WO2005081031A1 - Device for looking at eclipses and the sun - Google Patents

Device for looking at eclipses and the sun Download PDF

Info

Publication number
WO2005081031A1
WO2005081031A1 PCT/ES2005/000054 ES2005000054W WO2005081031A1 WO 2005081031 A1 WO2005081031 A1 WO 2005081031A1 ES 2005000054 W ES2005000054 W ES 2005000054W WO 2005081031 A1 WO2005081031 A1 WO 2005081031A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
sun
viewfinder
visor
height
Prior art date
Application number
PCT/ES2005/000054
Other languages
Spanish (es)
French (fr)
Inventor
Juan Andrés GUALDA GIL
Manuel CEBRIÁN ABELLÁN
Original Assignee
Gualda Gil Juan Andres
Cebrian Abellan Manuel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gualda Gil Juan Andres, Cebrian Abellan Manuel filed Critical Gualda Gil Juan Andres
Publication of WO2005081031A1 publication Critical patent/WO2005081031A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/02Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
    • G02B23/08Periscopes

Definitions

  • TECHNICAL FIELD falls within the technical field of apparatus for safely seeing (without damage to the eyes) the Sun, either when an eclipse occurs or when there is none.
  • Current systems for viewing the solar disk consist of: a) Complex optical instruments, very expensive and inaccessible to most people. b) Glasses or plates for direct vision, which have a powerful filter to strongly attenuate the luminosity of the Sun. Against this type of cheap utensils for direct vision, ophthalmologists warn of their danger, since an unapproved filter or the existence of a small Pore or a streak in an approved one can have irreversible consequences for the retina.
  • the present invention allows to see the image of the Sun projected on a screen (and therefore safe for the eyes) obtained by passing its rays through a small hole (camera obscura) and having undergone at least one reflection (i.e. there may be one, several or many reflections) to shorten the dimensions of the apparatus.
  • the Sun's diameter is about a hundred times less than its average distance from Earth. So when you get your image in a camera obscura, the diameter of the image is one hundredth of the projection distance, that is, the distance between the hole in the camera and the screen (in the case of using a lens, the diameter of the image would be one hundredth of its image focal length).
  • the diameter of the image is approximately 1.5 cm, that is, for the image to be of an acceptable size, the projection distance must be large, which prevents making a manageable appliance.
  • the present invention causes that, by reflecting that image one or more times (as indicated later in the drawings), the length of the camera is shortened, maintaining a large projection distance, to make the apparatus more manageable and allow it to be save easily.
  • Figure 1 shows how the image of the Sun is produced in a camera obscura.
  • the image (3) is produced in the background (1) of the camera.
  • the image diameter is d and the projection distance is long.
  • the hole (2) can have any shape, here we will assume that it is circular in diameter p (pupil), so that point A of the Sun does not project at a single point, figure 2, but that its image is a circle of diameter A ⁇ A 2 , that is, the image of point A of the Sun is blurred.
  • the long projection distance in order to obtain an image with an acceptable size, for example 1.5 cm in diameter to be able to comfortably see an eclipse, the long projection distance must be 1.5 m, a very long length that prevents the construction of a marketable camera obscura.
  • the present invention makes it possible to shorten that length by causing the rays of the Sun to be reflected inside the camera, as indicated in figure 3.
  • the rays penetrate through the hole (1) and are reflected in the mirrors (2 and 3) to give the projected image (4), which the observer sees from the opening (5).
  • the number of reflections can be any. The greater the number of reflections, the lower the height h of the camera and the more manageable and marketable the device is.
  • FIG. 6 shows an embodiment of the present invention.
  • the entrance hole of the Sun is (1) and has a diameter of about 2 mm and the slits through which the eyes look are (2) and (3) and have a width of about 5 mm.
  • the height h can be around 25 cm to comfortably see the image and the width a can be around 18 cm to obtain 8 reflections and 9 sections (without having to use reflector elements the viewfinder should have a length greater than 2 m ), so the highest amplification obtained would be 9 and the diameter of the largest image of the Sun would be about 2 cm, enough to see a detailed eclipse of the Sun.
  • the thickness g of the viewfinder would be about 7 cm to be able to see the image with both eyes at the same time.
  • This 25 x 18 x 7 cm 3 box can be shaped into a book to be kept on a shelf.

Abstract

A device for looking at a projected image of the sun (during an eclipse or not), using at least one reflector element used to reduce the height h of the device. The basic operating principle of the device according to one of the many embodiments thereof is illustrated in the drawing. The sun's rays enter via the opening (1) and undergo various reflections in mirrors (2 and 3) in order to obtain a projected image (4) which his seen by an observer via a groove (5).The reflections make it possible to substantially reduce the height h of the device (enabling mass marketing thereof), keeping a substantial projection distance in order to ensure that the format of the image is acceptable.

Description

VISOR DE ECLIPSES Y DE SOL ECLIPSES AND SUN VIEWER
Sector de la técnica La presente invención se encuadra en el sector técnico de aparatos para ver de manera segura (sin daño para los ojos) el Sol, bien cuando se produce un eclipse o bien cuando no lo hay. Estado de la técnica Los sistemas actuales para ver el disco solar consisten en: a) Complejos instrumentos ópticos, muy caros e inaccesibles a la generalidad de las personas. b) Gafas o placas de visión directa, que disponen de un potente filtro para atenuar fuertemente la luminosidad del Sol. Contra este tipo de utensilios baratos de visionado directo los oftalmólogos avisan de su peligrosidad, pues un filtro no homologado o la existencia de un pequeño poro o una raya en uno homologado pueden tener consecuencias irreversibles para la retina. c) Aparatos caseros de proyección sobre una pantalla de la imagen del Sol al pasar por un pequeño agujero (cámara oscura). Este procedimiento es el más seguro pero tiene el inconveniente de su gran longitud (mayor de un metro) si se quiere ver el disco solar con un tamaño aceptable. Este inconveniente de su gran longitud hace que este método no pueda ser explotado comercialmente. La presente invención se basa en este último método pero haciendo que la imagen del Sol sufra una o varias reflexiones para acortar la longitud de la cámara oscura, de manera que el tamaño resultante pueda ser fácilmente manejable por cualquier persona y guardable en cualquier hogar pues ocupa muy poco espacio. Explicación La presente invención permite ver la imagen del Sol proyectada en una pantalla (y por tanto de manera segura para los ojos) obtenida al pasar sus rayos por un pequeño agujero (cámara oscura) y habiendo sufrido éstos al menos una reflexión (es decir, puede haber una, varias o muchas reflexiones) para acortar las dimensiones del aparato. El diámetro del Sol es unas cien veces menor que su distancia media a la Tierra. Por eso cuando se obtiene su imagen en una cámara oscura, el diámetro de la imagen es la centésima parte de la distancia de proyección, es decir, de la distancia que hay entre el agujero de la cámara y la pantalla (en el caso de emplear una lente, el diámetro de la imagen sería una centésima de su distancia focal imagen). Por ejemplo, para una distancia de proyección de 1,5 m el diámetro de la imagen es aproximadamente de 1,5 cm, o sea, para que la imagen tenga un tamaño aceptable la distancia de proyección debe ser grande, lo que impide fabricar un aparato manejable. La presente invención hace que, reflejando una o varias veces esa imagen (como se indica más adelante en los dibujos), se acorte la longitud de la cámara, manteniendo una distancia de proyección grande, para hacer más manejable el aparato y permitir que se pueda guardar fácilmente. Descripción de los dibujos En la figura 1 puede verse cómo se produce la imagen del Sol en una cámara oscura. El diámetro del Sol es D y su distancia a la Tierra es L. Se verifica aproximadamente que L = 100 - D Al pasar los rayos solares por el pequeño orificio (2) se produce la imagen (3) en el fondo (1) de la cámara. El diámetro de la imagen es d y la distancia de proyección es long. En los triángulos semejantes se verifica que long / d = L / D = 100 ; d = long / 100 [1] El orificio (2) puede tener cualquier forma, aquí supondremos que es circular de diámetro p (pupila), de manera que el punto A del Sol no se proyecta en un solo punto, figura 2, sino que su imagen es un círculo de diámetro AιA2 , es decir, la imagen del punto A del Sol es borrosa. Se verifica que P1P2 = P ; p / L = AiA2 / (L + long) ; A1A2 = p (L + long) / L = p puesto que L es muy grande con relación a long. La borrosidad b de la imagen es un valor relativo que se define así
Figure imgf000004_0001
y según la fórmula [1] b = p / d = 100 - p / long [2] o sea, es directamente proporcional al diámetro del orificio e inversamente proporcional a la distancia de proyección. Para un valor p determinado la borrosidad disminuye según aumenta long. Experimentalmente se comprueba que la imagen es suficientemente nítida, es decir, tiene una borrosidad aceptable para p < d / 10. La luminosidad de la imagen es directamente proporcional al área del orificio e inversamente proporcional al área de la imagen. Se tiene que luminosidad = k p2) / ( t d2) = k p2 / d2 = k p2 • (100 / long)2 siendo k una constante. Se observa que para un valor p determinado la luminosidad disminuye según aumenta long. Aplicando la fórmula [2] se obtiene que luminosidad = k (100 p / long)2 = k b2 [3] es decir, la luminosidad disminuye cuando lo hace la borrosidad o, lo que es lo mismo, las imágenes nítidas son poco luminosas. De la fórmula [1] se desprende que para obtener una imagen con un tamaño aceptable, por ejemplo de 1,5 cm de diámetro para poder ver cómodamente un eclipse, la distancia de proyección long debe ser de 1,5 m, longitud muy grande que impide la construcción de una cámara oscura comercializable. La presente invención permite acortar esa longitud haciendo que los rayos del Sol se reflejen dentro de la cámara, como se indica en la figura 3. Los rayos penetran por el orificio (1) y se reflejan en los espejos (2 y 3) para dar la imagen proyectada (4), que el observador ve desde la abertura (5). El número de reflexiones puede ser cualquiera. A mayor número de reflexiones, menor es la altura h de la cámara y más manejable y comercializable resulta el aparato. En la figura 3 hay 4 reflexiones, estando la distancia de proyección long de la figura 1 descompuesta en 5 tramos de longitud aproximadamente igual a h . Se tiene, según la fórmula [1], que d = long / 100 = t - h / 100 ; h = 100 - d / t [4] siendo t el número de tramos. Para d = 1,5 cm y t = 9 es h = 16,6 cm y la cámara resulta fabricable, muy manejable y comercializable. El ángulo bajo el que vemos directamente el Sol es, según la figura 1, D / L = d / long = 1 / 100 [5] y en la cámara de la figura 3 el ángulo bajo el que vemos la imagen del Sol es, sustituyendo la fórmula [4] d / h = d - t / (100 - d) = t / 100 que comparada con la fórmula [5] nos dice que la amplificación obtenida es igual a t (número de tramos), es decir, el Sol se ve t veces mayor a como se vería directamente usando gafas protectoras. Variando la orientación de la cámara respecto del Sol o, lo que es lo mismo, variando el ángulo de incidencia de los rayos del Sol al penetrar por el orificio (1) de la figura 3, se cambia el número de reflexiones y de tramos. En la figura 4, por ejemplo, se da el caso en que t = 3. Para cada anchura a de la cámara hay un número máximo de reflexiones, que no se puede sobrepasar so pena de obtener inútiles imágenes superpuestas. Así las cosas, variando la orientación del visor se obtienen imágenes del Sol de distintos tamaños, en función del número de tramos t. El diámetro d de cada imagen es proporcional a t, según la fórmula [4]. La borrosidad de cada imagen es inversamente proporcional a long, según la fórmula [2], e inversamente proporcional a t, puesto que long = t h. La luminosidad de cada imagen es directamente proporcional al cuadrado de la borrosidad, según la fórmula [3], o inversamente proporcional al cuadrado de t. Dicho de otra manera: cuanto mayor es la imagen del Sol obtenida, mayor es su nitidez y menor su luminosidad. Inclinando mucho el visor podría darse la peligrosa situación de la figura 5 en que los rayos del Sol inciden, tras una única reflexión, directamente en los ojos. Para evitarlo es necesario colocar en medio una pantalla opaca de protección (1) como se indica en la figura 5. En la figura 6 se da un modo de realización de la presente invención. Un modo de realización Un modo de realización de la presente invención, de los muchos posibles existentes, se desprende de la figura 3 y se da en la figura 6. El orificio de entrada del Sol es (1) y tiene un diámetro de unos 2 mm y las ranuras por las que miran los ojos son (2) y (3) y tienen una anchura de unos 5 mm. La altura h puede estar en torno a los 25 cm para ver cómodamente la imagen y la anchura a puede ser de unos 18 cm para obtener 8 reflexiones y 9 tramos (sin tener que usar elementos reflectores el visor debería tener una longitud mayor de 2 m), con lo que la mayor amplificación obtenida sería de 9 y el diámetro de la mayor imagen del Sol sería de unos 2 cm, suficiente para ver con detalle un eclipse de Sol. El grosor g del visor sería de unos 7 cm para poder ver la imgen con ambos ojos a la vez. A esta caja de 25 x 18 x 7 cm3 se le puede dar forma de libro para ser guardada en una estantería.
TECHNICAL FIELD The present invention falls within the technical field of apparatus for safely seeing (without damage to the eyes) the Sun, either when an eclipse occurs or when there is none. State of the art Current systems for viewing the solar disk consist of: a) Complex optical instruments, very expensive and inaccessible to most people. b) Glasses or plates for direct vision, which have a powerful filter to strongly attenuate the luminosity of the Sun. Against this type of cheap utensils for direct vision, ophthalmologists warn of their danger, since an unapproved filter or the existence of a small Pore or a streak in an approved one can have irreversible consequences for the retina. c) Home-made projection devices on a screen of the image of the Sun when passing through a small hole (camera obscura). This procedure is the safest but has the disadvantage of its great length (greater than one meter) if you want to see the solar disk with an acceptable size. This disadvantage of its great length means that this method cannot be exploited commercially. The present invention is based on the latter method, but causing the image of the Sun to undergo one or more reflections to shorten the length of the camera obscura, so that the resulting size can be easily handled by anyone and can be stored in any home because it occupies very little space. Explanation The present invention allows to see the image of the Sun projected on a screen (and therefore safe for the eyes) obtained by passing its rays through a small hole (camera obscura) and having undergone at least one reflection (i.e. there may be one, several or many reflections) to shorten the dimensions of the apparatus. The Sun's diameter is about a hundred times less than its average distance from Earth. So when you get your image in a camera obscura, the diameter of the image is one hundredth of the projection distance, that is, the distance between the hole in the camera and the screen (in the case of using a lens, the diameter of the image would be one hundredth of its image focal length). For example, for a projection distance of 1.5 m the diameter of the image is approximately 1.5 cm, that is, for the image to be of an acceptable size, the projection distance must be large, which prevents making a manageable appliance. The present invention causes that, by reflecting that image one or more times (as indicated later in the drawings), the length of the camera is shortened, maintaining a large projection distance, to make the apparatus more manageable and allow it to be save easily. Description of the drawings Figure 1 shows how the image of the Sun is produced in a camera obscura. The diameter of the Sun is D and its distance from Earth is L. It is approximately verified that L = 100 - D When the solar rays pass through the small hole (2), the image (3) is produced in the background (1) of the camera. The image diameter is d and the projection distance is long. In similar triangles it is verified that long / d = L / D = 100; d = long / 100 [1] The hole (2) can have any shape, here we will assume that it is circular in diameter p (pupil), so that point A of the Sun does not project at a single point, figure 2, but that its image is a circle of diameter AιA 2 , that is, the image of point A of the Sun is blurred. It is verified that P 1 P 2 = P; p / L = AiA 2 / (L + long); A1A2 = p (L + long) / L = p since L is very large in relation to long. Image blur b is a relative value defined as follows
Figure imgf000004_0001
and according to the formula [1] b = p / d = 100 - p / long [2] that is, it is directly proportional to the diameter of the hole and inversely proportional to the projection distance. For a given p-value the blurring decreases as length increases. Experimentally it is verified that the image is sufficiently sharp, that is, it has an acceptable blur for p <d / 10. The luminosity of the image is directly proportional to the area of the hole and inversely proportional to the area of the image. We have that luminosity = k p 2 ) / (t d 2 ) = k p 2 / d 2 = k p 2 • (100 / long) 2 where k is a constant. It is observed that for a given p value the luminosity decreases as long increases. Applying the formula [2] it is obtained that luminosity = k (100 p / long) 2 = k b 2 [3] that is to say, the luminosity decreases when the blurring does or, what is the same, the images Sharp are dim. From formula [1] it follows that in order to obtain an image with an acceptable size, for example 1.5 cm in diameter to be able to comfortably see an eclipse, the long projection distance must be 1.5 m, a very long length that prevents the construction of a marketable camera obscura. The present invention makes it possible to shorten that length by causing the rays of the Sun to be reflected inside the camera, as indicated in figure 3. The rays penetrate through the hole (1) and are reflected in the mirrors (2 and 3) to give the projected image (4), which the observer sees from the opening (5). The number of reflections can be any. The greater the number of reflections, the lower the height h of the camera and the more manageable and marketable the device is. In figure 3 there are 4 reflections, the projection distance long of figure 1 being decomposed into 5 sections of length approximately equal to h. It is had, according to the formula [1], that d = long / 100 = t - h / 100; h = 100 - d / t [4] where t is the number of sections. For d = 1.5 cm and t = 9 it is h = 16.6 cm and the camera is fabricable, very manageable and marketable. The angle at which we directly see the Sun is, according to figure 1, D / L = d / long = 1/100 [5] and in the camera of figure 3 the angle under which we see the image of the Sun is, substituting the formula [4] d / h = d - t / (100 - d) = t / 100 that compared to the formula [5 ] tells us that the amplification obtained is equal to t (number of sections), that is, the Sun looks t times greater than it would directly look using protective glasses. Varying the orientation of the camera with respect to the Sun or, which is the same, varying the angle of incidence of the rays of the Sun when penetrating through the hole (1) of figure 3, the number of reflections and sections is changed. In figure 4, for example, it is the case that t = 3. For each width a of the camera there is a maximum number of reflections, which cannot be exceeded on pain of obtaining useless superimposed images. Thus, by varying the orientation of the viewfinder, images of the Sun of different sizes are obtained, depending on the number of sections t. The diameter d of each image is proportional to t, according to formula [4]. The blur of each image is inversely proportional to long, according to formula [2], and inversely proportional to t, since long = t h. The brightness of each image is directly proportional to the square of the blur, according to formula [3], or inversely proportional to the square of t. In other words: the greater the image of the Sun obtained, the greater its sharpness and the lower its luminosity. Tilting the viewfinder a lot could give rise to the dangerous situation in figure 5 in which the rays of the Sun strike, after a single reflection, directly in the eyes. To avoid this, it is necessary to place an opaque protection screen (1) in the middle as indicated in figure 5. Figure 6 shows an embodiment of the present invention. An embodiment An embodiment of the present invention, out of the many possible existing ones, is shown in figure 3 and given in figure 6. The entrance hole of the Sun is (1) and has a diameter of about 2 mm and the slits through which the eyes look are (2) and (3) and have a width of about 5 mm. The height h can be around 25 cm to comfortably see the image and the width a can be around 18 cm to obtain 8 reflections and 9 sections (without having to use reflector elements the viewfinder should have a length greater than 2 m ), so the highest amplification obtained would be 9 and the diameter of the largest image of the Sun would be about 2 cm, enough to see a detailed eclipse of the Sun. The thickness g of the viewfinder would be about 7 cm to be able to see the image with both eyes at the same time. This 25 x 18 x 7 cm 3 box can be shaped into a book to be kept on a shelf.
Aplicación industrial Se deriva de manera evidente de lo dicho en el apartado anterior. Industrial application Obviously derived from what was said in the previous section.

Claims

REIVINDICACIONES
1. Visor para ver de manera segura sin daño para los ojos la imagen, aumentada y proyectada en una pantalla, del Sol, que entra por un pequeño orificio, que comprende varias reflexiones de los rayos solares, para acortar la altura del aparato, mediante la utilización de dos o más espejos, obteniéndose automáticamente varios tamaños de imagen a elección del usuario, que las observa a través de una ranura.1. Viewfinder to see safely the image, enlarged and projected on a screen, of the Sun, which enters through a small hole, which includes various reflections of the solar rays, to shorten the height of the apparatus, by means of the use of two or more mirrors, automatically obtaining various image sizes at the user's choice, who observes them through a slot.
2. El visor de la reivindicación 1 con la pantalla de proyección de cualquier color.2. The viewfinder of claim 1 with the projection screen of any color.
3. El visor de las reivindicaciones 1 o 2 con una o varias lentes en el orificio de entrada para hacer más nítida la imagen. 3. The viewfinder of claim 1 or 2 with one or more lenses in the inlet port to sharpen the image.
4. El visor de las reivindicaciones 1, 2 o 3 con una lente ocular en la ranura de observación, para acortar todavía más la altura del aparato o para conseguir un mayor aumento de la imagen. 4. The viewfinder of claims 1, 2 or 3 with an eyepiece in the observation slot, to further shorten the height of the apparatus or to achieve a higher image magnification.
5. El visor de las reivindicaciones 1, 2, 3 o 4 con las lentes o los espejos tintados de cualquier color. 5. The viewfinder of claims 1, 2, 3 or 4 with tinted lenses or mirrors of any color.
6. El visor de las reivindicaciones 1, 2, 3, 4 o 5 diseñado para ver la imagen del Sol con un solo ojo o con los dos simultáneamente, en este último caso con una ranura corrida o con dos ranuras: una para cada ojo. 6. The viewfinder of claims 1, 2, 3, 4 or 5 designed to see the image of the Sun with only one eye or with both simultaneously, in the latter case with a continuous slot or with two slots: one for each eye .
7. El visor de las reivindicaciones 1, 2, 3, 4, 5 o 6 con cualquier forma y tamaño del orificio de entrada. 7. The visor of claims 1, 2, 3, 4, 5 or 6 with any shape and size of the inlet port.
8. El visor de las reivindicaciones 1, 2, 3, 4, 5, 6 o 7 con cualquier forma y tamaño de la ranura o ranuras por donde se mira al interior.8. The visor of claims 1, 2, 3, 4, 5, 6 or 7 with any shape and size of the groove or grooves through which you look inside.
9. El visor de las reivindicaciones 1, 2, 3, 4, 5, 6, 7 o 8, teniendo el visor cualquier forma, tamaño y color.9. The visor of claims 1, 2, 3, 4, 5, 6, 7 or 8, the visor having any shape, size and color.
10. El visor de cualquiera de las reivindicaciones anteriores, teniendo la caja dividida en dos o más partes para introducir cada una telescópicamente dentro de la adyacente con el fin de disminuir la altura del aparato cuando no se use.10. The visor of any of the preceding claims, having the box divided into two or more parts to insert each one telescopically within the adjacent one in order to decrease the height of the apparatus when not in use.
11. El visor de las reivindicaciones 1 a 9 anteriores, teniendo la caja plegable.11. The viewfinder of claims 1 to 9 above, having the folding box.
12. El visor de las reivindicaciones 1 a 9 anteriores, con las caras de la caja separadas y ensamblables. 12. The visor of claims 1 to 9 above, with the faces of the box separated and assembled.
PCT/ES2005/000054 2004-02-18 2005-02-07 Device for looking at eclipses and the sun WO2005081031A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200400387A ES2211362B1 (en) 2004-02-18 2004-02-18 ECLIPSES AND SUN VIEWER.
ESP200400387 2004-02-18

Publications (1)

Publication Number Publication Date
WO2005081031A1 true WO2005081031A1 (en) 2005-09-01

Family

ID=32695874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/000054 WO2005081031A1 (en) 2004-02-18 2005-02-07 Device for looking at eclipses and the sun

Country Status (2)

Country Link
ES (1) ES2211362B1 (en)
WO (1) WO2005081031A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2607678A1 (en) * 2015-10-02 2017-04-03 Universidad De Extremadura Monocular glasses to observe eclipses (Machine-translation by Google Translate, not legally binding)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106842543B (en) * 2017-04-01 2019-03-15 国网山东省电力公司青州市供电公司 A kind of Buchholz relay observation auxiliary tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB754688A (en) * 1953-11-23 1956-08-08 John Post Improvements in periscopes
GB2327282A (en) * 1998-08-27 1999-01-20 Herbert Martin Lock Sun observation device
WO2004008224A1 (en) * 2002-07-16 2004-01-22 Light Tec Device for observing the sun's backscattered image on a screen
WO2004008194A1 (en) * 2002-07-12 2004-01-22 Saab Ab Optical device
US20040027660A1 (en) * 2001-03-14 2004-02-12 Learning Technologies, Inc. Sunspotter solar telescope

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4437736A (en) * 1979-12-26 1984-03-20 Janosik Sr Daniel R Sun viewing apparatus
ES1006882Y (en) * 1988-07-05 1989-07-16 Sender Rovira Antonio SIMPLIFIED PERISCOPE.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB754688A (en) * 1953-11-23 1956-08-08 John Post Improvements in periscopes
GB2327282A (en) * 1998-08-27 1999-01-20 Herbert Martin Lock Sun observation device
US20040027660A1 (en) * 2001-03-14 2004-02-12 Learning Technologies, Inc. Sunspotter solar telescope
WO2004008194A1 (en) * 2002-07-12 2004-01-22 Saab Ab Optical device
WO2004008224A1 (en) * 2002-07-16 2004-01-22 Light Tec Device for observing the sun's backscattered image on a screen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HANDOJO A.ET AL: "SOLAR ECLIPSE OBSERVATION: SOME SIMPLE DIVICES.", APPLIED OPTICS, OPTICAL SOCIETY OF AMERICA., vol. 28, no. 20, 15 October 1989 (1989-10-15), pages 4293 - 4297, XP000071265 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2607678A1 (en) * 2015-10-02 2017-04-03 Universidad De Extremadura Monocular glasses to observe eclipses (Machine-translation by Google Translate, not legally binding)

Also Published As

Publication number Publication date
ES2211362A1 (en) 2004-07-01
ES2211362B1 (en) 2005-05-01

Similar Documents

Publication Publication Date Title
ES2534221T3 (en) Enhanced electro-active lens system
ES2631684T3 (en) Glass type device, system and communication method
ES2956632T3 (en) Electronic glasses
CA3015213C (en) Relaxation and meditation eyewear
ES2929791T3 (en) head mounted display
ES2291921T3 (en) NIGHT VISION SHOT GAME WITH TWO EYES.
ES2203406T3 (en) OPTICAL LOOKING SYSTEM.
CN108227208A (en) A kind of reflective mixed display device
US5680195A (en) Vision enhancing assembly
ES2725327T3 (en) Optical objective with lengthening of the exit pupil by means of a diffractive element
ES2732318T3 (en) Handheld magnifier camera with variable focus distance
ES2660309T3 (en) Stereoscopic transparency reproduction system
WO2005081031A1 (en) Device for looking at eclipses and the sun
GB2458495A (en) Contact lens with multiple pinholes
ES2462318T3 (en) Imaging device
ES2909121T3 (en) Eyepiece for a personal viewfinder and personal viewfinder comprising said eyepiece
CN210811972U (en) Electric welding protective mask for electronic product
Koukarine et al. Experimental reconstruction of Lomonosov’s discovery of Venus’s atmosphere with antique refractors during the 2012 transit of Venus
CN107144968B (en) Virtual reality device
Chou Solar eclipse eye safety
ES2766423T3 (en) Articulated Desk Magnifier
FR3011096A1 (en) LIGHTWEIGHT ANTI-GLARE AND VISION GOGGLES WITH THREE DIMENSIONS
ES2579777B1 (en) Anti-glare active glasses
US20180173016A1 (en) Vision assistive device capable of enhancing light receiving
US20200345448A1 (en) Cross polarized surgical loupes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase