WO2005080958A1 - Method of detecting double-stranded dna having specific sequence - Google Patents

Method of detecting double-stranded dna having specific sequence Download PDF

Info

Publication number
WO2005080958A1
WO2005080958A1 PCT/JP2005/002687 JP2005002687W WO2005080958A1 WO 2005080958 A1 WO2005080958 A1 WO 2005080958A1 JP 2005002687 W JP2005002687 W JP 2005002687W WO 2005080958 A1 WO2005080958 A1 WO 2005080958A1
Authority
WO
WIPO (PCT)
Prior art keywords
double
stranded dna
dna
electrophoresis
polymer gel
Prior art date
Application number
PCT/JP2005/002687
Other languages
French (fr)
Japanese (ja)
Inventor
Norihiko Minoura
Masayo Ogiso
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to JP2006510260A priority Critical patent/JP4423397B2/en
Publication of WO2005080958A1 publication Critical patent/WO2005080958A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis

Definitions

  • the present invention relates to a novel electrophoresis medium for base-specifically detecting double-stranded DNA, a method for producing the same, and a method for detecting double-stranded DNA using the electrophoresis medium.
  • Non-Patent Document 1 In order to detect a DNA base sequence, it is common to use a DNA sequencing method called a dideoxy method (see Non-Patent Document 1).
  • This method utilizes the principle that when repairing single-stranded DNA to double-stranded DNA, dideoxynucleotides are incorporated in the same manner as deoxynucleotides, blocking 3'-OH and stopping repair there. are doing.
  • the type of dideoxynucleotide triphosphate to be added a DNA chain terminated at the position where it appears is obtained and analyzed by sequencing gel. Since the autosequencer used for the analysis is expensive and requires skill in sample preparation, the dideoxy method is also used at the thorny experimental research level.
  • a DNA microarray (see Non-Patent Document 2) has been developed as a more convenient method.
  • This method is based on the hybridization of DNA as a basic principle. Specifically, a single-stranded DNA that is complementary to a base sequence to be detected is immobilized on a substrate. This method involves complementary binding to single-stranded DNA previously labeled with a fluorescent substance or isotope and detection of the sample DNA bound to the single-stranded DNA immobilized on the substrate by fluorescence or isotope. .
  • This DNA microarray can be used for clinical diagnosis because it can compare and analyze the base sequences of different sample DNAs.
  • Non-Patent Document 1 F. Sanger, S. Nicklen, A.R.Coulson, Proc. Natl. Acad. Sci. U.S.A., 74,
  • Non-Patent Document 2 Kenichi Yamashita, Shiori Takenaka, Makoto Takagi, Bunseki, 5, 227-232 (2002)] Problems the invention is trying to solve
  • the dideoxy method requires expensive equipment and requires techniques for sample preparation, so it is expensive and is not a routine technique.
  • the double-stranded DNA that is the sample must first be denatured to single-stranded DNA.
  • a mismatch between the DNA immobilized on the substrate and the sample DNA may occur.Therefore, it is necessary to optimize the hybridization conditions and reduce the mismatch. Takes time.
  • the above problem is a problem due to the use of single-stranded DNA. If double-stranded DNA can be used as it is for the sample and there is a means for detection, it is not necessary to denature the sample DNA or immobilize the single-stranded DNA on the substrate. Also, since no hybridization is performed, no mismatch between DNAs occurs. On the other hand, currently used double-stranded DNA analysis methods rely solely on electrophoresis utilizing differences in base length.If double-stranded DNAs with different base sequences have the same base length, However, the two cannot be distinguished, detected or separated. Therefore, there has been a demand for a method for base-specific detection and separation without denaturing double-stranded DNA into single-stranded DNA.
  • the inventors of the present invention have conducted intensive studies to obtain a method for base-specific detection of double-stranded DNA as double-stranded DNA, and as a result, recognized and captured double-stranded DNA having a specific base sequence.
  • double-stranded DNA can be base-specifically identified, detected, and further separated. And completed the present invention. That is, the present invention is as shown below.
  • a double-stranded DNA molecule is formed of a polymer gel having pores imprinted as a triangle and having a substituent that recognizes the base pair of the double-stranded DNA in the pores.
  • a medium for electrophoresis characterized by (2) The electrophoretic medium according to claim 1, wherein the substituent that recognizes a base pair of the double-stranded DNA has the following chemical structure.
  • a method for producing an electrophoresis medium for identifying double-stranded DNA comprising the following steps (a) to (c).
  • step (c) removing double-stranded DNA from the formed polymer gel to form a polymer gel on which the double-stranded DNA molecules used in step (a) are imprinted;
  • the double-stranded DNA-containing sample is dropped on the electrophoresis medium according to any one of claims 13 to 13, and electrophoresed, and imprinted in a polymer gel of the electrophoresis medium.
  • the same double-stranded DNA as the imprinted one in the sample was used as an index, with the index of shortening the migration distance caused by the double-stranded DNA in the sample being captured in the pores corresponding to the double-stranded DNA molecule.
  • a method for detecting and / or separating double-stranded DNA which comprises detecting.
  • the invention's effect uses a polymer gel on which double-stranded DNA molecules are imprinted as a medium for electrophoresis to detect and / or separate double-stranded DNA in a sample in a base-specific manner.
  • This method does not require expensive equipment unlike the conventional dideoxy method, does not require special techniques for sample preparation, and has been a problem in DNA detection using microarrays.
  • the purpose is not to perform laborious operations such as denaturation of double-stranded DNA into single-stranded DNA, immobilization of single-stranded DNA to a substrate, no mismatching, and setting of hybridization conditions. This makes it possible to easily and quickly detect and / or separate DNA having a base sequence of: Brief Description of Drawings
  • FIG. 1 is a schematic view showing an outline of a process for producing an imprinted polymer gel of the present invention.
  • FIG. 2 is a schematic diagram showing an outline of a method for detecting double-stranded DNA in a test sample of the present invention.
  • Figure 3 shows the correlation between the migration distance of the standard sample for electrophoresis in imprinted gel media and polyacrylamide gel media, which was used to detect DNA with the same base sequence as type I molecule in the DNA mixed sample. It is a graph.
  • the method for detecting and / or separating double-stranded DNA having a specific sequence comprises the steps of preparing a polymer material having a molecule-capturing ability, and using the prepared polymer material as an electrophoresis medium. And performing DNA electrophoresis to detect DNA.
  • the molecular imprinting method is a method for obtaining a polymer (host polymer) having vacancies formed by using a guest molecule as a ⁇ type, and is roughly classified into a guest molecule and a functional monomer non-covalently bonded to the guest molecule. And then subjecting the monomer forming the host polymer to a polymerization reaction, followed by removing the guest molecule, and performing a polymerization reaction between the functional monomer covalently bonded to the guest molecule and the monomer forming the host polymer.
  • the covalent bond between the guest molecule and the functional monomer is cleaved to remove the guest molecule.
  • the force S that can use the above two methods, the former method is substantially preferred.
  • a double-stranded DNA molecule for detection or separation is used as it is without denaturing as a guest molecule,
  • a functional group that recognizes a base pair of the double-stranded DNA as a functional monomer has a substituent that is non-covalently bonded to the base pair, and is capable of polymerizing with a monomer that forms a host polymer. Is used.
  • Examples of the substituent that recognizes the base pair of the double-stranded DNA and binds non-covalently to the base pair include the following substituents.
  • the monomer for forming the host polymer may be any monomer that can form a hydrophilic gel that can be used as a medium for electrophoresis.
  • the functional group that forms the host polymer in the functional monomer is a functional group that can be copolymerized with atalinoleamide, for example, a butyl group, an aryl group, an atalyloyl group, a (meth) atalyloyloxy group, Butadienyl group, acrylamide group, cyanoacryloyloxy group and the like.
  • a functional monomer compound are represented by the following general formula.
  • X is a group copolymerizable with acrylamide
  • Y represents CH or N.
  • a double-stranded DNA to be detected is mixed with the above functional monomer to obtain a self-assembly, and the self-assembly is obtained.
  • the functional monomer portion is subjected to a polymerization reaction with the monomer forming the polymer gel, and then the double-stranded DNA is removed from the polymerization reaction product.
  • the polymer gel has ⁇ -shaped holes corresponding to the double-stranded DNA in the structure thereof, and the surface of the holes has a hole of the double-stranded DNA derived from the functional monomer. ⁇ There is a substituent that recognizes a base pair and binds non-covalently to the base pair.
  • the electrophoresis medium composed of this polymer gel is used for detecting and separating or separating double-stranded DNA having a target base sequence from a DNA sample.
  • a sample containing the double-stranded DNA is dropped on the cathode side of the electrophoresis medium, and electrophoresis is performed.
  • the double-stranded DNA in the sample moves to the anode side, but when the double-stranded DNA having the target base sequence is present in the sample, the double-stranded DNA is a polymer constituting the electrophoresis medium.
  • electrophoresis As a result of being trapped in the ⁇ -shaped holes corresponding to the shape of the double-stranded DNA molecule imprinted in the gel and hindering migration, electrophoresis The distance becomes shorter. Therefore, by detecting this electrophoresis distance, it is possible to detect the presence or absence of double-stranded DNA having the target base sequence in the sample without denaturing it to single-stranded DNA, and to shorten this electrophoresis distance. By collecting the obtained double-stranded DNA from the electrophoresis medium, a double-stranded DNA having a target base sequence can be isolated from the sample.
  • the target double-stranded DNA can be distinguished from other double-stranded DNA in a base sequence-specific manner. The reason is as follows.
  • a (T) represents the base pair ⁇ ⁇ ⁇ in the double-stranded DNA
  • G (C) represents the same base pair G ′ C.
  • a functional monomer The above-mentioned polymer gel is prepared using a monomer that recognizes the base pair ⁇ . In this case, on the surface of the pores of the polymer gel imprinted with the molecular shape of the double-stranded DNA in the polymer gel as ⁇ , the position corresponding to the position of ⁇ A substituent that recognizes ⁇ will be placed.
  • a double-stranded DNA having the above sequence is present in the test sample, the position of the base pair ⁇ of the double-stranded DNA is in the ⁇ -shaped hole in the polymer gel. It matches the position of the substituent that recognizes ⁇ ⁇ ⁇ , and is firmly captured by self-assembly.
  • a double-stranded DNA having a base sequence of A (T) -G (C) -G (C) -A (T) -G (C) -G (C) is formed.
  • the present invention provides a double-stranded DNA specifically having a base sequence by providing a substituent for identifying a specific base pair on the inner surface of a pore in a polymer gel, which is not limited only to the molecular shape of double-stranded DNA. It distinguishes strand DNA, and is based on a completely new finding that discrimination can be carried out simply and easily, especially using the migration distance by electrophoresis as an index. It is.
  • FIGS. 1 and 2 2-vinyl-4,6-diamino-1,3,3 as a functional monomer. This will be described more specifically by taking, as an example, the case where acrylamide is used as a monomer for forming a polymer gel using 5-triazine (VDAT).
  • VDAT 5-triazine
  • the present invention provides (1) a step of preparing a polymer gel having a molecule-capturing ability, and (2) electrophoresis using the prepared polymer gel to perform double-stranded formation in a test sample. It consists of detecting and Z or separating the DNA.
  • a polymer gel having a double-stranded DNA recognition site having a sequence to be detected is synthesized.
  • a double-stranded DNA (type II double-stranded DNA) having the same sequence as the target molecule and a functional monomer that specifically interacts with the A and base pairs of type II double-stranded DNA
  • Step of preparing a self-assembly with bullet-4,6-diamino-1,3,5-triazine (VDAT) first step
  • electrophoresis gel for electrophoresis between the self-assembly and monomer of polymer gel raw material A step of forming a polymer gel containing type II double-stranded DNA and VDAT by polymerization in a polymerization vessel (second step); removing type II double-stranded DNA from the polymer gel; It is subdivided into a step (third step) for creating a recognition site for the target double-stranded DNA (see Fig.
  • the first step an operation of mixing type I double-stranded DNA and VDAT and self-assembling VDAT to the base pair of type II double-stranded DNA is performed (Fig. 1, Self-assembly).
  • the type II double-stranded DNA used in this step has the type II of the recognition site created in the polymer gel and has the same sequence as the double-stranded DNA for the purpose of detection and separation.
  • As a solution for dissolving type II double-stranded DNA and VDAT water such as distilled water, purified water, ultrapure water, etc., as well as a pH buffer comprising various salt solutions, Tris-HCl, etc. are used.
  • the mixing ratio of type II double-stranded DNA and VDAT differs depending on the base sequence of the DNA used.
  • the molar ratio of ⁇ ⁇ ⁇ base pairs: VDAT in the DNA is in the range of 20: 1 1: 1. More preferably, the molar ratio of A ⁇ ⁇ base pair: VDAT is in the range of 10: 1 to 1: 1. If the molar ratio of ⁇ ⁇ ⁇ base pairs to VDAT is greater than 20: 1, the interaction between the VDAT and the recognition site created in the electrophoresis gel in the subsequent operation will increase. Since the number of action points is reduced, the recognition effect is reduced.
  • the self-assembled solution of the type II double-stranded DNA prepared in the first step and VDAT, acrylamide as a raw material monomer for a polymer gel, and N, ⁇ '-methylenebisatarylamide as a cross-linking agent are used.
  • Prepare a mixed solution for polymerization fill the electrophoresis gel polymerization vessel for electrophoresis, and perform polymerization (indicated as polymerization reaction in Fig. 1).
  • the concentration of the self-assembly solution in the solution for polymerization is preferably 15 v / v% or more and 30 v / v% or less.
  • it is 20v / v% or more and 30v / v% or less. If it is less than 15 ⁇ / ⁇ %, the number of recognition sites in the generated polymer gel will decrease, and a sufficient recognition effect cannot be obtained. On the other hand, if it exceeds 30v / v%, the polymerization product becomes brittle.
  • a mixture of atalinoleamide and ⁇ , ⁇ '-methylenebisacrylamide (weight ratio of acrylamide: ⁇ , ⁇ '-methylenebisacrylamide 19: 1) is more than 3.5 ⁇ / ⁇ % in the solution for polymerization.
  • Mix as follows. The mixing amount is appropriately selected depending on the molecular length of the target double-stranded DNA.
  • the self-assembled solution was mixed with acrylamide, which had previously expelled oxygen in the solution under reduced pressure, and a mixed solution of ⁇ , ⁇ methylenebisacrylamide to prepare a polymerization solution.
  • Aqueous ammonium persulfate solution and polymerization accelerators ⁇ , ⁇ , ⁇ ', ⁇ tetramethylenediamine are added, and polymerized in a electrophoresis gel polymerization vessel for electrophoresis to obtain a polymer gel.
  • ⁇ -type double-stranded DNA is removed from the polymer gel obtained in the second step, and a desired DNA molecule shape ⁇ -shaped hole (double-stranded DNA (Recognition site).
  • the polymer gel obtained in the second step is placed in an electrophoresis apparatus, and an appropriate buffer such as a tris-borate buffer, a tris-acetate buffer, or a tris-phosphate buffer is used.
  • an appropriate buffer such as a tris-borate buffer, a tris-acetate buffer, or a tris-phosphate buffer is used.
  • imprinted polymer Get a gel In addition, all the steps so far are carried out in the same manner without adding double-stranded type II DNA to obtain a non-imprinted polymer gel.
  • electrophoresis is performed using the imprinted polymer gel as a medium with a test sample solution, and the separated two Visualize the single-stranded DNA by staining.
  • a conventional method of DNA electrophoresis is applied, but the above-described imprinted polymer gel is used instead of the conventional electrophoretic gel.
  • the DNA separated in the imprinted polymer gel is stained with ethidium bromide to visualize the migration band of DNA, and then the DNA that has been captured by the recognition site of the polymer gel and has migrated shorter is detected. (See Figure 2).
  • a non-imprinted polymer gel on which the double-stranded DNA to be detected is not imprinted (the polyacrylamide conventionally used for separating double-stranded DNA due to a difference in molecular length) is used.
  • For each polymer gel apply a double-stranded DNA of known molecular length (A and B in Fig. 2 on the left) and a test sample (A and B in Fig. 2 on the right) from the top of each polymer gel. Perform electrophoresis.
  • the migration distance of the detected migration band was measured (corresponding to a-f in the figure), and the migration distance of double-stranded DNA of known molecular length was set to 1.00. Calculate the relative movement distance of the test sample (b / a, c / a, e / d, f / d in Fig. 2).
  • a sample in which two or more double-stranded DNAs of known molecular lengths are mixed is prepared by using the above-described double-stranded DNA sample of known molecular length. After measuring the migration distance of the migration band using the same method as above, apply it to each polymer gel. There is a method to create a calibration curve of migration distance and molecular length. Using this calibration curve, the molecular length of the test sample for each polymer gel is determined.
  • the molecular length of the double-stranded DNA in the test sample determined from the calibration curve of the imprinted polymer gel is larger than the molecular length of the double-stranded DNA in the test sample determined from the calibration curve of the non-imprinted polymer gel These correspond to the double-stranded DNA to be detected. Furthermore, the target double-stranded DNA can be isolated and analyzed by collecting the stained electrophoretic band.
  • the electrophoresis method of the present invention is based on the difference in the ability of a polymer gel on which double-stranded DNA is imprinted to capture double-stranded DNA in addition to the separation using the difference in migration distance depending on the molecular length.
  • the difference of the migration distance is used. Therefore, the affinity of the imprinted double-stranded DNA for ⁇ -shaped holes differs depending on the similarity of the base sequences of various double-stranded DNAs. Therefore, according to the electrophoresis method of the present invention, the base sequence can be specifically identified even for double-stranded DNA of the same size, not only for detection and separation of the target double-stranded DNA, and these can be used. Can be separated, and analysis dependent on the base sequence can be performed, which cannot be performed by conventional electrophoresis.
  • a non-imprinted polymer gel on which double-stranded DNA is not imprinted and a polymer gel on which double-stranded DNA to be detected is imprinted are separated.
  • the double-stranded DNA to be detected and the polymer gel imprinted with the double-stranded DNA can be installed in parallel on the same electrophoresis apparatus and analyzed simultaneously using the same buffer solution. This is a method for detecting and separating single-stranded DNA.
  • Poly dA-poly dT (molecular length 1033 bp) was prepared as a type II double-stranded DNA.
  • poly dA-poly dT (0.1 A units), VDAT (0.8 ⁇ M) with 0.2 M NaCl in 50 mM HEPES buffer ( ⁇ 7.3)
  • acrylamide-BIS mixture 100 ml (acrylamide-BIS mixture). 0.44 ml of this acrylamide-BIS mixed solution was dissolved in Tris-borate buffer (0.045 M Tris, 0.045 M boric acid, 0.00125 MEDTA, pH 8.3) to make a total volume of 4 ml. After degassing the solution under reduced pressure, 1 ml of the self-assembled liquid was mixed, 7.5 ⁇ l of a 10 w / v% ammonium persulfate aqueous solution, and ⁇ -tetramethylethylenediamine (TEMED) 2.4 a 1 were further mixed. did.
  • Tris-borate buffer 0.045 M Tris, 0.045 M boric acid, 0.00125 MEDTA, pH 8.3
  • TEMED ⁇ -tetramethylethylenediamine
  • the polymerized imprinted polymer gel was set on the electrophoresis apparatus, and Tris-borate buffer (0.089 M Tris, 0.089 M boric acid, 0.0025 M EDTA, pH 8.3) was applied to the cathode side and the cathode side.
  • Tris-borate buffer 0.089 M Tris, 0.089 M boric acid, 0.0025 M EDTA, pH 8.3 was applied to the cathode side and the cathode side.
  • the solution was filled in a buffer solution tank, and a current of 5 mA was supplied for about 3 hours at a constant current to remove double-stranded ⁇ -molecule DNA.
  • electrophoresis sample DNA a size standard DNA (molecular length of 100 bp) and poly dA-poly dT (the same as double-stranded DNA of type III, 1033 bp) were prepared.
  • sample buffer 50 w / v% glycerin, 10 mM EDTA, 0.05 w / v% bromophenol blue
  • i 1 and 14 ⁇ l of MilliQ water ⁇ l of the mixture.
  • MilliQ water a size standard DNA (molecular length of 100 bp) and poly dA-poly dT (the same as double-stranded DNA of type III, 1033 bp) were prepared.
  • sample buffer 50 w / v% glycerin, 10 mM EDTA, 0.05 w / v% bromophenol blue
  • Example 2 The same operation as in Example 1 was performed, except that in Example 1-2, a 50 mM HEPES buffer solution (pH 7.3) containing 0.2 M NaCl was used instead of 1 ml of the self-assembled aggregate solution. (Example 2)
  • the migration distance between the size standard DNA (molecular length 100 bp) and poly dA-poly dT (molecular length 1033 bp) obtained in Example 1 and Comparative Example 1 was measured. The results are shown as relative migration distances when the migration distance (cm) of the size standard DNA was set to 1.00 (Table 1).
  • Comparative Example 1 1.40 1.28 0.91
  • the relative migration distance between the size standard DNA of Comparative Example 1 and poly dA-poly dT was 0.91, whereas the relative migration distance was smaller when the imprinted polymer gel used in Example 1 was used. It was found that the distance was 0.81, which was smaller than Comparative Example 1. Therefore, it was proved that the imprinted polymer gel recognized the same DNA as the type I molecule and shortened its migration distance. By selecting electrophoretic bands with shorter electrophoresis distances, it is possible to detect double-stranded DNA having the same base sequence as the type I molecule.
  • a 560 bp fragment of phage DNA was detected in the same manner as in Example 13 except that a 560 bp fragment of phage DNA was used instead of poly dA-poly dT as type II double-stranded DNA.
  • Electrophoresis gel medium imprint gel
  • Electrophoresis experiment As standard sample for electrophoresis, size standard DNA (100bp-1000bp, 100bp Molecular Ruler, total DNA concentration 100 ⁇ g / ml) 8 / i1, sample buffer (50w / v ° / W lyserin, 10mM EDTA, 0.05w / v% Bromophenol blue) 4 / i 1 and 28 ⁇ l of MilliQ water were used as a DNA mixed sample to obtain 8 ⁇ l of 560 bp fragment of ⁇ phage DNA (1.0 A Units) and 700 bp fragment of ⁇ phage DNA (1.7 bp). A Units) 8 ⁇ ⁇ poly dA-poly dT (1.5 A
  • the migration distance of the electrophoresis standard sample obtained in each of the above electrophoresis experiments 1 and 2 was measured, and a correlation graph of the migration distance between the imprint gel medium and the polyacrylamide gel medium was created (FIG. 3).
  • the migration distance obtained from each DNA in the DNA mixed sample was plotted on this correlation graph, and the deviation from the correlation line was confirmed.
  • test sample contains the same base sequence DNA as the type II molecular DNA used when preparing the imprint gel, the migration distance becomes shorter due to the capturing effect of the recognition site in the imprint gel medium. The resulting plot will be shifted upward from the correlation line.
  • the plot obtained from the DNA is the standard sample for electrophoresis used when preparing the correlation graph. On the correlation line Will ride.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A double-stranded DNA-containing sample is electrophoresed by using a polymer gel, which has a pore having a template in the shape of a double-stranded DNA molecule imprinted thereon and further having a substituent recognizing a base pair of the double-stranded DNA in the pore, as an electrophoresis medium. Thus, the double-stranded DNA can be conveniently and quickly detected and/or separated in the double-stranded state as such.

Description

明 細 書  Specification
特異的配列をもつ二本鎖 DNAを検出する方法  Method for detecting double-stranded DNA with specific sequence
技術分野  Technical field
[0001] 本発明は、二本鎖 DNAを塩基特異的に検出するための新規な電気泳動用媒体、 その製造方法及び該電気泳動用媒体を用いた二本鎖 DNAの検出方法に関する。 背景技術  The present invention relates to a novel electrophoresis medium for base-specifically detecting double-stranded DNA, a method for producing the same, and a method for detecting double-stranded DNA using the electrophoresis medium. Background art
[0002] 特定の塩基配列をもつ DNAを、他の DNAと識別し、検出する技術は、病気の予 防や診断、創薬の研究等に応用が期待され、医療の分野で注目を浴びている。  [0002] The technology of discriminating and detecting DNA having a specific base sequence from other DNA is expected to be applied to disease prevention, diagnosis, drug discovery research, and the like, and is attracting attention in the medical field. I have.
DNA塩基配列を検出するには、ジデォキシ法(非特許文献 1参照)と呼ばれる DNA 配列決定法を用いるのが一般的である。この方法は、一本鎖 DNAを二本鎖へ修復 する際に、ジデォキシヌクレオチドがデォキシヌクレオチドと同じように取り込まれ、 3 '-OHをブロックしてそこで修復を止めるという原理を利用している。加えるジデォキシ ヌクレオチド三リン酸の種類に応じてそれぞれの出現する位置で終止した DNA鎖が 得られ、シークェンスゲルにかけて分析するという方法である。分析に使用するオート シークェンサ一は高価であり、試料の調製に技術を要するので、ジデォキシ法は、も つばら実験研究レベルで使用されている。より簡便に利用できる方法として、 DNAマ イクロアレイ (非特許文献 2参照)が開発されている。  In order to detect a DNA base sequence, it is common to use a DNA sequencing method called a dideoxy method (see Non-Patent Document 1). This method utilizes the principle that when repairing single-stranded DNA to double-stranded DNA, dideoxynucleotides are incorporated in the same manner as deoxynucleotides, blocking 3'-OH and stopping repair there. are doing. According to the type of dideoxynucleotide triphosphate to be added, a DNA chain terminated at the position where it appears is obtained and analyzed by sequencing gel. Since the autosequencer used for the analysis is expensive and requires skill in sample preparation, the dideoxy method is also used at the thorny experimental research level. A DNA microarray (see Non-Patent Document 2) has been developed as a more convenient method.
[0003] この方法は、 DNAのハイブリダィゼーシヨンを基本原理とするもので、具体的には、検 出目的の塩基配列と相補的に結合する一本鎖 DNAを基板上に固定し、あらかじめ 蛍光物質やアイソトープでラベル化した検体の一本鎖 DNAと相補的に結合させ、基 板上に固定化した一本鎖 DNAと結合した検体 DNAを、蛍光やアイソトープ等で検出 する方法である。この DNAマイクロアレイは、異なる検体 DNAの塩基配列を比較解析 できるので、臨床診断への応用が期待されている。 [0003] This method is based on the hybridization of DNA as a basic principle. Specifically, a single-stranded DNA that is complementary to a base sequence to be detected is immobilized on a substrate. This method involves complementary binding to single-stranded DNA previously labeled with a fluorescent substance or isotope and detection of the sample DNA bound to the single-stranded DNA immobilized on the substrate by fluorescence or isotope. . This DNA microarray can be used for clinical diagnosis because it can compare and analyze the base sequences of different sample DNAs.
非特許文献 1 : F.Sanger, S.Nicklen, A.R.Coulson, Proc. Natl. Acad. Sci. U.S.A., 74, Non-Patent Document 1: F. Sanger, S. Nicklen, A.R.Coulson, Proc. Natl. Acad. Sci. U.S.A., 74,
5463 (1977) 5463 (1977)
非特許文献 2 :山下健一、竹中繁織、高木誠、ぶんせき, 5, 227-232 (2002)] 発明の開示 発明が解決しょうとする課題 Non-Patent Document 2: Kenichi Yamashita, Shiori Takenaka, Makoto Takagi, Bunseki, 5, 227-232 (2002)] Problems the invention is trying to solve
[0004] ジデォキシ法は、上述のとおり高価な設備を必要とし、試料の調製に技術を要する ので、コストがかさみ、 日常的に利用できる技術ではない。また、 DNAマイクロアレイ を利用し特定の塩基配列の DNAの有無を検出するには、始めに検体である二本鎖 DNAを変性させて一本鎖にしなければならなレ、。また、 DNAのチップを作成するため 、検出目的の塩基配列と相補的に結合する一本鎖 DNAをあらかじめスライドガラスや シリコン等の基板に固定化させる必要がある。さらに、ハイブリダィゼーシヨンの過程 で、基板上に固定化した DNAと検体 DNAのミスマッチが生じることがあるので、ハイブ リダィゼーシヨン条件を適正化し、ミスマッチを減らさなければならないため、条件の 適正化に時間を要する。  [0004] As described above, the dideoxy method requires expensive equipment and requires techniques for sample preparation, so it is expensive and is not a routine technique. In addition, to detect the presence or absence of DNA of a specific base sequence using a DNA microarray, the double-stranded DNA that is the sample must first be denatured to single-stranded DNA. In addition, in order to prepare a DNA chip, it is necessary to previously immobilize a single-stranded DNA complementary to a base sequence to be detected on a substrate such as a slide glass or silicon. In addition, during the hybridization process, a mismatch between the DNA immobilized on the substrate and the sample DNA may occur.Therefore, it is necessary to optimize the hybridization conditions and reduce the mismatch. Takes time.
[0005] 上記の問題は、一本鎖 DNAを使用するがゆえの問題である。二本鎖 DNAをそのま ま検体に利用でき、検出する手段があれば、検体 DNAを変性させたり、一本鎖 DNA を基板に固定化する必要がなレ、。また、ハイブリダィゼーシヨンを行なわないので、 DNA間のミスマッチも起こらない。一方、現在使用されている二本鎖 DNAの分析方法 は、もっぱら塩基長の違いを利用した電気泳動法によるもので、塩基配列が異なる二 本鎖 DNA同士でも、塩基長が同じであるならば、両者を区別し、検出しあるいは分離 することができない。そのため、二本鎖 DNAを一本鎖に変性させることなぐ塩基特異 的に検出、分離する方法が求められていた。  [0005] The above problem is a problem due to the use of single-stranded DNA. If double-stranded DNA can be used as it is for the sample and there is a means for detection, it is not necessary to denature the sample DNA or immobilize the single-stranded DNA on the substrate. Also, since no hybridization is performed, no mismatch between DNAs occurs. On the other hand, currently used double-stranded DNA analysis methods rely solely on electrophoresis utilizing differences in base length.If double-stranded DNAs with different base sequences have the same base length, However, the two cannot be distinguished, detected or separated. Therefore, there has been a demand for a method for base-specific detection and separation without denaturing double-stranded DNA into single-stranded DNA.
課題を解決するための手段  Means for solving the problem
[0006] 本発明者は、二本鎖 DNAを二本鎖のまま塩基特異的に検出する方法を得るべく 鋭意研究を進めた結果、特定の塩基配列を有する二本鎖 DNAを認識して捕捉する 高分子材料を分子インプリント法で作成し、これを電気泳動媒体に使用することによ り、二本鎖 DNAを塩基特異的に識別して、検出し、さらに分離することが可能であるこ とを見出し、本発明を完成させるに至ったものである。すなわち、本発明は、以下に 示されるとおりのものである。  [0006] The inventors of the present invention have conducted intensive studies to obtain a method for base-specific detection of double-stranded DNA as double-stranded DNA, and as a result, recognized and captured double-stranded DNA having a specific base sequence. By creating a polymer material by molecular imprinting and using it as an electrophoresis medium, double-stranded DNA can be base-specifically identified, detected, and further separated. And completed the present invention. That is, the present invention is as shown below.
[0007] (1) 二本鎖 DNA分子形状が铸型としてインプリントされた空孔を有するとともに、該 空孔中に二本鎖 DNAの塩基対を認識する置換基を有するポリマーゲルからなること を特徴とする、電気泳動用媒体 (2) 上記二本鎖 DNAの塩基対を認識する置換基が、以下の化学構造を有するも のであることを特徴とする、請求項 1に記載の電気泳動用媒体 [0007] (1) A double-stranded DNA molecule is formed of a polymer gel having pores imprinted as a triangle and having a substituent that recognizes the base pair of the double-stranded DNA in the pores. A medium for electrophoresis, characterized by (2) The electrophoretic medium according to claim 1, wherein the substituent that recognizes a base pair of the double-stranded DNA has the following chemical structure.
[化 1] [Chemical 1]
Figure imgf000005_0001
Figure imgf000005_0001
(但し、式中、 Yは、 CH又は Nを表す。) (However, in the formula, Y represents CH or N.)
(3) ポリマーゲルが、架橋されたポリアクリルアミドゲルである、請求項 1又は 2に記 載の電気泳動用媒体 (3) The electrophoretic medium according to claim 1 or 2, wherein the polymer gel is a crosslinked polyacrylamide gel.
(4) 以下の(a)—(c)の工程からなることを特徴とする、二本鎖 DNAを識別するた めの電気泳動用媒体の製造方法。  (4) A method for producing an electrophoresis medium for identifying double-stranded DNA, comprising the following steps (a) to (c).
(a)二本鎖 DNAと、二本鎖 DNAの塩基対を認識する置換基を有する機能性モノマ 一とを混合して、該ニ本鎖 DNAの塩基対に該機能性モノマーを自己集合させるェ 程、  (a) mixing a double-stranded DNA with a functional monomer having a substituent that recognizes the base pair of the double-stranded DNA, and allowing the functional monomer to self-assemble to the base pair of the double-stranded DNA The process
(b)得られた自己集合物とポリマーゲル形成モノマーを重合させる工程、  (b) a step of polymerizing the obtained self-assembled product and a polymer gel-forming monomer,
(c)形成されたポリマーゲルから、二本鎖 DNAを除去し、上記(a)の工程で用いた二 本鎖 DNAの分子がインプリントされたポリマーゲルを形成させる工程  (c) removing double-stranded DNA from the formed polymer gel to form a polymer gel on which the double-stranded DNA molecules used in step (a) are imprinted;
(5) 請求項 1一 3のいずれかに記載の電気泳動用媒体に、二本鎖 DNA含有試料 を滴下して電気泳動を行レ、、該電気泳動用媒体のポリマーゲル中にインプリントされ た二本鎖 DNA分子に対応する空孔に試料中の二本鎖 DNAが捕捉されることによる 泳動距離の短縮化を指標として、試料中のインプリントされたものと同じ二本鎖 DN A を検出することを特徴とする、二本鎖 DNAの検出及び/又は分離方法。  (5) The double-stranded DNA-containing sample is dropped on the electrophoresis medium according to any one of claims 13 to 13, and electrophoresed, and imprinted in a polymer gel of the electrophoresis medium. The same double-stranded DNA as the imprinted one in the sample was used as an index, with the index of shortening the migration distance caused by the double-stranded DNA in the sample being captured in the pores corresponding to the double-stranded DNA molecule. A method for detecting and / or separating double-stranded DNA, which comprises detecting.
発明の効果 [0008] 本発明は、二本鎖 DNA分子をインプリントしたポリマーゲルを電気泳動の媒体に 用いることで、試料中の二本鎖 DNAを塩基特異的に検出及び/又は分離するもの であり、この方法によれば、従来のジデォキシ法のように高価な設備を必要としない ほか、試料の調製に格別の技術を必要とせず、また、マイクロアレイを使用する DNA 検出において問題となっていた、検体二本鎖 DNAの一本鎖への変性、一本鎖 DNA の基板への固定化、ミスマッチを起こさなレ、ハイブリダィゼーシヨンの条件設定等、手 間の力かる操作を行うことなぐ 目的の塩基配列を持つ DNAを簡便、迅速に検出及 び/又は分離することが可能となるものである。 図面の簡単な説明 The invention's effect [0008] The present invention uses a polymer gel on which double-stranded DNA molecules are imprinted as a medium for electrophoresis to detect and / or separate double-stranded DNA in a sample in a base-specific manner. This method does not require expensive equipment unlike the conventional dideoxy method, does not require special techniques for sample preparation, and has been a problem in DNA detection using microarrays. The purpose is not to perform laborious operations such as denaturation of double-stranded DNA into single-stranded DNA, immobilization of single-stranded DNA to a substrate, no mismatching, and setting of hybridization conditions. This makes it possible to easily and quickly detect and / or separate DNA having a base sequence of: Brief Description of Drawings
[0009] [図 1]図 1は本発明のインプリントポリマーゲルの製造工程の概略を示す模式図であ る。  FIG. 1 is a schematic view showing an outline of a process for producing an imprinted polymer gel of the present invention.
[図 2]図 2は本発明の被験試料中の二本鎖 DNAの検出法の概略を示す模式図であ る。  FIG. 2 is a schematic diagram showing an outline of a method for detecting double-stranded DNA in a test sample of the present invention.
[図 3]図 3は DNA混合サンプル中の铸型分子と同じ塩基配列を持つ DNAを検出する ために用いた、インプリントゲル媒体とポリアクリルアミドゲル媒体における泳動用標 準サンプノレの泳動距離の相関グラフである。  [Figure 3] Figure 3 shows the correlation between the migration distance of the standard sample for electrophoresis in imprinted gel media and polyacrylamide gel media, which was used to detect DNA with the same base sequence as type I molecule in the DNA mixed sample. It is a graph.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 本発明の特異的配列をもつ二本鎖 DNAを検出及び/又は分離する方法は、分子 捕捉能を有する高分子材料を調製する工程と、調製した高分子材料を電気泳動用 媒体として用いて電気泳動を行い、 DNAを検出する工程とからなる。 [0010] The method for detecting and / or separating double-stranded DNA having a specific sequence according to the present invention comprises the steps of preparing a polymer material having a molecule-capturing ability, and using the prepared polymer material as an electrophoresis medium. And performing DNA electrophoresis to detect DNA.
分子捕捉能を有する高分子材料を調製する工程では、分子インプリンティングの技 術を用いる。分子インプリント法は、ゲスト分子を铸型として作成した空孔を有するポ リマー(ホストポリマー)を得る方法であり、大別すると、ゲスト分子と、該ゲスト分子と 非共有結合する機能性モノマーとを混合し、該ホストポリマーを形成するモノマーとを 重合反応させた後、ゲスト分子を除く方法と、ゲスト分子と共有結合させた機能性モノ マーと、該ホストポリマーを形成するモノマーとを重合反応させた後、ゲスト分子と機 能性モノマーの共有結合を切断し、ゲスト分子を除去する方法とがある。 本発明においては、上記 2つの方法を用いることができる力 S、実質的には前者の方 法が好ましい。本発明においてはゲスト分子として、検出あるいは分離目的の二本鎖 DNA分子を変性させることなくそのまま用い、 In the step of preparing a polymer material having a molecule capturing ability, a technique of molecular imprinting is used. The molecular imprinting method is a method for obtaining a polymer (host polymer) having vacancies formed by using a guest molecule as a 铸 type, and is roughly classified into a guest molecule and a functional monomer non-covalently bonded to the guest molecule. And then subjecting the monomer forming the host polymer to a polymerization reaction, followed by removing the guest molecule, and performing a polymerization reaction between the functional monomer covalently bonded to the guest molecule and the monomer forming the host polymer. After that, there is a method in which the covalent bond between the guest molecule and the functional monomer is cleaved to remove the guest molecule. In the present invention, the force S that can use the above two methods, the former method is substantially preferred. In the present invention, a double-stranded DNA molecule for detection or separation is used as it is without denaturing as a guest molecule,
また、機能性モノマーとして該ニ本鎖 DNAの塩基対を認識し、該塩基対と非共有結 合的に結合する置換基を有し、かつホストポリマーを形成するモノマーと重合可能な 官能基を有する化合物を用いる。 In addition, a functional group that recognizes a base pair of the double-stranded DNA as a functional monomer, has a substituent that is non-covalently bonded to the base pair, and is capable of polymerizing with a monomer that forms a host polymer. Is used.
上記二本鎖 DNAの塩基対を認識し、 該塩基対と非共有結合的に結合する置換基 としては、例えば以下の置換基が挙げられる。 Examples of the substituent that recognizes the base pair of the double-stranded DNA and binds non-covalently to the base pair include the following substituents.
[化 1] [Chemical 1]
H H H H
H/N丫 N丫  H / N 丫 N 丫
(但し、式中、 Yは、 CH又は Nを表す。) (However, in the formula, Y represents CH or N.)
また、ホストポリマーを形成するためのモノマーとしては、電気泳動用媒体として使用 できる親水性ゲルを形成しうるモノマーであれば良い。 Further, the monomer for forming the host polymer may be any monomer that can form a hydrophilic gel that can be used as a medium for electrophoresis.
したがって、例えば、ホストポリマーとして、ポリアクリルアミドゲルを形成する場合、 モノマーとしてはアクリルアミドを用レ、、 N, N'—メチレンビスアクリルアミド、 N, N,ージ ァリル酒石酸ジアミド、ビスアタリリルシステアミン等の架橋剤を使用してもよレ、。この 場合において、機能性モノマーにおけるホストポリマーを形成する官能基は、アタリノレ アミドと共重合可能な官能基であり、例えば、ビュル基、ァリル基、アタリロイル基、(メ タ)アタリロイルォキシ基、ブタジェニル基、アクリルアミド基、シァノアクリロイルォキシ 基等が挙げられる。このような機能性モノマー化合物の例は、以下の一般式に示され る。  Therefore, for example, when forming a polyacrylamide gel as a host polymer, use acrylamide as a monomer, N, N'-methylenebisacrylamide, N, N, diaryltartaric diamide, bisatarylylcysteamine, etc. A cross-linking agent may be used. In this case, the functional group that forms the host polymer in the functional monomer is a functional group that can be copolymerized with atalinoleamide, for example, a butyl group, an aryl group, an atalyloyl group, a (meth) atalyloyloxy group, Butadienyl group, acrylamide group, cyanoacryloyloxy group and the like. Examples of such a functional monomer compound are represented by the following general formula.
[化 2] [Chemical 2]
Figure imgf000008_0001
Figure imgf000008_0001
(但し、式中 Xは、アクリルアミドと共重合可能な基であり、 Yは、 CH又は Nを表す。(Wherein, X is a group copolymerizable with acrylamide, and Y represents CH or N.
) )
[0012] 上記 [化 1]の置換基は、二本鎖 DNA分子中のアデニン.チミン (Α·Τ)からなる塩 基対を認識し、該塩基対と水素結合により非共有結合的に結合するため、該置換基 を有する上記機能性モノマーは二本鎖 DNAと自己集合する。 [0012] The substituent of the above [Chemical formula 1] recognizes a base pair consisting of adenine and thymine (Α · Τ) in the double-stranded DNA molecule, and non-covalently bonds to the base pair by hydrogen bonding. Therefore, the functional monomer having the substituent self-assembles with the double-stranded DNA.
本発明において、二本鎖 DNA分子を検出するための電気泳動用媒体を得るには 、検出目的の二本鎖 DNAと上記機能性モノマーを混合し、 自己集合物を得、該自 己集合物の機能性モノマー部分と上記ポリマーゲルを形成するモノマーとを重合反 応させ、次いで、この重合反応物から、上記二本鎖 DNAを除去する。  In the present invention, in order to obtain an electrophoresis medium for detecting a double-stranded DNA molecule, a double-stranded DNA to be detected is mixed with the above functional monomer to obtain a self-assembly, and the self-assembly is obtained. The functional monomer portion is subjected to a polymerization reaction with the monomer forming the polymer gel, and then the double-stranded DNA is removed from the polymerization reaction product.
これにより、二本鎖 DNA分子形状力 Sインプリントされたポリマーゲルが得られる。該ポ リマーゲルは、その構造中に、上記二本鎖 DNAに対応する錡型としての空孔を有し 、該空孔表面には、上記機能性モノマーに由来する上記二本鎖 DNAの Α·Τ塩基対 を認識し、該塩基対と非共有結合的に結合する置換基が存在する。  Thereby, a double-stranded DNA molecular shape force S-imprinted polymer gel is obtained. The polymer gel has 錡 -shaped holes corresponding to the double-stranded DNA in the structure thereof, and the surface of the holes has a hole of the double-stranded DNA derived from the functional monomer.置換 There is a substituent that recognizes a base pair and binds non-covalently to the base pair.
[0013] このポリマーゲルからなる電気泳動用媒体は、 DNA試料中から目的の塩基配列を 持つ二本鎖 DNAを検出及び Ζ又は分離するために用いる。試料中の二本鎖 DNA を検出するには、上記二本鎖 DNAを含有する試料を、上記電気泳動用媒体の陰極 側に滴下して電気泳動を行う。試料中の二本鎖 DNAは陽極側に移動するが、上記 試料中に目的とする塩基配列の二本鎖 DNAが存在する場合には、該ニ本鎖 DNA は電気泳動用媒体を構成するポリマーゲル中にインプリントされた該ニ本鎖 DNA分 子形状に対応する铸型としての空孔に捕捉され、移動が妨げられる結果、電気泳動 距離が短くなる。したがって、この電気泳動距離を検出することにより、試料中の目的 とする塩基配列を持つ二本鎖 DNAを一本鎖に変性させることなくその存在の有無を 検出し、またこの泳動距離が短縮された二本鎖 DNAを電気泳動用媒体から採取す ることにより、試料から目的とする塩基配列を持つ二本鎖 DNAを単離することができ る。 [0013] The electrophoresis medium composed of this polymer gel is used for detecting and separating or separating double-stranded DNA having a target base sequence from a DNA sample. To detect double-stranded DNA in a sample, a sample containing the double-stranded DNA is dropped on the cathode side of the electrophoresis medium, and electrophoresis is performed. The double-stranded DNA in the sample moves to the anode side, but when the double-stranded DNA having the target base sequence is present in the sample, the double-stranded DNA is a polymer constituting the electrophoresis medium. As a result of being trapped in the 铸 -shaped holes corresponding to the shape of the double-stranded DNA molecule imprinted in the gel and hindering migration, electrophoresis The distance becomes shorter. Therefore, by detecting this electrophoresis distance, it is possible to detect the presence or absence of double-stranded DNA having the target base sequence in the sample without denaturing it to single-stranded DNA, and to shorten this electrophoresis distance. By collecting the obtained double-stranded DNA from the electrophoresis medium, a double-stranded DNA having a target base sequence can be isolated from the sample.
[0014] 本発明におレ、ては、 目的とする二本鎖 DNAと他の二本鎖 DNAとを塩基配列特異 的に識別できる。その理由は以下のとおりである。  In the present invention, the target double-stranded DNA can be distinguished from other double-stranded DNA in a base sequence-specific manner. The reason is as follows.
二本鎖 DNAの塩基対は Α·Τと C 'Gの 2とおりではある力 その並び方あるいは各 塩基対の含有比は様々である。例えば、二本鎖 DNAとして、 A (T)_G (C) _G (C)_ G (C)-G (C) -A (T)の塩基配列を有するある DNAを検出しょうとする場合 (なお、 A (T)は、二本鎖 DNA中の塩基対 Α·Τを表し、 G (C)は同塩基対 G' Cを表す。)、 上記二本鎖 DNAをもとに、機能性モノマーとして、塩基対 Α·Τを認識するモノマー を使用して上記ポリマーゲルを作製する。この場合、ポリマーゲル中に二本鎖 DNA の分子形状を铸型としてインプリントされたポリマーゲルの空孔表面には、前者の二 本鎖 DNAの Α·Τの位置に対応した位置に、 Α·Τを認識する置換基が配置されるこ とになる。  There are two types of base pairs in double-stranded DNA: Α · Τ and C'G. Their arrangement or the content ratio of each base pair varies. For example, when detecting a DNA having a base sequence of A (T) _G (C) _G (C) _G (C) -G (C) -A (T) as double-stranded DNA (note that , A (T) represents the base pair Α · Τ in the double-stranded DNA, and G (C) represents the same base pair G ′ C.), based on the double-stranded DNA, a functional monomer The above-mentioned polymer gel is prepared using a monomer that recognizes the base pair {Α}. In this case, on the surface of the pores of the polymer gel imprinted with the molecular shape of the double-stranded DNA in the polymer gel as 铸, the position corresponding to the position of 者· A substituent that recognizes Τ will be placed.
[0015] したがって、被験試料中に上述の配列を持つ二本鎖 DNAが存在すれば、その二本 鎖 DNAの塩基対 Α·Τの位置は、上記ポリマーゲル中の铸型空孔内にある Α·Τを認 識する置換基の位置に合致し、 自己集合により強固に捕捉される。これに対して、試 料中に、例えば A (T)一 G (C) -G (C)一 A (T)一 G (C) -G (C)の塩基配列を有する二 本鎖 DNAが存在していたとしても、空孔中の上記置換基の位置とこの二本鎖 DNA 中の Α·Τの位置とは一部合致したとしても、完全には一致しなレ、。この差異は、ポリ マーゲルの捕捉能の差となって現れ、電気泳動による泳動距離に反映する。また、こ のようなポリマーゲルの捕捉能は、二本鎖 DNAの塩基対 Α·Τの含有比によっても異 なる。したがって、本発明は、 2本鎖 DNAの分子形状による識別のみではなぐポリ マーゲル中の空孔内表面に特定の塩基対を識別する置換基を設けたことにより、塩 基配列特異的に二本鎖 DNAを識別するものであって、特に該識別を電気泳動によ る泳動距離を指標として、簡便かつ容易に行い得るという全く新しい知見に基づくも のである。 Therefore, if a double-stranded DNA having the above sequence is present in the test sample, the position of the base pair {Α} of the double-stranded DNA is in the 内 -shaped hole in the polymer gel. It matches the position of the substituent that recognizes Α · Τ, and is firmly captured by self-assembly. On the other hand, in the sample, for example, a double-stranded DNA having a base sequence of A (T) -G (C) -G (C) -A (T) -G (C) -G (C) is formed. Even if it is present, the position of the substituent in the pore and the position of Α · Τ in the double-stranded DNA do not completely match, even if they partially match. This difference appears as a difference in the capturing ability of the polymer gel, and is reflected in the migration distance by electrophoresis. The capturing ability of such a polymer gel also varies depending on the content ratio of base pairs of double-stranded DNA. Accordingly, the present invention provides a double-stranded DNA specifically having a base sequence by providing a substituent for identifying a specific base pair on the inner surface of a pore in a polymer gel, which is not limited only to the molecular shape of double-stranded DNA. It distinguishes strand DNA, and is based on a completely new finding that discrimination can be carried out simply and easily, especially using the migration distance by electrophoresis as an index. It is.
[0016] さらに、本発明の二本鎖 DNAを検出及び又は分離する方法について、第 1図及び 第 2図を参照して、機能性モノマーとして 2—ビニルー 4, 6—ジァミノ— 1 , 3, 5—トリアジ ン (VDAT)を、ポリマーゲル形成用モノマーとして、アクリルアミドを使用する場合を例 にとり、さらに具体的に説明する。  Further, with respect to the method for detecting and separating the double-stranded DNA of the present invention, referring to FIGS. 1 and 2, 2-vinyl-4,6-diamino-1,3,3 as a functional monomer. This will be described more specifically by taking, as an example, the case where acrylamide is used as a monomer for forming a polymer gel using 5-triazine (VDAT).
[0017] 本発明は、上記したように、(1)分子捕捉能を有するポリマーゲルを調製する工程 と、(2)調製したポリマーゲルを用いて、電気泳動を行い被験試料中の二本鎖 DNA を検出及び Zまたは分離する工程からなる。  [0017] As described above, the present invention provides (1) a step of preparing a polymer gel having a molecule-capturing ability, and (2) electrophoresis using the prepared polymer gel to perform double-stranded formation in a test sample. It consists of detecting and Z or separating the DNA.
[0018] (1) 本発明においては、まず、検出目的の配列を持つ二本鎖 DNAの認識部位を有 するポリマーゲルを合成する。この工程は、 目的分子と同一配列を持つ二本鎖 DNA ( 铸型ニ本鎖 DNA)と、錡型ニ本鎖 DNAの A ·Τ塩基対に特異的に相互作用する機能 性モノマー、 2—ビュル— 4, 6—ジァミノ— 1, 3, 5—トリァジン (VDAT)との自己集合体を 作成する工程(第 1工程)、該自己集合体とポリマーゲル原料のモノマーを電気泳動 用の泳動ゲル重合容器内で、重合させて铸型ニ本鎖 DNAと VDATを含有するポリマ 一ゲルを形成する工程 (第 2工程)、該ポリマーゲルから铸型ニ本鎖 DNAを除去し、 ポリマーゲル中に目的二本鎖 DNAの認識部位を作成する工程 (第 3工程)に細分化 される(第 1図参照)。  (1) In the present invention, first, a polymer gel having a double-stranded DNA recognition site having a sequence to be detected is synthesized. In this step, a double-stranded DNA (type II double-stranded DNA) having the same sequence as the target molecule and a functional monomer that specifically interacts with the A and base pairs of type II double-stranded DNA, Step of preparing a self-assembly with bullet-4,6-diamino-1,3,5-triazine (VDAT) (first step), electrophoresis gel for electrophoresis between the self-assembly and monomer of polymer gel raw material A step of forming a polymer gel containing type II double-stranded DNA and VDAT by polymerization in a polymerization vessel (second step); removing type II double-stranded DNA from the polymer gel; It is subdivided into a step (third step) for creating a recognition site for the target double-stranded DNA (see Fig. 1).
[0019] 第 1の工程では、铸型ニ本鎖 DNAと VDATとを混合し、铸型ニ本鎖 DNAの Α·Τ塩 基対に VDATを自己集合させる操作を行う(第 1図中、 自己集合と表示)。この工程で 用いられる铸型ニ本鎖 DNAは、ポリマーゲル中に作成する認識部位の铸型となり、 かつ検出、分離目的の二本鎖 DNAと同一の配列のものが用いられる。铸型ニ本鎖 DNAや VDATを溶解する溶液としては、蒸留水、精製水、超純水等の水の他、各種 塩溶液、トリス塩酸等から成る pH緩衝液が用いられる。これらの溶解液は、錡型ニ本 鎖 DNAの変性を起こさない濃度、 pHでなければならなレ、。錡型ニ本鎖 DNAと VDAT の混合比は、用いる DNAの塩基配列より異なる。好ましくは、 DNA中の Α·Τ塩基対: VDATのモル比 20 : 1 1: 1の範囲である。より好ましくは、 A ·Τ塩基対: VDATのモル 比 10 : 1— 1: 1の範囲である。 Α·Τ塩基対と VDATのモル比で 20 : 1よりも Α·Τ塩基対 のモル比が多いと、後の操作で泳動ゲル中に作成される認識部位の VDATとの相互 作用点が少なくなるため、認識効果が低下する。 [0019] In the first step, an operation of mixing type I double-stranded DNA and VDAT and self-assembling VDAT to the base pair of type II double-stranded DNA is performed (Fig. 1, Self-assembly). The type II double-stranded DNA used in this step has the type II of the recognition site created in the polymer gel and has the same sequence as the double-stranded DNA for the purpose of detection and separation. As a solution for dissolving type II double-stranded DNA and VDAT, water such as distilled water, purified water, ultrapure water, etc., as well as a pH buffer comprising various salt solutions, Tris-HCl, etc. are used. These lysates must be at a concentration and pH that does not cause denaturation of type II double-stranded DNA. The mixing ratio of type II double-stranded DNA and VDAT differs depending on the base sequence of the DNA used. Preferably, the molar ratio of Α · Τ base pairs: VDAT in the DNA is in the range of 20: 1 1: 1. More preferably, the molar ratio of A · Τ base pair: VDAT is in the range of 10: 1 to 1: 1. If the molar ratio of Α · Τ base pairs to VDAT is greater than 20: 1, the interaction between the VDAT and the recognition site created in the electrophoresis gel in the subsequent operation will increase. Since the number of action points is reduced, the recognition effect is reduced.
[0020] また、 Α·Τ塩基対と VDATのモル比で 1: 1よりも VDATのモル比が多いと、铸型ニ本 鎖 DNAと自己集合できない過剰量の VDATが生じる。過剰量の VDATは、第 2工程で の高分子原料モノマーの重合時、泳動ゲル中の認識部位以外の場所に不規則に固 定化され、非特異的吸着を引き起こす原因となる。铸型ニ本鎖 DNAと VDATは混合 後、たとえば室温あるいは冷蔵庫で 2時間以上放置することにより、錡型ニ本鎖 DN Aの A ·Τ塩基対に VDATが結合した自己集合体が得られる。  [0020] When the molar ratio of Α · Τ base pairs to VDAT is larger than 1: 1, an excessive amount of VDAT that cannot self-assemble with 铸 -type double-stranded DNA is generated. An excessive amount of VDAT is irregularly immobilized at a position other than the recognition site in the electrophoresis gel during the polymerization of the polymer raw material monomer in the second step, and causes nonspecific adsorption. After mixing the type II double-stranded DNA and VDAT, the mixture is allowed to stand at room temperature or in a refrigerator for 2 hours or more, for example, to obtain a self-assembly in which VDAT is bound to the A · A base pair of the type II double-stranded DNA.
[0021] 第 2工程では、第 1工程で作成した铸型ニ本鎖 DNAと VDATの自己集合体溶液、 ポリマーゲルの原料モノマーであるアクリルアミド、架橋剤の N, Ν'-メチレンビスアタリ ルアミドを混合した重合用溶液を作成し、電気泳動用の泳動ゲル重合容器中に充填 して重合させる操作を行う(第 1図中、重合反応と表示)。重合用溶液中の自己集合 体溶液の濃度は、 15ν/ν%以上 30ν/ν%以下が好ましい。より好ましくは、 20ν/ν%以上 30ν/ν%以下である。 15ν/ν%より少ないと、生成したポリマーゲル中の認識部位の数が 少なくなり、充分な認識効果が得られない。また、 30ν/ν%より多いと重合生成物が脆 弱となる。  [0021] In the second step, the self-assembled solution of the type II double-stranded DNA prepared in the first step and VDAT, acrylamide as a raw material monomer for a polymer gel, and N, Ν'-methylenebisatarylamide as a cross-linking agent are used. Prepare a mixed solution for polymerization, fill the electrophoresis gel polymerization vessel for electrophoresis, and perform polymerization (indicated as polymerization reaction in Fig. 1). The concentration of the self-assembly solution in the solution for polymerization is preferably 15 v / v% or more and 30 v / v% or less. More preferably, it is 20v / v% or more and 30v / v% or less. If it is less than 15ν / ν%, the number of recognition sites in the generated polymer gel will decrease, and a sufficient recognition effect cannot be obtained. On the other hand, if it exceeds 30v / v%, the polymerization product becomes brittle.
[0022] アタリノレアミドと Ν, Ν'-メチレンビスアクリルアミド混合液(アクリルアミド: Ν,Ν'-メチレン ビスアクリルアミドの重量比 19:1)は、重合用溶液中に 3.5ν/ν%以上となるよう混合する 。混合量は、 目的の二本鎖 DNAの分子長により適宜選択する。 自己集合体溶液に 、あら力じめ減圧環境下で溶液中の酸素を追い出したアクリルアミドと Ν, Ν メチレン ビスアクリルアミド混合液を混合し、重合用溶液を作成した後、重合開始剤の 10w/v% 過硫酸アンモニゥム水溶液および重合促進剤の Ν,Ν,Ν', Ν テトラメチレンジァミン を加え、電気泳動用の泳動ゲル重合容器中で重合させてポリマーゲルを得る。  [0022] A mixture of atalinoleamide and Ν, Ν'-methylenebisacrylamide (weight ratio of acrylamide: Ν, Ν'-methylenebisacrylamide 19: 1) is more than 3.5ν / ν% in the solution for polymerization. Mix as follows. The mixing amount is appropriately selected depending on the molecular length of the target double-stranded DNA. The self-assembled solution was mixed with acrylamide, which had previously expelled oxygen in the solution under reduced pressure, and a mixed solution of Ν, Νmethylenebisacrylamide to prepare a polymerization solution. % Aqueous ammonium persulfate solution and polymerization accelerators Ν, Ν, Ν ', Ν tetramethylenediamine are added, and polymerized in a electrophoresis gel polymerization vessel for electrophoresis to obtain a polymer gel.
[0023] 第 3工程では、第 2工程で得たポリマーゲルから、錡型ニ本鎖 DNAを除去し、その 溶出除去跡に所望とする DNA分子形状錡型となる空孔(二本鎖 DNA認識部位)を 形成する。具体的には、第 2工程で得たポリマーゲルを電気泳動装置に設置し、例 えば、トリス一ホウ酸緩衝液、トリス-酢酸緩衝液、トリス -リン酸緩衝液等の適当な緩衝 液を用いて、 2 10mAの電流で約 3時間予通電することにより、铸型ニ本鎖 DNAを 除去する(第 1図中、電気泳動による抽出と表示)。このようにしてインプリントポリマー ゲルを得る。また、铸型ニ本鎖 DNAを加えないで、これまでのすべての工程を同様に 実施して非インプリントポリマーゲルを得る。 In the third step, 錡 -type double-stranded DNA is removed from the polymer gel obtained in the second step, and a desired DNA molecule shape 錡 -shaped hole (double-stranded DNA (Recognition site). Specifically, the polymer gel obtained in the second step is placed in an electrophoresis apparatus, and an appropriate buffer such as a tris-borate buffer, a tris-acetate buffer, or a tris-phosphate buffer is used. Pre-energize at a current of 210 mA for about 3 hours to remove type II double-stranded DNA (electrophoretic extraction in Fig. 1). In this way imprinted polymer Get a gel. In addition, all the steps so far are carried out in the same manner without adding double-stranded type II DNA to obtain a non-imprinted polymer gel.
[0024] (2)第 3工程を経たポリマーゲルを用いて DNAを検出する工程では、被験試料溶液 につレ、て上記インプリントポリマーゲルを媒体として電気泳動を行レ、、分離された二 本鎖 DNAを染色して可視化する。この工程では、従来行われている、 DNAの電気泳 動方法が適用されるが、従来の泳動ゲルの替わりに上述のインプリントポリマーゲル を使用したものである。泳動後、インプリントポリマーゲル中に分離された DNAをェチ ジゥムブロマイドで染色し、 DNAの泳動バンドを可視化した後、ポリマーゲルの認識 部位に捕捉されて移動距離が短くなつた DNAを検出する(第 2図参照)。  [0024] (2) In the step of detecting DNA using the polymer gel that has passed through the third step, electrophoresis is performed using the imprinted polymer gel as a medium with a test sample solution, and the separated two Visualize the single-stranded DNA by staining. In this step, a conventional method of DNA electrophoresis is applied, but the above-described imprinted polymer gel is used instead of the conventional electrophoretic gel. After electrophoresis, the DNA separated in the imprinted polymer gel is stained with ethidium bromide to visualize the migration band of DNA, and then the DNA that has been captured by the recognition site of the polymer gel and has migrated shorter is detected. (See Figure 2).
[0025] この工程においては、まず、検出対象の二本鎖 DNAがインプリントされてない非イン プリントポリマーゲル (従来、二本鎖 DNAを分子長の違いにより分離する際に使用さ れるポリアクリルアミドゲル、第 2図中 A) 2本と、検出対象の二本鎖 DNAがインプリン トされたインプリントポリマーゲル (第 2図中 B) 2本を用意する。それぞれのポリマーゲ ルで、分子長既知の二本鎖 DNA (第 2図中 A、 Bとも左側)と被検試料 (第 2図中 A、 B とも右側)を各ポリマーゲルの上側より適用し、電気泳動を実施する。ェチジゥムブ口 マイドで DNAの泳動バンドを染色した後、検出された泳動バンドの泳動距離を測定し (図中 a— fに相当)、分子長既知の二本鎖 DNAの泳動距離を 1.00とした時の被験試 料の相対移動距離を算出する (第 2図中 b/a、 c/a、 e/d、 f/d)。  [0025] In this step, first, a non-imprinted polymer gel on which the double-stranded DNA to be detected is not imprinted (the polyacrylamide conventionally used for separating double-stranded DNA due to a difference in molecular length) is used. Prepare two gels (A in Fig. 2) and two imprinted polymer gels (B in Fig. 2) on which the double-stranded DNA to be detected is imprinted. For each polymer gel, apply a double-stranded DNA of known molecular length (A and B in Fig. 2 on the left) and a test sample (A and B in Fig. 2 on the right) from the top of each polymer gel. Perform electrophoresis. After staining the migrating band of DNA with etidumimbu Myd, the migration distance of the detected migration band was measured (corresponding to a-f in the figure), and the migration distance of double-stranded DNA of known molecular length was set to 1.00. Calculate the relative movement distance of the test sample (b / a, c / a, e / d, f / d in Fig. 2).
[0026] 検出対象でない DNAに由来する泳動バンドの場合には、 A、 Bポリマーゲルでの相対 移動距離は同じである(c/a = f/d)のに対して、検出対象の DNAに由来する泳動バ ンドの場合には、 Bポリマーゲルでの相対移動距離は、 Aポリマーゲルでの相対移動 距離より小さくなる(b/a>e/d)。従って、相対移動距離の小さくなつた eの泳動バンド が検出対象の DNAであると判断される。より簡便な方法として、ェチジゥムブロマイド で DNAの泳動バンドを染色した後、各々のポリマーゲルでの相対移動距離の違いを 目視で判断することも可能である。  [0026] In the case of an electrophoretic band derived from DNA not to be detected, the relative movement distances in the A and B polymer gels are the same (c / a = f / d), whereas In the case of the electrophoresis band, the relative movement distance in the B polymer gel is smaller than the relative movement distance in the A polymer gel (b / a> e / d). Therefore, it is determined that the migrating band of e having a smaller relative movement distance is the DNA to be detected. As a simpler method, it is possible to stain the migration band of DNA with ethidium bromide and then visually determine the difference in the relative movement distance between the polymer gels.
[0027] また、より正確に検出対象の二本鎖 DNAを検出する方法として、 2つ以上の分子長既 知の二本鎖 DNAを混合した試料を上述の分子長既知の二本鎖 DNA試料の替わり に用い、同上の方法で泳動バンドの泳動距離を測定した後、各々のポリマーゲルに ついて泳動距離と分子長の検量線を作成する方法がある。この検量線を用いて、各 々のポリマーゲルについての被験試料の分子長を求める。インプリントポリマーゲル の検量線より求められた被験試料中の二本鎖 DNAの分子長が、非インプリントポリマ 一ゲルの検量線より求められた被験試料中の二本鎖 DNAの分子長より大きいもの が検出対象の二本鎖 DNAに相当する。さらに、染色された泳動バンド部分を採取す ることにより目的の 2本鎖 DNAを単離、分析することもできる。 As a method for more accurately detecting a double-stranded DNA to be detected, a sample in which two or more double-stranded DNAs of known molecular lengths are mixed is prepared by using the above-described double-stranded DNA sample of known molecular length. After measuring the migration distance of the migration band using the same method as above, apply it to each polymer gel. There is a method to create a calibration curve of migration distance and molecular length. Using this calibration curve, the molecular length of the test sample for each polymer gel is determined. The molecular length of the double-stranded DNA in the test sample determined from the calibration curve of the imprinted polymer gel is larger than the molecular length of the double-stranded DNA in the test sample determined from the calibration curve of the non-imprinted polymer gel These correspond to the double-stranded DNA to be detected. Furthermore, the target double-stranded DNA can be isolated and analyzed by collecting the stained electrophoretic band.
[0028] また、本発明の電気泳動法は、分子長による泳動距離の差を利用した分離に加え て二本鎖 DNAがインプリントされたポリマーゲルの二本鎖 DNAの捕捉能の差に基 づく泳動距離の差を利用するものである。それゆえに、インプリントされた二本鎖 DN Aを铸型とした空孔に対する親和性は、各種二本鎖 DNAの塩基配列の類似性によ り各々異なる。したがって、本発明の電気泳動法によれば、単に目的とする二本鎖 D NAの検出、分離のみではなぐ同一サイズの二本鎖 DNAであっても、塩基配列を 特異的に識別し、これらを分離することが可能となり、従来の電気泳動法ではできな レ、、塩基配列に依存した分析を行うことができる。  The electrophoresis method of the present invention is based on the difference in the ability of a polymer gel on which double-stranded DNA is imprinted to capture double-stranded DNA in addition to the separation using the difference in migration distance depending on the molecular length. The difference of the migration distance is used. Therefore, the affinity of the imprinted double-stranded DNA for 铸 -shaped holes differs depending on the similarity of the base sequences of various double-stranded DNAs. Therefore, according to the electrophoresis method of the present invention, the base sequence can be specifically identified even for double-stranded DNA of the same size, not only for detection and separation of the target double-stranded DNA, and these can be used. Can be separated, and analysis dependent on the base sequence can be performed, which cannot be performed by conventional electrophoresis.
[0029] さらに、上記本発明の電気泳動法においては、二本鎖 DNAがインプリントされてな い非インプリントポリマーゲルと、検出対象の二本鎖 DNAがインプリントされたポリマ 一ゲル、別の検出対象の二本鎖 DNAがインプリントされたポリマーゲルとを同じ電気 泳動装置に並列に設置し、同じ緩衝液を用いて同時に分析を行うことができ、この意 味でも簡便、迅速な二本鎖 DNAの検出、分離方法である。  [0029] Furthermore, in the above-described electrophoresis method of the present invention, a non-imprinted polymer gel on which double-stranded DNA is not imprinted and a polymer gel on which double-stranded DNA to be detected is imprinted are separated. The double-stranded DNA to be detected and the polymer gel imprinted with the double-stranded DNA can be installed in parallel on the same electrophoresis apparatus and analyzed simultaneously using the same buffer solution. This is a method for detecting and separating single-stranded DNA.
実施例  Example
[0030] 次に本発明を実施例によりさらに詳細に説明するが、本発明を限定することを意図 するものではない。  Next, the present invention will be described in more detail with reference to Examples, but it is not intended to limit the present invention.
〔実施例 1〕 (Example 1)
1. 自己集合体液の作成  1. Preparation of self-assembled body fluid
铸型ニ本鎖 DNAとして poly dA-poly dT (分子長 1033bp)を用意した。 poly dA-poly dT (0.1 A units), VDAT (0.8 μ M)を 0.2M NaCl入り 50mM HEPES緩衝液(ρΗ7·3)  Poly dA-poly dT (molecular length 1033 bp) was prepared as a type II double-stranded DNA. poly dA-poly dT (0.1 A units), VDAT (0.8 μM) with 0.2 M NaCl in 50 mM HEPES buffer (ρΗ7.3)
260  260
に混合し、一晩冷蔵庫に放置した。 [0031] 2.泳動用ゲル (インプリントゲル)の作成 And left in the refrigerator overnight. 2. Preparation of gel for electrophoresis (imprint gel)
アクリルアミド 38gと Ν, Ν'-メチレンビスアクリルアミド 2gを MilliQ水に溶解し、全  Dissolve 38 g of acrylamide and 2 g of Ν, Ν'-methylenebisacrylamide in MilliQ water.
100mlとした(アクリルアミド -BIS混合液)。このアクリルアミド -BIS混合液 0.44mlをトリス -ホウ酸緩衝液(0.045Mトリス、 0.045Mホウ酸、 0.00125MEDTA、 pH8.3)に溶解し、全 量 4mlとした。この溶液を減圧下で脱気した後、 1mlの自己集合体液を混入し、さらに 10w/v%過硫酸アンモニゥム水溶液 7.5 μ 1、 ^ -テトラメチルェチレンジァミン( TEMED) 2.4 a 1を混入した。下端をパラフィルムで止めた泳動ゲル重合用ガラス管( 内径 0.4cm、長さ 14.5cm) 2本に、上記の溶液を 2mlづっ入れ、蒸留水を重層して室 温に放置し、重合させた。  100 ml (acrylamide-BIS mixture). 0.44 ml of this acrylamide-BIS mixed solution was dissolved in Tris-borate buffer (0.045 M Tris, 0.045 M boric acid, 0.00125 MEDTA, pH 8.3) to make a total volume of 4 ml. After degassing the solution under reduced pressure, 1 ml of the self-assembled liquid was mixed, 7.5 μl of a 10 w / v% ammonium persulfate aqueous solution, and ^ -tetramethylethylenediamine (TEMED) 2.4 a 1 were further mixed. did. 2 ml of the above solution was placed in two glass gel tubes for electrophoresis gel polymerization (0.4 cm inside diameter, 14.5 cm long) with the bottom end stopped by parafilm, layered with distilled water, allowed to stand at room temperature, and polymerized. .
[0032] 3.錡型分子二本鎖 DNAの除去  3. Removal of type II double-stranded DNA
上記操作により、重合したインプリントポリマーゲルを電気泳動装置に設置し、トリス -ホウ酸緩衝液(0.089Mトリス、 0.089Mホウ酸、 0.0025M EDTA、 pH8.3)を陰極側と陽 極側の緩衝液槽に満たし、 5mAの一定電流値で約 3時間通電し、铸型分子二本鎖 DNAを除いた。  According to the above procedure, the polymerized imprinted polymer gel was set on the electrophoresis apparatus, and Tris-borate buffer (0.089 M Tris, 0.089 M boric acid, 0.0025 M EDTA, pH 8.3) was applied to the cathode side and the cathode side. The solution was filled in a buffer solution tank, and a current of 5 mA was supplied for about 3 hours at a constant current to remove double-stranded 铸 -molecule DNA.
[0033] 4.電気泳動実験  [0033] 4. Electrophoresis experiment
泳動サンプル DNAとして、サイズスタンダード DNA (分子長 lOOObp)と poly dA-poly dT (铸型分子二本鎖 DNAと同じもの、 1033bp)を用意した。それぞれの泳動サンプル 4 μ 1をサンプルバッファー(50w/v%グリセリン、 10mM EDTA、 0.05w/v%ブロモフエノ ールブルー) 2 /i 1、 MilliQ水 14 μ 1に混合し、その混合液の 6 μ 1をそれぞれインプリン トポリマーゲルの陰極側に適用した。 5mA—定でブロモフエノールブルーの青い色素 がゲルの陽極側の端に泳動するまで通電した。通電後、泳動ゲル重合用ガラス管よ りインプリントポリマーゲルを取り出し、 0.5 μ g/ml臭化工チジゥム水溶液に室温で 30 分浸漬して、分離された DNAのバンドを染色した。その後、蒸留水で 30分 2回洗浄し 、 UVライトをゲルに照射し、臭化工チジゥムで染色された DNAのバンドを確認した。  As the electrophoresis sample DNA, a size standard DNA (molecular length of 100 bp) and poly dA-poly dT (the same as double-stranded DNA of type III, 1033 bp) were prepared. Mix 4 μl of each electrophoresis sample with sample buffer (50 w / v% glycerin, 10 mM EDTA, 0.05 w / v% bromophenol blue) 2 / i 1 and 14 μl of MilliQ water, and mix 6 μl of the mixture. Each was applied to the cathode side of the imprinted polymer gel. The current was passed until the blue dye of bromophenol blue migrated to the anodic end of the gel at a constant 5 mA. After energization, the imprinted polymer gel was removed from the electrophoresis gel polymerization glass tube and immersed in a 0.5 μg / ml bromide solution of aqueous broth for 30 minutes at room temperature to stain the separated DNA band. Thereafter, the gel was washed twice with distilled water for 30 minutes, and the gel was irradiated with a UV light to confirm a DNA band stained with a bromide tube.
[0034] 〔比較例 1〕 ポリアクリルアミドゲルを用いた電気泳動(二本鎖 DNAの分子長に基づく 分析方法、従来法)  [Comparative Example 1] Electrophoresis using polyacrylamide gel (analysis method based on molecular length of double-stranded DNA, conventional method)
実施例 1の 2で、 1mlの自己集合体液の替わりに 0.2M NaCl入り 50mM HEPES緩衝 液 (pH7.3)を用レ、た他は、実施例 1と同様の操作を行つた。 〔実施例 2〕 The same operation as in Example 1 was performed, except that in Example 1-2, a 50 mM HEPES buffer solution (pH 7.3) containing 0.2 M NaCl was used instead of 1 ml of the self-assembled aggregate solution. (Example 2)
実施例 1と比較例 1で得られた、サイズスタンダード DNA (分子長 lOOObp)と poly dA- poly dT (分子長 1033bp)の泳動距離を測定した。結果は、サイズスタンダード DNAの 泳動距離 (cm)を 1.00とした時の相対泳動距離で示した(表 1)。 The migration distance between the size standard DNA (molecular length 100 bp) and poly dA-poly dT (molecular length 1033 bp) obtained in Example 1 and Comparative Example 1 was measured. The results are shown as relative migration distances when the migration distance (cm) of the size standard DNA was set to 1.00 (Table 1).
[表 1] 泳動距離 (cm) [Table 1] Migration distance (cm)
サイズスタンダード DNA Poly dA-poly dT 相対泳動距離 実施例 1 1.60 1.30 0.81  Size standard DNA Poly dA-poly dT Relative migration distance Example 1 1.60 1.30 0.81
比較例 1 1.40 1.28 0.91 比較例 1のサイズスタンダード DNAと poly dA-poly dTの相対泳動距離は 0.91である のに対して、実施例 1で用いたインプリントポリマーゲルを使用した場合は、相対泳動 距離が 0.81で、比較例 1より小さい値となることが分かった。従ってインプリントポリマ 一ゲルは铸型分子と同じ DNAを認識して、その泳動距離を短くすることが証明された 。泳動距離の短くなつた泳動バンドを選別することにより、铸型分子と同じ塩基配列を 持つ二本鎖 DNAを検出することが可能である。  Comparative Example 1 1.40 1.28 0.91 The relative migration distance between the size standard DNA of Comparative Example 1 and poly dA-poly dT was 0.91, whereas the relative migration distance was smaller when the imprinted polymer gel used in Example 1 was used. It was found that the distance was 0.81, which was smaller than Comparative Example 1. Therefore, it was proved that the imprinted polymer gel recognized the same DNA as the type I molecule and shortened its migration distance. By selecting electrophoretic bands with shorter electrophoresis distances, it is possible to detect double-stranded DNA having the same base sequence as the type I molecule.
〔実施例 3〕 (Example 3)
DNA混合サンプル中の検出対象 DNAの検出 1.インプリントゲルを用いた電気泳動  Detection of DNA to be detected in DNA mixed sample 1. Electrophoresis using imprinted gel
a)えファージ DNA 560bpフラグメントをインプリントした泳動媒体の作成 a) Preparation of electrophoresis medium imprinted with 560 bp phage DNA fragment
铸型ニ本鎖 DNAとして、 poly dA-poly dTの替わりにえファージ DNAの 560bpフラグ メントを用いた他は、実施例 1の 1一 3と同様に操作し、 えファージ DNA 560bpフラグメ ントを検出するための泳動ゲル媒体 (インプリントゲル)を作成した。 b)電気泳動実験 泳動用標準サンプルとして、サイズスタンダード DNA ( 100bp— 1000bp、 lOObp Molecular Ruler,総 DNA濃度 100 μ g/ml) 8 /i 1、サンプルバッファー(50w/v°/Wリセリ ン、 10mM EDTA、 0.05w/v% ブロモフエノールブルー) 4 /i 1、 MilliQ水 28 μ 1の混合溶 液を、 DNA混合サンプルとして、 λファージ DNAの 560bpフラグメント(1.0 A Units) 8 μ 1、 λファージ DNAの 700bpフラグメント(1.7A Units) 8 μ \ poly dA - poly dT ( 1.5 AA 560 bp fragment of phage DNA was detected in the same manner as in Example 13 except that a 560 bp fragment of phage DNA was used instead of poly dA-poly dT as type II double-stranded DNA. Electrophoresis gel medium (imprint gel) was prepared. b) Electrophoresis experiment As standard sample for electrophoresis, size standard DNA (100bp-1000bp, 100bp Molecular Ruler, total DNA concentration 100μg / ml) 8 / i1, sample buffer (50w / v ° / W lyserin, 10mM EDTA, 0.05w / v% Bromophenol blue) 4 / i 1 and 28 μl of MilliQ water were used as a DNA mixed sample to obtain 8 μl of 560 bp fragment of λ phage DNA (1.0 A Units) and 700 bp fragment of λ phage DNA (1.7 bp). A Units) 8 μ \ poly dA-poly dT (1.5 A
Units) 8 μ 1、サンプルバッファー 4 μ 1、 MilliQ水 12 μ 1の混合溶液を用意し、これら のサンプルを 19 μ ΐずつ、インプリントゲル媒体の陰極側に適用した以外は、実施例 1 の 4と同様に操作した。 Units) A mixture of 8 μl, sample buffer 4 μl, MilliQ water 12 μl was prepared, and these samples were applied in 19 μl aliquots on the cathode side of the imprint gel medium. The operation was the same as in 4.
2.ポリアクリルアミドゲルを用いた電気泳動(二本鎖 DNAの分子長に基ずく分析方法 、従来法) 2. Electrophoresis using polyacrylamide gel (analysis method based on the molecular length of double-stranded DNA, conventional method)
上記 l a)のプロセスにおいて、 λファージ DNAの 560bpフラグメントの替わりに 0.2M NaCl入り 50mM HEPES緩衝液(ρΗ7·3)を用レ、る他は、上記 l a)のプロセスと同様にし てポリアクリルアミド泳動媒体を作成し、該ポリアクリルアミド泳動媒体を用いて、上記 lb)と同様の操作を行った  In the process of la) above, a 50 mM HEPES buffer (ρΗ7.3) containing 0.2 M NaCl was used in place of the 560 bp fragment of λ phage DNA. And the same operation as in the above lb) was performed using the polyacrylamide electrophoresis medium.
3.結果 3.Result
上記 1と 2の各電気泳動実験で得られた泳動用標準サンプルの泳動距離を測定し 、上記インプリントゲル媒体とポリアクリルアミドゲル媒体における泳動距離の相関グ ラフを作成した(図 3)。この相関グラフに、 DNA混合サンプル中の個々の DNAから得 られた泳動距離をプロットし、相関直線からのずれを確認した。  The migration distance of the electrophoresis standard sample obtained in each of the above electrophoresis experiments 1 and 2 was measured, and a correlation graph of the migration distance between the imprint gel medium and the polyacrylamide gel medium was created (FIG. 3). The migration distance obtained from each DNA in the DNA mixed sample was plotted on this correlation graph, and the deviation from the correlation line was confirmed.
インプリントゲル作成時に使用する铸型分子 DNAと同じ塩基配列 DNAが被験試料 中に含まれていた場合、インプリントゲル媒体中の認識部位の捕捉効果により、泳動 距離が短くなるため、該当する DNAより得られたプロットは、相関直線から上方にず れることになる。一方、インプリントゲル作成時に使用する铸型分子 DNAとは異なった DNAが被験試料中に含まれていた場合、該当する DNAより得られたプロットは、相関 グラフ作成時に使用された泳動用標準サンプルと同様に泳動されるため相関直線上 に乗ることになる。 If the test sample contains the same base sequence DNA as the type II molecular DNA used when preparing the imprint gel, the migration distance becomes shorter due to the capturing effect of the recognition site in the imprint gel medium. The resulting plot will be shifted upward from the correlation line. On the other hand, if the test sample contains DNA that is different from the type II molecular DNA used when preparing the imprint gel, the plot obtained from the DNA is the standard sample for electrophoresis used when preparing the correlation graph. On the correlation line Will ride.
検討の結果、 DNA混合サンプルより得られた 3つのプロットのうち、 えファージ DNA の 700bpフラグメント(図 3中、 bで表示)と poly dA-poly dT (図 3中、 aで表示)は、相関 直線上に乗っていたのに対し、 λファージ DNAの 560bpフラグメントから得られたプロ ット(図 3中、 cで表示)は相関直線より上方にずれたことがわ力、つた。従って、相関グ ラフ力 のずれを確認することにより、 DNA混合サンプル中に、インプリントゲル作成 時に使用した錡型分子 DNAと同じ塩基配列を持つ DNAがあるかどうか調べられるこ とがわかった。  As a result of the examination, among the three plots obtained from the DNA mixed sample, the 700 bp fragment of phage DNA (indicated by b in Fig. 3) and poly dA-poly dT (indicated by a in Fig. 3) were correlated. While the plot was on a straight line, the plot obtained from the 560 bp fragment of λ phage DNA (indicated by c in FIG. 3) was shifted upward from the correlation line. Therefore, by confirming the difference in the correlation graph force, it was found that it was possible to examine whether or not there was a DNA having the same base sequence as the type II molecular DNA used in preparing the imprint gel in the DNA mixed sample.

Claims

請求の範囲 The scope of the claims
[1] 二本鎖 DNA分子形状が錡型としてインプリントされた空孔を有するとともに、該空 孔内に二本鎖 DNAの塩基対を認識する置換基を有するポリマーゲルからなることを 特徴とする電気泳動用媒体  [1] A double-stranded DNA molecule is formed of a polymer gel having pores imprinted as a triangle and having a substituent that recognizes the base pair of the double-stranded DNA in the pores. Electrophoresis medium
[2] 上記二本鎖 DNAの塩基対を認識する置換基が、以下の化学構造を有するもので あることを特徴とする、請求項 1に記載の電気泳動用媒体  [2] The electrophoretic medium according to [1], wherein the substituent that recognizes a base pair of the double-stranded DNA has the following chemical structure.
[化 1] [Chemical 1]
Figure imgf000018_0001
Figure imgf000018_0001
(但し、式中 Yは、 CH又は Nを表す) (Where Y represents CH or N)
[3] ポリマーゲルが、架橋されたポリアクリルアミドゲルである、請求項 1又は 2に記載の 電気泳動用媒体 [3] The electrophoretic medium according to claim 1 or 2, wherein the polymer gel is a crosslinked polyacrylamide gel.
[4] 以下の(a)—(c)の工程からなることを特徴とする、二本鎖 DNAを検出するための 電気泳動用媒体の製造方法。  [4] A method for producing a medium for electrophoresis for detecting double-stranded DNA, comprising the following steps (a) to (c):
(a)二本鎖 DNAと、二本鎖 DNAの塩基対を認識する置換基を有する機能性モノマ 一とを混合して、該ニ本鎖 DNAの塩基対に該機能性モノマーを自己集合させるェ 程、  (a) mixing a double-stranded DNA with a functional monomer having a substituent that recognizes the base pair of the double-stranded DNA, and allowing the functional monomer to self-assemble to the base pair of the double-stranded DNA The process
(b)得られた自己集合物とポリマーゲル形成モノマーを重合させる工程、  (b) a step of polymerizing the obtained self-assembled product and a polymer gel-forming monomer,
(c)形成されたポリマーゲルから、二本鎖 DNAを除去する工程  (c) a step of removing double-stranded DNA from the formed polymer gel
[5] 請求項 1一 3のいずれかに記載の電気泳動用媒体に、二本鎖 DNA含有試料を滴 下して電気泳動を行い、該電気泳動用媒体のポリマーゲル中にインプリントされた二 本鎖 DNA分子形状に対応する空孔に試料中の二本鎖 DNAが捕捉されることによる 泳動距離の短縮化を指標として、試料中のインプリントされたものと同じ二本鎖 DNA を検出及び/又は分離することを特徴とする、二本鎖 DNAの検出方法。 [5] A double-stranded DNA-containing sample is dropped on the electrophoresis medium according to any one of claims 13 to 13 to perform electrophoresis, and imprinted in a polymer gel of the electrophoresis medium. The double-stranded DNA in the sample is trapped in the holes corresponding to the double-stranded DNA molecule shape. A method for detecting double-stranded DNA, comprising detecting and / or separating the same double-stranded DNA as that imprinted in a sample, using the shortened migration distance as an index.
PCT/JP2005/002687 2004-02-23 2005-02-21 Method of detecting double-stranded dna having specific sequence WO2005080958A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006510260A JP4423397B2 (en) 2004-02-23 2005-02-21 Method for detecting double-stranded DNA having a specific sequence

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004046474 2004-02-23
JP2004-046474 2004-02-23

Publications (1)

Publication Number Publication Date
WO2005080958A1 true WO2005080958A1 (en) 2005-09-01

Family

ID=34879443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002687 WO2005080958A1 (en) 2004-02-23 2005-02-21 Method of detecting double-stranded dna having specific sequence

Country Status (2)

Country Link
JP (1) JP4423397B2 (en)
WO (1) WO2005080958A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093230A (en) * 2005-09-27 2007-04-12 National Institute Of Advanced Industrial & Technology Analysis method of target dna and analyzer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001019886A1 (en) * 1999-09-17 2001-03-22 Mip Technologies Ab New molecularly imprinted polymers grafted on solid supports

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001019886A1 (en) * 1999-09-17 2001-03-22 Mip Technologies Ab New molecularly imprinted polymers grafted on solid supports

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
HAUPT K. ET AL.: "Molecularly imprinted polymers in analytical chemistry.", ANALYST., 2001, pages 747 - 756, XP002997699 *
HUANG Y. ET AL.: "Preparation and evaluation of molecularly imprinted polymers based on 9-ethladenine for the recognition of nucleotide bases in capillary electrochromatography.", ELECTROPHORESIS, vol. 25, no. 4-5, February 2004 (2004-02-01), pages 554 - 561, XP002997700 *
MAYES A. ET AL.: "Molecularly imprinted polymers: useful materials for analytical chemistry?", TRENSDS IN ANALYTICAL CHEMISTRY., vol. 16, no. 6, 1997, pages 321 - 332, XP004086340 *
MINOURA N. ET AL.: "DNA Imprinting Polymer o Mochiita Nihonsa DNA Kenshutsu Hoho no Kaihatsu.", MEMBRANE SYMPOSIUM (KYOTO), no. 16, 1 November 2004 (2004-11-01), pages 125 - 128, XP002998403 *
MINOURA N. ET AL.: "DNA Sentakuteki Ninshiki Hyomen o Motsu Usumaku no Keisei Maku Symposium.", MEMBRANE SYMPOSIUM (KYOTO), no. 14, 1 November 2002 (2002-11-01), pages 37 - 40, XP002998401 *
MINOURA N. ET AL: "Nihonsa DNA o Ninshiki suru Polymer Gel no Gosei to Soreo Riyo shita DNA no Kenshutsu.", DAI 42 KAI KOBUNSHI TO MIZU NI KANSURU TORONKAI KOEN YOSHISHU., 3 December 2004 (2004-12-03), pages 17 - 18, XP002998404 *
OGISO M ET AL.: "Molecularly Imprinted Polymer for Recognizing Double-stranded DNA.", CHEMICAL SENSORS., vol. 20, 11 July 2004 (2004-07-11), pages 494 - 495, XP002998402 *
OGISO M. ET AL.: "DNA Sentakuteki Ninshiki Hyomen p Motsu Bunshi Imprinting Polymer Gel no Tokusei.", DAI 41 KAI KOBUNSHI TO MIZU NI KANSURU TORONKAI KOEN YOSHISHU, 12 December 2003 (2003-12-12), pages 11 - 12, XP002997698 *
TAKEUCHI T. ET AL.: "Separation and sensing based on moleculr recognition using molecularly imprinted polymers.", CHROMATOGRAPHY B., vol. 728, no. 1, 14 May 1999 (1999-05-14), pages 1 - 20, XP004166183 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093230A (en) * 2005-09-27 2007-04-12 National Institute Of Advanced Industrial & Technology Analysis method of target dna and analyzer

Also Published As

Publication number Publication date
JPWO2005080958A1 (en) 2007-10-25
JP4423397B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
JP4144776B2 (en) Improved method and system for performing molecular separations
US20220349000A1 (en) Nanopore-based polymer analysis with mutually-quenching fluorescent labels
US20120214162A1 (en) Assay methods using dna binding proteins
US20220106629A1 (en) Method of translocating nucleic acids through nanopores
RU2017127990A (en) DETECTION BY MEANS OF NANOPORA OF TARGET POLINUCLEOTIDES FROM THE SAMPLE BACKGROUND
JP2004000227A (en) High resolution dna-sequencing method using low viscosity medium
JP2010230614A (en) Method for determining biopolymer using nano-pore, and system and kit therefor
EP2483680A1 (en) Ultrafast sequencing of biological polymers using a labeled nanopore
CN116622812A (en) Matrix array and method for producing the same
EP3601599A1 (en) Polymorphism detection with increased accuracy
US10888831B2 (en) Method of distributing discrete polymer networks
JP4423397B2 (en) Method for detecting double-stranded DNA having a specific sequence
JP3997203B2 (en) Electrophoresis buffer
JP2007093230A (en) Analysis method of target dna and analyzer
JP2003532073A (en) Denaturant-free electrophoresis of biomolecules under high temperature conditions
CN104498601A (en) Method for detecting multiple single-nucleotide variations or multiple single-nucleotide polymorphisms (SNP) based on DNA hydrogel
CN117813391A (en) Method for preparing substrate surface for DNA sequencing
JP2004157107A (en) Dna determination cartridge for dna determination device
McElfish Methods for parallel amplification of single DNA molecules
Chan A Method for Selective Concentrating of DNA Targets by Capillary Affinity Gel Electrophoresis
JP2006166785A (en) Interaction-measuring method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510260

Country of ref document: JP

122 Ep: pct application non-entry in european phase