WO2005082412A1 - 癌の治療および予防薬 - Google Patents

癌の治療および予防薬 Download PDF

Info

Publication number
WO2005082412A1
WO2005082412A1 PCT/JP2005/003032 JP2005003032W WO2005082412A1 WO 2005082412 A1 WO2005082412 A1 WO 2005082412A1 JP 2005003032 W JP2005003032 W JP 2005003032W WO 2005082412 A1 WO2005082412 A1 WO 2005082412A1
Authority
WO
WIPO (PCT)
Prior art keywords
dscr
cancer
protein
gene
cell
Prior art date
Application number
PCT/JP2005/003032
Other languages
English (en)
French (fr)
Inventor
Takashi Minami
Tatsuhiko Kodama
Takao Hamakubo
Hiroko Iwanari
Masahiro Hayashi
Original Assignee
Perseus Proteomics Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Perseus Proteomics Inc. filed Critical Perseus Proteomics Inc.
Priority to JP2006510447A priority Critical patent/JPWO2005082412A1/ja
Publication of WO2005082412A1 publication Critical patent/WO2005082412A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to a drug for treating and preventing cancer.
  • DSCR-1 is an abbreviation for DOWN SYNDROME CRITICAL REGION 1, which is the same as MCIP1 (MYOCYTE-ENRICHED CALCINEURIN—INTERACTING P ROTEIN), CSP1 (CALCIPRESSIN) and MODULATORY CALCINEU RIN INTERRACTING PROTEIN.
  • Cancer is a disease accompanied by abnormal cell proliferation. It is known that abnormal cell proliferation involves angiogenesis, apoptosis arrest, and abnormal cell cycle. Although there is little report that DSCR-1 is involved in these phenomena, it has been reported that FASL is induced in Thl cells in DSCR-1 gene-deficient mice, leading to cell death ( Non-patent document 1). This is cell death due to DSCR-1 deficiency, which is the opposite phenomenon from that the present invention aims to suppress abnormal growth of cancer cells by enhancing DSCR1.
  • Non-patent literature l Nature Immun. 2003, 4: 874-881
  • An object of the present invention is to provide a therapeutic and prophylactic agent for cancer having a new mechanism of action.
  • DSCR-1 had an angiogenesis inhibitory action, a cell migration inhibitory action, a cell adhesion inhibitory action, and a cell adhesion inhibitory action. It has been found that there is a cycle stopping action.
  • xenograft cancer cells As a result of examining the effect on cell proliferation, it was confirmed that the growth of transplanted cancer cells was inhibited, and a substance that enhances DSCR-1 protein, DSCR-1 gene or DSCR-1 protein expression is useful as a therapeutic or preventive agent for cancer I found that.
  • the present invention provides a therapeutic and prophylactic agent for cancer comprising a DSCR-1 protein, a DSCR-1 gene or a substance that enhances DSCR-1 protein expression as an active ingredient.
  • the present invention also provides a method for treating or preventing cancer, which comprises administering a substance that enhances DSCR-1 protein, DSCR-1 gene or DSCR-1 protein expression.
  • the present invention also provides use of a DSCR-1 protein, a DSCR-1 gene or a substance that enhances DSCR-1 protein expression for the manufacture of a medicament for treating or preventing cancer.
  • the anticancer agent of the present invention has a multifunctionality, that is, an anticancer agent that exhibits not only inhibition of angiogenesis, suppression of cell migration, suppression of cell adhesion and cell cycle arrest but also suppression of inflammation as compared with conventional anticancer agents It is.
  • FIG. 1 is a graph showing the results of RT-PCR studies on suppression of angiogenesis / growth stimulating factor and pro-inflammatory gene expression by DSCR-1.
  • FIG. 2 is a view showing the effect of DSCR-1 on tube formation ability.
  • FIG. 3 is a graph showing the effect of DSCR-1 on cell migration.
  • FIG. 4 is a view showing the effect of DSCR-1 on cell wound recovery.
  • FIG. 5 is a view showing a state of cells 10 days after cell wounding.
  • FIG. 6 is a graph showing the examination of Gl (GO) suppression effect by DSCR-1 expression analyzed by FACS.
  • FIG. 7 is a view showing observation of a hematoxylin & eosin stained specimen.
  • FIG. 8 is a view showing the effect on the hemoglobin content in a Matrigel plug.
  • FIG. 9 is a view showing the examination of the tumor-suppressing effect of DSCR-1.
  • FIG. 10 is a schematic diagram of the DSCR-1 gene structure.
  • FIG. 11 is a view showing a riboprobe sequence for specifying an isoform induced to be expressed by HUVEC.
  • FIG. 12 is a view showing a result of RNase protection assay.
  • FIG. 13 shows the results of RT-PCR using DSCR-1 (Exon 1567) -specific PCR primers.
  • FIG. 15 is a graph showing the results of examining the inhibition of adhesion of a lymphoma-derived cell line to vascular endothelial cells by DSCR-1.
  • FIG. 16 is a view showing the results of an examination of DSCR-1 inhibition of adhesion of a lymphoma-derived cell line to vascular endothelial cells.
  • FIG. 17 is a view showing the results of an examination of DSCR-1 inhibition of adhesion of a lymphoma-derived cell line to vascular endothelial cells.
  • Construction of the DSCR-1 gene expression system can be performed as follows.
  • the full-length cDNA of DSCR-1 is expressed in a cell line such as HUVEC whose expression is enhanced by thrombin stimulation or in a steady state, and obtained by RT-PCR of a cell line such as HepG2. It can be incorporated into commonly used closing vectors.
  • the full-length DSCR-1 cDNA can be incorporated into a known expression vector suitable for expression in each host.
  • viruses commonly used for gene expression such as retrovirus vectors, adenovirus vectors, adeno-associated virus vectors, simple herpes virus vectors, and plexivirus vectors
  • viruses commonly used for gene expression such as retrovirus vectors, adenovirus vectors, adeno-associated virus vectors, simple herpes virus vectors, and plexivirus vectors
  • a promoter for expressing DSCR-1 a commonly used promoter such as CMV depending on the host can be used.
  • side effects can also be suppressed by using a promoter that works specifically for cancer cells or using a promoter that can induce expression under certain conditions.
  • tags such as GST, HA, FLAG and His can be added for efficient purification.
  • GFP protein can be co-expressed using an expression vector such as pIRES-EGFP (Clontech). .
  • an expression vector such as pIRES-EGFP (Clontech).
  • a signal peptide can be added to the DSCR-1 protein, secreted extracellularly, and the DSCR-1 protein can be recovered in the medium.
  • the constructed DSCR-1 expression vector is generally used for the expression of recombinant proteins such as Escherichia coli, CHO, animal cells such as COS-7, insect cells such as Sf-9, and yeast. Can be expressed. It can also be expressed in human cancer cells and the like for the treatment and prevention of cancer cells.
  • DSCR-1 protein can be obtained, for example, by the following method.
  • the DSCR-1 production enhancer can be screened, for example, by the following method.
  • a method for measuring DSCR-1 gene expression and protein expression methods well known to those skilled in the art are used. Specifically, using DSCR-1 expression tissues and cell lines and DSCR-1 forced expression cells, cultivating the cells with a screening conjugate, and measuring the DSCR-1 gene or protein amount by a known method After that, screening can be performed by comparing the amount with no addition.
  • Methods commonly used by those skilled in the art such as RT-PCR and quantitative PCR after gene extraction can be used for measuring the gene amount.
  • RT-PCR and quantitative PCR after gene extraction can be used as a method for measuring the amount of DSCR-1 protein.
  • known methods such as ELISA can be used as a method for measuring the amount of DSCR-1 protein.
  • the general method is to prepare a vector in which the promoter region of the DSCR-1 gene is connected upstream of the cDNA of a marker protein such as luciferase-galatatosidase, GFP, and the like. Transfection.
  • the target compound can be screened by culturing the screened conjugate on the transfected cells, culturing the cells, and detecting the marker protein by a method suitable for each.
  • DSCR-1 protein, DSCR-1 gene and substances that enhance the expression of DSCR-1 protein have angiogenesis inhibitory effects, cell migration inhibitory effects, cell adhesion inhibitory effects, cell cycle arrest effects, and cancer cell proliferation. It has an inhibitory effect and is useful as a therapeutic and prophylactic agent for various cancers.
  • HUVEC-based vascularization assays and angiogenesis assays using chicken eggs, cornea, avian chorioallantoic membrane, avian, mouse and rat corneas are used. is there.
  • HUVEC is seeded on a collagen gel or Matrigel and bound to a carrier such as polylysine, polyarginine, HIV-Tat, HSV VP22, etc. to promote the transfer of DSCR-1 protein into cells.
  • a carrier such as polylysine, polyarginine, HIV-Tat, HSV VP22, etc.
  • the ability to form a capillary network and a tube can be examined using the transfected HUVEC.
  • injection of a carrier containing DSCR-1 or introduction of the DSCR-1 gene into chicken eggs, cornea, avian chorioallantoic membrane, avian heron, mouse and rat corneas, and observation of subsequent angiogenesis By doing so, DSCR-1 angiogenesis inhibitory ability can be examined.
  • the cell cycle arrest is evaluated using a known method.
  • cells cultured in a medium supplemented with polylysine, polyarginine, HIV-Tat, HSV VP22, etc., or the substance to be evaluated are expressed.
  • the cells are harvested in a conventional manner and stained with a fluorescent dye that binds to DNA, such as, for example, providide iodide.
  • the state of the cell cycle in which the cell is located can be estimated by measuring the amount of fluorescence of the cell by FACS or the like.
  • the effect of using the transfected cell was examined. You can find out. This can be used to determine whether the cell cycle has stopped.
  • Inhibition of cell adhesion can be evaluated using a known method. That is, by stimulating vascular endothelial cells and the like adherent to a culture vessel using cytokin, thrombin and the like as various cell stimulating agents, an adhesion factor is expressed on the cell surface. Then, the cells are mixed and cultured with cells such as THP-1, U-937, which are floating monocyte cells. After washing the non-adherent cells, count the number of adherent cells. In order to evaluate the cell adhesion inhibitory effect of a drug, it can be determined by comparing with a drug-free addition.
  • a cancer cell line such as B16 melanoma cell is transplanted into a mouse, and when the size of the tumor reaches a certain size (about 50 mm 3 ), Intravenous or oral administration of a virus or cell into which a drug or gene has been introduced, a plasmid vector capable of expressing the substance to be evaluated, and the like. Thereafter, by measuring the size of the tumor with a caliper over time, the effect of suppressing the transplanted cancer cells can be determined.
  • Cancers to be treated and prevented by the cancer treatment and prevention agents of the present invention are not particularly limited, but include melanoma, liver cancer, lung cancer, colon cancer, rectal cancer, stomach cancer, spleen cancer, breast cancer, uterine cancer, prostate cancer, leukemia, Lymphoma and the like.
  • DSCR-1 protein is administered by binding to a carrier such as polylysine, polyarginine, HIV-Tat, HSV VP22, or the like, in order to promote the translocation into a target cell, and then to an appropriate solution such as physiological saline. Dissolved in 0.1 lOOmgZ person can be administered intravenously.
  • DSCR-1 gene is administered by a general method known to those skilled in the art.
  • a general method is to directly or locally retain a retrovirus vector, adenovirus vector, adeno-associated virus vector, simple herpes virus vector, vaccinia virus vector, etc. incorporating DSCR-1 cDNA.
  • a gene transfer method without using a virus a gene is introduced using a ribosome, gene gun, polylysine, or the like into a plasmid vector capable of expressing DSCR-1.
  • the full-length cDNA encoding human DSCR-1 (exon 4-7) was obtained by converting the 1st strand cDNA prepared from 5 ug of HUVEC total RNA using Superscript (Invitrogen, Cat No. 11904-018) into type III, Ex-Taq ( Amplification was performed by PCR using Takara, Cat No.
  • RROOIA.HUVEC-derived cDNA as PCR conditions, 50 pmol of sense primer (SEQ ID NO: 3), antisense primer (SEQ ID NO: 4), and 5 10 X Ex — Taq buffer, 4 L of dNTP mix (2.5 mM each), 2.5 Units of Ex— 50 ⁇ L of reaction solution containing Taq DNA polymerase, 94 ° C, 1 minute, 62 ° C, 1 minute, A cycle consisting of 3 minutes at 72 ° C. was performed 30 times.Amplification products obtained by the PCR reaction were inserted into the TA vector pGEM—T easy using the pGEM—T Easy Vector System I (Promega Cat. No. A1360).
  • a cDNA encoding human full-length DSCR-1 (Exons 4-7) was isolated.
  • the sequence represented by 1 represents the nucleotide sequence of the human DSCR-1 gene, and the sequence represented by SEQ ID NO: 2 represents the amino acid sequence of the human DSCR-1 protein.
  • SEQ ID NO: 3 AAGGAACCTACAGCCTCTTGGAAAGG
  • SEQ ID NO: 4 TTGGAATGCGTCCTCGTCGCGTGCCAG
  • DSCR-1 full-length cDNA was obtained from HUVEC total RNA by RT-PCR, and then subcloned into pIRES-EGFP (Clontech).
  • the DSCR-1-IRES-EGFP sequence was excised and inserted into a pAdeno vector (Clontech) having a CMV promoter to construct a DSCR-1 expression construct.
  • the DSCR-1 expressing adenovirus was obtained by infecting and amplifying HEK-293 cells.
  • thrombin After treating the subconfluent HUVEC in 0.5% FBS, EBM-2 basal medium overnight, 1.5 units / mL thrombin was added. Total RNA was purified using Trizol. Preparation of cRNA and hybridization to Affimetrix Human Focus Array were performed based on the Affimetrix protocol. Using two types of HUVEC Badge At 1, 4, and 18 hours, the gene variation upon thrombin stimulation was double observed. Table 1 shows the results of HUVEC DNA microarray with thrombin stimulation. The genes most frequently induced by thrombin stimulation are shown from the top to the fifth. DSCR-1 was shown to be the most induced gene upon thrombin stimulation.
  • Table 2 shows Affimetrix microarray data using the DSCR-1 probe.
  • DSCR-1 is an early inducible gene that peaks 1 hour after thrombin stimulation.
  • Table 3-5 shows the results of a comprehensive analysis of gene fluctuations during 1 hour of HUVEC thrombin stimulation under DSCR-1 constitutive expression.
  • the total data obtained was classified into three categories.
  • Genes whose induction is reduced at least 2-fold by the presence of DSCR-1 25 genes out of a total of 8974 genes were obtained. Seven of them were involved in cell proliferation and angiogenesis, and eight genes were involved in inflammation.
  • the other 10 genes are serine threonine kinase ⁇ transcription factors, and DSCR-1 has anti-angiogenic and anti-inflammatory effects. Anything contrary to was not extracted.
  • HUVEC thrombin stimulation under DSCR-1 constitutive expression Gene variation per 1 hour (decrease) Thrombin stimulation
  • RNA in (lane 6) Adeno—control unstimulated (lane), adeno—control infected thrombin stimulated for 1 hour (lane 4), adeno— DSCR-1 infected thrombin stimulated for 1 hour (lane 5), adeno—DSCR—uninfected (lane 6) RT-PCR was performed based on the RNA in ().
  • Fig. D Cyclophilin A was used as an endogenous control. The PCR primers and cycle numbers are shown below.
  • Tissue factor (22 cycles), forward 5, -TCAGAGTTTTGAACAGGT GGGAACA-3, (SEQ ID NO: 5) and reverse 5, TTCTCCTGGCCCATACAC TCTACCG-3, (SEQ ID NO: 6); E-selectin (22 cycles), forward 5, one CATG TGGAGCCACAGGACACTGGTCTG-3, (SEQ ID NO: 7) and reverse 5, TC TGATTCAAGGCTTTGGCAGCTGCTG-3 ′ (SEQ ID NO: 8); Angiopoietin-2 (20 cycles), forward 5, -ACAAATGTATTTGCAAATGTTCACAAA-3, (SEQ ID NO: 9) and reverse 5, -GAAATCTGCTGGTCGGATCATCATG GT-3, (SEQ ID NO: 10); Cycle), forward 5, CCGGTCATGAGGC TGTTCCCTTGC-3, (SEQ ID NO: 11) and reverse 5, CTCGCTGGGGTAC TCGGACACGAC-3 '(SEQ ID NO: 12); p27 (26 cycles), forward
  • (A, d) is a bright part X40 enlarged view
  • (b, e) is a fluorescent part X40 enlarged view
  • (c, f) is a fluorescent
  • the optical section X100 is an enlarged view.
  • the amount of EGFP was the same both up and down (the infection efficiency of adenovirus was the same), but the tube formation ability was reduced by DSCR-1 expression.
  • HUVECs with high DSCR-1 expression had reduced levels of wound healing compared to controls, and the lack was restored by co-infection with adeno-CA-NF-AT. Furthermore, Ade n o - whereas the HUVEC control infected cells beyond the post Con full E cement has begun peeling dish or al, adeno- DSCR- 1 remains infected HUVEC is can not be removed completely wound (arrows) stationary state (FIGS. 3, 4 and 5 (A, B)).
  • Subconfluent HUVEC were infected with adeno control or adeno-DSCR-1 and the cell cycle of the cells was identified by measuring the content of provodidium iodide.
  • Adeno— DSCR— 1 dose group is adeno—control 9.1 times after 4 days, 7.7 times after 6 days, 7.4 times after 8 days (all P ⁇
  • FIG. 10 is a schematic diagram of the human DSCR-1 gene structure. mRNA also has four alternative first exons (box lto4) and three common ethasons (box 5to7)! Shown are two major isoforms, DSCR-1 (Exons 4-7) and DSCR-1 (Ethason 1567) .
  • Fig. 11 shows a riboprobe sequence to identify isoforms induced by HUVEC. Is shown.
  • Figure 12 shows the results of the RNase protection assay. 10 ⁇ g yeast RNA (lane 2), 10 g total RNA untreated HUVEC (lane 3), thrombin treatment (lanes 7-9), TNF- ⁇ treatment (lanes 10-12).
  • the band indicated by the arrow is the D SCR-1 (Exon 4-7) force isoform.
  • D SCR-1 Exon 4-7) force isoform.
  • no expression of DSCR-1 (Exon 1567) was detected in the RNase protection assay (* in the figure).
  • G APDH is an endogenous control of the amount of RNA loaded.
  • the early induction of DSCR-1 (composed of exons 4-7) gene expression was clearly demonstrated by RNase protection assays using exon 4-7-specific riboprobes.
  • FIG. 13 shows the results of RT-PCR using DSCR-1 (Exon 1567) -specific PCR primers. Its expression was detected at the 40th amplification cycle, but the expression was not changed by thrombin or TNF-a stimulation.
  • PAR-1 TRAP which is a selective algorithm, is set at 10pm.
  • DSCR-1 inhibits NF-AT by inhibiting calci-eurin (Ca 2+ Z calmodulin-dependent phosphatase) (Hum. Molec. Genet. 2000, 9: 1681-1690). It is. However, not all of the DSCR-1 signals are transmitted through the calci-Eurin NF-AT pathway, but p21 and p27, which play a role in cell cycle braking, and increased expression of ADAMTS1, which induces an anti-angiogenic effect. It was inferred from the present study that this was derived from the transmission pathway.
  • angiogenesis There is no report that calci-eulin is involved in angiogenesis.
  • Cyclosporin A a calci-eurin inhibitor, suppresses the expression of cyclins A and E by FGF (Arch Biochem Biophys. 1998, 353 (2): 374-8)
  • cyclosporin A promotes cdk4 kinase activity, which is the opposite phenomenon to the cell cycle (Oncogene. 2000, 19 (24): 2820-7). Is not necessarily suppressed.
  • cell adhesion is an important phenomenon.
  • cell adhesion in a field of inflammation is an important phenomenon in which inflammation images can be confirmed in cancer tissues.
  • the following study was conducted to clarify the involvement of DSCR-1 in cell adhesion.
  • serum-starved media EBM-2 plus 0.5% FBS
  • thrombin (2 units Zml) (Calbiochem) or PBS.
  • HUVEC was washed with RPMI-1640 plus 1% FBS (1 &), and the lymphoma cell line U-937 cells, which were red labeled with 11-26 (31 8 111 &), were further washed with 7.5xl0 5 cellsZwell. Under the above conditions, leave for 1.5 hours did. Thereafter, unadhered U-937 cells were washed away twice with HBSS (Invitrogen), and the adhered U-937 cells were observed under a transmitted light and a microscope under fluorescence.
  • HBSS Invitrogen
  • Quantitation of attached U-937 was calculated from NIH images using at least four independent fields and the amount of fluorescence present.
  • Ad-Control-infected HUVECs have a 6-fold increase in U-937 cell adhesion with thrombin stimulation, whereas Ad-DSCR-1 infected HUVECs have U-937 cell adhesion with thrombin stimulation. Is 2.5 times, which is about 58% smaller than that of Ad-control (Fig. 15 and Fig. 17). Although this reduction effect is less than the 77% suppression in the presence of Ad-CA-I ⁇ , it is clear that the constitutive expression of DSCR-1 can significantly suppress monocyte adhesion.
  • Constitutively expressing NF-AT the main target-inhibiting transcription factor of DSCR-1, shows that monocytes are always in an adherent state and inflamed without thrombin stimulation. And Fig. 17), DSCR-1 was presumed to be effective for cancer metastasis and inflammation inhibition.
  • the number of deaths from cancer is increasing year by year, and there is still no cure for cancer that has been treated with many compounds.
  • the pathogenesis of cancer is being elucidated by molecular biological methods, and new anticancer drugs are awaited.
  • DSCR-1 exhibited suppression of cell migration, suppression of cell adhesion, arrest of cell proliferation and capillary formation, and inhibition of xenograft-induced growth of transplanted cancer cells in vivo.
  • suppression of inflammation based on inhibition of calci-eurin is also conceivable. Therefore, it is expected that the present invention can provide a cancer suppression and therapeutic agent based on a novel mechanism of action.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

 新規作用機序に基づく抗癌剤の提供。  DSCR−1蛋白、DSCR−1遺伝子又はDSCR−1蛋白発現を亢進する物質を有効成分とする癌の治療・予防薬。

Description

明 細 書
癌の治療および予防薬
技術分野
[0001] 本発明は癌の治療および予防薬に関する。
背景技術
[0002] 癌による死亡者は年々増加し、多くの化合物により治療が試みられている力 未だ 癌に対する特効薬はない。癌の発症機序が分子生物学的な方法で解明されつつあ り、新たな抗癌剤が待たれている。
[0003] DSCR— 1は DOWN SYNDROME CRITICAL REGION 1の略称であり、 MCIP1 (MYOCYTE- ENRICHED CALCINEURIN— INTERACTING P ROTEIN)、 CSP1 (CALCIPRESSIN)および MODULATORY CALCINEU RIN INTERRACTING PROTEINと同一である。
[0004] 癌は細胞の異常増殖を伴う疾患である。細胞の異常増殖には血管新生、アポトー シスの停止、細胞周期の異常が関与するということが知られている。し力しながら、 D SCR— 1がそれらの現象に関与するとの報告は殆ど知られていないが、唯一 DSCR— 1遺伝子欠損マウスにおいて Thl細胞に FASLが誘導され細胞死に繋がるとの報告 がある(非特許文献 1)。これは DSCR— 1欠損による細胞死であり、本発明が DSCR 1亢進による癌細胞の異常増殖の抑制を目標としていることとは逆の現象である。 非特許文献 l :Nature Immun. 2003, 4 : 874-881
発明の開示
発明が解決しょうとする課題
[0005] 本発明の目的は、新たな作用機序を有する癌の治療および予防薬を提供すること にある。
課題を解決するための手段
[0006] そこで本発明者は、 DSCR— 1について種々の作用を検討していたところ、全く意外 にも、 DSCR - 1に血管新生抑制作用、細胞遊走の抑制作用、細胞接着の抑制作用 及び細胞周期の停止作用があることを見出した。さらに、ゼノグラフトによる移植癌細 胞増殖への影響を検討した結果、移植癌細胞の増殖抑制を確認し、 DSCR— 1蛋白 、 DSCR— 1遺伝子又は DSCR— 1蛋白発現を亢進する物質が癌の治療および予防 薬として有用であることを見出した。
[0007] すなわち、本発明は、 DSCR— 1蛋白、 DSCR— 1遺伝子又は DSCR— 1蛋白発現 を亢進する物質を有効成分とする癌の治療および予防薬を提供するものである。 また、本発明は、 DSCR— 1蛋白、 DSCR— 1遺伝子又は DSCR— 1蛋白発現を亢 進する物質を投与することを特徴とする癌の治療'予防方法を提供するものである。 また、本発明は、癌の治療'予防薬製造のための DSCR— 1蛋白、 DSCR— 1遺伝 子又は DSCR - 1蛋白発現を亢進する物質の使用を提供するものである。
発明の効果
[0008] 本発明の抗癌剤は、従来の抗癌剤に比較し、多機能性、すなわち血管新生の抑制 、細胞遊走の抑制、細胞接着の抑制および細胞周期を停止するのみならず炎症抑 制を示す抗癌剤である。
図面の簡単な説明
[0009] [図 1]DSCR - 1 による血管新生誘発 ·成長刺激因子および炎症誘発遺伝子発現抑 制の RT-PCRによる検討結果を示す図である。
[図 2]管腔形成能に対する DSCR— 1の影響を示す図である。
[図 3]DSCR— 1の細胞遊走能への影響の検討を示す図である。
[図 4]細胞創傷の回復に与える DSCR— 1の影響を示す図である。
[図 5]細胞創傷後 10日後の細胞の状態を示す図である。
[図 6]FACS により解析した DSCR— 1 発現による Gl (GO) 抑制効果の検討を 示す図である。
[図 7]へマトキシリン &ェォシン染色検体の観察を示す図である。
[図 8]マトリゲルプラグ中のヘモグロビン含量への影響を示す図である。
[図 9]DSCR-1の腫瘍抑制効果の検討を示す図である。
[図 10]DSCR-1遺伝子構造の模式図である。
[図 11]HUVECで発現誘導されるァイソフォームを特定するためのリボプローブ配列 を示す図である。 [図 12]RNase プロテクションアツセィの結果を示す図である。
[図 13]DSCR— 1 (ェクソン 1567)特異的 PCRプライマーを用いた RT— PCRの結果 を示す図である。
[図 14]TRAPによる DSCR-1遺伝子発現亢進を示す図である。
[図 15]リンパ腫由来細胞株の血管内皮細胞への接着における DSCR— 1による阻害 の検討結果を示した図である。
[図 16]リンパ腫由来細胞株の血管内皮細胞への接着における DSCR— 1による阻害 の検討結果を示した図である。
[図 17]リンパ腫由来細胞株の血管内皮細胞への接着における DSCR— 1による阻害 の検討結果を示した図である。
発明を実施するための最良の形態
以下、本発明について詳細に説明する。
DSCR— 1遺伝子発現系の構築は、次のようにして行うことができる。
DSCR— 1の全長 cDNAは、トロンビン刺激で発現が亢進する HUVEC等の細胞 株や定常状態で発現して 、る HepG2等の細胞株の total RNA力 RT— PCR法に より取得後、当業者に一般的に用いられるクローユングベクターに組み込むことがで きる。 DSCR-1蛋白を大腸菌、動物細胞、昆虫細胞、酵母などで発現させるために はそれぞれの宿主での発現に適した公知の発現ベクターに DSCR— 1の全長 cDNA を組み込むことができる。また、プラスミドに限らず、レトロウイルスベクター、アデノウ ィルスベクター、アデノ随伴ウィルスベクター、単純へルぺスウィルスベクター、ヮクシ ユアウィルスベクター等、一般的に遺伝子発現に使われるウィルスも用いることがで きる。 DSCR— 1を発現させるためのプロモーターとしては宿主に応じた CMV等の一 般的に用いられているプロモーターを用いることができる。また、人体への遺伝子導 入の際には、癌細胞特異的に働くプロモーターを用いたり、ある一定条件下発現を 誘導できるプロモーターを用いたりすることにより副作用を抑えることもできる。タンパ ク精製の際には効率的な精製を目的に GST、 HA、 FLAG, His等のタグを付加す ることが出来る。 DSCR— 1蛋白発現細胞の識別ィ匕のためにたとえば pIRES— EGFP (Clontech)等の発現ベクターを用いて GFPタンパク質を共発現させることも出来る 。また、精製の簡便化のために、 DSCR— 1蛋白にシグナルペプチドを付加し、細胞 外に分泌させ、培地中に DSCR— 1蛋白を回収することもできる。構築した DSCR— 1 発現用ベクターは大腸菌、 CHO、 COS— 7等の動物細胞、 Sf— 9等の昆虫細胞、酵 母等の一般的に組み換えタンパク質の発現に用いられて 、る宿主にお 、て発現さ せることが出来る。また、癌細胞の治療や予防のためにヒト癌細胞等においても発現 させることがでさる。
[0011] DSCR— 1蛋白は、例えば次の方法により取得できる。
強制発現細胞株は公知の一般的な方法により培養し、 DSCR— 1蛋白を含む培養 物を得ることができる。ウィルスの場合、公知の宿主細胞に感染させることにより DSC R— 1蛋白を含む培養物を得ることができる。また、大腸菌、酵母など、その他の公知 の一般的に組み換えタンパク発現に用いられる生物においても同様に DSCR— 1蛋 白を含む培養物を得ることができる。さらに、天然に DSCR-1を発現している HepG 2等の細胞株や、トロンビン刺激後に天然の DSCR— 1発現を亢進する HUVEC等の 細胞株からも、同様に公知の培養方法により培養することにより DSCR— 1蛋白を含 む培養物を得ることができる。
[0012] DSCR— 1蛋白を含む培養物から蛋白の一般的な分離 ·精製法である陽 Z陰ィォ ン交換クロマトグラフィー、ゲルろ過クロマトグラフィー、ァフニティークロマトグラフィー 、キレートクロマトグラフィー等にて DSCR— 1蛋白を精製することができる。
[0013] DSCR— 1産生亢進物質は、例えば次の方法によりスクリーニングできる。
DSCR— 1遺伝子発現ならびに蛋白発現を測定する方法として、当業者により良く 知られた方法が用いられる。具体的には、 DSCR— 1発現組織、細胞株および DSC R— 1強制発現細胞を用い、スクリーニングィ匕合物を加えて培養し、 DSCR— 1遺伝子 あるいは蛋白量を知られた方法にて測定した後、無添加時の量と比較することにより スクリーニングすることができる。
遺伝子量の測定には遺伝子抽出後に RT— PCR、定量的 PCR等、当業者が一般 的に用いる方法が利用できる。 DSCR— 1蛋白量を測定する方法としては ELISA等 の知られた方法が利用できる。
また、 DSCR— 1遺伝子の発現を向上する物質のスクリーニングのためには、一般 的に用いられているレポータージーンアツセィを用いることもできる。一般的な方法と は、 DSCR— 1遺伝子のプロモーター領域をルシフェラーゼゃガラタトシダーゼ、 GF P等のマーカータンパク質の cDNAの上流に接続したベクターを作製し、このべクタ 一を一般的な方法により、動物細胞にトランスフエクシヨンする。トランスフエクシヨンさ れた細胞に、スクリーニングィ匕合物をカ卩えて培養し、マーカータンパク質をそれぞれ に適した方法で検出することによって目的の化合物をスクリーニングすることができる 上記の如くして得られる DSCR— 1蛋白、 DSCR— 1遺伝子および DSCR— 1蛋白発 現を亢進する物質は、血管新生抑制作用、細胞遊走抑制作用、細胞接着の抑制作 用、細胞周期の停止作用、および癌細胞の増殖抑制作用を有し、種々の癌の治療 および予防薬として有用である。
[0014] DSCR— 1の血管新生抑制能を調べるには、 HUVECを用いた管腔形成アツセィ や鶏卵や角膜、トリの絨毛尿膜、ゥサギ、マウス、ラットの角膜を用いた血管新生測定 法がある。一般的な方法としては、コラーゲンゲルやマトリゲル上に HUVECを播種 し、 DSCR— 1蛋白を細胞内への移行を促進するためのポリリジン、ポリアルギニン、 HIV— Tat、 HSV VP22等の担体と結合し、培地に加えて培養後の管腔形成を顕 微鏡下で観察する。また、 DSCR— 1の遺伝子を導入した際の効果を調べる方法とし ては、遺伝子導入した HUVECを用いて capillary network, tube形成能を調べる ことができる。また、鶏卵や角膜、トリの絨毛尿膜、ゥサギ、マウス、ラットの角膜へ、 D SCR— 1を含んだ担体を注入したり、 DSCR— 1遺伝子を導入したりし、その後の血管 新生を観察することにより DSCR— 1血管新生抑制能を調べることができる。
[0015] 細胞周期の停止を評価するには公知の方法を用いて行う。すなわち、 DSCR— 1蛋 白の細胞内への移行を促進するためにポリリジン、ポリアルギニン、 HIV-Tat, HS V VP22等の結合したものを加えた培地で培養した細胞、もしくは評価対象物質を 発現して!/、る細胞を一般的な方法で回収し、たとえばョー化プロビジゥムなどの DN Aに結合する蛍光色素で染色する。こののち、細胞の蛍光量を FACS等で測定する ことによって細胞が細胞周期のどの状態にいるのかを推定できる。また、 DSCR— 1の 遺伝子を導入した際の効果を調べる方法としては、遺伝子導入した細胞を用い効果 を調べることができる。このことによって、細胞周期が停止しているかどうかを確認でき る。
[0016] 細胞接着の抑制を評価するには公知の方法を用いて行うことができる。すなわち、 各種細胞刺激剤としてサイト力イン、トロンビン等を用いて培養容器付着性の血管内 皮細胞等を刺激することにより、細胞表面に接着因子を発現させる。次いで、浮遊性 の単球系細胞である THP - 1、 U - 937等の細胞と混合培養する。未接着細胞を洗 浄した後、接着細胞数を計測する。薬物による細胞接着抑制効果を評価するには、 薬物未添加との比較により判定することができる。
[0017] 癌細胞の増殖抑制をみる一般的方法として、 B16メラノーマ細胞等の癌細胞株を マウスに移植し、腫瘍のサイズが一定の大きさ(約 50mm3)に達したところで、腫瘍中 に薬物あるいは遺伝子を導入したウィルス、細胞、評価対象物質を発現できるプラス ミドベクター等を静脈内投与あるいは経口投与する。その後、経時的に腫瘍の大きさ を caliper により測定することにより移植癌細胞抑制効果を判定することができる。
[0018] 本発明の癌の治療および予防薬の対象となる癌は特に限定されないが、メラノーマ 、肝癌、肺癌、大腸癌、直腸癌、胃癌、脾臓癌、乳癌、子宮癌、前立腺癌、白血病、リ ンパ腫などが挙げられる。
[0019] DSCR-1蛋白の投与は、目標とする細胞内への移行を促進するためポリリジン、ポ リアルギニン、 HIV— Tat、 HSV VP22等の担体と結合し生理食塩水等の適当な溶 液に溶解し、 0. 1一 lOOmgZ人を静脈内投与することができる。
DSCR— 1遺伝子の投与は当業者に知られた一般的な方法で行う。一般的な方法 とは DSCR— 1の cDNAを組み込んだレトロウイルスベクター、アデノウイルスベクター 、アデノ随伴ウィルスベクター、単純へルぺスウィルスベクター、ワクシニアウィルスべ クタ一等を直接あるいは局所に留めるための一般的な担体と共に、腫瘍中へ投与す ることが出来る。またウィルスを用いな 、遺伝子導入法として DSCR— 1を発現できる プラスミドベクターをリボソーム、ジーンガンやポリリジン等を用いて遺伝子を導入する ことちでさる。
実施例
[0020] 以下、実施例により、本発明を具体的に説明する。但し、本発明はこれらの実施例 に限定されるものではない。
[0021] 実施例 1 ヒト DSCR— lcDNAのクローニング
ヒト DSCR— 1 (exon 4— 7)をコードする全長 cDNAは、 HUVEC total RNA 5ugより Superscript (Invitrogen, Cat No. 11904— 018を用いて調製した 1 st strand cDNAを铸型とし、 Ex— Taq (Takara, Cat No. RROOIA)を用いた P CR反応により増幅した。 PCRの条件として の HUVEC由来 cDNA、 50pmol のセンスプライマー(配列番号 3)、アンチセンスプライマー(配列番号 4)、 5 1 10 X Ex— Taq buffer、 4 Lの dNTP mix (2. 5mM each)、 2. 5Unitsの Ex— T aq DNA ポリメラーゼを含む 50 μ Lの反応液を、 94°C、 1分、 62°C、 1分、 72°C、 3 分からなるサイクルを 30回行った。 PCR反応による増幅産物は(pGEM— T Easy Vector System I (Promega社 Cat. No. A1360)を用いて TAベクター pGEM— T easyに挿入した) ABI3100 DNAシーケンサーを用い配列の確認を行った結 果、ヒトの全長 DSCR— 1 (ェクソン 4—7)をコードする cDNAを単離した。配列番号 1 で表される配列はヒト DSCR— 1遺伝子の塩基配列を、配列番号 2で表される配列は ヒト DSCR— 1タンパク質のアミノ酸配列を示す。
[0022] 配列番号 3: AAGGAACCTACAGCCTCTTGGAAAGG
配列番号 4: TTGGAATGCGTCCTCGTCGCGTGCCAG
[0023] 実施例 2 adeno— DSCR— 1の作製
DSCR— 1全長 cDNAを RT— PCR法により、 HUVEC total RNAから取得後、 p IRES-EGFP (Clontech)にサブクローユングした。 DSCR— 1— IRES— EGFP配列 を切り出し、 CMVプロモーターを有する pAdeno ベクター(Clontech)に組み込む ことにより DSCR— 1発現用コンストラクトを構築した。 DSCR— 1発現アデノウイルスは HEK— 293細胞への感染、増幅によって得られた。
[0024] 実施例 5 トロンビン刺激での HUVEC DNAマイクロアレイ解析
サブコンフルェント HUVECを 0. 5%FBS, EBM— 2基礎培地中で一夜処理した 後、 1. 5units/mLのトロンビンを添カ卩した。 Total RNA は Trizolを用いて精製 した。 cRNAの作製と Affimetrix Human Focus Arrayへのハイブリダィゼーシ ヨンは Affimetrixのプロトコールに基づき行った。 2種類の HUVEC Badgeを用い 、 1, 4, 18時間後のトロンビン刺激での遺伝子変動を二重に観察した。表 1はトロン ビン刺激での HUVEC DNAマイクロアレイの結果である。トロンビン刺激で最も発 現誘導される遺伝子を上から 5番目までを示した。 DSCR— 1はトロンビン刺激におい て最も誘導される遺伝子として示された。
[0025] [表 1] トロンビン刺激で最も発現誘導される遺伝子 (5番目まで)
1 DSC -1 2 FosB-del ta 3 IL-8 4 COX- 2 5 GR0- /3
17. 7倍 17. 5倍 10. 7倍 10. 4倍 1倍
[0026] 表 2は DSCR— 1プローブを用いた Affimetrixマイクロアレイデータである,
DSCR— 1はトロンビン刺激 1時間でピークになる早期誘導遺伝子である。
[0027] [表 2]
D S C R - 1プロ一ブを用い)-マイク "Jァ Ϊ ヽデータ
トロンビン刺激 T N F - α刺激 コン卜 コン卜 π
lh 4h 18h lh 4h 181ι ロール ール
1 遺伝子発現量 28. 1 435. 4 316. 3 55. 6 29. 5 39. 6 85. 9 77. 2 遺伝子誘導倍率 15. 2 9. 9 1. 8 1. 2 2. 1 0. 9
2 遺伝子発現量 23. 1 506. 6 190. 2 11. 8 34. 0 131. 8 102. 7 63. 2 遺伝子誘導倍率 17. 9 8. 9 0. 5 3. 8 3. 4 1. 8
3 遺伝子発現量 27. 4 463. 8 350. 4 63. 6 N. D. N. D. N. D. N. D. 遺伝子誘導倍率 20. 0 12. 2 2. 5
[0028] 表 3— 5は DSCR— 1構成的発現下での HUVECトロンビン刺激 1時間に対す遺伝 子変動を網羅的に解析した結果である。得られた総合データは 3つに分類された。 ( l) adeno—コントロール感染の HUVEC上で 2倍以上トロンビン刺激によって誘導さ れる力 DSCR— 1存在によって少なくとも 2倍以上その誘導が減少する遺伝子:合計 8974遺伝子中 25遺伝子が得られた。そのうち 7つが細胞増殖や血管新生に関わる ものであり、 8遺伝子が炎症に関わるものであった。その他の 10遺伝子に関しては、 セリンスレオニンキナーゼゃ転写因子であり、 DSCR— 1の抗血管新生、抗炎症効果 に反するものは抽出されなかった。(2) adeno—コントロール感染の HUVEC上で 2 倍以上 トロンビン刺激によって抑制される力 DSCR— 1存在によって少なくとも 2倍 以上その誘導が回復する遺伝子: 7遺伝子が得られた。この中に細胞周期のブレー キ役である p21および p27が得られた。(3) adeno—コントロール感染の HUVEC上 で 2倍以上トロンビン刺激によって誘導される力 DSCR— 1存在によってさらにその 発現が誘導する(高発現)遺伝子: 7遺伝子が得られた。この中に強力な抗血管新生 作用を誘起する ADAMTS 1も含まれた。
[表 3]
DSCR- 1構成的発現下での HUVECトロンピン刺激 1時間に対する遺伝子変動 (低下) トロンビン刺激
カテゴリー Unigene 名称
Ad-Con trol/Ad-DSCR-1
Hs. 115181 Angiopoiet in-2 47. 4
Hs. 2258 NMP-10 9. 01 血管新生誘発 Hs. 252820 PIGF 10. 1
及び Hs. 1976 PDGF- /3 3. 33
成長刺激因子 Hs. 44 Pleiotrop in 4. 48
Hs. 73853 BMP-2 1. 99
Hs. 41746 ESM-1 6. 15
Hs. 62192 Tissue factor 17. 7
Hs. 624 IL-8 7. 79
Hs. 386467 ICAM-1 1. 27
Hs. 89546 E-se lect in 2. 36 炎症誘発因子
Hs. 154299 PAR - 2 3. 60
Hs. 408864 DAF, CD55 6. 38
Hs. 89414 CXCR4 12. 7
Hs, 248917 TNFSF18 1. 12
Hs. 103755 RICK, CARDIAK 3. 77
Hs. 2227 C/EBP r 2. 87
Hs. 99029 C/EBP β 2. 37
Hs. 76095 IER3 2. 28
Hs. 35120 RFC4 1. 60 その他
Hs. 100016 PP0X 1. 39
Hs. 169840 TTK 2. 14
Hs. 85482 USP13 1. 91
Hs. 34578 ST3GALVI 2. 18
Hs. 159161 Rho-GDI 2. 22 [0030] [表 4]
DSCR- 着成的発現下での HUVECトロンピン刺激 1時間後の遺伝子変動 (増加)
Figure imgf000012_0001
[0031] [表 5]
DSCR- 冓成的発現下において、 HUVECトロンビン刺激 1時間後での誘導がさらに上昇した遺伝子
Figure imgf000012_0002
[0032] 実施例 6 DSCR— 1によるトロンビン刺激誘導性の血管新生誘発 ·成長刺激因子お よび炎症誘発遺伝子発現の RT - PCRによる検討
Adeno—コントロール感染未刺激(レーン)、 adeno—コントロール感染トロンビン刺 激 1時間(レーン 4)、 adeno— DSCR— 1感染トロンビン刺激 1時間(レーン 5)、 adeno —DSCR— 1感染未刺激(レーン 6)の RNAをもとに RT— PCRを行った結果である(図 D oサイクロフィリン Aは内因性コントロールとして用いた。 PCRプライマーとサイクル 数は以下に示す。
ティシュファクター(22サイクル),フォワード 5, -TCAGAGTTTTGAACAGGT GGGAACA-3,(配列番号 5)およびリバース 5,— TTCTCCTGGCCCATACAC TCTACCG— 3,(配列番号 6); E—セレクチン(22サイクル),フォワード 5,一 CATG TGGAGCCACAGGACACTGGTCTG— 3,(配列番号 7)およびリバース 5,— TC TGATTCAAGGCTTTGGCAGCTGCTG-3 ' (配列番号 8);アンジォポェチン -2 (20サイクル),フォワード 5, -ACAAATGTATTTGCAAATGTTCACAAA -3,(配列番号 9)およびリバース 5, -GAAATCTGCTGGTCGGATCATCATG GT— 3,(配列番号 10); P1GF (20サイクル),フォワード 5,— CCGGTCATGAGGC TGTTCCCTTGC-3,(配列番号 11)およびリバース 5,— CTCGCTGGGGTAC TCGGACACGAC-3 ' (配列番号 12); p27 (26サイクル),フォワード 5,— CGCA GGAATAAGGAAGCGACCTGC— 3,(配列番号 13)およびリバース 5,—CGTT TGACGTCTTCTGAGGCCAGGCTT-3 ' (配列番号 14); p21 (18サイクル), フォワード 5,— AGCAAGGCCTGCCGCCGCCTCTTC— 3,(配列番号 15)およ びリバース 5,— TGACAGGTCCACATGGTCTTCCTC— 3,(配列番号 16); AD AMTS 1 (20サイクル),フォワード 5, -AGCTTTCTTGCCATCAAAGCTGC T-3,(配列番号 17)及びリバース 5, -AACCTGGATGGTCAAGGGCTCTTT —3,(配列番号 18) ;1 —8 (23サィクル),フォワード 5,一 TGTCAGTGCATAAAG ACATACTCCA-3,(配列番号 19)およびリバース 5, -CTTCTCCACAACCC TCTGCACCCAG-3 ' (配列番号 20) ;ICAM— 1 (23サイクル),フォワード 5,一 G TGCAAGAAGATAGCCAACCAATG-3 ' (配列番号 21)およびリバース 5,—A GGAGTCGTTGCCATAGGTGACTG-3 ' (配列番号 22);サイクロフィリン A ( 23サイクル),フォワード 5,— TTCGTGCTCTGAGCACTGGAGA— 3,(配列番 号 23)およびリバース 5, -GGACCCGTATGCTTTAGGATGAAG-3,(配列番 号 24)。
実施例 7 管腔形成能に対する DSCR— 1の影響
HUVECに adeno—コントロールと adeno—DSCR—1を MOI = 20 で感染させ、 その HUVECをゲル処理ディッシュ(24ゥエルに EGM— 2 MV media (Clonetics ) (bFGF不含)を含むタイプ Iコラーゲンを 400 μ 1加えて 37°C下でゲル化させたもの )上に l X 105cells/ディッシュの割合で播いた。 24時間後、さらに HUVECの上に 400 /z Lのタイプ Iコラーゲンを置き、 24時間後キヤビラリ一ネットワーク、管腔形成能 を顕微鏡下で観察した。管腔領域は NIHイメージを用いて定量ィ匕した。図 2はその 結果である。 (a, d)は明部 X 40拡大図、(b, e)は蛍光部 X 40拡大図、(c, f )は蛍 光部 X 100拡大図を示している。 EGFPの量は上下とも同程度(アデノウイルスの感 染効率は同一)であるのに対し、管腔形成能は DSCR— 1発現により減少していた。
[0034] 実施例 8 DSCR— 1の細胞遊走能への影響の検討
HUVECに adeno—コントロール、 adeno— DSCR— 1、又は adeno— DSCR— 1プラ ス adeno— CANFATを MOI=40にて感染させ、 24時間後その HUVECの中心部 をピペットで傷を入れた。その 1日、 2日後、細胞の遊走のレベルを顕微鏡観察し、 N IHイメージにより定量化した。又は HUVECを感染、 0. 5%FBS、 EBM— 2培地で 培養後、トロンビン存在下 4時間で遊走する細胞を Boyden chamber法により測定 した。 DSCR— 1高発現の HUVECは創傷治癒のレベルがコントロールに比べ減少し ており、その欠如は adeno— CA— NF— ATを共感染することで回復した。さらに、 Ade no—コントロール感染の HUVECはポストコンフルェントを超えて細胞がディッシュか らはがれ始めているのに対し、 adeno— DSCR— 1感染 HUVECは傷が完全に除去 できないまま (矢印)静止状態であった(図 3、図 4および図 5 (A、 B) )。
[0035] 実施例 9 FACSにより解析した DSCR— 1発現による Gl (GO)抑制効果の検討
サブコンフルェント HUVECに adeno コントロールあるいは、 adeno— DSCR— 1を 感染させ、細胞の細胞周期をョー化プロビジゥム含量を測定することにより同定した。
=3ント p—ノレ HUVECで ίま、 67. 20/0力 SG0/G1期、 17. 70/0力 S期、 15. 10/0力 G2 ZM期であったのに対し、 DSCR 1を過発現した HUVECでは 90. 5%が G0ZG1 期、 1. 4%が S期、 8. 1%が G2ZM期であった。また、 50%コンフルェントの HUV ECでも同様の結果が得られた(図 6)。
[0036] 実施例 10 へマトキシリン &ェォシン染色検体の観察
Adeno—コントロールでは毛細血管の遊走が多数検出されるのに対し、 adeno— D SCR— 1では顕著に抑制されていた(図 7および図 8)。
[0037] 実施例 11 DSCR— 1の腫瘍抑制効果の検討
対数増殖期の B16メラノーマ細胞 1 X 106を 8週齢の C57/BL6マウスに異種移植 として皮下投与した。腫瘍のサイズが 50mm3になったところで、 5 X 109pfuの adeno コントロールあるいは adeno— DSCR— 1を腫瘍中に投与し、その後経時的に腫瘍 の大きさをカリパーにより測定した。 Adeno— DSCR— 1投与群は adeno—コントロー ル投与群に比べて 4日後で 9. 1倍、 6日後で 7. 7倍、 8日後で 7. 4倍 (いずれも P<
0. 04)の腫瘍抑制効果が認められた(図 9)。
[0038] 実施例 12 DSCR— 1遺伝子発現量を測定する方法
図 10はヒト DSCR— 1遺伝子構造の模式図である。 mRNAは 4つのオルタナティブ 第 1ェクソン(ボックス lto4)と 3つの共通エタソン(ボックス 5to7)力も成り立って!/、る。 図示したものは 2つの主なアイソフォーム DSCR— 1 (ェクソン 4— 7)と DSCR— 1 (エタ ソン 1567)である図 11は HUVECで発現誘導されるァイソフォームを特定するため のリボプローブ配列を示している。図 12は RNaseプロテクションアツセィの結果であ る。 10 μ g酵母 RNA (レーン 2) , 10 g total RNA未処理 HUVEC (レーン 3) ,ト ロンビン処理(レーン 7— 9) , TNF— α処理(レーン 10— 12)。矢印で示すバンドが D SCR-1 (ェクソン 4— 7)力らなるアイソフォームである。一方 DSCR— 1 (ェクソン 1567 )力 なる発現物は RNaseプロテクションアツセィでは検出されなかった(図中 * )。 G APDHはロードした RNA量の内因性コントロールである。早期に DSCR— 1 (ェクソン 4-7から構成される)遺伝子が発現誘導されることが、ェクソン 4-7特異的リボプロ一 ブを用いた RNaseプロテクションアツセィにより明ら力となった。図 13は DSCR— 1 (ェ クソン 1567)特異的 PCRプライマーを用いた RT— PCRの結果である。増幅サイクル 40回目でその発現が検出されたが、トロンビン、 TNF- a刺激によっても発現に変 ィ匕は認められな力つた。同様操作で PAR— 1選択的ァゴ-ストである TRAPを 10pm
01、 50pmol (B,レーン 8and9)添カ卩することにより、トロンビン添加と同様の強い誘 導が認められた (図 14)。
[0039] DSCR— 1はカルシ-ユーリン(Ca2+Zカルモジュリン依存性ホスファターゼ)を阻害 することにより NF— ATを阻害すること(Hum. Molec. Genet. 2000, 9 : 1681—16 90)は周知である。しかしながら、 DSCR— 1のシグナルの全てがカルシ-ユーリン NF— AT経路で伝達されるのではなぐ細胞周期のブレーキ役である p21、 p27なら びに抗血管新生作用を誘起する ADAMTS 1の発現亢進が他の伝達経路由来であ ることが本試験により推察された。
[0040] カルシ-ユーリンと細胞の異常増殖に関係する(1)血管新生、(2)アポトーシスおよ び(3)細胞周期につ 、ての関わりにつ 、ては下記のようである。 (1)血管新生:カルシ-ユーリンが血管新生に関与するとの報告はな 、。
(2)アポトーシス:カルシ-ユーリンがアポトーシスを誘導するとの報告が多数認めら れる(Clin Cancer Res. , 1998, 4 (12) : 2967-76, Science, 1999, 284 (54 12) : 339-43, J Biol Chem. , 1999, 274 (48) : 34450-8, J Neurosci. , 2 000, 20 (19) : 7426-51, J Biol Cem. , 2000, 275 (44) : 34528— 33)。この 事は、カルシ-ユーリン阻害が逆の細胞の異常増殖の亢進に繋がると言うことである 。し力しながら先に記述した力 DSCR— 1によるカルシ-ユーリンを阻害することが周 知であり、可能性として DSCR— 1によるカルシ-ユーリン経由以外のアポトーシスの 抑制が考えられる。
(3)細胞周期: FGFによるサイクリン Aおよび Eの発現をカルシ-ユーリン阻害薬であ るサイクロスポリン Aが抑制する(Arch Biochem Biophys. 1998, 353 (2) : 37 4-8) o一方で、サイクロスポリン Aが細胞周期に対し逆の現象である cdk4キナーゼ 活'性を促進する(Oncogene. 2000, 19 (24) : 2820— 7)こと力ら、カノレシニューリン の阻害が必ずしも細胞周期を抑制するとは限らない。
[0041] 従って、 DSCR— 1による癌細胞の異常増殖の抑制に対するカルシ-ユーリン経由 の関与は極めて薄いことが推察される。
[0042] 実施例 13 リンパ腫由来細胞株の血管内皮細胞への接着における DSCR— 1によ る阻害
癌の転移において、細胞接着は重要な現象である。一方、癌組織において炎症像 が確認できる力 炎症の場における細胞接着は重要な現象であることは言うまでもな い。 DSCR— 1の細胞接着への関与を明らかにするため、以下の検討をした。
すなわち、 HUVECを 24well plateに lxl05cellsZwellまき、 6時間後、 Ad— C ontrol, Ad—DSCR—l, Ad—CA—NFAT, Ad—I κ Β αを MOI=40にて感染させ た。 48時間後、細胞の培地を serum— starved media (EBM-2 plus 0. 5% F BS) (Clonetics)に換 て、 overnight cultureして力ら、 thrombin (2unitsZ ml ) (Calbiochem)あるいは PBSを添カ卩し、 6時間刺激した。 HUVECは RPMI— 1640 plus 1%FBS (1 & )で洗ぃ、その上に1¾:11—26 (318111&)で赤色標識したリン パ腫由来細胞株 U— 937細胞を 7. 5xl05cellsZwellの条件でカ卩え、 1. 5時間静置 した。その後、 HBSS (Invitrogen)で 2回、接着していない U— 937細胞を洗い除き 、接着した U— 937細胞を透過光、及び蛍光下顕微鏡観察した。
接着した U— 937の定量は少なくとも 4つの独立した視野から、存在する蛍光の量を NIH imageを用いて換算した。
Ad— Controlを感染させた HUVECでは thrombin刺激に伴!、、 U— 937細胞の接 着が 6倍上昇するのに対し、 Ad— DSCR— 1感染 HUVECでは thrombin刺激に伴う U— 937細胞の接着は 2. 5倍であり、 Ad— controlに比べ約 58%減少している(図 1 5および図 17)。この減少効果は Ad— CA— I κ Β αの存在下の 77%抑制に比べ少な いものの、 DSCR— 1が構成的に発現することで有意に単球接着を抑制できることが 明ら力となった。また DSCR— 1の主たる標的阻害転写因子である NF— ATを構成的 に発現させると、 thrombinの刺激なしでも常に単球の接着状態、炎症下にあること 力 Sこのデータから示唆され(図 16および図 17)、 DSCR— 1が癌の転移および炎症阻 害に有効であると推察された。
産業上の利用可能性
癌による死亡者は年々増加し、多くの化合物により治療が試みられている力 未だ 癌に対する特効薬はない。癌の発症機序が分子生物学的な方法で解明されつつあ り、新たな抗癌剤が待たれている。 In vitroにおいては DSCR— 1は細胞遊走の抑 制、細胞接着の抑制、細胞増殖の停止および毛細血管形成抑制、 in vivoにおい てもゼノグラフトによる移植癌細胞増殖の抑制を示すことが確認された。さらに、カル シ-ユーリンの阻害に基づく炎症の抑制も考えられることから、本発明により新規な作 用機序に基づく癌の抑制および治療薬を提供することができると思われる。

Claims

請求の範囲
[1] DSCR— 1蛋白、 DSCR— 1遺伝子又は DSCR— 1蛋白発現を亢進する物質を有効 成分とする癌の治療 ·予防薬。
[2] 血管新生の抑制、細胞遊走の抑制、細胞接着の抑制又は細胞周期の停止をする ものである請求項 1記載の癌の治療 ·予防薬。
[3] 癌がメラノーマ、肝癌、肺癌、大腸癌、直腸癌、胃癌、脾臓癌、乳癌、子宮癌、前立 腺癌、白血病およびリンパ腫からなる群力 選択される請求項 1記載の癌の治療 -予 防薬。
[4] DSCR— 1蛋白、 DSCR— 1遺伝子又は DSCR— 1蛋白発現を亢進する物質を投与 することを特徴とする癌の治療 ·予防方法。
[5] 血管新生の抑制、細胞遊走の抑制、細胞接着の抑制又は細胞周期の停止をする ものである請求項 4記載の癌の治療 ·予防方法。
[6] 癌がメラノーマ、肝癌、肺癌、大腸癌、直腸癌、胃癌、脾臓癌、乳癌、子宮癌、前立 腺癌、白血病およびリンパ腫からなる群力 選択される請求項 4記載の癌の治療 -予 防方法。
[7] 癌の治療'予防薬製造のための DSCR— 1蛋白、 DSCR— 1遺伝子又は DSCR— 1 蛋白発現を亢進する物質の使用。
PCT/JP2005/003032 2004-02-26 2005-02-24 癌の治療および予防薬 WO2005082412A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006510447A JPWO2005082412A1 (ja) 2004-02-26 2005-02-24 癌の治療および予防薬

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004051116 2004-02-26
JP2004-051116 2004-02-26

Publications (1)

Publication Number Publication Date
WO2005082412A1 true WO2005082412A1 (ja) 2005-09-09

Family

ID=34908620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003032 WO2005082412A1 (ja) 2004-02-26 2005-02-24 癌の治療および予防薬

Country Status (2)

Country Link
JP (1) JPWO2005082412A1 (ja)
WO (1) WO2005082412A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513086A (ja) * 2011-04-25 2014-05-29 シャンドン・ヴィジェネ・バイオサイエンシズ・インコーポレーテッド NF−κB活性上昇に関連する疾患を治療するための医薬を製造するためのカルシニューリン調節因子1の使用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030186333A1 (en) * 2000-07-11 2003-10-02 Incyte Genomics, Inc. Down syndrome critical region 1-like protein
JP2004501608A (ja) * 2000-03-21 2004-01-22 キュラゲン コーポレイション Vegf調節遺伝子及びそれらを利用する方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004501608A (ja) * 2000-03-21 2004-01-22 キュラゲン コーポレイション Vegf調節遺伝子及びそれらを利用する方法
US20030186333A1 (en) * 2000-07-11 2003-10-02 Incyte Genomics, Inc. Down syndrome critical region 1-like protein

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEE J. ET AL.: "The caenorhabditis elegans homologe of down syndrome critical region 1, RCN-1, inhibits multiple functions of the phosphatase calcineurin.", J.MOL.BIOL., vol. 328, 2003, pages 147 - 156, XP004457620 *
MINAMI T. ET AL.: "Vascular endothelial growth factor-and thrombin-induced termination factor, down syndrome critical region-1, attenuates endothelial cell proliferation and angiogenesis.", THE JOURNAL OF BIOLOGICAL CHEMISTRY., vol. 279, no. 48, 24 November 2004 (2004-11-24), pages 50537 - 50554, XP002988791 *
YAO Y.G. ET AL.: "VEGF selectively induces down syndrome critical region 1 gene expression in endothelial cells: a mechanism for feedback regulation of angiogenesis?", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS., vol. 321, 2004, pages 648 - 656, XP004537334 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513086A (ja) * 2011-04-25 2014-05-29 シャンドン・ヴィジェネ・バイオサイエンシズ・インコーポレーテッド NF−κB活性上昇に関連する疾患を治療するための医薬を製造するためのカルシニューリン調節因子1の使用

Also Published As

Publication number Publication date
JPWO2005082412A1 (ja) 2007-10-25

Similar Documents

Publication Publication Date Title
Mano et al. Reversal of GATA-6 downregulation promotes smooth muscle differentiation and inhibits intimal hyperplasia in balloon-injured rat carotid artery
MXPA01005169A (es) Promocion o inhibicion deangiogenesis y cardiovascularizacion.
AU768694B2 (en) Promotion or inhibition of angiogenesis and cardiovascularization
US10925976B2 (en) Smooth muscle specific inhibition for anti-restenotic therapy
JP2003531811A5 (ja)
Panchenko et al. Protein kinase CK1αLS promotes vascular cell proliferation and intimal hyperplasia
JP2009019032A (ja) 血管形成及び心臓血管新生の促進又は阻害
US20050261265A1 (en) Modulating cellular senescence by amphiphysin-1
EP1255829B1 (en) Inhibitor of hepatocyte growth factor activator for use in modulation of angiogenesis and cardiovascularization
WO2005082412A1 (ja) 癌の治療および予防薬
US7276490B1 (en) Medicinal compositions containing prostacylin synthase gene
US20080200412A1 (en) Astrocyte Elevated Gene-1 And Its Promoter In Treatments For Neurotoxicity And Malignancy
JP2021520845A (ja) マイクロペプチドとその使用
US8852939B2 (en) Use of Vgll3 activity modulator for the modulation of adipogenesis
EP2042597B1 (en) Compositions and methods for the diagnosis and treatment of disorders involving angiogenesis
WO2006093494A1 (en) Astrocyte elevated gene-1 and its promoter in treatments for neurotoxicity and malignancy
US20070275918A1 (en) Induction of Cellular Senescence by Cdk4 Disruption for Tumor Suppression and Regression
KR100678523B1 (ko) Pro840 폴리펩티드 아고니스트 또는 길항제의 확인 방법
Warrington The Role of CD105 in Transforming Growth Factor-β1 Mediated Responses Using an Antisense Strategy
Sanford C/EBP delta expression and function in prostate cancer biology
NZ532803A (en) Promotion or inhibition of angiogenesis and cardiovascularization
ZA200105990B (en) Promotion or inhibition of angiogenesis and cardiovascularization.
NZ535590A (en) Promotion or inhibition of angiogenesis and cardiovascularization

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510447

Country of ref document: JP

122 Ep: pct application non-entry in european phase