャン、腹部 MRI、腹部血管造影検 查により肝細胞癌と診断され、かつ HLA-A24陽性の 38人の肝細胞癌患者を対象とし た。また、コントロールとして 11人の健康成人 (非担癌者)の免疫反応を解析し、癌患 者との比較検討を行った。各患者および健康成人の臨床背景を表 5 - 1および 2に示 す。これらの患者は Case 5を除いて全例、 表に表記されている治療を受けた。
[表 5-1]
Figure imgf000017_0001
19
1
13
10
10
Mod u
11241
Figure imgf000017_0002
Clinical No. of Sex Age (yr) ALT (IU L) AFP Etiology Child Pugh Stage Diagnosis Patients M/F Mean土 SD Mean土 SD (ng ml) (B/C/Others) (A/B/C) (vn/urnv)
Patients
38 30/8 69 ± 7 74土 42
with HCC 1745±8374 4/32/2 24/12/2 7/6/14/11
Normal
11 8/3 35 ± 2 ND
Donors ND ND ND ND
(2)末梢血単核球 (PBMC)の分離
患者の静脈血 50mlを加へパリン採血管 (TERUMO, Tokyo, Japan)に採取し、 PBS(GibcoBRL, Tokyo, Japan)にて 2倍希釈したのち、リンパ球分離チューブ
(AXIS-SHIELD PoC AS, Oslo, Norway)を用いて 2200rpmの回転速度で 22分遠心し た。遠心後、チューブの PBMC層から 10mlピペットを用いて PBMCを採取し、 PBSをカロ えて 1800rpm、 10分遠心した。遠心後のチューブから上清を捨てた後、さらに PBSを 加えて 1400rpm、 10分遠心した。遠心後のチューブから上清を捨て、 10%FCS
(GibcoBRL, Tokyo, Japan入 100 U/ml penicillin(uiDcoBRL, Tokyo, Japan)、 100 μ g/ml streptomycin (GibcoBRL, Tokyo, Japan)を含む RPMI medium(GibcoBRL, Tokyo, Japan)にて PBMCを浮遊させ、細胞数を計測した。一部の細胞を細胞障害試 験に使用し、残りの細胞は凍結保存した。
(3) T細胞応答(IFN- γ ELISPOTアツセィ)
96穴プレート (MILLIPORE, Tokyo, Japan)を抗ヒトインターフェロン-ガンマ抗体 (MABTECH, Nacka, Sweden)を用いて 4°C、 12時間コーティングした。 1 wellあたり 200 1の PBSで無菌的に 4回洗浄後、 10%FCS RPMI mediumを用いて 25°Cで 1時間ブロッ キングを行った。凍結保存してある PBMCを解凍し、 PBSで 2回洗浄後、 10%FCS RPMI mediumに浮遊させ、 1 wellあたり 3xl05個をペプチド (最終濃度 10 g/ml)とともに 30 時間、 37°Cで培養した。培養後、プレートを PBSで 4回、 l%Tween- PBSで 4回洗浄し、 ビォチンでラベルした抗ヒトインターフェロン-ガンマ抗体 (MABTECH, Nacka, Sweden)を用いて 4°C、 12時間インキュベートした。その後プレートを l%Tween-PBSで 4 回洗浄し、 streptoavidin- AP(MABTECH, Nacka, Sweden)をカ卩えて 2時間インキュべ ートした。プレートを PBSで 4回洗浄後、 NBT/BCIP(nitroblue
tetrazolium— 5— bromo— 4— chioro— 3— indolylphosphate)揿 (Bio— Rad, Tokyo, Japanノにて 発色させ、水による洗浄で発色反応を停止させた。プレートを乾燥後、スポットを計測 した。
[0050] ペプチドに特異的なスポット数はペプチドを加えた wellのスポット数からペプチドを 加えていない wellのスポット数を差し引くことで計算した。アツセィのコントロールとして PMA (SIGMA- ALDRICH, Tokyo, Japan), Ionomycin (SIGMA- ALDRICH, Tokyo, Japan)をカ卩えた wellで PBMCを培養し、そのスポット数が 50以上のものをデータとして 集計した。各ペプチドに対する反応は 2 wellを使用し、その平均値をデータとして使 用した。健常成人 11人の各ペプチドに対する特異的スポット数を計測し、その平均 + 2SDがいずれも 10スポット以下であったことから、患者におけるアツセィでは 10スポット 以上でかつペプチドを加えて!/ヽな 、場合のスポット数の 2倍以上を示したものを陽性 と判定した。
[0051] マウスの ELISPOTアツセィ (MABTECH, Nacka, Sweden)では抗体をマウス用のもの に変え、新鮮な脾細胞を用いてヒトの場合と同様に行った。
[0052] (4) HLA-A24分子への結合親和性試験
96穴丸底プレート (BD, NJ, USA) 1 wellあたり lxlO5個の T2-A24細胞を使用した。 10%FCS RPMI mediumを用いて 25°Cで 10時間培養し、各濃度になるようにペプチドを 投与した後、さらに 2時間培養した。ペプチドと結合していない HLA-A24分子を分解 させるため、 37°Cで 2時間培養を継続した。培養終了後、 1700rpmで 5分遠心し、上清 を捨てた後、 PBSにて洗浄した。洗浄後、抗 HLA-A23,24モノクローナル抗体 (三光純 薬, Tokyo, Japan)と FITCでラベルした抗マウス immunoglobulin抗体 (DAKO, Denmark)を用いて 4°Cで 30分染色し、 PBSで 2回洗浄後、 1%FCS PBS 200 1に浮遊 させ FACSチューブに移し、 FACSにて HLA-A24分子の発現レベルを測定した。また 、ネガティブコントロールとして、 HLA-A2拘束性のペプチド(PLFQVPEPV:配列番号 50)を作製した。 HLA- A24分子の発現レベルは% mean FI increaseもしくは mean FI を用いて表示し、前記コントロールペプチドと目的のペプチドとの値を比較検討した。
[0053] (5)ペプチド特異的細胞障害活性 (CTLアツセィ)
10 μ g/mlのペプチドで 12時間刺激した C1RA24細胞(HLA-A24陽性 C1R細胞:熊 本大学エイズ学研究センター ·ウィルス制御分野滝口雅文教授より供与)を 25 μ Ciの Cr (Amersham- Phamacia, Tokyo, Japan)で 1時間ラベルし、 PBSで洗浄後、ぺプチ ド特異的 T細胞と種々の細胞比で混合し、 4時間の細胞障害性試験を行った。また癌 細胞に対する細胞障害活性を測定するために、 HepG2細胞、 Huh7細胞、 HLE細胞、 K562細胞を同様に Ciの51 Crでラベルし標的細胞とした。各アツセィにおいて 1 wellあたり 12xl04個の51 Cr非ラベル K562細胞を加え非特異的細胞障害活性を抑制す る工夫を行った。それぞれの標的に対する T細胞の細胞障害活性の強さは次の計算 式により決疋した。 100 X [(experimental release - spontaneous release) I (.maximum release - spontaneous release)]。このつ maximum releaseiま 10% Triton X— 100を用 ヽ て51 Crでラベルした 3000個の標的細胞を融解した際の培養液中の放射活性を測定 することにより決定した。ペプチド特異的細胞障害活性の程度はペプチドで刺激した 標的細胞に対する障害活性の強さからペプチドで刺激して 、な 、標的細胞に対する 障害活性の程度を差し引いて計算した。マウスの細胞障害試験ではヒト白血病細胞 由来の Jurkat細胞に HLA-A24/Kb cDNAを遺伝子導入した Jurkat-A2402/ Kb細胞 を標的細胞として使用した。
[0054] (6)各種培養細胞の培養条件
HepG2細胞、 Huh7細胞、 HLE細胞は 10%FCS D- MEM medium(GibcoBRL, Tokyo, Japan)を用いて培養した。 K562細胞は 10%FCS RPMI mediumを用いて培養した。 C1RA24細胞は 0.5mg/ml Hyglomycin (SIGMA- ALDRICH, Tokyo, Japan)をカ卩えた 10%FCS RPMI mediumを用いて培養した。 T2- A24細胞は 800 g/ml G418
(GibcoBRL, Tokyo, Japan)をカ卩えた 10%FCS IMDM mediumを用いて培養した。
Jurkat- A2402/ Kb細胞は 0.5mg/ml G418をカ卩えた 10%FCS RPMI mediumを用いて培 養した。いずれの mediumにも 100 U/ml penicillinと 100 g/ml streptomycinを加え 5% CO下、 37°Cで培養を行った。
2
[0055] (7)ペプチドによる PBMCの刺激
ペプチドによるヒト PBMCからのペプチド特異的 T細胞の誘導は 96穴丸底プレートを 用いて行った。 1 wellあたり 4xl05個の PBMCを用い、 10 g/mlのペプチド、 rIL-7(10ng/ml) (SIGMA- ALDRICH, Tokyo, Japan), rIL- 12(100pg/ml)
