WO2005080960A1 - Solid support and method of mass spectrometry through desorption/ionization of multiple substances or composites on solid support - Google Patents

Solid support and method of mass spectrometry through desorption/ionization of multiple substances or composites on solid support Download PDF

Info

Publication number
WO2005080960A1
WO2005080960A1 PCT/JP2005/002927 JP2005002927W WO2005080960A1 WO 2005080960 A1 WO2005080960 A1 WO 2005080960A1 JP 2005002927 W JP2005002927 W JP 2005002927W WO 2005080960 A1 WO2005080960 A1 WO 2005080960A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid support
carbon layer
gel
substance
electrophoresis
Prior art date
Application number
PCT/JP2005/002927
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuyoshi Ohba
Hirofumi Yamano
Shuuichi Kamei
Hisashi Hirano
Original Assignee
Toyo Kohan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co., Ltd. filed Critical Toyo Kohan Co., Ltd.
Publication of WO2005080960A1 publication Critical patent/WO2005080960A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0409Sample holders or containers
    • H01J49/0418Sample holders or containers for laser desorption, e.g. matrix-assisted laser desorption/ionisation [MALDI] plates or surface enhanced laser desorption/ionisation [SELDI] plates

Definitions

  • the present invention relates to a method for transferring and analyzing biomolecules such as nucleic acids and proteins separated in a gel onto a solid support, and performing rapid mass spectrometry for analysis and analysis.
  • biomolecules such as peptides, proteins, nucleic acids, and sugar chains are formed by polymerizing a relatively small number of constituent units according to a certain rule.
  • peptides and proteins are molecules in which 20 L-a-amino acids are connected by peptide bonds.
  • Most of the molecular structures of these structural units have already been elucidated, and of course, their precise molecular weights have also been elucidated. Therefore, if the molecular weight of a biomolecule or its fragment can be accurately measured, it can greatly contribute to the analysis of its structure (sequence, etc.) and various modification reactions received in the living body. It is positioned as an indispensable tool for structural analysis of biomolecules.
  • mass spectrometers laser desorption Z-ionization-time-of-flight mass spectrometers are attracting attention as useful analytical tools for biomolecules because they can ionize macromolecules such as DNA and proteins.
  • a laser is irradiated to a sample portion to be analyzed, and ions desorbed therefrom are accelerated by an electric field.
  • Laser desorption / ionization-time-of-flight mass spectrometry is a method of performing mass spectrometry by taking advantage of the fact that the flight time of ions differs due to such a difference in mass-to-charge ratio (m / z value).
  • An object of the present invention is to provide a means for rapidly mass spectrometric analysis of a large number of samples and to provide a method for rapidly analyzing biomolecules such as nucleic acids and proteins. Means for solving the problem
  • the inventors of the present invention have conducted intensive studies to solve the above-described problems, and as a result, after separating a substance in a sample by gel electrophoresis, a carbon layer was formed on the surface of the substance separated and developed in the gel. It has been found that the above problem can be solved by a method of transferring onto a solid support, desorbing / ionizing this, and performing mass spectrometry, thereby completing the present invention.
  • the present invention includes the following inventions.
  • a solid support having a carbon layer on the surface in which a substance in a sample is separated by gel electrophoresis, and the substance separated in the gel is transferred and held.
  • solid support according to any one of (1) to (6), wherein the solid support further includes an amino group-containing compound that is present on the carbon layer on the substrate surface but is not covalently bonded to the carbon layer. body.
  • the solid support is present on the carbon layer on the surface of the substrate and further contains an amino group-containing compound which is covalently bonded to the carbon layer. Solid support.
  • the solid support having a carbon layer on the surface is immersed in a solution containing a compound having an unsubstituted or monosubstituted amino group, and the solid support is obtained by (1) any one of (1) to (6).
  • Solid support is obtained by (1) any one of (1) to (6).
  • (12) (1) A method for mass spectrometry by desorbing / ionizing a plurality of substances or complexes transferred and held on the solid support according to any one of (11) and (11).
  • FIG. 1 shows that the protein was transferred from the gel after electrophoresis to the solid support in Example 2. This shows the arrangement at the time of transfer.
  • FIG. 2 shows an arrangement in Example 4 when proteins are transferred from a gel after electrophoresis to a PVDF membrane.
  • FIG. 3 shows an arrangement when a protein is transferred from a PVDF membrane to a solid support 3 in Example 4.
  • a sample separated by gel electrophoresis is brought into close contact with the gel after electrophoresis and a solid support having a carbon layer formed on the surface thereof, whereby an analyte to be separated and developed in the gel is separated. Transfer onto the solid support. Then, a plurality of substances are mass-analyzed by desorbing / ionizing the substances transferred and held on the solid support.
  • the substance that can be transcribed and held on a solid support and analyzed is not particularly limited, and examples thereof include nucleic acids such as DNA and RNA and biomolecules such as peptides.
  • the peptide includes oligopeptides, polypeptides, and proteins. It is particularly advantageous in that a high molecular weight substance can be analyzed.
  • Samples to be subjected to gel electrophoresis containing these substances are not particularly limited, but include cell extracts, bacterial cell extracts, cell-free synthetic products, PCR (Polymerase chain reaction) products, enzyme-treated products, Examples include synthetic DNA, synthetic RNA, and synthetic peptide.
  • the solid support for transferring and holding substances such as biomolecules separated in a gel by electrophoresis is particularly limited as long as it has a carbon layer on the surface of a substrate and can transfer and hold these biomolecules. What? Those with a specific chemical modification on the carbon layer are preferred. This is because the substance to be analyzed is easily retained by performing the specific chemical modification, and is stably transferred and retained.
  • the term “substrate” means a base material on which a carbon layer is formed, and such a base material is not particularly limited.
  • a base material for example, gold, silver, copper, aluminum, Metals such as tundast, molybdenum, chromium, platinum, titanium, and nickel; alloys such as stainless steel, hastelloy, inconel, monel, and duralumin; laminates of the above metals and ceramics; glass; silicon; fiber; wood; And mixtures of plastics and the above metals, ceramics, diamonds and the like.
  • Gala is also possible to use a material in which a metal layer made of platinum, titanium or the like is formed on the surface of metal or plastic.
  • the metal layer can be formed by sputtering, vacuum deposition, ion beam deposition, electroplating, electroless plating, or the like.
  • the carbon layer formed on the substrate is not particularly limited, but may be diamond, diamond-like carbon, amorphous carbon, graphite, hafnium carbide, niobium carbide, silicon carbide, tantalum carbide, thorium carbide, titanium carbide,
  • the layer include uranium carbide, tungsten carbide, zirconium carbide, molybdenum carbide, chromium carbide, and vanadium carbide, and a diamond-like carbon (DLC) layer is preferable.
  • the carbon layer has excellent chemical stability and can withstand subsequent reactions in chemical modification and binding with the analyte, and the bond is flexible due to the electrostatic binding with the analyte.
  • the formation of the carbon layer can be performed by a known method.
  • examples include microwave plasma CVD (Chemical vapor deposit), ECRCVD (Electric cyclotron on resonance chemical vapor deposit), ICP (Inductive coupled plasma), DC sputtering, ECR (Electric cyclotron resonance) sputtering, and ionization evaporation.
  • the source gas (methane) is decomposed by a glow discharge generated between the electrodes due to high frequency, and a DLC (diamond-like carbon) layer is synthesized on the substrate.
  • a raw material gas (benzene) is decomposed and ionized using thermoelectrons generated by a tungsten filament, and a carbon layer is formed on a substrate by a bias voltage.
  • the DLC layer may be formed by an ionization vapor deposition method.
  • a direct current voltage is applied between a solid graphite material (cathode evaporation source) and a vacuum vessel (anode) to cause an arc discharge in a vacuum to cause a plasma of carbon atoms from the cathode. Is generated, and by applying a more negative bias voltage to the substrate than the evaporation source, carbon ions in the plasma can be accelerated toward the substrate to form a carbon layer.
  • a carbon layer can be formed by irradiating a target plate of graphite with Nd: YAG laser (pulse oscillation) light and melting it, and depositing carbon atoms on a glass substrate.
  • the thickness of the carbon layer on the surface of the solid support of the present invention is usually about 100 ⁇ m per monolayer, and if it is too thin, the surface of the underlying solid support may be locally exposed. On the other hand, if the thickness is too large, the productivity becomes worse, so the thickness is preferably 2 nm lzm, more preferably 5 nm 500 nm. Note that all of the solid support may be made of a carbon material.
  • the solid support of the present invention preferably has a flat plate shape in order to directly perform laser desorption / ionization-time-of-flight mass analysis after transferring the substance from the gel after electrophoresis.
  • the size is not particularly limited, it is usually about 10 to 200 mm in width ⁇ 10 to 200 mm in length ⁇ 0.1 to 20 mm.
  • the surface of the substrate on which the carbon layer is formed is not particularly limited. Examples thereof include introduction of an amino group, a carboxyl group, an epoxy group, a forminole group, and a hydroxyl group. Can be It is also effective to introduce metal chelates such as nickel chelates and cobalt chelates.
  • the introduction of an amino group can be carried out, for example, by irradiating the carbon layer with ultraviolet light in ammonia gas.
  • the reaction can be carried out by reacting a polyvalent amine gas such as methylene diamine or ethylene diamine with a chlorinated carbon layer.
  • the carboxyl group can be introduced, for example, by reacting the aminated carbon layer with an appropriate polycarboxylic acid.
  • the introduction of an epoxy group can be carried out, for example, by reacting an appropriate polyvalent epoxy conjugate with the carbon layer aminated as described above.
  • the organic peracid include peracetic acid, perbenzoic acid, diperoxyphthalic acid, formic acid, and trifluoroperacetic acid.
  • the introduction of a formyl group can be carried out, for example, by reacting the aluminized carbon layer with daltaraldehyde.
  • the introduction of the hydroxy group can be carried out, for example, by reacting the chlorinated carbon layer with water.
  • nucleic acids such as DNA and RNA are retained, it is preferable to introduce an amino group, a carbodiimide group, an epoxy group, or a formyl group.
  • a metal chelate In the case of retaining a peptide, it is preferable to introduce an amino group, a nonolepositeimide group, an epoxy group, a formyl group, or a metal chelate.
  • a solid support into which a metal chelate is introduced a peptide having a label having an affinity for a metal ion such as a polyhistidine sequence can be immobilized effectively and stably.
  • the metal chelate can be introduced, for example, by chlorinating the substrate on which the carbon layer is formed, then aminating the substrate, and then adding a halocarbonic acid such as chloroacetic acid to introduce the chelate ligand.
  • Labels such as polyhistidine sequences can be introduced by methods known to those skilled in the art.
  • the surface electrostaticization may be performed by forming an electrostatic layer on the surface carbon layer.
  • the electrostatic layer can be formed using a compound having a positive charge such as an amino group-containing compound.
  • the amino group-containing compound may be an unsubstituted amino group (1-NH 2) or a compound having 1 carbon atom.
  • R is a substituent monosubstituted with 26 alkyl groups, such as ethylenediamine, hexamethylenediamine, n-propylamine, monomethylamine, dimethinoleamine, Monoethylamine, getylamine, arinoleamine, aminoazobenzene, amino alcohol (eg, ethanolamine), atalinol, amino benzoic acid, amino anthraquinone, amino acids (glycine, alanine, valine, leucine, serine, threonine, cysteine, methionine, phenine) Nilalanine, tryptophan, tyrosine, proline, cystine, gnoretami Acid, aspartic acid, glutamine, asparagine, lysine, arginine, histidine), adiline, or a polymer (eg, polyallylamine, polylysine) or a copolymer thereof; 4,
  • the electrostatic layer may be formed without being covalently bonded to the substrate or the carbon layer, or may be formed to be covalently bonded to the substrate or the carbon layer.
  • the electrostatic layer is formed without being covalently bonded to the substrate or the carbon layer, for example, by introducing the amino group-containing compound into a film forming apparatus when forming a carbon layer, A carbon-based film containing an amino group is formed.
  • Ammonia gas may be used as the compound to be introduced into the film forming apparatus.
  • the carbon layer may be a multi-layer, such as when a film containing an amino group is formed after forming the adhesion layer, and in this case, the carbon layer may be formed in an atmosphere containing ammonia gas.
  • Film formation can be performed by, for example, a plasma method.
  • the affinity between the electrostatic layer and the substrate or the carbon layer, that is, the adhesion is increased.
  • the carbon compound used here is not particularly limited as long as it can be supplied as a gas. For example, methane, ethane, and propane, which are gases at ordinary temperature, are preferable.
  • the conditions for ionization vapor deposition are preferably an operating pressure of 0.1 to 50 Pa and an accelerating voltage of 200 to 1000 V.
  • the electrostatic layer is formed by covalent bonding to a substrate or a carbon layer, for example, the surface of the substrate or the substrate provided with the carbon layer is chlorinated by irradiating ultraviolet rays in a chlorine gas, and then the amino group-containing Among the compounds, for example, a polyamine such as polyallylamine, polylysine, 4,4 ', 4 "-triaminotriphenylmethane, or triamterene is reacted to bind to a substrate, and an amino group is added to the terminal on the other side.
  • an electrostatic layer When forming an electrostatic layer by immersing a substrate in a solution containing a compound having an unsubstituted or monosubstituted amino group, In addition, when polyallylamine is used as the amino group-containing compound, the adhesion to the substrate is excellent, and the amount of immobilized biomolecules is further improved.
  • An electrostatic layer can also be formed by immersing the substrate in a solution in which a silane coupling agent coexists with the group-containing compound.
  • the thickness of the electrostatic layer is preferably lnm-500 ⁇ m.
  • the electrophoresis method that can be used for sample separation in the present invention is not particularly limited.
  • agarose gel electrophoresis agarose gel electrophoresis, sieving agarose gel electrophoresis, denaturing agarose gel electrophoresis, polyacrylamide gel electrophoresis, SDS polyacrylinoleamide gel
  • electrophoresis isoelectric gel electrophoresis, and two-dimensional electrophoresis.
  • Those skilled in the art can appropriately select the type of electrophoresis to be used based on the type and molecular weight of the substance to be separated.
  • Agarose gel electrophoresis is the most commonly used technique for separating nucleic acids. Since agarose gel has a larger gel network structure than polyacrylamide gel, DNA fragments of several to several hundred Kbp can be separated due to differences in length and molecular structure. The mobility is proportional to the size of the DNA fragment, since the charge state of the entire DNA fragment mainly depends on the number of phosphate groups. When electrophoresis is performed with intermittent changes in the direction of the electric field, giant DNA such as yeast chromosomes can be separated (pulse field electrophoresis). Polyacrylamide gel electrophoresis of nucleic acids is mainly used for the analysis of DNA fragments.
  • short-chain (1 Kbp) fragments are compared with agarose gel electrophoresis.
  • This is a method of separating data based on length and structure. Due to the strong influence of DNA conformation, the estimation of DNA chain length is limited to double-stranded DNA migration. Since single-stranded DNA is expected to take various structures, there is no correlation between mobility and its DNA chain length, and it is often detected as multiple bands. Even slight differences in DNA bases cause structural changes, which are reflected in the migration pattern.
  • a DNA fragment analysis method (SSCP: Single-Strand Conformation Polymorphism) using this method has also been developed and used for gene mutation analysis.
  • Double-stranded DNA fragments containing special sequences are known to distort the DNA structure, and polyacrylamide gel electrophoresis can be used to analyze the structure and function of DNA.
  • polyacrylamide gel electrophoresis can be used to analyze the structure and function of DNA.
  • SDS Sodium dodecyl sulfate
  • SDS-PAGE polyacrylamide gel electrophoresis
  • Polyacrylamide gels are suitable for separating proteins and polypeptides of 100-200KDa or less due to the small pore size in the gel. It is the most commonly used method for protein electrophoresis because of its simple operation and high reproducibility. Normally, a reducing agent such as ⁇ -mercaptoethanol or DTT (Dithiothreitol) is added during the preparation of the electrophoresis sample to cut the S—S bond (disulphide bond) of the protein. Since the charge of the molecule is almost determined by the amount of SDS bound, the polypeptide molecules can be separated according to the molecular weight by electrophoresis. Since SDS is a strong anionic surfactant, it is also suitable for solubilizing insoluble proteins such as membrane proteins.
  • Isoelectric focusing is an electrophoresis method that separates proteins using the difference in isoelectric point (pi) and measures and analyzes the isoelectric point of the target protein.
  • the charge of amino acid side chain amino terminal and carboxyl terminal constituting protein changes depending on pH conditions, and the value of pH at which the total charge becomes zero is the isoelectric point.
  • To perform isoelectric focusing it is necessary to create a pH gradient in the electrophoresis gel. When a sample is added to a running gel and an electric field is applied, each protein migrates through the gel, forming a pH gradient towards the same pH as the intrinsic pi.
  • pH gradient gels can be prepared by adding an amphoteric carrier (carrier ampholite) to the gel and applying an electric field to form a pH gradient, or by preparing gels using acrylamide derivatives having various pi side chains.
  • carrier ampholite carrier ampholite
  • IPG method Immobilized pH gradient
  • a precast gel (Immobiline DryStrip Gel) dedicated to the IPG method is commercially available.
  • the resolution of isoelectric focusing using carrier ampholite is 0.01-0.02 pH units, and the IPG method can separate even 0.01-pH units.
  • Two-dimensional electrophoresis is a two-step electrophoresis. This is a method of separating proteins two-dimensionally by using. Generally, in the first dimension, proteins are separated by isoelectric focusing, and in the second dimension, molecular weight is separated by SDS-PAGE. Both methods have very high resolution and can separate whole cell proteins into thousands of spots. Again It is common to use the immobilized pH gradient method (IPG method), which has excellent realism and resolution, for the first dimension electrophoresis. In order to obtain more spots, only the target pH part can be separated using a narrow pH IPG gel based on the results of separation over a wide pH range, or second-dimensional electrophoresis can be performed using a large gel of 20 cm or more. You can do it too.
  • IPG method immobilized pH gradient method
  • agarose gel electrophoresis it is preferable to use agarose gel electrophoresis to separate DNA and RNA, and to use SDS polyacrylamide gel electrophoresis and two-dimensional It is preferred to use These electrophoresis methods can be performed by a method commonly used by those skilled in the art.
  • the gel is cut into a size that can fit on the solid support to be used, and the gel and the solid support are brought into close contact with each other, and the analyte separated in the gel is transferred onto the solid support of the present invention.
  • the method for transferring to a solid support is not particularly limited, and a method usually used in the art can be used.
  • a set of capillaries utilizing capillary action, vacuum-type blotting using a pump, and electro-blotting using an electric method can be used.
  • transferring a nucleic acid it is preferable to use the capillaries set
  • transferring a peptide it is preferable to use elect opening blotting.
  • any of tank type, semi-dry type and semi-wet type can be used.However, semi-dry type electroblotting is used from the viewpoint of the use of a small amount of knocker and short reaction time. It is preferred to use.
  • the blotting device an electroblotting device commonly used in the art can be used.
  • the energizing conditions in the electroblotting are a constant voltage, 200 V or less, preferably 0.1 to 10 V, preferably for 1 to 500 minutes, preferably 5 to 100 minutes. However, if the voltage is higher than the oxidation potential of the metal substrate, the metal is eluted. Therefore, it is preferable to perform the process at a voltage lower than the oxidation potential of the substrate metal.
  • the protein in the sample is solubilized. That is, heat treatment is performed for a certain period of time in boiling water in order to deactivate the proteolytic enzymes present in the sample and to effectively denature the protein with SDS and / 3-mercaptoethanol.
  • SD Inject a fixed amount into each lane of the S-polyacrylamide gel, and run glycine-tris buffer containing SDS as a buffer for electrophoresis at a constant voltage for a fixed time.
  • the gel is immersed in a pre-cooled glycine-Tris buffer (transfer buffer 1) containing methanol for a certain period of time to equilibrate. Subsequently, the gel is attached to the electroblotting device with the cathode side and the transfer solid support as the anode side. A transfer buffer is added to the transfer tank, and transfer is performed at a constant voltage for a certain time under ice cooling. At this time, from the viewpoint of increasing the transfer efficiency, it is preferable to arrange a filter paper containing a buffer or ion-exchanged water between the cathode and the gel and between the anode and the solid support.
  • transfer buffer 1 glycine-Tris buffer
  • Examples of the buffer to be contained in the filter paper on the cathode side include those containing Tris, ⁇ -aminocaproic acid, acetic acid, EDTA, phosphoric acid, boric acid, tartaric acid, SDS, and the like.
  • the concentration of ⁇ -aminocaproic acid is usually 100 mM or less, preferably -1000 mM, more preferably 1-1300 mM.
  • the filter paper on the anode side preferably contains ion-exchanged water.
  • the target substance is transferred from the gel after electrophoresis to a membrane as used in the related art, and further transferred from the membrane onto the solid support of the present invention.
  • the substance separated in the gel can be transferred and held on the solid support.
  • the material of the membrane that can be used in this case include nitrocellulose, PVDF (polyvinylidene fluoride), nylon, and positively charged nylon.
  • PVDF polyvinylidene fluoride
  • nylon nylon
  • positively charged nylon in the transcription of a protein, it is preferable to use PVDF having the highest binding ability of the protein. Even in the transcription of nucleic acid, it is preferable to use PVDF having less nonspecific adsorption of nucleic acid.
  • Gel force of migrating substance Transfer to the membrane and transfer from the membrane to the solid support can be carried out by the same method as described above.
  • Gel force When transferring to a membrane it is preferable to use electroblotting.
  • the energization conditions for electroblotting are 0.1 to 50 V, preferably for 5 to 120 minutes.
  • an electroblotting device In the transfer from the membrane to the solid support, it is preferable to use an electroblotting device.
  • a substance separated by electrophoresis is transferred and held on a solid support, and a substance that interacts with the substance is reacted to form a complex.
  • Mass spectrometry can also be performed by ionizing the complex thus formed.
  • a mass spectrometry method it is possible to use a method of analyzing atoms and molecules of ions based on the difference in mass using electric interaction.
  • Such mass spectrometers have three different functions of ion production 'separation' detection.
  • the complex is subjected to electrophoresis and separated by electrophoresis.
  • the resulting composite can be transferred and held on a solid support, and mass spectrometry can be performed by ionizing the composite on the solid support. Since such an analysis method forms a complex in a solution, it is advantageous for an analysis that requires a high degree of retention of the three-dimensional structure of a substance to be analyzed, such as a protein analysis.
  • the substance immobilized on the solid support can be directly subjected to mass spectrometry by means such as laser desorption / ionization-time-of-flight mass spectrometry.
  • mass spectrometry by means such as laser desorption / ionization-time-of-flight mass spectrometry.
  • the types of ionization methods that can be used for mass spectrometry include matrix-assisted laser desorption (MALDI), ionization by electron impact (EI), photoionization, and radioisotope force.
  • Ionization method secondary ionization method, fast atom bombardment ionization method, field ionization ionization method, surface ionization ionization method, chemical ionization (CI) method, field ionization method (FI) method, ionization method using spark discharge And the like, and a matrix assisted laser desorption (MA LDI) method and an ion bombardment (EI) method by electron impact are preferable.
  • Separation modes include linear or non-linear time-of-flight (TOF), single or multiple quadrupole, single or multiple magnetic sectors.
  • Mass spectrometry can be performed by combining the above-described ionization method with a separation mode including a separation mode or a combination thereof, and a detection mode such as an electrical record and a photographic record.
  • a separation mode including a separation mode or a combination thereof
  • a detection mode such as an electrical record and a photographic record.
  • Such mass spectrometers have three different functions of ion generation, separation and detection. From the viewpoint of ionizing a polymer substance such as a biomolecule and analyzing a plurality of substances on a solid support, it is preferable to use laser desorption / ionization-time-of-flight mass spectrometry.
  • a matrix such as para-cyanohydroxycinnamic acid or sinapinic acid is added to the solid support of the present invention on which the substance to be analyzed is immobilized, and dried.
  • the solid support is set on a flat target of MAL DI-TOF MS.
  • mass spectrometry is started using MassLynx software or the like.
  • MassLynx can control all measurements and analyses.
  • create a parameter file for automatic measurement create a process file for data processing and database analysis performed after measurement, and a sample list. Data processing can be performed on MassLynx using ProteinLynx software.
  • a mass spectrum is created from the acquired data, and the created statistic is converted to monoisotopic peak data after increasing the accuracy using MaxEnt 3 software (Micromass). Next, perform calibration to obtain final data with a mass error of about 50 ppm. From this data we can determine the exact mass of interacting proteins.
  • protein amino acid sequence analysis and identification can be performed.
  • a Ti layer and a Pt layer were formed on a 76 mm X 26 mm X 1.1 mm slide glass by magnetron sputtering.
  • the sputtering conditions are as follows.
  • the thickness of the formed metal layer was 100 nm for each of the Ti layer and the Pt layer.
  • a diamond-like carbon layer was formed on the substrate on which the metal layer was formed.
  • the formation of the diamond-like carbon layer was performed by ionization vapor deposition under the following conditions.
  • the thickness of the generated diamond-like carbon layer was 20 nm.
  • Vb acceleration voltage
  • Va anode voltage
  • the surface is chlorinated by irradiating ultraviolet rays for 1 minute in chlorine gas and irradiating ultraviolet rays for 10 minutes in ammonia gas. Amination was performed to produce a solid support.
  • Electrophoresis was performed using a device for SDS-PAGE (AE-7300 manufactured by ATTO). A 10% polyacrylamide gel was used as a swimming gel. Glycine tris buffer (pH 8.3) containing 0.1% SDS was used as the electrophoresis buffer, and electrophoresis was performed at 200 V for 35 minutes.
  • the polyacrylamide gel after the electrophoresis was immersed in a pre-cooled and cooled transfer buffer (25 mM Tris, 5% methanol) for 30 minutes to equilibrate.
  • a pre-cooled and cooled transfer buffer 25 mM Tris, 5% methanol
  • the polyacrylamide gel was cut into a size that would fit on the solid support, and was brought into close contact with the solid support.
  • the polyacrylamide gel was placed on the cathode and the solid support was placed on the anode, and electricity was supplied under the following conditions.
  • the fluorescence intensity of the solid support after protein transfer was measured with FLA8000 (manufactured by Fuji Photo Film Co., Ltd.). The fluorescence intensity was measured as 28270, indicating that Cy3-protein A was immobilized on the surface of the solid support. confirmed. Subsequently, after the solid support was washed with PBS for 10 minutes, the fluorescence intensity was measured in the same manner. The fluorescence intensity was 9766, which was reduced to about 1/3. After blocking with a blocking reagent (Roche) for 1 hour and measuring the fluorescence intensity, there was no change in the fluorescence intensity.
  • a diamond-like carbon layer was formed on a stainless steel substrate.
  • the stainless substrate was puff-polished in advance and further electropolished in order to reduce the smoothness and the fluorescent background.
  • the formation of the diamond-like carbon layer was performed by ionization vapor deposition under the following conditions.
  • the thickness of the generated diamond-like carbon layer was 20 nm.
  • a solid support was prepared by introducing an amino group by ammonia plasma treatment.
  • Vb acceleration voltage
  • Va anode voltage
  • Cy3_protein A (0.2 ⁇ g, SIGMA) was electrophoresed by SDS-PAGE (AT-6 AE-6530) in the same manner as in Example 1, and CBB staining was performed for 15 minutes after electrophoresis. After destaining, images were taken with LAS 1000 (manufactured by Fuji Photo Film Co., Ltd.).
  • the filter paper on the cathode side should contain a transfer buffer, and the filter paper on the anode side should contain ion-exchanged water, and the gel after the electrophoresis should be wiped off. It is believed that it is preferable to perform the transfer without the use.
  • Cy3-protein A 50 ng, SIGMA
  • Cy3-IgA 100 ng, SIGMA
  • SDS-PAGE SDS-PAGE
  • Example 2 so as to prevent air bubbles from entering, and the filter and the solid support were placed in a semi-driving apparatus.
  • ion-exchanged water was used for the three filter papers on the anode side.
  • a current was applied at 2 V and 2 / i A for 60 minutes to transfer the protein to the solid support.
  • the solid support after transfer was washed with ion-exchanged water at room temperature for 30 minutes and dried.
  • the solid support and the gel after transfer were photographed with a FLA8000 (manufactured by Fuji Photo Film Co., Ltd.).
  • Example 4 Transfer of protein from PVDF membrane to Ti-Pt_DLC solid support A diamond-like carbon layer was formed on the substrate in the same manner as in Example 1, and the surface was treated in an ammonia plasma using an ionization deposition apparatus. Was solidified to prepare a solid support 3.
  • Cy3_protein A was electrophoresed on a polyacrylamide gel in the same manner as in Example 1. After the electrophoresis, CBB staining was performed for 15 minutes, and after destaining, images were taken with LAS1000 (manufactured by Fuji Photo Film Co., Ltd.). Cy3_Protein A band was detected around 50 kDa.
  • Transfer buffers A (0.3 M Tris, 5% methanol), B (25 mM Tris, 5% methanol) and C (25 mM Tris, 40 mM ⁇ -aminocaproic acid, 5% methanol) were prepared.
  • the gel after electrophoresis was taken out, immersed in about 200 ml of transfer buffer ⁇ , and gently shaken for 5 minutes.
  • the PVDF membrane (manufactured by ATTO), which had been cut into gel size in advance, was immersed in a small amount of methanol for 5 seconds, immersed in about 100 ml of transfer buffer B, and shaken for 5 minutes or more.
  • the PVDF membrane after the transfer was cut into a size to be placed on the solid support, overlapped in the order shown in FIG. 3, and placed on a weight of 35 g / cm 2 .
  • the Cy3-Port Tin A on the membrane was transferred onto the solid support.
  • the solid support was washed with PBS at room temperature for 20 minutes. After washing for minutes, it was dried. Then, the solid support was imaged with FLA8000 (manufactured by Fuji Photo Film Co., Ltd.). Fluorescence was detected at the corresponding position, indicating that Cy3_protein Tin A was transcribed and held on the solid support.
  • Cy3-labeled yeast protein (300 xg / lane) was electrophoresed by the SDS-PAGE method (ATTO AE-6530 type) in the same manner as in Example 1, and after the electrophoresis, FLA8000 (Fuji Photo Film Co., Ltd.) The image was taken with. In the same manner as in Example 2, a solid support was prepared.
  • the gel after electrophoresis was taken out, cut into a size to fit on the solid support, washed with 10% methanol, replaced with fresh 10% methanol, and further washed for 30 seconds. After washing, the gel is placed on a solid support, and a dialysis membrane and a filter containing 1 MHBO buffer (pH 8.0) are placed on the gel.
  • Cy3_Protein A 50 ng, SIGMA
  • Cy5_IgA 100 ng, SIGMA
  • Example 1 After the electrophoresis, images were taken with a FLA8000 (manufactured by Fuji Photo Film Co., Ltd.). In the same manner as in Example 2, a solid support was prepared.
  • the gel after electrophoresis was taken out, cut into a size on a solid support, and immersed in a transfer buffer (25 mM Tris, 5% methanol).
  • the filter paper manufactured by ATTO
  • cut in advance to the size of the solid support was immersed in a transfer buffer CI (25 mM Tris, 40 mM ⁇ -aminocaproic acid, 5% methanol) or ion-exchanged water.
  • CI 25 mM Tris, 40 mM ⁇ -aminocaproic acid, 5% methanol
  • filter paper, gel, and a solid support were stacked in the same manner as in FIG. 1 of Example 2 so as to prevent air bubbles from entering, and set in a semi-driving apparatus.
  • the one containing the transfer buffer C1 was used for the three filter papers on the cathode side, and the one containing ion-exchanged water was used for the three filter papers on the anode side. Then, a current was applied at 2 V and 2 ⁇ A for 60 minutes to transfer the protein complex to the solid support. Turn The solid support after the transfer was washed with ion-exchanged water at room temperature for 30 minutes and dried. Then, the solid support and the gel after transfer were photographed with a FLA8000 (manufactured by Fuji Photo Film Co., Ltd.).
  • the fluorescence intensity of the image taken with the FLA8000 after transfer was about 35% compared to the fluorescence intensity of the image taken with the FLA8000 after the electrophoresis.
  • the substances contained in individual bands can be transferred and held on a solid support, thereby purifying a plurality of substances. Since mass spectrometry can be performed simultaneously and directly without using multiple samples, a large number of samples can be analyzed quickly.
  • the present invention is a very useful means in analyzing biomolecules such as nucleic acids and proteins.
  • biomolecules such as nucleic acids and proteins.
  • a complex of interacting substances can be formed in a solution, it is advantageous for an analysis that requires a high degree of three-dimensional structure of a substance to be analyzed, such as a protein analysis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Means for speedy mass spectrometry of a multiplicity of samples; and a method of speedy analysis of biomolecules such as nucleic acids and proteins. There is provided a solid support having a carbon layer formed on its surface and further containing an aminated compound bonded to the carbon layer through covalent bond. There is further provided a method of mass spectrometry of multiple substances, comprising separating substances of a sample from each other by gel electrophoresis, transferring separated substances lying in a gel onto the solid support and conducting desorption/ionization of the substances on the solid support.

Description

明 細 書  Specification
固体支持体及び該固体支持体上に複数の物質又は複合体を脱離 Zィ オン化することにより質量分析する方法  Solid support and method for mass spectrometry by desorption of a plurality of substances or complexes on the solid support
技術分野  Technical field
[0001] 本発明は、ゲル中に分離された核酸及びタンパク質等の生体分子を固体支持体に 転写し、迅速に質量分析することにより分析及び解析する方法に関する。  The present invention relates to a method for transferring and analyzing biomolecules such as nucleic acids and proteins separated in a gel onto a solid support, and performing rapid mass spectrometry for analysis and analysis.
背景技術  Background art
[0002] ペプチド、タンパク質、核酸及び糖鎖など生体分子の多くは比較的少数の構成単 位が一定の規則で重合してできている。例えば、ペプチドやタンパク質は 20種の L- a -アミノ酸がペプチド結合でつながった分子である。これらの構成単位の分子の構 造は既にほとんどが明らかになつており、当然、それらの正確な分子量も明らかとな つている。従って、生体分子やその断片の分子量を正確に測定できれば、その構造 (配列など)や生体内で受ける様々な修飾反応の解析に大きく寄与しうることから、質 量分析法は DNA、タンパク質等の生体分子の構造解析に欠かせない手段として位 置づけられている。質量分析の中でもレーザ脱離 Zイオン化一飛行時間型質量分析 装置は、 DNA、タンパク質等の巨大高分子をイオン化できるため、生体分子の有用 な解析手段として注目されている。  [0002] Many biomolecules such as peptides, proteins, nucleic acids, and sugar chains are formed by polymerizing a relatively small number of constituent units according to a certain rule. For example, peptides and proteins are molecules in which 20 L-a-amino acids are connected by peptide bonds. Most of the molecular structures of these structural units have already been elucidated, and of course, their precise molecular weights have also been elucidated. Therefore, if the molecular weight of a biomolecule or its fragment can be accurately measured, it can greatly contribute to the analysis of its structure (sequence, etc.) and various modification reactions received in the living body. It is positioned as an indispensable tool for structural analysis of biomolecules. Among mass spectrometers, laser desorption Z-ionization-time-of-flight mass spectrometers are attracting attention as useful analytical tools for biomolecules because they can ionize macromolecules such as DNA and proteins.
レーザ脱離/イオンィ匕ー飛行時間型質量分析装置においては、分析したい試料部 位にレーザを照射し、そこから脱離してきたイオンを電場によって加速する。  In a laser desorption / ionization time-of-flight mass spectrometer, a laser is irradiated to a sample portion to be analyzed, and ions desorbed therefrom are accelerated by an electric field.
そうすると、 m/z値が小さいイオン、すなわち軽いイオンほど高速で飛行して検出 器に到着する。レーザ脱離/イオン化 -飛行時間型質量分析は、このような質量電 荷比 (m/z値)の違いでイオンの飛行時間が異なることを利用して質量分析を行う方 法である。  Then, ions with smaller m / z values, that is, lighter ions, fly faster and reach the detector. Laser desorption / ionization-time-of-flight mass spectrometry is a method of performing mass spectrometry by taking advantage of the fact that the flight time of ions differs due to such a difference in mass-to-charge ratio (m / z value).
一方、質量分析による DNA、タンパク質等の生体分子の構造解析/決定には、分 析対象を多数の成分に分離精製し、さらに個々の成分を制限酵素で断片化したもの を分析する必要があり、非常に多数の試料を分析しなければならなレ、。また、 DNA 診断にぉレ、ては、多数の人間から得た試料を迅速に処理する必要がある。 [0003] それに対し市販されている一般的なレーザ脱離/イオン化一飛行時間型質量分析 装置は、精製したそれぞれの試料をサンプルボードに配置し、これを 1個ずつ質量分 析していく。すなわちサンプリングした試料各点にレーザを照射し 1個ずつ分析して レ、く必要があった。従って、未精製の試料を電気泳動により分離した場合は、泳動後 のゲルをバンドごとに切り出してそれぞれ精製してから 1個ずつレーザ脱離 Zイオン ィ匕-飛行時間型質量分析装置によって質量分析する必要があり、多数の試料を迅速 に分析することは非常に困難であった。 On the other hand, for structural analysis / determination of biomolecules such as DNA and proteins by mass spectrometry, it is necessary to separate and purify the analysis target into a number of components, and to analyze individual components fragmented with restriction enzymes. , Have to analyze a very large number of samples. In addition, for DNA diagnosis, it is necessary to rapidly process samples obtained from a large number of humans. [0003] In contrast, a commercially available general laser desorption / ionization-one-time-of-flight mass spectrometer arranges each of the purified samples on a sample board and performs mass analysis on each of them. In other words, it was necessary to irradiate each point of the sampled sample with a laser and analyze it one by one. Therefore, when the unpurified sample was separated by electrophoresis, the gel after electrophoresis was cut out for each band, purified, and then separated one by one. Laser desorption Z ionization-time-of-flight mass spectrometry And it was very difficult to analyze many samples quickly.
[0004] また、電気泳動した生体分子をゲルからニトロセルロース等のメンブレン上に転写し てこれを分析する方法も知られているが、メンブレン上の分析においてはレーザを利 用した質量分析を行うことはできず、抗原抗体反応や核酸ハイブリダィゼーシヨンを 利用した蛍光検出等に限られる。なぜなら、従来使用されているニトロセルロースや P VDF等のメンブレンは、レーザを照射するとメンブレン自体の分解が起きる可能性が 高いからである。すなわち、これらのメンブレン上に転写された生体分子をそのまま上 記のようなレーザ脱離/イオン化 -飛行時間型質量分析装置で分析することは困難 であった。  [0004] In addition, a method of transferring an electrophoresed biomolecule from a gel onto a membrane such as nitrocellulose and analyzing the same is known. In the analysis on the membrane, mass spectrometry using a laser is performed. It cannot be performed, and is limited to antigen-antibody reaction and fluorescence detection using nucleic acid hybridization. This is because conventionally used membranes such as nitrocellulose and PVDF are likely to be decomposed by laser irradiation. That is, it was difficult to analyze the biomolecules transcribed on these membranes by the laser desorption / ionization-time-of-flight mass spectrometer as described above.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 本発明の課題は、多数の試料を迅速に質量分析する手段を提供し、核酸及びタン パク質等の生体分子の解析を迅速に実施する方法を提供することである。 課題を解決するための手段  [0005] An object of the present invention is to provide a means for rapidly mass spectrometric analysis of a large number of samples and to provide a method for rapidly analyzing biomolecules such as nucleic acids and proteins. Means for solving the problem
[0006] 本発明者らは、上記課題を解決すべく鋭意検討の結果、試料中の物質をゲル電気 泳動で分離後、ゲル中に分離展開された物質を、表面にカーボン層が形成された固 体支持体上に転写し、これを脱離/イオン化して質量分析する方法により、上記課 題が解決できることを見いだし、本発明を完成するに至った。 [0006] The inventors of the present invention have conducted intensive studies to solve the above-described problems, and as a result, after separating a substance in a sample by gel electrophoresis, a carbon layer was formed on the surface of the substance separated and developed in the gel. It has been found that the above problem can be solved by a method of transferring onto a solid support, desorbing / ionizing this, and performing mass spectrometry, thereby completing the present invention.
[0007] 即ち、本発明は以下の発明を包含する。 That is, the present invention includes the following inventions.
(1)試料中の物質をゲル電気泳動で分離後、ゲル中に分離された該物質が転写保 持されてなる、表面にカーボン層を有する固体支持体。  (1) A solid support having a carbon layer on the surface, in which a substance in a sample is separated by gel electrophoresis, and the substance separated in the gel is transferred and held.
(2)試料中の物質をゲル電気泳動で分離後、ゲル中に分離された物質をメンブレン に転写し、該メンプレン上に転写された物質をさらに転写保持することにより該物質 が固定化されてなる、表面にカーボン層を有する固体支持体。 (2) After separating the substances in the sample by gel electrophoresis, separate the separated substances in the gel with a membrane. A solid support having a carbon layer on the surface, wherein the substance is immobilized by transferring and holding the substance transferred onto the membrane.
(3) (1)又は(2)に記載の固体支持体上に固定化された物質に、これと相互作用す る別の物質を加えて複合体を形成させてなる固体支持体。  (3) A solid support obtained by adding another substance interacting with the substance immobilized on the solid support according to (1) or (2) to form a complex.
(4)溶液中で相互作用する物質同士の複合体を形成させ、該複合体がゲル電気泳 動で分離される( 1 )又は( 2)に記載の固体支持体。  (4) The solid support according to (1) or (2), wherein a complex of interacting substances is formed in a solution, and the complex is separated by gel electrophoresis.
(5)カーボン層が、ダイヤモンドライクカーボン層である(1)一(4)のレ、ずれかに記載 の固体支持体。  (5) The solid support according to (1), wherein the carbon layer is a diamond-like carbon layer.
(6)カーボン層の厚みが単分子層一 100 μ mである(1)一(5)のいずれかに記載の 固体支持体。  (6) The solid support according to any one of (1) to (5), wherein the thickness of the carbon layer is 100 μm per monomolecular layer.
(7)固体支持体が、基板表面のカーボン層上に存在するが該カーボン層と共有結合 していないアミノ基含有化合物をさらに含む(1)一(6)のいずれかに記載の固体支 持体。  (7) The solid support according to any one of (1) to (6), wherein the solid support further includes an amino group-containing compound that is present on the carbon layer on the substrate surface but is not covalently bonded to the carbon layer. body.
(8)固体支持体が、基板表面のカーボン層上に存在し該カーボン層と共有結合して レ、るァミノ基含有化合物をさらに含む(1)一(6)のレ、ずれかに記載の固体支持体。 (8) The solid support is present on the carbon layer on the surface of the substrate and further contains an amino group-containing compound which is covalently bonded to the carbon layer. Solid support.
(9)基板上に、非置換又は一置換されたアミノ基を有する化合物及び炭素化合物を 蒸着させて得られる(1)一(6)のいずれかに記載の固体支持体。 (9) The solid support according to any one of (1) to (6), obtained by evaporating a compound having an unsubstituted or monosubstituted amino group and a carbon compound on a substrate.
(10)表面にカーボン層を有する固体支持体を、非置換又は一置換されたアミノ基を 有する化合物を含有する溶液中に浸漬して得られる(1)一(6)のいずれかに記載の 固体支持体。  (10) The solid support having a carbon layer on the surface is immersed in a solution containing a compound having an unsubstituted or monosubstituted amino group, and the solid support is obtained by (1) any one of (1) to (6). Solid support.
(11)転写保持された物質が核酸、ペプチド又はこれらの複合体である(1)一(10)の いずれかに記載の固体支持体。  (11) The solid support according to any one of (1) to (10), wherein the substance held and transcribed is a nucleic acid, a peptide or a complex thereof.
(12) (1)一(11)のいずれかに記載の固体支持体上に転写保持された複数の物質 又は複合体を脱離/イオン化することにより質量分析する方法。  (12) (1) A method for mass spectrometry by desorbing / ionizing a plurality of substances or complexes transferred and held on the solid support according to any one of (11) and (11).
(13) (12)に記載の方法において使用するための、表面にカーボン層を有する固体 支持体。  (13) A solid support having a carbon layer on the surface for use in the method according to (12).
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1は、実施例 2において、タンパク質を電気泳動後のゲルから固体支持体に 転写するときの配置を表したものである。 [FIG. 1] FIG. 1 shows that the protein was transferred from the gel after electrophoresis to the solid support in Example 2. This shows the arrangement at the time of transfer.
[図 2]図 2は、実施例 4において、電気泳動した後のゲルからタンパク質を PVDFメン プレンに転写するときの配置を表したものである。  [FIG. 2] FIG. 2 shows an arrangement in Example 4 when proteins are transferred from a gel after electrophoresis to a PVDF membrane.
[図 3]図 3は、実施例 4において、タンパク質を PVDFメンブレンから固体支持体 3に 転写するときの配置を表したものである。  [FIG. 3] FIG. 3 shows an arrangement when a protein is transferred from a PVDF membrane to a solid support 3 in Example 4.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0009] 本発明では、試料をゲル電気泳動で分離し、泳動後のゲルと表面にカーボン層が 形成された固体支持体とを密着させることにより、ゲル中に分離展開された分析対象 物質を該固体支持体上に転写する。そして、固体支持体上に転写保持された物質 を脱離/イオン化することにより複数の物質を質量分析する。  In the present invention, a sample separated by gel electrophoresis is brought into close contact with the gel after electrophoresis and a solid support having a carbon layer formed on the surface thereof, whereby an analyte to be separated and developed in the gel is separated. Transfer onto the solid support. Then, a plurality of substances are mass-analyzed by desorbing / ionizing the substances transferred and held on the solid support.
[0010] 本発明において、固体支持体に転写保持し、分析できる物質としては、特に制限さ れないが、 DNA、 RNA等の核酸及びペプチド等の生体分子が挙げられる。本明細 書においてペプチドとは、オリゴペプチド、ポリペプチド及びタンパク質を包含する。 特に高分子量の物質を分析できる点で有利である。これらの物質を含むゲル電気泳 動の対象となる試料としては、特に制限されないが、細胞抽出物、菌体抽出物、無細 胞系合成産物、 PCR (Polymerase chain reaction)産物、酵素処理産物、合成 D NA、合成 RNA、合成ペプチド等が挙げられる。  [0010] In the present invention, the substance that can be transcribed and held on a solid support and analyzed is not particularly limited, and examples thereof include nucleic acids such as DNA and RNA and biomolecules such as peptides. As used herein, the peptide includes oligopeptides, polypeptides, and proteins. It is particularly advantageous in that a high molecular weight substance can be analyzed. Samples to be subjected to gel electrophoresis containing these substances are not particularly limited, but include cell extracts, bacterial cell extracts, cell-free synthetic products, PCR (Polymerase chain reaction) products, enzyme-treated products, Examples include synthetic DNA, synthetic RNA, and synthetic peptide.
電気泳動によりゲル中に分離された生体分子等の物質を転写保持するための固体 支持体は、基板の表面にカーボン層を有し、これらの生体分子を転写保持できるも のであれば特に制限されなレ、。カーボン層に特定の化学修飾を施したものが好まし レ、。特定の化学修飾を施すことにより分析対象となる物質が保持しやすくなり、また安 定に転写保持されるからである。  The solid support for transferring and holding substances such as biomolecules separated in a gel by electrophoresis is particularly limited as long as it has a carbon layer on the surface of a substrate and can transfer and hold these biomolecules. What? Those with a specific chemical modification on the carbon layer are preferred. This is because the substance to be analyzed is easily retained by performing the specific chemical modification, and is stably transferred and retained.
[0011] 本発明において基板とはカーボン層を形成させるもととなる基材を意味し、このよう な基材としては、特に制限されなレ、が、例えば、金、銀、銅、アルミニウム、タンダステ ン、モリブデン、クロム、白金、チタン、ニッケル等の金属;ステンレス、ハステロイ、ィ ンコネル、モネル、ジュラルミン等の合金;上記金属とセラミックスとの積層体;ガラス; シリコン;繊維;木材;紙;ポリカーボネート、フッ素樹脂等のプラスチック;及びプラス チックと上記金属、セラミックス、ダイヤモンド等との混合体を挙げることができる。ガラ ス又はプラスチック等の表面にプラチナ、チタン等からなる金属層を形成させたもの を使用することもできる。金属層の形成は、スパッタリング、真空蒸着、イオンビーム蒸 着、電気めつき、無電解めつき等により実施することができる。 In the present invention, the term “substrate” means a base material on which a carbon layer is formed, and such a base material is not particularly limited. For example, gold, silver, copper, aluminum, Metals such as tundast, molybdenum, chromium, platinum, titanium, and nickel; alloys such as stainless steel, hastelloy, inconel, monel, and duralumin; laminates of the above metals and ceramics; glass; silicon; fiber; wood; And mixtures of plastics and the above metals, ceramics, diamonds and the like. Gala It is also possible to use a material in which a metal layer made of platinum, titanium or the like is formed on the surface of metal or plastic. The metal layer can be formed by sputtering, vacuum deposition, ion beam deposition, electroplating, electroless plating, or the like.
[0012] 固定化された物質について、レーザ脱離/イオン化一飛行時間型質量分析等によ つて質量分析を行う場合、固体支持体に高電圧がかかるため、基板は導電性を有す るもの、例えば、ステンレス、ァノレミニゥム、チタン等が好ましい。 [0012] When mass spectrometry is performed on an immobilized substance by laser desorption / ionization-time-of-flight mass spectrometry or the like, a high voltage is applied to the solid support, so that the substrate has conductivity. For example, stainless steel, ethanol, titanium and the like are preferable.
本発明において基板上に形成させるカーボン層としては、特に制限されないが、ダ ィャモンド、ダイヤモンドライクカーボン、無定形炭素、グラフアイト、炭化ハフニウム、 炭化ニオブ、炭化珪素、炭化タンタル、炭化トリウム、炭化チタン、炭化ウラン、炭化タ ングステン、炭化ジルコニウム、炭化モリブデン、炭化クロム又は炭化バナジウム等か らなる層を挙げることができ、ダイヤモンドライクカーボン(DLC)層が好ましい。カー ボン層は、化学的安定性に優れておりその後の化学修飾や分析対象物質との結合 における反応に耐えることができる点、分析対象物質と静電結合によって結合するた めその結合が柔軟性を持っている点、 UV吸収がないため検出系 UVに対して透明 性である点、及びエレクトロブロッテイングの際に通電可能な点において有利である。 また、分析対象物質との結合反応において、非特異的吸着が少ない点においても有 利である。  In the present invention, the carbon layer formed on the substrate is not particularly limited, but may be diamond, diamond-like carbon, amorphous carbon, graphite, hafnium carbide, niobium carbide, silicon carbide, tantalum carbide, thorium carbide, titanium carbide, Examples of the layer include uranium carbide, tungsten carbide, zirconium carbide, molybdenum carbide, chromium carbide, and vanadium carbide, and a diamond-like carbon (DLC) layer is preferable. The carbon layer has excellent chemical stability and can withstand subsequent reactions in chemical modification and binding with the analyte, and the bond is flexible due to the electrostatic binding with the analyte. This is advantageous in that it has the following properties, is transparent to the detection system UV due to the absence of UV absorption, and can be energized during electroblotting. It is also advantageous in that non-specific adsorption is small in the binding reaction with the analyte.
[0013] 本発明においてカーボン層の形成は公知の方法で行うことができる。例えば、マイ クロ波プラズマ CVD (Chemical vapor deposit)法、 ECRCVD (Electric cyclotr on resonance chemical vapor deposit)法、 ICP (Inductive coupled plasma) 法、直流スパッタリング法、 ECR (Electric cyclotron resonance)スパッタリング法 、イオン化蒸着法、アーク式蒸着法、レーザ蒸着法、 EB (Electron beam)蒸着法、 抵抗加熱蒸着法などが挙げられる。  In the present invention, the formation of the carbon layer can be performed by a known method. Examples include microwave plasma CVD (Chemical vapor deposit), ECRCVD (Electric cyclotron on resonance chemical vapor deposit), ICP (Inductive coupled plasma), DC sputtering, ECR (Electric cyclotron resonance) sputtering, and ionization evaporation. , Arc deposition, laser deposition, EB (Electron beam) deposition, resistance heating deposition, and the like.
高周波プラズマ CVD法では、高周波によって電極間に生じるグロ一放電により原 料ガス (メタン)を分解し、基板上に DLC (ダイヤモンドライクカーボン)層を合成する。 イオン化蒸着法では、タングステンフィラメントで生成される熱電子を利用して、原料 ガス (ベンゼン)を分解'イオンィ匕し、バイアス電圧によって基板上にカーボン層を形 成する。水素ガス 1一 99体積%と残りメタンガス 99一 1体積%からなる混合ガス中で 、イオン化蒸着法により DLC層を形成してもよい。 In high-frequency plasma CVD, the source gas (methane) is decomposed by a glow discharge generated between the electrodes due to high frequency, and a DLC (diamond-like carbon) layer is synthesized on the substrate. In the ionization vapor deposition method, a raw material gas (benzene) is decomposed and ionized using thermoelectrons generated by a tungsten filament, and a carbon layer is formed on a substrate by a bias voltage. In a mixed gas consisting of 99% by volume of hydrogen gas and 99% by volume of methane gas remaining Alternatively, the DLC layer may be formed by an ionization vapor deposition method.
[0014] アーク式蒸着法では、固体のグラフアイト材料 (陰極蒸発源)と真空容器(陽極)の 間に直流電圧を印加することにより真空中でアーク放電を起こして陰極から炭素原 子のプラズマを発生させ蒸発源よりもさらに負のバイアス電圧を基板に印加すること により基板に向かってプラズマ中の炭素イオンを加速しカーボン層を形成することが できる。 [0014] In the arc deposition method, a direct current voltage is applied between a solid graphite material (cathode evaporation source) and a vacuum vessel (anode) to cause an arc discharge in a vacuum to cause a plasma of carbon atoms from the cathode. Is generated, and by applying a more negative bias voltage to the substrate than the evaporation source, carbon ions in the plasma can be accelerated toward the substrate to form a carbon layer.
レーザ蒸着法では、例えば Nd:YAGレーザ (パルス発振)光をグラフアイトのターグ ット板に照射して溶融させ、ガラス基板上に炭素原子を堆積させることによりカーボン 層を形成することができる。  In the laser vapor deposition method, for example, a carbon layer can be formed by irradiating a target plate of graphite with Nd: YAG laser (pulse oscillation) light and melting it, and depositing carbon atoms on a glass substrate.
[0015] 本発明の固体支持体表面のカーボン層の厚さは、通常、単分子層一 100 μ m程度 であり、薄すぎると下地固体支持体の表面が局部的に露出する可能性があり、逆に 厚くなると生産性が悪くなるので、好ましくは 2nm l z m、より好ましくは 5nm 500 nmである。なお、固体支持体のすべてが炭素材料で構成されていてもよい。 The thickness of the carbon layer on the surface of the solid support of the present invention is usually about 100 μm per monolayer, and if it is too thin, the surface of the underlying solid support may be locally exposed. On the other hand, if the thickness is too large, the productivity becomes worse, so the thickness is preferably 2 nm lzm, more preferably 5 nm 500 nm. Note that all of the solid support may be made of a carbon material.
泳動後のゲルから物質を転写した後、直接レーザ脱離/イオン化 -飛行時間型質 量分析等を行うため、本発明の固体支持体の形状は平板状であることが好ましい。 そのサイズは、特に制限されなレ、が、通常は、幅 10— 200mm X長さ 10— 200mm X厚み 0· 1— 20mm程度である。  The solid support of the present invention preferably has a flat plate shape in order to directly perform laser desorption / ionization-time-of-flight mass analysis after transferring the substance from the gel after electrophoresis. Although the size is not particularly limited, it is usually about 10 to 200 mm in width × 10 to 200 mm in length × 0.1 to 20 mm.
核酸やペプチド等の生体分子を固定化するためには、カーボン層が形成された基 板の表面を化学修飾することにより静電的に帯電させることが好ましい。このような表 面静電化は、当業者であれば適宜選択することができ、特に制限されないが、例え ば、アミノ基、カルボキシル基、エポキシ基、ホルミノレ基、ヒドロキシル基を導入するこ とが挙げられる。また、ニッケルキレート、コバルトキレート等の金属キレートを導入す ることち有効である。  In order to immobilize biomolecules such as nucleic acids and peptides, it is preferable to electrostatically charge the surface of the substrate on which the carbon layer is formed by chemically modifying the surface. Such surface electrification can be appropriately selected by those skilled in the art, and is not particularly limited. Examples thereof include introduction of an amino group, a carboxyl group, an epoxy group, a forminole group, and a hydroxyl group. Can be It is also effective to introduce metal chelates such as nickel chelates and cobalt chelates.
[0016] ァミノ基の導入は、例えば、カーボン層をアンモニアガス中で紫外線照射することに より実施できる。又は、メチレンジァミン、エチレンジァミンで等の多価アミン類ガス中 を、塩素化したカーボン層と反応させることによって実施することもできる。  [0016] The introduction of an amino group can be carried out, for example, by irradiating the carbon layer with ultraviolet light in ammonia gas. Alternatively, the reaction can be carried out by reacting a polyvalent amine gas such as methylene diamine or ethylene diamine with a chlorinated carbon layer.
カルボキシル基の導入は、例えば、上記のようにァミノ化したカーボン層に適当な 多価カルボン酸を反応させることにより実施できる。 エポキシ基の導入は、例えば、上記のようにァミノ化したカーボン層に適当な多価 エポキシィ匕合物を反応させることによって実施できる。あるいは、カーボン層が含有 する炭素 =炭素 2重結合に有機過酸を反応させることにより得ることができる。有機 過酸としては、過酢酸、過安息香酸、ジペルォキシフタル酸、過ギ酸、トリフルォロ過 酢酸などが挙げられる。 The carboxyl group can be introduced, for example, by reacting the aminated carbon layer with an appropriate polycarboxylic acid. The introduction of an epoxy group can be carried out, for example, by reacting an appropriate polyvalent epoxy conjugate with the carbon layer aminated as described above. Alternatively, it can be obtained by reacting an organic peracid with carbon = carbon double bond contained in the carbon layer. Examples of the organic peracid include peracetic acid, perbenzoic acid, diperoxyphthalic acid, formic acid, and trifluoroperacetic acid.
ホルミル基の導入は、例えば、上記のようにァミノ化したカーボン層に、ダルタルァ ルデヒドを反応させることにより実施できる。  The introduction of a formyl group can be carried out, for example, by reacting the aluminized carbon layer with daltaraldehyde.
ヒドロキシノレ基の導入は、例えば、上記のように塩素化したカーボン層に、水を反応 させることにより実施できる。  The introduction of the hydroxy group can be carried out, for example, by reacting the chlorinated carbon layer with water.
[0017] DNA及び RNA等の核酸を保持する場合は、アミノ基、カルポジイミド基、エポキシ 基、ホルミル基を導入するのが好ましい。 When nucleic acids such as DNA and RNA are retained, it is preferable to introduce an amino group, a carbodiimide group, an epoxy group, or a formyl group.
ペプチドを保持する場合は、アミノ基、力ノレポジイミド基、エポキシ基、ホルミル基、 金属キレートを導入するのが好ましレ、。金属キレートを導入した固体支持体を使用す ると、ポリヒスチジン配列等の金属イオンと親和性のある標識を有するペプチドを効果 的かつ安定に固定化することができる。金属キレートの導入は、例えば、カーボン層 が形成された基板を塩素化し、次いでこれをァミノ化した後、クロ口酢酸等のハロカル ボン酸を添加してキレート配位子を導入することにより実施できる。ポリヒスチジン配 列等の標識は、当業者に公知の方法により導入することができる。  In the case of retaining a peptide, it is preferable to introduce an amino group, a nonolepositeimide group, an epoxy group, a formyl group, or a metal chelate. When a solid support into which a metal chelate is introduced is used, a peptide having a label having an affinity for a metal ion such as a polyhistidine sequence can be immobilized effectively and stably. The metal chelate can be introduced, for example, by chlorinating the substrate on which the carbon layer is formed, then aminating the substrate, and then adding a halocarbonic acid such as chloroacetic acid to introduce the chelate ligand. . Labels such as polyhistidine sequences can be introduced by methods known to those skilled in the art.
[0018] また、上記表面静電化は、表面カーボン層上に静電層を形成することにより行って もよい。該静電層は、アミノ基含有化合物など正荷電を有する化合物を用いて形成 すること力 Sできる。 [0018] The surface electrostaticization may be performed by forming an electrostatic layer on the surface carbon layer. The electrostatic layer can be formed using a compound having a positive charge such as an amino group-containing compound.
前記アミノ基含有化合物としては、非置換のアミノ基 (一 NH )、又は炭素数 1  The amino group-containing compound may be an unsubstituted amino group (1-NH 2) or a compound having 1 carbon atom.
2 一 6の アルキル基等で一置換されたァミノ基 (一 NHR;Rは置換基)を有する化合物、例え ばエチレンジァミン、へキサメチレンジァミン、 n—プロピルアミン、モノメチルァミン、ジ メチノレアミン、モノェチルァミン、ジェチルァミン、ァリノレアミン、アミノアゾベンゼン、ァ ミノアルコール (例えば、エタノールァミン)、アタリノール、ァミノ安息香酸、アミノアント ラキノン、アミノ酸(グリシン、ァラニン、バリン、ロイシン、セリン、トレオニン、システィン 、メチォニン、フエ二ルァラニン、トリプトファン、チロシン、プロリン、シスチン、グノレタミ ン酸、ァスパラギン酸、グルタミン、ァスパラギン、リシン、アルギニン、ヒスチジン)、ァ 二リン、又はこれらの重合体 (例えば、ポリアリルァミン、ポリリシン)や共重合体; 4,4' , 4"-トリアミノトリフエニルメタン、トリアムテレン、スペルミジン、スペルミン、プトレシンな どのポリアミン(多価ァミン)が挙げられる。 Compounds having an amino group (one NHR; R is a substituent) monosubstituted with 26 alkyl groups, such as ethylenediamine, hexamethylenediamine, n-propylamine, monomethylamine, dimethinoleamine, Monoethylamine, getylamine, arinoleamine, aminoazobenzene, amino alcohol (eg, ethanolamine), atalinol, amino benzoic acid, amino anthraquinone, amino acids (glycine, alanine, valine, leucine, serine, threonine, cysteine, methionine, phenine) Nilalanine, tryptophan, tyrosine, proline, cystine, gnoretami Acid, aspartic acid, glutamine, asparagine, lysine, arginine, histidine), adiline, or a polymer (eg, polyallylamine, polylysine) or a copolymer thereof; 4,4 ', 4 "-triaminotriphenyl Examples include polyamines (polyamines) such as methane, triamterene, spermidine, spermine, and putrescine.
静電層は、基板又はカーボン層と共有結合させずに形成してもよぐ基板又はカー ボン層と共有結合させて形成してもよい。  The electrostatic layer may be formed without being covalently bonded to the substrate or the carbon layer, or may be formed to be covalently bonded to the substrate or the carbon layer.
静電層を基板又はカーボン層と共有結合させずに形成する場合には、例えば、力 一ボン層を製膜する際に前記アミノ基含有化合物を製膜装置内に導入することによ つて、アミノ基を含有する炭素系皮膜を製膜する。製膜装置内に導入する化合物とし て、アンモニアガスを用いてもよい。また、カーボン層は、密着層を形成した後にアミ ノ基を含有する皮膜を形成するといつた、複層であってもよぐこの場合もアンモニア ガスを含んだ雰囲気で行ってもよい。製膜は、例えばプラズマ法によって実施できる また、静電層を基板又はカーボン層と共有結合させずに形成する場合には、静電 層と基板又はカーボン層との親和性、即ち密着性を高める点で、基板上に、前記の 非置換又は一置換されたアミノ基を有する化合物及び炭素化合物を蒸着させること が好ましい。ここで用いる炭素化合物としては、気体として供給することができれば特 に制限はないが、例えば常温で気体であるメタン、ェタン、プロパンが好ましい。蒸着 の方法としては、イオン化蒸着法が好ましぐイオン化蒸着法の条件としては、作動圧 が 0. 1— 50Pa、そして加速電圧が 200— 1000Vの範囲であることが好ましい。 静電層を基板又はカーボン層と共有結合させて形成する場合には、例えば、基板 又はカーボン層を施した基板に、塩素ガス中で紫外線照射して表面を塩素化し、次 いで前記アミノ基含有化合物のうち、例えば、ポリアリルァミン、ポリリシン、 4,4',4"-ト リアミノトリフエニルメタン、トリアムテレン等の多価アミンを反応させて、基板と結合して レ、ない側の末端にアミノ基を導入することにより、静電層を形成することができる。 基板を、非置換又は一置換されたアミノ基を有する化合物を含有する溶液中に浸 漬することにより、静電層を形成する場合に、アミノ基含有化合物としてポリアリルアミ ンを用いると、基板との密着性に優れ、生体分子の固定化量がより向上する。ァミノ 基含有化合物とともにシランカップリング剤が共存する溶液に基板を浸漬することに より、静電層を形成することもできる。 When the electrostatic layer is formed without being covalently bonded to the substrate or the carbon layer, for example, by introducing the amino group-containing compound into a film forming apparatus when forming a carbon layer, A carbon-based film containing an amino group is formed. Ammonia gas may be used as the compound to be introduced into the film forming apparatus. Further, the carbon layer may be a multi-layer, such as when a film containing an amino group is formed after forming the adhesion layer, and in this case, the carbon layer may be formed in an atmosphere containing ammonia gas. Film formation can be performed by, for example, a plasma method.When the electrostatic layer is formed without being covalently bonded to the substrate or the carbon layer, the affinity between the electrostatic layer and the substrate or the carbon layer, that is, the adhesion is increased. From the viewpoint, it is preferable to deposit the above-mentioned compound having an unsubstituted or monosubstituted amino group and a carbon compound on a substrate. The carbon compound used here is not particularly limited as long as it can be supplied as a gas. For example, methane, ethane, and propane, which are gases at ordinary temperature, are preferable. As for the method of vapor deposition, the conditions for ionization vapor deposition, which is preferred for ionization vapor deposition, are preferably an operating pressure of 0.1 to 50 Pa and an accelerating voltage of 200 to 1000 V. When the electrostatic layer is formed by covalent bonding to a substrate or a carbon layer, for example, the surface of the substrate or the substrate provided with the carbon layer is chlorinated by irradiating ultraviolet rays in a chlorine gas, and then the amino group-containing Among the compounds, for example, a polyamine such as polyallylamine, polylysine, 4,4 ', 4 "-triaminotriphenylmethane, or triamterene is reacted to bind to a substrate, and an amino group is added to the terminal on the other side. When forming an electrostatic layer by immersing a substrate in a solution containing a compound having an unsubstituted or monosubstituted amino group, In addition, when polyallylamine is used as the amino group-containing compound, the adhesion to the substrate is excellent, and the amount of immobilized biomolecules is further improved. An electrostatic layer can also be formed by immersing the substrate in a solution in which a silane coupling agent coexists with the group-containing compound.
静電層の厚みは、 lnm— 500 μ mであることが好ましい。  The thickness of the electrostatic layer is preferably lnm-500 μm.
本発明において試料の分離に使用できる電気泳動法としては、特に制限されない 力 例えば、ァガロースゲル電気泳動法、 sievingァガロースゲル電気泳動法、変性 ァガロースゲル電気泳動法、ポリアクリルアミドゲル電気泳動法、 SDSポリアクリノレア ミドゲル電気泳動法、等電点ゲル電気泳動法及び二次元電気泳動法などを挙げるこ とができる。当業者であれば、分離の対象となる物質の種類及び分子量等から使用 する電気泳動法の種類を適宜選択することができる。  The electrophoresis method that can be used for sample separation in the present invention is not particularly limited. For example, agarose gel electrophoresis, sieving agarose gel electrophoresis, denaturing agarose gel electrophoresis, polyacrylamide gel electrophoresis, SDS polyacrylinoleamide gel Examples include electrophoresis, isoelectric gel electrophoresis, and two-dimensional electrophoresis. Those skilled in the art can appropriately select the type of electrophoresis to be used based on the type and molecular weight of the substance to be separated.
ァガロースゲル電気泳動法は、核酸を分離するために最もよく利用される手法であ る。ァガロースゲルはポリアクリルアミドゲルと比較してゲルの網目構造が大きいため 、数 ^—数百 Kbpの DNAフラグメントを長さや分子構造の違レ、で分離することがで きる。 DNAフラグメント全体の荷電状態は主にリン酸基の数に依存するため、移動度 は DNAフラグメントの大きさに比例する。電場方向を断続的に変化させて泳動すると 酵母染色体などの巨大 DNAを分離することもできる(パルスフィールド電気泳動)。 核酸のポリアクリルアミドゲル電気泳動は、 DNAフラグメントの解析に主に用いられ 、ポリアクリルアミドゲルの微細な網目構造を利用して、ァガロースゲル電気泳動の場 合に比較して短鎖(一 lKbp)のフラグメントを長さと構造に基づいて分離する手法で ある。 DNAの立体構造(コンフオメーシヨン)の影響を強く受けるため、 DNA鎖長の 推定は二本鎖 DNAを泳動する場合に限られる。一本鎖 DNAは様々な構造を取るこ とが予想されるので移動度とその DNA鎖長との間に相関は見られず、しばしば複数 のバンドとして検出されることもある。 DNA塩基のわずかな違いでも構造変化がおこ り、泳動パターンに反映される。これを利用した DNAフラグメント解析手法(SSCP : S ingle-Strand Conformation Polymorphism)も開発され遺伝子変異解析に禾 lj 用されている。特殊な配列 (繰返し配列や塩基の偏りなど)を含む二本鎖 DNAフラグ メントは DNA構造を歪めることが知られており、ポリアクリルアミドゲル電気泳動法は DNAの構造'機能解析にも使用できる。また、尿素などを含む変性ゲル中では、一 本鎖 DNAも構造の影響を受けることなく鎖長に応じて分離できる。 SDS (Sodium dodecyl sulfate)—ポリアクリルアミドゲル電気泳動法(SDS—PA GE法)は、 目的タンパク質の高次構造を変性して分子量の違いにより分離する手法 である。ポリアクリルアミドゲルは、ゲル中の細孔径が密なため 100— 200KDa以下 のタンパク質やポリペプチドを分離するのに適している。操作が簡便で再現性が高い ので、タンパク質の電気泳動では最もよく用いられている手法である。通常は、泳動 サンプルの調製時に β -メルカプトエタノールや DTT (Dithiothreitol)などの還元 剤を添加してタンパク質の S—S結合 (ジスルフイド結合)を切断する。 SDSの結合量 によって分子の電荷がほぼ決まるため、電気泳動によりポリペプチド分子を分子量に 従って分離することができる。 SDSは強力な陰イオン界面活性剤なので、膜タンパク 質などの不溶性タンパク質の可溶化にも適している。 Agarose gel electrophoresis is the most commonly used technique for separating nucleic acids. Since agarose gel has a larger gel network structure than polyacrylamide gel, DNA fragments of several to several hundred Kbp can be separated due to differences in length and molecular structure. The mobility is proportional to the size of the DNA fragment, since the charge state of the entire DNA fragment mainly depends on the number of phosphate groups. When electrophoresis is performed with intermittent changes in the direction of the electric field, giant DNA such as yeast chromosomes can be separated (pulse field electrophoresis). Polyacrylamide gel electrophoresis of nucleic acids is mainly used for the analysis of DNA fragments. By utilizing the fine network structure of polyacrylamide gel, short-chain (1 Kbp) fragments are compared with agarose gel electrophoresis. This is a method of separating data based on length and structure. Due to the strong influence of DNA conformation, the estimation of DNA chain length is limited to double-stranded DNA migration. Since single-stranded DNA is expected to take various structures, there is no correlation between mobility and its DNA chain length, and it is often detected as multiple bands. Even slight differences in DNA bases cause structural changes, which are reflected in the migration pattern. A DNA fragment analysis method (SSCP: Single-Strand Conformation Polymorphism) using this method has also been developed and used for gene mutation analysis. Double-stranded DNA fragments containing special sequences (such as repetitive sequences and base bias) are known to distort the DNA structure, and polyacrylamide gel electrophoresis can be used to analyze the structure and function of DNA. In a denaturing gel containing urea or the like, single-stranded DNA can be separated according to the chain length without being affected by the structure. SDS (Sodium dodecyl sulfate) -polyacrylamide gel electrophoresis (SDS-PAGE) is a method of denaturing the higher-order structure of a target protein and separating it based on differences in molecular weight. Polyacrylamide gels are suitable for separating proteins and polypeptides of 100-200KDa or less due to the small pore size in the gel. It is the most commonly used method for protein electrophoresis because of its simple operation and high reproducibility. Normally, a reducing agent such as β-mercaptoethanol or DTT (Dithiothreitol) is added during the preparation of the electrophoresis sample to cut the S—S bond (disulphide bond) of the protein. Since the charge of the molecule is almost determined by the amount of SDS bound, the polypeptide molecules can be separated according to the molecular weight by electrophoresis. Since SDS is a strong anionic surfactant, it is also suitable for solubilizing insoluble proteins such as membrane proteins.
等電点電気泳動は、タンパク質の等電点(pi)の違いを利用して分離し、 目的タン パク質の等電点測定や分析を行う泳動手法である。タンパク質を構成しているアミノ 酸側鎖ゃァミノ末端、カルボキシル末端の電荷は pH条件によって変化し、電荷の総 和がゼロになる pHの値が等電点となる。等電点電気泳動を行うには、泳動ゲル中に pH勾配を作る必要がある。サンプルを泳動ゲルに添加して電場をかけると、それぞ れのタンパク質は固有の piと同じ pHに向かって pH勾配を形成したゲル中を移動す る。 pH勾配ゲルの作製には、両性担体 (キャリアアンフォライト)をゲルに添加して電 場をかけて pH勾配を形成する手法と、様々な piの側鎖を持つアクリルアミド誘導体 を用いてゲル作製と同時に pH勾配を形成する手法(IPG法: Immobilized pH gra dient)とがあり、プロテオミクス研究では、分離能、再現性、添加許容量ともに優れる IPG法が主に用いられている。 IPG法専用のプレキャストゲル(Immobiline DryStr ip Gel)が市販されている。キャリアアンフォライトを用いる等電点泳動の分離能は 0. 01—0. 02pH単位で、 IPG法では 0. OOlpH単位の違いでも分離することができる 二次元電気泳動法は、二段階の電気泳動によりタンパク質を二次元に分離する方 法である。一般的に一次元目は等電点電気泳動によりタンパク質を分離し、二次元 目は SDS—PAGE法により分子量で分離する。いずれの手法も分離能が非常に高 いので、細胞全タンパク質を数千以上にもおよぶスポットに分離することができる。再 現性と解像度に優れた固定化 pH勾配法 (IPG法)を一次元目泳動に用いることが一 般的である。また、より多くのスポットを得るために、幅広い pHレンジの分離結果を基 にして Narrow pH IPGゲルで目的 pH部分のみを分離したり、 20cm以上の大型ゲ ルを用いて二次元目電気泳動を行うこともできる。 Isoelectric focusing is an electrophoresis method that separates proteins using the difference in isoelectric point (pi) and measures and analyzes the isoelectric point of the target protein. The charge of amino acid side chain amino terminal and carboxyl terminal constituting protein changes depending on pH conditions, and the value of pH at which the total charge becomes zero is the isoelectric point. To perform isoelectric focusing, it is necessary to create a pH gradient in the electrophoresis gel. When a sample is added to a running gel and an electric field is applied, each protein migrates through the gel, forming a pH gradient towards the same pH as the intrinsic pi. pH gradient gels can be prepared by adding an amphoteric carrier (carrier ampholite) to the gel and applying an electric field to form a pH gradient, or by preparing gels using acrylamide derivatives having various pi side chains. At the same time, there is a method for forming a pH gradient (IPG method: Immobilized pH gradient), and in proteomics research, the IPG method, which is excellent in all of the separation ability, reproducibility, and allowable amount of addition, is mainly used. A precast gel (Immobiline DryStrip Gel) dedicated to the IPG method is commercially available. The resolution of isoelectric focusing using carrier ampholite is 0.01-0.02 pH units, and the IPG method can separate even 0.01-pH units. Two-dimensional electrophoresis is a two-step electrophoresis. This is a method of separating proteins two-dimensionally by using. Generally, in the first dimension, proteins are separated by isoelectric focusing, and in the second dimension, molecular weight is separated by SDS-PAGE. Both methods have very high resolution and can separate whole cell proteins into thousands of spots. Again It is common to use the immobilized pH gradient method (IPG method), which has excellent realism and resolution, for the first dimension electrophoresis. In order to obtain more spots, only the target pH part can be separated using a narrow pH IPG gel based on the results of separation over a wide pH range, or second-dimensional electrophoresis can be performed using a large gel of 20 cm or more. You can do it too.
[0022] 本発明においては、 DNA、 RNAを分離する場合は、ァガロースゲル電気泳動法 を使用するのが好ましぐペプチドを分離する場合は、 SDSポリアクリルアミドゲル電 気泳動法及び二次元電気泳動法を使用するのが好ましい。これらの電気泳動法は、 当技術分野における当業者が通常使用する方法で実施することができる。 In the present invention, it is preferable to use agarose gel electrophoresis to separate DNA and RNA, and to use SDS polyacrylamide gel electrophoresis and two-dimensional It is preferred to use These electrophoresis methods can be performed by a method commonly used by those skilled in the art.
電気泳動後、ゲルを、使用する固体支持体に載る大きさに切り出し、ゲルと固体支 持体とを密着させて、ゲル中に分離された分析対象物質を本発明の固体支持体上 に転写する固体支持体への転写方法としては、特に制限されず、当技術分野で通 常用いられる方法を使用することができる。例えば、毛細管現象を利用したキヤビラリ 一式ブロッテイング、ポンプにより吸引するバキューム式ブロッテイング及び電気的手 法を用いるエレクトロブロッテイングが挙げられる。核酸を転写する場合は、キヤビラリ 一式ブロッテイングを使用するのが好ましぐペプチドを転写する場合は、エレクト口 ブロッテイングを使用するのが好ましい。  After the electrophoresis, the gel is cut into a size that can fit on the solid support to be used, and the gel and the solid support are brought into close contact with each other, and the analyte separated in the gel is transferred onto the solid support of the present invention. The method for transferring to a solid support is not particularly limited, and a method usually used in the art can be used. For example, a set of capillaries utilizing capillary action, vacuum-type blotting using a pump, and electro-blotting using an electric method can be used. When transcribe | transferring a nucleic acid, it is preferable to use the capillaries set | blotting. When transcribe | transferring a peptide, it is preferable to use elect opening blotting.
エレクトロブロッテイングにおいては、タンク式、セミドライ式及びセミウエット式のい ずれも使用することができるが、ノくッファー使用量の少なさや、反応時間の短さ等の 観点からセミドライ式エレクトロブロッテイングを使用するのが好ましい。ブロッテイング 装置としては、当技術分野で通常用いられているエレクトロブロッテイング装置を使用 すること力 Sできる。エレクトロブロッテイングにおける通電条件は、定電圧、 200V以下 、好ましくは 0. 1— 10Vで、 1一 500分間、好ましくは 5— 100分間が好ましレ、。ただ し、電圧を金属基板の酸化電位より高くすると金属の溶出がおこるため、基板金属の 酸化電位より低い電圧で行うのが好ましい。  In electroblotting, any of tank type, semi-dry type and semi-wet type can be used.However, semi-dry type electroblotting is used from the viewpoint of the use of a small amount of knocker and short reaction time. It is preferred to use. As the blotting device, an electroblotting device commonly used in the art can be used. The energizing conditions in the electroblotting are a constant voltage, 200 V or less, preferably 0.1 to 10 V, preferably for 1 to 500 minutes, preferably 5 to 100 minutes. However, if the voltage is higher than the oxidation potential of the metal substrate, the metal is eluted. Therefore, it is preferable to perform the process at a voltage lower than the oxidation potential of the substrate metal.
[0023] 以下に、試料中のタンパク質を分析する場合の本発明における電気泳動及び転写 の一態様を示す。まず、試料中のタンパク質を可溶化する。すなわち、試料に存在す るタンパク質分解酵素を失活させるとともに、 SDSと /3—メルカプトエタノールによって タンパク質を効果的に変性させる目的で沸騰水中で一定時間熱処理する。次に SD S—ポリアクリルアミドゲルの各レーンに一定量注入し、 SDSを含むグリシン一トリスバッ ファーを泳動用バッファ一として、一定電圧で一定時間泳動させる。泳動後、ゲルを あらかじめ冷却しておいたメタノールを含むグリシン—トリスバッファー(転写用バッファ 一)に一定時間浸漬し、平衡化する。続いて、ゲルを陰極側、転写用固体支持体を 陽極側としてエレクトロブロッテイング装置に装着する。転写槽には転写用バッファー を加え、氷冷下、定電圧で一定時間転写を行う。このとき、転写効率を上げる観点か ら、陰極とゲルの間、及び陽極と固体支持体の間に、バッファーやイオン交換水を含 ませたろ紙を配置するのが好ましい。陰極側のろ紙に含ませるバッファ一としては、 T ris、 ε—アミノカプロン酸、酢酸、 EDTA、リン酸、ホウ酸、酒石酸、 SDS等を含むも のが挙げられる。 Tris及び ε—アミノカプロン酸を含むバッファーを用いる場合、 ε - アミノカプロン酸の濃度は通常、 lOOOmM以下、好ましくは — 1000mM、より 好ましくは 1一 300mMである。陽極側のろ紙には、イオン交換水を含ませるのが好 ましい。 Hereinafter, one embodiment of electrophoresis and transcription in the present invention when analyzing a protein in a sample will be described. First, the protein in the sample is solubilized. That is, heat treatment is performed for a certain period of time in boiling water in order to deactivate the proteolytic enzymes present in the sample and to effectively denature the protein with SDS and / 3-mercaptoethanol. Then SD Inject a fixed amount into each lane of the S-polyacrylamide gel, and run glycine-tris buffer containing SDS as a buffer for electrophoresis at a constant voltage for a fixed time. After the electrophoresis, the gel is immersed in a pre-cooled glycine-Tris buffer (transfer buffer 1) containing methanol for a certain period of time to equilibrate. Subsequently, the gel is attached to the electroblotting device with the cathode side and the transfer solid support as the anode side. A transfer buffer is added to the transfer tank, and transfer is performed at a constant voltage for a certain time under ice cooling. At this time, from the viewpoint of increasing the transfer efficiency, it is preferable to arrange a filter paper containing a buffer or ion-exchanged water between the cathode and the gel and between the anode and the solid support. Examples of the buffer to be contained in the filter paper on the cathode side include those containing Tris, ε-aminocaproic acid, acetic acid, EDTA, phosphoric acid, boric acid, tartaric acid, SDS, and the like. When a buffer containing Tris and ε-aminocaproic acid is used, the concentration of ε-aminocaproic acid is usually 100 mM or less, preferably -1000 mM, more preferably 1-1300 mM. The filter paper on the anode side preferably contains ion-exchanged water.
[0024] 本発明の別の態様においては、対象物質を電気泳動後のゲルから従来技術にお いて使用されるようなメンブレンに転写し、さらに該メンブレンから本発明の固体支持 体上に転写することにより、ゲル中に分離された物質を固体支持体上に転写保持す ることもできる。この場合に使用できるメンブレンの材質としては、ニトロセルロース、 P VDF (ポリフッ化ビニリデン)、ナイロン及びポジティブチャージナイロン等が挙げられ る。タンパク質の転写においては、タンパク質の結合能力が最も高い PVDFを使用 するのが好ましぐ核酸の転写においても核酸の非特異吸着が少ない PVDFを使用 するのが好ましい。泳動物質のゲル力 メンブレンへの転写及びメンブレンから固体 支持体への転写は、上記と同様の方法により実施できる。ゲル力 メンブレンへの転 写においては、エレクトロブロッテイングを使用するのが好ましぐエレクトロブロッティ ングにおける通電条件は、 0. 1— 50Vで、 5 120分間程度が好ましレ、。メンブレン から固体支持体への転写においては、エレクロトブロッテイング装置を利用するのが 好ましい。  [0024] In another embodiment of the present invention, the target substance is transferred from the gel after electrophoresis to a membrane as used in the related art, and further transferred from the membrane onto the solid support of the present invention. Thereby, the substance separated in the gel can be transferred and held on the solid support. Examples of the material of the membrane that can be used in this case include nitrocellulose, PVDF (polyvinylidene fluoride), nylon, and positively charged nylon. In the transcription of a protein, it is preferable to use PVDF having the highest binding ability of the protein. Even in the transcription of nucleic acid, it is preferable to use PVDF having less nonspecific adsorption of nucleic acid. Gel force of migrating substance Transfer to the membrane and transfer from the membrane to the solid support can be carried out by the same method as described above. Gel force When transferring to a membrane, it is preferable to use electroblotting. The energization conditions for electroblotting are 0.1 to 50 V, preferably for 5 to 120 minutes. In the transfer from the membrane to the solid support, it is preferable to use an electroblotting device.
[0025] 本発明の別の態様においては、電気泳動によって分離された物質を固体支持体 上に転写保持し、この物質と相互作用する物質を反応させて複合体を形成し、形成 した複合体をイオン化することによって質量分析を行うこともできる。質量分析方法と して、電気的相互作用を利用して原子 ·分子のイオンを質量の違いによって分析する 手法を使用できる。このような質量分析装置は、イオンの生成 '分離'検出の三つの 異なる働きを持つものである。既に述べたような方法により、タンパク質が固体支持体 上に転写保持される場合は、該タンパク質に対する抗体を反応させて複合体を形成 し、該複合体にレーザに照射等を行ってイオン化することにより質量分析を行うことが できる。また、 DNA又は RNA等の核酸が固体支持体上に転写保持される場合は、 該核酸に対して相補的な核酸を固体支持体上の核酸にハイブリダィズさせ、形成し た二本鎖をイオン化して質量分析を行うことができる。その他の相互作用としては、例 えば、酵素反応、ピオチン一ストレプトアビジン相互作用等を利用することができる。 相互作用によって形成した複合体の質量分析を行うことにより、プローブ分子に特異 的に相互作用したターゲット分子の塩基配列或いはアミノ酸配列を解析することがで きる。 [0025] In another embodiment of the present invention, a substance separated by electrophoresis is transferred and held on a solid support, and a substance that interacts with the substance is reacted to form a complex. Mass spectrometry can also be performed by ionizing the complex thus formed. As a mass spectrometry method, it is possible to use a method of analyzing atoms and molecules of ions based on the difference in mass using electric interaction. Such mass spectrometers have three different functions of ion production 'separation' detection. When a protein is transcribed and held on a solid support by the method described above, an antibody against the protein is reacted to form a complex, and the complex is irradiated with a laser or the like to be ionized. Enables mass spectrometry. When a nucleic acid such as DNA or RNA is transcribed and held on a solid support, a nucleic acid complementary to the nucleic acid is hybridized to the nucleic acid on the solid support, and the formed double strand is ionized. To perform mass spectrometry. As other interactions, for example, an enzymatic reaction, a biotin-streptavidin interaction, and the like can be used. By performing mass spectrometry of the complex formed by the interaction, the base sequence or amino acid sequence of the target molecule specifically interacting with the probe molecule can be analyzed.
本発明の別の態様においては、相互作用する物質を分析することを目的として、溶 液中で相互作用する物質の複合体を形成した後、これを電気泳動に付し、電気泳動 によって分離された複合体を固体支持体上に転写保持し、固体支持体上の複合体 をイオンィ匕することによって質量分析を行うこともできる。このような分析方法は、溶液 中で複合体形成を行うものであるため、タンパク質の分析など、分析対象物質の立体 構造を高度に保持する必要がある解析に有利である。  In another embodiment of the present invention, for the purpose of analyzing interacting substances, after forming a complex of interacting substances in a solution, the complex is subjected to electrophoresis and separated by electrophoresis. The resulting composite can be transferred and held on a solid support, and mass spectrometry can be performed by ionizing the composite on the solid support. Since such an analysis method forms a complex in a solution, it is advantageous for an analysis that requires a high degree of retention of the three-dimensional structure of a substance to be analyzed, such as a protein analysis.
固体支持体上に固定化された物質は、レーザ脱離/イオン化 -飛行時間型質量分 析等の手段によりそのまま質量分析を実施することができる。質量分析する際に使用 できるイオン化法の様式としては、マトリックス補助レーザ脱着 (MALDI)法、電子衝 撃によるイオン化 (EI)法、光イオン化法、放射性同位体力 放射される LETの大き なひ又は 線を使用するイオン化法、 2次イオン化法、高速原子衝突イオン化法、電 界電離イオン化法、表面電離イオン化法、化学イオン化(CI)法、フィールドイオンィ匕 (FI)法、火花放電によるイオンィ匕法等が挙げられ、マトリックス補助レーザ脱着(MA LDI)法、電子衝撃によるイオンィ匕 (EI)法が好ましい。また、分離様式としては、線形 又は非線形反射飛行時間(TOF)、単一又は多重四重極、単一又は多重磁気セクタ 一、フーリエ変換イオンサイクロトロン共鳴 (FTICR)、イオン捕獲、高周波ならびにィ オン捕獲/飛行時間等が挙げられ、線形又は非線形反射飛行時間 (TOF)、高周 波及びイオン捕獲/飛行時間を用いるものが好ましい。上記のようなイオン化法と分 離様式もしくはそれらの組合せを含む分離様式、電気的記録ならびに写真記録のよ うな検出様式とを組み合わせることにより質量分析を実施することができる。このような 質量分析装置は、イオンの生成 ·分離 '検出の三つの異なる働きを持つものである。 生体分子などの高分子物質をイオン化し、及び固体支持体上の複数の物質を分析 するという観点からは、レーザ脱離/イオン化一飛行時間型質量分析を利用するの が好ましい。 The substance immobilized on the solid support can be directly subjected to mass spectrometry by means such as laser desorption / ionization-time-of-flight mass spectrometry. The types of ionization methods that can be used for mass spectrometry include matrix-assisted laser desorption (MALDI), ionization by electron impact (EI), photoionization, and radioisotope force. Ionization method, secondary ionization method, fast atom bombardment ionization method, field ionization ionization method, surface ionization ionization method, chemical ionization (CI) method, field ionization method (FI) method, ionization method using spark discharge And the like, and a matrix assisted laser desorption (MA LDI) method and an ion bombardment (EI) method by electron impact are preferable. Separation modes include linear or non-linear time-of-flight (TOF), single or multiple quadrupole, single or multiple magnetic sectors. First, Fourier Transform Ion Cyclotron Resonance (FTICR), ion capture, high frequency and ion capture / flight time, etc., which use linear or non-linear reflection time of flight (TOF), high frequency and ion capture / flight time. preferable. Mass spectrometry can be performed by combining the above-described ionization method with a separation mode including a separation mode or a combination thereof, and a detection mode such as an electrical record and a photographic record. Such mass spectrometers have three different functions of ion generation, separation and detection. From the viewpoint of ionizing a polymer substance such as a biomolecule and analyzing a plurality of substances on a solid support, it is preferable to use laser desorption / ionization-time-of-flight mass spectrometry.
以下に本発明の一態様として、 MALDI-TOF MSを用いた質量分析の手順を説 明する。  Hereinafter, as one embodiment of the present invention, a procedure of mass spectrometry using MALDI-TOF MS will be described.
分析対象物質が固定化された本発明の固体支持体に、 ひ -シァノヒドロキシ桂皮酸 、シナピン酸などのマトリックスを添加し、乾燥させる。次ぎに該固体支持体を、 MAL DI-TOF MSのフラットターゲットに設置する。そして、 MassLynxソフトウェア等を 用いて質量分析を開始する。 MassLynxによって測定と解析の全てをコントロール すること力 Sできる。測定時に、 自動測定のパラメーターファイルと、測定後に行うデー タプロセス及びデータベース解析のプロセスファイル、ならびに試料リストなどを作成 する。データプロセシングは、 ProteinLynxソフトウェアを用いて MassLynx上で行 うことができる。取り込まれたデータから質量スペクトルを作成し、作成されたスぺタト ノレは、 MaxEnt 3ソフトウェア(Micromass社)により、精度を高めた後、モノアイソト ピック ·ピークデータに変換する。続いてキャリブレーションを行い質量誤差約 50ppm の最終データとする。このデータから相互作用したタンパク質の正確な質量を求める こと力 Sできる。  A matrix such as para-cyanohydroxycinnamic acid or sinapinic acid is added to the solid support of the present invention on which the substance to be analyzed is immobilized, and dried. Next, the solid support is set on a flat target of MAL DI-TOF MS. Then, mass spectrometry is started using MassLynx software or the like. MassLynx can control all measurements and analyses. At the time of measurement, create a parameter file for automatic measurement, a process file for data processing and database analysis performed after measurement, and a sample list. Data processing can be performed on MassLynx using ProteinLynx software. A mass spectrum is created from the acquired data, and the created statistic is converted to monoisotopic peak data after increasing the accuracy using MaxEnt 3 software (Micromass). Next, perform calibration to obtain final data with a mass error of about 50 ppm. From this data we can determine the exact mass of interacting proteins.
質量分析に続レ、てタンパク質のアミノ酸配列分析及び同定を行うことができる。 MA LDI-TOF MSの分析モードをポストソースディケイ (PSD)スペクトルを検出できるモ ードにし、相互作用したタンパク質のアミノ酸配列を分析する。続いて、アミノ酸配列 データを基に SWISSPROTデータベースを検索し、タンパク質を同定する。あるい は、 MALDI— TOF/TOF MSや MALDI Q-TOF MSに分析対象物質が固定 ィ匕された固体支持体を設置してアミノ酸配歹 IJを分析し、相互作用したタンパク質を同 定すること力 Sできる。 Following mass spectrometry, protein amino acid sequence analysis and identification can be performed. Set the analysis mode of MA LDI-TOF MS to a mode that can detect post-source decay (PSD) spectra, and analyze the amino acid sequences of interacting proteins. Then, search the SWISSPROT database based on the amino acid sequence data to identify the protein. Or MALDI—Analyte is fixed on TOF / TOF MS or MALDI Q-TOF MS By setting the solid support, the amino acid sequence IJ can be analyzed and the interacting proteins can be identified.
以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例に 限定されるものではない。  Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to these Examples.
実施例  Example
[0028] (実施例 1 ) Ti-Pt-DLC固体支持体へのタンパク質の転写  (Example 1) Transfer of protein to Ti-Pt-DLC solid support
固体支持体の作成  Creating a solid support
76mm X 26mm X 1. 1mmのスライドガラスに Ti層及びその上に Pt層をマグネトロ ンスパッタリングにより形成した。スパッタリングの条件は以下の通りである。生成した 金属層の厚みは、 Ti層及び Pt層それぞれが lOOnmであった。  A Ti layer and a Pt layer were formed on a 76 mm X 26 mm X 1.1 mm slide glass by magnetron sputtering. The sputtering conditions are as follows. The thickness of the formed metal layer was 100 nm for each of the Ti layer and the Pt layer.
[0029] [表 1] [0029] [Table 1]
Figure imgf000017_0001
Figure imgf000017_0001
[0030] そして、金属層を形成した基板上にダイヤモンドライクカーボン層を形成した。ダイ ャモンドライクカーボン層の形成はイオン化蒸着法により以下の条件で行った。生成 したダイヤモンドライクカーボン層の厚みは、 20nmであった。 [0030] Then, a diamond-like carbon layer was formed on the substrate on which the metal layer was formed. The formation of the diamond-like carbon layer was performed by ionization vapor deposition under the following conditions. The thickness of the generated diamond-like carbon layer was 20 nm.
[0031] [表 2]  [0031] [Table 2]
Figure imgf000017_0002
Figure imgf000017_0002
Vb:加速電圧、 Va:アノード電圧  Vb: acceleration voltage, Va: anode voltage
[0032] 上記のようにして基板にダイヤモンドライクカーボン層を形成した後、表面を塩素ガ ス中で 1分間紫外線を照射することにより塩素化し、アンモニアガス中で 10分間紫外 線を照射することによりァミノ化して固体支持体を作成した。 After the diamond-like carbon layer is formed on the substrate as described above, the surface is chlorinated by irradiating ultraviolet rays for 1 minute in chlorine gas and irradiating ultraviolet rays for 10 minutes in ammonia gas. Amination was performed to produce a solid support.
[0033] SDS— PAGE法による電気泳動 Cy3_プロテイン A ( l . 5 / g、 SIGMA社製)、大腸菌タンパク質(0 · 5 /i g)及びマ 一力一(Prestained Broad Range、 0 · 5 μ 1、 BIO RAD社製)を試料として用レヽ 、 SDS—PAGE用装置(ATTO社製 AE—7300型)を用いて電気泳動を行った。泳 動用のゲルとしては、 10 %ポリアクリルアミドゲルを使用した。泳動用バッファ一は 0. 1 % SDSを含むグリシンートリスバッファー(pH8.3)を用レ、、泳動は 200Vで 35分間 行った。泳動終了後、 15分間 CBB染色し、脱染色したあと、 LAS 1000 (富士写真フ イルム株式会社製)で画像撮影した。約 50kDa付近に Cy3_プロテイン Aのバンドが 検出された。 [0033] SDS—electrophoresis by PAGE method Cy3_Protein A (1.5 g, SIGMA), E. coli protein (0.5 · ig / ig) and Michiruichi (Prestained Broad Range, 0.5 µl, BIO RAD) as samples Electrophoresis was performed using a device for SDS-PAGE (AE-7300 manufactured by ATTO). A 10% polyacrylamide gel was used as a swimming gel. Glycine tris buffer (pH 8.3) containing 0.1% SDS was used as the electrophoresis buffer, and electrophoresis was performed at 200 V for 35 minutes. After completion of the electrophoresis, CBB staining was performed for 15 minutes, and after destaining, images were taken with LAS1000 (manufactured by Fuji Photo Film Co., Ltd.). Cy3_Protein A band was detected around 50 kDa.
[0034] エレクトロブロッテイング [0034] Electroblotting
泳動後のポリアクリルアミドゲルを、あらカ^め冷却しておいた転写用バッファー(25 mM Tris、 5 %メタノーノレ)に 30分間浸漬し、平衡化した。次いで、ポリアクリルアミド ゲルを固体支持体に載る大きさに切り取って、該固体支持体と密着させ、ポリアクリル アミドゲルを陰極、固体支持体を陽極に設置し、下記条件で通電した。  The polyacrylamide gel after the electrophoresis was immersed in a pre-cooled and cooled transfer buffer (25 mM Tris, 5% methanol) for 30 minutes to equilibrate. Next, the polyacrylamide gel was cut into a size that would fit on the solid support, and was brought into close contact with the solid support. The polyacrylamide gel was placed on the cathode and the solid support was placed on the anode, and electricity was supplied under the following conditions.
[0035] [表 3] [Table 3]
Figure imgf000018_0001
Figure imgf000018_0001
[0036] 蛍光強度の測定 [0036] Measurement of fluorescence intensity
タンパク質転写後の固体支持体の蛍光強度を FLA8000 (富士写真フィルム株式 会社製)で測定したところ、蛍光強度が 28270として測定され、 Cy 3-プロテイン Aが 固体支持体表面に固定化されたことが確認された。続いて、該固体支持体を PBSで 10分間洗浄した後、同様に蛍光強度を測定したところ、蛍光強度は 9766であり、約 1 /3程度まで低下した。ブロッキング試薬 (Roche社製)で 1時間ブロッキングし、蛍 光強度を測定したところ蛍光強度に変化はなかった。次ぎに、 500 1の0. 05 / g/ /i l Cy3— IgGを添加して室温で 1時間反応させた後、 PBSで室温にて 12時間洗浄 し、蛍光強度を測定した。蛍光強度は 16448であり、増加していることから、プロティ ン Aと IgGが結合したこと、すなわち、転写保持されたタンパク質の結合能が維持され たことがわかる。 The fluorescence intensity of the solid support after protein transfer was measured with FLA8000 (manufactured by Fuji Photo Film Co., Ltd.). The fluorescence intensity was measured as 28270, indicating that Cy3-protein A was immobilized on the surface of the solid support. confirmed. Subsequently, after the solid support was washed with PBS for 10 minutes, the fluorescence intensity was measured in the same manner. The fluorescence intensity was 9766, which was reduced to about 1/3. After blocking with a blocking reagent (Roche) for 1 hour and measuring the fluorescence intensity, there was no change in the fluorescence intensity. Next, 5001 of 0.05 / g // il Cy3-IgG was added and reacted at room temperature for 1 hour, washed with PBS at room temperature for 12 hours, and the fluorescence intensity was measured. Since the fluorescence intensity is 16448, which is increasing, the binding of protein A to IgG, that is, the binding ability of the transcribed protein is maintained. You can see that
[0037] (実施例 2)ステンレス一 DLC固体支持体へのタンパク質の転写  (Example 2) Transfer of protein to stainless steel DLC solid support
ステンレス一 DLC固体支持体の作成  Preparation of DLC solid support for stainless steel
ステンレス基板にダイヤモンドライクカーボン層を形成した。ステンレス基板は、平 滑性と蛍光バックグラウンドを下げるために、予めパフ研磨後、更に電解研磨を施し た。ダイヤモンドライクカーボン層の形成はイオン化蒸着法により以下の条件で行つ た。生成したダイヤモンドライクカーボン層の厚みは、 20nmであった。また、アンモニ ァプラズマ処理することによりアミノ基を導入することにより固体支持体を作成した。  A diamond-like carbon layer was formed on a stainless steel substrate. The stainless substrate was puff-polished in advance and further electropolished in order to reduce the smoothness and the fluorescent background. The formation of the diamond-like carbon layer was performed by ionization vapor deposition under the following conditions. The thickness of the generated diamond-like carbon layer was 20 nm. In addition, a solid support was prepared by introducing an amino group by ammonia plasma treatment.
[0038] [表 4]  [0038] [Table 4]
Figure imgf000019_0001
Figure imgf000019_0001
Vb:加速電圧、 Va:アノード電圧  Vb: acceleration voltage, Va: anode voltage
[0039] Cy3_プロテイン A (0. 2 μ g、 SIGMA社製)を実施例 1と同様に SDS—PAGE法( ATTO社製 AE - 6530型)で泳動し、泳動終了後、 15分間 CBB染色し、脱染色し たあと、 LAS 1000 (富士写真フィルム株式会社製)で画像撮影した。 [0039] Cy3_protein A (0.2 μg, SIGMA) was electrophoresed by SDS-PAGE (AT-6 AE-6530) in the same manner as in Example 1, and CBB staining was performed for 15 minutes after electrophoresis. After destaining, images were taken with LAS 1000 (manufactured by Fuji Photo Film Co., Ltd.).
[0040] 泳動後のゲルを取り出し、固体支持体に載る大きさに切った後、転写用バッファー B (25mM Tris、 5%メタノール)に浸した。予め固体支持体の大きさに切っておい たろ紙(ATTO社製)をそれぞれ、転写用バッファー Α(0· 3M Tris、 5%メタノーノレ )、 C (25mM Tris、 40mM ε 一アミノカプロン酸、 5%メタノール)又はイオン交換水 に浸した。続いて、気泡が入らないように、ろ紙、ゲル、固体支持体を図 1のように重 ねてセミドライブロッテイング装置に設置し、 8V、 4mAで 60分間通電し、タンパク質 を固体支持体に転写した。転写後の固体支持体をイオン交換水で室温にて 30分間 洗浄し、乾燥させた後、転写後の固体支持体とゲルを FLA8000 (富士写真フィルム 株式会社製)で画像撮影した。  [0040] The gel after electrophoresis was taken out, cut into a size to be placed on a solid support, and immersed in transfer buffer B (25 mM Tris, 5% methanol). The filter paper (manufactured by ATTO), which has been cut in advance to the size of the solid support, is transferred to a transfer buffer Α (0.3 M Tris, 5% methanol), C (25 mM Tris, 40 mM ε-aminocaproic acid, 5% ) Or ion-exchanged water. Next, filter paper, gel, and solid support were placed one on top of the other as shown in Fig. 1 in a semi-dried blotting device so that air bubbles did not enter, and electricity was applied at 8 V and 4 mA for 60 minutes to transfer proteins to the solid support. Transcribed. The solid support after the transfer was washed with ion-exchanged water at room temperature for 30 minutes and dried, and then the solid support and the gel after the transfer were photographed with a FLA8000 (manufactured by Fuji Photo Film Co., Ltd.).
[0041] (1)は、陰極側及び陽極側のろ紙の双方にイオン交換水を含ませて転写を行った場 合の結果である。 Cy3_プロテイン Aはゲルからほとんど抜け出ておらず、また固体支 持体にも転写保持されていなかった。 [0041] (1) shows the result when the transfer was performed with both the cathode side and the anode side filter papers containing ion-exchanged water. Cy3_ protein A hardly escapes from the gel and No transfer was held on the carrier.
(2)は、ろ紙 Iに転写用バッファー C、ろ紙 IIに転写用バッファー B、ろ紙 IIIに転写用バ ッファー Aを含ませて転写を行った場合の結果である。 Cy 3-プロテイン Aはゲルから 多少減少しているが、固体支持体には転写保持されていなかった。  (2) shows the results when transfer was performed with filter paper I containing transfer buffer C, filter paper II containing transfer buffer B, and filter paper III containing transfer buffer A. Cy3-protein A was slightly reduced from the gel, but was not transcribed on the solid support.
(3)は、ろ紙 Iに転写用バッファー C、ろ紙 II及び IIIにイオン交換水を含ませて転写を 行った場合の結果である。ゲルは、固体支持体に重ねる前に、水分をふき取った。そ の結果、 Cy3_プロテイン Aは、均一ではないがゲルから抜け出ていることが確認さ れた。また、固体支持体上には形状は良くないが転写保持が見られた。  (3) shows the results when transfer was performed with filter paper I containing buffer C for transfer and filter papers II and III with ion-exchanged water. The gel was wiped of moisture before overlaying on a solid support. As a result, it was confirmed that Cy3_Protein A was not homogeneous but escaped from the gel. Further, transfer holding was observed on the solid support although the shape was not good.
(4)は、ろ紙 Iに転写用バッファー C、ろ紙 II及び IIIにイオン交換水を含ませ、ゲルの 水分をふきとらずに固体支持体に重ねて転写を行った場合の結果である。その結果 、 Cy3_プロテイン Aは、均一ではないがゲルから抜け出ていることが確認された。ま た、固体支持体上には Cy3_プロテイン Aが形状良く転写保持されていた。  (4) shows the results when the transfer buffer C was added to the filter paper I, the ion exchange water was added to the filter papers II and III, and the gel was transferred to the solid support without wiping the moisture. As a result, it was confirmed that Cy3_Protein A was not uniform but escaped from the gel. Cy3_protein A was well-transferred and retained on the solid support in good shape.
以上から、ゲル中のタンパク質の固体支持体への転写においては、陰極側のろ紙 には転写用バッファーを、陽極側のろ紙にはイオン交換水を含ませ、泳動後のゲル の水分をふきとることなく転写を行うことが好ましいと考えられる。  From the above, when transferring proteins in the gel to the solid support, the filter paper on the cathode side should contain a transfer buffer, and the filter paper on the anode side should contain ion-exchanged water, and the gel after the electrophoresis should be wiped off. It is believed that it is preferable to perform the transfer without the use.
(実施例 3)ステンレス一 DLC固体支持体へのタンパク質の転写 (Example 3) Transfer of protein to stainless steel DLC solid support
Cy3—プロテイン A (50ng、 SIGMA社製)及び Cy3— IgA ( 100ng、 SIGMA社製) を実施例 1と同様に SDS-PAGE法 (ATTO社製 AE—6530型)で泳動し、泳動終 了後、 15分間 CBB染色し、脱染色したあと、 LAS 1000 (富士写真フィルム株式会 社製)で画像撮影した。なお、 Cy3_IgAの泳動については、 12%ポリアクリルアミド ゲルを使用した。また、実施例 2と同様にして、固体支持体を作成した。  Cy3-protein A (50 ng, SIGMA) and Cy3-IgA (100 ng, SIGMA) were electrophoresed by SDS-PAGE (ATTO AE-6530) in the same manner as in Example 1, and after completion of electrophoresis. After 15 minutes of CBB staining and destaining, images were taken with LAS1000 (Fuji Photo Film Co., Ltd.). For the migration of Cy3_IgA, a 12% polyacrylamide gel was used. In the same manner as in Example 2, a solid support was prepared.
泳動後のゲルを取り出し、固体支持体に載る大きさに切った後、転写用バッファー( 25mM Tris、 5 %メタノーノレ)に浸した。予め固体支持体の大きさに切っておいたろ 紙(ATTO社製)をそれぞれ、転写用バッファー CI (25mM Tris、 40mM ε—ァミノ カプロン酸、 5%メタノール)、 C2 (25mM Tris、 400mM ε—アミノカプロン酸、 5% メタノール)又はイオン交換水に浸した。続いて、気泡が入らないように、ろ紙、ゲル 、固体支持体を実施例 2の図 1同様に重ね、セミドライブロッテイング装置に設置した 。このとき、陰極側のろ紙 3枚には、転写用バッファー C1又は C2を含ませたものを使 用し、陽極側のろ紙 3枚には、イオン交換水を含ませたものを使用した。そして、 2V、 2 /i Aで 60分間通電し、タンパク質を固体支持体に転写した。転写後の固体支持体 をイオン交換水で室温にて 30分間洗浄し、乾燥させた。そして該固体支持体と転写 後のゲルを FLA8000 (富士写真フィルム株式会社製)で画像撮影した。 The gel after electrophoresis was taken out, cut into a size on a solid support, and immersed in a transfer buffer (25 mM Tris, 5% methanol). Filter paper (manufactured by ATTO) previously cut to the size of the solid support was transferred to a transfer buffer CI (25 mM Tris, 40 mM ε-aminocaproic acid, 5% methanol), C2 (25 mM Tris, 400 mM ε-aminocapron). Acid, 5% methanol) or ion-exchanged water. Subsequently, filter paper, gel, and a solid support were stacked in the same manner as in FIG. 1 of Example 2 so as to prevent air bubbles from entering, and the filter and the solid support were placed in a semi-driving apparatus. At this time, use three filter papers on the cathode side that contain transfer buffer C1 or C2. For the three filter papers on the anode side, ion-exchanged water was used. Then, a current was applied at 2 V and 2 / i A for 60 minutes to transfer the protein to the solid support. The solid support after transfer was washed with ion-exchanged water at room temperature for 30 minutes and dried. The solid support and the gel after transfer were photographed with a FLA8000 (manufactured by Fuji Photo Film Co., Ltd.).
その結果、固体支持体への転写の際に陰極側のろ紙に含ませる転写用バッファー は、 Cl、すなわち、 ε—アミノカプロン酸の濃度が 40mMのものの方が転写保持効 率がよいことが分かった。  As a result, it was found that when the transfer buffer to be included in the filter paper on the cathode side during transfer to the solid support was Cl, that is, the concentration of ε-aminocaproic acid at 40 mM, the transfer retention efficiency was better. .
(実施例 4) PVDFメンブレンから Ti一 Pt_DLC固体支持体へのタンパク質転写 実施例 1と同様にして基板にダイヤモンドライクカーボン層を形成し、イオン化蒸着 装置を用いてアンモニアプラズマ中で処理することにより表面をァミノ化して固体支 持体 3を作成した。 (Example 4) Transfer of protein from PVDF membrane to Ti-Pt_DLC solid support A diamond-like carbon layer was formed on the substrate in the same manner as in Example 1, and the surface was treated in an ammonia plasma using an ionization deposition apparatus. Was solidified to prepare a solid support 3.
また実施例 1と同様にしてポリアクリルアミドゲルで Cy3_プロテイン Aを電気泳動し た。泳動終了後、 15分間 CBB染色し、脱染色したあと、 LAS1000 (富士写真フィル ム株式会社製)で画像撮影を行った。約 50kDa付近に Cy3_プロテイン Aのバンドが 検出された。  Cy3_protein A was electrophoresed on a polyacrylamide gel in the same manner as in Example 1. After the electrophoresis, CBB staining was performed for 15 minutes, and after destaining, images were taken with LAS1000 (manufactured by Fuji Photo Film Co., Ltd.). Cy3_Protein A band was detected around 50 kDa.
転写用バッファー A (0· 3M Tris、 5%メタノール)、 B (25mM Tris、 5%メタノー ノレ)及び C (25mM Tris、 40mM ε 一アミノカプロン酸、 5%メタノール)を調製した。 泳動後のゲルを取り出し、約 200mlの転写用バッファー Βに浸して、 5分間軽く振盪 した。予めゲルの大きさに切っておいた PVDFメンブレン (ATTO社製)を少量のメタ ノールに 5秒間浸した後、約 100mlの転写用バッファー Bに浸し、 5分以上振盪した。 転写用バッファー A、 B又は Cの各 200mlに、予めゲルの大きさに切っておいたろ紙 をそれぞれ 2枚、 1枚及び 3枚ずつ浸した。続いて、セミドライブロッテイング装置(日 本エイド一)に、上記のろ紙、ゲル及び PVDFメンブレンを、気泡が入らないように図 2のように重ね合わせて設置し、電圧 15Vで 60分間通電した。転写後、 PVDFメンブ レンを 200mlの PBSに浸して、 5分間浸透した。  Transfer buffers A (0.3 M Tris, 5% methanol), B (25 mM Tris, 5% methanol) and C (25 mM Tris, 40 mM ε-aminocaproic acid, 5% methanol) were prepared. The gel after electrophoresis was taken out, immersed in about 200 ml of transfer buffer 、, and gently shaken for 5 minutes. The PVDF membrane (manufactured by ATTO), which had been cut into gel size in advance, was immersed in a small amount of methanol for 5 seconds, immersed in about 100 ml of transfer buffer B, and shaken for 5 minutes or more. Two, one, and three filter papers, each of which was cut into gel size in advance, were immersed in 200 ml of each of transfer buffers A, B, and C. Subsequently, the filter paper, gel, and PVDF membrane were placed on a semi-driving device (Nihon Aid-Ichi) as shown in Fig. 2 so that air bubbles did not enter, and electricity was supplied at 15 V for 60 minutes. . After the transfer, the PVDF membrane was immersed in 200 ml of PBS and permeated for 5 minutes.
転写後の PVDFメンブレンを固体支持体に載る大きさに切り、図 3のような順番で重 ね合わせ、 35g/cm2の重しを載せた。室温にて 1時間置き、メンブレン上の Cy3—プ 口ティン Aを固体支持体上に転写した。続いて該固体支持体を、 PBSで室温にて 20 分間洗浄した後、乾燥させた。そして、固体支持体を FLA8000 (富士写真フィルム 株式会社製)で画像撮影した。対応する位置に蛍光が検出されたことから、 Cy3_プ 口ティン Aが固体支持体上に転写保持されていることがわかる。 The PVDF membrane after the transfer was cut into a size to be placed on the solid support, overlapped in the order shown in FIG. 3, and placed on a weight of 35 g / cm 2 . After leaving at room temperature for 1 hour, the Cy3-Port Tin A on the membrane was transferred onto the solid support. Subsequently, the solid support was washed with PBS at room temperature for 20 minutes. After washing for minutes, it was dried. Then, the solid support was imaged with FLA8000 (manufactured by Fuji Photo Film Co., Ltd.). Fluorescence was detected at the corresponding position, indicating that Cy3_protein Tin A was transcribed and held on the solid support.
[0044] (実施例 5)ステンレス一 DLC固体支持体へのタンパク質の転写 (Example 5) Transfer of protein to stainless steel DLC solid support
Cy3ラベルした酵母タンパク質(300 x g/レーン)を実施例 1と同様に SDS— PAG E法(ATTO社製 AE—6530型)で泳動し、泳動終了後、 FLA8000 (富士写真フィ ルム株式会社製)で画像撮影した。また、実施例 2と同様にして、固体支持体を作成 した。  Cy3-labeled yeast protein (300 xg / lane) was electrophoresed by the SDS-PAGE method (ATTO AE-6530 type) in the same manner as in Example 1, and after the electrophoresis, FLA8000 (Fuji Photo Film Co., Ltd.) The image was taken with. In the same manner as in Example 2, a solid support was prepared.
泳動後のゲルを取り出し、固体支持体に載る大きさに切った後、 10%メタノールで ゲルを洗浄後、新しい 10%メタノールに交換し、更に 30秒洗浄した。洗浄後、固体 支持体にゲルを載せ、その上に透析膜、 1MH BOバッファー(pH8. 0)を含むろ  The gel after electrophoresis was taken out, cut into a size to fit on the solid support, washed with 10% methanol, replaced with fresh 10% methanol, and further washed for 30 seconds. After washing, the gel is placed on a solid support, and a dialysis membrane and a filter containing 1 MHBO buffer (pH 8.0) are placed on the gel.
3 3  3 3
紙を載せた。そして、 2Vで 60分間通電し、タンパク質複合体を固体支持体に転写し た。転写後の固体支持体を超純水で洗浄し、乾燥させた。そして該固体支持体を FL A8000 (富士写真フィルム株式会社製)で画像撮影した。  I put the paper. Then, current was applied at 2 V for 60 minutes to transfer the protein complex to the solid support. The solid support after transfer was washed with ultrapure water and dried. Then, an image of the solid support was taken with FL A8000 (manufactured by Fuji Photo Film Co., Ltd.).
その結果、転写効率が約 40%であり、十分転写ができていることが判明した。  As a result, it was found that the transfer efficiency was about 40%, and sufficient transfer was achieved.
[0045] (実施例 6)ステンレス一 DLC固体支持体へのタンパク質の転写 (Example 6) Transfer of protein to stainless steel DLC solid support
Cy3_プロテイン A (50ng、 SIGMA社製)と Cy5_IgA ( 100ng、 SIGMA社製)を 溶液中で混合し、実施例 1と同様に Native— PAGE法(ATTO社製 AE— 6530型) で泳動し、泳動終了後、 FLA8000 (富士写真フィルム株式会社製)で画像撮影した 。また、実施例 2と同様にして、固体支持体を作成した。  Cy3_Protein A (50 ng, SIGMA) and Cy5_IgA (100 ng, SIGMA) were mixed in a solution, and electrophoresed by Native-PAGE method (ATTO AE-6530) as in Example 1. After the electrophoresis, images were taken with a FLA8000 (manufactured by Fuji Photo Film Co., Ltd.). In the same manner as in Example 2, a solid support was prepared.
泳動後のゲルを取り出し、固体支持体に載る大きさに切った後、転写用バッファー( 25mM Tris、 5 %メタノーノレ)に浸した。予め固体支持体の大きさに切っておいたろ 紙(ATTO社製)をそれぞれ、転写用バッファー CI (25mM Tris、 40mM ε—ァミノ カプロン酸、 5%メタノール)又はイオン交換水に浸した。続いて、気泡が入らないよ うに、ろ紙、ゲル、固体支持体を実施例 2の図 1と同様に重ね、セミドライブロッテイン グ装置に設置した。このとき、陰極側のろ紙 3枚には、転写用バッファー C 1を含ませ たものを使用し、陽極側のろ紙 3枚には、イオン交換水を含ませたものを使用した。そ して、 2V、 2 μ Aで 60分間通電し、タンパク質複合体を固体支持体に転写した。転 写後の固体支持体をイオン交換水で室温にて 30分間洗浄し、乾燥させた。そして該 固体支持体と転写後のゲルを FLA8000 (富士写真フィルム株式会社製)で画像撮 影した。 The gel after electrophoresis was taken out, cut into a size on a solid support, and immersed in a transfer buffer (25 mM Tris, 5% methanol). The filter paper (manufactured by ATTO) cut in advance to the size of the solid support was immersed in a transfer buffer CI (25 mM Tris, 40 mM ε-aminocaproic acid, 5% methanol) or ion-exchanged water. Subsequently, filter paper, gel, and a solid support were stacked in the same manner as in FIG. 1 of Example 2 so as to prevent air bubbles from entering, and set in a semi-driving apparatus. At this time, the one containing the transfer buffer C1 was used for the three filter papers on the cathode side, and the one containing ion-exchanged water was used for the three filter papers on the anode side. Then, a current was applied at 2 V and 2 μA for 60 minutes to transfer the protein complex to the solid support. Turn The solid support after the transfer was washed with ion-exchanged water at room temperature for 30 minutes and dried. Then, the solid support and the gel after transfer were photographed with a FLA8000 (manufactured by Fuji Photo Film Co., Ltd.).
その結果、転写後の FLA8000で画像撮影したものの蛍光強度は、泳動終了後の FLA8000で画像撮影したものの蛍光強度に比べて約 35%であった。  As a result, the fluorescence intensity of the image taken with the FLA8000 after transfer was about 35% compared to the fluorescence intensity of the image taken with the FLA8000 after the electrophoresis.
産業上の利用可能性 Industrial applicability
本発明の方法により、試料中に含まれる多数の物質を電気泳動で分離した後、個 々のバンドに含まれる物質を固体支持体上に転写保持することができ、複数の物質 を精製することなく同時かつ直接に質量分析することが可能となるため、多数の試料 を迅速に解析することができる。  According to the method of the present invention, after a large number of substances contained in a sample are separated by electrophoresis, the substances contained in individual bands can be transferred and held on a solid support, thereby purifying a plurality of substances. Since mass spectrometry can be performed simultaneously and directly without using multiple samples, a large number of samples can be analyzed quickly.
従って、本発明は、核酸及びタンパク質等の生体分子の解析において非常に有用 な手段となる。また、溶液中で相互作用する物質の複合体を形成することができるた め、タンパク質の分析など、分析対象物質の立体構造を高度に保持する必要がある 解析に有利である。  Therefore, the present invention is a very useful means in analyzing biomolecules such as nucleic acids and proteins. In addition, since a complex of interacting substances can be formed in a solution, it is advantageous for an analysis that requires a high degree of three-dimensional structure of a substance to be analyzed, such as a protein analysis.

Claims

請求の範囲 The scope of the claims
[I] 試料中の物質をゲル電気泳動で分離後、ゲル中に分離された該物質が転写保持 されてなる、表面にカーボン層を有する固体支持体。  [I] A solid support having a carbon layer on the surface, on which a substance in a sample is separated by gel electrophoresis and then transferred and held in the gel.
[2] 試料中の物質をゲル電気泳動で分離後、ゲル中に分離された物質をメンブレンに 転写し、該メンプレン上に転写された物質をさらに転写保持することにより該物質が 固定化されてなる、表面にカーボン層を有する固体支持体。  [2] After separating the substance in the sample by gel electrophoresis, the substance separated in the gel is transferred to a membrane, and the substance transferred onto the membrane is further transferred and held, whereby the substance is immobilized. A solid support having a carbon layer on the surface.
[3] 請求項 1又は 2に記載の固体支持体上に固定化された物質に、これと相互作用す る別の物質を加えて複合体を形成させてなる固体支持体。 [3] A solid support obtained by adding another substance interacting with the substance immobilized on the solid support according to claim 1 or 2 to form a complex.
[4] 溶液中で相互作用する物質同士の複合体を形成させ、該複合体がゲル電気泳動 で分離される請求項 1又は 2に記載の固体支持体。 [4] The solid support according to claim 1 or 2, wherein a complex of interacting substances is formed in a solution, and the complex is separated by gel electrophoresis.
[5] カーボン層が、ダイヤモンドライクカーボン層である請求項 1一 4のいずれか 1項に 記載の固体支持体。 [5] The solid support according to any one of claims 14 to 14, wherein the carbon layer is a diamond-like carbon layer.
[6] カーボン層の厚みが単分子層一 100 /i mである請求項 1一 5のいずれか 1項に記 載の固体支持体。  [6] The solid support according to any one of [15] to [15], wherein the carbon layer has a thickness of 100 / im per monolayer.
[7] 固体支持体が、基板表面のカーボン層上に存在するが該カーボン層と共有結合し ていないアミノ基含有化合物をさらに含む請求項 1一 6のいずれ力 4項に記載の固体 支持体。  7. The solid support according to claim 4, wherein the solid support further includes an amino group-containing compound that is present on the carbon layer on the surface of the substrate but is not covalently bonded to the carbon layer. .
[8] 固体支持体が、基板表面のカーボン層上に存在し該カーボン層と共有結合してい るァミノ基含有化合物をさらに含む請求項 1一 6のいずれ力、 1項に記載の固体支持体  [8] The solid support according to any one of [16] to [16], wherein the solid support further comprises an amino group-containing compound present on the carbon layer on the substrate surface and covalently bonded to the carbon layer.
[9] 基板上に、非置換又は一置換されたアミノ基を有する化合物及び炭素化合物を蒸 着させて得られる請求項 1一 6のいずれ力、 1項に記載の固体支持体。 [9] The solid support according to any one of [16] to [16], which is obtained by evaporating a compound having an unsubstituted or monosubstituted amino group and a carbon compound onto a substrate.
[10] 表面にカーボン層を有する固体支持体を、非置換又は一置換されたアミノ基を有 する化合物を含有する溶液中に浸漬して得られる請求項 1一 6のいずれ力 4項に記 載の固体支持体。  [10] The force described in claim 4, wherein the solid support having a carbon layer on the surface is immersed in a solution containing a compound having an unsubstituted or monosubstituted amino group. On the solid support.
[II] 転写保持された物質が核酸、ペプチド又はこれらの複合体である請求項 1一 10の いずれか 1項に記載の固体支持体。  [II] The solid support according to any one of claims 110, wherein the substance whose transcription is retained is a nucleic acid, a peptide or a complex thereof.
[12] 請求項 1一 11のいずれか 1項に記載の固体支持体上に転写保持された複数の物 質又は複合体を脱離/イオン化することにより質量分析する方法。 [12] A plurality of objects transferred and held on the solid support according to any one of claims 11 to 11 Mass spectrometry by desorbing / ionizing a substance or complex.
[13] 請求項 12に記載の方法において使用するための、表面にカーボン層を有する固 体支持体。  [13] A solid support having a carbon layer on the surface, for use in the method according to claim 12.
PCT/JP2005/002927 2004-02-23 2005-02-23 Solid support and method of mass spectrometry through desorption/ionization of multiple substances or composites on solid support WO2005080960A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-046881 2004-02-23
JP2004046881A JP4113139B2 (en) 2004-02-23 2004-02-23 Solid support and method for mass spectrometry by desorption / ionization of a plurality of substances or complexes on the solid support

Publications (1)

Publication Number Publication Date
WO2005080960A1 true WO2005080960A1 (en) 2005-09-01

Family

ID=34879454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002927 WO2005080960A1 (en) 2004-02-23 2005-02-23 Solid support and method of mass spectrometry through desorption/ionization of multiple substances or composites on solid support

Country Status (2)

Country Link
JP (1) JP4113139B2 (en)
WO (1) WO2005080960A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079919A2 (en) * 2009-01-06 2010-07-15 한국생명공학연구원 Method for screening matrix metalloproteinase

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4543860B2 (en) * 2004-09-30 2010-09-15 株式会社島津製作所 Sample analysis method
JP2006292680A (en) * 2005-04-14 2006-10-26 Toyo Kohan Co Ltd Method of analyzing biomolecule interacting each other on solid support body, and solid support body therefor
JP4441653B2 (en) 2005-08-31 2010-03-31 シャープ株式会社 Automated two-dimensional electrophoresis apparatus and apparatus components
JP4846442B2 (en) * 2006-05-16 2011-12-28 株式会社バイオロジカ Sample plate for laser desorption ionization mass spectrometry

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000003240A1 (en) * 1998-07-10 2000-01-20 Cetek Corporation Method to detect and analyze tight-binding ligands in complex biological samples
JP2001013110A (en) * 1999-06-29 2001-01-19 Applied Bio Systems Japan Kk Carbonaceous supporting board for forming fine uniform crystal and application thereof
JP2002236108A (en) * 2001-02-09 2002-08-23 Japan Science & Technology Corp Method and device for isolating sample
WO2004019025A1 (en) * 2002-08-21 2004-03-04 Toyo Kohan Co., Ltd. Solid support and method of mass spectrometry of multiple substances or composites immobilized on the solid support through desorption/ionization

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000003240A1 (en) * 1998-07-10 2000-01-20 Cetek Corporation Method to detect and analyze tight-binding ligands in complex biological samples
JP2001013110A (en) * 1999-06-29 2001-01-19 Applied Bio Systems Japan Kk Carbonaceous supporting board for forming fine uniform crystal and application thereof
JP2002236108A (en) * 2001-02-09 2002-08-23 Japan Science & Technology Corp Method and device for isolating sample
WO2004019025A1 (en) * 2002-08-21 2004-03-04 Toyo Kohan Co., Ltd. Solid support and method of mass spectrometry of multiple substances or composites immobilized on the solid support through desorption/ionization

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BIENVENUT V.W. ET AL: "Toward a Clinical Molecular Scanner for Proteome Research: Parallel Protein Chemical Processing before and during Western Blot.", ANALYTICAL CHEMISTRY., vol. 71, no. 21, 1 November 1999 (1999-11-01), pages 4800 - 4807, XP002973873 *
DAN K. ET AL: "DLC Kiban o Mochiita Protein Chip ni yoru Tanpakushitsu-Tanpakushitsu Sogo Sayo no Bunseki.", 2003, pages 60, XP002991279 *
OBA M. ET AL: "Idenshi Kaisekiyo DLC Slice no Kaihatsu.", vol. 33, 2002, pages 65 - 74, XP002991280 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079919A2 (en) * 2009-01-06 2010-07-15 한국생명공학연구원 Method for screening matrix metalloproteinase
WO2010079919A3 (en) * 2009-01-06 2010-10-21 한국생명공학연구원 Method for screening matrix metalloproteinase
KR101062828B1 (en) 2009-01-06 2011-09-07 한국생명공학연구원 Screening method of substrate degrading enzyme using multilayer substrate gel

Also Published As

Publication number Publication date
JP2005233908A (en) 2005-09-02
JP4113139B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
Loo Teaching editorial-bioanalytical mass spectrometry: many flavors to choose
US20070224688A1 (en) Peptide or protein-capturing surfaces for high throughput MALDI mass spectrometry
JP2008534987A (en) Improved method and apparatus for analyte enrichment and fractionation for chemical analysis including matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS)
WO2003071263A1 (en) Device for isoelectric focussing
JP3860130B2 (en) Method for mass spectrometry by desorption / ionization of a solid support and a plurality of substances or complexes immobilized on the solid support
Warren et al. On-probe solid-phase extraction/MALDI-MS using ion-pairing interactions for the cleanup of peptides and proteins
Dave et al. Preparation and analysis of proteins and peptides using MALDI TOF/TOF mass spectrometry
WO2005080960A1 (en) Solid support and method of mass spectrometry through desorption/ionization of multiple substances or composites on solid support
WO2007043393A1 (en) Support for analysis and use thereof
CA2501993C (en) Plate for mass spectrometry, process for preparing the same and use thereof
JP4644263B2 (en) Solid support and method for mass spectrometry by desorption / ionization of a plurality of substances or complexes on the solid support
JP2006292680A (en) Method of analyzing biomolecule interacting each other on solid support body, and solid support body therefor
US20030180957A1 (en) Target and method
US20030119063A1 (en) High accuracy protein identification
Xiong et al. A new method to improve sensitivity and resolution in matrix‐assisted laser desorption/ionization time of flight mass spectrometry
JP2009014433A (en) Method for analyzing modification of bio-molecule in solid support
JP2010185703A (en) Sample analysis method
JP4188229B2 (en) Method for analyzing a protein present in a cell or a substance interacting with the protein
JP2005503558A (en) Concentration of protein and / or peptide samples
US7550259B2 (en) Linear high-throughput proteomics
JP2006170857A (en) Method for mass spectrometry of biomolecule on solid support and solid support therefor
JP4543860B2 (en) Sample analysis method
KR101345674B1 (en) Hydrophilic/hydrophobic patterned biochips for on chip MALDI-TOF MS
JP4447458B2 (en) Mass spectrometry plate, preparation method thereof and use thereof
WO2002074927A2 (en) High accuracy protein identification

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase