WO2005080623A1 - Metal working method and metal element - Google Patents

Metal working method and metal element Download PDF

Info

Publication number
WO2005080623A1
WO2005080623A1 PCT/JP2005/003218 JP2005003218W WO2005080623A1 WO 2005080623 A1 WO2005080623 A1 WO 2005080623A1 JP 2005003218 W JP2005003218 W JP 2005003218W WO 2005080623 A1 WO2005080623 A1 WO 2005080623A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
deformation resistance
metal body
resistance region
low deformation
Prior art date
Application number
PCT/JP2005/003218
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuaki Nakamura
Zenji Horita
Koji Neishi
Michihiko Nakagaki
Kenji Kaneko
Original Assignee
Rinascimetalli Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinascimetalli Ltd. filed Critical Rinascimetalli Ltd.
Priority to JP2006510331A priority Critical patent/JP4800930B2/en
Publication of WO2005080623A1 publication Critical patent/WO2005080623A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/04Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
    • B21C37/045Manufacture of wire or bars with particular section or properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/001Extruding metal; Impact extrusion to improve the material properties, e.g. lateral extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/01Extruding metal; Impact extrusion starting from material of particular form or shape, e.g. mechanically pre-treated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • B21J1/025Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough affecting grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article

Definitions

  • the present invention relates to a metal working method and a metal body.
  • a metal body has a metal structure such as a metal-containing ceramic body! /
  • the metal structure is refined by an ECAP (Equal-Channel Angular Pressing) method, thereby It is known that the strength or ductility of a material can be improved.
  • a die 100 is provided with an insertion passage 200 bent at a required angle in the middle of the die 100, and a required metal body 300 is inserted into the insertion passage 200 while being pressed. This causes the metal body 300 to bend along the path 200, and generates a shear stress in the metal body 300 along with the bending, and the metal structure is refined by the shear stress.
  • reference numeral 400 denotes a plunger for pressing a metal body.
  • the die 100 is heated to a predetermined temperature by heating the die 100 to reduce the deformation resistance by heating the die 100 to a predetermined temperature in order to easily bend the metal body 300 along the path 200.
  • the metal body 300 may be excessively deformed, such as buckling, when pressed by the plunger 400. Heating had to be minimized.
  • Patent document 1 Japanese Patent Application Laid-Open No. 2001-321825
  • Patent Document 2 JP-A-11-323481
  • the metal body that has passed through the shear deformation region remains heated to a predetermined temperature. Since the deformation resistance of the extruded metal body is reduced overall, in order to continuously insert the metal body into the insertion passage and apply the shear stress repeatedly, the metal body must be kept at a predetermined temperature or lower to reduce the deformation resistance. Required a cooling time for cooling until the temperature became large.
  • the metal body cannot be continuously processed by the ECAP method in a time shorter than the cooling time, and there has been a problem that productivity is extremely low.
  • the deformation resistance of the metal body extending in one direction is locally reduced to form a low deformation resistance region that crosses the metal body, and the low deformation resistance region is formed.
  • a non-low deformation resistance region generating means for generating, and the non-low deformation resistance region generating means generates a non-low deformation resistance region along at least one side edge of the low deformation resistance region. .
  • the metal body in the metal working method according to claim 1, is moved along an extension direction, and the low deformation resistance is provided on a downstream side in the movement direction.
  • a non-low deformation resistance region is generated along the side edge of the region by the non-low deformation resistance region generation means.
  • the non-low deformation resistance region generating means is a cooling means for cooling the metal body.
  • the metal body is rapidly cooled in the non-low deformation resistance region.
  • the low deformation resistance region is formed in a vacuum.
  • the low deformation resistance region is formed under a high pressure.
  • the low deformation resistance region is formed in an active gas atmosphere.
  • the active gas is nitrogen gas.
  • the active gas was methane gas and z or monocarbon gas.
  • the first heating is performed on the metal body for a predetermined time, and then the second heating is performed on the metal body to reduce the low deformation resistance region. Was formed.
  • the low deformation resistance region is formed in an unconstrained region of a constraining means for constraining the metal body that has been heated.
  • the low deformation resistance region is formed in the metal body immersed in a liquid.
  • the metal body is heated in a liquid to form the low deformation resistance region.
  • the metal body having a fine metal structure is subjected to plastic working without coarsening the metal structure.
  • the plastic working is performed in a heating state for a short time without coarsening the metal structure of the metal body. I decided.
  • the metal body is carburized.
  • the metal structure of the metal body is refined while extending the low deformation resistance region.
  • the metal structure of the metal body is refined while compressing the low deformation resistance region.
  • the body was a cylindrical body having a hollow portion, and the hollow portion was in a reduced pressure state.
  • the metal body is a cylindrical body having a hollow part, and the hollow part is in a high-pressure state.
  • a forming guide body for forming the metal body into a predetermined shape is brought into contact with the low deformation resistance region. I decided to do it.
  • the forming guide body is a heating means for heating the metal body.
  • the forming guide body is a cooling unit that cools the metal body.
  • the low deformation resistance region is moved along an extension direction of the metal body.
  • the metal body extends in one direction, and the deformation resistance is locally reduced to temporarily form a low deformation resistance region crossing the metal body.
  • the low deformation resistance region is generated by a non-low deformation resistance region generating means for generating a non-low deformation resistance region by increasing the deformation resistance which is lowered and lowered in the low deformation resistance region.
  • a non-low deformation resistance region is generated along at least one side edge of the above, and the low deformation resistance region is subjected to shear deformation to make the metal structure fine.
  • the non-low deformation resistance region formed by the non-low deformation resistance region generating means moves along an extension direction. It was formed on the side edge of the low deformation resistance region on the downstream side in the moving direction of the metal body.
  • the non-low deformation resistance region generating means is a cooling means for cooling the metal body.
  • the metal body according to claim 33 in the metal body according to claim 30, the metal body is rapidly cooled in the non-low deformation resistance region.
  • the low deformation resistance region is formed in a vacuum in accordance with the metal body according to claim 30.
  • the low deformation resistance region is formed under a high pressure.
  • the low deformation resistance region is formed in an active gas atmosphere.
  • the active gas is nitrogen gas.
  • the active gas may be methane gas and Z or carbon monoxide gas.
  • the low deformation resistance region is provided.
  • the low deformation resistance region is subjected to heavy doping.
  • the first heating is performed on the metal body for a predetermined time, and then the second heating is performed to perform the low deformation resistance region.
  • the low deformation resistance region is formed in a non-constrained region of a constraining means for constraining the metal body at a high temperature.
  • the low deformation resistance region is formed in the metal body immersed in a liquid, in addition to the metal body according to claim 30.
  • the metal body is heated in a liquid to form the low deformation resistance region.
  • the metal body having a finer metal structure is plastically worked without coarsening the metal structure.
  • the plastic working is performed in a short heating state that does not coarsen the metal structure of the metal body.
  • the metal structure of the metal body is maintained at a temperature while keeping the metal structure coarse while aging. Processed.
  • the metal body according to claim 30 is subjected to a carburizing treatment.
  • the metal structure of the metal body is refined while extending the low deformation resistance region.
  • the metal structure of the metal body is refined while compressing the low deformation resistance region.
  • the metal body in the metal body according to claim 30, is a cylindrical body having a hollow part, and the hollow part is in a reduced pressure state.
  • the metal body in addition to the metal body according to claim 30, the metal body is a cylindrical body having a hollow portion, and the hollow portion is in a high-pressure state.
  • a forming guide body for forming the metal body into a predetermined shape is brought into contact with the low deformation resistance region.
  • the forming guide body is a heating means for heating the metal body.
  • the forming guide body is a cooling means for cooling the metal body.
  • the low deformation resistance region is moved along the extension direction of the metal body.
  • the deformation resistance of the metal body extending in one direction is locally reduced to form a low deformation resistance region crossing the metal body, and the low deformation resistance region is sheared.
  • the metal body is moved along the elongation direction, and the low deformation resistance area on the downstream side in the movement direction.
  • the non-low deformation resistance region generation means By generating the non-low deformation resistance region along the side edge of the region by the non-low deformation resistance region generation means, it is possible to extremely efficiently and continuously generate a metal body having a fine metal structure.
  • the non-low deformation resistance region generating means is a cooling means for cooling the metal body. Since the deformation resistance region can be generated extremely easily and surely, a metal body having a fine metal structure can be surely generated at low cost.
  • the metal working method as set forth in claim 1 by rapidly cooling the metal body in the non-low deformation resistance region, the metal is maintained by maintaining the heated state. Since the enlargement of the tissue can be suppressed and the metal body can be quenched, a highly functional metal body can be formed.
  • the invention of claim 5 in the metal working method of claim 1, by forming the low deformation resistance region in a vacuum, the shear deformation of the low deformation resistance region is reduced. The formation of a reaction film with a gas component on the surface can be prevented, and the processing in the subsequent process can be reduced.
  • the metal body when the metal body is heated when the low deformation resistance region is formed, the metal body can be cooled without using cooling means by the self-cooling action of the metal body, and the formation efficiency of the low deformation resistance region can be reduced. Can be improved.
  • the low deformation resistance region is formed by high pressure.
  • the effect of (1) can improve the efficiency of metal structure refinement.
  • the metal structure of the metal body in the metal working method of claim 1, by forming the low deformation resistance region in an active gas atmosphere, the metal structure of the metal body can be finely divided.
  • a reaction region with the active gas can be formed on the surface of the low deformation resistance region, a highly functional metal body can be formed.
  • the active gas is nitrogen.
  • the metal structure of the metal body can be refined and the low deformation resistance region can be nitrided, so that a more sophisticated metal body can be formed.
  • the metallographic structure of the metal body is reduced by using methane gas and z or monocarbon gas as the active gas. Since the size is reduced and the low deformation resistance region can be carburized, a more sophisticated metal body can be formed.
  • the metal structure of the metal body is reduced by spraying powder onto the low deformation resistance region.
  • Powder can be mechanically mixed into the deformation resistance region, and a more sophisticated metal body can be formed.
  • a metal body having a composition that is difficult to form with a conventional structure can be easily formed, and a new material can be manufactured when a powder other than a metal is sprayed on a low deformation resistance region.
  • the metal working method according to claim 1 has a low deformation.
  • the metal structure of the metal body can be made finer, and the ion-imparted particles can be mixed into the low deformation resistance region, so that a more sophisticated metal body can be formed.
  • a metal body having a composition that is difficult to form with a conventional structure can be easily formed.
  • the second heating is performed to form the low deformation resistance region.
  • the first heating is performed at the solution temperature of the metal and the second heating is performed at a temperature that is a processing condition of the shear deformation, the solution-formed metal is subjected to the shear deformation. it can.
  • the metal working method of claim 1 by forming the low deformation resistance region in the unconstrained region of the constraining means for constraining the high-temperature metal body, During the manufacturing process of the metal body, the metal body of the metal body is heated during the manufacturing process, so that the metal structure of the metal body can be miniaturized, and a metal body having a finer metal structure can be manufactured without increasing the number of manufacturing processes.
  • the low deformation resistance region is formed in the metal body immersed in the liquid. Knocks in the forming conditions can be suppressed, and the metal structure can be uniformly refined.
  • the metal body is heated in a liquid to form a low deformation resistance region, so that the low deformation resistance formed by heating is formed. Cooling of the region can be performed promptly, and particularly, quenching can be continuously performed on the portion where the shear deformation has been completed, so that a more sophisticated metal body can be formed.
  • the thermal conductivity around the low deformation resistance region is reduced.
  • the metal body in the liquid can be efficiently heated.
  • a low deformation By generating bubbles around the low deformation resistance region when forming the resistance region, the metal body in the liquid can be efficiently heated.
  • the metal body having a finer metal structure is plastically worked without coarsening the metal structure.
  • the metal body By making the metal body thinner, it is possible to provide a metal body having a required shape, particularly for a metal body having high strength or high ductility.
  • the plastic working is performed in a short heating state without coarsening the metal structure of the metal body. At times, it is possible to prevent the metal thread from becoming too large to inhibit high strength or high ductility.
  • the metal structure of the metal body is maintained at a temperature without being coarsened, and is subjected to an aging treatment.
  • the strength of the metal body having increased strength or high ductility can be improved.
  • the metal body in the metal working method as set forth in claim 1, is preliminarily subjected to a carburizing treatment, whereby the metal body is subjected to shear deformation in the low deformation resistance region.
  • the metal structure can be refined while performing charcoal treatment, and a highly functional metal body can be formed.
  • the metal structure of the metal body is refined while extending the low deformation resistance region, so that the low deformation resistance is reduced. Since the strain due to elongation can be applied to the anti-region in addition to the strain due to shearing, the metal structure can be further refined.
  • the metal structure of the metal body is refined while compressing the low-deformation resistance region to thereby reduce the low-deformation resistance. Since the strain caused by compression can be applied to the anti-region in addition to the strain caused by shearing, the metal structure can be further refined.
  • the hollow body is made of a cylindrical body having a hollow part, and the hollow part is depressurized, so that the low deformation is achieved.
  • shear deformation can be performed while contracting and deforming the metal body toward the hollow portion, and the metal structure can be further refined.
  • the metal processing method according to claim 1 by setting the hollow portion to a high pressure state as the metal body formed of the cylindrical body having the hollow portion, the low deformation resistance is reduced.
  • the shear deformation can be performed while expanding and deforming the metal body in the region, and the metal structure can be further refined.
  • the metal working method as set forth in claim 1 by bringing a forming guide body for forming the metal body into a predetermined shape into contact with the low deformation resistance region, in addition, since the metal body can be deformed to a required shape by the molding guide while miniaturizing the metal structure by shear deformation in the low deformation resistance region, the metal body having high strength is a metal body having high ductility. In! Thus, a metal body having a required shape can be provided.
  • the forming guide body is a heating means for heating the metal body, so that the forming guide body is in contact with the forming guide body.
  • the contact portion of the contacted metal body can be locally heated, and the low deformation resistance region can be more easily formed.
  • the forming guide body is a cooling means for cooling the metal body, so that the forming guide body is in contact with the forming guide body.
  • the contact portion of the contacted metal body can be locally cooled, and the low deformation resistance region after the shear deformation can be efficiently cooled, and the production efficiency can be improved.
  • the low deformation resistance region is extended in one direction by moving the region along the extension direction of the metal body.
  • the entire metal structure of the metal body can be extremely easily refined, and the metal structure can be continuously refined.
  • the metal body extended in one direction, the deformation resistance is locally reduced, and a low deformation resistance region that traverses the metal body is temporarily formed, and
  • a non-low deformation resistance region is created along the side edge of Since the metal structure is refined by shearing deformation, the metal structure in the locally formed low deformation resistance region can be surely refined, and the metal body having high strength is highly ductile. Can be provided at low cost.
  • the non-low deformation resistance region formed by the non-low deformation resistance region generating means is moved along the extension direction in the metal body according to claim 30. Since the metal structure is formed on the side edge of the low deformation resistance region on the downstream side in the moving direction of the metal body, the metal structure can be continuously refined as the metal body moves, and the metal structure becomes finer. Since the production efficiency of the metalized body can be improved, a metal body having high strength or high ductility can be provided at low cost.
  • the non-low deformation resistance region generating means is a cooling means for cooling the metal body. Since the region can be generated very easily and reliably, a metal body having a fine metal structure can be provided reliably at low cost.
  • the metal body of claim 30 in addition to the metal body of claim 30, the metal body is rapidly cooled in the non-low deformation resistance region, so that the metal structure is maintained by maintaining the heating state. Since the enlargement can be suppressed and the metal body can be quenched, the function of the metal body can be enhanced.
  • the low deformation resistance region is formed in a vacuum in the metal body according to claim 30, the surface of the low deformation resistance region that has been sheared and deformed is formed.
  • the formation of a reaction film with a gas component can be prevented, and the processing in a subsequent step can be reduced.
  • the metal body when the metal body is heated when forming the low deformation resistance region, the metal body can be cooled without using cooling means by the self-cooling action of the metal body, and the formation efficiency of the low deformation resistance region is improved. Can be improved.
  • the low deformation resistance region is formed under high pressure in the metal body according to claim 30, the action of the high pressure on the low deformation resistance region is achieved. As a result, the efficiency of miniaturization of the metal structure can be improved.
  • the metal structure of the metal body is miniaturized by forming the low deformation resistance region in an active gas atmosphere in the metal body described in claim 30. Then In both cases, a reaction region with the active gas can be formed on the surface of the low deformation resistance region, so that the metal body can be enhanced in function.
  • the metal structure of the metal body is miniaturized and the low deformation resistance region is obtained by using an active gas of nitrogen gas in addition to the metal body of claim 36.
  • the metal structure of the metal body is changed by using methane gas and Z or monocarbon gas as the active gas in addition to the metal body according to claim 36. Since the size is reduced and the low deformation resistance region can be carburized, the function of the metal body can be enhanced.
  • the metal structure of the metal body is refined and the low deformation resistance region is formed.
  • the powder can be mechanically mixed into the metal, and the metal body can be enhanced.
  • a metal body having a composition that is difficult to form with the conventional structure can be easily formed, and when a powder other than metal is sprayed on the low deformation resistance region, the metal body has a novel composition, and it tends to become a new metal body .
  • the metal structure of the metal body can be miniaturized and reduced. Particles ionized can be mixed into the deformation resistance region, and the metal body can be enhanced. In particular, a metal body having a composition that is difficult to form with a conventional structure can be easily formed.
  • the second heating is performed to form the low deformation resistance region.
  • the low deformation resistance region is formed in the non-constrained region of the constraining means for constraining the high-temperature metal body. It becomes very heated during the manufacturing process of the metal body! /
  • the metal structure of the metal body can be refined, and a metal body with a finer metal structure can be manufactured without increasing the number of manufacturing processes Therefore, a metal body having a fine metal structure can be provided at low cost.
  • the low deformation resistance region is formed in the metal body immersed in the liquid, so that the formation condition of the low deformation resistance region is notched. Can be suppressed, and a metal body having a uniformly refined metal structure can be formed.
  • the metal body according to claim 43 in the metal body according to claim 43, the metal body is heated in a liquid to form the low deformation resistance region, so that the low deformation resistance formed by heating is formed.
  • the cooling of the region can be performed promptly, and in particular, the quenching can be continuously performed on the portion where the shear deformation has been completed, so that the metal body can have high functionality.
  • the thermal conductivity around the low deformation resistance region is reduced when the low deformation resistance region is formed in the metal body according to claim 44. Thereby, the metal body in the liquid can be efficiently heated.
  • the metal body having a finer metal structure is plastically worked without coarsening the metal structure.
  • a metal body having a required shape can be provided, particularly in the case of a metal body having a high ductility due to a reduction in size.
  • the metal structure is finely divided.
  • the obtained metal body was subjected to plastic working without coarsening the metal structure, whereby the metal structure was refined, so that the metal body having high strength or high ductility was formed into a desired shape.
  • Metal body can be provided.
  • the metal structure according to claim 47 is not subjected to coarsening of the metal structure, and plastic working was performed in a short heating state. Accordingly, it is possible to prevent the metal structure from being enlarged during the plastic working and to prevent the metal body from increasing in strength or from having high ductility, and to provide a metal body having a required shape in which the strength or the ductility is increased.
  • the metal body according to claim 30 in the metal body according to claim 30, the metal body is preliminarily subjected to a carburizing treatment, whereby a decarburizing treatment is performed along with the shear deformation in the low deformation resistance region. The metal structure can be refined while processing, and the metal body can be further enhanced.
  • the metal structure is refined while extending the low deformation resistance region in the metal body according to claim 30, the low deformation resistance region can be sheared. Since the strain due to elongation can be applied instead of only the strain caused by the strain, a metal body having a finer metal structure can be formed.
  • the metal structure according to claim 30 is further reduced in size by shrinking the metal structure while compressing the low deformation resistance region, so that the low deformation resistance region is sheared. Since the strain due to elongation can be applied instead of only the strain caused by the strain, a metal body having a finer metal structure can be formed.
  • the hollow body in the metal body according to claim 30, is formed in a reduced pressure state as a cylindrical body having a hollow portion, so that the hollow body is formed in the low deformation resistance region. Shear deformation can be performed while shrinking and deforming the metal body toward the portion, and a metal body with a finer metal structure can be formed.
  • the hollow body has a high pressure state as the cylindrical body having the hollow part, so that the metal is provided in the low deformation resistance region. Shear deformation can be performed while expanding and deforming the body, and a metal body with a finer metal structure can be formed.
  • the metal body according to claim 30 is brought into contact with the forming guide body in the low deformation resistance region, so that the metal body in the low deformation resistance region is subjected to shear deformation.
  • the metal body can be deformed to the required shape by the forming guide body while the metal structure is refined by the method, so that the metal body having the required shape can be used in the metal body having high strength or high ductility. Can be provided.
  • the forming guide body is a heating means for heating the metal body, so that the metal in contact with the forming guide body.
  • the contact part of the body can be locally heated, and the low deformation resistance region can be more easily formed,
  • a metal body having high strength or high ductility can be formed at low cost by making the metal structure finer.
  • the forming guide body is a cooling means for cooling the metal body, so that the metal in contact with the forming guide body.
  • the contact part of the body can be locally cooled, the low deformation resistance region after shear deformation can be efficiently cooled to improve manufacturing efficiency, and the metal structure is refined to increase strength or ductility.
  • the scuttled metal body can be formed at low cost.
  • the low deformation resistance region is formed by traversing the metal body extending in one direction, and the low deformation resistance region is formed of the metal body.
  • the metal structure of the metal body extended in one direction can be continuously refined, and a metal body having a refined metal structure of the entire metal body can be provided.
  • the strength or the ductility of the metal body is increased.
  • the metal structure is refined to increase the strength of the metal body.
  • it is intended to achieve high ductility.
  • the present invention forms a low deformation resistance region in which the deformation resistance is locally reduced in a metal body, and shears the low deformation resistance region.
  • the metal structure is refined by increasing the strain.
  • a non-low deformation resistance region having an increased deformation resistance is formed along the low deformation resistance region.
  • the non-low deformation resistance region generation means can easily adjust the deformation resistance of the metal body by using a cooling means for cooling the metal body.
  • a cooling means for cooling the metal body For example, in a hot rolling step, a metal body in a heated state is cooled by being sent to a cooling device, and a non-low deformation resistance region in which deformation resistance is increased with cooling is formed.
  • the non-low deformation resistance area which is the area after the cooling device is sent, the area before the cooling device is sent is subjected to shear deformation to easily refine the metallographic structure, thereby increasing strength or ductility. It is possible to produce a metal body which has been deflected.
  • the low deformation resistance region described above is a region in which the deformation resistance is reduced by heating the metal body, and is accompanied by the action of an external force as compared with regions other than the low deformation resistance region. This is the area where deformation tends to occur.
  • the non-low deformation resistance region is a region where the deformation resistance is larger than the low deformation resistance region! / ⁇ , and the region other than the low deformation resistance region is basically a non-low deformation resistance region. is there.
  • the low deformation resistance region is not only formed by heating.
  • a non-low deformation resistance region is formed by attaching a restraint body that restrains a metal body around a metal body heated to a required temperature,
  • a non-constrained area can be made a low deformation resistance area by attaching a constraining body.
  • the non-constrained area is partially formed, and the non-constrained area is defined as a low deformation resistance area. Shearing can also be applied.
  • the non-low deformation resistance region is formed by restricting the metal body, which has been heated to a predetermined temperature or more and is in the low deformation resistance state as a whole, by abutting the constraining body.
  • the non-constrained area is made to have a low deformation resistance area by being brought into contact with the constrained body.
  • the structure can be refined, and a metal body having a refined metal structure can be produced without increasing the number of production steps.
  • the metal body may be composed of an alloy composed of two or more kinds of metal elements, which is not limited to the case where the metal body is composed of a single metal composed of one kind of metal element.
  • an intermetallic compound consisting of in addition, unless otherwise noted
  • the metal body also includes an intermetallic compound such as a ceramic body containing a metal.
  • the metal body does not need to have a uniform composition.
  • the first metal layer 11 has the second metal layer 12 and the third metal layer 12 has the same structure.
  • the laminate 10 in which the metal layers 13 are laminated may be used.
  • the first metal layer 11, the second metal layer 12, and the third metal layer 13 may each be a required metal, alloy, or intermetallic compound.
  • the first metal layer 11, the second metal layer 12, and the third metal layer 13 may be simply polymerized to form a laminate 10, or may be laminated by plating, vapor deposition, pressure bonding, or the like.
  • the laminate 10 may be formed by polymerizing an appropriate number of laminates, not limited to three layers.
  • FIG. 2 as a schematic cross-sectional view of the metal body, a mixture obtained by mixing the first metal powder 14 and the second metal powder 15 was preliminarily baked into a predetermined shape.
  • the calcined body 16 may be used. At this time, the calcined body 16 is formed by mixing two types of powders, the first metal powder 14 and the second metal powder 15, to form a calcined body 16.
  • the calcined body 16 may be formed by mixing not only the metal powder but also the nonmetal powder.
  • the metal body is a filler 19 formed by filling a metal powder 18 into pores of a porous body 17 having a predetermined shape, as shown in a schematic cross-sectional view of the metal body in FIG. You can.
  • the porous body 17 may be filled not only with the metal powder 18 but also with a non-metallic powder.
  • the metal body is a metal wire bundle 23 formed by bundling a plurality of first metal wires 21 and a plurality of second metal wires 22. It may be.
  • the metal wire bundle 23 may be formed by bundling not only a metal wire bundle 23 with two types of metal wires, that is, a first metal wire 21 and a second metal wire 22, but also a variety of other metal wires.
  • the metal body can have various forms, and as long as the metal structure is refined by shearing deformation as described later, the metal body may have any form.
  • the metal body has a rectangular cross-section, and in Fig. 4, the cross-section of the metal body is circular.
  • the metal body has a rectangular cross-section or a circular cross-section. It is not limited to the round bar body, but may be a flat body or a cylindrical body having a hollow portion.Other than these, for example, H-shaped steel, angle steel, grooved steel, T-shaped steel Steel body, ripple groove steel body, etc. You may use it.
  • the metal body may be preliminarily subjected to a necessary treatment such as a carburizing treatment and a nitriding treatment.
  • a necessary treatment such as a carburizing treatment and a nitriding treatment.
  • the decarburization processing can be performed along with the shear deformation of the low deformation resistance region formed on the metal body as described later, and the decarburization processing is performed.
  • the metal structure can be refined, a highly functional metal body can be formed.
  • a functionalized metal body can be formed.
  • the metal body is formed to extend in one direction, and the low deformation resistance region 30 is formed so as to cross the metal body as shown in FIG.
  • the formed first non-low deformation resistance region 31 and second non-low deformation resistance region 32 are formed.
  • the low deformation resistance region 30 is formed by traversing the metal body extended in one direction as described above, thereby moving the low deformation resistance region 30 along the extension direction of the metal body to reduce the deformation. By subjecting the resistance region 30 to shear deformation, the metal structure can be continuously refined.
  • the mode of the strong strain applied to the low deformation resistance region 30 can be made different by adjusting the deformation mode of the shear deformation occurring in the low deformation resistance region 30.
  • regions having different degrees of fineness of the metal structure can be formed in the metal body, so that the metal body can be multifunctional.
  • the shear deformation of the low deformation resistance region 30 causes the second non-low deformation resistance region 32 to vibrate in the thickness direction of the metal body with respect to the first non-low deformation resistance region 31. This is performed by changing the position of the second non-low deformation resistance region 32 relatively to the first non-low deformation resistance region 31 by adding a vibrating motion to cause the vibration.
  • the vibration motion may be such that the vibration direction is not the thickness direction of the metal body.
  • the vibration direction may be the width direction of the metal body orthogonal to the thickness direction of the metal body.
  • a composite vibration that combines both the vibration in the thickness direction and the vibration in the width direction of the metal body It may be moving. In the case of the composite vibration, a large shear stress can be applied to the low deformation resistance region.
  • the low deformation resistance area is not necessarily formed so as to cross the metal body, and the low deformation resistance area is formed only in a required area of the metal body.
  • the second non-low deformation resistance region 32 ′ is replaced with the first non-low deformation resistance region 31 ′.
  • the second non-low deformation resistance region 32 ′ is relatively twisted around the rotation axis that is substantially parallel to the extension direction of the metal body, thereby making the second non-low deformation resistance region 32 ′ relative to the first non-low deformation resistance region 31 ′.
  • the low deformation resistance region 30 ' can be sheared.
  • the second non-low deformation resistance region 32 ' may always be rotated at a constant angular velocity with respect to the first non-low deformation resistance region 31', and the normal rotation and the reverse rotation may be performed. Rotate so that it can be repeated alternately.
  • the shearing deformation in the low deformation resistance region due to the twisting around the rotation axis is not limited to the case where the metal body is a round rod or a cylinder having a hollow part.
  • a low-deformation resistance region 30 ⁇ is formed in a transverse state in a metal body made of a flat plate, and the first non-low-deformation resistance region 3 ⁇ and the second non-low-deformation resistance region 32 sandwiching the low-deformation resistance region 30 ′′ are formed.
  • the second non-low deformation resistance region 32 ′ is substantially opposite to the first non-low deformation resistance region 31 ′ through the center of the metal body and substantially parallel to the extension direction. Rotation may be performed so that rotation and rotation are alternately repeated.
  • the low deformation resistance regions 30, 30 ', 30 are subjected to shearing. Since distortion due to compression that can be reduced by distortion alone can be reduced, the metal structure can be further refined.
  • the metal structure can be further refined.
  • a first low deformation resistance region 30a traversing the metal body is provided on a metal body extending in one direction.
  • the low deformation resistance region 30b is formed to be separated from the low deformation resistance region 30b by a predetermined distance, and a region sandwiched between the first low deformation resistance region 30a and the second low deformation resistance region 30b is defined as an intermediate non-low deformation resistance region 33.
  • the metal body is a flat body
  • the intermediate non-low deformation resistance region 33 is vibrated in the thickness direction of the metal body.
  • the middle non-low deformation resistance region 33 is vibrated in the width direction of the metal body orthogonal to the thickness direction of the metal body, and in FIG.
  • the vibration is performed by a composite vibration in which both the vibration in the thickness direction and the vibration in the width direction of the metal body are combined.
  • the region sandwiched between the first low deformation resistance region 30a and the second low deformation resistance region 30b is the first low deformation resistance region of the intermediate non-low deformation resistance region 33.
  • a first feeding device 36 including a roller 36a and a first lower feeding roller 36b is provided, and a metal body is sandwiched between the intermediate non-low deformation resistance region 33 and the second low deformation resistance region 30b.
  • a second feeder 37 is provided, which includes a second upper feed roller 37a and a second lower feed roller 37b for feeding the metal body along the direction in which the metal body extends, and a first feeder 36 and a second feeder 36 are provided.
  • the first low deformation resistance region 30a and the second low deformation resistance region 30b may be sheared by moving the feeding device 37 up and down in opposite phases.
  • the shear deformation generated in the first low deformation resistance region 30a and the second low deformation resistance region 30b is microscopically the same as the above-described shear deformation due to the vibration mode in FIG. 8 (a). .
  • the metal body is a round rod or a cylinder having a hollow portion, as shown in FIG. 10, the first low deformation resistance region 30a and the second low deformation resistance region 30a provided at a predetermined interval are provided.
  • the intermediate non-low deformation resistance region 33 ′ between the resistance region 30b ′ and the rotation axis substantially parallel to the extension direction of the metal body By rotating the intermediate non-low deformation resistance region 33 ′ between the resistance region 30b ′ and the rotation axis substantially parallel to the extension direction of the metal body, the first low deformation resistance region 30a and the second low deformation resistance region are rotated. 30b can be easily sheared
  • reference numeral 34 denotes a rotating roller for rotating the intermediate non-low deformation resistance region 33 '.
  • the positions of the first low deformation resistance region 30a ′ and the second low deformation resistance region 30b ′ in the metal body are moved by moving the metal body along the extension direction. be able to.
  • the first low deformation resistance regions 30a and 30a 'and the second low deformation resistance regions 30b and 30b' are formed in the metal body.
  • the metal body can be easily sheared and deformed.
  • Metal body can be manufactured at low cost.
  • the first low deformation resistance regions 30a, 30a 'and the second low deformation resistance regions 30b, 30b' are usually formed by heating a metal body, respectively. By making the heating temperatures of the 30a, 30a 'and the second low deformation resistance regions 30b, 30b' different from each other, the first low deformation resistance regions 30a, 30a 'and the second low deformation resistance regions 30b, 30b' act.
  • the different shear stresses can be applied to the metal structure, and different shear stresses can be applied to the metal structure in two stages, so that the metal structure can be further refined.
  • the heating temperature of the metal body may be lowered by improving the ductility of the metal body. As a result, the metal structure can be further refined.
  • a first low deformation resistance region forming region for forming the first low deformation resistance regions 30a and 30a ', and a second low deformation resistance region forming region are moving along the extension direction.
  • a second low deformation resistance region forming region for forming the deformation resistance regions 30b and 30b ' are traversing the second low deformation resistance region forming region for forming the deformation resistance regions 30b and 30b '.
  • the metal body is a hardly deformable alloy such as a magnesium alloy or a hardly deformable intermetallic compound, As shown in FIG. 11, the first low deformation resistance region forming region has a high temperature, and the second low deformation resistance region forming region has a lower temperature than the first low deformation resistance region forming region.
  • the heating temperature of the first low deformation resistance region forming region is a temperature at which the metal body of the first low deformation resistance region 30a, 30a is sufficiently softened, and shear deformation becomes possible. It only needs to be temperature. At such a heating temperature, a shear stress is applied to the first low deformation resistance regions 30a and 30a '.
  • the first low deformation resistance regions 30a and 30a ' are easily sheared to make the metal structure uniform and, at the same time, are formed as medium-sized fine particles, for example, having a particle size of about 10 to 50 m, so that the deformation resistance of the metal body is reduced. A / J, can be reduced.
  • the heating temperature of the second low deformation resistance region forming region is set to a temperature at which recrystallization of the metal structure occurs, and the metal structure of the second low deformation resistance region 30b, 30b 'becomes large. While suppressing this, the metal structure is refined by shear deformation.
  • the crystal is formed so that the metal body can be sheared and deformed in a low temperature region where recrystallization occurs in the second low deformation resistance region forming region.
  • the metal structure can be easily refined even with a hardly deformable alloy or a hardly deformable intermetallic compound, and high ductility can be achieved.
  • the metal body is a heat-treated alloy
  • rapid heating and rapid cooling in the first low deformation resistance region forming region are used to make use of the metal body in the first low deformation resistance region forming region.
  • the heating temperature is set to a temperature that is a condition for the solution treatment of the metal body, and a shear stress is applied to the first low deformation resistance areas 30a, 30a ′ in that state, so that the first low deformation resistance areas 30a, 30a ′ are applied. Therefore, it is possible to form a solid solution of more additive elements than the composition in the phase diagram.
  • the heating temperature of the second low deformation resistance region forming region is set to a temperature at which the recrystallization of the metal structure occurs, and the metal structure of the second low deformation resistance region 30b, 30b 'is enlarged. While suppressing this, the metal structure is refined by shear deformation.
  • low deformation resistance regions such as the first low deformation resistance regions 30a and 30a ′ and the second low deformation resistance regions 30b and 30b ′ are subjected to shear deformation.
  • the effect of refining the metal structure of the metal body is to reduce the size of the metal structure by shearing the crystal grains in the metal body that are easily deformed by heating or the like. It is considered that it is.
  • deformation resistance is increased because crystal grains of the metal body are unlikely to be deformed by cooling or the like, as described later, and the shear stress accompanying the shear deformation is High deformation resistance! ⁇ Boundary part between high deformation resistance area and low deformation resistance area It is considered that the fine action of the metal structure is particularly promoted at the boundary between the high deformation resistance region and the low deformation resistance region.
  • the metal body when the metal body is moved along the extension direction and passes through the first low deformation resistance region forming region and the second low deformation resistance region forming region, the metal body becomes high in each case. It is more important to control the temperature when changing from a low-resistance region to a high-resistance region than when changing from a low-resistance region to a low-resistance region.
  • the metal body when the metal body changes from the high deformation resistance region to the low deformation resistance region, the degree of freedom in temperature control is high. As shown in FIG. 12, the metal body is heated to form the low deformation resistance region.
  • a preheating area may be provided in advance to preheat the metal body, and then the metal body may be heated to a predetermined temperature by the main heating.
  • Low deformation resistance area 30 by providing a preheating region before the first low deformation resistance region forming region to preheat the metal body, Low deformation resistance area 30
  • the preheating temperature in the preliminary heating region is set as the solution heat temperature, so that it is necessary for the solution heat treatment. Since heating can be performed for a sufficient processing time, the solution-formed metal body can be surely sheared in the second low deformation resistance region forming region.
  • the main heating is performed after maintaining each of the predetermined temperatures for a predetermined time to reduce the low deformation resistance region by shear deformation. You may let it.
  • the metal body is provided with a plurality of intermediate non-low deformation resistance regions 33, 33 'along the direction of extension of the metal body in which the shear deformation is simply applied in two stages, so that the metal body can be further divided into multiple stages. May be added.
  • the metal body is a metal-containing ceramic body or the like, the shear deformation under different conditions can be achieved each time the shear deformation is applied, so that the homogeneity can be further improved.
  • Fig. 13 shows an apparatus for shearing deformation by twisting a low deformation resistance region formed in a metal body.
  • the inventors of the present invention refer to the method of twisting the low-deformation resistance region to cause the metal structure to be refined by shearing and deforming the metal structure as an STSP (Severe Torsion Straining Process) method.
  • STSP Stress Torsion Straining Process
  • the metal body M2 is a round rod extending in one direction, but may be a cylindrical body having a hollow portion.
  • the STSP device includes a fixed part 61, a shear deformation part 62, and a rotating part 63 provided on the upper surface of the base 60 along the direction of extension of the metal body M2.
  • the fixed portion 61 is composed of a first fixed wall 61a erected on the upper surface of the base 60 and a second fixed wall 61b.
  • the first fixed wall 61a and the second fixed wall 61b are each formed of a plate having a predetermined thickness, and the first fixed wall 61a and the second fixed wall 61b are substantially parallel to each other.
  • the first fixed wall 61a and the second fixed wall 61b are each provided with an insertion hole through which the metal body M2 is inserted, and the metal body M2 is inserted into the through hole, respectively.
  • the metal body M2 is fixed by being in contact with the peripheral surface of M2.
  • the fixing portion 61 is not limited to the one formed by the first fixed wall 61a and the second fixed wall 61b, and may have any structure as long as the metal body M2 can be fixed.
  • to fix the metal body M2 is to fix the metal body M2 in a round bar shape against rotation of the metal body M2 about the center axis of the metal body M2 as a rotation axis.
  • the rotating portion 63 includes a first regulating wall 63a, a second regulating wall 63b, and a forward / backward regulating member interposed between the first regulating wall 63a and the second regulating wall 63b. It comprises a body 63c and a rotating device (not shown).
  • the first control wall 63a and the second control wall 63b are each formed of a plate having a predetermined thickness, and the first control wall 63a and the second control wall 63b are substantially parallel to each other. And the first regulatory wall 63
  • a through hole for inserting the metal body M2 is provided in each of the a and the second regulating wall 63b, and the metal body M2 is passed through each of the through holes.
  • the forward / backward restricting body 63c is formed of a cylindrical body having substantially the same length as the distance between the first restricting wall 63a and the second restricting wall 63b, and capable of being mounted around the metal body M2. ing.
  • the forward / backward restricting body 63c is mounted around the metal body M2 between the first restricting wall 63a and the second restricting wall 63b, and further includes fixing screws 63d, 63d screwed to the peripheral surface of the forward / backward restricting body 63c.
  • the distal end portion is brought into contact with the peripheral surface of the metal body M2 penetrating the advance / retreat regulating body 63c, and the advance / retreat regulating body 63c is fixed to the metal body M2.
  • Various devices can be used as a rotating device for rotating the non-low deformation resistance region of the metal body M2, and the rotating body 63 can be rotated while applying a predetermined torque to the metal body M2. Any device is possible if possible.
  • a rotation motor (not shown) is interlockedly connected to the end of the metal body M2 on the rotation section 63 side, and this rotation motor is used as a rotation device.
  • the shear deformation portion 62 has a heating device 64 for heating the metal body M2 to a predetermined temperature and a low deformation resistance region 30 'formed on the metal body M2 by heating by the heating device 64 to have a predetermined width.
  • a cooling device 65 for cooling the metal body M2 is used.
  • a high-frequency heating coil is used as the heating device 64, and the high-frequency heating coil is wound around the metal body M2 a predetermined number of times, and the metal body Ml is deformed by heating to a predetermined temperature. The resistance is reduced to form a low deformation resistance region 30 '.
  • the heating device 64 is not limited to the high-frequency heating coil, but may be heating using an electron beam, plasma, laser, electromagnetic induction, heating using a gas burner, or heating using an electric short circuit.
  • the width of the low deformation resistance region 30 'in the extension direction of the metal body M2 can be extremely reduced, and the low deformation resistance region 30' Since a larger shear stress can be applied, it is possible to further refine the metal structure.
  • the cooling device 65 includes a first water outlet 65b for discharging water supplied from the water supply pipe 65a and a second water outlet 65b.
  • the metal body M2 is configured by the water outlet 65c, and the metal body M2 is cooled by the water discharged from the first water outlet 65b and the second water outlet 65c.
  • reference numeral 66 denotes a water receiving container that receives water discharged from the first water outlet 65b and the second water outlet 65c
  • 67 denotes a drain pipe connected to the water receiving container 66.
  • the first water outlet 65b and the second water outlet 65c are forces for injecting water downward from above the metal body Ml.
  • a plurality of water outlets 68 may be provided at substantially equal intervals around the metal body Ml, and water may be sprayed from the plurality of water outlets 68 toward the metal body Ml.
  • each water outlet 68 can further improve the cooling efficiency by injecting water at a required angle of incidence ⁇ with respect to the normal direction of the surface of metal body Ml. Therefore, the temperature gradient of the metal body Ml at both ends of the low deformation resistance region 30 'can be increased, and a large shear stress can be applied. Can be expected.
  • air bubbles generated on the surface to be cooled due to cooling can be efficiently scattered.
  • the cooling efficiency can be improved by suppressing a decrease in the cooling efficiency due to the generation of bubbles.
  • both sides of the low deformation resistance region 30 'formed by the heating device 64 provided between the first water outlet 65b and the second water outlet 65c are connected to the first water outlet 65b and the first water outlet 65b. Cooling is performed by the water discharged from the second water discharge port 65c.In particular, by adjusting the arrangement positions of the first water discharge port 65b and the second water discharge port 65c, the low deformation resistance region 30 ' The area is extremely small compared to the length in the extension direction.
  • the low deformation resistance region 30 ' As described above, by making the low deformation resistance region 30 'a minute width along the direction of extension of the metal body M2, an extremely large shear deformation is generated in the low deformation resistance region 30'.
  • the refinement efficiency of the metal structure can be improved. Also, when the low deformation resistance region 30 'is twisted by the rotating device, the twisting force can be prevented from being generated in the low deformation resistance region 30'. Further, the residual strain due to the shearing deformation or the residual deformation generated in the low deformation resistance region 30 ′ due to the twisting can be reduced.
  • the low deformation resistance region 30 'heated by the heating device 64 is quenched by being rapidly cooled by the cooling device 65, and the hardening of the metal body M2 having a fine metal structure is performed.
  • the degree can be improved.
  • the width of the low deformation resistance region 30 ' is desirably within about three times the cross-sectional width of a cross section taken along a plane perpendicular to the direction of extension of the metal body M2.
  • the cooling device 65 is not limited to a water cooling device as a water cooling device.
  • the cooling device 65 is air-cooled if it can be cooled so that the heating region by the heating device 64 can be a local region.
  • An appropriate cooling device may be used regardless of whether cooling is performed or excitation cooling is performed.
  • the water receiving container 66 is an appropriate vacuum chamber and the internal space of the vacuum chamber is a vacuum state of about 500 hPa or less and the low deformation resistance region 30 'is formed in vacuum, the low The formation of a reaction film with a gas component on the surface of the deformation resistance region 30 'can be prevented. Therefore, it is possible to reduce the processing in the post-process.
  • the low-deformation resistance region 30 ' can have an extremely small width, and an extremely large shear deformation can be generated in the low-deformation resistance region 30'. it can.
  • the low deformation resistance region 30' has a finer metallographic structure, and is further implanted with ion-implanted particles.
  • a highly functional metal body can be formed.
  • the particles can be injected deeper than in the normal ion doping, and the injected particles can be sufficiently mixed with the metal body M2.
  • the required plastic powder may be sprayed on the low deformation resistance region 30 '.
  • the metal structure of the metal body M2 can be miniaturized, and the powder can be mechanically mixed into the low deformation resistance region 30'.
  • a functionalized metal body can be formed.
  • a metal body having a composition that is difficult to form with the conventional structure can be easily formed, and when a powder having a composition other than metal is sprayed on the low deformation resistance region 30 ′, a new material can be manufactured. it can.
  • the region may be in a normal pressure state, not necessarily in the vacuum.
  • a low-deformation resistance region 30 ' is not formed in a vacuum under reduced pressure. region
  • an inert gas may be supplied and pressurized only when an inert gas is supplied and pressurized in the pressurized chamber.
  • the metallographic structure of the metal body M2 is miniaturized, and a reaction region with the active gas is formed on the surface of the low deformation resistance region 30'.
  • a reaction region with the active gas is formed on the surface of the low deformation resistance region 30'.
  • the metal structure of the metal body M2 when nitrogen gas is used as the active gas, the metal structure of the metal body M2 can be refined and the low deformation resistance region 30 ′ can be nitrided. It is possible to provide a high-performance, high-strength, highly functional metal body M2 that has been nitrided at a low cost.
  • a carbon-containing gas such as methane gas and Z or carbon monoxide gas
  • the metal structure of the metal body M2 is refined and the low deformation resistance region 30 'is carburized. Therefore, it is possible to provide a high-performance metal body M2 which has high strength and high ductility and is carburized as the metal structure is refined at a low cost.
  • the pressurized chamber does not necessarily need to be in a high pressure state, and the pressurized chamber may be merely an active gas atmosphere.
  • an inert liquid or an active liquid may be brought into contact.
  • the above-mentioned STSP device may be immersed in an inert liquid or an active liquid as it is to form the low deformation resistance region 30 '.
  • the low deformation resistance region 30 ' By forming the low deformation resistance region 30 'in an inert liquid or an active liquid as described above, the low deformation resistance region 30' can be formed.
  • the formation conditions of the deformation resistance region 30 ' can be stabilized, and the metal structure can be uniformly refined.
  • the low deformation resistance region 30 ' can be formed by heating the metal body M2 in an inert liquid or an active liquid, so that the inert liquid or the active liquid can be used as a coolant. Cooling efficiency can be improved.
  • the thermal conductivity is reduced around the region where the low deformation resistance region 30' is formed in the metal body M2, and the low deformation resistance region 30 'is added.
  • the heat is suppressed from diffusing through the inert liquid or the active liquid. Therefore, it is possible to efficiently heat the metal body M2 in the liquid.
  • an air nozzle (not shown) is positioned near the low deformation resistance region 30 'to be heated, and gas is supplied from the air nozzle in the form of a bubble to surround the low deformation resistance region 30'.
  • Reduces thermal conductivity by creating a bubble region in the air and forming a heat insulating layer of bubbles Can be done. Therefore, the thermal conductivity can be extremely easily reduced, and the metal body M2 can be efficiently heated in the liquid.
  • the gas sent from the air nozzle in the form of bubbles is nitrogen gas
  • the metal body M2 is a hollow cylindrical body having a hollow portion
  • the hollow portion is reduced in pressure so that the metal body is shrunk and deformed toward the hollow portion in the low deformation resistance region. Shear deformation can be performed, and the metal structure can be further refined.
  • the inert gas or the active gas or the inert liquid is supplied in the hollow part so that the active liquid is supplied at a predetermined pressure. You may.
  • the metal body may be in a relatively reduced pressure state by keeping the outside of the metal body in a pressurized state.
  • the STSP apparatus is configured as described above.
  • the metal structure is refined by twisting the low deformation resistance region 30 'formed in the metal body M2
  • the metal body M2 is attached to the STSP apparatus.
  • the low deformation resistance region 30 ′ is heated by the heating device 64 while the cooling device 65 cools both sides of the low deformation resistance region 30 ′.
  • heating by the heating device 64 is performed until the temperature of the low deformation resistance region 30 'becomes equal to or higher than the softening temperature or the recrystallization temperature of the strain generated in the metal body M2.
  • the low deformation resistance region 30 ' is twisted by rotating the non-low deformation resistance region around the rotation axis using the central axis of the metal body M2 as the rotation axis by the rotating device.
  • the rotation of the non-low deformation resistance region by the rotating device is set to 120 rpm.
  • the number of rotations is set to one half or more, and the greater the number of rotations, the greater the shear deformation that can occur, and the more efficient the microstructure can be refined.
  • the heating temperature of the metal body M2 by the heating device 64 is desirably controlled to a temperature equal to or higher than the recovery / recrystallization temperature and equal to or lower than the temperature at which the influence of the coarsening of the metal crystal grains starts to occur.
  • one end of the metal body M2 on which the low deformation resistance region 30 ′ is formed is fixed and the other end is rotated, but the low deformation resistance region 30 ′ is sandwiched. You can rotate both sides in the opposite direction, respectively.
  • the low deformation resistance region 30' After twisting the low deformation resistance region 30 'in this way, the low deformation resistance region 30' is cooled.
  • the metal body M2 cannot be moved along the extension direction, but the metal body M2 is configured to be movable along the extension direction, so that the metal body M2 has a low deformation resistance.
  • the position of the region 30 ' can be displaced, and the metal body M2 can be continuously subjected to a shearing process by twisting to form a metal body M2 having a fine metal structure over a wide area. it can.
  • the shear deformation portion 62 including the heating device 64 and the cooling device 65 is configured to be movable in the direction of extension of the metal body M2. Just a little.
  • the movement of the metal body M2 in the extension direction or the movement of the shear deformation portion 62 along the extension direction of the metal body M2 is reciprocated, so that the metal body M2 is repeatedly moved to the region of a predetermined width of the metal body M2.
  • the metal structure can be further refined by performing a shearing process.
  • the rotation speed of the metal body M2 by the rotating device or the heating or cooling condition is adjusted for each low deformation resistance region 30 'formed at a required position of the metal body M2.
  • the degree of refinement of the metal structure the strength or ductility of the metal body M2 can be adjusted, and the metal body M2 with partially improved strength or improved ductility can be generated. .
  • FIG. 15 is an electron micrograph of JIS-A5056, which is an aluminum alloy before being processed by the STSP apparatus described above
  • FIG. 16 is an electron micrograph of JIS-A5056 processed by the STSP apparatus. It can be seen that by deforming the metal body M2 by shearing, the crystal grain of the metal structure, which was 60-70 m, can be reduced to 5 ⁇ m or less.
  • the refining of the crystal grains can be achieved by appropriately setting the heating and cooling conditions. For example, only an extremely narrow area is heated by the electron beam, and the force is heated to the deep part. If the temperature is kept low by self-cooling, the boundary between the low-deformation resistance region and the non-low-deformation resistance region can be narrowed, and the strong strain can be concentrated in the low-deformation resistance region. Noka can also be miniaturized to the level of 10 nanometers.
  • Fig. 17 shows the yield strength and tensile strength of a metal body obtained by treating S45C, which is an iron-based material, with the above-described STSP apparatus, and a metal body that has been subjected to an annealing treatment using the same heat history as in the STSP apparatus.
  • S45C which is an iron-based material
  • STSP apparatus a metal body that has been subjected to an annealing treatment using the same heat history as in the STSP apparatus.
  • the results show a comparison of uniform elongation, and it is clear that treatment with an STSP device can improve the heat resistance and tensile strength without increasing the uniform elongation.
  • Fig. 18 shows a metal body obtained by treating JIS-A5056, which is an aluminum-based material, with the above-described STSP apparatus, and a metal body subjected to annealing treatment using the same heat history as in the STSP apparatus.
  • the results show a comparison of the resistance to heat, tensile strength, and uniform elongation of the steel sheet.It is possible to improve the power resistance and tensile strength without increasing the uniform elongation by treating with the STSP device, as in the case of S45C. You can see that you can do it.
  • the heating device 64 sets the rotation axis region to be non-centered. Heat as a heating distribution!
  • the heating device 64 is formed of a high-frequency heating coil as in the present embodiment, the central axis of the high-frequency heating coil is biased by the rotating portion 63 to rotate the metal body M2.
  • the heating distribution having the rotation axis region as a non-center is used as a heating distribution, so that a region that is not miniaturized in the rotation shaft region is suppressed, and the ST SP device is also used.
  • the metal structure can be uniformly refined.
  • the heating distribution can be made non-centered on the region of the rotating shaft, and the metal structure in the region of the rotating shaft can be surely miniaturized. Can be.
  • one non-low deformation resistance region sandwiching the low deformation resistance region 30 ' is positioned with respect to the other non-low deformation resistance region. Then, the metal body Ml is moved in a direction substantially perpendicular to the direction of extension, and this movement causes a shear deformation in the rotation axis region of the low deformation resistance region 30 ', thereby reducing the non-uniformity of the microstructure of the metal structure. You can prevent it! /
  • the vibration applying body 47 of the SVSP device described later may be incorporated in the STSP device to twist and vibrate the low deformation resistance region 30 '.
  • an appropriate molding guide body for molding the metal body M2 into a predetermined shape is brought into contact with the low deformation resistance area 30 ', and the deformation added to the low deformation resistance area 30' by the molding guide body. It is also possible to prevent a nonuniform metal structure from being formed by generating a shape stress.
  • the deformation resistance is reduced, so that it is possible to easily perform the shaping into the predetermined shape. And can be performed simultaneously.
  • the low deformation resistance region 30 ' is brought into contact with a forming guide body, for example, a wire drawing die 69, so that the low deformation resistance region 30' is subjected to shear deformation.
  • the metal body M2 is drawn by the wire drawing die 69 while making the metal structure finer.
  • the wire drawing die 69 is connected to a heater (not shown) to reach a required temperature.
  • the drawing die 69 is used as a heating device. Therefore, the contact portion of the metal body M2 contacting the wire drawing die 69 can be locally heated, and the low deformation resistance region 30 'can be easily formed.
  • a cooling device that cools the low deformation resistance region 30 ' may be provided in the wire drawing die 69 by providing a water passage (not shown) through which cooling water flows.
  • the contact portion of the metal body contacted with the wire drawing die 69 can be locally cooled, and The low deformation resistance region 30 'can be efficiently cooled, and the production efficiency can be improved.
  • a required forming process may be performed on the metal body M2 by a forming guide body.
  • cooling device is omitted in FIG. 19, and the heating device is omitted in FIG.
  • the forming guide body is not limited to the wire drawing die 69, and a screw thread forming gear may be rolled by appropriately using a male screw forming die-bite or the like.
  • FIG. 21 is a schematic explanatory diagram of a modification of the above-described STSP device.
  • This STSP device is provided with a supply section 70 for supplying the metal body M2 'and a storage section 71 for storing the sheared metal body M2'.
  • the supply unit 70 is supplied with a metal body M2 'wound on a required reel, and is fed while stretching the metal body M2' linearly by a stretching tool (not shown).
  • the metal body M2 'that has been sheared and deformed is wound around a reel by a winding tool (not shown) and housed.
  • a plurality of shear deformation portions 62 ' are provided at predetermined intervals along the extension direction of the metal body M2' between the supply portion 70 and the storage portion 71, and A rotating portion 63 'is provided between the adjacent shear deformation portions 62', 62 ', and the rotating portion 63' rotates the metal body M2 'around a rotation axis substantially parallel to the extension direction of the metal body M2'. Then, the metal body M2 'in the shearing deformation portion 62' is sheared.
  • the shear deformation portion 62 ' includes a high-frequency heating coil 64' for heating the metal body M2 ', a first water outlet 65b' for discharging cooling water for cooling the metal body M2 ', and a second water outlet. 65c ', and the high-frequency heating coil 64' is positioned between the first water outlet 65b 'and the second water outlet 65c', and the metal body M2 'is heated by the high-frequency heating coil 64'.
  • the area is defined as a small range.
  • a rotating roller in contact with the metal body M2 'is provided in the rotating unit 63', and the metal body M2 'is rotated by the rotating roller. Also, the rotating direction of the rotating rollers is opposite in the rotating portions 63 'adjacent to each other.
  • the supply unit 70 and the storage unit 71 are supplied with the metal body M2 'as a means for transporting the metal body M2', so that the metal body M2 'is sheared a plurality of times. Deformation can be applied. [0278] Alternatively, for example, the shearing deformation portion 62 'is pressed at a predetermined interval T along the extension direction of the metal body M2'.
  • the ⁇ ⁇ Since the shear deformation can be performed, the shear deformation is stopped and the metal body M2 'is fed by ⁇ ⁇ , and then the shear deformation is restarted and the metal body M2' is sent by the predetermined distance ⁇ and the same distance. Paying can be repeated. Thereby, manufacturing efficiency can be improved.
  • is an even number, and as shown in Fig. 21, not all rotating parts 63 'are provided between the shearing deformation parts 62' and the shearing deformation parts 62 '.
  • a rotating portion 63 ' may be provided every other time.
  • Fig. 22 shows an apparatus for shear-deforming a low deformation resistance region formed in a metal body by vibration.
  • the inventors of the present invention call the SVSP (Severe Vibration Straining Process) method to reduce the metal structure by shearing and deforming the low deformation resistance region by vibration in this way, and FIG. 22 shows an example of the SVSP device.
  • FIG. Here, for convenience of explanation, the metal body Ml is a rectangular rod extending in one direction, but may have another shape!
  • the SVSP device is provided with a fixed part 41, a shear deformation part 42, and a vibrating part 43 on a base 40 along the extension direction of the metal body Ml.
  • the fixed portion 41 is provided with a first restricting body 44 and a second restricting body 45 along the direction in which the metal body Ml extends.
  • the first regulating body 44 regulates the widthwise movement of the metal body Ml sent along the extension direction
  • the second regulation body 45 regulates the movement of the metal body Ml sent along the extension direction.
  • the metal body Ml is fixed so that it can move forward and backward by restricting the movement in the thickness direction.
  • the metal body Ml is sandwiched and fixed between the first contact roller 44a and the second contact roller 44b rotatably supported by the support members.
  • a lower roller 45c positioned below the metal body Ml is provided on the first support 45a and the second support body 45b which stand upright with the metal body Ml interposed therebetween.
  • An upper roller 45d positioned above the body Ml is rotatably mounted, and the metal body Ml is sandwiched and fixed between the lower roller 45c and the upper roller 45d.
  • reference numeral 46 denotes a guide roller for assisting the feeding of the metal body Ml.
  • the vibrating section 43 is provided with a vibration applying body 47 and a vibration propagation suppressing body 48 along the extension direction of the metal body Ml.
  • the vibration applying body 47 applies a predetermined vibration to the metal body Ml, and the vibration propagation suppressing body 48 suppresses the vibration applied to the metal body Ml from propagating along the metal body Ml in the vibration applying body 47. Then
  • the vibration applying body 47 includes an ultrasonic vibrating body 49 located below the metal body Ml, and a propagating body 50 mounted on the output shaft 49a of the ultrasonic vibrating body 49.
  • the propagating member 50 is configured such that a lower roller 50a positioned below the metal member Ml and an upper roller 50b positioned above the metal member Ml are rotatable on a U-shaped support frame 50c.
  • the metal body Ml is sandwiched between the lower roller 50a and the upper roller 50b.
  • the propagation body 50 vibrates vertically at a predetermined amplitude and at a predetermined frequency, and vibrates the metal body Ml in the vertical direction.
  • Vibrating motion is generated by the ultrasonic vibrating body 49, but is generated by a device other than the ultrasonic vibrating body 49, such as a linear motor or a piezoelectric element, or simply by a cam mechanism.
  • a device other than the ultrasonic vibrating body 49 such as a linear motor or a piezoelectric element, or simply by a cam mechanism.
  • a vibrating device that also provides a cam mechanism force includes one of the metal members Ml near the low deformation resistance region 30 formed in the metal member Ml as described later.
  • An elliptical cam 55 is provided on the side surface side, and a driven elastic body 56 formed of a spring or the like is provided on the other side surface.
  • the metal body Ml is sandwiched between the elliptical cam 55 and the driven elastic body 56, The metal body Ml is configured to vibrate by the rotational movement of the elliptical cam 55.
  • reference numeral 57 denotes a fixed body of the driven elastic body 56
  • reference numeral 58 denotes a support plate that directly contacts the metal body Ml and stably vibrates the metal body Ml.
  • the cam is not limited to the elliptical cam 55, but may be an appropriate cam shape such as a polygonal cam.
  • the amplitude of the vibration applied to the metal body Ml by the ultrasonic vibrator 49 is such that the metal structure in the low deformation resistance region 30 formed in the metal body Ml is refined by shear deformation as described later. Basically, if possible, the required minimum is determined from the grain size of the metal structure of the metal constituting the metal body Ml and the width of the low deformation resistance region 30 in the direction of extension of the metal body Ml. The amplitude is determined.
  • the deformation that does not make the restoration difficult is the deformation in which the low deformation resistance region 30 restores the shape before the vibration in the vibration in a half cycle, and the deformation that makes the recovery difficult is the half cycle.
  • the low deformation resistance region 30 is deformed without restoring the shape before the vibration.
  • the frequency of the vibration applied to the metal body Ml by the ultrasonic vibrating body 49 is such that the distortion caused by the displacement generated in the low deformation resistance region 30 due to the vibration can be eliminated by the distortion eliminating action of the metal body Ml.
  • the frequency Before being eliminated by the recrystallization effect of the tissue, the frequency must be different from the previously applied displacement, that is, a frequency that can give a strain due to displacement in the opposite direction or different direction. It is desirable to set the frequency as high as possible.
  • the vibration applied to the metal body Ml is not limited to the case where a high frequency vibration is applied.
  • the vibration applied to the metal body Ml may be short, such as applying only a half cycle vibration to the low deformation resistance region 30. It may be configured to apply for only the time.
  • low frequency refers to the above-described action of eliminating the strain of the metal body Ml or the action of recrystallizing the metal structure against the strain caused by the displacement generated in the low deformation resistance region 30. Until it starts, it is the frequency of the vibration with a long period of one-quarter that the low-frequency vibration can cause distortion due to the next displacement.
  • the vibration propagation suppressing body 48 has the same configuration as the above-described second regulating body 45, and sandwiches the metal body Ml.
  • the lower roller 48c positioned below the metal body Ml is placed on the first support 48a and the second support 48b
  • an upper roller 48d which is positioned above the metal body Ml, is rotatably mounted.
  • the lower body 48c and the upper roller 48d sandwich and fix the metal body Ml. The vibration applied to Ml is suppressed from propagating along the metal body Ml.
  • the shearing deformation portion 42 is provided for heating the metal body Ml to a predetermined temperature and a low deformation resistance region 30 formed in the metal body Ml by heating by the heating apparatus 51 to a predetermined width. And a cooling device 52 for cooling the metal body Ml.
  • a high-frequency heating coil is used for the heating device 51, and the high-frequency heating coil is wound around the metal body Ml a predetermined number of times, and is deformed by heating the metal body Ml to a predetermined temperature. The resistance is reduced to form the low deformation resistance region 30.
  • the heating device 51 is not limited to a high-frequency heating coil, but may be heating using an electron beam, plasma, laser, electromagnetic induction, or the like, heating using a gas burner, or heating using an electrical short circuit. Good.
  • the width of the low deformation resistance region 30 in the extension direction of the metal body Ml can be made extremely small, and the low deformation resistance region 30 has a larger shear force. Since a stress can be applied, the metal structure can be further miniaturized.
  • the cooling device 52 includes a first water outlet 52b and a second water outlet 52c for discharging the water supplied from the water supply pipe 52a, and the water is discharged from the first water outlet 52b and the second water outlet 52c.
  • the metal body Ml is cooled by water.
  • reference numeral 53 denotes a water receiving container for receiving water discharged from the first water outlet 52b and the second water outlet 52c
  • reference numeral 54 denotes a drain pipe connected to the water receiving container 53.
  • both sides of the low deformation resistance region 30 formed by the heating device 51 provided between the first water outlet 52b and the second water outlet 52c are connected to the first water outlet 52b and the second water outlet 52b.
  • Cooling is performed by the water discharged from the water discharge port 52c.
  • the low deformation resistance region 30 is extended by the extension of the metal body Ml. The area is extremely small compared to the length in the direction!
  • the low deformation resistance region 30 has a small width along the extension direction of the metal body Ml. As a result, an extremely large shear deformation occurs in the low deformation resistance region 30 and the miniaturization efficiency of the metal structure can be immediately improved.
  • the shearing force can also reduce the residual strain due to the shearing deformation due to the oscillating motion or the residual deformation.
  • the cooling of the metal body Ml is not limited to water cooling, but may be air cooling, or any method as long as the deformation resistance of the metal body Ml can be improved by excitation cooling. Is also good.
  • heating device 51 and the cooling device 52 various heating means and cooling devices can be used in the same manner as the heating device 64 and the cooling device 65 of the above-described STSP device.
  • a cooling device 52 is provided between the second regulating body 45 and a heating device 51 including a high-frequency heating coil, and a cooling device 52 is provided between the heating device 51 and the vibration applying body 47.
  • the second regulating body 45 and the vibration applying body 47 may be provided closer to the heating device 51 than the cooling device 52, and the interval between the second regulating body 45 and the vibration applying body 47 may be made as short as possible. .
  • a cooling function is added to the lower roller 45c and the upper roller 45d of the second regulating body 45 sandwiching the metal body Ml, and to the lower roller 50a and the upper roller 50b of the propagation body 50 of the vibration applying body 47. Then, the metal body Ml is sandwiched and cooled by these rollers 45c, 45d, 50a, and 50b.
  • the metal body Ml is sequentially sent to the fixed part 41, the shear deformation part 42, and the vibrating part 43,
  • the metal device Ml is heated by the heating device 51 while cooling both sides of the low deformation resistance region 30 by the cooling device 52 of the breaking deformation portion 42 to form the low deformation resistance region 30.
  • the temperature of the low deformation resistance region 30 occurred in the metal body Ml.
  • the strain recovery is performed until the temperature becomes equal to or higher than the softening temperature or the recrystallization temperature of the metal structure, and when the temperature exceeds the recovery temperature, the non-low deformation resistance region of the metal body Ml is vibrated by the vibration applying body 47. A shear deformation occurs in the low deformation resistance region 30.
  • the heating temperature of the metal body Ml by the heating device 51 is desirably controlled to be equal to or higher than the recovery'recrystallization temperature and equal to or lower than the temperature at which the influence of the coarsening of the force metal crystal grains starts to occur.
  • the metal structure can be refined with almost no change in the outer shape of the metal body Ml.
  • the vibration applying body 47 is a force that vibrates the non-low deformation resistance region of the metal body Ml in the vertical direction, which is the thickness direction of the metal body Ml, as described above.
  • the vibration applying body 47 may have an appropriate configuration.
  • the vibration may be caused to vibrate in the left-right direction, or may be caused to vibrate by a combined vibration in which the vertical vibration and the left-right vibration are combined.
  • the vibration applied to the metal body Ml is not limited to only vibration in the upward and downward directions or the left and right directions that are substantially orthogonal to the extension direction of the metal body Ml. It suffices if vibrations in the vertical and horizontal directions that are substantially perpendicular to the direction of extension of the metal body Ml are included.
  • the shearing deformation occurs in the low deformation resistance region 30 by the application of the oscillating motion in the oscillating portion 43, and at the same time, the metal body Ml is sent in the extension direction.
  • the metal body Ml, the position of the low deformation resistance region 30 in the metal body Ml can be displaced, and the metal body Ml is continuously subjected to shearing treatment by vibratory motion to refine the metal structure over a wide range. Can be.
  • the metal body Ml is uniformly sheared with the movement of the low deformation resistance region 30.
  • the metal body Ml can be formed, and the metal structure can be substantially uniformly refined.
  • the strength of the metal body Ml is adjusted by adjusting the degree of microstructure refinement by adjusting the magnitude of the shear stress generated by the shearing deformation at a required position of the metal body Ml.
  • the ductility can be adjusted to partially improve the strength, An improved metal body M1 can be generated.
  • one end of the metal body M12 in which the low deformation resistance region 30 is formed is fixed and the other end is vibrated. You may vibrate them in opposite phases.
  • the above-mentioned SVSP apparatus is provided in a post-process portion of a predetermined forming apparatus for performing hot rolling, cold rolling, extrusion molding, or the like on a metal body Ml, rolling or extrusion is performed.
  • the metal structure of the metal body Ml elongated in the elongation direction by a treatment or the like can be sheared and deformed, and the metal structure can be further easily refined.
  • the low deformation resistance regions 30, 30 ' are locally formed in the metal body by the above-described SVSP device and STSP device, and the low deformation resistance regions 30, 30' are subjected to shear deformation.
  • the metal structure can be refined, and the strength or ductility of the metal bodies M1 and M2 can be improved.
  • the metal body is a laminated body 10 in which a plurality of metal layers are superimposed as shown in FIG. 1, each metal layer is formed, and the metal is formed in the adjacent metal layer.
  • a composite in which a second metal material 25 is inserted into a cut-out portion of a cut-out round bar-shaped first metal rod 24 to be integrated By treating the metal bar 26 with the STSP device, a new alloy can be produced by mechanically mixing the metal of the first metal bar 24 and the metal of the second metal material 25.
  • the metal body is a calcined body 16 of a mixture obtained by mixing a plurality of types of metal powders
  • the metal structures of the respective metal powders are refined with each other.
  • a metal body tightly integrated can be produced.
  • a combination of metals that cannot be produced by the melting method can be mechanically joined by the SVSP device and the STSP device, and a new alloy can be produced.
  • a new alloy can be produced.
  • the metal body is a metal wire bundle 23 formed by bundling a plurality of types of metal wires, it is necessary to join the metal wires while minimizing the metal structure of each metal wire. Thereby, a metal body integrally formed can be produced. In particular, combinations of metals that cannot be produced by the melting method can be mechanically joined by STSP equipment, and new alloys can be produced.
  • the metal body is formed into a hollow cylindrical shape until the metal thread is finely divided by the SVSP device or the STSP device.
  • Shearing at a part of the low deformation resistance region 30, 30 ' for example, at the center region of the low deformation resistance region 30, 30', or at both ends or one end of the low deformation resistance region 30, 30 '. Modifications can also be made.
  • the metal body in which the crystal structure of the low deformation resistance region 30, 30 'is refined by the above-described SVSP apparatus and STSP apparatus may be quenched in a salt bath if necessary.
  • the metal bodies M1 and M2 with improved functions can be produced efficiently by continuously passing the power through the SVSP device and the STSP device salt bath quenching device.
  • the metal body obtained by making the crystal structure of the low deformation resistance region 30, 30 'fine by the above-mentioned SVSP device and STSP device is subjected to plastic working without coarsening the metal structure, whereby the metal structure becomes fine.
  • a metal body having a required shape can be obtained from a metal body having high strength or high ductility.
  • the metal bodies M1 and M2 are rapidly heated to a predetermined lowering temperature so that the metal structure is not coarsened. By doing so, it is possible to prevent the metal yarns from being enlarged during plastic working, thereby preventing high strength or high ductility.
  • the metal structures of the metal bodies M1 and M2 which are not rapidly cooled to room temperature, are not coarsened, but are kept at a temperature and subjected to aging treatment. By performing the aging treatment in this manner, the strength of the metal body having high strength or high ductility can be further improved.
  • the metal body whose metal structure is refined as described above has high strength, so that when used as an automobile part, it can be lightened, and the automobile can be lightened to improve fuel efficiency. Can be planned.
  • a metal body used for an automobile part is manufactured as follows.
  • a pretreatment is performed on a plate-shaped metal plate having a desired composition.
  • the metal plate is heated and cooled to form a single metal plate and to form a metal plate!
  • the metal particles are dispersed and the residual stress of the metal plate is adjusted.
  • the metal plate that has been subjected to the pretreatment is treated with an SVSP apparatus to uniformly refine the metal structure of the metal plate to form a metal plate with increased strength and ductility! / Puru.
  • the metal plate is made of an aluminum alloy
  • a large-sized aluminum alloy plate having high strength and high ductility can be formed, and a bonnet, a cowl, or the like having a complicated shape can be formed by plastic working.
  • the manufacturing cost can be greatly reduced.
  • the flange-to-fitting structure used in the above can be integrally formed, the cost can be reduced by integrally forming a plurality of parts, and the structural strength can be improved.
  • the metal plate is formed into a desired metal body by the SVSP apparatus, but also the round bar-shaped metal body having the desired composition is subjected to the above-described pretreatment, and then the STSP apparatus is used.
  • the metal structure of the metal plate can be uniformly refined to form a metal body having high strength and high ductility.
  • the metal body formed in this manner has high ductility! /, And therefore, by performing forging with a forging die having a plurality of cylinders after separating into required volumes, for example, As shown in FIG. 25, a body frame socket 80 having a complicated shape can be formed.
  • the body frame socket 80 of the present embodiment is used for a connection portion of each frame in a body frame 90 of an automobile as shown in Fig. 26. Usually, each frame is welded at the connection portion.
  • welding work is not required, manufacturing costs can be reduced, and structural strength can be improved compared to welding. Reliability can be improved.
  • the fitting portions 85, 86, 87, and 88 are provided with insertion holes 85h, 86h, 87h, and 88h formed by inserting a cylinder during forging.
  • the leading ends of the frames 81, 82, 83, 84 are inserted into the insertion holes 85h, 86h, 87h, 88h, respectively, and connected.
  • a high-strength rod-like body can be provided by refining the metal structure of a rod-like body such as a steering shaft by the STSP method or the SVSP method. Can be. Moreover, the entire metal structure of the rod is uniformly refined. It is also possible to impart intentional variation in strength by miniaturizing only a part of the steel that is not in place, or by miniaturizing only a part.
  • shock absorption is imparted by intentionally breaking the steering shaft by an impact in the event of an accident. Can be.
  • the metal body whose metal structure is refined as described above is used as a sputtering target material for a sputtering apparatus used in a semiconductor manufacturing process that is used not only for automobile parts.
  • a metal body having a required composition can be produced, and the produced metal body can have a homogeneous composition and a fine metal structure, so that a uniform metal film is formed on the upper surface of the semiconductor substrate. Can be generated. Then, such a sputtering target material can be produced at a lower cost than the ECAP method.
  • This sputtering target material is manufactured as follows.
  • a pretreatment is performed on a metal plate having a desired composition.
  • the metal sheet is heated and cooled to cool the metal sheet in a single manner, the metal particles constituting the metal sheet are dispersed, and the residual stress of the metal sheet is adjusted. It is carried out.
  • the metal plate that has been subjected to the pretreatment is treated with an SVSP apparatus to uniformly refine the metal structure of the metal plate.
  • the crystal orientation of the crystal structure refined by cold rolling, cold forging, warm forging, or swaging of the metal plate was changed. In addition to adjustment, molding to the target shape is performed.
  • a sputtering target capable of forming a uniform metal film on the upper surface of the semiconductor substrate can be provided.
  • the metal body is formed into a substantially disk shape, and at the same time, a cooling concave groove is formed on the back surface.
  • the formability of the metal plate is improved, so that the concave grooves for cooling can be accurately formed by cold forging or warm forging. it can.
  • the metal plate was heated to a temperature at which coarsening of the refined metal verification could be suppressed, and the residual stress of the metal plate was adjusted. Etc. may be performed.
  • Another manufacturing method can be as follows.
  • the metal body serving as the target material is a round metal rod having a desired composition.
  • the metal bar that has been subjected to the pretreatment is treated with an STSP device to uniformly refine the metal structure of the metal bar.
  • the metal bar is cut into predetermined lengths, and a metal plate is formed by cold forging or warm forging.
  • the metal plate thus formed is treated with the SVSP apparatus as described above to further refine the metal structure of the metal plate. Then, in the same manner as in the case of the metal plate described above, the metal plate is cold-rolled, or cold forged or warm forged, or the crystal orientation refined by swaging or the like is adjusted, and the shape of the metal plate is adjusted to the target shape. We are molding.
  • a metal body serving as a sputtering target was produced.
  • a metal body having an extremely fine metal structure can be obtained, and a sputtering target capable of forming a uniform metal film on the upper surface of the semiconductor substrate can be provided.
  • a metal rod by treating a metal rod by the STSP method, it is possible to homogenize the composition of the metal rod, and to produce a sputtering target from a more homogenous metal body, and thereby to obtain a semiconductor.
  • a sputtering target capable of forming a uniform metal film on the upper surface of the substrate can be provided.
  • the above-mentioned SVSP method or STSP method makes it possible to provide materials or parts with improved characteristics by using the following materials that are not only used for manufacturing automotive parts and sputtering targets. be able to.
  • the workability is improved by making the metal thread of the metal body finer by the SVSP method or the STSP method to improve the fineness of the metal body. Processing can be enabled. In some cases, an improvement in the magnetic porosity can be expected.
  • the metal body is a shape memory alloy
  • the metallographic structure of the metal body is refined by the SVSP method or the STSP method to improve the workability and to form a finer shape. Can be made possible.
  • the screw can be easily disassembled by eliminating the screw thread by shape memory when the electronic device is discarded. .
  • the metal body is a hydrogen storage alloy
  • an improvement in the hydrogen storage capacity can be expected by making the metal thread of the metal body finer by the SVSP method or the STSP method.
  • various shapes can be obtained by improving workability, and a structure having a hydrogen storage function can be formed.
  • the metal body is a damping alloy
  • the workability is improved by making the metal thread of the metal body finer by the SVSP method or the STSP method, thereby adding a finer shape. Can be made possible.
  • sound quality can be improved by spreading the application of the damping alloy to components of audio equipment such as speakers.
  • the metal body is an electrothermal material
  • the metallographic structure of the metal body is refined by the SVSP method or the STSP method to improve workability, and to add a finer shape. Can be made possible.
  • the metal structure of the metal body can be refined by the SVSP method or the STSP method to improve workability and add a finer shape. It can be.
  • titanium has conventionally been used as a biomaterial, titanium has a problem that workability is extremely poor due to its high hardness, and the molding cost is high.
  • titanium can be formed by forging, and a titanium component having a predetermined shape can be formed at low cost.
  • titanium whose metal structure has been refined by the SVSP method or the STSP method can be used as a material having a low Young's modulus and a high strength, and can also improve biocompatibility.
  • the metal body treated by the SVSP method or the STSP method is improved in ductility, thereby improving not only the stiffness, but also the strength. Therefore, members having the same strength can be formed to be lighter, and it is possible to reduce the weight of transport equipment such as ships, aircrafts, and automobiles, or building structures such as high-rise buildings and bridges. Industrial applicability
  • a metal which has high strength or high ductility by miniaturizing the metal structure can be continuously formed to improve mass productivity and achieve low cost.
  • a genus can be provided.
  • FIG. 1 is a schematic sectional view of a metal body.
  • FIG. 2 is a schematic sectional view of a metal body.
  • FIG. 3 is a schematic sectional view of a metal body.
  • FIG. 4 is a schematic sectional view of a metal body.
  • FIG. 5 is an explanatory diagram of shear deformation applied to a low deformation resistance region.
  • FIG. 6 is an explanatory diagram of shear deformation applied to a low deformation resistance region.
  • FIG. 7 is an explanatory diagram of shear deformation applied to a low deformation resistance region.
  • FIG. 8 is an explanatory diagram of shear deformation applied to a low deformation resistance region.
  • FIG. 9 is an explanatory diagram of shear deformation applied to a low deformation resistance region.
  • FIG. 10 is an explanatory diagram of shear deformation applied to a low deformation resistance region.
  • FIG. 11 is an explanatory diagram of a heating profile for a low deformation resistance region.
  • FIG. 12 is an explanatory diagram of a heating profile for a low deformation resistance region.
  • FIG. 13 is a schematic explanatory diagram of an STSP device.
  • FIG. 14 is an explanatory view of another embodiment of the method for cooling a metal body.
  • Fig. 15 is an electron micrograph of a metal structure before treatment by a 15STSP apparatus.
  • FIG. 16 is an electron micrograph of a metal structure after treatment with an STSP device.
  • FIG. 17 is a graph showing changes in physical properties when the metal structure is refined in S45C.
  • FIG. 18 A graph showing a change in physical properties when a metal structure is refined according to JIS-A5056.
  • FIG. 19 is a schematic explanatory diagram of a modification example in the STSP device.
  • FIG. 20 is a schematic explanatory diagram of a modification example in the STSP device.
  • FIG. 18 is a schematic explanatory diagram of a modification example of the # 21 STSP device.
  • FIG. 22 is a schematic explanatory diagram of an SVSP device.
  • FIG. 24 is a schematic sectional view of a metal body.
  • FIG. 4 is an explanatory view of a 25 body frame socket.
  • FIG. 26 is an explanatory diagram of a body frame socket.
  • FIG. 27 is a reference diagram for describing the ECAP method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Forging (AREA)
  • Metal Extraction Processes (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

[PROBLEMS] A metal working method capable of continuously forming various metal elements that are increased in strength or ductility by micronizing a metallographic structure to thereby improve mass-productivity and reduce costs, and a metal element. When the deformation resistance of a metal element extending in one direction is locally lowered to form a low-deformation-resistance area that traverses the metal element and this low-deformation-resistance area is shear-deformed to micronize the metallographic structure of the metal element, a non-low-deformation-resistance area generating means is provided that increases deformation resistance lowered in the above low-deformation-resistance area to generate a non-low-deformation-resistance area, and a non-low-deformation-resistance area is generated along at least any one side edge of the low-deformation-resistance area by the non-low-deformation-resistance area generating means.

Description

明 細 書  Specification
金属加工方法及び金属体  Metal processing method and metal body
技術分野  Technical field
[0001] 本発明は、金属加工方法及び金属体に関するものである。  The present invention relates to a metal working method and a metal body.
背景技術  Background art
[0002] 従来、金属体ある 、は金属含有セラミックス体等の金属組織を有して!/、る材料では 、 ECAP (Equal-Channel Angular Pressing)法によって金属組織を微細化することに より、その材料の強度の向上あるいは延性の向上が可能であることが知られている。  [0002] Conventionally, a metal body has a metal structure such as a metal-containing ceramic body! / In some materials, the metal structure is refined by an ECAP (Equal-Channel Angular Pressing) method, thereby It is known that the strength or ductility of a material can be improved.
[0003] ECAP法では、図 27に示すように、ダイ 100に中途部で所要の角度に屈曲させた 挿通路 200を設けておき、この挿通路 200に所要の金属体 300を押圧しながら挿通さ せることによって金属体 300を揷通路 200に沿って屈曲させ、屈曲にともなって金属体 300に剪断応力を生起し、この剪断応力によって金属組織を微細化しているものであ る。図 27中、 400は金属体を押圧するプランジャである。  In the ECAP method, as shown in FIG. 27, a die 100 is provided with an insertion passage 200 bent at a required angle in the middle of the die 100, and a required metal body 300 is inserted into the insertion passage 200 while being pressed. This causes the metal body 300 to bend along the path 200, and generates a shear stress in the metal body 300 along with the bending, and the metal structure is refined by the shear stress. In FIG. 27, reference numeral 400 denotes a plunger for pressing a metal body.
[0004] このような ECAP法では、揷通路 200に沿って金属体 300を屈曲させやすくするため に、ダイ 100を所定温度に加熱することにより金属体 300全体を加熱して変形抵抗を 低下させているが、金属体 300の変形抵抗を大きく低下させた場合には、プランジャ 400による押圧の際に金属体 300に座屈等の余計な変形を生じさせるおそれがあるの で、金属体 300の加熱は必要最小限に抑制する必要があった。  [0004] In such an ECAP method, the die 100 is heated to a predetermined temperature by heating the die 100 to reduce the deformation resistance by heating the die 100 to a predetermined temperature in order to easily bend the metal body 300 along the path 200. However, if the deformation resistance of the metal body 300 is significantly reduced, the metal body 300 may be excessively deformed, such as buckling, when pressed by the plunger 400. Heating had to be minimized.
[0005] このように金属体 300の加熱を抑制すると、金属体 300はプランジャ 400によって比較 的大きな力で押圧しなければならないために加工性が悪いという問題があつたため、 金属体に剪断応力が作用する挿通路の剪断変形領域を局部的に加熱して、この加 熱によって金属体の剪断変形部分の変形抵抗を低減させることによりプランジャで金 属体を押圧する力を小さくし、加工性を向上させることが提案されている (例えば、特 許文献 1参照。)。  [0005] When the heating of the metal body 300 is suppressed in this way, the metal body 300 has to be pressed by a relatively large force by the plunger 400, so that there is a problem that workability is poor. The shear deformation region of the insertion passage that acts is locally heated, and this heating reduces the deformation resistance of the shear deformation portion of the metal body, thereby reducing the force of pressing the metal with the plunger and improving workability. Improvements have been proposed (for example, see Patent Document 1).
[0006] その一方で、金属組織が微細化された金属体を大量に製造する方法としては、所 定組成の低炭素鋼または低炭素合金鋼にぉ ヽて、所要の高温状態から冷却する過 程において断面積減少率を 60%以上とする加工を行う方法が知られている(例えば 、特許文献 2参照。)。 [0006] On the other hand, as a method for producing a large amount of a metal body having a fine metal structure, a method of cooling from a required high temperature state to low carbon steel or low carbon alloy steel having a predetermined composition is used. It is known to carry out processing to reduce the cross-sectional area reduction rate to 60% or more in the process (for example, See Patent Document 2. ).
特許文献 1:特開 2001— 321825号公報  Patent document 1: Japanese Patent Application Laid-Open No. 2001-321825
特許文献 2:特開平 11—323481号公報  Patent Document 2: JP-A-11-323481
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] し力しながら、上記したように ECAP法において剪断変形領域を加熱した場合には 、剪断変形領域を通過した金属体が所定温度に加熱されたままとなつているので、 挿通路カゝら押出された金属体の変形抵抗が全体的に低下しており、金属体を連続し て挿通路に挿通させて剪断応力を繰り返し作用させるためには、金属体を所定温度 以下として変形抵抗が大きくなるまで冷却するための冷却時間が必要であった。  [0007] When the shear deformation region is heated by the ECAP method as described above, the metal body that has passed through the shear deformation region remains heated to a predetermined temperature. Since the deformation resistance of the extruded metal body is reduced overall, in order to continuously insert the metal body into the insertion passage and apply the shear stress repeatedly, the metal body must be kept at a predetermined temperature or lower to reduce the deformation resistance. Required a cooling time for cooling until the temperature became large.
[0008] そのため、金属体に対して冷却時間よりも短い時間で連続的に ECAP法による処 理を行うことができず、生産性が極めて低 、と 、う問題があった。  [0008] Therefore, the metal body cannot be continuously processed by the ECAP method in a time shorter than the cooling time, and there has been a problem that productivity is extremely low.
[0009] しかも、 ECAP法では金属体を屈曲した揷通路に揷通させなければならな 、ため、 金属体の一部分の金属組織のみを微細化するような部分処理が困難であるという問 題もあった。  [0009] Furthermore, in the ECAP method, it is necessary to pass a metal body through a curved passage, so that there is a problem that it is difficult to perform a partial treatment to refine only a part of the metal structure of the metal body. there were.
[0010] 一方、上記した所定組成の低炭素鋼または低炭素合金鋼における金属組織を微 細化方法では、適用可能な金属体が特殊組成の低炭素鋼または低炭素合金鋼に 限定されるため、利用範囲が極めて狭いという問題があった。  [0010] On the other hand, in the above-described method of reducing the metal structure of low-carbon steel or low-carbon alloy steel having a predetermined composition, applicable metal bodies are limited to low-carbon steel or low-carbon alloy steel having a special composition. However, there is a problem that the use range is extremely narrow.
[0011] 以上のように、金属糸且織を微細化することにより高強度化あるいは高延性ィ匕等を図 つた金属体の形成には一長一短があって、現状においては、製造コストが問題とは ならな 、高級自動車や戦闘機等の特殊用途にぉ 、てこのような金属が利用されて!、 た。  [0011] As described above, there is an advantage and disadvantage in forming a metal body that achieves high strength or high ductility by making the metal thread finer, and at present, the production cost is a problem. For special applications such as luxury cars and fighters, leveraged metals are used! ,
[0012] このような状況において、昨今では、特に自動車業界において燃費の向上あるい は走行性能の向上を目的として車体等の軽量ィ匕が望まれており、高級自動車だけで なく一般車でも金属組織を微細化することにより高強度化を図った金属体を利用して 軽量ィ匕することに対する大きな要求があり、低価格の高強度化あるいは高延性化さ れた金属体に対する大きな潜在的需要が存在して!/ヽた。  [0012] In such a situation, recently, especially in the automobile industry, there is a demand for a lightweight vehicle body or the like for the purpose of improving fuel efficiency or driving performance. There is a great demand for a lightweight body using a metal body that has been strengthened by making its structure finer, and there is a great potential demand for a low-cost, high-strength or highly ductile metal body. Exists!
[0013] 本発明者らは、このような現状に鑑み、金属組織を微細化することにより高強度化 あるいは高延性ィ匕を図った各種の金属体を連続的に形成可能として量産性を向上さ せ、低コストィ匕を図った金属体を提供すべく研究開発を行って、本発明を成すに至つ たものである。 [0013] In view of such a current situation, the present inventors have made it possible to increase the strength by refining the metal structure. Alternatively, research and development have been conducted to improve the mass productivity by providing various metal bodies with high ductility and to improve the mass productivity, and to provide metal bodies with low cost. It is a thing.
課題を解決するための手段  Means for solving the problem
[0014] 請求項 1記載の金属加工方法では、一方向に伸延した金属体の変形抵抗を局部 的に低下させて前記金属体を横断する低変形抵抗領域を形成し、この低変形抵抗 領域を剪断変形させて前記金属体の金属組織を微細化する金属加工方法であって 、前記低変形抵抗領域にお!ヽて低下して!/ヽる変形抵抗を増大させて非低変形抵抗 領域を生成する非低変形抵抗領域生成手段を有し、前記低変形抵抗領域の少なく ともいずれか一方の側縁に沿って前記非低変形抵抗領域生成手段により非低変形 抵抗領域を生成することとした。  [0014] In the metal working method according to claim 1, the deformation resistance of the metal body extending in one direction is locally reduced to form a low deformation resistance region that crosses the metal body, and the low deformation resistance region is formed. A metal working method for reducing the metal structure of the metal body by shearing deformation, wherein the non-low deformation resistance region is reduced by increasing the deformation resistance in the low deformation resistance region. A non-low deformation resistance region generating means for generating, and the non-low deformation resistance region generating means generates a non-low deformation resistance region along at least one side edge of the low deformation resistance region. .
[0015] 請求項 2記載の金属加工方法では、請求項 1記載の金属加工方法にお!、て、前記 金属体は伸延方向に沿って移動させるとともに、移動方向の下流側における前記低 変形抵抗領域の側縁に沿って前記非低変形抵抗領域生成手段により非低変形抵 抗領域を生成することとした。  [0015] In the metal working method according to claim 2, in the metal working method according to claim 1, the metal body is moved along an extension direction, and the low deformation resistance is provided on a downstream side in the movement direction. A non-low deformation resistance region is generated along the side edge of the region by the non-low deformation resistance region generation means.
[0016] 請求項 3記載の金属加工方法では、請求項 1記載の金属加工方法にお!、て、前記 非低変形抵抗領域生成手段を、前記金属体を冷却する冷却手段とした。 [0016] In the metal working method according to claim 3, in the metal working method according to claim 1, the non-low deformation resistance region generating means is a cooling means for cooling the metal body.
[0017] 請求項 4記載の金属加工方法では、請求項 1記載の金属加工方法にお!、て、前記 非低変形抵抗領域で前記金属体を急速冷却することとした。 [0017] In the metal working method according to claim 4, in the metal working method according to claim 1, the metal body is rapidly cooled in the non-low deformation resistance region.
[0018] 請求項 5記載の金属加工方法では、請求項 1記載の金属加工方法にお!、て、前記 低変形抵抗領域を真空中で形成することとした。 [0018] In the metal working method according to claim 5, in the metal working method according to claim 1, the low deformation resistance region is formed in a vacuum.
[0019] 請求項 6記載の金属加工方法では、請求項 1記載の金属加工方法にお!、て、前記 低変形抵抗領域を高圧下で形成することとした。 [0019] In the metal working method according to claim 6, in the metal working method according to claim 1, the low deformation resistance region is formed under a high pressure.
[0020] 請求項 7記載の金属加工方法では、請求項 1記載の金属加工方法にお!、て、前記 低変形抵抗領域を活性ガス雰囲気中で形成することとした。 [0020] In the metal working method according to claim 7, in the metal working method according to claim 1, the low deformation resistance region is formed in an active gas atmosphere.
[0021] 請求項 8記載の金属加工方法では、請求項 7記載の金属加工方法にお 、て、前記 活性ガスを窒素ガスとした。 In the metal working method according to claim 8, in the metal working method according to claim 7, the active gas is nitrogen gas.
[0022] 請求項 9記載の金属加工方法では、請求項 7記載の金属加工方法にお 、て、前記 活性ガスをメタンガス及び zまたは一酸ィ匕炭素ガスとした。 [0022] In the metal working method according to claim 9, in the metal working method according to claim 7, The active gas was methane gas and z or monocarbon gas.
[0023] 請求項 10記載の金属加工方法では、請求項 1記載の金属加工方法にお!、て、前 記低変形抵抗領域に粉体を吹き付けることとした。  [0023] In the metal working method according to claim 10, in the metal working method according to claim 1, powder is sprayed onto the low deformation resistance region.
[0024] 請求項 11記載の金属加工方法では、請求項 1記載の金属加工方法にお!、て、前 記低変形抵抗領域にイオンドーピングを行うこととした。 [0024] In a metal working method according to claim 11, in the metal working method according to claim 1, ion doping is performed on the low deformation resistance region.
[0025] 請求項 12記載の金属加工方法では、請求項 1記載の金属加工方法において、前 記金属体に第 1の加熱を所定時間行った後に第 2の加熱を行って前記低変形抵抗 領域を形成することとした。 [0025] In the metal processing method according to claim 12, in the metal processing method according to claim 1, the first heating is performed on the metal body for a predetermined time, and then the second heating is performed on the metal body to reduce the low deformation resistance region. Was formed.
[0026] 請求項 13記載の金属加工方法では、請求項 1記載の金属加工方法において、高 温とした前記金属体を拘束する拘束手段の非拘束領域に前記低変形抵抗領域を形 成することとした。 [0026] In the metal working method according to claim 13, in the metal working method according to claim 1, the low deformation resistance region is formed in an unconstrained region of a constraining means for constraining the metal body that has been heated. And
[0027] 請求項 14記載の金属加工方法では、請求項 1記載の金属加工方法にお!、て、液 体中に没入した前記金属体に前記低変形抵抗領域を形成することとした。  [0027] In the metal working method according to claim 14, in the metal working method according to claim 1, the low deformation resistance region is formed in the metal body immersed in a liquid.
[0028] 請求項 15記載の金属加工方法では、請求項 14記載の金属加工方法において、 前記金属体を液体中で加熱して前記低変形抵抗領域を形成することとした。 [0028] In the metal working method according to claim 15, in the metal working method according to claim 14, the metal body is heated in a liquid to form the low deformation resistance region.
[0029] 請求項 16記載の金属加工方法では、請求項 15記載の金属加工方法において、 前記低変形抵抗領域を形成する際に、前記低変形抵抗領域の周囲の熱伝導率を 低減させることとした。 [0029] In the metal working method according to claim 16, in the metal working method according to claim 15, when the low deformation resistance region is formed, a thermal conductivity around the low deformation resistance region is reduced. did.
[0030] 請求項 17記載の金属加工方法では、請求項 15記載の金属加工方法において、 前記低変形抵抗領域を形成する際に、前記低変形抵抗領域の周囲に気泡を生起 することとした。  [0030] In the metal working method according to claim 17, in the metal working method according to claim 15, when forming the low deformation resistance region, bubbles are generated around the low deformation resistance region.
[0031] 請求項 18記載の金属加工方法では、請求項 1記載の金属加工方法において、金 属組織を微細化した前記金属体を、金属組織を粗大化させずに塑性加工することと した。  [0031] In the metal working method according to claim 18, in the metal working method according to claim 1, the metal body having a fine metal structure is subjected to plastic working without coarsening the metal structure.
[0032] 請求項 19記載の金属加工方法では、請求項 18記載の金属加工方法において、 前記塑性加工を、前記金属体の金属組織を粗大化させな!/ヽ短時間の加熱状態で行 つこととした。  [0032] In the metal working method according to claim 19, in the metal working method according to claim 18, the plastic working is performed in a heating state for a short time without coarsening the metal structure of the metal body. I decided.
[0033] 請求項 20記載の金属加工方法では、請求項 18記載の金属加工方法において、 前記塑性加工後、前記金属体の金属組織を粗大化させな!/、温度に維持して時効処 理することとした。 [0033] In the metal working method according to claim 20, in the metal working method according to claim 18, After the plastic working, the metal structure of the metal body is not coarsened! The temperature is maintained and the aging treatment is performed.
[0034] 請求項 21記載の金属加工方法では、請求項 1記載の金属加工方法にお!、て、前 記金属体が浸炭処理されて 、ることとした。  [0034] In the metal working method according to claim 21, in the metal working method according to claim 1, the metal body is carburized.
[0035] 請求項 22記載の金属加工方法では、請求項 1記載の金属加工方法にお!、て、前 記低変形抵抗領域を伸延させながら前記金属体の金属組織を微細化することとした [0035] In the metal working method according to claim 22, in the metal working method according to claim 1, the metal structure of the metal body is refined while extending the low deformation resistance region.
[0036] 請求項 23記載の金属加工方法では、請求項 1記載の金属加工方法にお!、て、前 記低変形抵抗領域を圧縮させながら前記金属体の金属組織を微細化することとした [0036] In the metal working method according to claim 23, in the metal working method according to claim 1, the metal structure of the metal body is refined while compressing the low deformation resistance region.
[0037] 請求項 24記載の金属加工方法では、請求項 1記載の金属加工方法にお!、て、前 記金属 [0037] In the metal working method according to claim 24, the metal working method according to claim 1!
体は中空部を有する筒状体として、前記中空部を減圧状態とした。  The body was a cylindrical body having a hollow portion, and the hollow portion was in a reduced pressure state.
[0038] 請求項 25記載の金属加工方法では、請求項 1記載の金属加工方法にお!、て、前 記金属体は中空部を有する筒状体として、前記中空部を高圧状態とした。 [0038] In the metal working method according to claim 25, in the metal working method according to claim 1, the metal body is a cylindrical body having a hollow part, and the hollow part is in a high-pressure state.
[0039] 請求項 26記載の金属加工方法では、請求項 1記載の金属加工方法にお!、て、前 記低変形抵抗領域に前記金属体を所定形状に成形する成形用ガイド体を当接させ ることとした。 [0039] In the metal working method according to claim 26, in the metal working method according to claim 1, a forming guide body for forming the metal body into a predetermined shape is brought into contact with the low deformation resistance region. I decided to do it.
[0040] 請求項 27記載の金属加工方法では、請求項 26記載の金属加工方法において、 前記成形ガイド体を、前記金属体を加熱する加熱手段とした。  [0040] In the metal working method according to claim 27, in the metal working method according to claim 26, the forming guide body is a heating means for heating the metal body.
[0041] 請求項 28記載の金属加工方法では、請求項 26記載の金属加工方法において、 前記成形ガイド体を、前記金属体を冷却する冷却手段とした。  [0041] In the metal working method according to claim 28, in the metal working method according to claim 26, the forming guide body is a cooling unit that cools the metal body.
[0042] 請求項 29記載の金属加工方法では、請求項 1記載の金属加工方法にお!、て、前 記低変形抵抗領域を前記金属体の伸延方向に沿って移動させることとした。  [0042] In the metal working method according to claim 29, in the metal working method according to claim 1, the low deformation resistance region is moved along an extension direction of the metal body.
[0043] 請求項 30記載の金属体では、一方向に伸延した金属体であって、変形抵抗を局 部的に低下させて前記金属体を横断する低変形抵抗領域を一時的に形成するとと もに、この低変形抵抗領域にぉ ヽて低下して ヽる変形抵抗を増大させて非低変形抵 抗領域を生成する非低変形抵抗領域生成手段によって前記前記低変形抵抗領域 の少なくともいずれか一方の側縁に沿って非低変形抵抗領域を生成し、前記低変形 抵抗領域を剪断変形させて金属組織を微細化した。 [0043] In the metal body according to claim 30, the metal body extends in one direction, and the deformation resistance is locally reduced to temporarily form a low deformation resistance region crossing the metal body. In addition, the low deformation resistance region is generated by a non-low deformation resistance region generating means for generating a non-low deformation resistance region by increasing the deformation resistance which is lowered and lowered in the low deformation resistance region. A non-low deformation resistance region is generated along at least one side edge of the above, and the low deformation resistance region is subjected to shear deformation to make the metal structure fine.
[0044] 請求項 31記載の金属体では、請求項 30記載の金属体にお 、て、前記非低変形 抵抗領域生成手段により形成する前記非低変形抵抗領域は、伸延方向に沿って移 動させた前記金属体の移動方向の下流側における前記低変形抵抗領域の側縁に 生成した。  [0044] In the metal body according to claim 31, in the metal body according to claim 30, the non-low deformation resistance region formed by the non-low deformation resistance region generating means moves along an extension direction. It was formed on the side edge of the low deformation resistance region on the downstream side in the moving direction of the metal body.
[0045] 請求項 32記載の金属体では、請求項 30記載の金属体にお 、て、前記非低変形 抵抗領域生成手段を、金属体を冷却する冷却手段とした。  [0045] In the metal body according to claim 32, in the metal body according to claim 30, the non-low deformation resistance region generating means is a cooling means for cooling the metal body.
[0046] 請求項 33記載の金属体では、請求項 30記載の金属体にお 、て、前記非低変形 抵抗領域で前記金属体を急速冷却した。 [0046] In the metal body according to claim 33, in the metal body according to claim 30, the metal body is rapidly cooled in the non-low deformation resistance region.
[0047] 請求項 34記載の金属体では、請求項 30記載の金属体にぉ 、て、前記低変形抵 抗領域を真空中で形成した。 [0047] In the metal body according to claim 34, the low deformation resistance region is formed in a vacuum in accordance with the metal body according to claim 30.
[0048] 請求項 35記載の金属体では、請求項 30記載の金属体にぉ 、て、前記低変形抵 抗領域を高圧下で形成した。 [0048] In the metal body according to the thirty-fifth aspect, the low deformation resistance region is formed under a high pressure.
[0049] 請求項 36記載の金属体では、請求項 30記載の金属体にお 、て、前記低変形抵 抗領域を活性ガス雰囲気中で形成した。 [0049] In the metal body according to claim 36, in the metal body according to claim 30, the low deformation resistance region is formed in an active gas atmosphere.
[0050] 請求項 37記載の金属体では、請求項 36記載の金属体にお 、て、前記活性ガスを 窒素ガスとした。 [0050] In the metal body according to claim 37, in the metal body according to claim 36, the active gas is nitrogen gas.
[0051] 請求項 38記載の金属体では、請求項 36記載の金属体にぉ 、て、前記活性ガスを メタンガス及び Zまたは一酸ィ匕炭素ガスとした。  [0051] In the metal body according to the thirty-eighth aspect, the active gas may be methane gas and Z or carbon monoxide gas.
[0052] 請求項 39記載の金属体では、請求項 30記載の金属体にお 、て、前記低変形抵 抗領域 [0052] In the metal body according to claim 39, in the metal body according to claim 30, the low deformation resistance region is provided.
に粉体を吹き付けた。  Was sprayed with powder.
[0053] 請求項 40記載の金属体では、請求項 30記載の金属体にお 、て、前記低変形抵 抗領域にィ才ンドーピングを行った。  [0053] In the metal body according to claim 40, in the metal body according to claim 30, the low deformation resistance region is subjected to heavy doping.
[0054] 請求項 41記載の金属体では、請求項 30記載の金属体にお 、て、前記金属体に 第 1の加熱を所定時間行った後に第 2の加熱を行って前記低変形抵抗領域を形成し [0055] 請求項 42記載の金属体では、請求項 30記載の金属体において、高温とした前記 金属体を拘束する拘束手段の非拘束領域に前記低変形抵抗領域を形成した。 [0054] In the metal body according to claim 41, in the metal body according to claim 30, the first heating is performed on the metal body for a predetermined time, and then the second heating is performed to perform the low deformation resistance region. Form [0055] In the metal body according to claim 42, in the metal body according to claim 30, the low deformation resistance region is formed in a non-constrained region of a constraining means for constraining the metal body at a high temperature.
[0056] 請求項 43記載の金属体では、請求項 30記載の金属体にぉ 、て、液体中に没入し た前記金属体に前記低変形抵抗領域を形成した。 In the metal body according to claim 43, the low deformation resistance region is formed in the metal body immersed in a liquid, in addition to the metal body according to claim 30.
[0057] 請求項 44記載の金属体では、請求項 43記載の金属体にぉ 、て、前記金属体を液 体中で加熱して前記低変形抵抗領域を形成した。 In the metal body according to claim 44, the metal body is heated in a liquid to form the low deformation resistance region.
[0058] 請求項 45記載の金属体では、請求項 44記載の金属体にぉ 、て、前記低変形抵 抗領域を形成する際に、前記低変形抵抗領域の周囲の熱伝導率を低減させた。 [0058] In the metal body according to claim 45, when the low deformation resistance region is formed, the thermal conductivity around the low deformation resistance region is reduced. Was.
[0059] 請求項 46記載の金属体では、請求項 44記載の金属体にお 、て、前記低変形抵 抗領域を形成する際に、前記低変形抵抗領域の周囲に気泡を生じさせた。 In the metal body according to claim 46, in the metal body according to claim 44, when forming the low deformation resistance region, bubbles are generated around the low deformation resistance region.
[0060] 請求項 47記載の金属体では、請求項 30記載の金属体にお 、て、金属組織を微細 化した前記金属体を、金属組織を粗大化させずに塑性加工した。 [0060] In the metal body according to the forty-seventh aspect, in the metal body according to the thirty-third aspect, the metal body having a finer metal structure is plastically worked without coarsening the metal structure.
[0061] 請求項 48記載の金属体では、請求項 47記載の金属体にお 、て、前記金属体の 金属組織を粗大化させない短時間の加熱状態で前記塑性加工を行った。 [0061] In the metal body according to the forty-eighth aspect, in the metal body according to the forty-seventh aspect, the plastic working is performed in a short heating state that does not coarsen the metal structure of the metal body.
[0062] 請求項 49記載の金属体では、請求項 47記載の金属体にお 、て、前記塑性加工を 行った後、前記金属体の金属組織を粗大化させな 、温度に維持して時効処理した。 [0062] In the metal body according to claim 49, after performing the plastic working on the metal body according to claim 47, the metal structure of the metal body is maintained at a temperature while keeping the metal structure coarse while aging. Processed.
[0063] 請求項 50記載の金属体では、請求項 30記載の金属体にぉ 、て、あら力じめ浸炭 処理された前記金属体とした。 [0063] In the metal body according to claim 50, the metal body according to claim 30 is subjected to a carburizing treatment.
[0064] 請求項 51記載の金属体では、請求項 30記載の金属体にお 、て、前記低変形抵 抗領域を伸延させながら前記金属体の金属組織を微細化した。 [0064] In the metal body according to claim 51, in the metal body according to claim 30, the metal structure of the metal body is refined while extending the low deformation resistance region.
[0065] 請求項 52記載の金属体では、請求項 30記載の金属体にお 、て、前記低変形抵 抗領域を圧縮させながら前記金属体の金属組織を微細化した。 [0065] In the metal body according to claim 52, in the metal body according to claim 30, the metal structure of the metal body is refined while compressing the low deformation resistance region.
[0066] 請求項 53記載の金属体では、請求項 30記載の金属体にお 、て、前記金属体は 中空部を有する筒状体として、前記中空部を減圧状態とした。 [0066] In the metal body according to claim 53, in the metal body according to claim 30, the metal body is a cylindrical body having a hollow part, and the hollow part is in a reduced pressure state.
[0067] 請求項 54記載の金属体では、請求項 30記載の金属体にぉ 、て、前記金属体は 中空部を有する筒状体として、前記中空部を高圧状態とした。 [0067] In the metal body according to claim 54, in addition to the metal body according to claim 30, the metal body is a cylindrical body having a hollow portion, and the hollow portion is in a high-pressure state.
[0068] 請求項 55記載の金属体では、請求項 30記載の金属体にぉ 、て、前記低変形抵 抗領域に前記金属体を所定形状に成形する成形用ガイド体を当接させた。 [0069] 請求項 56記載の金属体では、請求項 55記載の金属体にお 、て、前記成形ガイド 体を、前記金属体を加熱する加熱手段とした。 [0068] In the metal body according to claim 55, in addition to the metal body according to claim 30, a forming guide body for forming the metal body into a predetermined shape is brought into contact with the low deformation resistance region. [0069] In the metal body according to claim 56, in the metal body according to claim 55, the forming guide body is a heating means for heating the metal body.
[0070] 請求項 57記載の金属体では、請求項 55記載の金属体にお 、て、前記成形ガイド 体を、前記金属体を冷却する冷却手段とした。 [0070] In the metal body according to claim 57, in the metal body according to claim 55, the forming guide body is a cooling means for cooling the metal body.
[0071] 請求項 58記載の金属体では、請求項 30記載の金属体にお 、て、低変形抵抗領 域を前記金属体の伸延方向に沿って移動させた。 [0071] In the metal body according to claim 58, in the metal body according to claim 30, the low deformation resistance region is moved along the extension direction of the metal body.
発明の効果  The invention's effect
[0072] 請求項 1記載の発明によれば、一方向に伸延した金属体の変形抵抗を局部的に 低下させて金属体を横断する低変形抵抗領域を形成し、この低変形抵抗領域を剪 断変形させて金属体の金属組織を微細化する金属加工方法であって、低変形抵抗
Figure imgf000010_0001
ヽて低下して ヽる変形抵抗を増大させて非低変形抵抗領域を生成する非 低変形抵抗領域生成手段を有し、低変形抵抗領域の少なくともいずれか一方の側 縁に沿って非低変形抵抗領域生成手段により非低変形抵抗領域を生成することによ つて、局部的に形成した低変形抵抗領域部分の金属組織を効率よく微細化すること ができる。
According to the invention described in claim 1, the deformation resistance of the metal body extending in one direction is locally reduced to form a low deformation resistance region crossing the metal body, and the low deformation resistance region is sheared. A metal working method for making a metal structure of a metal body fine by cutting and deforming, and having a low deformation resistance.
Figure imgf000010_0001
A non-low deformation resistance region generating means for generating a non-low deformation resistance region by increasing a deformation resistance which is reduced, and a non-low deformation region is formed along at least one side edge of the low deformation resistance region. By generating the non-low deformation resistance region by the resistance region generating means, the metal structure of the locally formed low deformation resistance region can be efficiently refined.
[0073] 請求項 2記載の発明によれば、請求項 1に記載の金属加工方法にお!、て、金属体 を伸延方向に沿って移動させるとともに、移動方向の下流側における低変形抵抗領 域の側縁に沿って非低変形抵抗領域生成手段により非低変形抵抗領域を生成する ことによって、金属組織が微細化された金属体を極めて効率よく連続的に生成するこ とがでさる。  According to the second aspect of the invention, in the metal working method according to the first aspect, the metal body is moved along the elongation direction, and the low deformation resistance area on the downstream side in the movement direction. By generating the non-low deformation resistance region along the side edge of the region by the non-low deformation resistance region generation means, it is possible to extremely efficiently and continuously generate a metal body having a fine metal structure.
[0074] 請求項 3記載の発明によれば、請求項 1記載の金属加工方法にお!、て、非低変形 抵抗領域生成手段を、金属体を冷却する冷却手段としたことによって、非低変形抵 抗領域を極めて容易かつ確実に生成することができるので、低コストで確実に金属 組織を微細化した金属体を生成できる。  According to the third aspect of the invention, in the metal working method according to the first aspect, the non-low deformation resistance region generating means is a cooling means for cooling the metal body. Since the deformation resistance region can be generated extremely easily and surely, a metal body having a fine metal structure can be surely generated at low cost.
[0075] 請求項 4記載の発明によれば、請求項 1記載の金属加工方法にお!、て、非低変形 抵抗領域で金属体を急速冷却することによって、加熱状態が持続することによる金属 組織の肥大化を抑制できるとともに、金属体に焼入れを行うことができるので、より高 機能化した金属体を形成できる。 [0076] 請求項 5記載の発明によれば、請求項 1記載の金属加工方法にお!、て、低変形抵 抗領域を真空中で形成することによって、剪断変形された低変形抵抗領域の表面に 気体成分との反応膜が形成されることを防止でき、後工程における処理を軽減するこ とができる。特に、低変形抵抗領域を形成する際に金属体を加熱した場合には、金 属体の自己冷却作用によって冷却手段を用いることなく金属体を冷却することができ 、低変形抵抗領域の形成効率を向上させることができる。 [0075] According to the invention as set forth in claim 4, in the metal working method as set forth in claim 1, by rapidly cooling the metal body in the non-low deformation resistance region, the metal is maintained by maintaining the heated state. Since the enlargement of the tissue can be suppressed and the metal body can be quenched, a highly functional metal body can be formed. According to the invention of claim 5, in the metal working method of claim 1, by forming the low deformation resistance region in a vacuum, the shear deformation of the low deformation resistance region is reduced. The formation of a reaction film with a gas component on the surface can be prevented, and the processing in the subsequent process can be reduced. In particular, when the metal body is heated when the low deformation resistance region is formed, the metal body can be cooled without using cooling means by the self-cooling action of the metal body, and the formation efficiency of the low deformation resistance region can be reduced. Can be improved.
[0077] 請求項 6記載の発明によれば、請求項 1記載の金属加工方法にお!、て、低変形抵 抗領域を高圧下で形成することによって、高圧の圧力による低変形抵抗領域への作 用によって金属組織の微細化効率を向上させることができる。  [0077] According to the invention of claim 6, in the metal working method of claim 1, by forming the low deformation resistance region under high pressure, the low deformation resistance region is formed by high pressure. The effect of (1) can improve the efficiency of metal structure refinement.
[0078] 請求項 7記載の発明によれば、請求項 1記載の金属加工方法にお!、て、低変形抵 抗領域を活性ガス雰囲気中で形成することによって、金属体の金属組織を微細化す るとともに低変形抵抗領域の表面に活性ガスとの反応領域を形成することができるの で、より高機能化した金属体を形成できる。  [0078] According to the invention of claim 7, in the metal working method of claim 1, by forming the low deformation resistance region in an active gas atmosphere, the metal structure of the metal body can be finely divided. In addition, since a reaction region with the active gas can be formed on the surface of the low deformation resistance region, a highly functional metal body can be formed.
[0079] 請求項 8記載の発明によれば、請求項 7記載の金属加工方法にお 、て、活性ガス を窒素  [0079] According to the invention of claim 8, in the metal working method of claim 7, the active gas is nitrogen.
ガスとしたことによって、金属体の金属組織を微細化するとともに低変形抵抗領域を 窒化させることができるので、より高機能化した金属体を形成できる。  By using the gas, the metal structure of the metal body can be refined and the low deformation resistance region can be nitrided, so that a more sophisticated metal body can be formed.
[0080] 請求項 9記載の発明によれば、請求項 7記載の金属加工方法にお 、て、活性ガス をメタンガス及び zまたは一酸ィ匕炭素ガスとしたことによって、金属体の金属組織を 微細化するとともに低変形抵抗領域を浸炭処理することができるので、より高機能化 した金属体を形成できる。 [0080] According to the ninth aspect of the present invention, in the metal working method of the seventh aspect, the metallographic structure of the metal body is reduced by using methane gas and z or monocarbon gas as the active gas. Since the size is reduced and the low deformation resistance region can be carburized, a more sophisticated metal body can be formed.
[0081] 請求項 10記載の発明によれば、請求項 1記載の金属加工方法にお!、て、低変形 抵抗領域に粉体を吹き付けることによって、金属体の金属組織を微細化するとともに 低変形抵抗領域に粉体を機械的に混入させることができ、より高機能化した金属体 を形成できる。特に、従来の铸造では形成困難な組成の金属体も容易に形成できる とともに、金属以外の粉体を低変形抵抗領域に吹き付けた場合には、新規な材料を 製造することちできる。  According to the tenth aspect of the present invention, in the metal working method according to the first aspect, the metal structure of the metal body is reduced by spraying powder onto the low deformation resistance region. Powder can be mechanically mixed into the deformation resistance region, and a more sophisticated metal body can be formed. In particular, a metal body having a composition that is difficult to form with a conventional structure can be easily formed, and a new material can be manufactured when a powder other than a metal is sprayed on a low deformation resistance region.
[0082] 請求項 11記載の発明によれば、請求項 1記載の金属加工方法にお!、て、低変形 抵抗領域にイオンドーピングを行うことによって、金属体の金属組織を微細化するとと もに低変形抵抗領域にイオンィ匕した粒子を混入させることができ、より高機能化した 金属体を形成できる。特に、従来の铸造では形成困難な組成の金属体も容易に形 成できる。 [0082] According to the invention as set forth in claim 11, the metal working method according to claim 1 has a low deformation. By performing ion doping on the resistance region, the metal structure of the metal body can be made finer, and the ion-imparted particles can be mixed into the low deformation resistance region, so that a more sophisticated metal body can be formed. In particular, a metal body having a composition that is difficult to form with a conventional structure can be easily formed.
[0083] 請求項 12記載の発明によれば、請求項 1記載の金属加工方法において、金属体 に第 1の加熱を所定時間行った後に第 2の加熱を行って低変形抵抗領域を形成する ことによって、加熱による低変形抵抗領域の形成において低変形抵抗領域の加熱状 態を均質ィ匕することができ、均質な微細化を行うことができる。特に、第 1の加熱を金 属体の溶体化温度で行うとともに、第 2の加熱を剪断変形の処理条件となる温度で 加熱した場合には、溶体化された金属体を剪断変形させることができる。  [0083] According to the invention as set forth in claim 12, in the metal working method as set forth in claim 1, after the first heating is performed on the metal body for a predetermined time, the second heating is performed to form the low deformation resistance region. This makes it possible to uniformly control the heating state of the low deformation resistance region when the low deformation resistance region is formed by heating, and to perform uniform miniaturization. In particular, when the first heating is performed at the solution temperature of the metal and the second heating is performed at a temperature that is a processing condition of the shear deformation, the solution-formed metal is subjected to the shear deformation. it can.
[0084] 請求項 13記載の発明によれば、請求項 1記載の金属加工方法において、高温とし た金属体を拘束する拘束手段の非拘束領域に低変形抵抗領域を形成することによ つて、金属体の製造工程中にぉ 、て加熱状態となって 、る金属体の金属組織を微 細化することができ、製造工程を増やすことなく金属組織を微細化した金属体を製造 できる。  [0084] According to the invention of claim 13, in the metal working method of claim 1, by forming the low deformation resistance region in the unconstrained region of the constraining means for constraining the high-temperature metal body, During the manufacturing process of the metal body, the metal body of the metal body is heated during the manufacturing process, so that the metal structure of the metal body can be miniaturized, and a metal body having a finer metal structure can be manufactured without increasing the number of manufacturing processes.
[0085] 請求項 14記載の発明によれば、請求項 1記載の金属加工方法にお!、て、液体中 に没入した金属体に低変形抵抗領域を形成することによって、低変形抵抗領域の形 成条件のノ ツキを抑制することができ、金属組織を均質に微細化することができる  [0085] According to the invention set forth in claim 14, in the metal working method according to claim 1, the low deformation resistance region is formed in the metal body immersed in the liquid. Knocks in the forming conditions can be suppressed, and the metal structure can be uniformly refined.
[0086] 請求項 15記載の発明によれば、請求項 14記載の金属加工方法において、金属体 を液体中で加熱して低変形抵抗領域を形成することによって、加熱して形成した低 変形抵抗領域の冷却を速やかに行うことができ、特に、剪断変形が終了した部分に 対しては焼入れを連続して行うことができるので、より高機能化した金属体を形成で きる。 [0086] According to the invention as set forth in claim 15, in the metal working method as set forth in claim 14, the metal body is heated in a liquid to form a low deformation resistance region, so that the low deformation resistance formed by heating is formed. Cooling of the region can be performed promptly, and particularly, quenching can be continuously performed on the portion where the shear deformation has been completed, so that a more sophisticated metal body can be formed.
[0087] 請求項 16記載の発明によれば、請求項 15記載の金属加工方法において、低変形 抵抗領域を形成する際に、低変形抵抗領域の周囲の熱伝導率を低減させることによ つて、液体中の金属体の加熱を効率よく行うことができる。  [0087] According to the invention of claim 16, in the metal working method of claim 15, when the low deformation resistance region is formed, the thermal conductivity around the low deformation resistance region is reduced. In addition, the metal body in the liquid can be efficiently heated.
[0088] 請求項 17記載の発明によれば、請求項 15記載の金属加工方法において、低変形 抵抗領域を形成する際に、低変形抵抗領域の周囲に気泡を生起することによって、 液体中の金属体の加熱を効率よく行うことができる。 According to the seventeenth aspect of the present invention, in the metal working method according to the fifteenth aspect, a low deformation By generating bubbles around the low deformation resistance region when forming the resistance region, the metal body in the liquid can be efficiently heated.
[0089] 請求項 18記載の発明によれば、請求項 1記載の金属加工方法にお!、て、金属組 織を微細化した金属体を、金属組織を粗大化させずに塑性加工することによって、 金属組織が微  [0089] According to the invention as set forth in claim 18, in the metal working method as set forth in claim 1, the metal body having a finer metal structure is plastically worked without coarsening the metal structure. Metal structure
細化して 、ることにより高強度化あるいは高延性ィ匕された金属体にぉ 、て、所要の形 状とした金属体を提供できる。  By making the metal body thinner, it is possible to provide a metal body having a required shape, particularly for a metal body having high strength or high ductility.
[0090] 請求項 19記載の発明によれば、請求項 18記載の金属加工方法において、金属体 の金属組織を粗大化させな 、短時間の加熱状態で塑性加工を行うことによって、塑 性加工時に金属糸且織が肥大化して高強度化あるいは高延性ィヒが阻害されることを 抑止できる。 [0090] According to the invention as set forth in claim 19, in the metal working method according to claim 18, the plastic working is performed in a short heating state without coarsening the metal structure of the metal body. At times, it is possible to prevent the metal thread from becoming too large to inhibit high strength or high ductility.
[0091] 請求項 20記載の発明によれば、請求項 18記載の金属加工方法において、性加工 後、金属体の金属組織を粗大化させな 、温度に維持して時効処理することによって 、高強度化あるいは高延性ィ匕した金属体の強度を向上させることができる。  [0091] According to the invention as set forth in claim 20, in the metal working method as set forth in claim 18, after aging, the metal structure of the metal body is maintained at a temperature without being coarsened, and is subjected to an aging treatment. The strength of the metal body having increased strength or high ductility can be improved.
[0092] 請求項 21記載の発明によれば、請求項 1記載の金属加工方法において、金属体 をあら力じめ浸炭処理しておくことによって、低変形抵抗領域の剪断変形にともなつ て脱炭処理を行 、ながら金属組織を微細化することができ、より高機能化した金属体 を形成できる。  [0092] According to the invention as set forth in claim 21, in the metal working method as set forth in claim 1, the metal body is preliminarily subjected to a carburizing treatment, whereby the metal body is subjected to shear deformation in the low deformation resistance region. The metal structure can be refined while performing charcoal treatment, and a highly functional metal body can be formed.
[0093] 請求項 22記載の発明によれば、請求項 1記載の金属加工方法にお!、て、低変形 抵抗領域を伸延させながら金属体の金属組織を微細化することによって、低変形抵 抗領域に剪断による歪みだけでなぐ伸延による歪みを加えることができるので、金 属組織をより微細化することができる。  [0093] According to the invention of claim 22, in the metal working method of claim 1, the metal structure of the metal body is refined while extending the low deformation resistance region, so that the low deformation resistance is reduced. Since the strain due to elongation can be applied to the anti-region in addition to the strain due to shearing, the metal structure can be further refined.
[0094] 請求項 23記載の発明によれば、請求項 1記載の金属加工方法にお!、て、低変形 抵抗領域を圧縮させながら金属体の金属組織を微細化することによって、低変形抵 抗領域に剪断による歪みだけでなぐ圧縮による歪みを加えることができるので、金 属組織をより微細化することができる。  [0094] According to the invention according to claim 23, in the metal working method according to claim 1, the metal structure of the metal body is refined while compressing the low-deformation resistance region to thereby reduce the low-deformation resistance. Since the strain caused by compression can be applied to the anti-region in addition to the strain caused by shearing, the metal structure can be further refined.
[0095] 請求項 24記載の発明によれば、請求項 1記載の金属加工方法において、中空部 を有する筒状体からなる金属体として、中空部を減圧状態とすることによって、低変 形抵抗領域において中空部に向けて金属体を収縮変形させながら剪断変形を行う ことができ、金属組織をより微細化することができる。 [0095] According to the invention as set forth in claim 24, in the metal working method as set forth in claim 1, the hollow body is made of a cylindrical body having a hollow part, and the hollow part is depressurized, so that the low deformation is achieved. In the resistance region, shear deformation can be performed while contracting and deforming the metal body toward the hollow portion, and the metal structure can be further refined.
[0096] 請求項 25記載の発明によれば、請求項 1記載の金属加工方法において、中空部 を有する筒状体からなる金属体として、中空部を高圧状態とすることによって、低変 形抵抗領域において金属体を膨張変形させながら剪断変形を行うことができ、金属 組織をより微細化することができる。  [0096] According to the invention set forth in claim 25, in the metal processing method according to claim 1, by setting the hollow portion to a high pressure state as the metal body formed of the cylindrical body having the hollow portion, the low deformation resistance is reduced. The shear deformation can be performed while expanding and deforming the metal body in the region, and the metal structure can be further refined.
[0097] 請求項 26記載の発明によれば、請求項 1記載の金属加工方法にお!、て、低変形 抵抗領域に金属体を所定形状に成形する成形用ガイド体を当接させることによって 、低変形抵抗領域において剪断変形により金属組織を微細化させながら、成形用ガ イド体で所要形状に金属体を形状変形させることができるので、高強度化ある 、は高 延性化された金属体にお!ヽて、所要の形状とした金属体を提供できる。  [0097] According to the invention as set forth in claim 26, in the metal working method as set forth in claim 1, by bringing a forming guide body for forming the metal body into a predetermined shape into contact with the low deformation resistance region, In addition, since the metal body can be deformed to a required shape by the molding guide while miniaturizing the metal structure by shear deformation in the low deformation resistance region, the metal body having high strength is a metal body having high ductility. In! Thus, a metal body having a required shape can be provided.
[0098] 請求項 27記載の発明によれば、請求項 26に記載した金属加工方法にぉ 、て、成 形ガイド体を、金属体を加熱する加熱手段としたことによって、成形ガイド体と当接し た金属体の当接部分を局部加熱することができ、低変形抵抗領域をさらに容易に形 成できる。  [0098] According to the invention described in claim 27, in the metal working method described in claim 26, the forming guide body is a heating means for heating the metal body, so that the forming guide body is in contact with the forming guide body. The contact portion of the contacted metal body can be locally heated, and the low deformation resistance region can be more easily formed.
[0099] 請求項 28記載の発明によれば、請求項 26に記載した金属加工方法にお 、て、成 形ガイド体を、金属体を冷却する冷却手段としたことによって、成形ガイド体と当接し た金属体の当接部分を局部冷却することができ、剪断変形後の低変形抵抗領域を 効率よく冷却して、製造効率を向上させることができる。  [0099] According to the invention according to claim 28, in the metal working method according to claim 26, the forming guide body is a cooling means for cooling the metal body, so that the forming guide body is in contact with the forming guide body. The contact portion of the contacted metal body can be locally cooled, and the low deformation resistance region after the shear deformation can be efficiently cooled, and the production efficiency can be improved.
[0100] 請求項 29記載の発明によれば、請求項 1記載の金属加工方法にお!、て、低変形 抵抗領域を金属体の伸延方向に沿って移動させることによって、一方向に伸延した 金属体の全体の金属組織を極めて容易に微細化することができるとともに、連続的 に金属組織の微細化を行うことができる。  [0100] According to the invention of claim 29, in the metal working method of claim 1, the low deformation resistance region is extended in one direction by moving the region along the extension direction of the metal body. The entire metal structure of the metal body can be extremely easily refined, and the metal structure can be continuously refined.
[0101] 請求項 30記載の発明によれば、一方向に伸延した金属体であって、変形抵抗を 局部的に低下させて金属体を横断する低変形抵抗領域を一時的に形成するとともに 、この低変形抵抗領域にぉ ヽて低下して ヽる変形抵抗を増大させて非低変形抵抗 領域を生成する非低変形抵抗領域生成手段によって前記低変形抵抗領域の少なく とも!/ヽずれか一方の側縁に沿って非低変形抵抗領域を生成し、低変形抵抗領域を 剪断変形させて金属組織を微細化したことによって、局部的に形成した低変形抵抗 領域部分の金属組織を確実に微細化することができ、高強度化ある 、は高延性ィ匕し た金属体を安価で提供できる。 [0101] According to the invention as set forth in claim 30, the metal body extended in one direction, the deformation resistance is locally reduced, and a low deformation resistance region that traverses the metal body is temporarily formed, and The non-low deformation resistance region generating means for generating a non-low deformation resistance region by increasing the deformation resistance which is reduced and lowered at least in the low deformation resistance region and at least one of the low deformation resistance region is shifted. A non-low deformation resistance region is created along the side edge of Since the metal structure is refined by shearing deformation, the metal structure in the locally formed low deformation resistance region can be surely refined, and the metal body having high strength is highly ductile. Can be provided at low cost.
[0102] 請求項 31記載の発明によれば、請求項 30記載の金属体にぉ 、て、非低変形抵抗 領域生成手段により形成する非低変形抵抗領域を、伸延方向に沿って移動させた 金属体の移動方向の下流側における低変形抵抗領域の側縁に生成したことによつ て、金属体の移動にともなって連続的に金属組織を微細化することができ、金属組 織が微細化された金属体の製造効率を向上させることができるので、高強度化ある いは高延性ィ匕した金属体を安価で提供できる。  According to the invention as set forth in claim 31, the non-low deformation resistance region formed by the non-low deformation resistance region generating means is moved along the extension direction in the metal body according to claim 30. Since the metal structure is formed on the side edge of the low deformation resistance region on the downstream side in the moving direction of the metal body, the metal structure can be continuously refined as the metal body moves, and the metal structure becomes finer. Since the production efficiency of the metalized body can be improved, a metal body having high strength or high ductility can be provided at low cost.
[0103] 請求項 32記載の発明によれば、請求項 30記載の金属体にぉ 、て、非低変形抵抗 領域生成手段を、金属体を冷却する冷却手段としたことによって、非低変形抵抗領 域を極めて容易かつ確実に生成することができるので、低コストで確実に金属組織を 微細化した金属体を提供できる。  According to the invention of claim 32, the non-low deformation resistance region generating means is a cooling means for cooling the metal body. Since the region can be generated very easily and reliably, a metal body having a fine metal structure can be provided reliably at low cost.
[0104] 請求項 33記載の発明によれば、請求項 30記載の金属体にぉ 、て、非低変形抵抗 領域で金属体を急速冷却したことによって、加熱状態が持続することによる金属組織 の肥大化を抑制できるとともに、金属体に焼入れを行うことができるので、金属体を高 機能化することができる。  [0104] According to the invention of claim 33, in addition to the metal body of claim 30, the metal body is rapidly cooled in the non-low deformation resistance region, so that the metal structure is maintained by maintaining the heating state. Since the enlargement can be suppressed and the metal body can be quenched, the function of the metal body can be enhanced.
[0105] 請求項 34記載の発明によれば、請求項 30記載の金属体にぉ 、て、真空中で低変 形抵抗領域を形成したことによって、剪断変形された低変形抵抗領域の表面に気体 成分との反応膜が形成されることを防止でき、後工程における処理を軽減することが できる。特に、低変形抵抗領域を形成する際に金属体を加熱した場合には、金属体 の自己冷却作用によって冷却手段を用いることなく金属体を冷却することができ、低 変形抵抗領域の形成効率を向上させることができる。  [0105] According to the invention of claim 34, since the low deformation resistance region is formed in a vacuum in the metal body according to claim 30, the surface of the low deformation resistance region that has been sheared and deformed is formed. The formation of a reaction film with a gas component can be prevented, and the processing in a subsequent step can be reduced. In particular, when the metal body is heated when forming the low deformation resistance region, the metal body can be cooled without using cooling means by the self-cooling action of the metal body, and the formation efficiency of the low deformation resistance region is improved. Can be improved.
[0106] 請求項 35記載の発明によれば、請求項 30記載の金属体にぉ 、て、高圧下で低変 形抵抗領域を形成したことによって、高圧の圧力による低変形抵抗領域への作用に よって金属組織の微細化効率を向上させることができる。  According to the invention as set forth in claim 35, since the low deformation resistance region is formed under high pressure in the metal body according to claim 30, the action of the high pressure on the low deformation resistance region is achieved. As a result, the efficiency of miniaturization of the metal structure can be improved.
[0107] 請求項 36記載の発明によれば、請求項 30記載の金属体にぉ 、て、活性ガス雰囲 気中で低変形抵抗領域を形成したことによって、金属体の金属組織を微細化すると ともに低変形抵抗領域の表面に活性ガスとの反応領域を形成することができるので、 金属体を高機能化することができる。 [0107] According to the invention described in claim 36, the metal structure of the metal body is miniaturized by forming the low deformation resistance region in an active gas atmosphere in the metal body described in claim 30. Then In both cases, a reaction region with the active gas can be formed on the surface of the low deformation resistance region, so that the metal body can be enhanced in function.
[0108] 請求項 37記載の発明によれば、請求項 36記載の金属体にぉ 、て、活性ガスを窒 素ガスとしたことによって、金属体の金属組織を微細化するとともに低変形抵抗領域 を窒化させることができるので、金属体を高機能化することができる。  [0108] According to the invention of claim 37, the metal structure of the metal body is miniaturized and the low deformation resistance region is obtained by using an active gas of nitrogen gas in addition to the metal body of claim 36. Can be nitrided, so that the metal body can be enhanced in function.
[0109] 請求項 38記載の発明によれば、請求項 36記載の金属体にぉ 、て、活性ガスをメタ ンガス及び Zまたは一酸ィ匕炭素ガスとしたことによって、金属体の金属組織を微細化 するとともに低変形抵抗領域を浸炭処理することができるので、金属体を高機能化す ることがでさる。  According to the invention as set forth in claim 38, the metal structure of the metal body is changed by using methane gas and Z or monocarbon gas as the active gas in addition to the metal body according to claim 36. Since the size is reduced and the low deformation resistance region can be carburized, the function of the metal body can be enhanced.
[0110] 請求項 39記載の発明によれば、請求項 30記載の金属体において、低変形抵抗領 域に粉体を吹き付けたことによって、金属体の金属組織を微細化するとともに低変形 抵抗領域に粉体を機械的に混入させることができ、金属体を高機能化することができ る。特に、従来の铸造では形成困難な組成の金属体も容易に形成できるとともに、金 属以外の粉体を低変形抵抗領域に吹き付けた場合には、新規な組成の金属体とす るちでさる。  [0110] According to the invention as set forth in claim 39, in the metal body according to claim 30, by spraying the powder on the low deformation resistance region, the metal structure of the metal body is refined and the low deformation resistance region is formed. The powder can be mechanically mixed into the metal, and the metal body can be enhanced. In particular, a metal body having a composition that is difficult to form with the conventional structure can be easily formed, and when a powder other than metal is sprayed on the low deformation resistance region, the metal body has a novel composition, and it tends to become a new metal body .
[0111] 請求項 40記載の発明によれば、請求項 30記載の金属体にぉ 、て、低変形抵抗領 域にイオンドーピングを行ったことによって、金属体の金属組織を微細化するとともに 低変形抵抗領域にイオンィ匕した粒子を混入させることができ、金属体を高機能化す ることができる。特に、従来の铸造では形成困難な組成の金属体も容易に形成できる  [0111] According to the invention as set forth in claim 40, by performing ion doping on the low deformation resistance region in addition to the metal body as set forth in claim 30, the metal structure of the metal body can be miniaturized and reduced. Particles ionized can be mixed into the deformation resistance region, and the metal body can be enhanced. In particular, a metal body having a composition that is difficult to form with a conventional structure can be easily formed.
[0112] 請求項 41記載の発明によれば、請求項 30記載の金属体において、金属体に第 1 の加熱を所定時間行った後に第 2の加熱を行って低変形抵抗領域を形成したこと〖こ よって、加熱による低変形抵抗領域の形成にお!ヽて低変形抵抗領域の加熱状態を 均質ィ匕することができ、均質な微細化を行った金属体とすることができる。 [0112] According to the invention according to claim 41, in the metal body according to claim 30, after the first heating is performed on the metal body for a predetermined time, the second heating is performed to form the low deformation resistance region.よ っ て Thus, in the formation of low deformation resistance region by heating! In addition, the heating state of the low deformation resistance region can be uniformed, and the metal body can be uniformly refined.
[0113] 請求項 42記載の発明によれば、請求項 30記載の金属体において、高温とした金 属体を拘束する拘束手段の非拘束領域に低変形抵抗領域を形成したことによって、 金属体の製造工程中にぉ ヽて加熱状態となって!/ヽる金属体の金属組織を微細化す ることができ、製造工程を増やすことなく金属組織を微細化した金属体を製造できる ので、低コストで金属組織が微細化された金属体を提供できる。 [0113] According to the invention as set forth in claim 42, in the metal body as set forth in claim 30, the low deformation resistance region is formed in the non-constrained region of the constraining means for constraining the high-temperature metal body. It becomes very heated during the manufacturing process of the metal body! / The metal structure of the metal body can be refined, and a metal body with a finer metal structure can be manufactured without increasing the number of manufacturing processes Therefore, a metal body having a fine metal structure can be provided at low cost.
[0114] 請求項 43記載の発明によれば、請求項 30記載の金属体において、液体中に没入 した金属体に低変形抵抗領域を形成したことによって、低変形抵抗領域の形成条件 のノ ツキを抑制することができ、金属組織を均質に微細化した金属体を形成できる  [0114] According to the invention of claim 43, in the metal body of claim 30, the low deformation resistance region is formed in the metal body immersed in the liquid, so that the formation condition of the low deformation resistance region is notched. Can be suppressed, and a metal body having a uniformly refined metal structure can be formed.
[0115] 請求項 44記載の発明によれば、請求項 43記載の金属体において、金属体を液体 中で加熱して低変形抵抗領域を形成したことによって、加熱して形成した低変形抵 抗領域の冷却を速やかに行うことができ、特に、剪断変形が終了した部分に対しては 焼入れを連続して行うことができるので、金属体を高機能化することができる。 [0115] According to the invention according to claim 44, in the metal body according to claim 43, the metal body is heated in a liquid to form the low deformation resistance region, so that the low deformation resistance formed by heating is formed. The cooling of the region can be performed promptly, and in particular, the quenching can be continuously performed on the portion where the shear deformation has been completed, so that the metal body can have high functionality.
[0116] 請求項 45記載の発明によれば、請求項 44記載の金属体にぉ 、て、低変形抵抗領 域を形成する際に低変形抵抗領域の周囲の熱伝導率を低減させたことによって、液 体中の金属体の加熱を効率よく行うことができる。  [0116] According to the invention as set forth in claim 45, the thermal conductivity around the low deformation resistance region is reduced when the low deformation resistance region is formed in the metal body according to claim 44. Thereby, the metal body in the liquid can be efficiently heated.
[0117] 請求項 46記載の発明によれば、請求項 44記載の金属体にぉ 、て、低変形抵抗領 域を形成する際に低変形抵抗領域の周囲に気泡を生じさせたことによって、液体中 の金属体の加熱を効率よく行うことができる。  [0117] According to the invention set forth in claim 46, by forming bubbles around the low deformation resistance region when the low deformation resistance region is formed in the metal body according to claim 44, The metal body in the liquid can be efficiently heated.
[0118] 請求項 47記載の発明によれば、請求項 30記載の金属体において、金属組織を微 細化した金属体を、金属組織を粗大化させずに塑性加工したことによって、金属組 織が微細化して 、ることにより高強度化ある 、は高延性化された金属体にぉ 、て、所 要の形状とした金属体を提供できる。  [0118] According to the invention as set forth in claim 47, in the metal body according to claim 30, the metal body having a finer metal structure is plastically worked without coarsening the metal structure. In particular, a metal body having a required shape can be provided, particularly in the case of a metal body having a high ductility due to a reduction in size.
[0119] 請求項 48記載の発明によれば、請求項 47記載の金属体において、金属組織を微 細化  [0119] According to the invention of claim 48, in the metal body of claim 47, the metal structure is finely divided.
した金属体を、金属組織を粗大化させずに塑性加工したことによって、金属組織が 微細化して 、ることにより高強度化あるいは高延性ィ匕された金属体にぉ 、て、所要の 形状とした金属体を提供できる。  The obtained metal body was subjected to plastic working without coarsening the metal structure, whereby the metal structure was refined, so that the metal body having high strength or high ductility was formed into a desired shape. Metal body can be provided.
[0120] 請求項 49記載の発明によれば、請求項 47記載の金属体にぉ 、て、金属体の金属 組織を粗大化させな!/ヽ短時間の加熱状態で塑性加工を行ったことにより、塑性加工 時に金属組織が肥大化して金属体の高強度化あるいは高延性ィ匕が阻害されることを 抑止でき、高強度化あるいは高延性化された所要の形状の金属体を提供できる。 [0121] 請求項 50記載の発明によれば、請求項 30記載の金属体において、金属体をあら 力じめ浸炭処理しておくことにより、低変形抵抗領域の剪断変形にともなって脱炭処 理を行いながら金属組織を微細化することができ、金属体をさらに高機能化すること ができる。 [0120] According to the invention set forth in claim 49, the metal structure according to claim 47 is not subjected to coarsening of the metal structure, and plastic working was performed in a short heating state. Accordingly, it is possible to prevent the metal structure from being enlarged during the plastic working and to prevent the metal body from increasing in strength or from having high ductility, and to provide a metal body having a required shape in which the strength or the ductility is increased. [0121] According to the invention set forth in claim 50, in the metal body according to claim 30, the metal body is preliminarily subjected to a carburizing treatment, whereby a decarburizing treatment is performed along with the shear deformation in the low deformation resistance region. The metal structure can be refined while processing, and the metal body can be further enhanced.
[0122] 請求項 51記載の発明によれば、請求項 30記載の金属体にぉ 、て、低変形抵抗領 域を伸延させながら金属組織を微細化したことによって、低変形抵抗領域に剪断に よる歪みだけでなぐ伸延による歪みを加えることができるので、金属組織をより微細 化した金属体を形成できる。  [0122] According to the invention set forth in claim 51, since the metal structure is refined while extending the low deformation resistance region in the metal body according to claim 30, the low deformation resistance region can be sheared. Since the strain due to elongation can be applied instead of only the strain caused by the strain, a metal body having a finer metal structure can be formed.
[0123] 請求項 52記載の発明によれば、請求項 30記載の金属体にぉ 、て、低変形抵抗領 域を圧縮させながら金属組織を微細化したことによって、低変形抵抗領域に剪断に よる歪みだけでなぐ伸延による歪みを加えることができるので、金属組織をより微細 化した金属体を形成できる。  According to the invention as set forth in claim 52, the metal structure according to claim 30 is further reduced in size by shrinking the metal structure while compressing the low deformation resistance region, so that the low deformation resistance region is sheared. Since the strain due to elongation can be applied instead of only the strain caused by the strain, a metal body having a finer metal structure can be formed.
[0124] 請求項 53記載の発明によれば、請求項 30記載の金属体において、中空部を有す る筒状体として、中空部を減圧状態としたことによって、低変形抵抗領域において中 空部に向けて金属体を収縮変形させながら剪断変形を行うことができ、金属組織をよ り微細化した金属体を形成できる。  [0124] According to the invention according to claim 53, in the metal body according to claim 30, the hollow body is formed in a reduced pressure state as a cylindrical body having a hollow portion, so that the hollow body is formed in the low deformation resistance region. Shear deformation can be performed while shrinking and deforming the metal body toward the portion, and a metal body with a finer metal structure can be formed.
[0125] 請求項 54記載の発明によれば、請求項 30記載の金属体において、中空部を有す る筒状体として、中空部を高圧状態としたことによって、低変形抵抗領域において金 属体を膨張変形させながら剪断変形を行うことができ、金属組織をより微細化した金 属体を形成できる。  [0125] According to the invention set forth in claim 54, in the metal body set forth in claim 30, the hollow body has a high pressure state as the cylindrical body having the hollow part, so that the metal is provided in the low deformation resistance region. Shear deformation can be performed while expanding and deforming the body, and a metal body with a finer metal structure can be formed.
[0126] 請求項 55記載の発明によれば、請求項 30記載の金属体にぉ 、て、低変形抵抗領 域に成形用ガイド体を当接させたことによって、低変形抵抗領域において剪断変形 により金属組織を微細化させながら、成形用ガイド体で所要形状に金属体を形状変 形させることができるので、高強度化あるいは高延性ィ匕された金属体において、所要 の形状とした金属体を提供できる。  According to the invention set forth in claim 55, the metal body according to claim 30 is brought into contact with the forming guide body in the low deformation resistance region, so that the metal body in the low deformation resistance region is subjected to shear deformation. The metal body can be deformed to the required shape by the forming guide body while the metal structure is refined by the method, so that the metal body having the required shape can be used in the metal body having high strength or high ductility. Can be provided.
[0127] 請求項 56記載の発明によれば、請求項 55記載の金属体にぉ 、て、成形ガイド体 を、金属体を加熱する加熱手段としたことによって、成形ガイド体と当接した金属体の 当接部分を局部加熱することができ、低変形抵抗領域をさらに容易に形成して、金 属組織が微細化されることにより高強度化あるいは高延性ィ匕した金属体を低コストで 形成できる。 [0127] According to the invention of claim 56, in addition to the metal body of claim 55, the forming guide body is a heating means for heating the metal body, so that the metal in contact with the forming guide body. The contact part of the body can be locally heated, and the low deformation resistance region can be more easily formed, A metal body having high strength or high ductility can be formed at low cost by making the metal structure finer.
[0128] 請求項 57記載の発明によれば、請求項 55記載の金属体にぉ 、て、成形ガイド体 を、金属体を冷却する冷却手段としたことによって、成形ガイド体と当接した金属体の 当接部分を局部冷却することができ、剪断変形後の低変形抵抗領域を効率よく冷却 して製造効率を向上させ、金属組織が微細化されることにより高強度化あるいは高延 性ィ匕した金属体を低コストで形成できる。  [0128] According to the invention of claim 57, in addition to the metal body of claim 55, the forming guide body is a cooling means for cooling the metal body, so that the metal in contact with the forming guide body. The contact part of the body can be locally cooled, the low deformation resistance region after shear deformation can be efficiently cooled to improve manufacturing efficiency, and the metal structure is refined to increase strength or ductility. The scuttled metal body can be formed at low cost.
[0129] 請求項 58記載の発明によれば、請求項 30記載の金属体において、一方向に伸延 した金属体を横断させて低変形抵抗領域を形成し、この低変形抵抗領域を金属体 の伸延方向に沿って移動させたことによって、一方向に伸延した金属体の金属組織 を連続的に微細化して、金属体全体の金属組織を微細化した金属体を提供できる。 発明を実施するための最良の形態  [0129] According to the invention described in claim 58, in the metal body according to claim 30, the low deformation resistance region is formed by traversing the metal body extending in one direction, and the low deformation resistance region is formed of the metal body. By moving the metal body in the extension direction, the metal structure of the metal body extended in one direction can be continuously refined, and a metal body having a refined metal structure of the entire metal body can be provided. BEST MODE FOR CARRYING OUT THE INVENTION
[0130] 本発明の金属加工方法及び金属体では、金属体の高強度化あるいは高延性ィ匕を 図っているものであって、特に、金属組織を微細化することによって金属体の高強度 化あるいは高延性ィ匕を図って 、るものである。 [0130] In the metal working method and the metal body of the present invention, the strength or the ductility of the metal body is increased. In particular, the metal structure is refined to increase the strength of the metal body. Alternatively, it is intended to achieve high ductility.
[0131] 特に、金属組織を微細化するために、本発明では、金属体に変形抵抗を局部的に 低下させた低変形抵抗領域を形成し、この低変形抵抗領域を剪断変形させること〖こ より強歪みをカ卩えて金属組織を微細化しているものである。 [0131] In particular, in order to refine the metal structure, the present invention forms a low deformation resistance region in which the deformation resistance is locally reduced in a metal body, and shears the low deformation resistance region. The metal structure is refined by increasing the strain.
[0132] し力も、低変形抵抗領域を局部的に形成していることによって、金属組織を微細化 するために加えた剪断変形による剪断応力が低変形抵抗領域に集中して作用し、効 率よく強歪み生成して金属組織を微細化することができる。 [0132] Since the low deformation resistance region is locally formed, the shearing force due to the shear deformation applied to refine the metal structure is concentrated on the low deformation resistance region and the efficiency is reduced. A strong strain can be generated well to refine the metal structure.
[0133] 特に、局部的な低変形抵抗領域を形成するために、低変形抵抗領域に沿って変 形抵抗を増大させた非低変形抵抗領域を形成するようにして ヽる。この非低変形抵 抗領域を形成する非低変形抵抗領域生成手段を低変形抵抗領域に沿って設けて おくことにより、低変形抵抗領域に加えた剪断変形が低変形抵抗領域以外に拡散す ることを抑制でき、低変形抵抗領域に効率よく剪断応力を生じさせることができる。 In particular, in order to form a local low deformation resistance region, a non-low deformation resistance region having an increased deformation resistance is formed along the low deformation resistance region. By providing the non-low deformation resistance region generating means for forming the non-low deformation resistance region along the low deformation resistance region, the shear deformation applied to the low deformation resistance region is diffused outside the low deformation resistance region. Can be suppressed, and a shear stress can be efficiently generated in the low deformation resistance region.
[0134] 非低変形抵抗領域生成手段は、具体的には、金属体を冷却する冷却手段であれ ばよぐ金属体の変形抵抗の調整を容易に行うことができる。 [0135] 例えば、熱間圧延工程において、加熱状態である金属体を冷却装置に送通するこ とにより冷却し、冷却にともなって変形抵抗を増大させた非低変形抵抗領域を形成し て、冷却装置送通後の領域であるこの非低変形抵抗領域を振動運動させることによ り、冷却装置送通前の領域を剪断変形させて金属組織を容易に微細化し、高強度 化あるいは高延性ィ匕した金属体を生成することができる。 [0134] Specifically, the non-low deformation resistance region generation means can easily adjust the deformation resistance of the metal body by using a cooling means for cooling the metal body. [0135] For example, in a hot rolling step, a metal body in a heated state is cooled by being sent to a cooling device, and a non-low deformation resistance region in which deformation resistance is increased with cooling is formed. By vibrating the non-low deformation resistance area, which is the area after the cooling device is sent, the area before the cooling device is sent is subjected to shear deformation to easily refine the metallographic structure, thereby increasing strength or ductility. It is possible to produce a metal body which has been deflected.
[0136] なお、上記した低変形抵抗領域とは、金属体を加熱状態とすることによって変形抵 抗が低下した領域であり、低変形抵抗領域以外の領域と比較して外力の作用にとも なって変形を生じやすくなつている領域のことである。  [0136] The low deformation resistance region described above is a region in which the deformation resistance is reduced by heating the metal body, and is accompanied by the action of an external force as compared with regions other than the low deformation resistance region. This is the area where deformation tends to occur.
[0137] 一方、非低変形抵抗領域は低変形抵抗領域よりも変形抵抗が大きくなつて!/ヽる領 域であり、低変形抵抗領域以外の領域が基本的には非低変形抵抗領域である。  On the other hand, the non-low deformation resistance region is a region where the deformation resistance is larger than the low deformation resistance region! / ヽ, and the region other than the low deformation resistance region is basically a non-low deformation resistance region. is there.
[0138] 低変形抵抗領域は加熱によって形成するだけでなぐたとえば、所要の温度に加 熱した金属体の周囲に金属体を拘束する拘束体を装着することにより非低変形抵抗 領域を形成し、拘束体を装着して!/ヽな!ヽ非拘束領域を低変形抵抗領域とすることも できる。  [0138] The low deformation resistance region is not only formed by heating. For example, a non-low deformation resistance region is formed by attaching a restraint body that restrains a metal body around a metal body heated to a required temperature, A non-constrained area can be made a low deformation resistance area by attaching a constraining body.
[0139] 具体的には、铸造された金属体等の熱間圧延工程における高温状態の金属体の 周囲に拘束体を当接させている場合等である。  [0139] Specifically, there is a case where a constraining member is brought into contact with a periphery of a metal body in a hot state in a hot rolling step of a fabricated metal body or the like.
[0140] あるいは、液体状態となった金属体を凝固させながら拘束体で所定形状に成形し ている際に、部分的に非拘束領域を形成してこの非拘束領域を低変形抵抗領域とし て剪断変形を加えるよう〖こすることもできる。  [0140] Alternatively, when the metal body in the liquid state is formed into a predetermined shape by the constraining body while solidifying, the non-constrained area is partially formed, and the non-constrained area is defined as a low deformation resistance area. Shearing can also be applied.
[0141] このように、所定温度以上に加熱されていることにより全体的に低変形抵抗状態と なっている金属体に拘束体を当接させて拘束することによって非低変形抵抗領域を 形成するとともに、拘束体と当接して!/ヽな ヽ非拘束領域を低変形抵抗領域とすること により、铸造等による金属体の製造工程中にぉ 、て加熱状態となって 、る金属体の 金属組織を微細化することができ、製造工程を増やすことなく金属組織を微細化した 金属体を製造できる。  [0141] As described above, the non-low deformation resistance region is formed by restricting the metal body, which has been heated to a predetermined temperature or more and is in the low deformation resistance state as a whole, by abutting the constraining body. In addition, the non-constrained area is made to have a low deformation resistance area by being brought into contact with the constrained body. The structure can be refined, and a metal body having a refined metal structure can be produced without increasing the number of production steps.
[0142] また、以下において金属体は一種類の金属元素からなる単一金属で構成する場合 だけでなぐ二種類以上の金属元素力 なる合金で構成してもよいし、金属元素と非 金属元素とからなる金属間化合物で構成してもよい。さらに、特別に言及しない限り は、金属体は金属を含有したセラミックス体等の金属間化合物も含んで 、るものとす る。 [0142] Further, in the following, the metal body may be composed of an alloy composed of two or more kinds of metal elements, which is not limited to the case where the metal body is composed of a single metal composed of one kind of metal element. And an intermetallic compound consisting of In addition, unless otherwise noted The metal body also includes an intermetallic compound such as a ceramic body containing a metal.
[0143] なお、金属体は一様の組成となっている必要はなぐ図 1に金属体の断面模式図と して示すように、第 1金属層 11に第 2金属層 12さらには第 3金属層 13を積層した積層 体 10であってもよい。このとき、第 1金属層 11、第 2金属層 12、第 3金属層 13はそれぞ れ所要の金属、合金、若しくは金属間化合物であればよい。第 1金属層 11と、第 2金 属層 12と、第 3金属層 13とは単に重合することにより積層体 10としてもよいし、めっき 処理、蒸着処理あるいは圧着処理等によって積層してもよい。ここで、積層体 10は 3 層に限定するものではなぐ適宜の数だけ重合して積層体 10を構成してよい。  The metal body does not need to have a uniform composition. As shown in FIG. 1 as a schematic cross-sectional view of the metal body, the first metal layer 11 has the second metal layer 12 and the third metal layer 12 has the same structure. The laminate 10 in which the metal layers 13 are laminated may be used. At this time, the first metal layer 11, the second metal layer 12, and the third metal layer 13 may each be a required metal, alloy, or intermetallic compound. The first metal layer 11, the second metal layer 12, and the third metal layer 13 may be simply polymerized to form a laminate 10, or may be laminated by plating, vapor deposition, pressure bonding, or the like. . Here, the laminate 10 may be formed by polymerizing an appropriate number of laminates, not limited to three layers.
[0144] あるいは、金属体は、図 2に金属体の断面模式図として示すように、第 1金属粉体 14と第 2金属粉体 15とを混合した混合体を所定形状に仮焼成形した仮焼体 16であつ てもよい。このとき、第 1金属粉体 14と第 2金属粉体 15の 2種類の粉体で仮焼体 16を 構成するだけでなぐさらに多種の粉体を混合して仮焼体 16を形成してもよぐ金属 の粉体だけでなく非金属の粉体を混合して仮焼体 16を形成してもよい。  [0144] Alternatively, as shown in FIG. 2 as a schematic cross-sectional view of the metal body, a mixture obtained by mixing the first metal powder 14 and the second metal powder 15 was preliminarily baked into a predetermined shape. The calcined body 16 may be used. At this time, the calcined body 16 is formed by mixing two types of powders, the first metal powder 14 and the second metal powder 15, to form a calcined body 16. The calcined body 16 may be formed by mixing not only the metal powder but also the nonmetal powder.
[0145] あるいは、金属体は、図 3に金属体の断面模式図として示すように、所定形状とした 多孔質体 17の孔部に金属粉体 18を充填して形成した充填体 19であってもよ 、。なお 、多孔質体 17には、金属粉体 18を充填する場合だけでなく非金属粉体を充填しても よい。  [0145] Alternatively, the metal body is a filler 19 formed by filling a metal powder 18 into pores of a porous body 17 having a predetermined shape, as shown in a schematic cross-sectional view of the metal body in FIG. You can. The porous body 17 may be filled not only with the metal powder 18 but also with a non-metallic powder.
[0146] あるいは、金属体は、図 4に金属体の断面模式図として示すように、複数本の第 1 金属線材 21と複数本の第 2金属線材 22とを束ねて形成した金属線束 23であってもよ い。このとき、第 1金属線材 21と第 2金属線材 22の 2種類の金属線材で金属線束 23を 構成するだけでなぐさらに多種の金属線材を束ねて金属線束 23を形成してもよい。  [0146] Alternatively, as shown in a schematic cross-sectional view of the metal body in FIG. 4, the metal body is a metal wire bundle 23 formed by bundling a plurality of first metal wires 21 and a plurality of second metal wires 22. It may be. At this time, the metal wire bundle 23 may be formed by bundling not only a metal wire bundle 23 with two types of metal wires, that is, a first metal wire 21 and a second metal wire 22, but also a variety of other metal wires.
[0147] このように、金属体は様々な形態が可能であって、後述するように剪断変形によつ て金属組織が微細化するのであれば、金属体はどのような形態であってもよ 、。  [0147] As described above, the metal body can have various forms, and as long as the metal structure is refined by shearing deformation as described later, the metal body may have any form. Yo,
[0148] 図 1一 3では、金属体は断面を矩形状とし、図 4では金属体の断面は円形状として いるが、金属体は断面が矩形状となった矩形体や、断面が円形状となった丸棒体に 限定するものではなぐ平板体や中空部を有する筒状体となっていてもよいし、これら 以外でもたとえば H形鋼体、山形鋼体、溝形鋼体、 T形鋼体、リップル溝鋼体等であ つてもよい。 [0148] In Fig. 13, the metal body has a rectangular cross-section, and in Fig. 4, the cross-section of the metal body is circular. However, the metal body has a rectangular cross-section or a circular cross-section. It is not limited to the round bar body, but may be a flat body or a cylindrical body having a hollow portion.Other than these, for example, H-shaped steel, angle steel, grooved steel, T-shaped steel Steel body, ripple groove steel body, etc. You may use it.
[0149] さらに、金属体にはあら力じめ浸炭処理ゃ窒化処理等の所要の処理を施していて もよい。特に、金属体に浸炭処理を施していた場合には、後述するように金属体に形 成した低変形抵抗領域の剪断変形にともなって脱炭処理を行うことができ、脱炭処 理を行 、ながら金属組織を微細化することができるので、より高機能化した金属体を 形成できる。  [0149] Further, the metal body may be preliminarily subjected to a necessary treatment such as a carburizing treatment and a nitriding treatment. In particular, when the metal body has been carburized, the decarburization processing can be performed along with the shear deformation of the low deformation resistance region formed on the metal body as described later, and the decarburization processing is performed. However, since the metal structure can be refined, a highly functional metal body can be formed.
[0150] なお、浸炭処理された金属体だけでなぐ通常の炭素鋼や高炭素鋼の場合でも、 金属体に形成した低変形抵抗領域の剪断変形にともなって脱炭処理を行うことがで き、より高機  [0150] Note that even in the case of ordinary carbon steel or high carbon steel that can be formed only by a carburized metal body, decarburization processing can be performed in accordance with shear deformation in a low deformation resistance region formed in the metal body. More expensive
能化した金属体を形成できる。  A functionalized metal body can be formed.
[0151] 金属体は一方向に伸延した形態とし、図 5に示すように、金属体を横断するように 低変形抵抗領域 30を形成することによって、金属体には低変形抵抗領域 30によって 区切られた第 1非低変形抵抗領域 31と第 2非低変形抵抗領域 32とを形成している。  [0151] The metal body is formed to extend in one direction, and the low deformation resistance region 30 is formed so as to cross the metal body as shown in FIG. The formed first non-low deformation resistance region 31 and second non-low deformation resistance region 32 are formed.
[0152] このように一方向に伸延した金属体を横断させて低変形抵抗領域 30を形成して 、 ることによって、金属体の伸延方向に沿って低変形抵抗領域 30を移動させながら低 変形抵抗領域 30を剪断変形させることにより、金属組織の微細化処理を連続的に行 うことができる。  [0152] The low deformation resistance region 30 is formed by traversing the metal body extended in one direction as described above, thereby moving the low deformation resistance region 30 along the extension direction of the metal body to reduce the deformation. By subjecting the resistance region 30 to shear deformation, the metal structure can be continuously refined.
[0153] し力も、必要に応じて低変形抵抗領域 30に生起する剪断変形の変形形態を調整 することによって、低変形抵抗領域 30の部分に加わる強歪みのモードを異ならせるこ とができるので、金属体には金属組織の微細化の程度が異なる領域を形成すること ができ、金属体の多機能化を図ることができる。  [0153] Since the shear force generated in the low deformation resistance region 30 can be adjusted as needed, the mode of the strong strain applied to the low deformation resistance region 30 can be made different by adjusting the deformation mode of the shear deformation occurring in the low deformation resistance region 30. On the other hand, regions having different degrees of fineness of the metal structure can be formed in the metal body, so that the metal body can be multifunctional.
[0154] 低変形抵抗領域 30の剪断変形は、図 5 (a)に示すように、第 2非低変形抵抗領域 32を第 1非低変形抵抗領域 31に対して金属体の厚み方向に振動させる振動運動を 加えることによって、第 2非低変形抵抗領域 32を第 1非低変形抵抗領域 31に対して 相対的に位置を変動させることにより行っている。  [0154] As shown in FIG. 5 (a), the shear deformation of the low deformation resistance region 30 causes the second non-low deformation resistance region 32 to vibrate in the thickness direction of the metal body with respect to the first non-low deformation resistance region 31. This is performed by changing the position of the second non-low deformation resistance region 32 relatively to the first non-low deformation resistance region 31 by adding a vibrating motion to cause the vibration.
[0155] あるいは、振動運動は、振動方向を金属体の厚み方向ではなぐ図 5 (b)に示すよ うに、金属体の厚み方向と直交する金属体の幅方向としてもよぐさらには、図 5 (c) に示すように金属体の厚み方向の振動と、幅方向の振動との両方を複合した複合振 動としてもよい。このように複合振動とした場合には、低変形抵抗領域に大きな剪断 応力を作用させることができる。 [0155] Alternatively, the vibration motion may be such that the vibration direction is not the thickness direction of the metal body. As shown in FIG. 5 (b), the vibration direction may be the width direction of the metal body orthogonal to the thickness direction of the metal body. 5 As shown in Fig. 5 (c), a composite vibration that combines both the vibration in the thickness direction and the vibration in the width direction of the metal body It may be moving. In the case of the composite vibration, a large shear stress can be applied to the low deformation resistance region.
[0156] なお、金属体が広幅の平板体である場合には、必ずしも金属体を横断するように低 変形抵抗領域を形成することはなぐ金属体の所要の領域にだけ低変形抵抗領域を 形成し、この低変形抵抗領域を剪断変形させて金属体の一部分のみに金属組織を 微細化することにより高強度化あるいは高延性ィ匕を図った領域を形成することもでき る。  [0156] When the metal body is a wide flat plate, the low deformation resistance area is not necessarily formed so as to cross the metal body, and the low deformation resistance area is formed only in a required area of the metal body. However, it is also possible to form a region having high strength or high ductility by subjecting the low deformation resistance region to shear deformation to refine the metal structure in only a part of the metal body.
[0157] また、金属体が丸棒体や中空部を有する円筒体である場合には、図 6に示すように 、第 2非低変形抵抗領域 32'を第 1非低変形抵抗領域 31'に対して、金属体の伸延方 向と略平行とした回転軸周りに捻回することによって、第 2非低変形抵抗領域 32'を第 1非低変形抵抗領域 31'に対して相対的に位置を変動させて、低変形抵抗領域 30'を 剪断変形させることちできる。  When the metal body is a round bar or a cylindrical body having a hollow portion, as shown in FIG. 6, the second non-low deformation resistance region 32 ′ is replaced with the first non-low deformation resistance region 31 ′. On the other hand, the second non-low deformation resistance region 32 ′ is relatively twisted around the rotation axis that is substantially parallel to the extension direction of the metal body, thereby making the second non-low deformation resistance region 32 ′ relative to the first non-low deformation resistance region 31 ′. By changing the position, the low deformation resistance region 30 'can be sheared.
[0158] このとき、第 2非低変形抵抗領域 32'は、第 1非低変形抵抗領域 31'に対して常に一 定の角速度で回転させてもょ 、し、正回転と逆回転とを交互に繰り返えすように回動 させてちょい。  [0158] At this time, the second non-low deformation resistance region 32 'may always be rotated at a constant angular velocity with respect to the first non-low deformation resistance region 31', and the normal rotation and the reverse rotation may be performed. Rotate so that it can be repeated alternately.
[0159] さらに、このような回転軸周りの捻回による低変形抵抗領域の剪断変形は、金属体 が丸棒体や中空部を有する円筒体である場合に限定するものではなぐ図 7に示す ように、平板体からなる金属体に横断状態に低変形抵抗領域 30〃を形成し、この低変 形抵抗領域 30"を挟む第 1非低変形抵抗領域 3Γと第 2非低変形抵抗領域 32"にお いて、第 2非低変形抵抗領域 32'を第 1非低変形抵抗領域 31'に対して金属体の略中 心を通って伸延方向と略平行とした回転軸周り正回転と逆回転とを交互に繰り返す ように回動させてもよい。  [0159] Further, the shearing deformation in the low deformation resistance region due to the twisting around the rotation axis is not limited to the case where the metal body is a round rod or a cylinder having a hollow part. As described above, a low-deformation resistance region 30 横断 is formed in a transverse state in a metal body made of a flat plate, and the first non-low-deformation resistance region 3Γ and the second non-low-deformation resistance region 32 sandwiching the low-deformation resistance region 30 ″ are formed. In this case, the second non-low deformation resistance region 32 ′ is substantially opposite to the first non-low deformation resistance region 31 ′ through the center of the metal body and substantially parallel to the extension direction. Rotation may be performed so that rotation and rotation are alternately repeated.
[0160] 第 1非低変形抵抗領域 31,31',31 "に対する第 2非低変形抵抗領域 32,32',32"の相 対的な振動運動あるいは捻回運動の運動量は、低変形抵抗領域 30,30',30Ίこ剪断 変形を生じさせ  [0160] The relative vibrational or torsional momentum of the second non-low deformation resistance region 32, 32 ', 32 "with respect to the first non-low deformation resistance region 31, 31', 31" is low deformation resistance. Area 30,30 ', 30Ί shear deformation
て金属組織の微細化が可能な程度の運動量であればよい。  It is sufficient if the momentum is such that the metal structure can be refined.
[0161] 低変形抵抗領域 30,30',30〃を剪断変形させる場合には、低変形抵抗領域 [0161] When the low deformation resistance region 30, 30 ', 30' is subjected to shear deformation, the low deformation resistance region
30,30',30 "に金属体の伸延方向に沿って圧縮応力を作用させるように圧縮することに より、低変形抵抗領域 30,30',30"に大きな形状変形が生起されたり、低変形抵抗領 域 30,30',30 "部分において破断が生じたりすることを抑制できる。 30,30 ', 30 "to compress the metal body along the extension direction of the metal body. Thus, it is possible to suppress the occurrence of large shape deformation in the low deformation resistance regions 30, 30 ', 30 "and the occurrence of breakage in the low deformation resistance regions 30, 30', 30".
[0162] 特に、低変形抵抗領域 30,30',30 "に金属体の伸延方向に沿って圧縮応力を作用さ せることによって、低変形抵抗領域 30,30',30 "には、剪断による歪みだけでなぐ圧縮 による歪みをカ卩えることができるので、金属組織をより微細化することができる。  [0162] In particular, by applying a compressive stress to the low deformation resistance regions 30, 30 ', 30 "along the extension direction of the metal body, the low deformation resistance regions 30, 30,', 30" are subjected to shearing. Since distortion due to compression that can be reduced by distortion alone can be reduced, the metal structure can be further refined.
[0163] 逆に、低変形抵抗領域 30,30',30"を剪断変形させる場合に、低変形抵抗領域  [0163] Conversely, when the low deformation resistance regions 30, 30 ', and 30 "are subjected to shear deformation, the low deformation resistance regions
30,30',30 "に金属体の伸延方向に沿って引張応力を作用させるように伸延させること により、低変形抵抗領域 30,30',30 "には、剪断による歪みだけでなぐ伸延による歪 みを加えることができるので、金属組織をより微細化することができる。  By extending the tensile force on the 30,30 ', 30 "along the direction of extension of the metal body, the low deformation resistance region 30,30', 30" Since distortion can be added, the metal structure can be further refined.
[0164] このように低変形抵抗領域を剪断変形させることによって、低変形抵抗領域におけ る金属糸且織を微細化することができるだけでなぐ図 1一 4に示した金属体では互い の金属組織が結合することにより新たな合金あるいはセラミックスを生成することも可 能であり、特に従来の溶融法では生成できな力つた組成の合金を機械的に生成する ことができる。  [0164] By shearing the low-deformation resistance region in this manner, it is not only possible to miniaturize the metal thread in the low-deformation resistance region, but in the metal bodies shown in Figs. It is also possible to form a new alloy or ceramic by bonding the structures, and it is possible to mechanically generate an alloy having a strong composition that cannot be formed by the conventional melting method.
[0165] 上記したように低変形抵抗領域を剪断変形させる場合には、図 8に示すように、一 方向に伸延した金属体に、この金属体を横断する第 1低変形抵抗領域 30aと第 2低 変形抵抗領域 30bとを所定間隔だけ離隔して形成するとともに、第 1低変形抵抗領域 30aと第 2低変形抵抗領域 30bとに挟まれた領域を中間非低変形抵抗領域 33として、 中間非低変形抵抗領域 33を振動運動させることにより、第 1低変形抵抗領域 30a及 び第 2低変形抵抗領域 30bを容易に剪断変形させることができる。  In the case where the low deformation resistance region is subjected to shear deformation as described above, as shown in FIG. 8, a first low deformation resistance region 30a traversing the metal body is provided on a metal body extending in one direction. (2) The low deformation resistance region 30b is formed to be separated from the low deformation resistance region 30b by a predetermined distance, and a region sandwiched between the first low deformation resistance region 30a and the second low deformation resistance region 30b is defined as an intermediate non-low deformation resistance region 33. By vibrating the non-low deformation resistance region 33, the first low deformation resistance region 30a and the second low deformation resistance region 30b can be easily sheared.
[0166] ここで、図 8では、金属体は平板体としており、図 8 (a)では、中間非低変形抵抗領 域 33を金属体の厚み方向に振動させているものであり、図 8 (b)では、中間非低変形 抵抗領域 33を金属体の厚み方向と直交する金属体の幅方向に振動させているもの であり、図 8 (c)では、中間非低変形抵抗領域 33を、金属体の厚み方向の振動と、幅 方向の振動との両方を複合した複合振動によって振動させているものである。  Here, in FIG. 8, the metal body is a flat body, and in FIG. 8 (a), the intermediate non-low deformation resistance region 33 is vibrated in the thickness direction of the metal body. In FIG. 8B, the middle non-low deformation resistance region 33 is vibrated in the width direction of the metal body orthogonal to the thickness direction of the metal body, and in FIG. In addition, the vibration is performed by a composite vibration in which both the vibration in the thickness direction and the vibration in the width direction of the metal body are combined.
[0167] さら〖こ、図 9に示すように、第 1低変形抵抗領域 30aと第 2低変形抵抗領域 30bとに挟 まれた領域を中間非低変形抵抗領域 33の第 1低変形抵抗領域 30a近傍には、金属 体を挟持するとともに金属体の伸延方向に沿って金属体を送給する第 1上側送給口 ーラ 36aと第 1下側送給ローラ 36bとからなる第 1送給装置 36を設け、中間非低変形抵 抗領域 33の第 2低変形抵抗領域 30b近傍には、金属体を挟持するとともに金属体の 伸延方向に沿って金属体を送給する第 2上側送給ローラ 37aと第 2下側送給ローラ 37bとからなる第 2送給装置 37を設け、第 1送給装置 36と第 2送給装置 37とを互いに 逆位相で上下動させることにより、第 1低変形抵抗領域 30a及び第 2低変形抵抗領域 30bを剪断変形させてもょ ヽ。 Further, as shown in FIG. 9, the region sandwiched between the first low deformation resistance region 30a and the second low deformation resistance region 30b is the first low deformation resistance region of the intermediate non-low deformation resistance region 33. In the vicinity of 30a, a first upper feed port for holding the metal body and feeding the metal body along the direction in which the metal body extends. A first feeding device 36 including a roller 36a and a first lower feeding roller 36b is provided, and a metal body is sandwiched between the intermediate non-low deformation resistance region 33 and the second low deformation resistance region 30b. A second feeder 37 is provided, which includes a second upper feed roller 37a and a second lower feed roller 37b for feeding the metal body along the direction in which the metal body extends, and a first feeder 36 and a second feeder 36 are provided. The first low deformation resistance region 30a and the second low deformation resistance region 30b may be sheared by moving the feeding device 37 up and down in opposite phases.
[0168] この場合に第 1低変形抵抗領域 30a及び第 2低変形抵抗領域 30bに生じる剪断変 形は、上記した図 8 (a)での振動モードによる剪断変形とミクロ的には同じである。  [0168] In this case, the shear deformation generated in the first low deformation resistance region 30a and the second low deformation resistance region 30b is microscopically the same as the above-described shear deformation due to the vibration mode in FIG. 8 (a). .
[0169] 金属体が丸棒体や中空部を有する円筒体である場合には、図 10に示すように、所 定間隔だけ離隔して設けた第 1低変形抵抗領域 30aと第 2低変形抵抗領域 30b'との 間の中間非低変形抵抗領域 33'を、金属体の伸延方向と略平行とした回転軸周りに 回転させることによって第 1低変形抵抗領域 30a及び第 2低変形抵抗領域 30bを容易 に剪断変形させることが  [0169] When the metal body is a round rod or a cylinder having a hollow portion, as shown in FIG. 10, the first low deformation resistance region 30a and the second low deformation resistance region 30a provided at a predetermined interval are provided. By rotating the intermediate non-low deformation resistance region 33 ′ between the resistance region 30b ′ and the rotation axis substantially parallel to the extension direction of the metal body, the first low deformation resistance region 30a and the second low deformation resistance region are rotated. 30b can be easily sheared
できる。図 10中、 34は中間非低変形抵抗領域 33'を回転させている回転ローラである  it can. In FIG. 10, reference numeral 34 denotes a rotating roller for rotating the intermediate non-low deformation resistance region 33 '.
[0170] さらに、図 8— 10において、金属体を伸延方向に沿って移動させることにより、金属 体における第 1低変形抵抗領域 30a'及び第 2低変形抵抗領域 30b'の位置を移動さ せることができる。 Further, in FIG. 8-10, the positions of the first low deformation resistance region 30a ′ and the second low deformation resistance region 30b ′ in the metal body are moved by moving the metal body along the extension direction. be able to.
[0171] したがって、通常、連続的に製造されている金属体の製造工程中において、金属 体に第 1低変形抵抗領域 30a,30a'と第 2低変形抵抗領域 30b,30b'とを形成して中間 非低変形抵抗領域 33,33'を振動あるいは回転若しくは回動させることにより、金属体 を容易に剪断変形させることができるので、金属組織が微細化されることにより高強 度化あるいは高延性化された金属体を低コストで製造することができる。  [0171] Therefore, during the manufacturing process of a metal body that is usually manufactured continuously, the first low deformation resistance regions 30a and 30a 'and the second low deformation resistance regions 30b and 30b' are formed in the metal body. By vibrating, rotating or rotating the non-low deformation resistance regions 33 and 33 ', the metal body can be easily sheared and deformed. Metal body can be manufactured at low cost.
[0172] なお、上記した中間非低変形抵抗領域 33,33'の振動、回転若しくは回動において は、他の運動モードとして、金属体の伸延方向に沿って伸縮する伸縮運動モードと、 例えば図 8における中間非低変形抵抗領域 33にお 、て、平板状とした金属体の平 面における法線方向を回動軸とした回動運動モードが考えられ、全部で 6自由度分 の運動を考えることができる。 [0173] し力しながら、図 8— 10に示すように第 1低変形抵抗領域 30a,30a'と第 2低変形抵 抗領域 30b,30b'を有する場合には、伸縮運動モード及び回動運動モードでは第 1低 変形抵抗領域 30a,30a'と第 2低変形抵抗領域 30b,30b'に十分な剪断応力を加えるこ とは困難であり、同様にでも十分な剪断応力を第 1低変形抵抗領域 30a,30a'と第 2低 変形抵抗領域 30b,30b'に加えることは困難であり、実質的には 4自由度の運動を利 用して剪断変形を生じさせることが望ましい。 [0172] In the vibration, rotation, or rotation of the intermediate non-low deformation resistance regions 33, 33 'described above, other motion modes include a telescopic motion mode in which the metal body expands and contracts along the extension direction. In the middle non-low deformation resistance region 33 in Fig. 8, a rotation motion mode with the rotation direction normal to the flat surface of the flat metal body is considered, and the motion with a total of six degrees of freedom is considered. You can think. While having the first low deformation resistance regions 30a, 30a ′ and the second low deformation resistance regions 30b, 30b ′ as shown in FIGS. In the motion mode, it is difficult to apply sufficient shear stress to the first low deformation resistance regions 30a, 30a 'and the second low deformation resistance regions 30b, 30b'. It is difficult to add them to the resistance regions 30a, 30a 'and the second low deformation resistance regions 30b, 30b', and it is desirable to use substantially four degrees of freedom to generate shear deformation.
[0174] ただし、図 5— 7に示すように、金属体に 1力所だけ低変形抵抗領域 30,30'を形成す る場合には、伸縮運動モードや回動運動モードによって上記したように金属体の伸 延方向に圧縮応力や引張応力を作用させるようにすることもできる。  [0174] However, as shown in Fig. 5-7, when the low deformation resistance region 30, 30 'is formed only in one place in the metal body, as described above depending on the expansion and contraction motion mode and the rotation motion mode. Compressive stress or tensile stress can be applied in the direction of extension of the metal body.
[0175] 第 1低変形抵抗領域 30a,30a'及び第 2低変形抵抗領域 30b,30b'は、通常、それぞ れ金属体を加熱することにより形成しているが、第 1低変形抵抗領域 30a,30a'と第 2低 変形抵抗領域 30b,30b'の加熱温度をそれぞれ異ならせておくことにより、第 1低変形 抵抗領域 30a,30a'及び第 2低変形抵抗領域 30b,30b'に作用する剪断応力をそれぞ れ異ならせることができ、金属組織には二段階でそれぞれ異なる剪断応力を作用さ せることができるので、金属組織をより微細化することができる。  [0175] The first low deformation resistance regions 30a, 30a 'and the second low deformation resistance regions 30b, 30b' are usually formed by heating a metal body, respectively. By making the heating temperatures of the 30a, 30a 'and the second low deformation resistance regions 30b, 30b' different from each other, the first low deformation resistance regions 30a, 30a 'and the second low deformation resistance regions 30b, 30b' act. The different shear stresses can be applied to the metal structure, and different shear stresses can be applied to the metal structure in two stages, so that the metal structure can be further refined.
[0176] し力も、一度剪断変形されて金属組織が微細化された部分をさらに剪断変形させる 場合には、金属体の延性が向上していることによって金属体の加熱温度を低くするこ とができ、金属組織をより微細化することができる。  [0176] In the case where the metal material is further sheared once and subjected to shearing deformation, the heating temperature of the metal body may be lowered by improving the ductility of the metal body. As a result, the metal structure can be further refined.
[0177] 具体的には、金属体を伸延方向に沿って移動させることにより、第 1低変形抵抗領 域 30a,30a'を形成するための第 1低変形抵抗領域形成域と、第 2低変形抵抗領域 30b,30b'を形成するための第 2低変形抵抗領域形成域を横断させる場合に、金属体 がマグネシウム合金等のような難変形合金あるいは難変形の金属間化合物等であれ ば、図 11に示すように、第 1低変形抵抗領域形成域を高温とし、第 2低変形抵抗領 域形成域を第 1低変形抵抗領域形成域と比較して低温としている。  [0177] Specifically, by moving the metal body along the extension direction, a first low deformation resistance region forming region for forming the first low deformation resistance regions 30a and 30a ', and a second low deformation resistance region forming region. When traversing the second low deformation resistance region forming region for forming the deformation resistance regions 30b and 30b ', if the metal body is a hardly deformable alloy such as a magnesium alloy or a hardly deformable intermetallic compound, As shown in FIG. 11, the first low deformation resistance region forming region has a high temperature, and the second low deformation resistance region forming region has a lower temperature than the first low deformation resistance region forming region.
[0178] このとき、第 1低変形抵抗領域形成域の加熱温度は、第 1低変形抵抗領域 30a,30a の金属体が十分に軟化する温度であって、剪断変形が可能となって 、る温度であれ ばよい。そのような加熱温度において第 1低変形抵抗領域 30a,30a'に剪断応力を作 用させること〖こよ つて、第 1低変形抵抗領域 30a,30a'を容易に剪断変形させて金属組織を均一とする とともに、中程度の微細粒、例えば 10— 50 m程度の粒径として、金属体の変形抵 抗を/ J、さくすることができる。 [0178] At this time, the heating temperature of the first low deformation resistance region forming region is a temperature at which the metal body of the first low deformation resistance region 30a, 30a is sufficiently softened, and shear deformation becomes possible. It only needs to be temperature. At such a heating temperature, a shear stress is applied to the first low deformation resistance regions 30a and 30a '. Thus, the first low deformation resistance regions 30a and 30a 'are easily sheared to make the metal structure uniform and, at the same time, are formed as medium-sized fine particles, for example, having a particle size of about 10 to 50 m, so that the deformation resistance of the metal body is reduced. A / J, can be reduced.
[0179] そして、第 2低変形抵抗領域形成域の加熱温度は、金属組織の再結晶が生じる程 度までの温度として、第 2低変形抵抗領域 30b,30b'部分の金属組織が肥大化するこ とを抑制しながら剪断変形させて金属組織をより微細化している。  [0179] The heating temperature of the second low deformation resistance region forming region is set to a temperature at which recrystallization of the metal structure occurs, and the metal structure of the second low deformation resistance region 30b, 30b 'becomes large. While suppressing this, the metal structure is refined by shear deformation.
[0180] このように、第 1低変形抵抗領域形成域では、第 2低変形抵抗領域形成域にぉ 、 て再結晶が生じる低温度域までで金属体を剪断変形させることができるように結晶粒 調整が可能な程度に金属体を加熱することによって、難変形合金あるいは難変形の 金属間化合物等でも金属組織を容易に微細化して高延性ィ匕を図ることができる。  [0180] As described above, in the first low deformation resistance region forming region, the crystal is formed so that the metal body can be sheared and deformed in a low temperature region where recrystallization occurs in the second low deformation resistance region forming region. By heating the metal body to such an extent that the grain size can be adjusted, the metal structure can be easily refined even with a hardly deformable alloy or a hardly deformable intermetallic compound, and high ductility can be achieved.
[0181] また、金属体が熱処理型合金の場合には、第 1低変形抵抗領域形成域において 急加熱 '急冷却されることを利用して、第 1低変形抵抗領域形成域における金属体の 加熱温度を金属体の溶体化処理条件となる温度とし、その状態で第 1低変形抵抗領 域 30a,30a'に剪断応力を作用させることによって、第 1低変形抵抗領域 30a,30a'にお いて状態図における組成よりも多くの添加元素を固溶させることができる。  [0181] Further, when the metal body is a heat-treated alloy, rapid heating and rapid cooling in the first low deformation resistance region forming region are used to make use of the metal body in the first low deformation resistance region forming region. The heating temperature is set to a temperature that is a condition for the solution treatment of the metal body, and a shear stress is applied to the first low deformation resistance areas 30a, 30a ′ in that state, so that the first low deformation resistance areas 30a, 30a ′ are applied. Therefore, it is possible to form a solid solution of more additive elements than the composition in the phase diagram.
[0182] そして、第 2低変形抵抗領域形成域の加熱温度は、金属組織の再結晶が生じる程 度までの温度として、第 2低変形抵抗領域 30b,30b'部分の金属組織が肥大化するこ とを抑制しながら剪断変形させて金属組織をより微細化している。  [0182] The heating temperature of the second low deformation resistance region forming region is set to a temperature at which the recrystallization of the metal structure occurs, and the metal structure of the second low deformation resistance region 30b, 30b 'is enlarged. While suppressing this, the metal structure is refined by shear deformation.
[0183] このように、第 1低変形抵抗領域形成域において金属体の溶体化処理を行うこと〖こ より、均質かつ金属組織が微細化された金属体を形成することができる。  [0183] As described above, by performing the solution treatment of the metal body in the first low deformation resistance region formation region, a metal body having a uniform and fine metal structure can be formed.
[0184] 上記したように、本発明の金属加工方法及び金属体では、第 1低変形抵抗領域 30a,30a'や第 2低変形抵抗領域 30b,30b'等の低変形抵抗領域を剪断変形させて金 属体の金属組織を微細化しているのである力 金属組織を微細化する作用としては 、加熱等により変形しやすくなつた金属体中の結晶粒が剪断変形によって剪断され ることにより微細化されて 、るものと考えられる。  As described above, in the metal working method and the metal body of the present invention, low deformation resistance regions such as the first low deformation resistance regions 30a and 30a ′ and the second low deformation resistance regions 30b and 30b ′ are subjected to shear deformation. The effect of refining the metal structure of the metal body is to reduce the size of the metal structure by shearing the crystal grains in the metal body that are easily deformed by heating or the like. It is considered that it is.
[0185] 特に、低変形抵抗領域の両端部分では、後述するように冷却等によって金属体の 結晶粒に変形が生じにくいことにより変形抵抗が高くなつており、剪断変形にともなう 剪断応力は、この変形抵抗が高!ヽ高変形抵抗領域と低変形抵抗領域との境界部分 において大きく作用することによって、高変形抵抗領域と低変形抵抗領域との境界 部分において金属組織の微細化が特に促進されているものと考えられる。 [0185] Particularly, at both ends of the low deformation resistance region, deformation resistance is increased because crystal grains of the metal body are unlikely to be deformed by cooling or the like, as described later, and the shear stress accompanying the shear deformation is High deformation resistance! ヽ Boundary part between high deformation resistance area and low deformation resistance area It is considered that the fine action of the metal structure is particularly promoted at the boundary between the high deformation resistance region and the low deformation resistance region.
[0186] したがって、金属体を伸延方向に沿って移動させて第 1低変形抵抗領域形成域及 び第 2低変形抵抗領域形成域を通過させる場合には、それぞれにお 、て金属体が 高変形抵抗領域から低変形抵抗領域になる場合よりも、低変形抵抗領域から高変形 抵抗領域になる場合における温度制御が重要となる。  [0186] Therefore, when the metal body is moved along the extension direction and passes through the first low deformation resistance region forming region and the second low deformation resistance region forming region, the metal body becomes high in each case. It is more important to control the temperature when changing from a low-resistance region to a high-resistance region than when changing from a low-resistance region to a low-resistance region.
[0187] すなわち、金属体が高変形抵抗領域から低変形抵抗領域になる場合では温度制 御の自由度が高ぐ図 12に示すように、金属体を加熱して低変形抵抗領域を形成す る場合に、あらかじめ予備加熱領域を設けて金属体を予備加熱しておき、その後、本 加熱によって金属体を所定の温度に加熱するようにしてもょ ヽ。  That is, when the metal body changes from the high deformation resistance region to the low deformation resistance region, the degree of freedom in temperature control is high. As shown in FIG. 12, the metal body is heated to form the low deformation resistance region. In such a case, a preheating area may be provided in advance to preheat the metal body, and then the metal body may be heated to a predetermined temperature by the main heating.
[0188] 特に、図 12に示すように、第 1低変形抵抗領域形成域の前に予備加熱領域を設け て金属体を予備加熱しておくことにより、比較的高温状態に加熱される第 1低変形抵 抗領域 30  In particular, as shown in FIG. 12, by providing a preheating region before the first low deformation resistance region forming region to preheat the metal body, Low deformation resistance area 30
a,30a'を短時間で、比較的略均一に加熱することができる。したがって、略均一にカロ 熱された第 1低変形抵抗領域 30a,30a'を剪断変形させることにより、第 1低変形抵抗 領域 30a,30a'の金属組織を均質に微細化することができる。  a, 30a 'can be heated relatively uniformly in a short time. Therefore, the metal structure of the first low deformation resistance regions 30a, 30a 'can be uniformly refined by shearing the first low deformation resistance regions 30a, 30a' which have been substantially uniformly heated.
[0189] また、第 1低変形抵抗領域形成域での加熱条件を溶体化温度とした場合には、予 備加熱領域での予備加熱の温度を溶体化温度としておくことにより、溶体化に必要 十分な処理時間の加熱を行うことができるので、確実に溶体化された金属体を第 2低 変形抵抗領域形成域で剪断変形させることができる。  [0189] Further, when the heating condition in the first low deformation resistance region forming region is the solution heat temperature, the preheating temperature in the preliminary heating region is set as the solution heat temperature, so that it is necessary for the solution heat treatment. Since heating can be performed for a sufficient processing time, the solution-formed metal body can be surely sheared in the second low deformation resistance region forming region.
[0190] 特に、金属体に複数の溶体化温度がある場合や、複数の変態温度がある場合には 、それぞれの所定温度に所定時間維持した後に本加熱を行って低変形抵抗領域を 剪断変形させてもよい。  [0190] In particular, when the metal body has a plurality of solutionizing temperatures or a plurality of transformation temperatures, the main heating is performed after maintaining each of the predetermined temperatures for a predetermined time to reduce the low deformation resistance region by shear deformation. You may let it.
[0191] なお、金属体には、剪断変形を二段階に分けて加えるだけでなぐ金属体の伸延 方向に沿って中間非低変形抵抗領域 33,33'を複数設けることにより、さらに多段に分 けて加えてもよい。特に、金属体が金属含有セラミックス体等の場合には、剪断変形 を加えるたびに異なる条件の剪断変形とすることによりさらに均質ィ匕を図ることができ る。 [0192] 以下において、本発明の実施形態を説明する。 [0191] Note that the metal body is provided with a plurality of intermediate non-low deformation resistance regions 33, 33 'along the direction of extension of the metal body in which the shear deformation is simply applied in two stages, so that the metal body can be further divided into multiple stages. May be added. In particular, when the metal body is a metal-containing ceramic body or the like, the shear deformation under different conditions can be achieved each time the shear deformation is applied, so that the homogeneity can be further improved. Hereinafter, embodiments of the present invention will be described.
[0193] 図 13は、金属体に形成した低変形抵抗領域を捻回することにより剪断変形させる 装置である。本発明者らは、このように低変形抵抗領域を捻回することによって剪断 変形させて金属組織を微細化させることを STSP (Severe Torsion Straining Process) 法と称しており、図 13は STSP装置の一例の概略説明図である。ここでは、説明の便 宜上、金属体 M2は一方向に伸延させた丸棒体としているが、中空部を有する円筒状 体であってもよい。  [0193] Fig. 13 shows an apparatus for shearing deformation by twisting a low deformation resistance region formed in a metal body. The inventors of the present invention refer to the method of twisting the low-deformation resistance region to cause the metal structure to be refined by shearing and deforming the metal structure as an STSP (Severe Torsion Straining Process) method. It is a schematic explanatory drawing of an example. Here, for convenience of explanation, the metal body M2 is a round rod extending in one direction, but may be a cylindrical body having a hollow portion.
[0194] STSP装置は、金属体 M2の伸延方向に沿って基台 60上面に固定部 61と、剪断変 形部 62と、回転部 63とを設けて構成している。  [0194] The STSP device includes a fixed part 61, a shear deformation part 62, and a rotating part 63 provided on the upper surface of the base 60 along the direction of extension of the metal body M2.
[0195] 固定部 61は、基台 60上面に立設した第 1固定壁 61aと、第 2固定壁 61bとで構成して いる。第 1固定壁 61a及び第 2固定壁 61bは、それぞれ所定の厚みを有する板体で構 成しており、第 1固定壁 61aと第 2固定壁 61bとは互いに略平行として 、る。 [0195] The fixed portion 61 is composed of a first fixed wall 61a erected on the upper surface of the base 60 and a second fixed wall 61b. The first fixed wall 61a and the second fixed wall 61b are each formed of a plate having a predetermined thickness, and the first fixed wall 61a and the second fixed wall 61b are substantially parallel to each other.
[0196] また、第 1固定壁 61a及び第 2固定壁 61bにはそれぞれ金属体 M2を挿通させる挿通 孔を設け、同揷通孔にそれぞれ金属体 M2を挿通させ、第 1固定壁 61a及び第 2固定 壁 61bの上端に螺着した固定用ネジ 61c,61dの先端部を揷通孔に揷通させた金属体[0196] The first fixed wall 61a and the second fixed wall 61b are each provided with an insertion hole through which the metal body M2 is inserted, and the metal body M2 is inserted into the through hole, respectively. (2) A metal body in which the tips of fixing screws 61c and 61d screwed to the upper end of the fixing wall 61b pass through the through holes.
M2周面に当接させて、金属体 M2を固定している。 The metal body M2 is fixed by being in contact with the peripheral surface of M2.
[0197] なお、固定部 61は、第 1固定壁 61aと第 2固定壁 61bとで構成するものに限定するも のではなぐ金属体 M2を固定可能であればどのように構成してもよい。ここで、金属 体 M2を固定するとは、丸棒状となった金属体 M2の中心軸を回転軸とする金属体 M2 の回転に対する固定である。 [0197] The fixing portion 61 is not limited to the one formed by the first fixed wall 61a and the second fixed wall 61b, and may have any structure as long as the metal body M2 can be fixed. . Here, to fix the metal body M2 is to fix the metal body M2 in a round bar shape against rotation of the metal body M2 about the center axis of the metal body M2 as a rotation axis.
[0198] 回転部 63は、基台 60上面に立設した第 1規制壁 63aと、第 2規制壁 63bと、第 1規制 壁 63aと第 2規制壁 63bとの間に介装する進退規制体 63cと、図示していない回転装 置とによって構成している。 [0198] The rotating portion 63 includes a first regulating wall 63a, a second regulating wall 63b, and a forward / backward regulating member interposed between the first regulating wall 63a and the second regulating wall 63b. It comprises a body 63c and a rotating device (not shown).
[0199] 第 1規制壁 63a及び第 2規制壁 63bは、それぞれ所定の厚みを有する板体で構成し ており、第 1規制壁 63aと、第 2規制壁 63bとは互いに略平行としている。そして、第 1 規制壁 63 The first control wall 63a and the second control wall 63b are each formed of a plate having a predetermined thickness, and the first control wall 63a and the second control wall 63b are substantially parallel to each other. And the first regulatory wall 63
a及び第 2規制壁 63bにはそれぞれ金属体 M2を挿通させる揷通孔を設け、同揷通孔 にそれぞれ金属体 M2を揷通させて ヽる。 [0200] 進退規制体 63cは、第 1規制壁 63aと第 2規制壁 63bとの間隔寸法と略同一の長さを 有し、かつ、金属体 M2に環装可能とした円筒体で構成している。この進退規制体 63c は、第 1規制壁 63aと第 2規制壁 63bとの間において金属体 M2に環装し、さらに、進退 規制体 63cの周面に螺着した固定用ネジ 63d,63dの先端部を、進退規制体 63cを貫通 した金属体 M2周面に当接させて、金属体 M2に対して進退規制体 63cを固定して 、る A through hole for inserting the metal body M2 is provided in each of the a and the second regulating wall 63b, and the metal body M2 is passed through each of the through holes. [0200] The forward / backward restricting body 63c is formed of a cylindrical body having substantially the same length as the distance between the first restricting wall 63a and the second restricting wall 63b, and capable of being mounted around the metal body M2. ing. The forward / backward restricting body 63c is mounted around the metal body M2 between the first restricting wall 63a and the second restricting wall 63b, and further includes fixing screws 63d, 63d screwed to the peripheral surface of the forward / backward restricting body 63c. The distal end portion is brought into contact with the peripheral surface of the metal body M2 penetrating the advance / retreat regulating body 63c, and the advance / retreat regulating body 63c is fixed to the metal body M2.
[0201] したがって、後述するように金属体 M2の非低変形抵抗領域を回転させた場合には 、進退規制体 63cが第 1規制壁 63aと第 2規制壁 63bに規制されることにより、金属体 M2に伸延方向のズレが生じることを防止できる。 [0201] Therefore, when the non-low deformation resistance region of the metal body M2 is rotated as described later, the advance / retreat restricting body 63c is restricted by the first restricting wall 63a and the second restricting wall 63b. The displacement of the body M2 in the distraction direction can be prevented.
[0202] 金属体 M2の非低変形抵抗領域を回転させる回転装置には様々な装置を用いるこ とができ、回転部 63側の金属体 M2に所定のトルクをカ卩えながら回転させることができ ればどのような装置であってもよい。本実施形態では、回転部 63側の金属体 M2の端 部に回転用モータ(図示せず)を連動連結し、この回転用モータを回転装置としてい る。  [0202] Various devices can be used as a rotating device for rotating the non-low deformation resistance region of the metal body M2, and the rotating body 63 can be rotated while applying a predetermined torque to the metal body M2. Any device is possible if possible. In the present embodiment, a rotation motor (not shown) is interlockedly connected to the end of the metal body M2 on the rotation section 63 side, and this rotation motor is used as a rotation device.
[0203] 剪断変形部 62は、金属体 M2を所定温度に加熱する加熱装置 64と、この加熱装置 64による加熱によって金属体 M2に形成した低変形抵抗領域 30'を所定の幅寸法とす るために金属体 M2を冷却する冷却装置 65とで構成して 、る。  [0203] The shear deformation portion 62 has a heating device 64 for heating the metal body M2 to a predetermined temperature and a low deformation resistance region 30 'formed on the metal body M2 by heating by the heating device 64 to have a predetermined width. For this purpose, a cooling device 65 for cooling the metal body M2 is used.
[0204] 本実施形態では、加熱装置 64には高周波加熱コイルを用いており、この高周波カロ 熱コイルを金属体 M2に所定回数卷回し、金属体 Mlを所定温度に加熱することによ つて変形抵抗を低減させて低変形抵抗領域 30'を形成している。なお、加熱装置 64 は高周波加熱コイルに限定するものではなぐ電子ビーム、プラズマ、レーザー、電 磁誘導等を用いた加熱や、ガスバーナーによる加熱、電気的短絡を利用した加熱で あってもよい。  [0204] In the present embodiment, a high-frequency heating coil is used as the heating device 64, and the high-frequency heating coil is wound around the metal body M2 a predetermined number of times, and the metal body Ml is deformed by heating to a predetermined temperature. The resistance is reduced to form a low deformation resistance region 30 '. The heating device 64 is not limited to the high-frequency heating coil, but may be heating using an electron beam, plasma, laser, electromagnetic induction, heating using a gas burner, or heating using an electric short circuit.
[0205] 特に、加熱装置 64として電子ビームを用いた場合には、金属体 M2の伸延方向にお ける低変形抵抗領域 30'の幅を極めて小さくすることができ、低変形抵抗領域 30'によ り大きな剪断応力を作用させることができるので、金属組織のさらなる微細化を可能と することができる。  [0205] In particular, when an electron beam is used as the heating device 64, the width of the low deformation resistance region 30 'in the extension direction of the metal body M2 can be extremely reduced, and the low deformation resistance region 30' Since a larger shear stress can be applied, it is possible to further refine the metal structure.
[0206] 冷却装置 65は、給水配管 65aから供給された水を吐出する第 1吐水口 65bと第 2吐 水口 65cで構成しており、第 1吐水口 65b及び第 2吐水口 65cから吐出した水によって 金属体 M2を冷却している。図 10中、 66は第 1吐水口 65b及び第 2吐水口 65cから吐 出された水を受ける受水容器であり、 67は同受水容器 66に接続した排水管である。 [0206] The cooling device 65 includes a first water outlet 65b for discharging water supplied from the water supply pipe 65a and a second water outlet 65b. The metal body M2 is configured by the water outlet 65c, and the metal body M2 is cooled by the water discharged from the first water outlet 65b and the second water outlet 65c. In FIG. 10, reference numeral 66 denotes a water receiving container that receives water discharged from the first water outlet 65b and the second water outlet 65c, and 67 denotes a drain pipe connected to the water receiving container 66.
[0207] 本実施形態では、第 1吐水口 65b及び第 2吐水口 65cは、金属体 Mlの上方から下 方に向けて水を噴射するようにしている力 例えば、図 14に示すように、吐水口 68を 金属体 Mlの周囲に略等間隔に複数設けて、複数の吐水口 68から金属体 Mlに向け て水を噴射してもよい。 [0207] In the present embodiment, the first water outlet 65b and the second water outlet 65c are forces for injecting water downward from above the metal body Ml. For example, as shown in FIG. A plurality of water outlets 68 may be provided at substantially equal intervals around the metal body Ml, and water may be sprayed from the plurality of water outlets 68 toward the metal body Ml.
[0208] この場合、各吐水口 68は、金属体 Mlの表面の法線方向に対して所要の入射角 Θ として水を噴射することによりさらに冷却効率を向上させることができる。したがって、 低変形抵抗領域 30'の両端において金属体 Mlの温度勾配を大きくすることができ、こ れにより大きな剪断応力を作用させることができるので、金属組織の微細化効率を向 上させることが期待できる。  In this case, each water outlet 68 can further improve the cooling efficiency by injecting water at a required angle of incidence 入射 with respect to the normal direction of the surface of metal body Ml. Therefore, the temperature gradient of the metal body Ml at both ends of the low deformation resistance region 30 'can be increased, and a large shear stress can be applied. Can be expected.
[0209] 特に、冷却にともなって被冷却面に発生する気泡を効率よく飛散させることができ、 気  In particular, air bubbles generated on the surface to be cooled due to cooling can be efficiently scattered.
泡発生にともなう冷却効率の低下を抑制して、冷却効率を向上させることができる。  The cooling efficiency can be improved by suppressing a decrease in the cooling efficiency due to the generation of bubbles.
[0210] また、冷却装置 65では、第 1吐水口 65bと第 2吐水口 65cとの間に設けた加熱装置 64によって形成された低変形抵抗領域 30'の両側を、第 1吐水口 65b及び第 2吐水口 65cから吐出した水によって冷却しており、特に、第 1吐水口 65bと第 2吐水口 65cとの 配設位置を調整することによって、低変形抵抗領域 30'を、金属体 M2の伸延方向の 長さと比較して極めて微少な領域として 、る。 [0210] In the cooling device 65, both sides of the low deformation resistance region 30 'formed by the heating device 64 provided between the first water outlet 65b and the second water outlet 65c are connected to the first water outlet 65b and the first water outlet 65b. Cooling is performed by the water discharged from the second water discharge port 65c.In particular, by adjusting the arrangement positions of the first water discharge port 65b and the second water discharge port 65c, the low deformation resistance region 30 ' The area is extremely small compared to the length in the extension direction.
[0211] このように、低変形抵抗領域 30'を、金属体 M2の伸延方向に沿った微小幅とするこ とにより、低変形抵抗領域 30'の部分に極めて大きな剪断変形を生起しやすぐ金属 組織の微細化効率を向上させることができる。し力も、回転装置によって低変形抵抗 領域 30'を捻回した場合に低変形抵抗領域 30'において捻回のムラが生じることを防 止できる。さらに、捻回によって低変形抵抗領域 30'に生起した剪断変形の残留歪み 、あるいは残留変形を小さくすることができる。 [0211] As described above, by making the low deformation resistance region 30 'a minute width along the direction of extension of the metal body M2, an extremely large shear deformation is generated in the low deformation resistance region 30'. The refinement efficiency of the metal structure can be improved. Also, when the low deformation resistance region 30 'is twisted by the rotating device, the twisting force can be prevented from being generated in the low deformation resistance region 30'. Further, the residual strain due to the shearing deformation or the residual deformation generated in the low deformation resistance region 30 ′ due to the twisting can be reduced.
[0212] また、加熱装置 64で加熱した低変形抵抗領域 30'を冷却装置 65によって急冷するこ とによって焼き入れを行っていることとなり、金属組織が微細化された金属体 M2の硬 度の向上を図ることもできる。 [0212] Further, the low deformation resistance region 30 'heated by the heating device 64 is quenched by being rapidly cooled by the cooling device 65, and the hardening of the metal body M2 having a fine metal structure is performed. The degree can be improved.
[0213] しカゝも、低変形抵抗領域 30'を急冷することによって加熱状態が持続されることを防 止でき、微細化した金属組織が肥大化することを抑制できる。  [0213] Also, by rapidly cooling the low deformation resistance region 30 ', it is possible to prevent the heating state from being maintained, and to suppress enlargement of the fine metal structure.
[0214] 低変形抵抗領域 30'の幅は、金属体 M2の伸延方向と直交する面による断面での断 面幅寸法の約 3倍以内が望ましい。低変形抵抗領域 30'をこのような条件とすることに よって、捻回にともなう低変形抵抗領域 30'の変形を必要最小限に抑制しながら大き な剪断変形を生起することができ、金属体 M2の金属組織の微細化効率を向上させる ことができる。  [0214] The width of the low deformation resistance region 30 'is desirably within about three times the cross-sectional width of a cross section taken along a plane perpendicular to the direction of extension of the metal body M2. By setting the low deformation resistance region 30 ′ under such conditions, a large shear deformation can be generated while suppressing the deformation of the low deformation resistance region 30 ′ due to twisting to a minimum. The refinement efficiency of the metal structure of M2 can be improved.
[0215] 上記の冷却装置 65は水冷装置としている力 水冷装置に限定するものではなぐ加 熱装置 64による加熱領域を局部的な領域とすることができるように冷却可能な装置で あれば空冷であってもよぐあるいは励磁冷却であってもよぐ適宜の冷却装置を用 いてよい。  The cooling device 65 is not limited to a water cooling device as a water cooling device. The cooling device 65 is air-cooled if it can be cooled so that the heating region by the heating device 64 can be a local region. An appropriate cooling device may be used regardless of whether cooling is performed or excitation cooling is performed.
[0216] 特に、受水容器 66部分を適宜の真空室として、この真空室の内部空間を約 500 hPa以下の真空状態として、真空中において低変形抵抗領域 30'を形成した場合に は、低変形抵抗領域 30'の表面に気体成分との反応膜が形成されることを防止できる 。したがって、後工程における処理を軽減することができる。  [0216] In particular, when the water receiving container 66 is an appropriate vacuum chamber and the internal space of the vacuum chamber is a vacuum state of about 500 hPa or less and the low deformation resistance region 30 'is formed in vacuum, the low The formation of a reaction film with a gas component on the surface of the deformation resistance region 30 'can be prevented. Therefore, it is possible to reduce the processing in the post-process.
[0217] しかも、このような真空中で金属体 M2を加熱する場合には、加熱装置 64として電子 ビーム加熱を用いることができ、しかもこの電子ビーム加熱に対する金属体 M2の冷 却には、金属体 M2の自己冷却作用を利用することができるので、低変形抵抗領域 30'を極めて微小な幅寸法とすることができ、低変形抵抗領域 30'部分に極めて大き な剪断変形を生起することができる。  [0217] Moreover, when heating metal body M2 in such a vacuum, electron beam heating can be used as heating device 64. In addition, cooling of metal body M2 in response to this electron beam heating requires metal heating. Since the self-cooling action of the body M2 can be used, the low-deformation resistance region 30 'can have an extremely small width, and an extremely large shear deformation can be generated in the low-deformation resistance region 30'. it can.
[0218] さらに、真空中において低変形抵抗領域 30'を形成したことを利用して、低変形抵 抗領域 30'の部分に所要の元素力もなる粒子をイオンドーピングしてもよい。  [0218] Further, by utilizing the fact that the low deformation resistance region 30 'is formed in a vacuum, particles having a required elemental force may be ion-doped in the low deformation resistance region 30'.
[0219] このように、低変形抵抗領域 30'にイオンドーピングを行うことにより、低変形抵抗領 域 30'は金属組織が微細化されるとともに、イオンィ匕した粒子が注入されることにより、 より高機能化した金属体を形成できる。特に、金属組織を微細化しながら粒子を注入 することにより、通常のイオンドーピングよりも深く粒子を注入できるとともに、注入され た粒子を金属体 M2に十分混合することができる。しかも、粒子の注入にともなって金 属体 M2 [0219] As described above, by performing ion doping on the low deformation resistance region 30 ', the low deformation resistance region 30' has a finer metallographic structure, and is further implanted with ion-implanted particles. A highly functional metal body can be formed. In particular, by injecting the particles while miniaturizing the metal structure, the particles can be injected deeper than in the normal ion doping, and the injected particles can be sufficiently mixed with the metal body M2. In addition, the gold Genus M2
に生じる金属組織のダメージを解消することもできる。  In addition, it is possible to eliminate the damage of the metal structure generated at the time.
[0220] また、所要の粒子をイオンドーピングするのではなく、低変形抵抗領域 30'に所要の 塑性の粉体を吹き付けるようにしてもょ 、。 [0220] Instead of ion doping the required particles, the required plastic powder may be sprayed on the low deformation resistance region 30 '.
[0221] 低変形抵抗領域 30'に粉体を吹き付けることによって、金属体 M2の金属組織を微 細化するとともに低変形抵抗領域 30'に粉体を機械的に混入させることができ、より高 機能化した金属体を形成できる。特に、従来の铸造では形成困難な組成の金属体も 容易に形成できるとともに、金属以外の組成の粉体を低変形抵抗領域 30'に吹き付 けた場合には、新規な材料を製造することもできる。 [0221] By spraying the powder on the low deformation resistance region 30 ', the metal structure of the metal body M2 can be miniaturized, and the powder can be mechanically mixed into the low deformation resistance region 30'. A functionalized metal body can be formed. In particular, a metal body having a composition that is difficult to form with the conventional structure can be easily formed, and when a powder having a composition other than metal is sprayed on the low deformation resistance region 30 ′, a new material can be manufactured. it can.
[0222] なお、低変形抵抗領域 30'に所要の組成の粉体を吹き付ける場合には、必ずしも真 空中である必要はなぐ常圧状態であってもよい。 [0222] When a powder having a required composition is sprayed on the low deformation resistance region 30 ', the region may be in a normal pressure state, not necessarily in the vacuum.
[0223] 上記したように、減圧状態の真空中で低変形抵抗領域 30'を形成するのではなぐ 受水容器 66部分に加圧室を形成して、加圧室内を高圧状態として低変形抵抗領域[0223] As described above, a low-deformation resistance region 30 'is not formed in a vacuum under reduced pressure. region
30'を形成してもよい。 30 'may be formed.
[0224] このように高圧状態として低変形抵抗領域 30'を形成した場合には、高圧の圧力に よる低変形抵抗領域 30'への加圧作用によって金属組織の微細化効率を向上させる ことが期待できる。  [0224] When the low deformation resistance region 30 'is formed in a high-pressure state in this way, it is possible to improve the metal structure refinement efficiency by applying a pressure to the low deformation resistance region 30' by high pressure. Can be expected.
[0225] 特に、加圧室内には不活性ガスを送気して加圧する場合だけでなぐ活性ガスを送 気して加圧してもよい。  [0225] In particular, an inert gas may be supplied and pressurized only when an inert gas is supplied and pressurized in the pressurized chamber.
[0226] 活性ガス雰囲気中で低変形抵抗領域 30'を形成することにより、金属体 M2の金属 組織を微細化するとともに低変形抵抗領域 30'の表面に活性ガスとの反応領域を形 成することができ、表面改質を行って所要の表面コーティングを行うことができるだけ でなぐ活性ガスとの反応にともなう強歪みを生起することができる場合があるので、 より高機能化した金属体を形成できる。  [0226] By forming the low deformation resistance region 30 'in the active gas atmosphere, the metallographic structure of the metal body M2 is miniaturized, and a reaction region with the active gas is formed on the surface of the low deformation resistance region 30'. In some cases, it is not only possible to perform the required surface coating by performing surface modification, but it is also possible to generate strong strain due to the reaction with the active gas, thereby forming a more sophisticated metal body. it can.
[0227] 特に、活性ガスとして窒素ガスを用いた場合には、金属体 M2の金属組織を微細化 するとともに低変形抵抗領域 30'を窒化させることができるので、金属組織の微細化 にともなって高強度及び高延性であって窒化処理された高機能な金属体 M2を低コス トで提供できる。 [0228] また、活性ガスとしてメタンガス及び Zまたは一酸ィ匕炭素ガス等の炭素含有ガスを 用いた場合には、金属体 M2の金属組織を微細化するとともに低変形抵抗領域 30'を 浸炭処理することができるので、金属組織の微細化にともなって高強度及び高延性 であって浸炭処理された高機能な金属体 M2を低コストで提供できる。 In particular, when nitrogen gas is used as the active gas, the metal structure of the metal body M2 can be refined and the low deformation resistance region 30 ′ can be nitrided. It is possible to provide a high-performance, high-strength, highly functional metal body M2 that has been nitrided at a low cost. [0228] When a carbon-containing gas such as methane gas and Z or carbon monoxide gas is used as the active gas, the metal structure of the metal body M2 is refined and the low deformation resistance region 30 'is carburized. Therefore, it is possible to provide a high-performance metal body M2 which has high strength and high ductility and is carburized as the metal structure is refined at a low cost.
[0229] なお、加圧室内に活性ガスを送気する場合には、必ずしも高圧状態になっている 必要はなぐ加圧室内が活性ガス雰囲気となっているだけでもよい。  [0229] When the active gas is supplied into the pressurized chamber, the pressurized chamber does not necessarily need to be in a high pressure state, and the pressurized chamber may be merely an active gas atmosphere.
[0230] また、低変形抵抗領域 30'に不活性ガスや活性ガスを接触させるのでなく、不活性 液体や活性液体を接触させるようにしてもょ ヽ。  [0230] Further, instead of contacting an inert gas or an active gas with the low deformation resistance region 30 ', an inert liquid or an active liquid may be brought into contact.
[0231] すなわち、上記した STSP装置をそのまま不活性液体や活性液体の中に没入させ て、低変形抵抗領域 30'を形成するようにしてもょ ヽ。  [0231] That is, the above-mentioned STSP device may be immersed in an inert liquid or an active liquid as it is to form the low deformation resistance region 30 '.
[0232] このように不活性液体中や活性液体中で低変形抵抗領域 30'を形成することにより 、低  [0232] By forming the low deformation resistance region 30 'in an inert liquid or an active liquid as described above, the low deformation resistance region 30' can be formed.
変形抵抗領域 30'の形成条件を安定化させることができ、金属組織を均質に微細化 することができる。  The formation conditions of the deformation resistance region 30 'can be stabilized, and the metal structure can be uniformly refined.
[0233] 特に、低変形抵抗領域 30'は、金属体 M2を不活性液体中や活性液体中で加熱し て形成することによって、不活性液体や活性液体を冷却剤として利用することができ 、冷却効率を向上させることができる。  [0233] In particular, the low deformation resistance region 30 'can be formed by heating the metal body M2 in an inert liquid or an active liquid, so that the inert liquid or the active liquid can be used as a coolant. Cooling efficiency can be improved.
[0234] し力も、剪断変形が終了した部分に対しては、不活性液体や活性液体での冷却に よる焼入れを連続して行うことができるので、より高機能化した金属体を形成できる。  [0234] As for the pressing force, quenching by cooling with an inert liquid or an active liquid can be continuously performed on the part where the shear deformation has been completed, so that a more sophisticated metal body can be formed.
[0235] なお、不活性液体中や活性液体中で金属体 M2を加熱して低変形抵抗領域 30'を 形成する場合には、低変形抵抗領域 30'部分の加熱効率が低下するおそれがある。  [0235] When the metal body M2 is heated in the inert liquid or the active liquid to form the low deformation resistance region 30 ', the heating efficiency of the low deformation resistance region 30' may be reduced. .
[0236] そこで、低変形抵抗領域 30'を形成する場合には、金属体 M2における低変形抵抗 領域 30'の形成領域の周囲において熱伝導率を低減させて、低変形抵抗領域 30'に 加えた熱が不活性液体または活性液体を介して拡散することを抑制するようにして ヽ る。したがって、液体中における金属体 M2の加熱を効率よく行うことができる。  [0236] Therefore, when forming the low deformation resistance region 30 ', the thermal conductivity is reduced around the region where the low deformation resistance region 30' is formed in the metal body M2, and the low deformation resistance region 30 'is added. The heat is suppressed from diffusing through the inert liquid or the active liquid. Therefore, it is possible to efficiently heat the metal body M2 in the liquid.
[0237] 具体的には、加熱する低変形抵抗領域 30'の近傍にエアノズル(図示せず)を位置 させ、このエアノズルから気泡状に気体を送気することによって低変形抵抗領域 30' の周囲に気泡域を生起して気泡による断熱層を形成することにより、熱伝導率を低減 させることができる。したがって、極めて容易に熱伝導率を低減させて、液体中にお ける金属体 M2の加熱を効率よく行うことができる。 [0237] Specifically, an air nozzle (not shown) is positioned near the low deformation resistance region 30 'to be heated, and gas is supplied from the air nozzle in the form of a bubble to surround the low deformation resistance region 30'. Reduces thermal conductivity by creating a bubble region in the air and forming a heat insulating layer of bubbles Can be done. Therefore, the thermal conductivity can be extremely easily reduced, and the metal body M2 can be efficiently heated in the liquid.
[0238] 特に、エアノズルから気泡状に送気される気体を窒素ガス、ある 、はメタンガス及び[0238] In particular, the gas sent from the air nozzle in the form of bubbles is nitrogen gas,
Zまたは一酸ィ匕炭素ガス等の炭素含有ガスとした場合には、低変形抵抗領域 30'の 窒化処理、あるいは浸炭処理を行うことができる。 When a carbon-containing gas such as Z or monocarbon gas is used, nitriding or carburizing of the low deformation resistance region 30 'can be performed.
[0239] また、金属体 M2が中空部を有する中空円筒体である場合には、中空部を減圧状 態とすることによって、低変形抵抗領域において中空部に向けて金属体を収縮変形 させながら剪断変形を行うことができ、金属組織をより微細化することができる。 [0239] When the metal body M2 is a hollow cylindrical body having a hollow portion, the hollow portion is reduced in pressure so that the metal body is shrunk and deformed toward the hollow portion in the low deformation resistance region. Shear deformation can be performed, and the metal structure can be further refined.
[0240] あるいは、逆に中空部を高圧状態とすることによって、低変形抵抗領域において金 属体を膨張変形させながら剪断変形を行うことができ、金属組織をより微細化するこ とがでさる。 [0240] Alternatively, by setting the hollow portion to a high pressure state, shear deformation can be performed while expanding and deforming the metal body in the low deformation resistance region, and the metal structure can be further refined. .
[0241] このように、中空部を減圧状態または高圧状態とする場合にも、中空部内に不活性 ガスまたは活性ガス、若しくは不活性液体ある!/ヽは活性液体を所定圧力で供給する ようにしてもよい。特に、中空部を減圧状態とする場合には、金属体の外部を加圧状 態としておくことにより、相対的に減圧状態となっていてもよい。  [0241] As described above, even when the hollow part is in a reduced pressure state or a high pressure state, the inert gas or the active gas or the inert liquid is supplied in the hollow part so that the active liquid is supplied at a predetermined pressure. You may. In particular, when the hollow part is in a reduced pressure state, the metal body may be in a relatively reduced pressure state by keeping the outside of the metal body in a pressurized state.
[0242] STSP装置は上記のように構成しており、金属体 M2に形成した低変形抵抗領域 30' を捻回することによって金属組織を微細化する場合には、 STSP装置に金属体 M2を 装着し、冷却装置 65によって低変形抵抗領域 30'の両側を冷却しながら加熱装置 64 によって低変形抵抗領域 30'を加熱する。  [0242] The STSP apparatus is configured as described above. When the metal structure is refined by twisting the low deformation resistance region 30 'formed in the metal body M2, the metal body M2 is attached to the STSP apparatus. The low deformation resistance region 30 ′ is heated by the heating device 64 while the cooling device 65 cools both sides of the low deformation resistance region 30 ′.
[0243] ここで、加熱装置 64による加熱は、低変形抵抗領域 30'の温度が金属体 M2に生じ た歪みの回復軟ィ匕温度または再結晶温度以上となるまで行い、回復'再結晶温度以 上となったところで回転装置によって非低変形抵抗領域を金属体 M2の中心軸を回 転軸として回転軸周りに回転させることにより、低変形抵抗領域 30'を捻回する。  [0243] Here, heating by the heating device 64 is performed until the temperature of the low deformation resistance region 30 'becomes equal to or higher than the softening temperature or the recrystallization temperature of the strain generated in the metal body M2. At this point, the low deformation resistance region 30 'is twisted by rotating the non-low deformation resistance region around the rotation axis using the central axis of the metal body M2 as the rotation axis by the rotating device.
[0244] 回転装置による非低変形抵抗領域の回転は 1一 20rpmとしている。回転回数は 2 分の 1回転以上としており、回転回数が多いほど大きな剪断変形を生起することがで き、金属組織の微細化効率を向上させることができる。  [0244] The rotation of the non-low deformation resistance region by the rotating device is set to 120 rpm. The number of rotations is set to one half or more, and the greater the number of rotations, the greater the shear deformation that can occur, and the more efficient the microstructure can be refined.
[0245] なお、加熱装置 64による金属体 M2の加熱温度は、回復 ·再結晶温度以上ではある 力 金属結晶粒の粗大化の影響が生じ始める温度以下に制御することが望ましい。 [0246] 本実施形態では、低変形抵抗領域 30'を形成した金属体 M2の一方端を固定して、 他方端を回転させるように構成して ヽるが、低変形抵抗領域 30'を挟む両側をそれぞ れに逆方向に回転させてもょ 、。 [0245] The heating temperature of the metal body M2 by the heating device 64 is desirably controlled to a temperature equal to or higher than the recovery / recrystallization temperature and equal to or lower than the temperature at which the influence of the coarsening of the metal crystal grains starts to occur. In the present embodiment, one end of the metal body M2 on which the low deformation resistance region 30 ′ is formed is fixed and the other end is rotated, but the low deformation resistance region 30 ′ is sandwiched. You can rotate both sides in the opposite direction, respectively.
[0247] このようにして低変形抵抗領域 30'を捻回した後、低変形抵抗領域 30'を冷却して ヽ る。上記した実施形態では、金属体 M2を伸延方向に沿って移動させることはできな いが、金属体 M2を伸延方向に沿って移動可能に構成することにより、金属体 M2にお ける低変形抵抗領域 30'の位置を変位させることができ、金属体 M2に対して捻回によ る剪断処理を連続的に行って、広範囲の領域にわたって金属組織を微細化した金 属体 M2とすることができる。  [0247] After twisting the low deformation resistance region 30 'in this way, the low deformation resistance region 30' is cooled. In the embodiment described above, the metal body M2 cannot be moved along the extension direction, but the metal body M2 is configured to be movable along the extension direction, so that the metal body M2 has a low deformation resistance. The position of the region 30 'can be displaced, and the metal body M2 can be continuously subjected to a shearing process by twisting to form a metal body M2 having a fine metal structure over a wide area. it can.
[0248] また、金属体 M2を伸延方向に沿って移動可能に構成するのではなぐ加熱装置 64 と冷却装置 65とからなる剪断変形部 62を金属体 M2の伸延方向に沿って移動可能に 構成してちょい。  [0248] Also, instead of configuring the metal body M2 so as to be movable in the direction of extension, the shear deformation portion 62 including the heating device 64 and the cooling device 65 is configured to be movable in the direction of extension of the metal body M2. Just a little.
[0249] さらに、金属体 M2の伸延方向の移動、または剪断変形部 62の金属体 M2の伸延方 向に沿った移動を往復移動とすることによって、金属体 M2の所定幅の領域に繰り返 し剪断処理を行って、金属組織をより微細化してもょ ヽ。  [0249] Further, the movement of the metal body M2 in the extension direction or the movement of the shear deformation portion 62 along the extension direction of the metal body M2 is reciprocated, so that the metal body M2 is repeatedly moved to the region of a predetermined width of the metal body M2. The metal structure can be further refined by performing a shearing process.
[0250] しカゝも、場合によっては、金属体 M2の所要の位置に形成した低変形抵抗領域 30'ご とに、回転装置による金属体 M2の回転速度、あるいは加熱条件若しくは冷却条件を 調整することにより金属組織の微細化の程度を調整して、金属体 M2の強度あるいは 延性を調整することができ、部分的に強度を向上させたり、延性を向上させたりした 金属体 M2を生成できる。  [0250] In some cases, the rotation speed of the metal body M2 by the rotating device or the heating or cooling condition is adjusted for each low deformation resistance region 30 'formed at a required position of the metal body M2. By adjusting the degree of refinement of the metal structure, the strength or ductility of the metal body M2 can be adjusted, and the metal body M2 with partially improved strength or improved ductility can be generated. .
[0251] 図 15は、上記した STSP装置による処理前のアルミニウム合金である JIS-A5056の 電子顕微鏡写真であり、図 16は、 STSP装置で処理した JIS-A5056の電子顕微鏡写 真である。金属体 M2を剪断変形させることによって、 60— 70 mであった金属組織 の結晶粒を 5 μ m以下にまで微細化できることがわかる。  FIG. 15 is an electron micrograph of JIS-A5056, which is an aluminum alloy before being processed by the STSP apparatus described above, and FIG. 16 is an electron micrograph of JIS-A5056 processed by the STSP apparatus. It can be seen that by deforming the metal body M2 by shearing, the crystal grain of the metal structure, which was 60-70 m, can be reduced to 5 μm or less.
[0252] し力も、この結晶粒の微細化は、加熱、冷却の条件を工夫して設定することにより、 たとえば、電子ビームできわめて狭い領域のみをし力も深淵部まで加熱し、その領域 外では自己冷却により低温のままとすれば、低変形抵抗領域と非低変形抵抗領域の 境界部を幅狭として低変形抵抗領域に強歪みを集中できるので、結晶粒径を数十ナ ノカも十ナノのレベルにまで、微細化することができる。 [0252] The refining of the crystal grains can be achieved by appropriately setting the heating and cooling conditions. For example, only an extremely narrow area is heated by the electron beam, and the force is heated to the deep part. If the temperature is kept low by self-cooling, the boundary between the low-deformation resistance region and the non-low-deformation resistance region can be narrowed, and the strong strain can be concentrated in the low-deformation resistance region. Noka can also be miniaturized to the level of 10 nanometers.
[0253] また、図 17は鉄系材料である S45Cを、上記した STSP装置によって処理した金属 体と、 STSP装置における処理と同様の熱履歴による焼き鈍し処理を行った金属体と の耐力、引張り強度、均一延びを比較した結果を示しており、 STSP装置で処理する ことによって均一延びを増カロさせることなく耐カ及び引張り強度を向上させることがで さることがゎカゝる。  [0253] Fig. 17 shows the yield strength and tensile strength of a metal body obtained by treating S45C, which is an iron-based material, with the above-described STSP apparatus, and a metal body that has been subjected to an annealing treatment using the same heat history as in the STSP apparatus. The results show a comparison of uniform elongation, and it is clear that treatment with an STSP device can improve the heat resistance and tensile strength without increasing the uniform elongation.
[0254] さらに、図 18はアルミニウム系材料である JIS-A5056を、上記した STSP装置によ つて処理した金属体と、 STSP装置における処理と同様の熱履歴による焼き鈍し処 理を行った金属体との耐カ、引張り強度、均一延びを比較した結果を示しており、 S TSP装置で処理することによって、 S45Cの場合と同様に、均一延びを増加させること なく耐カ及び引張り強度を向上させることができることがわかる。  [0254] Further, Fig. 18 shows a metal body obtained by treating JIS-A5056, which is an aluminum-based material, with the above-described STSP apparatus, and a metal body subjected to annealing treatment using the same heat history as in the STSP apparatus. The results show a comparison of the resistance to heat, tensile strength, and uniform elongation of the steel sheet.It is possible to improve the power resistance and tensile strength without increasing the uniform elongation by treating with the STSP device, as in the case of S45C. You can see that you can do it.
[0255] なお、上記した STSP装置では、その構造から明らかなように、回転装置によって非 低変形抵抗領域を回転させた場合の低変形抵抗領域 30'の回転軸部分には十分な 剪断変形が生じないことによって金属組織の微細化が不十分な領域があらわれるお それがある。  [0255] In the STSP device described above, as is apparent from the structure, when the non-low deformation resistance region is rotated by the rotating device, sufficient shear deformation is generated in the rotating shaft portion of the low deformation resistance region 30 '. There may be a region where the metal structure is not sufficiently refined due to the lack of such a region.
[0256] そこで、本実施形態の STSP装置では、加熱装置 64によって金属体 M2を加熱する ことにより低変形抵抗領域 30'を形成する際には、加熱装置 64は回転軸の領域を非 中心とする加熱分布として加熱して!/ヽる。  [0256] Therefore, in the STSP device of the present embodiment, when the low deformation resistance region 30 'is formed by heating the metal body M2 by the heating device 64, the heating device 64 sets the rotation axis region to be non-centered. Heat as a heating distribution!
[0257] すなわち、本実施形態のように加熱装置 64を高周波加熱コイルで構成した場合に は、高周波加熱コイルの中心軸を回転部 63による金属体 M2の回転軸力 偏倚させ ている。これによつて低変形抵抗領域 30'では回転軸の領域を非中心とする加熱分 布とすることがで、回転軸の領域に微細化されない領域ができることを抑止して、 ST SP装置においても金属組織を均一に微細化することができる。  That is, when the heating device 64 is formed of a high-frequency heating coil as in the present embodiment, the central axis of the high-frequency heating coil is biased by the rotating portion 63 to rotate the metal body M2. As a result, in the low deformation resistance region 30 ′, the heating distribution having the rotation axis region as a non-center is used as a heating distribution, so that a region that is not miniaturized in the rotation shaft region is suppressed, and the ST SP device is also used. The metal structure can be uniformly refined.
[0258] このように、加熱装置 64の配置を調整することにより加熱分布を回転軸の領域を非 中心とした状態とすることができ、回転軸の領域の金属組織も確実に微細化すること ができる。  [0258] As described above, by adjusting the arrangement of the heating device 64, the heating distribution can be made non-centered on the region of the rotating shaft, and the metal structure in the region of the rotating shaft can be surely miniaturized. Can be.
[0259] STSP装置における金属組織の微細化の不均一を防止する方法としては、低変形 抵抗領域 30'を挟む一方の非低変形抵抗領域を、他方の非低変形抵抗領域に対し て、金属体 Mlの伸延方向と略直交する方向に移動させて、この移動によって低変形 抵抗領域 30'の回転軸の領域に剪断変形を生じさせることにより、金属組織の微細化 の不均一を防止してもよ!/、。 [0259] As a method for preventing non-uniformity of the microstructure of the metal structure in the STSP apparatus, one non-low deformation resistance region sandwiching the low deformation resistance region 30 'is positioned with respect to the other non-low deformation resistance region. Then, the metal body Ml is moved in a direction substantially perpendicular to the direction of extension, and this movement causes a shear deformation in the rotation axis region of the low deformation resistance region 30 ', thereby reducing the non-uniformity of the microstructure of the metal structure. You can prevent it! /
[0260] すなわち、 STSP装置に後述する SVSP装置の振動印加体 47を組み込んで、低変 形抵抗領域 30'を捻回するとともに振動させてもよい。 [0260] That is, the vibration applying body 47 of the SVSP device described later may be incorporated in the STSP device to twist and vibrate the low deformation resistance region 30 '.
[0261] あるいは、回転軸自体を丸棒状となった金属体 M2の幾何学的な中心力 偏倚させ ることにより、低変形抵抗領域 30'の回転軸の領域に剪断変形を生じさせて、金属組 織の微細化の不均一を防止してもよ 、。 [0261] Alternatively, by deviating the rotation axis itself from the geometrical center force of the metal body M2 having a round rod shape, shear deformation is generated in the rotation axis area of the low deformation resistance area 30 ', and metal It is also possible to prevent non-uniformity in the micronization of the tissue.
[0262] または、金属体 M2を所定形状に成形する適宜の成型用ガイド体を低変形抵抗領 域 30'に当接させて、この成型用ガイド体によって低変形抵抗領域 30'に加えられる変 形応力を生起して金属組織の微細化の不均一を防止することもできる。 [0262] Alternatively, an appropriate molding guide body for molding the metal body M2 into a predetermined shape is brought into contact with the low deformation resistance area 30 ', and the deformation added to the low deformation resistance area 30' by the molding guide body. It is also possible to prevent a nonuniform metal structure from being formed by generating a shape stress.
[0263] 特に、低変形抵抗領域 30'では変形抵抗が低下していることにより所定形状への成 形を容易に行うことができ、所定形状への変形と金属組織の微細化の不均一解消と を同時に行うことができる。 [0263] Particularly, in the low deformation resistance region 30 ', the deformation resistance is reduced, so that it is possible to easily perform the shaping into the predetermined shape. And can be performed simultaneously.
[0264] 具体的には、図 19に示すように、低変形抵抗領域 30'に成形用ガイド体として例え ば伸線用ダイス 69を当接させることによって、低変形抵抗領域 30'において剪断変形 により金属組織を微細化させながら、伸線用ダイス 69で金属体 M2の伸線処理を行う ことちでさる。 [0264] Specifically, as shown in Fig. 19, the low deformation resistance region 30 'is brought into contact with a forming guide body, for example, a wire drawing die 69, so that the low deformation resistance region 30' is subjected to shear deformation. The metal body M2 is drawn by the wire drawing die 69 while making the metal structure finer.
[0265] 特に、図 19においては、伸線用ダイス 69は図示しないヒータと接続して所要温度と な  In particular, in FIG. 19, the wire drawing die 69 is connected to a heater (not shown) to reach a required temperature.
るようにして、伸線用ダイス 69を加熱用装置として使用するようにしている。したがって 、伸線用ダイス 69と当接した金属体 M2の当接部分を局部加熱することができ、低変 形抵抗領域 30'を容易に形成できる。  In this way, the drawing die 69 is used as a heating device. Therefore, the contact portion of the metal body M2 contacting the wire drawing die 69 can be locally heated, and the low deformation resistance region 30 'can be easily formed.
[0266] あるいは、伸線用ダイス 69には、内部に冷却水を通水させる水路(図示せず)等を 設けて低変形抵抗領域 30'を冷却する冷却装置としてもよい。  [0266] Alternatively, a cooling device that cools the low deformation resistance region 30 'may be provided in the wire drawing die 69 by providing a water passage (not shown) through which cooling water flows.
[0267] 伸線用ダイス 69を冷却装置とした場合には、図 20に示すように、伸線用ダイス 69と 当接した金属体の当接部分を局部冷却することができ、剪断変形後の低変形抵抗 領域 30'を効率よく冷却して、製造効率を向上させることができる。 [0268] また、低変形抵抗領域 30'が所定の温度、特に成形加工を行う温度にまで冷却され た後に成形用ガイド体によって金属体 M2に所要の成形加工を行ってもよい。 When the wire drawing die 69 is used as a cooling device, as shown in FIG. 20, the contact portion of the metal body contacted with the wire drawing die 69 can be locally cooled, and The low deformation resistance region 30 'can be efficiently cooled, and the production efficiency can be improved. [0268] Further, after the low deformation resistance region 30 'is cooled to a predetermined temperature, in particular, a temperature at which the forming process is performed, a required forming process may be performed on the metal body M2 by a forming guide body.
[0269] なお、説明の便宜上、図 19では冷却装置を省略しており、図 20では加熱装置を省 略している。  [0269] For convenience of explanation, the cooling device is omitted in FIG. 19, and the heating device is omitted in FIG.
[0270] 成形用ガイド体としては伸線用ダイス 69に限定するものではなぐ雄ねじ形成用ダイ スゃバイト等を適宜用いることにより、ネジカ卩ェゃギヤ転造を行うようにしてもよ 、。  [0270] The forming guide body is not limited to the wire drawing die 69, and a screw thread forming gear may be rolled by appropriately using a male screw forming die-bite or the like.
[0271] 図 21は、上記した STSP装置の変容例の概略説明図である。この STSP装置には 、金属体 M2'を供給する供給部 70と、剪断変形された金属体 M2'を収容する収容部 71とを設けている。  FIG. 21 is a schematic explanatory diagram of a modification of the above-described STSP device. This STSP device is provided with a supply section 70 for supplying the metal body M2 'and a storage section 71 for storing the sheared metal body M2'.
[0272] 供給部 70には所要のリールに卷回した金属体 M2'を供給し、図示しない引延具に よって金属体 M2'を直線状に引き延ばしながら送給するようにしている。  [0272] The supply unit 70 is supplied with a metal body M2 'wound on a required reel, and is fed while stretching the metal body M2' linearly by a stretching tool (not shown).
[0273] 収容部 71では、剪断変形された金属体 M2'を、図示しない卷付具によつてリールに 卷回させて収容するようにして!/、る。  [0273] In the housing section 71, the metal body M2 'that has been sheared and deformed is wound around a reel by a winding tool (not shown) and housed.
[0274] そして、 STSP装置では、供給部 70と収容部 71との間に、金属体 M2'の伸延方向に 沿って複数の剪断変形部 62'をそれぞれ所定間隔だけ離隔して設け、しかも、隣り合 つた剪断変形部 62',62'の間に回転部 63'を設けて、この回転部 63'によって金属体 M2'の伸延方向と略平行とした回転軸周りに金属体 M2'を回転させて、剪断変形部 62'部分の金属体 M2'を剪断変形させて 、る。  [0274] In the STSP device, a plurality of shear deformation portions 62 'are provided at predetermined intervals along the extension direction of the metal body M2' between the supply portion 70 and the storage portion 71, and A rotating portion 63 'is provided between the adjacent shear deformation portions 62', 62 ', and the rotating portion 63' rotates the metal body M2 'around a rotation axis substantially parallel to the extension direction of the metal body M2'. Then, the metal body M2 'in the shearing deformation portion 62' is sheared.
[0275] 剪断変形部 62'には、金属体 M2'を加熱する高周波加熱コイル 64'と、金属体 M2'を 冷却するための冷却水を吐出する第 1吐水口 65b'と第 2吐水口 65c'とを設け、し力も 、第 1吐水口 65b'と第 2吐水口 65c'との間に高周波加熱コイル 64'を位置させて、高周 波加熱コイル 64'による金属体 M2'の加熱領域を微小範囲として 、る。  [0275] The shear deformation portion 62 'includes a high-frequency heating coil 64' for heating the metal body M2 ', a first water outlet 65b' for discharging cooling water for cooling the metal body M2 ', and a second water outlet. 65c ', and the high-frequency heating coil 64' is positioned between the first water outlet 65b 'and the second water outlet 65c', and the metal body M2 'is heated by the high-frequency heating coil 64'. The area is defined as a small range.
[0276] 本実施形態では、回転部 63'には金属体 M2'に当接させた回転ローラを設け、この 回転ローラによって金属体 M2'を回転させている。し力も、隣り合った回転部 63'では 、それぞれ回転ローラの回転方向を逆方向としている。  [0276] In the present embodiment, a rotating roller in contact with the metal body M2 'is provided in the rotating unit 63', and the metal body M2 'is rotated by the rotating roller. Also, the rotating direction of the rotating rollers is opposite in the rotating portions 63 'adjacent to each other.
[0277] このように構成した STSP装置において、供給部 70と収容部 71とを金属体 M2'の搬 送手段として金属体 M2'を送給することによって、金属体 M2'に複数回の剪断変形を 施すことができる。 [0278] あるいは、たとえば、剪断変形部 62'を金属体 M2'の伸延方向に沿って所定間隔 T で Ν力 [0277] In the STSP apparatus configured as described above, the supply unit 70 and the storage unit 71 are supplied with the metal body M2 'as a means for transporting the metal body M2', so that the metal body M2 'is sheared a plurality of times. Deformation can be applied. [0278] Alternatively, for example, the shearing deformation portion 62 'is pressed at a predetermined interval T along the extension direction of the metal body M2'.
所設けている場合に、供給部 70と収容部 71とを金属体 M2'の搬送手段として金属体 M2'を所定間隔 Τと等距離だけ送給すると、 ΤΧ Νの長さの領域において一度に剪断 変形を行うことができるので、剪断変形を停止して金属体 M2'を ΤΧ Νだけ送給し、そ の後、剪断変形を再開して金属体 M2'を所定間隔 Τと等距離だけ送給することを繰り 返すようにすることもできる。これによつて、製造効率を向上させることができる。  When the metal unit M2 'is fed at a predetermined interval 等 by using the supply unit 70 and the storage unit 71 as a means for transporting the metal unit M2', the 部 にSince the shear deformation can be performed, the shear deformation is stopped and the metal body M2 'is fed by ΤΧ 、, and then the shear deformation is restarted and the metal body M2' is sent by the predetermined distance 等 and the same distance. Paying can be repeated. Thereby, manufacturing efficiency can be improved.
[0279] なお、この場合には、 Νは偶数であって、図 21のように、剪断変形部 62'と剪断変形 部 62'との間に全て回転部 63'を設けるのではなぐ一つおきに回転部 63'を設けても よい。 [0279] In this case, 数 is an even number, and as shown in Fig. 21, not all rotating parts 63 'are provided between the shearing deformation parts 62' and the shearing deformation parts 62 '. A rotating portion 63 'may be provided every other time.
[0280] 図 22は、金属体に形成した低変形抵抗領域を振動によって剪断変形させる装置 である。本発明者らは、このように低変形抵抗領域を振動によって剪断変形させて金 属組織を微細化させることを SVSP (Severe Vibration Straining Process)法と称して おり、図 22は SVSP装置の一例の概略説明図である。ここでは、説明の便宜上、金 属体 Mlは一方向に伸延させた角棒体として ヽるが、他の形状であってもよ!/、。  [0280] Fig. 22 shows an apparatus for shear-deforming a low deformation resistance region formed in a metal body by vibration. The inventors of the present invention call the SVSP (Severe Vibration Straining Process) method to reduce the metal structure by shearing and deforming the low deformation resistance region by vibration in this way, and FIG. 22 shows an example of the SVSP device. FIG. Here, for convenience of explanation, the metal body Ml is a rectangular rod extending in one direction, but may have another shape!
[0281] SVSP装置には、金属体 Mlの伸延方向に沿って基台 40上に固定部 41と、剪断変 形部 42と、振動部 43とを設けている。  [0281] The SVSP device is provided with a fixed part 41, a shear deformation part 42, and a vibrating part 43 on a base 40 along the extension direction of the metal body Ml.
[0282] 固定部 41には、金属体 Mlの伸延方向に沿って第 1規制体 44と、第 2規制体 45とを 設けている。第 1規制体 44では、伸延方向に沿って送給される金属体 Mlの幅方向の 動きを規制しており、第 2規制体 45では、伸延方向に沿って送給される金属体 Mlの 厚み方向の動きを規制して、金属体 Mlを進退自在に固定している。  [0282] The fixed portion 41 is provided with a first restricting body 44 and a second restricting body 45 along the direction in which the metal body Ml extends. The first regulating body 44 regulates the widthwise movement of the metal body Ml sent along the extension direction, and the second regulation body 45 regulates the movement of the metal body Ml sent along the extension direction. The metal body Ml is fixed so that it can move forward and backward by restricting the movement in the thickness direction.
[0283] すなわち、第 1規制体 44では、それぞれ支持体によって回転自在に支持された第 1 当接ローラ 44aと第 2当接ローラ 44bで金属体 Mlを挟持固定している。  That is, in the first regulating body 44, the metal body Ml is sandwiched and fixed between the first contact roller 44a and the second contact roller 44b rotatably supported by the support members.
[0284] また、第 2規制体 45では、金属体 Mlを挟んで立設した第 1支持体 45aと第 2支持体 45bに、金属体 Mlの下方側に位置させる下側ローラ 45cと、金属体 Mlの上方側に位 置させる上側ローラ 45dとを回転自在に架設して、下側ローラ 45cと上側ローラ 45dとで 金属体 Mlを挟持固定している。  [0284] Also, in the second regulating body 45, a lower roller 45c positioned below the metal body Ml is provided on the first support 45a and the second support body 45b which stand upright with the metal body Ml interposed therebetween. An upper roller 45d positioned above the body Ml is rotatably mounted, and the metal body Ml is sandwiched and fixed between the lower roller 45c and the upper roller 45d.
[0285] なお、下側ローラ 45cと上側ローラ 45d、さらには、第 1規制体 44の第 1当接ローラ 44a と第 2当接ローラ 44bをそれぞれ適宜の駆動装置を用いて回転させて、金属体 Mlを 送給する送給機構としてもよい。図 22中、 46は金属体 Mlの送給を補助するガイド口 ーラである。 [0285] The lower roller 45c and the upper roller 45d, and further, the first contact roller 44a of the first regulating body 44 A feeding mechanism for feeding the metal body Ml by rotating the and the second contact roller 44b using an appropriate driving device may be used. In FIG. 22, reference numeral 46 denotes a guide roller for assisting the feeding of the metal body Ml.
[0286] 振動部 43には、金属体 Mlの伸延方向に沿って振動印加体 47と、振動伝搬抑制体 48とを設けている。振動印加体 47では金属体 Mlに所定の振動を印加し、振動伝搬 抑制体 48では振動印加体 47にお ヽて金属体 Mlに印加した振動が金属体 Mlに沿つ て伝搬することを抑制して 、る。  [0286] The vibrating section 43 is provided with a vibration applying body 47 and a vibration propagation suppressing body 48 along the extension direction of the metal body Ml. The vibration applying body 47 applies a predetermined vibration to the metal body Ml, and the vibration propagation suppressing body 48 suppresses the vibration applied to the metal body Ml from propagating along the metal body Ml in the vibration applying body 47. Then
[0287] 振動印加体 47は、金属体 Mlの下方に位置させた超音波振動体 49と、この超音波 振動体 49の出力軸 49aに装着した伝播体 50とで構成している。伝播体 50は、金属体 Mlの下方側に位置させた下側ローラ 50aと、金属体 Mlの上方側に位置させた上側口 ーラ 50bとを、 U字状とした支持フレーム 50cに回転自在に架設して構成しており、下 側ローラ 50aと上側ローラ 50bとで金属体 Mlを挟持している。  [0287] The vibration applying body 47 includes an ultrasonic vibrating body 49 located below the metal body Ml, and a propagating body 50 mounted on the output shaft 49a of the ultrasonic vibrating body 49. The propagating member 50 is configured such that a lower roller 50a positioned below the metal member Ml and an upper roller 50b positioned above the metal member Ml are rotatable on a U-shaped support frame 50c. The metal body Ml is sandwiched between the lower roller 50a and the upper roller 50b.
[0288] そして、伝播体 50は、超音波振動体 49を作動させることによって、所定の振幅で、 かつ所定の周波数で上下方向に振動し、金属体 Mlを上下方向に振動させて 、る。 本実施形態で  By operating the ultrasonic vibrator 49, the propagation body 50 vibrates vertically at a predetermined amplitude and at a predetermined frequency, and vibrates the metal body Ml in the vertical direction. In this embodiment
は、超音波振動体 49によって振動運動を生起しているが、超音波振動体 49以外の 装置、たとえばリニアモータあるいは圧電素子等、あるいは簡単にはカム機構によつ て振動運動を生起してもよ ヽ。  Vibrating motion is generated by the ultrasonic vibrating body 49, but is generated by a device other than the ultrasonic vibrating body 49, such as a linear motor or a piezoelectric element, or simply by a cam mechanism. Well ヽ.
[0289] 例えば、カム機構力もなる振動装置としては、図 23に示すように、後述するように金 属体 Mlに形成した低変形抵抗領域 30の近傍にぉ 、て、金属体 Mlの一方の側面側 に楕円状カム 55を設けるとともに、他方の側面側にスプリング等で構成した従動用弹 性体 56を設け、楕円状カム 55と従動用弾性体 56とで金属体 Mlを挟持するとともに、 楕円状カム 55の回転運動によって金属体 Mlを振動運動させるように構成している。  For example, as shown in FIG. 23, a vibrating device that also provides a cam mechanism force includes one of the metal members Ml near the low deformation resistance region 30 formed in the metal member Ml as described later. An elliptical cam 55 is provided on the side surface side, and a driven elastic body 56 formed of a spring or the like is provided on the other side surface. The metal body Ml is sandwiched between the elliptical cam 55 and the driven elastic body 56, The metal body Ml is configured to vibrate by the rotational movement of the elliptical cam 55.
[0290] 図 23中、 57は従動用弾性体 56の固定体であり、 58は金属体 Mlと直接的に当接し て金属体 Mlを安定的に振動させるための支持板である。なお、カムは楕円状カム 55 に限定するものではなぐ多角形状カム等の適宜のカム形状としてよ 、。  In FIG. 23, reference numeral 57 denotes a fixed body of the driven elastic body 56, and reference numeral 58 denotes a support plate that directly contacts the metal body Ml and stably vibrates the metal body Ml. Note that the cam is not limited to the elliptical cam 55, but may be an appropriate cam shape such as a polygonal cam.
[0291] 超音波振動体 49によって金属体 Mlに加えた振動の振幅は、後述するように金属体 Mlに形成した低変形抵抗領域 30部分における金属組織を剪断変形によって微細化 できる程度であればよぐ基本的には、金属体 Mlを構成している金属の金属組織の 粒径と、低変形抵抗領域 30の金属体 Mlの伸延方向における幅寸法とから必要最小 限の振幅が決定される。 [0291] The amplitude of the vibration applied to the metal body Ml by the ultrasonic vibrator 49 is such that the metal structure in the low deformation resistance region 30 formed in the metal body Ml is refined by shear deformation as described later. Basically, if possible, the required minimum is determined from the grain size of the metal structure of the metal constituting the metal body Ml and the width of the low deformation resistance region 30 in the direction of extension of the metal body Ml. The amplitude is determined.
[0292] 超音波振動体 49による振動の振幅は、大きければ大きいほど金属組織を微細化で きるが、振動の振幅が大きい場合には低変形抵抗領域 30において復元が困難となる 変形が発生するおそれがあり、そのため、低変形抵抗領域 30に復元が困難となる変 形が生じな 、最大の振幅で金属体 Mlを振動させることが望ま 、。  [0292] The greater the amplitude of the vibration by the ultrasonic vibrator 49, the finer the metallographic structure can be. However, if the amplitude of the vibration is large, the deformation becomes difficult to recover in the low deformation resistance region 30. Therefore, it is desirable to vibrate the metal body Ml with the maximum amplitude without deformation that makes restoration difficult in the low deformation resistance region 30.
[0293] ここで、復元が困難とならない変形とは、半周期による振動において、低変形抵抗 領域 30が振動前の形状に復元する変形であり、復元が困難となる変形とは、半周期 による振動にぉ 、て、低変形抵抗領域 30が振動前の形状に復元しな 、変形である。  [0293] Here, the deformation that does not make the restoration difficult is the deformation in which the low deformation resistance region 30 restores the shape before the vibration in the vibration in a half cycle, and the deformation that makes the recovery difficult is the half cycle. In response to the vibration, the low deformation resistance region 30 is deformed without restoring the shape before the vibration.
[0294] 超音波振動体 49によって金属体 Mlに加えた振動の周波数は、振動によって低変 形抵抗領域 30に生起した変位による歪みを、金属体 Mlの歪みの解消作用によって 解消したり、金属組織の再結晶化作用によって解消したりするよりも前に、先に加え た変位と異なる変位、すなわち、逆方向あるいは異なる方向への変位による歪みを 与えることができる周波数である必要があり、この周波数はできる限り大きく設定する 方が望ましい。  [0294] The frequency of the vibration applied to the metal body Ml by the ultrasonic vibrating body 49 is such that the distortion caused by the displacement generated in the low deformation resistance region 30 due to the vibration can be eliminated by the distortion eliminating action of the metal body Ml. Before being eliminated by the recrystallization effect of the tissue, the frequency must be different from the previously applied displacement, that is, a frequency that can give a strain due to displacement in the opposite direction or different direction. It is desirable to set the frequency as high as possible.
[0295] なお、金属体 Mlに加える振動は、必ずしも高周波の振動を印加する場合だけでな ぐたとえば低変形抵抗領域 30に半周期分の振動だけを印加するような、低周波の 振動を短時間だけ印加するように構成してもよ 、。  [0295] The vibration applied to the metal body Ml is not limited to the case where a high frequency vibration is applied. For example, the vibration applied to the metal body Ml may be short, such as applying only a half cycle vibration to the low deformation resistance region 30. It may be configured to apply for only the time.
[0296] ここでいう低周波とは、低変形抵抗領域 30に生起した変位による歪みに対して、上 記した金属体 Mlの歪みの解消作用、あるいは金属組織の再結晶化作用が作用を開 始するまでの間に、低周波の振動が次の変位による歪みを生起することができるもつ とも長い時間を 4分の 1周期とした振動の周波数である。  [0296] The term "low frequency" as used herein refers to the above-described action of eliminating the strain of the metal body Ml or the action of recrystallizing the metal structure against the strain caused by the displacement generated in the low deformation resistance region 30. Until it starts, it is the frequency of the vibration with a long period of one-quarter that the low-frequency vibration can cause distortion due to the next displacement.
[0297] なお、より効率よく低変形抵抗領域 30を剪断変形させるためには、第 1規制体 44で 金属体 Mlを固定するだけでなぐ金属体 Ml自体の慣性を利用して固定することが望 ましぐ SVSP装置によって処理される金属体 Mlに応じた条件で振動を印加すること により、慣性による固定が可能となる振動の印加条件を選択することが望ましい。  [0297] In order to more efficiently deform the low deformation resistance region 30 by shearing, it is necessary to use the inertia of the metal body Ml itself instead of fixing the metal body Ml with the first regulating body 44. Desirably, it is desirable to select the vibration application conditions that enable fixing by inertia by applying vibration under the conditions corresponding to the metal body Ml processed by the SVSP device.
[0298] 振動伝搬抑制体 48は、上記した第 2規制体 45と同一構成であって、金属体 Mlを挟 んで立設した第 1支持体 48aと第 2支持体 48bに、金属体 Mlの下方側に位置させる下 側ローラ 48c [0298] The vibration propagation suppressing body 48 has the same configuration as the above-described second regulating body 45, and sandwiches the metal body Ml. The lower roller 48c positioned below the metal body Ml is placed on the first support 48a and the second support 48b
と、金属体 Mlの上方側に位置させる上側ローラ 48dとを回転自在に架設して、下側口 ーラ 48cと上側ローラ 48dとで金属体 Mlを挟持固定し、振動印加体 47で金属体 Mlに 加えた振動が金属体 Mlに沿って伝搬することを抑制して 、る。  And an upper roller 48d, which is positioned above the metal body Ml, is rotatably mounted.The lower body 48c and the upper roller 48d sandwich and fix the metal body Ml. The vibration applied to Ml is suppressed from propagating along the metal body Ml.
[0299] 剪断変形部 42は、金属体 Mlを所定温度に加熱する加熱装置 51と、この加熱装置 51による加熱によって金属体 Mlに形成した低変形抵抗領域 30を所定の幅内に抑制 するために金属体 Mlを冷却する冷却装置 52とで構成して 、る。  [0299] The shearing deformation portion 42 is provided for heating the metal body Ml to a predetermined temperature and a low deformation resistance region 30 formed in the metal body Ml by heating by the heating apparatus 51 to a predetermined width. And a cooling device 52 for cooling the metal body Ml.
[0300] 本実施形態では、加熱装置 51には高周波加熱コイルを用いており、この高周波カロ 熱コイルを金属体 Mlに所定回数卷回し、金属体 Mlを所定温度に加熱することによ つて変形抵抗を低減させて低変形抵抗領域 30を形成している。なお、加熱装置 51と しては高周波加熱コイルに限定するものではなぐ電子ビーム、プラズマ、レーザー、 電磁誘導等を用いた加熱や、ガスバーナーによる加熱、電気的短絡を利用した加熱 であってもよい。  [0300] In the present embodiment, a high-frequency heating coil is used for the heating device 51, and the high-frequency heating coil is wound around the metal body Ml a predetermined number of times, and is deformed by heating the metal body Ml to a predetermined temperature. The resistance is reduced to form the low deformation resistance region 30. Note that the heating device 51 is not limited to a high-frequency heating coil, but may be heating using an electron beam, plasma, laser, electromagnetic induction, or the like, heating using a gas burner, or heating using an electrical short circuit. Good.
[0301] 特に、加熱装置 51として電子ビームを用いた場合には、金属体 Mlの伸延方向にお ける低変形抵抗領域 30の幅を極めて小さくすることができ、低変形抵抗領域 30により 大きな剪断応力を作用させることができるので、金属組織のさらなる微細化を可能と することができる。  [0301] In particular, when an electron beam is used as the heating device 51, the width of the low deformation resistance region 30 in the extension direction of the metal body Ml can be made extremely small, and the low deformation resistance region 30 has a larger shear force. Since a stress can be applied, the metal structure can be further miniaturized.
[0302] 冷却装置 52は、給水配管 52aから供給された水を吐出する第 1吐水口 52bと第 2吐 水口 52cで構成しており、第 1吐水口 52b及び第 2吐水口 52cから吐出した水によって 金属体 Mlを冷却している。図 22中、 53は第 1吐水口 52b及び第 2吐水口 52cから吐 出された水を受ける受水容器であり、 54は同受水容器 53に接続した排水管である。  [0302] The cooling device 52 includes a first water outlet 52b and a second water outlet 52c for discharging the water supplied from the water supply pipe 52a, and the water is discharged from the first water outlet 52b and the second water outlet 52c. The metal body Ml is cooled by water. In FIG. 22, reference numeral 53 denotes a water receiving container for receiving water discharged from the first water outlet 52b and the second water outlet 52c, and reference numeral 54 denotes a drain pipe connected to the water receiving container 53.
[0303] 冷却装置 52では、第 1吐水口 52bと第 2吐水口 52cとの間に設けた加熱装置 51によ つて形成された低変形抵抗領域 30の両側を、第 1吐水口 52b及び第 2吐水口 52cから 吐出した水によって冷却しており、特に、第 1吐水口 52b及び第 2吐水口 52cの配設位 置を調整することによって、低変形抵抗領域 30を、金属体 Mlの伸延方向の長さと比 較して極めて微少な領域として!/ヽる。  [0303] In the cooling device 52, both sides of the low deformation resistance region 30 formed by the heating device 51 provided between the first water outlet 52b and the second water outlet 52c are connected to the first water outlet 52b and the second water outlet 52b. (2) Cooling is performed by the water discharged from the water discharge port 52c.In particular, by adjusting the arrangement of the first water discharge port 52b and the second water discharge port 52c, the low deformation resistance region 30 is extended by the extension of the metal body Ml. The area is extremely small compared to the length in the direction!
[0304] このように、低変形抵抗領域 30を、金属体 Mlの伸延方向に沿った微小幅とすること により、低変形抵抗領域 30の部分に極めて大きな剪断変形を生起しやすぐ金属組 織の微細化効率を向上させることができる。し力も、振動運動による剪断変形の残留 歪み、あるいは残留変形を小さくすることができる。 [0304] As described above, the low deformation resistance region 30 has a small width along the extension direction of the metal body Ml. As a result, an extremely large shear deformation occurs in the low deformation resistance region 30 and the miniaturization efficiency of the metal structure can be immediately improved. The shearing force can also reduce the residual strain due to the shearing deformation due to the oscillating motion or the residual deformation.
[0305] また、加熱装置 51で加熱した低変形抵抗領域 30を冷却装置 52によって急冷するこ とによって焼き入れを行っていることとなり、金属組織が微細化された金属体 Mlの硬 度の向上を図ることもできる。 [0305] In addition, since the low deformation resistance region 30 heated by the heating device 51 is quenched by being rapidly cooled by the cooling device 52, the hardness of the metal body Ml having a refined metal structure is improved. Can also be planned.
[0306] 金属体 Mlの冷却は水冷に限定するものではなぐ空冷であってもよい、励磁冷却 であってもよぐ金属体 Mlの変形抵抗を向上させることができればどのような方法で あってもよい。 [0306] The cooling of the metal body Ml is not limited to water cooling, but may be air cooling, or any method as long as the deformation resistance of the metal body Ml can be improved by excitation cooling. Is also good.
[0307] 加熱装置 51及び冷却装置 52には、上記した STSP装置の加熱装置 64及び冷却装 置 65と同様に様々な加熱手段及び冷却手段を用いることができる。  [0307] As the heating device 51 and the cooling device 52, various heating means and cooling devices can be used in the same manner as the heating device 64 and the cooling device 65 of the above-described STSP device.
[0308] 本実施形態では、第 2規制体 45と高周波加熱コイルからなる加熱装置 51との間に 冷却装置 52を設け、また、加熱装置 51と振動印加体 47との間に冷却装置 52を設けて いるが、第 2規制体 45及び振動印加体 47は冷却装置 52よりも加熱装置 51に近接させ て設け、第 2規制体 45と振動印加体 47との間隔をできるだけ短くしてもよい。  In the present embodiment, a cooling device 52 is provided between the second regulating body 45 and a heating device 51 including a high-frequency heating coil, and a cooling device 52 is provided between the heating device 51 and the vibration applying body 47. Although provided, the second regulating body 45 and the vibration applying body 47 may be provided closer to the heating device 51 than the cooling device 52, and the interval between the second regulating body 45 and the vibration applying body 47 may be made as short as possible. .
[0309] このように、第 2規制体 45と振動印加体 47との間隔をできるだけ短くすることによつ て、振動印加体 47によって金属体 Mlに印加した振動のエネルギーが低変形抵抗領 域 30以外の部分に散逸することを防止でき、振動のエネルギーによる低変形抵抗領 域 30の剪断変形を効率よく生起することができる。  [0309] As described above, by shortening the interval between the second regulating body 45 and the vibration applying body 47 as much as possible, the energy of the vibration applied to the metal body Ml by the vibration applying body 47 can be reduced. Dissipation to portions other than 30 can be prevented, and shear deformation in the low deformation resistance region 30 due to vibration energy can be efficiently generated.
[0310] さらに、金属体 Mlを挟持した第 2規制体 45の下側ローラ 45cと上側ローラ 45d、及び 振動印加体 47の伝播体 50における下側ローラ 50aと上側ローラ 50bに冷却機能を付 加し、これらのローラ 45c,45d,50a,50bによって金属体 Mlを挟持するとともに冷却して ちょい。  [0310] Further, a cooling function is added to the lower roller 45c and the upper roller 45d of the second regulating body 45 sandwiching the metal body Ml, and to the lower roller 50a and the upper roller 50b of the propagation body 50 of the vibration applying body 47. Then, the metal body Ml is sandwiched and cooled by these rollers 45c, 45d, 50a, and 50b.
[0311] 上記のように構成した SVSP装置において、振動運動によって金属糸且織を微細化 する場合には、金属体 Mlを固定部 41、剪断変形部 42、振動部 43に順次送通し、剪 断変形部 42の冷却装置 52によって低変形抵抗領域 30の両側を冷却しながら加熱装 置 51によって金属体 Mlを加熱して、低変形抵抗領域 30を形成する。  [0311] In the SVSP apparatus configured as described above, when the metal thread is made finer by vibrating motion, the metal body Ml is sequentially sent to the fixed part 41, the shear deformation part 42, and the vibrating part 43, The metal device Ml is heated by the heating device 51 while cooling both sides of the low deformation resistance region 30 by the cooling device 52 of the breaking deformation portion 42 to form the low deformation resistance region 30.
[0312] ここで、加熱装置 51による加熱は、低変形抵抗領域 30の温度が金属体 Mlに生じた 歪みの回復軟ィヒ温度または金属組織の再結晶温度以上となるまで行い、回復'再結 晶温度以上となったところで振動印加体 47によって金属体 Mlの非低変形抵抗領域 を振動させて、低変形抵抗領域 30に剪断変形を生起する。 [0312] Here, in the heating by the heating device 51, the temperature of the low deformation resistance region 30 occurred in the metal body Ml. The strain recovery is performed until the temperature becomes equal to or higher than the softening temperature or the recrystallization temperature of the metal structure, and when the temperature exceeds the recovery temperature, the non-low deformation resistance region of the metal body Ml is vibrated by the vibration applying body 47. A shear deformation occurs in the low deformation resistance region 30.
[0313] なお、加熱装置 51による金属体 Mlの加熱温度は、回復'再結晶温度以上ではある 力 金属結晶粒の粗大化の影響が生じ始める温度以下に制御することが望ましい。  [0313] The heating temperature of the metal body Ml by the heating device 51 is desirably controlled to be equal to or higher than the recovery'recrystallization temperature and equal to or lower than the temperature at which the influence of the coarsening of the force metal crystal grains starts to occur.
[0314] このように、低変形抵抗領域 30を剪断変形させることによって、金属体 Mlには外形 形状の変化をほとんど生起することなく金属組織を微細化することができる。  [0314] As described above, by subjecting the low deformation resistance region 30 to shear deformation, the metal structure can be refined with almost no change in the outer shape of the metal body Ml.
[0315] なお、本実施形態では、振動印加体 47は金属体 Mlの非低変形抵抗領域を金属体 Mlの厚み方向である上下方向に振動させている力 上記したように金属体 Mlの幅 方向である左右方向に振動させてもょ 、し、上下方向の振動と左右方向の振動とを 複合させた複合振動によって振動させてもよぐそのために振動印加体 47を適宜の 構成としてよい。  [0315] In the present embodiment, the vibration applying body 47 is a force that vibrates the non-low deformation resistance region of the metal body Ml in the vertical direction, which is the thickness direction of the metal body Ml, as described above. The vibration applying body 47 may have an appropriate configuration. For this purpose, the vibration may be caused to vibrate in the left-right direction, or may be caused to vibrate by a combined vibration in which the vertical vibration and the left-right vibration are combined.
[0316] ここで、金属体 Mlに印加する振動は、金属体 Mlの伸延方向と略直交する上下方 向あるいは左右方向の振動だけに限定しているものではなぐ振動の成分中に少な くとも金属体 Mlの伸延方向と略直交する上下方向あるいは左右方向の振動が含ま れていればよい。  [0316] Here, the vibration applied to the metal body Ml is not limited to only vibration in the upward and downward directions or the left and right directions that are substantially orthogonal to the extension direction of the metal body Ml. It suffices if vibrations in the vertical and horizontal directions that are substantially perpendicular to the direction of extension of the metal body Ml are included.
[0317] 本実施形態の SVSP装置では、上記したように振動部 43での振動運動の印加によ り低変形抵抗領域 30において剪断変形を生起するとともに、同時に金属体 Mlを伸 延方向に送給することによって、金属体 Mlにおける低変形抵抗領域 30の位置を変 位させることができ、金属体 Mlに対して振動運動による剪断処理を連続的に行って 広範囲にわたって金属組織を微細化することができる。  [0317] In the SVSP device of the present embodiment, as described above, the shearing deformation occurs in the low deformation resistance region 30 by the application of the oscillating motion in the oscillating portion 43, and at the same time, the metal body Ml is sent in the extension direction. The metal body Ml, the position of the low deformation resistance region 30 in the metal body Ml can be displaced, and the metal body Ml is continuously subjected to shearing treatment by vibratory motion to refine the metal structure over a wide range. Can be.
[0318] 特に、低変形抵抗領域 30がー方向に伸延した金属体 Mlを完全に横断していること によって、低変形抵抗領域 30の移動にともなって金属体 Mlには一様に剪断処理を 施すことができ、略均一に金属組織が微細化された金属体 Mlを形成することができ る。  [0318] In particular, since the low deformation resistance region 30 completely traverses the metal body Ml extending in the minus direction, the metal body Ml is uniformly sheared with the movement of the low deformation resistance region 30. The metal body Ml can be formed, and the metal structure can be substantially uniformly refined.
[0319] さらに、場合によっては、金属体 Mlの所要の位置で剪断変形によって生起する剪 断応力の大きさを調整することにより金属組織の微細化の程度を調整して、金属体 Mlの強度あるいは延性を調整することができ、部分的に強度を向上させたり、延性を 向上させたりした金属体 M 1を生成できる。 [0319] Further, in some cases, the strength of the metal body Ml is adjusted by adjusting the degree of microstructure refinement by adjusting the magnitude of the shear stress generated by the shearing deformation at a required position of the metal body Ml. Alternatively, the ductility can be adjusted to partially improve the strength, An improved metal body M1 can be generated.
[0320] 本実施形態では、低変形抵抗領域 30を形成した金属体 M12の一方端を固定して、 他方端を振動させるように構成して ヽるが、低変形抵抗領域 30を挟む両側をそれぞ れ逆位相で振動させてもょ ヽ。 [0320] In the present embodiment, one end of the metal body M12 in which the low deformation resistance region 30 is formed is fixed and the other end is vibrated. You may vibrate them in opposite phases.
[0321] 上記した SVSP装置を、金属体 Mlに対して熱間圧延や冷間圧延、あるいは押出成 形等を行う所定の成形装置の後工程部分に設けた場合には、圧延処理あるいは押 出処理等によって伸延方向に引き延ばされた金属体 Mlの金属組織を剪断変形させ ることができ、金属組織をさらに微細化させやすくすることができる。 [0321] If the above-mentioned SVSP apparatus is provided in a post-process portion of a predetermined forming apparatus for performing hot rolling, cold rolling, extrusion molding, or the like on a metal body Ml, rolling or extrusion is performed. The metal structure of the metal body Ml elongated in the elongation direction by a treatment or the like can be sheared and deformed, and the metal structure can be further easily refined.
[0322] このように、上記した SVSP装置及び STSP装置によって金属体に局部的に低変 形抵抗領域 30,30'を形成するとともに、この低変形抵抗領域 30,30'を剪断変形させる ことによって強歪みを加えることにより金属組織を微細化することができ、金属体 M1,M2の強度あるいは延性を向上させることができる。  [0322] As described above, the low deformation resistance regions 30, 30 'are locally formed in the metal body by the above-described SVSP device and STSP device, and the low deformation resistance regions 30, 30' are subjected to shear deformation. By applying strong strain, the metal structure can be refined, and the strength or ductility of the metal bodies M1 and M2 can be improved.
[0323] し力も、図 1に示したように、金属体を複数の金属層を重合させた積層体 10としてい る場合には、各金属層を形成して 、る金属が隣接した金属層の金属と互!、に微細化 しながら接合することにより、一体ィ匕した金属体を生成できるとともに、金属層の積層 方向に金属組成が変化する金属体を提供することができる。  As shown in FIG. 1, when the metal body is a laminated body 10 in which a plurality of metal layers are superimposed as shown in FIG. 1, each metal layer is formed, and the metal is formed in the adjacent metal layer. By joining together with the metal while miniaturizing the metal, it is possible to produce an integrated metal body and to provide a metal body whose metal composition changes in the direction of lamination of the metal layers.
[0324] あるいは、図 24に金属体の断面模式図として示すように、一部を切欠した切欠丸 棒状の第 1金属棒 24の切欠部分に第 2金属材 25を挿入して一体化した複合金属棒 26を STSP装置で処理することによって、第 1金属棒 24の金属と第 2金属材 25の金属 とを機械的に混合して、新規な合金を生成できる。  [0324] Alternatively, as shown in a schematic cross-sectional view of a metal body in FIG. 24, a composite in which a second metal material 25 is inserted into a cut-out portion of a cut-out round bar-shaped first metal rod 24 to be integrated. By treating the metal bar 26 with the STSP device, a new alloy can be produced by mechanically mixing the metal of the first metal bar 24 and the metal of the second metal material 25.
[0325] また、図 2に示したように、金属体を複数種類の金属粉体を混合した混合体の仮焼 体 16としている場合には、各金属粉体の金属組織を互いに微細化しながら接合する ことにより緊密に一体ィ匕した金属体を生成できる。特に、溶融法では生成できない組 み合わせの金属も SVSP装置及び STSP装置によって機械的に接合することができ 、新規な合金を生成できる。  [0325] Further, as shown in FIG. 2, when the metal body is a calcined body 16 of a mixture obtained by mixing a plurality of types of metal powders, the metal structures of the respective metal powders are refined with each other. By joining, a metal body tightly integrated can be produced. In particular, a combination of metals that cannot be produced by the melting method can be mechanically joined by the SVSP device and the STSP device, and a new alloy can be produced.
[0326] また、図 3に示したように、金属体を多孔質体 17の孔部に金属粉体 18を充填して形 成した充填体 19としている場合にも、各金属の金属組織を互いに微細化しながら接 合することにより一体化した金属体を生成できる。特に、溶融法では生成できない組 み合わせの金属も SVSP装置及び STSP装置によって機械的に接合することができ[0326] Further, as shown in Fig. 3, even when the metal body is formed as a filling body 19 formed by filling the metal powder 18 into the pores of the porous body 17, the metal structure of each metal is changed. By joining while miniaturizing each other, an integrated metal body can be produced. In particular, groups that cannot be generated by the melting method Combined metals can also be mechanically joined by SVSP and STSP equipment.
、新規な合金を生成できる。 A new alloy can be produced.
[0327] また、図 4に示したように、金属体を複数種類の金属線材を束ねて形成した金属線 束 23としている場合には、各金属線材の金属組織を互いに微細化しながら接合する ことにより一体ィ匕した金属体を生成できる。特に、溶融法では生成できない組み合わ せの金属も STSP装置によって機械的に接合することができ、新規な合金を生成で きる。  [0327] Also, as shown in Fig. 4, when the metal body is a metal wire bundle 23 formed by bundling a plurality of types of metal wires, it is necessary to join the metal wires while minimizing the metal structure of each metal wire. Thereby, a metal body integrally formed can be produced. In particular, combinations of metals that cannot be produced by the melting method can be mechanically joined by STSP equipment, and new alloys can be produced.
[0328] 特に、金属体は、 SVSP装置あるいは STSP装置によって金属糸且織を微細化する までは中空筒状としておき、 SVSP装置あるいは STSP装置によって金属糸且織を微 細化した後に、筒状となっている金属体の周面を切開して板状体とすることにより、極 めて容易に板状の金属材料であって、しカゝも金属組織が微細化されて ヽる金属材料 を提供できる。  [0328] In particular, the metal body is formed into a hollow cylindrical shape until the metal thread is finely divided by the SVSP device or the STSP device. By making a plate-shaped body by cutting out the peripheral surface of the metal body, it is extremely easy to make a plate-shaped metal material, and the metal material has a finer metal structure. Can be provided.
[0329] 上記した SVSP装置及び STSP装置では、加熱装置 51,64によって形成した低変 形抵抗領域 30,30'の金属体 M1,M2の伸延方向における長さと、低変形抵抗領域 30,30'にカ卩える剪断変形を調整することによって、低変形抵抗領域 30,30'の全域に おいて剪断変形を行  [0329] In the above-described SVSP device and STSP device, the length in the extension direction of the metal bodies M1 and M2 of the low deformation resistance regions 30, 30 'formed by the heating devices 51, 64 and the low deformation resistance regions 30, 30' By adjusting the shearing deformation that occurs in the area, the shearing deformation is performed in the entire low deformation resistance region 30, 30 '.
うこともできるし、低変形抵抗領域 30,30'の一部分、たとえば、低変形抵抗領域 30,30' の中央領域や、低変形抵抗領域 30,30'の両端部または一方の端部において剪断変 形を行うこともできる。  Shearing at a part of the low deformation resistance region 30, 30 ', for example, at the center region of the low deformation resistance region 30, 30', or at both ends or one end of the low deformation resistance region 30, 30 '. Modifications can also be made.
[0330] 上記した SVSP装置及び STSP装置で低変形抵抗領域 30,30'の結晶組織を微細 化した金属体は、必要であれば塩浴中への焼き入れを行ってもよい。この場合、 SV SP装置及び STSP装置力 塩浴焼き入れ装置に連続的に送通させることにより、効 率よく機能を向上させた金属体 M1,M2を生成できる。  [0330] The metal body in which the crystal structure of the low deformation resistance region 30, 30 'is refined by the above-described SVSP apparatus and STSP apparatus may be quenched in a salt bath if necessary. In this case, the metal bodies M1 and M2 with improved functions can be produced efficiently by continuously passing the power through the SVSP device and the STSP device salt bath quenching device.
[0331] また、上記した SVSP装置及び STSP装置で低変形抵抗領域 30,30'の結晶組織を 微細化した金属体は、金属組織を粗大化させずに塑性加工することによって、金属 組織が微細化していることにより高強度化あるいは高延性ィ匕された金属体において、 所要の形状とした金属体とすることができる。  [0331] Further, the metal body obtained by making the crystal structure of the low deformation resistance region 30, 30 'fine by the above-mentioned SVSP device and STSP device is subjected to plastic working without coarsening the metal structure, whereby the metal structure becomes fine. By forming the metal body, a metal body having a required shape can be obtained from a metal body having high strength or high ductility.
[0332] なお、低変形抵抗領域 30,30'の結晶組織を微細化する場合には、上記したように 微細化した結晶粒の肥大化が生じな 、ような比較的低温として 、るため、塑性加工 にお 、て必要となる下降温度よりも低 、ことが多!、。 [0332] When the crystal structure of the low deformation resistance regions 30, 30 'is refined, as described above, Since the temperature is relatively low such that the refined crystal grains do not grow, the temperature is often lower than the temperature required for plastic working.
[0333] そこで、塑性カ卩ェを行う場合には、金属体 M1,M2を所定の下降温度に急加熱して 、金属組織を粗大化させな 、短時間の加熱状態にぉ 、て塑性加工を行うことにより、 塑性加工時に金属糸且織が肥大化して高強度化あるいは高延性ィヒが阻害されること を抑止している。  [0333] Therefore, when performing plastic kneading, the metal bodies M1 and M2 are rapidly heated to a predetermined lowering temperature so that the metal structure is not coarsened. By doing so, it is possible to prevent the metal yarns from being enlarged during plastic working, thereby preventing high strength or high ductility.
[0334] さらに、塑性加工後には常温まで急冷するのではなぐ金属体 M1,M2の金属組織 を粗大化させな 、温度に維持して時効処理するようにして 、る。このように時効処理 することによって、高強度化あるいは高延性ィ匕した金属体の強度をさらに向上させる ことができる。  [0334] Further, after the plastic working, the metal structures of the metal bodies M1 and M2, which are not rapidly cooled to room temperature, are not coarsened, but are kept at a temperature and subjected to aging treatment. By performing the aging treatment in this manner, the strength of the metal body having high strength or high ductility can be further improved.
[0335] 上記したように、金属組織を微細化した金属体では、その金属体の再結晶化温度 よりも高い温度状態とした場合には、微細化されている金属組織の肥大化が生じて 微細化の効果が消失されるので、 SVSP装置及び STSP装置で金属組織を微細化 する場合には、 SVSP装置及び STSP装置での処理後に、金属組織の肥大化が生 じる温度以上での長時間の処理がな 、ようにしておくことが望まし 、。  [0335] As described above, in a metal body having a finer metal structure, if the temperature is higher than the recrystallization temperature of the metal body, the metal structure which has been refined may be enlarged. When the metal structure is refined by the SVSP and STSP devices, the effect of the refinement is lost. It is hoped that time will not be processed.
[0336] 上記のようにして金属組織を微細化した金属体は、高強度であるために自動車部 品として用いた場合には軽量ィ匕を図ることができ、自動車を軽量化して燃費の向上を 図ることができる。  [0336] The metal body whose metal structure is refined as described above has high strength, so that when used as an automobile part, it can be lightened, and the automobile can be lightened to improve fuel efficiency. Can be planned.
[0337] このように自動車部品に用いる金属体は、次のようにして製造している。  [0337] As described above, a metal body used for an automobile part is manufactured as follows.
[0338] まず、所望の組成とした板状の金属板に対して前処理を行う。この前処理では、金 属板をー且加熱して冷却することによって金属板の単一相ィ匕、及び金属板を構成し て!、る金属の粒子分散、さらには金属板の残留応力の調整等を行って 、る。  [0338] First, a pretreatment is performed on a plate-shaped metal plate having a desired composition. In this pretreatment, the metal plate is heated and cooled to form a single metal plate and to form a metal plate! The metal particles are dispersed and the residual stress of the metal plate is adjusted.
[0339] 次いで、前処理が終了した金属板を SVSP装置で処理することによって、金属板の 金属組織を一様に微細化して、高強度化及び高延性化した金属板を形成して!/ヽる。  [0339] Next, the metal plate that has been subjected to the pretreatment is treated with an SVSP apparatus to uniformly refine the metal structure of the metal plate to form a metal plate with increased strength and ductility! / Puru.
[0340] 特に、金属板をアルミニウム合金とした場合には、高強度化及び高延性ィ匕された大 判のアルミニウム合金板を形成することができ、複雑な形状のボンネットやカウル等を 塑性加工で形成可能とすることができ、製造コストを大きく低減することができる。  [0340] In particular, when the metal plate is made of an aluminum alloy, a large-sized aluminum alloy plate having high strength and high ductility can be formed, and a bonnet, a cowl, or the like having a complicated shape can be formed by plastic working. The manufacturing cost can be greatly reduced.
[0341] 特に、このようなボンネットやカウル等を塑性加工で形成する場合に、他部材との接 続 [0341] In particular, when such a bonnet or cowl is formed by plastic working, contact with other members is made. Continued
に用いるフランジゃ嵌合構造を一体成形することができるので、複数部品の一体成 形を行うことによって低コストィ匕を図ることができるとともに、構造的な強度の向上を図 ることがでさる。  Since the flange-to-fitting structure used in the above can be integrally formed, the cost can be reduced by integrally forming a plurality of parts, and the structural strength can be improved.
[0342] 上記したように、金属板を SVSP装置によって所望の金属体を形成するだけでなく 、所望の組成とした丸棒状の金属体に対して、上記した前処理を行った後に STSP 装置で処理することによって、金属板の金属組織を一様に微細化して、高強度化及 び高延性化した金属体を形成することもできる。  [0342] As described above, not only the metal plate is formed into a desired metal body by the SVSP apparatus, but also the round bar-shaped metal body having the desired composition is subjected to the above-described pretreatment, and then the STSP apparatus is used. By performing the treatment, the metal structure of the metal plate can be uniformly refined to form a metal body having high strength and high ductility.
[0343] このようにして形成した金属体は、高延性となって!/、るので、所要の容積ごとに分離 した後に複数のシリンダを有する鍛造金型で鍛造加工を行うことによって、たとえば、 図 25に示すように、複雑な形状を有するボディーフレームソケット 80を形成することも できる。  [0343] The metal body formed in this manner has high ductility! /, And therefore, by performing forging with a forging die having a plurality of cylinders after separating into required volumes, for example, As shown in FIG. 25, a body frame socket 80 having a complicated shape can be formed.
[0344] 本実施形態のボディーフレームソケット 80は、図 26に示すように自動車のボディー フレーム 90における各フレームの接続部分に使用するものであり、通常は、各フレー ムを接続部で溶接することにより接続していた力 図 25に示すボディーフレームソケ ット 80を用いることによって、溶接作業を不要として製造コストを低減することができる とともに、溶接よりも構造的な強度を向上させることができ、信頼性を向上させることが できる。  [0344] The body frame socket 80 of the present embodiment is used for a connection portion of each frame in a body frame 90 of an automobile as shown in Fig. 26. Usually, each frame is welded at the connection portion. By using the body frame socket 80 shown in Fig. 25, welding work is not required, manufacturing costs can be reduced, and structural strength can be improved compared to welding. Reliability can be improved.
[0345] 図 25のボディーフレームソケット 80では、それぞれ異なる方向に伸延している第 1フ レーム 81と、第 2フレーム 82と、第 3フレーム 83と、第 4フレーム 84の 4本のフレーム 81,82,83,84がそれぞれ挿入される第 1嵌合部 85と、第 2嵌合部 86と、第 3嵌合部 87と 、第 4嵌合部 88とを所定方向に伸延させて突設している。  [0345] In the body frame socket 80 of Fig. 25, four frames 81, which extend in different directions, a first frame 81, a second frame 82, a third frame 83, and a fourth frame 84, respectively. The first fitting portion 85 into which 82, 83, 84 is inserted, the second fitting portion 86, the third fitting portion 87, and the fourth fitting portion 88 are extended and protruded in a predetermined direction. are doing.
[0346] そして、各嵌合部 85,86,87,88には、鍛造力卩ェの際にシリンダを挿入することによつ て形成した揷入孔 85h,86h,87h,88hを設け、この揷入孔 85h,86h,87h,88hに各フレー ム 81, 82,83,84の先端部をそれぞれ挿入して接続するようにして 、る。  [0346] The fitting portions 85, 86, 87, and 88 are provided with insertion holes 85h, 86h, 87h, and 88h formed by inserting a cylinder during forging. The leading ends of the frames 81, 82, 83, 84 are inserted into the insertion holes 85h, 86h, 87h, 88h, respectively, and connected.
[0347] 他の使用形態として、たとえば、ステアリングシャフトのような棒状体の部材に対して STSP法あるいは SVSP法による金属組織の微細化を行うことにより、高強度の棒状 体を提供可能とすることができる。しかも、棒状体の全金属組織を一様に微細化する のではなぐ一部分だけを微細化したり、あるいは一部分だけを微細化しな力つたり することにより強度に意図的なバラツキをもたせることもできる。 [0347] As another usage form, for example, a high-strength rod-like body can be provided by refining the metal structure of a rod-like body such as a steering shaft by the STSP method or the SVSP method. Can be. Moreover, the entire metal structure of the rod is uniformly refined. It is also possible to impart intentional variation in strength by miniaturizing only a part of the steel that is not in place, or by miniaturizing only a part.
[0348] このように、強度に意図的なバラツキをもたせた棒状体力 なるステアリングシャフト とした場合には、事故の発生時に衝撃でステアリングシャフトを意図的に破断させる ことによって衝撃吸収性を付与することができる。  [0348] As described above, in the case of a steering shaft having a rod-like body strength with intentional variation in strength, shock absorption is imparted by intentionally breaking the steering shaft by an impact in the event of an accident. Can be.
[0349] あるいは、ネジを形成する場合には、棒状体の部材に対して SVSP法による金属組 織の微細化を行った後に、 STSP法による金属体の回転を利用してネジ転造を行う ことにより、高強度化したネジを容易に形成することができる。 [0349] Alternatively, in the case of forming a screw, after the metal structure is refined by the SVSP method on the rod-shaped member, the screw is rolled using the rotation of the metal body by the STSP method. This makes it possible to easily form a high-strength screw.
[0350] 同様に、ミッションギヤを形成する場合には、棒状体の部材に対して SVSP法によ る金属組織の微細化を行った後に、 STSP法による金属体の回転を利用して、所要 のダイスによりギヤ歯の成型を行うことにより、高強度化したミッションギヤを容易に形 成することができる。 [0350] Similarly, when forming the transmission gear, after refining the metal structure of the rod-shaped member by the SVSP method, the rotation of the metal body by the STSP method is used. By forming the gear teeth with the die, it is possible to easily form a transmission gear having high strength.
[0351] 上記のようにして金属組織を微細化した金属体は、自動車部品に対する利用だけ でなぐ半導体製造工程において使用するスパッタ装置のスパッタリング用ターゲット 材として  [0351] The metal body whose metal structure is refined as described above is used as a sputtering target material for a sputtering apparatus used in a semiconductor manufacturing process that is used not only for automobile parts.
利用した場合にも極めて有用である。  It is extremely useful when used.
[0352] 特に、所要の組成となった金属体を生成可能であり、しかも生成した金属体は均質 な組成とすることができるとともに金属組織が微細であるので半導体基板上面に均質 な金属膜を生成可能とすることができる。そして、このようなスパッタリング用ターゲット 材を ECAP法よりも安価に生成することができる。 [0352] In particular, a metal body having a required composition can be produced, and the produced metal body can have a homogeneous composition and a fine metal structure, so that a uniform metal film is formed on the upper surface of the semiconductor substrate. Can be generated. Then, such a sputtering target material can be produced at a lower cost than the ECAP method.
[0353] このスパッタリング用ターゲット材は、次のようにして製造している。 [0353] This sputtering target material is manufactured as follows.
[0354] まず、所望の組成とした金属板に対して、前処理を行う。この前処理では、金属板 をー且加熱して冷却することによって金属板の単一相ィ匕、及び金属板を構成して ヽ る金属の粒子分散、さらには金属板の残留応力の調整等を行っている。 [0354] First, a pretreatment is performed on a metal plate having a desired composition. In this pretreatment, the metal sheet is heated and cooled to cool the metal sheet in a single manner, the metal particles constituting the metal sheet are dispersed, and the residual stress of the metal sheet is adjusted. It is carried out.
[0355] 次いで、前処理が終了した金属板を SVSP装置で処理することによって、金属板の 金属組織を一様に微細化して 、る。 [0355] Next, the metal plate that has been subjected to the pretreatment is treated with an SVSP apparatus to uniformly refine the metal structure of the metal plate.
[0356] SVSP装置による金属組織の微細化後、金属板を常温圧延、あるいは冷間鍛造ま たは温間鍛造、あるいはスエージング等によって微細化した結晶組織の結晶方位を 調整するとともに、ターゲット形状への成形を行っている。 [0356] After the metal structure was refined by the SVSP apparatus, the crystal orientation of the crystal structure refined by cold rolling, cold forging, warm forging, or swaging of the metal plate was changed. In addition to adjustment, molding to the target shape is performed.
[0357] このように、微細化した結晶組織の結晶方位を調整することによって、半導体基板 上面に均質な金属膜を生成可能とするスパッタリング用ターゲットを提供できる。 [0357] As described above, by adjusting the crystal orientation of the refined crystal structure, a sputtering target capable of forming a uniform metal film on the upper surface of the semiconductor substrate can be provided.
[0358] さらに、金属板をターゲット形状に成形する場合には、金属体を略円盤状に成形す ると同時に裏面に冷却用凹状溝を形成している。このように冷却用凹状溝を同時成 形することにより、スパッタリング用ターゲットの製造工程を短縮ィ匕することができ、安 価なスパッタリング用ターゲットを提供できる。 [0358] Further, when a metal plate is formed into a target shape, the metal body is formed into a substantially disk shape, and at the same time, a cooling concave groove is formed on the back surface. By simultaneously forming the concave grooves for cooling as described above, the manufacturing process of the sputtering target can be shortened, and an inexpensive sputtering target can be provided.
[0359] 特に、 SVSP装置によって金属組織が微細化されていることにより金属板の成形性 が向上しているので、冷却用凹状溝を冷間鍛造または温間鍛造によって精度よく生 成することができる。 [0359] In particular, since the metal structure is refined by the SVSP apparatus, the formability of the metal plate is improved, so that the concave grooves for cooling can be accurately formed by cold forging or warm forging. it can.
[0360] なお、 SVSP装置によって金属板の金属組織を一様に微細化した後に、微細化し た金属検証の粗大化を抑制可能な温度に金属板を加熱して、金属板の残留応力の 調整等を行ってもよい。  [0360] After the metal structure of the metal plate was uniformly refined by the SVSP device, the metal plate was heated to a temperature at which coarsening of the refined metal verification could be suppressed, and the residual stress of the metal plate was adjusted. Etc. may be performed.
[0361] 他の製造方法として次のようにすることもできる。この製造方法では、ターゲット材と なる金属体は所望の組成とした丸棒状の金属棒としている。  [0361] Another manufacturing method can be as follows. In this manufacturing method, the metal body serving as the target material is a round metal rod having a desired composition.
[0362] まず、金属棒に対して、上記した金属板の場合と同様に前処理を行って、金属棒の 単一相化、及び金属棒を構成している金属の粒子分散、さらには金属棒の残留応力 の調整等を行っている。 [0362] First, a pretreatment is performed on the metal rod in the same manner as in the case of the metal plate described above, so that the metal rod is made into a single phase, the metal particles constituting the metal rod are dispersed, and the metal is further dispersed. The residual stress of the rod is adjusted.
[0363] 次いで、前処理が終了した金属棒を STSP装置で処理することによって、金属棒の 金属組織を一様に微細化して 、る。 [0363] Next, the metal bar that has been subjected to the pretreatment is treated with an STSP device to uniformly refine the metal structure of the metal bar.
[0364] STSP装置による金属組織の微細化後、金属棒を所定長さごとに切断し、冷間鍛 造または温間鍛造によって金属板を形成している。 [0364] After the metal structure is refined by the STSP apparatus, the metal bar is cut into predetermined lengths, and a metal plate is formed by cold forging or warm forging.
[0365] このように成形した金属板を上記したように SVSP装置で処理することによって、金 属板の金属組織をさらに微細化している。その後、上記した金属板の場合と同様に、 金属板を常温圧延、あるいは冷間鍛造または温間鍛造、あるいはスエージング等に よって微細化した結晶組織の結晶方位を調整するとともに、ターゲット形状への成形 を行っている。 [0365] The metal plate thus formed is treated with the SVSP apparatus as described above to further refine the metal structure of the metal plate. Then, in the same manner as in the case of the metal plate described above, the metal plate is cold-rolled, or cold forged or warm forged, or the crystal orientation refined by swaging or the like is adjusted, and the shape of the metal plate is adjusted to the target shape. We are molding.
[0366] STSP法と SVSP法とを組み合わせてスパッタリング用ターゲットとなる金属体を生 成することによって、金属組織が極めて微細化された金属体とすることができ、半導 体基板上面に均質な金属膜を生成可能とするスパッタリング用ターゲットを提供でき る。 [0366] By combining the STSP method and the SVSP method, a metal body serving as a sputtering target was produced. By this, a metal body having an extremely fine metal structure can be obtained, and a sputtering target capable of forming a uniform metal film on the upper surface of the semiconductor substrate can be provided.
[0367] 特に、 STSP法で金属棒を処理したことによって金属棒の組成の均質化を図ること ができ、より均質ィ匕された金属体からスパッタリング用ターゲットを生成することによつ て、半導体基板上面に均質な金属膜を生成可能とするスパッタリング用ターゲットを 提供できる。  [0367] In particular, by treating a metal rod by the STSP method, it is possible to homogenize the composition of the metal rod, and to produce a sputtering target from a more homogenous metal body, and thereby to obtain a semiconductor. A sputtering target capable of forming a uniform metal film on the upper surface of the substrate can be provided.
[0368] 上記した SVSP法あるいは STSP法は、自動車部品やスパッタリング用ターゲットの 製造だけでなぐ以下のような素材に対して用いることにより特性を向上させた材料あ るいは部品の提供を可能とすることができる。  [0368] The above-mentioned SVSP method or STSP method makes it possible to provide materials or parts with improved characteristics by using the following materials that are not only used for manufacturing automotive parts and sputtering targets. be able to.
[0369] 金属体が磁性体であった場合には、この金属体の金属糸且織を SVSP法あるいは S TSP法によって微細化することにより加工性を向上させて、細線ィ匕等の微細な加工 を可能とすることができる。また、場合によっては、磁ィ匕率を向上が期待できる。  [0369] When the metal body is a magnetic body, the workability is improved by making the metal thread of the metal body finer by the SVSP method or the STSP method to improve the fineness of the metal body. Processing can be enabled. In some cases, an improvement in the magnetic porosity can be expected.
[0370] 金属体が形状記憶合金であった場合には、この金属体の金属組織を SVSP法ある いは STSP法によって微細化することにより加工性を向上させて、より微細な形状へ の加工を可能とすることができる。特に、この形状記憶合金を用いて電子機器の組み 立てに用いるネジを形成した場合には、その電子機器の廃棄時に形状記憶によって ネジのネジ山を消失させることにより、容易に分解することができる。  [0370] When the metal body is a shape memory alloy, the metallographic structure of the metal body is refined by the SVSP method or the STSP method to improve the workability and to form a finer shape. Can be made possible. In particular, when a screw used for assembling an electronic device is formed using this shape memory alloy, the screw can be easily disassembled by eliminating the screw thread by shape memory when the electronic device is discarded. .
[0371] 金属体が水素吸蔵合金であった場合には、この金属体の金属糸且織を SVSP法ある いは STSP法によって微細化することにより水素の吸蔵能力の向上が期待できる。さ らには、加工性が向上することによって様々な形状とすることができ、水素吸蔵機能 を有する構造物を形成することができる。  [0371] When the metal body is a hydrogen storage alloy, an improvement in the hydrogen storage capacity can be expected by making the metal thread of the metal body finer by the SVSP method or the STSP method. Furthermore, various shapes can be obtained by improving workability, and a structure having a hydrogen storage function can be formed.
[0372] 金属体が制振合金であった場合には、この金属体の金属糸且織を SVSP法あるいは STSP法によって微細化することにより加工性を向上させて、より微細な形状への加 ェを可能とすることができる。特に、スピーカ等の音響機器の構成部材に対するこの 制振合金の適用を広めることによって、音質の向上を図ることができる。  [0372] When the metal body is a damping alloy, the workability is improved by making the metal thread of the metal body finer by the SVSP method or the STSP method, thereby adding a finer shape. Can be made possible. In particular, sound quality can be improved by spreading the application of the damping alloy to components of audio equipment such as speakers.
[0373] 金属体が電熱材料であった場合には、この金属体の金属組織を SVSP法あるいは STSP法によって微細化することにより加工性を向上させて、より微細な形状への加 ェを可能とすることができる。 [0373] When the metal body is an electrothermal material, the metallographic structure of the metal body is refined by the SVSP method or the STSP method to improve workability, and to add a finer shape. Can be made possible.
[0374] 金属体が生体材料であった場合には、この金属体の金属組織を SVSP法あるいは STSP法によって微細化することにより加工性を向上させて、より微細な形状への加 ェを可能とすることができる。  [0374] When the metal body is a biomaterial, the metal structure of the metal body can be refined by the SVSP method or the STSP method to improve workability and add a finer shape. It can be.
[0375] 特に、従来、生体材料としてはチタンが使用されているものの、チタンは高硬度であ るために加工性が非常に悪ぐ成形コストがかさむという問題があった力 SVSP法あ るいは STSP法によって金属組織を微細化することによりチタンを鍛造で成形可能と することができ、低コストで所定形状としたチタン部品を形成することができる。  [0375] In particular, although titanium has conventionally been used as a biomaterial, titanium has a problem that workability is extremely poor due to its high hardness, and the molding cost is high. By miniaturizing the metal structure by the STSP method, titanium can be formed by forging, and a titanium component having a predetermined shape can be formed at low cost.
[0376] しかも、 SVSP法あるいは STSP法によって金属組織が微細化されたチタンは、低 ヤング率で高強度の材料とすることができ、生体親和性を向上させることもできる。  [0376] Moreover, titanium whose metal structure has been refined by the SVSP method or the STSP method can be used as a material having a low Young's modulus and a high strength, and can also improve biocompatibility.
[0377] このように、 SVSP法あるいは STSP法によって処理された金属体は、延性が向上 して 、ることによってカ卩ェ性が向上して 、るだけでなく、高強度化されて 、るので同 一強度の部材をより軽量に形成することができ、船舶や航空機、あるいは自動車等 の輸送機器、または高層ビルや橋梁等の建築構造物の軽量ィ匕を図ることができる。 産業上の利用可能性  [0377] As described above, the metal body treated by the SVSP method or the STSP method is improved in ductility, thereby improving not only the stiffness, but also the strength. Therefore, members having the same strength can be formed to be lighter, and it is possible to reduce the weight of transport equipment such as ships, aircrafts, and automobiles, or building structures such as high-rise buildings and bridges. Industrial applicability
[0378] 本発明では、金属組織を微細化することにより高強度化あるいは高延性ィ匕を図った 各種の金属体を連続的に形成可能として量産性を向上させ、低コストィ匕を図った金 属体を提供できる。 [0378] In the present invention, a metal which has high strength or high ductility by miniaturizing the metal structure can be continuously formed to improve mass productivity and achieve low cost. A genus can be provided.
図面の簡単な説明  Brief Description of Drawings
[0379] [図 1]金属体の断面模式図である。 FIG. 1 is a schematic sectional view of a metal body.
[図 2]金属体の断面模式図である。  FIG. 2 is a schematic sectional view of a metal body.
[図 3]金属体の断面模式図である。  FIG. 3 is a schematic sectional view of a metal body.
[図 4]金属体の断面模式図である。  FIG. 4 is a schematic sectional view of a metal body.
[図 5]低変形抵抗領域に加える剪断変形の説明図である。  FIG. 5 is an explanatory diagram of shear deformation applied to a low deformation resistance region.
[図 6]低変形抵抗領域に加える剪断変形の説明図である。  FIG. 6 is an explanatory diagram of shear deformation applied to a low deformation resistance region.
[図 7]低変形抵抗領域に加える剪断変形の説明図である。  FIG. 7 is an explanatory diagram of shear deformation applied to a low deformation resistance region.
[図 8]低変形抵抗領域に加える剪断変形の説明図である。  FIG. 8 is an explanatory diagram of shear deformation applied to a low deformation resistance region.
[図 9]低変形抵抗領域に加える剪断変形の説明図である。 [図 10:低変形抵抗領域に加える剪断変形の説明図である。 FIG. 9 is an explanatory diagram of shear deformation applied to a low deformation resistance region. FIG. 10 is an explanatory diagram of shear deformation applied to a low deformation resistance region.
圆 11低変形抵抗領域のための加熱プロファイルの説明図である。 FIG. 11 is an explanatory diagram of a heating profile for a low deformation resistance region.
[図 12低変形抵抗領域のための加熱プロファイルの説明図である。 FIG. 12 is an explanatory diagram of a heating profile for a low deformation resistance region.
[図 13 STSP装置の概略説明図である。 FIG. 13 is a schematic explanatory diagram of an STSP device.
[図 14:金属体の冷却方法における他の実施形態の説明図である。 FIG. 14 is an explanatory view of another embodiment of the method for cooling a metal body.
圆 15 STSP装置による処理前の金属組織の電子顕微鏡写真である。 Fig. 15 is an electron micrograph of a metal structure before treatment by a 15STSP apparatus.
[図 16: STSP装置による処理後の金属組織の電子顕微鏡写真である。 FIG. 16 is an electron micrograph of a metal structure after treatment with an STSP device.
[図 17: S45Cにお ヽて金属組織を微細化した場合の物性変化を示すグラフである。 FIG. 17 is a graph showing changes in physical properties when the metal structure is refined in S45C.
[図 18: JIS-A5056にお ヽて金属組織を微細化した場合の物性変化を示すグラフであ る。 [FIG. 18: A graph showing a change in physical properties when a metal structure is refined according to JIS-A5056.
[図 19: STSP装置における変容例の概略説明図である。  FIG. 19 is a schematic explanatory diagram of a modification example in the STSP device.
[図 20: STSP装置における変容例の概略説明図である。 FIG. 20 is a schematic explanatory diagram of a modification example in the STSP device.
圆 21 STSP装置における変容例の概略説明図である。 FIG. 18 is a schematic explanatory diagram of a modification example of the # 21 STSP device.
[図 22 SVSP装置の概略説明図である。 FIG. 22 is a schematic explanatory diagram of an SVSP device.
[図 23 SVSP装置における変容例の概略説明図である c [A schematic illustration of a transformation example of FIG. 23 SVSP apparatus c
[図 24:金属体の断面模式図である。 FIG. 24 is a schematic sectional view of a metal body.
圆 25ボディーフレームソケットの説明図である。 FIG. 4 is an explanatory view of a 25 body frame socket.
[図 26:ボディーフレームソケットの説明図である。 FIG. 26 is an explanatory diagram of a body frame socket.
[027 ECAP法を説明するための参考図である。 FIG. 27 is a reference diagram for describing the ECAP method.
符号の説明 Explanation of symbols
31,31',31〃 第 1非低変形抵抗領域  31, 31 ', 31〃 1st non-low deformation resistance region
32,32',32" 第 2非低変形抵抗領域  32,32 ', 32 "2nd non-low deformation resistance region
30,30', 30〃 低変形抵抗領域  30,30 ', 30〃 Low deformation resistance area
30a,30a' 第 1低変形抵抗領域  30a, 30a '1st low deformation resistance region
30b,30b' 第 2低変形抵抗領域  30b, 30b '2nd low deformation resistance region
33,33' 中間非低変形抵抗領域  33,33 'intermediate non-low deformation resistance region
M1.M2 金属体  M1.M2 Metal body
40,60 基台 ,61 固定部40,60 base , 61 fixing part
,62 剪断変形部 振動部 第 1規制体 第 2規制体 振動印加体 振動伝搬抑制体 超音波振動体a 出力軸 , 62 Shear deformation part Vibration part First regulating body Second regulating body Vibration applying body Vibration propagation suppressing body Ultrasonic vibrating body a Output shaft
伝播体 Propagator
,64 加熱装置,65 冷却装置a,65a 給水配管b,65b 第 1吐水口c, 65c 第 2吐水口,66 受水容器,67 排水管 , 64 Heating device, 65 Cooling device a, 65a Water supply pipe b, 65b First water outlet c, 65c Second water outlet, 66 Water receiving container, 67 Drain pipe
回転部  Rotating part

Claims

請求の範囲 The scope of the claims
[I] 一方向に伸延した金属体の変形抵抗を局部的に低下させて前記金属体を横断す る低変形抵抗領域を形成し、この低変形抵抗領域を剪断変形させて前記金属体の 金属組織を微細化する金属加工方法であって、  [I] The deformation resistance of the metal body extending in one direction is locally reduced to form a low deformation resistance region that traverses the metal body, and the low deformation resistance region is sheared to form a metal of the metal body. A metal working method for refining a structure,
前記低変形抵抗領域にお!ヽて低下して!/ヽる変形抵抗を増大させて非低変形抵抗 領域を生成する非低変形抵抗領域生成手段を有し、前記低変形抵抗領域の少なく ともいずれか一方の側縁に沿って前記非低変形抵抗領域生成手段により非低変形 抵抗領域を生成する金属加工方法。  A non-low deformation resistance region generating means for generating a non-low deformation resistance region by increasing the deformation resistance in the low deformation resistance region; and A metal working method in which the non-low deformation resistance region generating means generates a non-low deformation resistance region along one of the side edges.
[2] 前記金属体は伸延方向に沿って移動させるとともに、移動方向の下流側における 前記低変形抵抗領域の側縁に沿って前記非低変形抵抗領域生成手段により非低 変形抵抗領域を生成していることを特徴とする請求項 2記載の金属加工方法。  [2] The metal body is moved along the extension direction, and a non-low deformation resistance region is generated by the non-low deformation resistance region generation means along a side edge of the low deformation resistance region on the downstream side in the moving direction. 3. The metal working method according to claim 2, wherein:
[3] 前記非低変形抵抗領域生成手段は、前記金属体を冷却する冷却手段であることを 特徴とする請求項 1記載の金属加工方法。  [3] The metal working method according to claim 1, wherein the non-low deformation resistance region generating means is a cooling means for cooling the metal body.
[4] 前記非低変形抵抗領域では、前記金属体を急速冷却することを特徴とする請求項 1記載の金属加工方法。  4. The metal working method according to claim 1, wherein the metal body is rapidly cooled in the non-low deformation resistance region.
[5] 前記低変形抵抗領域を真空中で形成することを特徴とする請求項 1記載の金属加 ェ方法。  5. The metal coating method according to claim 1, wherein the low deformation resistance region is formed in a vacuum.
[6] 前記低変形抵抗領域を高圧下で形成することを特徴とする請求項 1記載の金属加 ェ方法。  6. The metal coating method according to claim 1, wherein the low deformation resistance region is formed under a high pressure.
[7] 前記低変形抵抗領域を活性ガス雰囲気中で形成することを特徴とする請求項 1記 載の金属加工方法。  7. The metal working method according to claim 1, wherein the low deformation resistance region is formed in an active gas atmosphere.
[8] 前記活性ガスは窒素ガスであることを特徴とする請求項 7記載の金属加工方法。  8. The metal working method according to claim 7, wherein the active gas is a nitrogen gas.
[9] 前記活性ガスはメタンガス及び Zまたは一酸ィ匕炭素ガスであることを特徴とする請 求項 7記載の金属加工方法。 9. The metal working method according to claim 7, wherein the active gas is methane gas and Z or carbon monoxide gas.
[10] 前記低変形抵抗領域に粉体を吹き付けることを特徴とする請求項 1記載の金属加 ェ方法。 10. The metal coating method according to claim 1, wherein powder is sprayed on the low deformation resistance region.
[II] 前記低変形抵抗領域にイオンドーピングを行うことを特徴とする請求項 1記載の金 属加 ェ方法。 [2] The metallization according to claim 1, wherein ion doping is performed on the low deformation resistance region. Method.
[12] 前記低変形抵抗領域は、前記金属体に第 1の加熱を所定時間行った後に第 2の加 熱を行って形成することを特徴とする請求項 1記載の金属加工方法。  12. The metal working method according to claim 1, wherein the low deformation resistance region is formed by performing first heating on the metal body for a predetermined time and then performing second heating.
[13] 前記低変形抵抗領域は、高温とした前記金属体を拘束する拘束手段の非拘束領 域に形成することを特徴とする請求項 1記載の金属加工方法。 13. The metal working method according to claim 1, wherein the low deformation resistance region is formed in an unconstrained region of a constraining means for constraining the metal body at a high temperature.
[14] 前記低変形抵抗領域は、液体中に没入した前記金属体に形成することを特徴とす る請求項 1記載の金属加工方法。 14. The metal working method according to claim 1, wherein the low deformation resistance region is formed in the metal body immersed in a liquid.
[15] 前記低変形抵抗領域は、前記金属体を液体中で加熱して形成することを特徴とす る請求項 14記載の金属加工方法。 15. The metal working method according to claim 14, wherein the low deformation resistance region is formed by heating the metal body in a liquid.
[16] 前記低変形抵抗領域を形成する際に、前記低変形抵抗領域の周囲の熱伝導率を 低減させていることを特徴とする請求項 15記載の金属加工方法。 16. The metal working method according to claim 15, wherein, when forming the low deformation resistance region, a thermal conductivity around the low deformation resistance region is reduced.
[17] 前記低変形抵抗領域を形成する際に、前記低変形抵抗領域の周囲に気泡を生起 していることを特徴とする請求項 15記載の金属加工方法。 17. The metal working method according to claim 15, wherein bubbles are generated around the low deformation resistance region when the low deformation resistance region is formed.
[18] 金属組織を微細化した前記金属体を、金属組織を粗大化させずに塑性加工するこ とを特徴とする請求項 1記載の金属加工方法。 18. The metal working method according to claim 1, wherein the metal body having a fine metal structure is subjected to plastic working without increasing the metal structure.
[19] 前記塑性加工は、前記金属体の金属組織を粗大化させな!/、短時間の加熱状態で 行うことを特徴とする請求項 18記載の金属加工方法。 19. The metal working method according to claim 18, wherein the plastic working is performed in a short heating state without coarsening the metal structure of the metal body.
[20] 前記塑性加工後、前記金属体の金属組織を粗大化させな!/、温度に維持して時効 処理することを特徴とする請求項 18記載の金属加工方法。 [20] The metal working method according to claim 18, wherein after the plastic working, the metal structure of the metal body is not coarsened!
[21] 前記金属体は、浸炭処理されていることを特徴とする請求項 1記載の金属加工方 法。 [21] The metal working method according to claim 1, wherein the metal body is carburized.
[22] 前記低変形抵抗領域を伸延させながら前記金属体の金属組織を微細化することを 特徴とする請求項 1記載の金属加工方法。  22. The metal working method according to claim 1, wherein the metal structure of the metal body is refined while extending the low deformation resistance region.
[23] 前記低変形抵抗領域を圧縮させながら前記金属体の金属組織を微細化することを 特徴とする請求項 1記載の金属加工方法。 23. The metal working method according to claim 1, wherein the metal structure of the metal body is refined while compressing the low deformation resistance region.
[24] 前記金属体は中空部を有する筒状体として、前記中空部を減圧状態としていること を特徴とする請求項 1記載の金属加工方法。 [24] The metal working method according to claim 1, wherein the metal body is a cylindrical body having a hollow portion, and the hollow portion is in a reduced pressure state.
[25] 前記金属体は中空部を有する筒状体として、前記中空部を高圧状態としていること を特徴とする請求項 1記載の金属加工方法。 [25] The metal body is a cylindrical body having a hollow portion, and the hollow portion is in a high pressure state. 2. The metal working method according to claim 1, wherein:
[26] 前記低変形抵抗領域に前記金属体を所定形状に成形する成形用ガイド体を当接 させていることを特徴とする請求項 1記載の金属加工方法。 26. The metal working method according to claim 1, wherein a forming guide body for forming the metal body into a predetermined shape is brought into contact with the low deformation resistance region.
[27] 前記成形ガイド体を、前記金属体を加熱する加熱手段として 、ることを特徴とする 請求項 26記載の金属加工方法。 27. The metal working method according to claim 26, wherein the forming guide body is used as heating means for heating the metal body.
[28] 前記成形ガイド体を、前記金属体を冷却する冷却手段として 、ることを特徴とする nf 求 [28] The method of claim 5, wherein the forming guide body is used as cooling means for cooling the metal body.
項 26記載の金属加工方法。  Item 29. The metal working method according to Item 26.
[29] 前記低変形抵抗領域を前記金属体の伸延方向に沿って移動させることを特徴とす る請求項 1記載の金属加工方法。  29. The metal working method according to claim 1, wherein the low deformation resistance region is moved along an extension direction of the metal body.
[30] 一方向に伸延した金属体であって、変形抵抗を局部的に低下させて前記金属体を 横断する低変形抵抗領域を一時的に形成するとともに、この低変形抵抗領域におい て低下している変形抵抗を増大させて非低変形抵抗領域を生成する非低変形抵抗 領域生成手段によって前記前記低変形抵抗領域の少なくともいずれか一方の側縁 に沿って非低変形抵抗領域を生成し、前記低変形抵抗領域を剪断変形させて金属 組織を微細化した金属体。  [30] A metal body extending in one direction, which locally reduces the deformation resistance to temporarily form a low deformation resistance region crossing the metal body, and reduces the deformation resistance in the low deformation resistance region. Generating a non-low deformation resistance region along at least one side edge of the low deformation resistance region by a non-low deformation resistance region generating means for generating a non-low deformation resistance region by increasing the deformation resistance. A metal body in which the metal structure is refined by subjecting the low deformation resistance region to shear deformation.
[31] 前記非低変形抵抗領域生成手段により形成する前記非低変形抵抗領域は、伸延 方向に沿って移動させた前記金属体の移動方向の下流側における前記低変形抵抗 領域の側縁に生成したことを特徴とする請求項 30記載の金属体。  [31] The non-low deformation resistance region formed by the non-low deformation resistance region generating means is formed at a side edge of the low deformation resistance region on the downstream side in the moving direction of the metal body moved along the extension direction. 31. The metal body according to claim 30, wherein:
[32] 前記非低変形抵抗領域生成手段は、金属体を冷却する冷却手段であることを特徴 とする請求項 30記載の金属体。  32. The metal body according to claim 30, wherein the non-low deformation resistance region generating means is a cooling means for cooling the metal body.
[33] 前記非低変形抵抗領域では、前記金属体を急速冷却したことを特徴とする請求項 30記載の金属体。  33. The metal body according to claim 30, wherein the metal body is rapidly cooled in the non-low deformation resistance region.
[34] 前記低変形抵抗領域は、真空中で形成したことを特徴とする請求項 30記載の金属 体。  34. The metal body according to claim 30, wherein the low deformation resistance region is formed in a vacuum.
[35] 前記低変形抵抗領域は、高圧下で形成したことを特徴とする請求項 30記載の金属 体。  35. The metal body according to claim 30, wherein the low deformation resistance region is formed under a high pressure.
[36] 前記低変形抵抗領域は、活性ガス雰囲気中で形成したことを特徴とする請求項 30 記載の金属体。 36. The low deformation resistance region is formed in an active gas atmosphere. The described metal body.
[37] 前記活性ガスは窒素ガスとしたことを特徴とする請求項 36記載の金属体。  37. The metal body according to claim 36, wherein said active gas is nitrogen gas.
[38] 前記活性ガスはメタンガス及び Zまたは一酸ィ匕炭素ガスとしたことを特徴とする請 求項 36記載の金属体。  38. The metal body according to claim 36, wherein the active gas is methane gas and Z or carbon monoxide gas.
[39] 前記低変形抵抗領域に粉体を吹き付けたことを特徴とする請求項 30記載の金属 体。 39. The metal body according to claim 30, wherein a powder is sprayed on the low deformation resistance region.
[40] 前記低変形抵抗領域にイオンドーピングを行ったことを特徴とする請求項 30記載 の金属体。  40. The metal body according to claim 30, wherein the low deformation resistance region is ion-doped.
[41] 前記低変形抵抗領域は、前記金属体に第 1の加熱を所定時間行った後に第 2の加 熱を行って形成したことを特徴とする請求項 30記載の金属体。  41. The metal body according to claim 30, wherein the low deformation resistance region is formed by performing first heating on the metal body for a predetermined time and then performing second heating.
[42] 前記低変形抵抗領域は、高温とした前記金属体を拘束する拘束手段の非拘束領 域に形成したことを特徴とする請求項 30記載の金属体。 42. The metal body according to claim 30, wherein the low deformation resistance region is formed in an unconstrained region of a constraining means for constraining the metal body at a high temperature.
[43] 前記低変形抵抗領域は、液体中に没入した前記金属体に形成したことを特徴とす る請求項 30記載の金属体。 43. The metal body according to claim 30, wherein the low deformation resistance region is formed in the metal body immersed in a liquid.
[44] 前記低変形抵抗領域は、前記金属体を液体中で加熱して形成したことを特徴とす る請求項 43記載の金属体。 44. The metal body according to claim 43, wherein the low deformation resistance region is formed by heating the metal body in a liquid.
[45] 前記低変形抵抗領域を形成する際に、前記低変形抵抗領域の周囲の熱伝導率を 低減させたことを特徴とする請求項 44記載の金属体。 45. The metal body according to claim 44, wherein, when forming the low deformation resistance region, a thermal conductivity around the low deformation resistance region is reduced.
[46] 前記低変形抵抗領域を形成する際に、前記低変形抵抗領域の周囲に気泡を生じ させたことを特徴とする請求項 44記載の金属体。 46. The metal body according to claim 44, wherein bubbles are generated around the low deformation resistance region when forming the low deformation resistance region.
[47] 金属組織を微細化した前記金属体を、金属組織を粗大化させずに塑性加工したこ とを特徴とする請求項 30記載の金属体。 47. The metal body according to claim 30, wherein the metal body having a finer metal structure is subjected to plastic working without increasing the metal structure.
[48] 前記塑性加工は、前記金属体の金属組織を粗大化させな!/、短時間の加熱状態で 行ったことを特徴とする請求項 47記載の金属体。 48. The metal body according to claim 47, wherein the plastic working is performed in a short-time heating state without increasing the metal structure of the metal body.
[49] 前記塑性加工を行った後、前記金属体の金属組織を粗大化させな!/ヽ温度に維持 して時効処理したことを特徴とする請求項 47記載の金属体。 49. The metal body according to claim 47, wherein after performing the plastic working, the metal structure of the metal body is subjected to aging treatment while maintaining the metal structure at a temperature of! / ヽ without coarsening.
[50] 前記金属体は、あら力じめ浸炭処理していることを特徴とする請求項 30記載の金 属体。 [50] The metal body according to claim 30, wherein the metal body is preliminarily carburized.
[51] 前記低変形抵抗領域は、伸延させながら前記金属体の金属組織を微細化したこと を特徴とする請求項 30記載の金属体。 51. The metal body according to claim 30, wherein the metal deformation of the metal body is refined while elongating the low deformation resistance region.
[52] 前記低変形抵抗領域は、圧縮させながら前記金属体の金属組織を微細化したこと を特徴とする請求項 30記載の金属体。 52. The metal body according to claim 30, wherein the metal deformation of the metal body is refined while compressing the low deformation resistance region.
[53] 前記金属体は中空部を有する筒状体として、前記中空部を減圧状態としたことを特 徴とする請求項 30記載の金属体。 53. The metal body according to claim 30, wherein the metal body is a cylindrical body having a hollow portion, and the hollow portion is in a reduced pressure state.
[54] 前記金属体は中空部を有する筒状体として、前記中空部を高圧状態としたことを特 徴とする請求項 30記載の金属体。 54. The metal body according to claim 30, wherein the metal body is a cylindrical body having a hollow portion, and the hollow portion is in a high pressure state.
[55] 前記低変形抵抗領域には、前記金属体を所定形状に成形する成形用ガイド体を 当接させたことを特徴とする請求項 30記載の金属体。 55. The metal body according to claim 30, wherein a molding guide body for molding the metal body into a predetermined shape is in contact with the low deformation resistance region.
[56] 前記成形ガイド体は、前記金属体を加熱する加熱手段としたことを特徴とする請求 項 55記載の金属体。 56. The metal body according to claim 55, wherein the forming guide body is heating means for heating the metal body.
[57] 前記成形ガイド体は、前記金属体を冷却する冷却手段としたことを特徴とする請求 項 55記載の金属体。  57. The metal body according to claim 55, wherein the forming guide body is a cooling unit for cooling the metal body.
[58] 低変形抵抗領域を前記金属体の伸延方向に沿って移動させたことを特徴とする請 求項 30記載の金属体。  58. The metal body according to claim 30, wherein the low deformation resistance region is moved along a direction in which the metal body extends.
PCT/JP2005/003218 2004-02-25 2005-02-25 Metal working method and metal element WO2005080623A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006510331A JP4800930B2 (en) 2004-02-25 2005-02-25 Metal processing method and metal body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004050533 2004-02-25
JP2004-050533 2004-02-25

Publications (1)

Publication Number Publication Date
WO2005080623A1 true WO2005080623A1 (en) 2005-09-01

Family

ID=34879594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003218 WO2005080623A1 (en) 2004-02-25 2005-02-25 Metal working method and metal element

Country Status (2)

Country Link
JP (1) JP4800930B2 (en)
WO (1) WO2005080623A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2349986A1 (en) * 2007-12-11 2011-01-14 Universidad Publica De Navarra Routes of optimum processing for the obtaining of high quality wire through angular channel stretching processes (ecad). (Machine-translation by Google Translate, not legally binding)
WO2019058721A1 (en) * 2017-09-21 2019-03-28 Jx金属株式会社 Titanium sputtering target, production method therefor, and method for producing titanium-containing thin film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111426A (en) * 1995-10-20 1997-04-28 Honda Motor Co Ltd Production of high strength aluminum alloy
JP2000288675A (en) * 1999-04-09 2000-10-17 Agency Of Ind Science & Technol Intensive working device, intensive working method and intensive working material
JP2001321825A (en) * 2000-05-18 2001-11-20 Toto Ltd Method and device for working metallic material
JP2002102919A (en) * 2000-09-28 2002-04-09 Hitachi Cable Ltd Method for manufacturing microcrystal metallic stock
JP2003019532A (en) * 2001-07-02 2003-01-21 Mitsubishi Heavy Ind Ltd Method and device for manufacturing metallic material of micro-structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111426A (en) * 1995-10-20 1997-04-28 Honda Motor Co Ltd Production of high strength aluminum alloy
JP2000288675A (en) * 1999-04-09 2000-10-17 Agency Of Ind Science & Technol Intensive working device, intensive working method and intensive working material
JP2001321825A (en) * 2000-05-18 2001-11-20 Toto Ltd Method and device for working metallic material
JP2002102919A (en) * 2000-09-28 2002-04-09 Hitachi Cable Ltd Method for manufacturing microcrystal metallic stock
JP2003019532A (en) * 2001-07-02 2003-01-21 Mitsubishi Heavy Ind Ltd Method and device for manufacturing metallic material of micro-structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2349986A1 (en) * 2007-12-11 2011-01-14 Universidad Publica De Navarra Routes of optimum processing for the obtaining of high quality wire through angular channel stretching processes (ecad). (Machine-translation by Google Translate, not legally binding)
WO2019058721A1 (en) * 2017-09-21 2019-03-28 Jx金属株式会社 Titanium sputtering target, production method therefor, and method for producing titanium-containing thin film
JP2019056151A (en) * 2017-09-21 2019-04-11 Jx金属株式会社 Sputtering titanium target, method for manufacturing the same and method for manufacturing titanium containing thin film
CN111108231A (en) * 2017-09-21 2020-05-05 Jx金属株式会社 Titanium target for sputtering, method for producing same, and method for producing titanium-containing thin film
JP7179450B2 (en) 2017-09-21 2022-11-29 Jx金属株式会社 Titanium target for sputtering, method for producing same, and method for producing titanium-containing thin film

Also Published As

Publication number Publication date
JP4800930B2 (en) 2011-10-26
JPWO2005080623A1 (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP4777775B2 (en) Metal body processing method and metal body processing apparatus
KR101014639B1 (en) Method of working metal, metal body obtained by the method and metal-containing ceramic body obtained by the method
Valiev et al. Producing bulk ultrafine-grained materials by severe plastic deformation
US7077755B2 (en) Method of preparing ultra-fine grain metallic articles and metallic articles prepared thereby
US7967182B2 (en) Dissimilar metal joint product and joining method therefor
JP5854172B2 (en) Resistance spot welding method
WO2005080623A1 (en) Metal working method and metal element
EP3406750B1 (en) Single-piece extended laminar flow inlet lipskin
JP4564033B2 (en) Metal processing method, metal body using the metal processing method, and metal-containing ceramic body using the metal processing method
JP4002273B2 (en) Metal processing method and metal body using the metal processing method
JP4217459B2 (en) Vibrator, vibrator manufacturing method, vibration wave drive device, and device having the same
JP2000271695A (en) Production of magnesium alloy material
KR20160086465A (en) Metalic bonding using servo motor friction welding and the bonding method thereof
KR102294847B1 (en) Reverse gradient-structured metallic sheet using complex shear deformation and subsequent annealing, fabricating method thereof and apparatus for carrying out continuous shear deformation process thereof
JP2004100041A (en) Copper alloy
JP2019089077A (en) Resistance spot welding device
JP6848991B2 (en) Titanium material for hot rolling
Okotete et al. Shape Memory Nanomaterials for Damping Applications

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510331

Country of ref document: JP

122 Ep: pct application non-entry in european phase