(SIGMA-ALDRICH, Tokyo, Japan)と一緒に 10%AB血清 (SIGMA-ALDRICH, Tokyo, Japan)をカ卩えた RPMI mediumを用い培養した。培養開始後第 7、第 14日目にマイトマ イシン (SIGMA-ALDRICH, Tokyo, Japan)処理をした同一患者の PBMCと 10 μ g/mlの ペプチド、 rIL-2(10U/ml) (SIGMA-ALDRICH, Tokyo, Japan)をカ卩え刺激した。また培 養開始後第 3、 10、 18日目に rlL- 2(10U/ml)を加えた 100 μ 1の 10%AB RPMI mediumを 加えた。マウスの脾細胞力ものペプチド特異的 T細胞の誘導は 24穴プレートを用い、 10%ラット T- STIM culture supplement (BD, MA, USA)と 10%FCSをカ卩えた RPMI mediumを用い 7日間培養した。
[0056] (8) HLA-A24トランスジエニックマウスを用いたペプチドワクチン試験
ヒトの HLA- A24の α 1と α 2ドメイン、マウスの Η- 2Kbの α 3ドメインをもつ
HLA- A24/Kbトランスジエニックマウス (住友製薬, Tokyo, Japan: Gotoh M, et al" Int J Cancer. 2002 Aug 10;100(5), p565-70)を用いてペプチドワクチンの安全性と免疫 誘導能の検討を行った。生後 6-8週の雄性マウスを実験に使用した。マウスの皮下に IFA(Wako, Osaka, Japan)でェマルジヨン化した 200 μ gのペプチドと 100 μ gの tetanus toxoid由来のへノレパーペプチド (947- 967, FNNFTVSFWLRVPKVSASHLE:配列番 号 51)を投与した。投与 1週間後に、脾臓を摘出し、 10%FBS RPMI mediumを用いて脾 細胞を抽出し、上記の ELISPOTアツセィと細胞障害性試験を行った。また CMVプロ モーター下でヒト AFP蛋白を発現するベクター (MGC- 34639, ATCC, VA,USA)を大 腸菌にトランスフエクシヨンし、増幅後、 QIAGEN社(Hilden, Germany)製のプラスミド 精製キットを用いて精製し、生理食塩水に 1 μ g/mlの濃度で溶解したものを、 DNAヮ クチンとして HLA-A24トランスジエニックマウスに投与し、 AFP由来のペプチドの免疫 原性の強さを検討した。具体的には、 Cardiotoxin (Latoxan, Rosans, France)50 1ず つをマウスの両側前脛骨筋部に筋肉注射し、その 5日後にベクター溶液 (1 μ g/ml)を 50 1ずつ同部に筋肉注射した。コントロールとして AFP蛋白のかわりに - galを発現 するベクター (Invitrogen, Tokyo, Japan)を同様に投与し、免疫反応を比較検討した。 同様に hTERTの全長を発現するベクターを DNAワクチンとして HLA-24トランスジェ- ックマウスに投与し、それぞれの hTERT由来ペプチドの免疫原性の強さを検討した。
[0057] 2.試験結果
2. 1 AFP由来ペプチド(Peptide No.27— 36) (1) HLA-A24結合親和性試験
AFP由来ペプチドの HLA-A24分子への結合実験の結果を示す。 Peptide No.27,28,29,30,31,32,34は比較的強い結合親和性を示した。陽性コントロールの 49 は強い結合を、陰性コントロールの No.50は結合を示さなかった。 Peptide
No.27,29,30について各種濃度での結合実験を行った力 いずれのペプチドも濃度 依存性に高い結合力を示し、今回のアツセィの特異性が示された。(図 2)。
[0058] (2) T細胞応答(IFN- γ ELISPOTアツセィ)
図 3および図 4に、健常人および肝癌患者由来の PBMCを用いた IFN- γ ELISPOT アツセィの結果をそれぞれ示す。健常人由来の PBMCでは!/、ずれの AFP由来ぺプ チドにも陽性応答が見られないが、肝癌患者の由来の PBMCでは、 10ペプチドのうち Peptide No.27,28,29,30,31,32,34で陽性応答が見られた。特に Peptide No.27, 29お よび 30においては高い頻度で応答が見られた力 EBV(No.47)および CMV(No.48) に比較すると低いものだった。また、 EBV,CMV由来ペプチドに対する反応は健常人 および肝癌患者で陽性頻度に差が認められず、 HIV由来ペプチドに対する反応は 健常人および肝癌患者とも認められな力 た。
[0059] 以上の結果より、 AFP由来ペプチドに対し反応するリンパ球の存在は肝癌患者に 特異的であり、これらのペプチドは AFP由来 HLA-A24拘束性 CTLェピトープを含ん で 、る可能性が示唆された。
[0060] (3)ペプチド特異的細胞障害活性 (CTLアツセィ)
10種類の AFP由来ペプチドを用いて肝癌患者のリンパ球を刺激し、 AFP特異的 CTLの誘導を試みた。 Peptide No.27,28,29,30,34では AFP特異的 CTLの誘導が可能 であった(図 5)。興味深いことに、 Peptide No.30は健常人でも強い免疫原性を示した
[0061] AFPペプチドを用いた HLA- 24結合親和性試験、 ELISPOTアツセィ、および CTLァ ッセィの結果から、 Peptide No. 27,28,29,30,34が HLA- 24拘束性 CTLェピトープを含 んでいると考えられた。
[0062] さらに、 Peptide No.27と 30について、種々の肝癌細胞株に対するペプチド特異的 細胞障害活性をみた(図 6)。 Peptide No.27と 30は HepG2細胞株にのみ特異的細胞 障害活性を示す一方、 HLA-A24や AFPを発現して 、な 、他の細胞株に対しては細 胞障害活性を示さな力つた。したがって、 Peptide No.27および 30の細胞障害活性は HLA-A24拘束性かつ AFP特異的であることが確認された。
[0063] こうして誘導した AFP特異的 CTLの拘束性を確認するために、各種抗体を用いて CTLアツセィを行った(図 7-1)。その結果、 CD8, HLA- A24抗体で処理したアツセィ では CTLの細胞障害活性が抑制された。すなわち、本ペプチドで誘導した CTLは CD8、 HLA-A24拘束性であることが証明された。また HLAを発現していない K562細 胞に対しては障害活性を示さず、本細胞障害活性は特異的反応であることが明らか になった。
[0064] 今回同定した AFPェピトープペプチドを含む Peptide No.27,28,29,30,34を用いて肝 癌患者の AFPに対応する免疫反応の解析を行った。表 6に、 ELISPOTアツセィにて AFP由来ペプチドに対し免疫反応を認めた患者と認めな力つた患者においてその臨 床背景を比較した結果を示す。免疫反応陽性群では肝癌の進行度 (TNM factorの T 因子、 TNM stage)が進んでいる患者の割合が有意に高力つた。このように今回同定 した新規 AFPェピトープを用いて肝癌患者の抗腫瘍免疫の特徴を明らかにすること が可能であった。
[表 6]
Patients with a positive Patients without a positive
T cell response T cell response
No. of patients 18 20
Age (years) b 68.1 ±6.8 65.5 ± 8.9 NS
Sex (M F) 15/3 15/5 NS
AFP level (≤20/> 20) 6/12 9/Π NS
Diff. degree of HCC
(well/moderate or poor/ND c) 5/9/4 6/5/9 NS
Tumor multiplicity
(multiple/solitary) 14/4 9/11 NS
Vascular invasion (+/-) 7/11 4/16 NS
TNM factor
(T1/T2-4) 2/16 11/9 0.006
(N0/N1) 18/0 19/1 NS
(M0/M1) 14/4 17/0 NS
TNM stage (MI IV) 2/16 11/9 0.006
Histology of non-tumor liver
(LC/Chronic hepatitis) 16/2 17/3 NS
Liver function (Child A/B/C) 12/6/0 12/6/2 NS
Etiology (HCV/HBV/Others) 14/3/1 18/1/1 NS a Abbreviation: NS; no statistical significance.
b Data expressed as the mean ± SD.
c Abbreviation: ND, not determined.
[0065] さらに今回同定した AFP由来ェピトープを用い、 ELISPOTアツセィにて肝癌患者の 治療前後における免疫反応の変化を検討した(図 7— 2)。 7人の患者において治療 後には末梢血における AFP特異的 CTLの数が増加していた。一方 HIV由来ェピトー プ特異的 CTLについては治療前後で変化はなぐ CMV由来ェピトープ特異的 CTL は 1人においてのみ増加を認めた。このことは AFP特異的 CTLの変化は肝癌治療に 特異的であることを示している。今回同定したェピトープはこうした癌患者の治療前 後における免疫反応の解析に有用であると考えられた。
[0066] (4) HLA-A24トランスジエニックマウスを用いたペプチドワクチン試験
図 8に Peptide No.27および 30を接種した HLA-A24トランスジエニックマウスの T細胞 応答(IFN- γ ELISPOTアツセィ)の結果を示す。 Peptide No.27または 30で免疫され たマウスでは、陰性対照である Peptide No.47で免疫されたマウスに比較して、顕著な CTL誘導がみられた。ペプチドによる免疫に対して、全てのマウスにおいて有害な反 応はみられず、これらペプチドの安全性が確認された。
[0067] 図 9に、 DNAワクチン投与による免疫原性試験の結果を示す。その結果、 Peptide No.30について、強い免疫原性が確認された。図 10に Peptide No.30あるいはその DNAワクチンで免疫したマウスの脾臓細胞を用いた CTLアツセィの結果を示す。図 1 0から明らかなように、ペプチドワクチンと DNAワクチンを用いた場合でも、 Peptide No.30に特異的な CTLを誘導できることが確認された。
[0068] 2. 2 表 3記載の腫瘍(関連)抗原ペプチド(Peptide No.1— 26)
(l) T細胞応答(IFN- γ ELISPOTアツセィ)
図 11および図 12に、健常人および肝癌患者由来の PBMCを用いた IFN- γ ELISPOTアツセィの結果をそれぞれ示す。健常人由来の PBMCではいずれの腫瘍 関連抗原由来ペプチドにも陽性応答が見られな 、が、肝癌患者の由来の PBMCで は、各種抗原由来ペプチドに反応する T細胞が( )内に示した頻度で認められた。 SART2由来の Peptide No.14、 SART3由来の Peptide No.l5ぉょびMRP3由来の Peptide No.23の 3つのペプチドで特に高い頻度で陽性応答が見られた。
[0069] (2)ペプチド特異的細胞障害活性 (CTLアツセィ)
それぞれのペプチドについて特異的細胞障害活性を評価した。その結果、 Peptide No.14,15,23を含む 、くつかのペプチドにつ 、て高 、細胞障害活性が確認された ( 図 13)。
[0070] (3)治療前後における T細胞応答
Peptide No.l— 26について、化学療法およびカテーテルを用いた免疫療法による 治療前後における T細胞応答の違いを ELISPOTアツセィにより評価した。図 14に 2例 の患者における結果(右:表 5-1の case 8、左:同 case 31)を示す。これらの患者では Peptide No.9,10,17,18,20,22,25,26〖こ対し '治療後で T細胞応答が増強されていること が確認された。
[0071] 以上より、 26の種々の腫瘍抗原由来ペプチドのうち 24種のペプチドが癌患者の T細 胞によって認識され、 7種のペプチドが肝癌患者で CTLを誘導した。またペプチドに 対する T細胞応答 (IFN- y産生)は治療前後で劇的に変化することが確認された。
[0072] 2. 3 hTERT由来ペプチド(Peptide No.37— 46)
(1) HLA-A24結合親和性試験
hTERT由来ペプチドの HLA-A24分子への結合親和性を検討した(図 15)。陰性コ ントロールのペプチド 50の結合親和性と比べて高い結合を示したペプチドは Peptide No.37,38,39,40,41,44,46であった。
(2) T細胞応答(IFN- γ ELISPOTアツセィ)
これらの hTERT由来ペプチドの免疫原性を検討するために、 72人の肝癌患者の末 梢血リンパ球を用いて ELISPOTアツセィおよび CTLアツセィ(次項参照)を行った。ま たコントロールとして 11人の健常者のリンパ球を用いた検討も行った。対象者の臨床 背景を下表 7に示す。
[表 7]
Clinical No, of Sex Age (yr) ALT (IU L) AFP Etiology Child Pugh Tumor size3 Tumor multiplicity Vascular Diff. degree3 TNM Stage
Diagnosis Patients Mean - SD Mean SD (ng/ml) (B/COthers) (A/B/C) (Large^mall) (Multiple/Solitary) Invasion^/-) (Wel/ od/Por.'ND) (Lll/III^HIb/IIIc/IV)
^t^ts 72 43 24 67 ± 9 66 ±36 1722+7029 9/59/4 43/25/4 44/28 39/33 15/57 15/21/ 1 35 30/26/9/1/2/4 腿 1 n g/3 35 ± 2 ND ND ND ND ND ND ND ND ND
[0074] ELISPOTアツセィでは Peptide No.37,38,39,40,41,44に対して IFN- γを産生するリ ンパ球が検出された(図 16)。一方、健常者ではこれらのペプチドに反応するリンパ 球は検出されな力つた。また HIV由来ペプチドに反応するリンパ球は両者とも検出さ れず、 CMV由来ペプチドに対する陽性頻度は同等であった。以上の結果より hTERT 由来ペプチドに反応するリンパ球は肝癌患者の末梢血中に特異的に存在すると考 えられ、本ペプチドが hTERTの A24拘束性ェピトープを含んで!/、ることが示唆された。
[0075] (3)ペプチド特異的細胞障害活性 (CTLアツセィ)
これらのペプチド力 ¾TERT由来 HLA-A24拘束性 CTLェピトープを含んでいることを 確認するために、患者末梢血リンパ球をペプチドで刺激し、 CTLが誘導できるかどう かを検討した(図 17)。その結果、 10個のペプチドのうちペプチド 37,38,39,40,41,44 の 6つでは CTLの誘導が可能であった。
[0076] さらにこうして誘導された CTLが癌細胞に対して細胞障害活性を示す力どうかを肝 癌培養細胞株を用いて検討した(図 18)。 Peptide No.39,40で誘導した CTLは HLA-A24と hTERTを発現する癌細胞である HepG2細胞に対し強い細胞障害活性を 示した。一方、 hTERTを発現しているが、 HLA-A24を持たない癌細胞である HuH7 細胞に対しては細胞障害活性を示さな力つた。さらに HLAの発現がな 、K562細胞に 対しても強い細胞障害活性は示さな力つた。以上の結果より、ペプチドで誘導した CTLが HLA-A24拘束性に hTERTを発現して 、る癌細胞を特異的に障害すること、さ らに同ペプチドが hTERTのェピトープを含んでいることが明らかになった。
[0077] (4)治療前後における T細胞応答
Peptide No. 37,39,40,41について、治療前後における T細胞応答の違いを ELISPOTアツセィにより評価した(図 19)。その結果、 Peptide No. 37,39,40,41に対し て、治療後では T細胞応答が増強されて 、ることが確認された。
[0078] (5) HLA-A24トランスジエニックマウスを用いたペプチドワクチン試験
図 20に HLA- A24トランスジエニックマウスの T細胞応答(IFN- γ ELISPOTアツセィ) の結果を示す。なお、コントロールには hTERT DNAが挿入されていないベクターを 用いた。 hTERT DNAで免疫したマウスではそれぞれペプチド 37,38,39,40,41,44に反 応して IFN- γを産生するリンパ球が少なくとも 3匹中 1匹において検出された。一方、 コントロールで免疫したマウスでは hTERT特異的リンパ球は検出されな力つた。この 結果から、ペプチド 37,38,39,40,41, 44は hTERTの HLA-A24拘束性ェピトープを含ん でいることが示唆された。
[0079] 以上より、 10種の hTERT由来ペプチドのうち 6種のペプチドが肝癌患者の T細胞に よって認識され、 6種のペプチドが肝癌患者で CTLを誘導した。またペプチドに対す る T細胞応答 (IFN- y産生)は治療前後で劇的に変化することが確認された。
[0080] 3.結論
10種の AFP由来および 36種の種々の HLA-A24結合モチーフをもつ腫瘍関連抗原 由来ペプチドを合成し、その免疫原性を IFN- γ ELISPOTアツセィ、 HLA- Α24結合 親和性試験、 CTLアツセィにより確認した。さらに HLA-A24トランスジエニックマウスを 用いて in vivoでの免疫原性 (細胞障害性 T細胞の誘導)と安全性を確認した。以上の 結果、 Peptide No. 4, 14, 15, 18, 19, 23, 24, 25, 27, 28, 29, 30, 34, 37, 38, 39, 40, 41および 44のペプチドやこれをコードする DNAが抗腫瘍ペプチドワクチンや DNAワク チン等として有用であることが確認された。
[0081] 本明細書中で引用した全ての刊行物、特許および特許出願をそのまま参考として 本明細書中にとり入れるものとする。
産業上の利用の可能性
[0082] 本発明の腫瘍抗原ペプチドゃ該ペプチドをコードする DNAは、 HLA-A24陽性癌患 者 (特に肝癌患者)に対する、ペプチドワクチン、 DCワクチン、 DNAワクチン、 CTL療 法に利用できる。また、本発明の腫瘍抗原ペプチドゃ該ペプチドに対する抗体は、 抗腫瘍剤のスクリーニングや癌の診断に利用できる。
配列表フリーテキスト
[0083] 配列番号 1 人工配列の説明: ART1由来合成ペプチド
配列番号 2、 3 人工配列の説明: ART4由来合成ペプチド
配列番号 4、 5—人工配列の説明: Cyp-B由来合成ペプチド
配列番号 6— 8—人工配列の説明: Lck由来合成ペプチド
配列番号 9 人工配列の説明: MAGE1由来合成ペプチド
配列番号 10-人工配列の説明: MAGE3由来合成ペプチド 配列番号 11 人工配列の説明: SART1由来合成ペプチド 配列番号 12— 14 人工配列の説明: SART2由来合成ペプチド 配列番号 15、 16 人工配列の説明: SART3由来合成ペプチド 配列番号 17 人工配列の説明: Her-2/neu合成ペプチド 配列番号 18— 22-人工配列の説明: p53由来合成ペプチド 配列番号 23— 26-人工配列の説明: MRP3由来合成ペプチド 配列番号 27— 36-人工配列の説明: AFP由来合成ペプチド 配列番号 37— 46-人工配列の説明: hTERT由来合成ペプチド 配列番号 47—人工配列の説明: HIV由来合成ペプチド 配列番号 48 人工配列の説明: EMV由来合成ペプチド 配列番号 49 人工配列の説明: CMV由来合成ペプチド 配列番号 50-人工配列の説明: HLA-A2拘束性合成ペプチド 配列番号 51 人工配列の説明: tetanus toxoid由来ヘルパーぺ

Claims

請求の範囲
[1] 配列番号 4、 14、 15、 18、 19、 23、 24, 25, 27、 28、 29, 30、 34, 37、 38、 39,
40、 41、および 44から選ばれるいずれか 1に記載のアミノ酸配列を含む腫瘍抗原べ プチド。
[2] 配列番号 4、 14、 15、 18、 19、 23、 24, 25, 27、 28、 29, 30、 34, 37、 38、 39,
40、 41、および 44から選ばれるいずれか 1に記載のアミノ酸配列力もなる腫瘍抗原 ペプチド。
[3] 請求項 1または 2記載の腫瘍抗原ペプチドを含む、抗腫瘍ペプチドワクチン。
[4] HLA-A24陽性抗原提示細胞を請求項 1または 2記載の腫瘍抗原ペプチドと培養し て得られる、該腫瘍抗原ペプチドを提示した抗原提示細胞。
[5] 抗原提示細胞が榭状細胞である、請求項 4記載の抗原提示細胞。
[6] 配列番号 4、 14、 15、 18、 19、 23、 24, 25, 27、 28、 29, 30、 34, 37、 38、 39,
40、 41、および 44から選ばれるいずれか 1に記載のアミノ酸配列をコードする塩基 配列を含む核酸分子。
[7] 請求項 6記載の核酸分子を含む、抗腫瘍剤。
[8] 請求項 1または 2記載の腫瘍抗原ペプチドに特異的に結合しうる抗体。
[9] HLA-A24陽性患者から単離した腫瘍組織浸潤リンパ球もしくは末梢血リンパ球を、 請求項 1または 2記載の腫瘍抗原ペプチドおよび IL-2とともに培養することにより、細 胞障害性 T細胞を誘導する方法。
[10] 請求項 9記載の方法によって取得される細胞障害性 T細胞を含む抗腫瘍剤。
PCT/JP2005/003399 2004-03-01 2005-03-01 腫瘍抗原ペプチド WO2005083074A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006510525A JPWO2005083074A1 (ja) 2004-03-01 2005-03-01 腫瘍抗原ペプチド

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004056865 2004-03-01
JP2004-056865 2004-03-01

Publications (1)

Publication Number Publication Date
WO2005083074A1 true WO2005083074A1 (ja) 2005-09-09

Family

ID=34908997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003399 WO2005083074A1 (ja) 2004-03-01 2005-03-01 腫瘍抗原ペプチド

Country Status (2)

Country Link
JP (1) JPWO2005083074A1 (ja)
WO (1) WO2005083074A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010005069A1 (ja) * 2008-07-10 2010-01-14 東レ株式会社 免疫誘導剤及び癌の検出方法
EP2591799A4 (en) * 2010-07-07 2014-06-11 Greenpeptide Co Ltd CANCER PEPTIDE VACCINE
US9102715B2 (en) 2007-09-18 2015-08-11 Green Peptide Co., Ltd. CTL inducer composition
JP2017081836A (ja) * 2015-10-23 2017-05-18 国立大学法人金沢大学 細胞傷害性t細胞の作製方法
WO2018164637A1 (en) * 2017-03-08 2018-09-13 Agency For Science, Technology And Research T cell receptor like antibodies that bind to p53-mhc class i complex
US10611835B2 (en) 2008-07-10 2020-04-07 Toray Industries, Inc. Pharmaceutical composition for treatment and prevention of cancer
JP2020195379A (ja) * 2015-10-23 2020-12-10 国立大学法人金沢大学 細胞傷害性t細胞の作製方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003020306A1 (fr) * 2001-08-29 2003-03-13 Kyogo Itoh Desensibilisants

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003020306A1 (fr) * 2001-08-29 2003-03-13 Kyogo Itoh Desensibilisants

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9102715B2 (en) 2007-09-18 2015-08-11 Green Peptide Co., Ltd. CTL inducer composition
US9642900B2 (en) 2007-09-18 2017-05-09 Green Peptide Co., Ltd. CTL inducer composition
WO2010005069A1 (ja) * 2008-07-10 2010-01-14 東レ株式会社 免疫誘導剤及び癌の検出方法
US8901082B2 (en) 2008-07-10 2014-12-02 Toray Industries, Inc. Immunity-inducing agent and method for detection of cancer
JP5703562B2 (ja) * 2008-07-10 2015-04-22 東レ株式会社 免疫誘導剤及び癌の検出方法
US10611835B2 (en) 2008-07-10 2020-04-07 Toray Industries, Inc. Pharmaceutical composition for treatment and prevention of cancer
US11993650B2 (en) 2008-07-10 2024-05-28 Toray Industries, Inc. Pharmaceutical composition for treatment and prevention of cancer
EP2591799A4 (en) * 2010-07-07 2014-06-11 Greenpeptide Co Ltd CANCER PEPTIDE VACCINE
JP2017081836A (ja) * 2015-10-23 2017-05-18 国立大学法人金沢大学 細胞傷害性t細胞の作製方法
JP2020195379A (ja) * 2015-10-23 2020-12-10 国立大学法人金沢大学 細胞傷害性t細胞の作製方法
WO2018164637A1 (en) * 2017-03-08 2018-09-13 Agency For Science, Technology And Research T cell receptor like antibodies that bind to p53-mhc class i complex

Also Published As

Publication number Publication date
JPWO2005083074A1 (ja) 2007-11-22

Similar Documents

Publication Publication Date Title
Hörig et al. Phase I clinical trial of a recombinant canarypoxvirus (ALVAC) vaccine expressing human carcinoembryonic antigen and the B7. 1 co-stimulatory molecule
Komori et al. Identification of HLA-A2-or HLA-A24-restricted CTL epitopes possibly useful for glypican-3-specific immunotherapy of hepatocellular carcinoma
Sawada et al. Phase I trial of a glypican-3–derived peptide vaccine for advanced hepatocellular carcinoma: immunologic evidence and potential for improving overall survival
Tsuda et al. Vaccination with predesignated or evidence-based peptides for patients with recurrent gynecologic cancers
Okuno et al. Phase I clinical trial of a novel peptide vaccine in combination with UFT/LV for metastatic colorectal cancer
Cormier et al. Enhancement of cellular immunity in melanoma patients immunized with a peptide from MART-1/Melan A
Butterfield et al. T-cell responses to HLA-A* 0201 immunodominant peptides derived from α-fetoprotein in patients with hepatocellular cancer
Scheibenbogen et al. Analysis of the T cell response to tumor and viral peptide antigens by an IFNγ‐ELISPOT assay
Mizukoshi et al. Comparative analysis of various tumor‐associated antigen‐specific t‐cell responses in patients with hepatocellular carcinoma
de Vos van Steenwijk et al. An unexpectedly large polyclonal repertoire of HPV-specific T cells is poised for action in patients with cervical cancer
AU2004208469B2 (en) Survivin-derived peptides and use thereof
Honma et al. Phase I clinical study of anti-apoptosis protein survivin-derived peptide vaccination for patients with advanced or recurrent urothelial cancer
Uemura et al. A phase I trial of vaccination of CA9-derived peptides for HLA-A24-positive patients with cytokine-refractory metastatic renal cell carcinoma
Perez et al. Results from a phase I clinical study of the novel Ii-Key/HER-2/neu (776–790) hybrid peptide vaccine in patients with prostate cancer
Mizukoshi et al. Identification of α‐fetoprotein‐derived peptides recognized by cytotoxic T lymphocytes in HLA‐A24+ patients with hepatocellular carcinoma
WO2005083074A1 (ja) 腫瘍抗原ペプチド
Machlenkin et al. Human CTL epitopes prostatic acid phosphatase-3 and six-transmembrane epithelial antigen of prostate-3 as candidates for prostate cancer immunotherapy
RU2009122204A (ru) Микроорганизмы и их фракции, индуцирующие специфичный к углеводу клеточный иммунитет
Kawashima et al. Identification of GP100‐derived, melanoma‐specific cytotoxic T‐lymphocyte epitopes restricted by HLA‐A3 supertype molecules by primary in vitro immunization with peptide‐pulsed dendritic cells
Zhang et al. Regulatory T cell depletion enhances tumor specific CD8 T-cell responses, elicited by tumor antigen NY-ESO-1b in hepatocellular carcinoma patients, in vitro
Han et al. Dynamic and specific immune responses against multiple tumor antigens were elicited in patients with hepatocellular carcinoma after cell-based immunotherapy
Pullarkat et al. A phase I trial of SD-9427 (progenipoietin) with a multipeptide vaccine for resected metastatic melanoma
WO2003050140A1 (fr) Antigenes tumoraux
Matsui et al. Identification of a promiscuous epitope peptide derived from HSP70
Brinck-Jensen et al. Immunogenicity of twenty peptides representing epitopes of the hepatitis B core and surface antigens by IFN-γ response in chronic and resolved HBV

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510525

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase