WO2005081241A1 - Optical information recording medium and information recording/reproduction device - Google Patents

Optical information recording medium and information recording/reproduction device Download PDF

Info

Publication number
WO2005081241A1
WO2005081241A1 PCT/JP2005/002769 JP2005002769W WO2005081241A1 WO 2005081241 A1 WO2005081241 A1 WO 2005081241A1 JP 2005002769 W JP2005002769 W JP 2005002769W WO 2005081241 A1 WO2005081241 A1 WO 2005081241A1
Authority
WO
WIPO (PCT)
Prior art keywords
information recording
base material
information
recording medium
material thickness
Prior art date
Application number
PCT/JP2005/002769
Other languages
French (fr)
Japanese (ja)
Inventor
Shinya Abe
Shin-Ichi Tanaka
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2005081241A1 publication Critical patent/WO2005081241A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00736Auxiliary data, e.g. lead-in, lead-out, Power Calibration Area [PCA], Burst Cutting Area [BCA], control information

Definitions

  • the present invention relates to an optical information recording medium including at least one information recording layer, and an information recording / reproducing apparatus for recording / reproducing information on / from the optical information recording medium.
  • the numerical aperture of a lens used for converging recording / reproducing light on an information recording layer of an optical information recording medium has been relatively small.
  • the numerical aperture of a lens used for an optical information recording medium such as a CD (Compact Disk) or a DVD (Digital Versatile Disk) is small. Even a DVD using a lens with a larger numerical aperture than a CD is 0.6.
  • the allowable error of the substrate thickness is determined by the optical design of the lens.
  • the base material thickness is specified to be 0.6 ⁇ 0.03 mm. If the thickness of the single-layer DVD substrate exceeds this range, the reproduction signal will deteriorate and the recording / reproducing accuracy will decrease.
  • an optical information recording medium capable of recording information at a higher density than a DVD has been developed.
  • a BD Blu-ray Disk
  • BD Blu-ray Disk
  • the thickness of the medium base material is designed to be thin in order to suppress the occurrence of aberration with respect to the tilt of the optical information recording medium.
  • the thickness of the base material is designed to be 0.1 mm in order to secure the margin for tilt as much as that of DVD.
  • the optical information recording medium is disk-shaped, it is not easy to dynamically follow the deviation of the substrate thickness within one rotation of the disk, but the average substrate thickness between different disks is not easy.
  • the deviation can be dealt with by correcting the spherical aberration at the beginning of the recording / reproducing operation.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-76705
  • the optical information recording medium of the present invention includes at least one information recording layer capable of reproducing information by irradiating light, and records substrate thickness information indicating substrate thickness information indicating the substrate thickness. It is characterized by further including a part.
  • the thickness of the substrate refers to a distance from the light incident surface of the optical information recording medium to the surface of the information recording layer.
  • the optical information recording medium of the present invention includes not only a read-only medium but also a recordable (write-once, rewritable) medium. When recording is possible, the information recording layer can record and reproduce information by irradiating light.
  • the substrate thickness information recording section is formed, for example, on the information recording layer.
  • An information recording / reproducing apparatus of the present invention is an information recording / reproducing apparatus used for the optical information recording medium of the present invention described above, wherein the base material thickness information recorded on the optical information recording medium is recorded.
  • a reproducing unit for reproducing a correction value storing unit in which a correction value of the spherical aberration set according to the substrate thickness is stored in advance, and the substrate thickness information obtained by the reproducing unit, Correction value determining means for determining a correction value of spherical aberration using the correction value storage means, and spherical aberration correcting means for correcting spherical aberration using the correction value determined by the correction value determining means.
  • FIG. 1 is a perspective view, including a cross section, showing an embodiment of the optical information recording medium of the present invention. is there.
  • FIG. 2 is a schematic diagram showing a BCA (Burst Cutting Area) mark.
  • FIG. 3A shows a sample (disc A) of an optical information recording medium having the configuration shown in FIG.
  • FIG. 7 is a waveform diagram of a reproduced signal obtained when reproducing the BCA.
  • FIG. 3B is a waveform diagram of a reproduced signal obtained when BCA is reproduced for a sample (disc B) of the optical information recording medium having the configuration shown in FIG.
  • FIG. 4 is a block diagram showing an embodiment of the information recording / reproducing apparatus of the present invention.
  • base material thickness information indicating the base material thickness is recorded. Therefore, when recording or reproducing information on or from the optical information recording medium of the present invention, first, the base material thickness information is read, and the spherical aberration of the device used for recording and reproduction is read in accordance with the read base material thickness information. It is possible to set a correction value. For example, the spherical aberration corrected by the correction value set in this way can be used as an initial value of learning for optimizing the spherical aberration.
  • the optical information recording medium of the present invention does not require such learning.
  • the time required for correcting spherical aberration can be reduced as compared with the case of. As a result, the time from when the optical information recording medium is set in the apparatus to when it is started can be reduced.
  • the base material thickness information is recorded at a lower recording density and a lower recording density than other information recorded on the information recording layer.
  • the mark length of the recording mark used for recording the base material thickness information is set to be different from the recording mark used for recording other information recorded on the information recording layer. I'll make it longer.
  • the configuration of the optical information recording medium of the present invention provides information capable of reproducing information by irradiating light.
  • the present invention is also applicable to a medium having a multilayer structure in which a plurality of information recording layers are provided.
  • the information recording layer may include a plurality of information recording layers in which the substrate thickness information of the information recording layer is recorded. It is preferable that the substrate thickness information is recorded on the information recording layer located on the side of incident light.
  • the substrate thickness information recorded in this case may be information indicating the light incident surface power of the optical information recording medium and the distance to the surface of the information recording layer on which the substrate thickness information is recorded. desirable.
  • the recorded base material thickness information is the information located closest to the light incident side from the light incident surface of the medium. This is the distance to the surface of the recording layer.
  • the information recording layer located closest (to the light incident side) from the light incident surface of the medium and the information recording layer located furthest (to the anti-light incident side) from the light incident surface of the medium first This is because the focus servo is used.
  • the base material thickness information may be recorded by a barcode mark.
  • the barcode-shaped mark means, for example, when the optical information recording medium of the present invention has a disk shape, has a shape that is long in the radial direction of the medium and is arranged in a plurality in the circumferential direction. That is.
  • the optical information recording medium of the present invention is also applicable to high-density recording using short-wavelength light for recording and reproduction and using a lens with a large aperture.
  • the thickness of the base material is preferably 0.1 mm or less. Further, information may be reproduced by irradiation with light passing through a lens having a numerical aperture of 0.8 or more. If the optical information recording medium is a recordable medium, light that has passed through a lens having a numerical aperture of 0.8 or more can be used for recording.
  • the information recording / reproducing apparatus of the present invention since the correction value of the spherical aberration can be determined using the base material thickness information recorded on the optical information recording medium, the time required for correcting the spherical aberration can be reduced. Can be shortened. Further, the information recording / reproducing apparatus of the present invention reproduces information recorded on an optical information recording medium with the spherical aberration corrected using the correction value determined by the correction value determining means as an initial value. Learning to optimize spherical aberration may be performed using the signal obtained by the above. This allows for more accurate spherical aberration correction.
  • FIG. 1 is a perspective view including a cross section schematically showing the optical information recording medium of the present embodiment.
  • the optical information recording medium of the present embodiment is a read-only disk, and a reflective film (information recording layer) 102 and a cover layer 103 are laminated on a substrate 101.
  • a substrate 101 for example, a polycarbonate substrate is used, and information is recorded by pits on the surface on the reflection film 102 side.
  • the reflection film 102 is formed of, for example, an A1 alloy. Since the reproduction light enters from the cover layer 103 side, the cover layer 103 is formed of a transparent material.
  • An inner side of the optical information recording medium according to the present embodiment is provided with a BCA (Burst Cutting Area) in which identification information unique to the medium such as a serial number can be recorded.
  • Information is recorded on the BCA as a barcode mark (hereinafter referred to as a BCA mark).
  • This BCA mark can be formed overlapping the pit.
  • a BCA is used as a base material thickness information recording unit, and in this area, a barcode shape having a long shape in the radial direction of the medium and a plurality of barcodes arranged in the circumferential direction is used.
  • the base material thickness information is recorded by the mark 104.
  • the substrate thickness in this embodiment corresponds to the distance from the light incident surface of the medium to the surface of the reflective film 102, that is, the thickness of the cover layer 103.
  • the BCA mark 104 can be formed after laminating the reflective film 102 and the cover layer 103 on the substrate 101.
  • a rectangular YAG laser (the wavelength of the emitted light is 1064 nm, for example) can be used.
  • the reflection film 102 at the portion irradiated with the pulse is removed, and the BCA mark 104 whose interval is modulated by the signal to be recorded is formed.
  • the BCA mark 104 can be reproduced while focusing on the reflection film 102 using an optical head.
  • FIG. 2 is a schematic diagram showing the BCA mark 104.
  • the mark length of the BCA mark 104 corresponds to the width W of the BCA mark 104.
  • width W of BCA mark 104 is approximately 8 ⁇ .
  • the interval between adjacent BCA marks 104 is set to 1, 2, 3 or 4 times the basic interval of 28.6 / im. By changing the mark interval in this manner, the base material thickness information is recorded.
  • the mark length of the BCA mark 104 formed as described above is longer than the mark length of other recorded information (here, the length of the pit formed on the substrate 101). Hiro, Therefore, the recording density of the BCA mark 104 is lower than the recording density of pits, which are other information recorded. Thus, even if the spherical aberration does not match the thickness of the base material, the optical head can be used to reproduce the BCA mark 104 and detect the recorded base material thickness information.
  • the BCA mark 104 is reproduced.
  • the optical information recording medium of the present embodiment two types of samplers were prepared.
  • One is a 22-nm-thick reflective film 102 made of A1 alloy and an ultraviolet-curing resin (UV resin) formed on a 1.1-mm-thick polycarbonate substrate 101 on which information is recorded by pits.
  • a disk A in which a cover layer 103 having a thickness of 100 / im is laminated, and the other is a disk B similar to the disk A except that the thickness of the cover layer 103 is 75 / im.
  • the width W of the BCA mark 104 recorded on the discs A and B was about 8 ⁇ m, and the mark interval was set to 1, 2, 3, or 4 times as long as the basic interval was 28.6 ⁇ . .
  • the random data force S having the shortest pit length of 0.149 ⁇ and the track pitch of 0.35 ⁇ are recorded on the base of the BCA mark 104 (the surface of the substrate 101).
  • BCA was reproduced from the above discs A and B using an optical head including a light source that emits laser light having a wavelength of 405 nm and an objective lens having a numerical aperture of 0.85.
  • This optical head has a built-in beam expander that is placed between the light source and the objective lens. By changing the distance between the two lenses that make up this beam expander, spherical aberration is reduced. Will be corrected.
  • the optical head is set so that focus servo is performed on the reflective film 102 in a state where the thickness of the cover layer 103 is 100 xm, that is, when the base material thickness is 100 ⁇ m.
  • FIG. 3A is a waveform diagram of a reproduced signal obtained when the BCA of the disk A is reproduced
  • FIG. 3B is a waveform diagram of a reproduced signal obtained when the BCA of the disk B is reproduced. Since the spherical aberration of the optical head used for reproduction is set to be optimal at a substrate thickness of 100 / im, when the disk A is reproduced, the light is focused on the reflective film 102 to the minimum. It was.
  • the amount of reflected light was modulated by the pits recorded on the base of the BCA mark 104, and the pit information was reproduced as a large signal modulation in portions other than the BCA mark 104. Also, since the BC A mark 104 is recorded with a long mark length having a lower recording density than the pits, it is reproduced as a long low reflectance portion. For this reason, it was sufficiently detectable.
  • the base material of the disc B has a thickness of 70 ⁇ m, light cannot be narrowed down on the reflective film 102 due to spherical aberration, and the light is blurred on the reflective film 102 to increase the spot size. Become. As a result, the pits recorded on the base of the BCA mark 104 appear relatively small with respect to the spot size on the reflective film 102, and the number of pits entering the spot increases. The signal modulation degree of the pit became small.
  • the BC A mark 104 is recorded with a sufficiently long mark length, which has a lower recording density than the pit, so that even if the light is blurred, it is sufficient as a long low reflectance portion. It was detectable.
  • the BCA mark 104 can be detected even when the spherical aberration is not optimally corrected. For this reason, by recording the base material thickness information on the medium as the BCA mark 104, it is possible to detect the base material thickness information from the BCA mark 104 and set a spherical aberration correction value suitable for the medium. it can.
  • an operation for optimizing conditions such as spherical aberration, focus, and tilt is performed to optimize the reproduction quality of the recorded signal.
  • the time required to optimize spherical aberration is reduced by performing learning to optimize spherical aberration using the spherical aberration corrected using the corrected spherical aberration (corrected spherical aberration) as the initial value. it can
  • the BCA mark 104 can be recorded after forming the cover layer 103, the thickness of the cover layer 103 can be measured and the thickness can be processed into a BCA. Therefore, highly reliable substrate thickness information can be recorded. [0029] In the example shown above, but a thinner substrate thickness up to 75 beta m, it is possible to detect the BCA marks 104 even when the thinner. The BCA mark 104 can be detected even in a state where the cover layer 103 is not provided.
  • the thickness of the base material in the medium is controlled in order to suppress the occurrence of aberration with respect to the tilt of the optical information recording medium. Is designed to be thin.
  • the thickness of the base material is reduced in this manner, a problem occurs in that the influence of the spherical aberration generated by the change in the thickness of the base material increases, and thus it is necessary to correct the spherical aberration. Therefore, applying the configuration of the present invention to a system such as a BD in which the numerical aperture of the lens is 0.85 and the thickness (base material thickness) of the force bar layer is S100 ⁇ m is particularly important. It is valid.
  • the present invention is not limited to this, and is applicable to a recordable write-once or rewritable optical information recording medium.
  • the same effect can be obtained by recording the substrate thickness information on the information recording layer using a means such as a BCA mark.
  • the base material thickness information is recorded as a barcode mark in the BCA, but is not limited to this, and may be recorded in another area of the information recording layer.
  • the mark shape is not limited to this, and may be another shape. At this time, it is preferable to record the base material thickness information using a mark shape that is lower than the recording density of other information recorded on the optical information recording medium.
  • the area for recording the base material thickness information is not limited to the information recording layer.
  • the place is not limited. Not limited.
  • an optical information recording medium having a single-layer structure provided with only one information recording layer has been described.
  • an optical information recording medium having a multilayer structure provided with a plurality of information recording layers has been described. It may be your body.
  • the thickness of the base material information is recorded in the information recording layer located closest to the light incident side or the information recording layer located closest to the opposite light incident side. It is preferably recorded. Further, the substrate thickness information recorded at this time is recorded from the light incident surface of the medium. Desirably, the distance to the surface of the information recording layer.
  • FIG. 4 is a block diagram showing a main configuration of the information recording / reproducing apparatus of the present embodiment.
  • the optical information recording medium 201 set in the information recording / reproducing apparatus shown in FIG. 4 has the same configuration as the optical information recording medium described in the first embodiment.
  • the information recording / reproducing apparatus includes a spin-doner motor 202 for rotating a set optical information recording medium 201, and a semiconductor laser.
  • An optical head (reproducing means) 203 for recording information by condensing the information on the layer and obtaining a reproduction signal from the reflected light; a moving mechanism 204 for moving the optical head 203 in the radial direction of the optical information recording medium 201;
  • a focus control circuit 205 for controlling the optical head 203 based on a focus error signal generated from the reproduction signal, and a tracking control circuit for controlling the optical head 203 based on a tracking error signal generated from the reproduction signal 206, a reproduction signal processing unit 207 for processing an information reproduction signal included in the reproduction signal, and a correction value storage unit (correction value storage means) 208 for storing a spherical aberration correction value set according to the thickness of the base material.
  • a system control unit (correction value determination unit) 209 that determines a correction value of spherical aberration using a correction value storage unit 208 from base material thickness information obtained when the BCA of the optical information recording medium 201 is reproduced;
  • a spherical aberration control circuit (spherical aberration correcting means) 210 for correcting the spherical aberration of the optical head 203 based on the correction value determined by the control unit 209.
  • the spherical aberration control circuit 210 also controls the spherical aberration of the optical head 203 at the time of learning to optimize the spherical aberration using the spherical aberration corrected based on the base material thickness information as an initial value.
  • the system control unit 209 has a function as a correction value determining unit for determining correction of spherical aberration, and further includes an entire system including an optical head 203, a focus control circuit 205, a tracking control circuit 206, and a spherical aberration control circuit 210. Is controlling.
  • the optical information recording medium 201 is irradiated with a laser beam for information reproduction by the optical head 203.
  • the BCA of the optical information recording medium 201 is focused and irradiated with a laser beam to read out the substrate thickness information.
  • the reading of the base material thickness information is performed by processing the information reproduction signal obtained from the reflected light from the optical information recording medium 201 by the optical head 203 in the reproduction signal processing unit 207, and converting the obtained base material thickness information signal into a system. This is performed by taking it into the control unit 209.
  • a correction value of the spherical aberration according to the thickness of the base material is determined.
  • the system control unit 209 determines the correction value of the spherical aberration based on the obtained base material thickness information using the correction value storage unit 208 in which the relationship between the base material thickness and the correction value of the spherical aberration is stored. Information on the determined correction value is taken into the spherical aberration control circuit 210.
  • the spherical aberration control circuit 210 corrects the spherical aberration of the optical head 203 based on the determined spherical aberration correction value.
  • learning for optimizing the spherical aberration is performed using the corrected spherical aberration as an initial value.
  • the learning is performed, for example, as follows.
  • the correction value of the spherical aberration is changed based on the information reproduction signal obtained from the reflected light from the optical information recording medium 201, A correction value that maximizes the information reproduction signal amplitude is searched for. Further, the jitter (fluctuation) of the information reproduction signal is detected, and the correction value is finely adjusted so as to minimize the jitter.
  • a tracking signal may be used instead of the information reproduction signal.
  • the time required for correcting spherical aberration can be reduced.
  • the optical information recording medium and the information recording / reproducing apparatus provide a high-density recording such as a BD in which recording / reproducing is performed using a lens having a thin base material and a high numerical aperture.
  • the present invention can be effectively applied to a medium or an information recording / reproducing apparatus for recording / reproducing information on / from such a high-density recording medium.

Abstract

There is provided an optical information recording medium characterized in that the medium includes an information recording layer capable of reproducing information by light irradiation and a substrate thickness information recording unit containing substrate thickness information. The substrate thickness information is a distance from the light incident surface of the medium to the surface of the information recording layer. When the optical information recording medium is, for example, a reproduction-dedicated disc, a reflection film (102) is arranged as an information recording layer. The substrate thickness is a distance from a cover layer (103) as the light incident surface to the surface of the reflection film (102) as the information recording layer. A BCA (Burst Cutting Area) arranged in the inner circumference of the optical information recording medium serves as a substrate thickness information recording unit where substrate thickness information is recorded by using a BCA mark (104) which is a barcode-shaped mark. Such substrate thickness information is recorded with a lower recording density than the other information.

Description

明 細 書  Specification
光情報記録媒体及び情報記録再生装置  Optical information recording medium and information recording / reproducing device
技術分野  Technical field
[0001] 本発明は、少なくとも一つの情報記録層を含む光情報記録媒体と、その光情報記 録媒体に対して情報の記録再生を行う情報記録再生装置に関する。  The present invention relates to an optical information recording medium including at least one information recording layer, and an information recording / reproducing apparatus for recording / reproducing information on / from the optical information recording medium.
背景技術  Background art
[0002] 従来、光情報記録媒体の情報記録層に記録再生光を集光するために用いられる レンズの開口数は、比較的小さかった。 CD (Compact Disk)や DVD (Digital V ersatile Disk)等の光情報記録媒体に対して用いられるレンズの開口数は小さぐ CDよりも大きい開口数のレンズが用いられる DVDでも、 0. 6であった。ここで、光情 報記録媒体において、光入射面から情報記録層の表面までの距離のことを基材厚 みというとすると、基材厚みはレンズの光学設計によってその許容誤差が決定される 。例えば、一つの情報記録層が設けられている単層の DVDでは、基材厚みが 0. 6 ± 0. 03mmと規定されている。単層の DVDの基材厚みがこの範囲を超えると、再生 信号の劣化や記録再生の精度の低下が生じる。  Conventionally, the numerical aperture of a lens used for converging recording / reproducing light on an information recording layer of an optical information recording medium has been relatively small. The numerical aperture of a lens used for an optical information recording medium such as a CD (Compact Disk) or a DVD (Digital Versatile Disk) is small. Even a DVD using a lens with a larger numerical aperture than a CD is 0.6. Was. Here, in the optical information recording medium, assuming that the distance from the light incident surface to the surface of the information recording layer is referred to as the substrate thickness, the allowable error of the substrate thickness is determined by the optical design of the lens. For example, in a single-layer DVD provided with one information recording layer, the base material thickness is specified to be 0.6 ± 0.03 mm. If the thickness of the single-layer DVD substrate exceeds this range, the reproduction signal will deteriorate and the recording / reproducing accuracy will decrease.
[0003] 近年では、 DVDよりもさらに高密度で情報を記録できる光情報記録媒体の開発が 進められている。例えば、記録再生光の波長を 405nmと短くし、記録再生光を集光 させるためのレンズの開口数を 0. 85と大きくして、高密度記録を実現している BD (B lu-ray Disk)が商品化されてレ、る。  [0003] In recent years, an optical information recording medium capable of recording information at a higher density than a DVD has been developed. For example, a BD (Blu-ray Disk) that realizes high-density recording by shortening the wavelength of the recording / reproducing light to 405 nm and increasing the numerical aperture of the lens for condensing the recording / reproducing light to 0.85 ) Has been commercialized.
[0004] 大きな開口数を有するレンズを用いて記録再生光を小さく絞り込む場合、光情報記 録媒体の傾き(チルト)に対する収差の発生を抑制するため、媒体の基材厚みは薄く 設計される。 BDの場合、チルトに対するマージンを DVDと同程度に確保するため、 基材厚みは 0. 1mmに設計されている。  [0004] When the recording / reproducing light is narrowed down by using a lens having a large numerical aperture, the thickness of the medium base material is designed to be thin in order to suppress the occurrence of aberration with respect to the tilt of the optical information recording medium. In the case of BD, the thickness of the base material is designed to be 0.1 mm in order to secure the margin for tilt as much as that of DVD.
[0005] し力 ながら、高密度記録ィ匕に伴いレンズの開口数を大きくすると、基材厚みの変 化により発生する球面収差の影響が大きくなる。そこで、高密度記録に用レ、られる光 ヘッドには、球面収差を補正する機構が設けられている。この機構により、基材厚み が規定値と異なっていたとしても、球面収差を補正して良好な記録再生機能を確保 できる。 [0005] However, when the numerical aperture of the lens is increased with high-density recording, the influence of spherical aberration caused by a change in the thickness of the base material increases. Therefore, an optical head used for high-density recording is provided with a mechanism for correcting spherical aberration. By this mechanism, even if the thickness of the base material is different from the specified value, the spherical aberration is corrected and a good recording / reproducing function is secured. it can.
[0006] 光情報記録媒体がディスク形状である場合、ディスクの一回転内で動的に基材厚 みのずれに追従することは容易でないが、異なるディスク間での平均的な基材厚み のずれについては、記録再生動作の初期において球面収差を補正しておくことで対 応可能である。  [0006] When the optical information recording medium is disk-shaped, it is not easy to dynamically follow the deviation of the substrate thickness within one rotation of the disk, but the average substrate thickness between different disks is not easy. The deviation can be dealt with by correcting the spherical aberration at the beginning of the recording / reproducing operation.
特許文献 1:特開 2000 - 76705号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2000-76705
[0007] し力、しながら、従来、球面収差を補正する際には、その補正値を検出するために、 情報の記録再生を行う前にトラッキングエラー信号や情報再生信号を検出しながら 学習する必要があった。このように信号を検出しながら学習により補正値を求める場 合、球面収差の補正に長い時間を要するので、光情報記録媒体を装置にセットした 後、起動するまでに長い時間力 Sかかるという問題があった。 Conventionally, when correcting spherical aberration, learning is performed while detecting a tracking error signal or an information reproduction signal before recording or reproducing information in order to detect the correction value. Needed. When a correction value is obtained by learning while detecting a signal as described above, it takes a long time to correct the spherical aberration. Therefore, it takes a long time to start up after setting the optical information recording medium in the device and then starting up. was there.
発明の開示  Disclosure of the invention
[0008] 本発明の光情報記録媒体は、光の照射により情報の再生が可能な情報記録層を 少なくとも一つ含み、基材厚みを示す基材厚み情報が記録された基材厚み情報記 録部をさらに含むことを特徴としている。なお、本発明における基材厚みとは、光情 報記録媒体の光入射面から情報記録層の表面までの距離のことである。また、本発 明の光情報記録媒体は、再生専用のみならず記録可能 (追記型、書き換え型)の媒 体も含有する。記録可能である場合、情報記録層は、光の照射により情報の記録及 び再生が可能である。基材厚み情報記録部は、例えば情報記録層に形成される。  [0008] The optical information recording medium of the present invention includes at least one information recording layer capable of reproducing information by irradiating light, and records substrate thickness information indicating substrate thickness information indicating the substrate thickness. It is characterized by further including a part. In the present invention, the thickness of the substrate refers to a distance from the light incident surface of the optical information recording medium to the surface of the information recording layer. In addition, the optical information recording medium of the present invention includes not only a read-only medium but also a recordable (write-once, rewritable) medium. When recording is possible, the information recording layer can record and reproduce information by irradiating light. The substrate thickness information recording section is formed, for example, on the information recording layer.
[0009] 本発明の情報記録再生装置は、上記の本発明の光情報記録媒体に対して用いら れる情報記録再生装置であって、前記光情報記録媒体に記録されている基材厚み 情報を再生する再生手段と、基材厚みに応じて設定された球面収差の補正値が予 め格納されている補正値格納手段と、前記再生手段にて得られた基材厚み情報によ り、前記補正値格納手段を用いて球面収差の補正値を決定する補正値決定手段と 、前記補正値決定手段により決定された補正値を用いて球面収差を補正する球面 収差補正手段と、を含むことを特徴としている。  [0009] An information recording / reproducing apparatus of the present invention is an information recording / reproducing apparatus used for the optical information recording medium of the present invention described above, wherein the base material thickness information recorded on the optical information recording medium is recorded. A reproducing unit for reproducing, a correction value storing unit in which a correction value of the spherical aberration set according to the substrate thickness is stored in advance, and the substrate thickness information obtained by the reproducing unit, Correction value determining means for determining a correction value of spherical aberration using the correction value storage means, and spherical aberration correcting means for correcting spherical aberration using the correction value determined by the correction value determining means. Features.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]図 1は、本発明の光情報記録媒体の一実施形態を示す、断面を含む斜視図で ある。 FIG. 1 is a perspective view, including a cross section, showing an embodiment of the optical information recording medium of the present invention. is there.
[図 2]図 2は、 BCA (Burst Cutting Area)マークを示す模式図である。  FIG. 2 is a schematic diagram showing a BCA (Burst Cutting Area) mark.
[図 3A]図 3Aは、図 1に示す構成の光情報記録媒体のサンプル (ディスク A)について [FIG. 3A] FIG. 3A shows a sample (disc A) of an optical information recording medium having the configuration shown in FIG.
、 BCAを再生した際に得られた再生信号の波形図である。 FIG. 7 is a waveform diagram of a reproduced signal obtained when reproducing the BCA.
[図 3B]図 3Bは、図 1に示す構成の光情報記録媒体のサンプル (ディスク B)について 、 BCAを再生した際に得られた再生信号の波形図である。  [FIG. 3B] FIG. 3B is a waveform diagram of a reproduced signal obtained when BCA is reproduced for a sample (disc B) of the optical information recording medium having the configuration shown in FIG.
[図 4]図 4は、本発明の情報記録再生装置の一実施形態を示すブロック図である。 発明を実施するための最良の形態  FIG. 4 is a block diagram showing an embodiment of the information recording / reproducing apparatus of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 本発明の光情報記録媒体には、基材厚みを示す基材厚み情報が記録されている 。従って、本発明の光情報記録媒体に対して情報の記録再生を行う場合、まず基材 厚み情報を読み出し、読み出された基材厚み情報に応じて、記録再生に用いられる 装置の球面収差の補正値を設定することが可能となる。例えば、このように設定され た補正値にて補正された球面収差を、球面収差を最適化するための学習の初期値 とすることもできる。従来は、球面収差の補正値を得るために、最初からトラッキング エラー信号や情報再生信号を検出しながら学習する必要があつたが、本発明の光情 報記録媒体ではその必要がないため、従来と比較して、球面収差の補正に要する時 間を短縮できる。これにより、光情報記録媒体を装置にセットしてから起動までの時 間を短縮できる。 [0011] In the optical information recording medium of the present invention, base material thickness information indicating the base material thickness is recorded. Therefore, when recording or reproducing information on or from the optical information recording medium of the present invention, first, the base material thickness information is read, and the spherical aberration of the device used for recording and reproduction is read in accordance with the read base material thickness information. It is possible to set a correction value. For example, the spherical aberration corrected by the correction value set in this way can be used as an initial value of learning for optimizing the spherical aberration. Conventionally, in order to obtain a correction value for spherical aberration, it was necessary to perform learning while detecting a tracking error signal or an information reproduction signal from the beginning.However, the optical information recording medium of the present invention does not require such learning. The time required for correcting spherical aberration can be reduced as compared with the case of. As a result, the time from when the optical information recording medium is set in the apparatus to when it is started can be reduced.
[0012] 本発明の光情報記録媒体において、基材厚み情報は、情報記録層に記録される 他の情報よりも低レ、記録密度で記録されてレ、ることが好ましレ、。このように低レ、記録 密度を実現する構成として、例えば、基材厚み情報の記録に用いられる記録マーク のマーク長を、情報記録層に記録される他の情報の記録に用いられる記録マークよ りも長くするとよレ、。このように基材厚み情報を低い記録密度で記録しておくことにより 、例えば、球面収差が、基材厚み情報が記録されている情報記録層についての基材 厚みに合っていない状態でも、基材厚み情報の認識が可能となる。これにより、トラッ キングサーボを行わなくても基材厚み情報を読み出すことができるので、球面収差の 補正に要する時間をさらに短縮できる。  In the optical information recording medium of the present invention, it is preferable that the base material thickness information is recorded at a lower recording density and a lower recording density than other information recorded on the information recording layer. As a configuration for realizing such a low recording density, for example, the mark length of the recording mark used for recording the base material thickness information is set to be different from the recording mark used for recording other information recorded on the information recording layer. I'll make it longer. By recording the base material thickness information at a low recording density in this manner, for example, even if the spherical aberration does not match the base material thickness of the information recording layer on which the base material thickness information is recorded, It becomes possible to recognize the material thickness information. As a result, the substrate thickness information can be read out without performing tracking servo, so that the time required for correcting spherical aberration can be further reduced.
[0013] また、本発明の光情報記録媒体の構成は、光の照射により情報の再生が可能な情 報記録層が複数設けられている多層構造の媒体に対しても適用可能である。この場 合、自身についての基材厚み情報が記録された情報記録層を複数含む構成であつ てもよいが、複数の情報記録層のうち最も光入射側に位置する情報記録層、又は、 最も反光入射側に位置する情報記録層に基材厚み情報が記録されていることが好 ましレ、。なお、この場合に記録される基材厚み情報は、光情報記録媒体の光入射面 力、ら基材厚み情報が記録されている情報記録層の表面までの距離を示す情報であ ることが望ましい。従って、例えば基材厚み情報が最も光入射側に位置する情報記 録層に記録されている場合、記録されている基材厚み情報は、媒体の光入射面から 最も光入射側に位置する情報記録層の表面までの距離である。媒体の光入射面か らみて最も近くに (最も光入射側に)位置する情報記録層及び媒体の光入射面から みて最も遠くに (最も反光入射側に)位置する情報記録層は、最初にフォーカスサー ボしゃすいからである。 [0013] Further, the configuration of the optical information recording medium of the present invention provides information capable of reproducing information by irradiating light. The present invention is also applicable to a medium having a multilayer structure in which a plurality of information recording layers are provided. In this case, the information recording layer may include a plurality of information recording layers in which the substrate thickness information of the information recording layer is recorded. It is preferable that the substrate thickness information is recorded on the information recording layer located on the side of incident light. Note that the substrate thickness information recorded in this case may be information indicating the light incident surface power of the optical information recording medium and the distance to the surface of the information recording layer on which the substrate thickness information is recorded. desirable. Therefore, for example, when the base material thickness information is recorded on the information recording layer located closest to the light incident side, the recorded base material thickness information is the information located closest to the light incident side from the light incident surface of the medium. This is the distance to the surface of the recording layer. The information recording layer located closest (to the light incident side) from the light incident surface of the medium and the information recording layer located furthest (to the anti-light incident side) from the light incident surface of the medium first This is because the focus servo is used.
[0014] また、本発明の光情報記録媒体において、基材厚み情報は、バーコード状マーク により記録されていてもよい。ここでいうバーコード状マークとは、例えば本発明の光 情報記録媒体がディスク形状である場合、媒体の半径方向に長い形状を有し、且つ 、円周方向に複数個配置される記録マークのことである。  [0014] In the optical information recording medium of the present invention, the base material thickness information may be recorded by a barcode mark. Here, the barcode-shaped mark means, for example, when the optical information recording medium of the present invention has a disk shape, has a shape that is long in the radial direction of the medium and is arranged in a plurality in the circumferential direction. That is.
[0015] また、本発明の光情報記録媒体は、記録再生に短波長の光が用いられ、さらに開 口数の高いレンズを使用する高密度記録にも適用できる。このときの基材の厚みは 0 . 1mm以下であることが好ましい。また、 0. 8以上の開口数を有するレンズを通過し た光の照射により情報の再生を行ってもよい。なお、光情報記録媒体が記録可能な ものである場合は、当然に記録の際にも 0. 8以上の開口数を有するレンズを通過し た光を用いることができる。  [0015] The optical information recording medium of the present invention is also applicable to high-density recording using short-wavelength light for recording and reproduction and using a lens with a large aperture. At this time, the thickness of the base material is preferably 0.1 mm or less. Further, information may be reproduced by irradiation with light passing through a lens having a numerical aperture of 0.8 or more. If the optical information recording medium is a recordable medium, light that has passed through a lens having a numerical aperture of 0.8 or more can be used for recording.
[0016] 本発明の情報記録再生装置によれば、光情報記録媒体に記録されている基材厚 み情報を利用して球面収差の補正値を決定できるので、球面収差の補正に要する 時間を短縮できる。また、本発明の情報記録再生装置は、補正値決定手段により決 定された補正値を用いて補正された球面収差を初期値として、光情報記録媒体に記 録されている情報を再生することにより得られる信号を用いて、球面収差を最適化す る学習を行ってもよレ、。これにより、より精度の高い球面収差の補正を行うことができ る。 According to the information recording / reproducing apparatus of the present invention, since the correction value of the spherical aberration can be determined using the base material thickness information recorded on the optical information recording medium, the time required for correcting the spherical aberration can be reduced. Can be shortened. Further, the information recording / reproducing apparatus of the present invention reproduces information recorded on an optical information recording medium with the spherical aberration corrected using the correction value determined by the correction value determining means as an initial value. Learning to optimize spherical aberration may be performed using the signal obtained by the above. This allows for more accurate spherical aberration correction. The
[0017] 以下、本発明の実施の形態について、図面を参照しながら説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0018] (実施の形態 1)  (Embodiment 1)
本発明の光情報記録媒体の一実施形態について説明する。図 1は、本実施の形 態の光情報記録媒体を模式的に示す、断面を含む斜視図である。本実施の形態の 光情報記録媒体は再生専用のディスクであり、基板 101上に反射膜 (情報記録層) 1 02及びカバー層 103が積層されている。基板 101には、例えばポリカーボネート製 基板が用レ、られ、反射膜 102側の面に、ピットにより情報が記録されている。反射膜 1 02は、例えば A1合金にて形成されている。再生光はカバー層 103側から入射するの で、カバー層 103は透明材料にて形成される。  An embodiment of the optical information recording medium of the present invention will be described. FIG. 1 is a perspective view including a cross section schematically showing the optical information recording medium of the present embodiment. The optical information recording medium of the present embodiment is a read-only disk, and a reflective film (information recording layer) 102 and a cover layer 103 are laminated on a substrate 101. As the substrate 101, for example, a polycarbonate substrate is used, and information is recorded by pits on the surface on the reflection film 102 side. The reflection film 102 is formed of, for example, an A1 alloy. Since the reproduction light enters from the cover layer 103 side, the cover layer 103 is formed of a transparent material.
[0019] 本実施の形態における光情報記録媒体の内周側には、例えば、シリアルナンバー 等の媒体固有の識別情報等を記録できる BCA (Burst Cutting Area)が設けられてい る。 BCAには、情報がバーコード状マーク(以下、 BCAマークという。)として記録さ れる。この BCAマークは、ピットに重ねて形成することができる。本実施の形態では、 基材厚み情報記録部として BCAが利用されており、この領域内において媒体の半 径方向に長い形状を有し、且つ、円周方向に複数個配置されるバーコード状マーク 104により基材厚み情報が記録されている。なお、本実施の形態における基材厚み とは、媒体の光入射面から反射膜 102の表面までの距離、すなわちカバー層 103の 厚みに相当する。  [0019] An inner side of the optical information recording medium according to the present embodiment is provided with a BCA (Burst Cutting Area) in which identification information unique to the medium such as a serial number can be recorded. Information is recorded on the BCA as a barcode mark (hereinafter referred to as a BCA mark). This BCA mark can be formed overlapping the pit. In the present embodiment, a BCA is used as a base material thickness information recording unit, and in this area, a barcode shape having a long shape in the radial direction of the medium and a plurality of barcodes arranged in the circumferential direction is used. The base material thickness information is recorded by the mark 104. Note that the substrate thickness in this embodiment corresponds to the distance from the light incident surface of the medium to the surface of the reflective film 102, that is, the thickness of the cover layer 103.
[0020] BCAマーク 104は、基板 101上に反射膜 102及びカバー層 103を積層した後に 形成することができ、例えば、長方形に成形した YAGレーザ(出射光の波長が例え ば波長 1064nm)の光を、記録する基材厚み情報に従って変調した変調信号に基 づいて基板 101側から反射膜 102にパルス照射すると共に、それに同期して回転機 構で光情報記録媒体を回転させることにより形成できる。このような方法により、パル ス照射された部分の反射膜 102が除去されて、記録すべき信号によって間隔が変調 された BCAマーク 104が形成される。この BCAマーク 104は、光ヘッドを用いて反射 膜 102に焦点を合わせた状態で再生できる。  The BCA mark 104 can be formed after laminating the reflective film 102 and the cover layer 103 on the substrate 101. For example, a rectangular YAG laser (the wavelength of the emitted light is 1064 nm, for example) can be used. Can be formed by irradiating the reflective film 102 with a pulse from the substrate 101 side based on a modulation signal modulated according to the substrate thickness information to be recorded, and rotating the optical information recording medium by a rotating mechanism in synchronization with the pulse irradiation. By such a method, the reflection film 102 at the portion irradiated with the pulse is removed, and the BCA mark 104 whose interval is modulated by the signal to be recorded is formed. The BCA mark 104 can be reproduced while focusing on the reflection film 102 using an optical head.
[0021] 図 2は、 BCAマーク 104を示す模式図である。なお、同図における BCAマーク 104 にはハッチングを施している。 BCAマーク 104のマーク長は、 BCAマーク 104の幅 Wに相当する。本実施の形態では、 BCAマーク 104の幅 Wは約 8 μ ΐηである。また、 互いに隣接する BCAマーク 104の間隔(マーク間隔)は、基本間隔を 28· 6 /i mとし て、その 1、 2、 3又は 4倍に設定されている。このようにマーク間隔を変化させることで 、基材厚み情報が記録されている。 FIG. 2 is a schematic diagram showing the BCA mark 104. The BCA mark 104 in the figure Is hatched. The mark length of the BCA mark 104 corresponds to the width W of the BCA mark 104. In the present embodiment, width W of BCA mark 104 is approximately 8 μΐη. The interval between adjacent BCA marks 104 (mark interval) is set to 1, 2, 3 or 4 times the basic interval of 28.6 / im. By changing the mark interval in this manner, the base material thickness information is recorded.
[0022] 以上のように形成された BCAマーク 104のマーク長は、記録されている他の情報 のマーク長(ここでは、基板 101に形成されたピットの長さ)よりも長ぐマーク間隔も広 レ、。従って、 BCAマーク 104の記録密度は、記録されている他の情報であるピットの 記録密度よりも低い。これにより、球面収差が基材厚みに合っていない状態であって も、光ヘッドを用いて BCAマーク 104を再生し、記録されている基材厚み情報を検出 すること力 Sできる。以下に、具体的に BCAマーク 104を再生した例を示す。  [0022] The mark length of the BCA mark 104 formed as described above is longer than the mark length of other recorded information (here, the length of the pit formed on the substrate 101). Hiro, Therefore, the recording density of the BCA mark 104 is lower than the recording density of pits, which are other information recorded. Thus, even if the spherical aberration does not match the thickness of the base material, the optical head can be used to reproduce the BCA mark 104 and detect the recorded base material thickness information. Hereinafter, a specific example in which the BCA mark 104 is reproduced will be described.
[0023] 本実施の形態の光情報記録媒体について、二種類のサンプノレを用意した。一つは 、ピットにより情報を記録した厚み 1. 1mmのポリカーボネート製の基板 101上に、 A1 合金にて形成された厚み 22nmの反射膜 102と、紫外線硬化樹脂 (UV樹脂)にて形 成された厚み 100 /i mのカバー層 103とが積層されたディスク Aであり、もう一つは、 カバー層 103の厚みを 75 /i mにした以外はディスク Aと同様であるディスク Bである。 ディスク A及び Bに記録された BCAマーク 104の幅 Wは約 8 μ mであり、マーク間隔 は、基本間隔を 28. 6 μ ΐηとして、その 1、 2、 3又は 4倍に設定されていた。また、ディ スク A及び Bにおいて、 BCAマーク 104の下地(基板 101の表面)には、最短ピット長 0. 149 μ ΐηのランダムデータ力 S、トラックピッチ 0· 35 μ ΐηで記録されている。  [0023] For the optical information recording medium of the present embodiment, two types of samplers were prepared. One is a 22-nm-thick reflective film 102 made of A1 alloy and an ultraviolet-curing resin (UV resin) formed on a 1.1-mm-thick polycarbonate substrate 101 on which information is recorded by pits. A disk A in which a cover layer 103 having a thickness of 100 / im is laminated, and the other is a disk B similar to the disk A except that the thickness of the cover layer 103 is 75 / im. The width W of the BCA mark 104 recorded on the discs A and B was about 8 μm, and the mark interval was set to 1, 2, 3, or 4 times as long as the basic interval was 28.6 μΐη. . On the discs A and B, the random data force S having the shortest pit length of 0.149 μΐη and the track pitch of 0.35 μΐη are recorded on the base of the BCA mark 104 (the surface of the substrate 101).
[0024] 以上のディスク A及び Bに対し、波長 405nmのレーザ光を出射する光源と、開口数 0. 85の対物レンズを含む光ヘッドを用いて、 BCAを再生した。この光ヘッドには、光 源と対物レンズとの間に配置されるビームエキスパンダが内蔵されており、このビーム エキスパンダを構成する 2枚のレンズ間の距離を変化させることにより、球面収差が 補正される。ディスク A及び Bを再生する際には、カバー層 103の厚みが 100 x m、 すなわち基材厚み 100 μ mの際に最適となる状態で反射膜 102にフォーカスサーボ されるように光ヘッドが設定されていた。なお、 BCAマーク 104は、反射膜 102が除 去された部分であるため、反射率が低い部分として再生される。 [0025] 図 3Aはディスク Aの BCAを、図 3Bはディスク Bの BCAを、それぞれ再生した際に 得られた再生信号の波形図である。再生に用いた光ヘッドの球面収差が基材厚み 1 00 /i mで最適になるように設定されているため、ディスク Aを再生した場合には、光 は反射膜 102上で最も小さく絞られる状態となっていた。そのため、ディスク Aでは、 BCAマーク 104の下地に記録されているピットにより反射光量が変調され、 BCAマ ーク 104の部分以外では大きな信号変調としてピットの情報が再生された。また、 BC Aマーク 104は、ピットよりも記録密度が低ぐ長いマーク長で記録されているため、 長い低反射率の部分として再生される。このため、十分に検出可能であった。 [0024] BCA was reproduced from the above discs A and B using an optical head including a light source that emits laser light having a wavelength of 405 nm and an objective lens having a numerical aperture of 0.85. This optical head has a built-in beam expander that is placed between the light source and the objective lens. By changing the distance between the two lenses that make up this beam expander, spherical aberration is reduced. Will be corrected. When playing discs A and B, the optical head is set so that focus servo is performed on the reflective film 102 in a state where the thickness of the cover layer 103 is 100 xm, that is, when the base material thickness is 100 μm. I was Since the BCA mark 104 is a portion from which the reflection film 102 has been removed, the BCA mark 104 is reproduced as a portion having a low reflectance. FIG. 3A is a waveform diagram of a reproduced signal obtained when the BCA of the disk A is reproduced, and FIG. 3B is a waveform diagram of a reproduced signal obtained when the BCA of the disk B is reproduced. Since the spherical aberration of the optical head used for reproduction is set to be optimal at a substrate thickness of 100 / im, when the disk A is reproduced, the light is focused on the reflective film 102 to the minimum. It was. Therefore, in the disc A, the amount of reflected light was modulated by the pits recorded on the base of the BCA mark 104, and the pit information was reproduced as a large signal modulation in portions other than the BCA mark 104. Also, since the BC A mark 104 is recorded with a long mark length having a lower recording density than the pits, it is reproduced as a long low reflectance portion. For this reason, it was sufficiently detectable.
[0026] 一方、ディスク Bは基材厚みが 70 μ mであるため、球面収差によって光を反射膜 1 02上で小さく絞ることができず、反射膜 102上では光がぼけてスポットサイズが大きく なる。そのため、 BCAマーク 104の下地に記録されているピットが反射膜 102上のス ポットサイズに対して相対的に小さく見え、スポット内に入るピット数が多くなるため、 空間的な周波数特性が低下してピットの信号変調度が小さくなつた。これに対し、 BC Aマーク 104は、ピットよりも記録密度が低ぐ十分に長いマーク長で記録されている ため、光がぼけている状態であっても、長い低反射率の部分として十分に検出可能 であった。  On the other hand, since the base material of the disc B has a thickness of 70 μm, light cannot be narrowed down on the reflective film 102 due to spherical aberration, and the light is blurred on the reflective film 102 to increase the spot size. Become. As a result, the pits recorded on the base of the BCA mark 104 appear relatively small with respect to the spot size on the reflective film 102, and the number of pits entering the spot increases. The signal modulation degree of the pit became small. On the other hand, the BC A mark 104 is recorded with a sufficiently long mark length, which has a lower recording density than the pit, so that even if the light is blurred, it is sufficient as a long low reflectance portion. It was detectable.
[0027] 以上のように、 BCAマーク 104は、球面収差が最適に補正されていない状態であ つても検出可能である。このため、基材厚み情報を BCAマーク 104として媒体に記 録しておくことにより、 BCAマーク 104から基材厚み情報を検出して、その媒体に適 した球面収差の補正値を設定することができる。また、記録された信号の再生品質が 最適になるように、球面収差、フォーカス、チルト等の条件を最適化する動作が行わ れるカ S、このとき、光情報記録媒体の基材厚み情報から得られる球面収差の補正値 を用いて補正した球面収差 (補正後の球面収差)を初期値として、球面収差を最適 化するための学習を行うことにより、球面収差を最適化するまでの時間を短縮できる  As described above, the BCA mark 104 can be detected even when the spherical aberration is not optimally corrected. For this reason, by recording the base material thickness information on the medium as the BCA mark 104, it is possible to detect the base material thickness information from the BCA mark 104 and set a spherical aberration correction value suitable for the medium. it can. In addition, an operation for optimizing conditions such as spherical aberration, focus, and tilt is performed to optimize the reproduction quality of the recorded signal. The time required to optimize spherical aberration is reduced by performing learning to optimize spherical aberration using the spherical aberration corrected using the corrected spherical aberration (corrected spherical aberration) as the initial value. it can
[0028] また、 BCAマーク 104はカバー層 103を形成してから記録できるので、カバー層 1 03の厚みを測定し、その厚みを BCAに加工できる。それゆえ、信頼性の高い基材厚 み情報を記録できる。 [0029] また、上記に示した例では、基材厚みを 75 β mまで薄くしたが、さらに薄くした場合 においても BCAマーク 104を検出可能である。カバー層 103が設けられていない状 態であっても、 BCAマーク 104の検出は可能である。 Also, since the BCA mark 104 can be recorded after forming the cover layer 103, the thickness of the cover layer 103 can be measured and the thickness can be processed into a BCA. Therefore, highly reliable substrate thickness information can be recorded. [0029] In the example shown above, but a thinner substrate thickness up to 75 beta m, it is possible to detect the BCA marks 104 even when the thinner. The BCA mark 104 can be detected even in a state where the cover layer 103 is not provided.
[0030] 例えば、高密度記録化のために、大きな開口数を有するレンズを用いて記録再生 光を小さく絞り込む場合、光情報記録媒体のチルトに対する収差の発生を抑制する ため、媒体における基材厚みは薄く設計される。このように基材厚みを薄くすると、基 材厚みの変化により発生する球面収差の影響が大きくなるという問題が起こるため、 球面収差を補正する必要が生じる。そこで、レンズの開口数が 0. 85であり、且つ、力 バー層の厚み(基材厚み)力 S100 μ mである BDのようなシステムに対して本発明の 構成を適用することは、特に有効である。  For example, when the recording / reproducing light is narrowed down by using a lens having a large numerical aperture for high-density recording, the thickness of the base material in the medium is controlled in order to suppress the occurrence of aberration with respect to the tilt of the optical information recording medium. Is designed to be thin. When the thickness of the base material is reduced in this manner, a problem occurs in that the influence of the spherical aberration generated by the change in the thickness of the base material increases, and thus it is necessary to correct the spherical aberration. Therefore, applying the configuration of the present invention to a system such as a BD in which the numerical aperture of the lens is 0.85 and the thickness (base material thickness) of the force bar layer is S100 μm is particularly important. It is valid.
[0031] また、本実施の形態では、再生専用型の光情報記録媒体についてのみ具体的に 説明したが、これに限定されず、記録可能である追記型や書き換え型の光情報記録 媒体に対しても、同様に BCAマークのような手段を用いて基材厚み情報を情報記録 層に記録しておくことにより、同様の効果を得ることができる。  Further, in the present embodiment, only the read-only optical information recording medium has been specifically described. However, the present invention is not limited to this, and is applicable to a recordable write-once or rewritable optical information recording medium. However, the same effect can be obtained by recording the substrate thickness information on the information recording layer using a means such as a BCA mark.
[0032] また、本実施の形態では、基材厚み情報を BCA内にバーコード状マークとして記 録したが、これに限定されず、情報記録層の他の領域に記録されていてもよい。また 、マーク形状もこれに限定されず、他の形状であってもよい。このとき、光情報記録媒 体に記録されている他の情報の記録密度よりも低くなるようなマーク形状を用いて、 基材厚み情報を記録することが好ましレ、。  [0032] Further, in the present embodiment, the base material thickness information is recorded as a barcode mark in the BCA, but is not limited to this, and may be recorded in another area of the information recording layer. Also, the mark shape is not limited to this, and may be another shape. At this time, it is preferable to record the base material thickness information using a mark shape that is lower than the recording density of other information recorded on the optical information recording medium.
[0033] また、基材厚み情報を記録する領域は情報記録層内に限定されず、例えばカバー 層上もしくはカバー層内であっても、光ヘッドを用いて検出できるのであればその場 所は限定されない。  [0033] The area for recording the base material thickness information is not limited to the information recording layer. For example, even on the cover layer or in the cover layer, if the area can be detected using an optical head, the place is not limited. Not limited.
[0034] また、本実施の形態では、情報記録層が一つだけ設けられた単層構造の光情報記 録媒体について述べたが、情報記録層が複数設けられた多層構造の光情報記録媒 体であってもよレ、。多層構造の光情報記録媒体の場合は、最初にフォーカスサーボ しゃすいという理由から、最も光入射側に位置する情報記録層、又は、最も反光入射 側に位置する情報記録層に基材厚み情報が記録されることが好ましい。さらに、この とき記録される基材厚み情報は、媒体の光入射面から、基材厚み情報が記録される 情報記録層の表面までの距離であることが望ましい。 [0034] Further, in the present embodiment, an optical information recording medium having a single-layer structure provided with only one information recording layer has been described. However, an optical information recording medium having a multilayer structure provided with a plurality of information recording layers has been described. It may be your body. In the case of an optical information recording medium having a multi-layered structure, first, because of focus servo shading, the thickness of the base material information is recorded in the information recording layer located closest to the light incident side or the information recording layer located closest to the opposite light incident side. It is preferably recorded. Further, the substrate thickness information recorded at this time is recorded from the light incident surface of the medium. Desirably, the distance to the surface of the information recording layer.
[0035] (実施の形態 2)  (Embodiment 2)
本発明の情報記録再生装置の一実施形態について説明する。図 4は、本実施の 形態の情報記録再生装置の主な構成を示すブロック図である。なお、図 4に示す情 報記録再生装置にセットされている光情報記録媒体 201は、実施の形態 1で説明し た光情報記録媒体と同様の構成を有している。  An embodiment of the information recording / reproducing apparatus of the present invention will be described. FIG. 4 is a block diagram showing a main configuration of the information recording / reproducing apparatus of the present embodiment. The optical information recording medium 201 set in the information recording / reproducing apparatus shown in FIG. 4 has the same configuration as the optical information recording medium described in the first embodiment.
[0036] 本実施の形態の情報記録再生装置には、セットされた光情報記録媒体 201を回転 させるスピンドノレモータ 202と、半導体レーザを有し、レーザ光を光情報記録媒体 20 1の情報記録層に集光して情報の記録を行うと共に、反射光から再生信号を得る光 ヘッド(再生手段) 203と、光ヘッド 203を光情報記録媒体 201の径方向に移動させ る移動機構 204と、再生信号から生成されたフォーカスエラー信号に基づレ、て光へ ッド 203を制御するフォーカス制御回路 205と、再生信号から生成されるトラッキング エラー信号に基づいて光ヘッド 203を制御するトラッキング制御回路 206と、再生信 号に含まれる情報再生信号を処理する再生信号処理部 207と、基材厚みに応じて 設定された球面収差の補正値を格納する補正値格納部 (補正値格納手段) 208と、 光情報記録媒体 201の BCAを再生した際に得られる基材厚み情報から、補正値格 納部 208を用いて球面収差の補正値を決定するシステム制御部(補正値決定手段) 209と、システム制御部 209にて決定された補正値に基づいて光ヘッド 203の球面 収差を補正する球面収差制御回路 (球面収差補正手段) 210と、が含まれる。また、 球面収差制御回路 210は、基材厚み情報に基づいて補正された球面収差を初期値 として球面収差を最適化する学習の際にも、光ヘッド 203の球面収差を制御する。ま た、システム制御部 209は球面収差の補正を決定する補正値決定手段としての機能 の他に、光ヘッド 203、フォーカス制御回路 205、トラッキング制御回路 206及び球 面収差制御回路 210等のシステム全体を制御している。  The information recording / reproducing apparatus according to the present embodiment includes a spin-doner motor 202 for rotating a set optical information recording medium 201, and a semiconductor laser. An optical head (reproducing means) 203 for recording information by condensing the information on the layer and obtaining a reproduction signal from the reflected light; a moving mechanism 204 for moving the optical head 203 in the radial direction of the optical information recording medium 201; A focus control circuit 205 for controlling the optical head 203 based on a focus error signal generated from the reproduction signal, and a tracking control circuit for controlling the optical head 203 based on a tracking error signal generated from the reproduction signal 206, a reproduction signal processing unit 207 for processing an information reproduction signal included in the reproduction signal, and a correction value storage unit (correction value storage means) 208 for storing a spherical aberration correction value set according to the thickness of the base material. When A system control unit (correction value determination unit) 209 that determines a correction value of spherical aberration using a correction value storage unit 208 from base material thickness information obtained when the BCA of the optical information recording medium 201 is reproduced; A spherical aberration control circuit (spherical aberration correcting means) 210 for correcting the spherical aberration of the optical head 203 based on the correction value determined by the control unit 209. The spherical aberration control circuit 210 also controls the spherical aberration of the optical head 203 at the time of learning to optimize the spherical aberration using the spherical aberration corrected based on the base material thickness information as an initial value. The system control unit 209 has a function as a correction value determining unit for determining correction of spherical aberration, and further includes an entire system including an optical head 203, a focus control circuit 205, a tracking control circuit 206, and a spherical aberration control circuit 210. Is controlling.
[0037] 本実施の形態の情報記録再生装置における球面収差補正動作について、簡単に 説明する。  [0037] The operation of correcting spherical aberration in the information recording / reproducing apparatus of the present embodiment will be briefly described.
[0038] まず、光情報記録媒体 201をスピンドルモータ 202にセットして回転させた後、光へ ッド 203によって情報再生用のレーザ光を光情報記録媒体 201上に照射する。この とき、まず光情報記録媒体 201の BCAに焦点を合わせてレーザ光を照射し、基材厚 み情報を読み出す。基材厚み情報の読み出しは、光ヘッド 203で光情報記録媒体 2 01からの反射光より得られた情報再生信号を再生信号処理部 207で処理し、得られ た基材厚み情報の信号をシステム制御部 209に取り込んで行う。 First, after setting and rotating the optical information recording medium 201 on the spindle motor 202, the optical information recording medium 201 is irradiated with a laser beam for information reproduction by the optical head 203. this At this time, first, the BCA of the optical information recording medium 201 is focused and irradiated with a laser beam to read out the substrate thickness information. The reading of the base material thickness information is performed by processing the information reproduction signal obtained from the reflected light from the optical information recording medium 201 by the optical head 203 in the reproduction signal processing unit 207, and converting the obtained base material thickness information signal into a system. This is performed by taking it into the control unit 209.
[0039] 次に、基材厚みに応じた球面収差の補正値を決定する。システム制御部 209は、 基材厚みと球面収差の補正値との関係が格納されている補正値格納部 208を用い て、得られた基材厚み情報に基づき球面収差の補正値を決定する。決定された補正 値の情報は、球面収差制御回路 210に取り込まれる。  Next, a correction value of the spherical aberration according to the thickness of the base material is determined. The system control unit 209 determines the correction value of the spherical aberration based on the obtained base material thickness information using the correction value storage unit 208 in which the relationship between the base material thickness and the correction value of the spherical aberration is stored. Information on the determined correction value is taken into the spherical aberration control circuit 210.
[0040] 次に、球面収差制御回路 210は、決定された球面収差の補正値に基づいて、光へ ッド 203の球面収差を補正する。  Next, the spherical aberration control circuit 210 corrects the spherical aberration of the optical head 203 based on the determined spherical aberration correction value.
[0041] その後、補正後の球面収差を初期値として、球面収差を最適化するための学習が 行われる。学習は、例えば、下記のように行われる。  After that, learning for optimizing the spherical aberration is performed using the corrected spherical aberration as an initial value. The learning is performed, for example, as follows.
[0042] 例えば、上記初期値を用いて光ヘッド 203の球面収差を補正した後、光情報記録 媒体 201からの反射光より得られた情報再生信号に基づいて球面収差の補正値を 変化させ、情報再生信号振幅が最大となる補正値を探す。さらに、情報再生信号の ジッタ(ゆらぎ)を検出し、ジッタが最少となるように補正値を微調整する。トラッキング 信号の振幅と球面収差に相関が有る場合は、上記情報再生信号の代わりにトラツキ ング信号を用いてもよい。  For example, after correcting the spherical aberration of the optical head 203 using the above initial value, the correction value of the spherical aberration is changed based on the information reproduction signal obtained from the reflected light from the optical information recording medium 201, A correction value that maximizes the information reproduction signal amplitude is searched for. Further, the jitter (fluctuation) of the information reproduction signal is detected, and the correction value is finely adjusted so as to minimize the jitter. When there is a correlation between the amplitude of the tracking signal and the spherical aberration, a tracking signal may be used instead of the information reproduction signal.
[0043] 以上のような本実施の形態の情報記録再生装置によれば、球面収差の補正に要 する時間を短縮できる。  According to the information recording / reproducing apparatus of the present embodiment as described above, the time required for correcting spherical aberration can be reduced.
産業上の利用可能性  Industrial applicability
[0044] 本発明にかかる光情報記録媒体および情報記録再生装置は、基材厚みが薄ぐ 且つ、開口数の高いレンズを用いて記録再生が行われるような、例えば BDのような 高密度記録媒体や、このような高密度記録媒体に対して情報を記録再生する情報記 録再生装置に有効に適用できる。  [0044] The optical information recording medium and the information recording / reproducing apparatus according to the present invention provide a high-density recording such as a BD in which recording / reproducing is performed using a lens having a thin base material and a high numerical aperture. The present invention can be effectively applied to a medium or an information recording / reproducing apparatus for recording / reproducing information on / from such a high-density recording medium.

Claims

請求の範囲 The scope of the claims
[1] 光の照射により情報の再生が可能な情報記録層を少なくとも一つ含む光情報記録 媒体であって、前記光情報記録媒体の光入射面から前記情報記録層の表面までの 距離を基材厚みという場合、  [1] An optical information recording medium including at least one information recording layer from which information can be reproduced by light irradiation, based on a distance from a light incident surface of the optical information recording medium to a surface of the information recording layer. In the case of material thickness,
前記基材厚みを示す基材厚み情報が記録された基材厚み情報記録部をさらに含 むことを特徴とする光情報記録媒体。  An optical information recording medium further comprising a base material thickness information recording section on which base material thickness information indicating the base material thickness is recorded.
[2] 前記基材厚み情報記録部は、前記情報記録層に形成されている請求項 1に記載 の光情報記録媒体。  [2] The optical information recording medium according to claim 1, wherein the base material thickness information recording section is formed on the information recording layer.
[3] 前記基材厚み情報は、前記情報記録層に記録される他の情報よりも低い記録密度 で記録されてレ、る請求項 1に記載の光情報記録媒体。  3. The optical information recording medium according to claim 1, wherein the base material thickness information is recorded at a lower recording density than other information recorded on the information recording layer.
[4] 前記基材厚み情報の記録に用いられる記録マークのマーク長は、前記情報記録 層に記録される他の情報の記録に用いられる記録マークよりも長い請求項 1に記載 の光情報記録媒体。 4. The optical information recording according to claim 1, wherein a mark length of a recording mark used for recording the base material thickness information is longer than a recording mark used for recording other information recorded on the information recording layer. Medium.
[5] 光の照射により情報の再生が可能な情報記録層が複数設けられており、前記複数 の情報記録層のうち最も光入射側に位置する情報記録層、又は、最も反光入射側に 位置する情報記録層に、前記基材厚み情報記録部が形成されてレ、る請求項 1に記 載の光情報記録媒体。  [5] A plurality of information recording layers capable of reproducing information by irradiating light are provided, and the information recording layer located closest to the light incident side or located closest to the non-light incident side of the plurality of information recording layers is provided. 2. The optical information recording medium according to claim 1, wherein the base material thickness information recording portion is formed on the information recording layer to be formed.
[6] 前記基材厚み情報記録部には、前記基材厚み情報記録部が形成されてレ、る情報 記録層につレ、ての基材厚み情報が記録されてレ、る請求項 5に記載の光情報記録媒 体。  [6] The base material thickness information recording section is formed with the base material thickness information recording section, and the base material thickness information is recorded on an information recording layer. An optical information recording medium according to claim 1.
[7] 前記基材厚み情報は、バーコード状マークにより記録されている請求項 1に記載の 光情報記録媒体。  7. The optical information recording medium according to claim 1, wherein the base material thickness information is recorded by a barcode-shaped mark.
[8] 前記基材の厚みが 0. 1mm以下である請求項 1に記載の光情報記録媒体。  [8] The optical information recording medium according to claim 1, wherein the thickness of the base material is 0.1 mm or less.
[9] 0. 8以上の開口数を有するレンズを通過した光が照射されることにより、情報の再 生が行われる請求項 1に記載の光情報記録媒体。  [9] The optical information recording medium according to claim 1, wherein information is reproduced by irradiating light having passed through a lens having a numerical aperture of 0.8 or more.
[10] 光の照射により情報の再生が可能な情報記録層を少なくとも一つ含む光情報記録 媒体で、前記光情報記録媒体の光入射面から前記情報記録層の表面までの距離を 基材厚みという場合に、前記基材厚みを示す基材厚み情報が記録された基材厚み 情報記録部をさらに含む光情報記録媒体に対して用いられる情報記録再生装置で あってヽ [10] An optical information recording medium including at least one information recording layer capable of reproducing information by light irradiation, wherein a distance from a light incident surface of the optical information recording medium to a surface of the information recording layer is determined by a thickness of a base material. In that case, the base material thickness on which the base material thickness information indicating the base material thickness is recorded An information recording / reproducing apparatus used for an optical information recording medium further including an information recording unit.
前記光情報記録媒体に記録されている前記基材厚み情報を再生する再生手段と 基材厚みに応じて設定された球面収差の補正値が予め格納されている補正値格 納手段と、  Reproducing means for reproducing the base material thickness information recorded on the optical information recording medium; and a correction value storing means in which a correction value of spherical aberration set according to the base material thickness is stored in advance;
前記再生手段にて得られた基材厚み情報により、前記補正値格納手段を用いて球 面収差の補正値を決定する補正値決定手段と、  Correction value determining means for determining a spherical aberration correction value using the correction value storage means, based on the base material thickness information obtained by the reproducing means;
前記補正値決定手段により決定された補正値を用いて球面収差を補正する球面 収差補正手段と、  Spherical aberration correcting means for correcting spherical aberration using the correction value determined by the correction value determining means,
を含むことを特徴とする情報記録再生装置。 An information recording / reproducing apparatus characterized by including:
前記補正値決定手段により決定された補正値を用いて補正された球面収差を初期 値として、前記光情報記録媒体に記録されている情報を再生することにより得られる 信号を用いて、球面収差を最適化する学習を行う請求項 10に記載の情報記録再生 装置。  Using the spherical aberration corrected using the correction value determined by the correction value determining means as an initial value, the spherical aberration is calculated using a signal obtained by reproducing information recorded on the optical information recording medium. The information recording / reproducing device according to claim 10, wherein learning for optimization is performed.
PCT/JP2005/002769 2004-02-23 2005-02-22 Optical information recording medium and information recording/reproduction device WO2005081241A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-045878 2004-02-23
JP2004045878A JP2007213624A (en) 2004-02-23 2004-02-23 Optical information recording medium and device

Publications (1)

Publication Number Publication Date
WO2005081241A1 true WO2005081241A1 (en) 2005-09-01

Family

ID=34879419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002769 WO2005081241A1 (en) 2004-02-23 2005-02-22 Optical information recording medium and information recording/reproduction device

Country Status (3)

Country Link
JP (1) JP2007213624A (en)
TW (1) TW200529210A (en)
WO (1) WO2005081241A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008068750A1 (en) * 2006-12-04 2008-06-12 Mempile Inc. Data protection in an optical data carrier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05151644A (en) * 1991-06-04 1993-06-18 Internatl Business Mach Corp <Ibm> Optical data memory medium
JPH08321065A (en) * 1995-05-23 1996-12-03 Hitachi Ltd Optical disk device
JP2002157750A (en) * 2000-09-06 2002-05-31 Matsushita Electric Ind Co Ltd Optical disk unit and information recording and reproducing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05151644A (en) * 1991-06-04 1993-06-18 Internatl Business Mach Corp <Ibm> Optical data memory medium
JPH08321065A (en) * 1995-05-23 1996-12-03 Hitachi Ltd Optical disk device
JP2002157750A (en) * 2000-09-06 2002-05-31 Matsushita Electric Ind Co Ltd Optical disk unit and information recording and reproducing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008068750A1 (en) * 2006-12-04 2008-06-12 Mempile Inc. Data protection in an optical data carrier

Also Published As

Publication number Publication date
JP2007213624A (en) 2007-08-23
TW200529210A (en) 2005-09-01

Similar Documents

Publication Publication Date Title
US6894962B1 (en) Optical information recording medium with sector address information
USRE39322E1 (en) Multi-layer information recording medium and information recording and reproducing apparatus
WO2003046902A1 (en) Multilayer optical recording medium, method for recording data, and recorder
JP2008059686A (en) Method of adjusting spherical aberration and focus offset and information recording and reproducing device using the same
JP4200335B2 (en) Information recording medium, and information recording apparatus and method
JP2004171740A (en) Optical information recording medium, method and apparatus for optical recording and reproducing
JP4226184B2 (en) Information recording medium discriminating apparatus and information recording medium discriminating method
WO2005081241A1 (en) Optical information recording medium and information recording/reproduction device
JP2005011404A (en) Optical recording medium, recording device, and recording method
JP2005190591A (en) Optical disk device, its control method and recording medium
JP2009238266A (en) Optical disk apparatus and optical disk recording and reproducing method
JP4264653B2 (en) Optical disc apparatus, focus bias, and spherical aberration correction value adjustment method
JPWO2007037162A1 (en) Information reproducing apparatus and method, and computer program
EP1950743B1 (en) Optical disk processor
JP4154256B2 (en) Optical information recording medium recording / reproducing apparatus and optical information recording medium recording / reproducing method
JP2005056543A (en) Method for identifying type of two-layer disk and optical disk device
JP4833912B2 (en) Optical disc warpage detection method, optical disc recording method, and optical disc recording / reproducing apparatus
JP4201740B2 (en) Optical disc recording method and optical disc recording apparatus
JP2005346746A (en) Optical disk, optical disk apparatus and image recording method
KR100759910B1 (en) Information recording medium and information recording device and method
JP2003016667A (en) Optical disk device
JP2009176337A (en) Optical disk device
JP2008234831A (en) Rewritable recording medium
JP2006277929A (en) Optical disk apparatus
JP2006268964A (en) Two-layer optical disk recorder

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP