WO2005077826A1 - Method for producing amorphous carbon particles - Google Patents

Method for producing amorphous carbon particles Download PDF

Info

Publication number
WO2005077826A1
WO2005077826A1 PCT/JP2005/002072 JP2005002072W WO2005077826A1 WO 2005077826 A1 WO2005077826 A1 WO 2005077826A1 JP 2005002072 W JP2005002072 W JP 2005002072W WO 2005077826 A1 WO2005077826 A1 WO 2005077826A1
Authority
WO
WIPO (PCT)
Prior art keywords
amorphous carbon
carbon particles
combustion ash
mass
carbon
Prior art date
Application number
PCT/JP2005/002072
Other languages
French (fr)
Japanese (ja)
Inventor
Yoichi Takagi
Yoshinori Isomura
Yoshiyuki Shimo
Takayuki Hirayama
Original Assignee
Mitsubishi Corporation
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Corporation, Nippon Oil Corporation filed Critical Mitsubishi Corporation
Publication of WO2005077826A1 publication Critical patent/WO2005077826A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30

Definitions

  • the present invention relates to a method for producing amorphous carbon particles. More specifically, the present invention relates to a method for producing amorphous carbon particles having excellent properties such as material strength, corrosion resistance, conductivity, heat resistance, and dimensional stability, and also having excellent economic efficiency. Background art
  • Amorphous carbon is a heterogeneous carbon material having a homogeneous glassy structure, and has recently been applied to various fields due to its excellent mechanical strength, alkali resistance, acid resistance, and conductivity. Is expected.
  • a method for producing such amorphous carbon for example, as disclosed in Patent Documents 13 to 13, a molded article of a thermosetting resin such as phenol resin or furfuryl alcohol resin is fired and carbonized.
  • Amorphous carbon obtained by calcining thermosetting resin in this way not only increases the cost, but also has a sufficient residual carbon ratio during firing. However, the material strength was inferior to the expected value.
  • petroleum coatas is an inexpensive carbon-based fuel having a higher calorific value than coal, and is currently widely used as a fuel in industrial boilers and the like.
  • the combustion ash discharged from such a combustion furnace using petroleum coatas generally contains unburned carbon in a proportion of 70% by mass or more, and has a drying calorie equivalent to that of coal. It is used as fuel in cement firing kilns and as carbon material for reduction in melting furnaces at refineries.
  • the unburned carbon content contained in petroleum coatas combustion ash has extremely low activity and reactivity, and the combustion ash contains many impurities other than carbon content. Its evaluation as a fuel or carbon material is low, and it is expected that in the near future it is highly likely that it will be disposed of as landfill, etc. as industrial waste!
  • fly ash containing carbon is formed together with an oxidizing agent in a combustion gas formed by jetting a fuel and an oxidizing agent into the combustion furnace in a combustion furnace. Spraying to burn the carbon in the fly ash, melt the fly ash, and quench the molten fly ash in a cooling furnace to produce fly ash with low carbon and high vitrification rate.
  • petroleum-kotas combustion ash has an extremely low silica content, so fly ash cannot be produced.
  • Patent Document 1 Japanese Patent Publication No. 39-20061
  • Patent Document 2 Japanese Patent Publication No. 63-59963
  • Patent Document 3 Japanese Unexamined Patent Publication No. 3-164416
  • Patent document 4 Japanese Patent Application Laid-Open No. 7-213949
  • Patent Document 5 Japanese Patent Application Laid-Open No. 10-281438
  • the present invention provides a method for removing amorphous carbon particles from petroleum coatas, which removes metal components, has high carbon purity, has no metal elution, has excellent rigidity and strength, and has an extremely small specific surface area and pore volume. It is an object to provide a manufacturing method. Means for solving the problem
  • the present invention for solving the above-mentioned problems includes (1) a step of humidifying the combustion ash of petroleum coatas, and (2) a step of adding an acid water and extracting a metal component in the combustion ash by heating and stirring. (3) a step of separating the metal dissolved in the acidic water in the step (2) from the insoluble carbon, and (4) drying the carbon separated in the step (3).
  • It has a non-circular cross section, characterized by having a pulverizing step, has a mass loss rate of less than 30% for 60 minutes at a holding temperature of 500 ° C in the presence of air, and has an average particle diameter of 1 to 50 m.
  • a method for producing amorphous carbon particles is characterized by having a pulverizing step, has a mass loss rate of less than 30% for 60 minutes at a holding temperature of 500 ° C in the presence of air, and has an average particle diameter of 1 to 50 m.
  • the present invention also shows a method for producing amorphous carbon particles, wherein a reducing agent is added together with acidic water in the metal extraction step (2).
  • the present invention further provides a method for producing amorphous carbon particles, wherein in the metal extraction step (2), the reducing agent is a sulfite solution, hydrazine or sodium sulfite.
  • acidic water having a pH of 1 to 3.0 is added in a ratio of 2 to 10 times the mass of the combustion ash, and the liquid temperature is 40 ° C or more, and the stirring time is It shows a method for producing amorphous carbon particles, characterized in that the treatment is performed within 90 minutes.
  • the present invention also can be obtained amorphous carbon particles, specific surface area measured by BET method 20- lm 2 Zg, pore volume measured by the nitrogen adsorption method 0. 020-0. OOlml / g This shows a method for producing amorphous carbon particles.
  • the present invention further provides a method for producing amorphous carbon particles in which the obtained amorphous carbon particles have a plane spacing of 3.43A or more as measured by X-ray diffraction.
  • the combustion ash power of petroleum coatas removes metal components, increases carbon purity, does not elute metals, has excellent rigidity and strength, and has extremely small specific surface area and pore volume. Can be provided economically.
  • FIG. 1 is a diagram schematically showing a configuration of a manufacturing apparatus used in a manufacturing method according to the present invention. Plane.
  • FIG. 2 is an electron micrograph (a photograph substituted for a drawing) at a magnification of 20000 times showing the particle shape of amorphous carbon obtained by the production method according to the present invention.
  • FIG. 1 The symbols used in FIG. 1 indicate the following, respectively.
  • the present inventors pickled ash (metal oxide) from combustion ash, solid-liquid separated carbon, dried,
  • the carbon obtained by pulverization and sizing is amorphous, that is, amorphous, and has excellent rigidity, strength, heat resistance, and extremely small specific surface area and pore volume.
  • Non-circular cross-section with sharp edges, showing a complex shape with sharp protrusions and smooth curved surfaces on the particle surface.It can be used alone or with an organic substance such as rubber or rubber, or cement.
  • the present inventors have found that excellent performance can be exhibited by incorporating the compound in a matrix of an inorganic substance such as metal and glass, and the present invention has been accomplished.
  • FIG. 1 is a drawing schematically showing one embodiment of a production apparatus used in one embodiment of the method for producing amorphous carbon particles according to the present invention.
  • combustion ash 1 collected and collected by a dust collector in a boiler using petroleum coatas as fuel is used as a raw material.
  • petroleum coatas mainly heats heavy residual oil (asphalt component) coming from a vacuum distillation unit to 500 ° C-600 ° C during the process of refining crude oil. It is a carbon product that is produced as a solid by separating caustic reaction, pyrolysis, and volatile gasoline, kerosene, and gas oil fractions.
  • the properties of petroleum coatas include, for example, total moisture 4.8%, ash 0.3-0.6%, volatile content 10-14%, calorific value 8000-9000kcalZkg, sulfur content 0.5-6. %, Nonadium content 300 to 2500 ppm.
  • those having relatively high vanadium and nickel contents are suitable.
  • the combustion ash as a raw material is recovered from a combustion furnace using such petroleum coatas as a fuel, for example, a pulverized coal boiler, a gasifier, and the like.
  • a fuel for example, a pulverized coal boiler, a gasifier, and the like.
  • the temperature may be 800-1300 ° C. in an oxidizing atmosphere!
  • composition of the combustion ash serving as a raw material is not particularly limited.
  • a composition such as 02-0.80%, Ni 3500-6500 mg / Kg, and Mo 50-100 mg ZKg can be exemplified. For reference, if one typical composition is shown, HO 0.5% by mass, C 78.9% by mass, H 0.8
  • the combustion ash 1 collected from such a combustion furnace is first conveyed to a stirring tank 4 using a conveying device 2 such as a belt conveyor.
  • a water spray device 3 is installed on the transport device 2 and sprays water on the transported combustion ash 1 to perform humidification.
  • the humidification treatment facilitates the elution of the metal component in the metal extraction step as described later, and a high yield can be obtained in a short time.
  • a humidifying method for example, a water spray method as shown in FIG. 1, water spraying, or other general humidifying methods can be used, but a water spray method is preferable.
  • the combustion ash can be uniformly humidified only by spraying water in the form of mist, and can be treated very easily.
  • the humidification treatment is not particularly limited, but is desirably performed by adding water in a ratio of 10 to 30% by mass to the combustion ash to be treated. .
  • the humidification treatment is performed using such a ratio of water, dust is not substantially generated when the combustion ash is transferred or loaded, and the handling of the combustion ash is facilitated. If the amount of water added is extremely increased beyond the range described above, the humidified combustion ash may be liquified, and on the other hand, as described above, the amount of water added is extremely small. The intended effect of such humidification may be reduced. Further, the combustion ash that has been subjected to the humidification treatment may be kept in a humidified state for about one day in order to improve the extraction rate of the metal in the metal extraction treatment step described below.
  • combustion ash 1 is charged into the agitation treatment tank 4, and the combustion ash is added with acidic water prepared with sulfuric acid 5 and water 6 and, if necessary, a reducing agent 7, and heated. 'Extract metals in combustion ash by stirring.
  • an acid capable of using hydrochloric acid, nitric acid or the like or a mixture thereof is preferably used. And most preferably sulfuric acid.
  • the acidic water is not added, the extraction rate of the metal component in the metal extraction treatment step decreases, which is not preferable.
  • the pH of the acidic water is not particularly limited, but, for example, is preferably pH 0.11 to 3.0, more preferably pH 5.0 to 1.0. If the pH is less than 1, there is a risk that a large amount of acidic water will be used for the treatment, while if the pH exceeds 3.0, the extraction efficiency for vanadium may decrease. is there.
  • the amount of the acidic water to be added is not particularly limited, but is, for example, an amount that is 2 to 10 times the amount of the combustion ash (dry mass) to be treated. If the amount of the acidic water is less than twice, there is a possibility that a sufficient dissolution treatment of the soluble component cannot be performed. On the other hand, if the addition amount exceeds 10 times, not only is it not economical, but also the labor required for the waste liquid treatment after the solid-liquid separation treatment described later may increase.
  • the reducing agent 7 added as necessary together with the acidic water is not particularly limited.
  • sulfurous acid, hydrazine, sodium sulfite, hydroxylamine and the like can be used.
  • Sulfurous acid, hydrazine or sodium sulfite, which is excellent in reducing action, is more preferably sulfurous acid.
  • Such a reducing agent 7 is added to the combustion ash almost at the same time as the above-mentioned acidic water and before heating.
  • the amount of the reducing agent to be added is not particularly limited. For example, 0.02 to 1.0 part by mass, preferably 0.1 to 1.0 part by mass of the reducing agent per 100 parts by mass of the combustion ash (dry mass). It is desirable to add 1-0.6 parts by mass. If the amount of the reducing agent is less than 0.02 parts by mass, the reduction reaction may not be sufficiently performed, while if the amount exceeds 1.0 parts by mass, the remaining reducing agent is treated. This is because the necessity arises and the operation of the process may be complicated.
  • the combustion ash and the mixed slurry of the acidic water and the reducing agent are mixed at a temperature of, for example, 40 ° C or more, more preferably 50 to 80 ° C.
  • the mixture is heated and stirred at a predetermined rotation speed to sufficiently dissolve the acid-soluble metals in the combustion ash.
  • the heating temperature is set to 40 ° C or higher is that at a temperature lower than 40 ° C, the extraction rate decreases.
  • the stirring method is not particularly limited, and for example, a general method such as stirring using four impeller one-incline blades can be used.
  • the stirring conditions are appropriately changed depending on the concentration of the acidic water in the extract, the solution temperature, and the like. For example, when a sulfuric acid aqueous solution of pHO.6 is added to the combustion ash in a double amount by mass ratio to the combustion ash, and the solution temperature is 60 ° C, a stirring treatment for about 90 minutes is appropriate.
  • the metal extraction treatment to which the acidic water and the reducing agent are added as described above, the metal components such as V, Al, Fe, Mg, Mo, and Ni contained in the combustion ash are dissolved in water.
  • the carbon remains insoluble as a solid.
  • the mixed slurry taken out from 4 parts of the stirring treatment tank is subjected to solid-liquid separation by a solid-liquid separation device.
  • Examples of the solid-liquid separation device used in the present invention include, but are not limited to, a pressure filter, a centrifuge, a decanter, a belt filter, a tray filter, a precoat filter, a ceramic filter, and a cricket.
  • Various known filters such as a filter and a press roll filter can be used.
  • Figure 1 shows a solid-liquid separation device. The use of the belt filter 8 is exemplified.
  • the wet carbon content remaining on the belt filter 8 due to the solid-liquid separation is conveyed as it is by a conveyor, and is heated in a shower washing device 9 at a temperature of, for example, about 20 to 80 ° C, preferably about 60 ° C. Washed thoroughly.
  • the washing method is not particularly limited as long as the attached acidic water can be sufficiently removed, and various devices can be used.
  • the water used for washing is collected as a washing filtrate, and the collected washing water may be reused as an acidic extraction water, if necessary.
  • the washed wet carbon component is then conveyed to the drying device 10 and subjected to a drying step.
  • the drying step is not particularly limited, but may be air drying at a temperature of 100 to 200 ° C., oven drying, natural drying, or the like. Utilizing the fact that the amorphous carbon according to the present invention has conductivity, a drying method by energization may be considered. As a drying method, it is desirable to use a heat transfer heating type drying method from the viewpoints of dust prevention and combustion prevention. In any case, since the amorphous carbon according to the present invention has an extremely small specific surface area and a small pore volume and is excellent in heat conductivity, it can be dried very efficiently. By such a drying step, for example, a wet carbon content having a water content of about 30 to 40% by mass is converted into a dry carbon content having a water content of less than 1.0% by mass.
  • the dried carbon component removed from the drying device 10 is then conveyed to a crushing device 11, where it is crushed to a predetermined particle size, for example, an average particle size of less than 10 m.
  • the pulverizing step is not particularly limited, but is performed by performing a pulverizing treatment using a physical pulverizer such as a turbo mill, a ball mill, a jet mill, a roller mill or the like. It is preferable to use a jet mill as the pulverizing device because the carbon component to be pulverized has a high hardness and is already in the form of fine powder.
  • a classification treatment may be performed after the pulverization treatment. Can do.
  • the filtrate collected in the collection tank 12 in the solid-liquid separation process is then pressure-fed to the filtrate treatment tank 13.
  • a pH adjuster such as ammonia or caustic soda is added to the filtrate to adjust the pH of the filtrate to 417.
  • an oxidizing metal component such as vanadium is precipitated.
  • the filtrate containing the precipitate is subjected to solid-liquid separation by the filtration device 14, whereby the vanadium recovery cake and the nickel-containing filtrate can be separated.
  • the separated metal include an electrolyte for a redox flow battery, a material for stainless steel, and the like.
  • it can be recovered as a cake containing both vanadium and nickel.
  • the carbon particles obtained by the production method according to the present invention have a non-circular cross section having sharp edges that are not flake-like like graphite or spherical like carbon black. It has a complicated shape with sharp projections and smooth curved surfaces on the particle surface.
  • the crystal structure measured by the X-ray diffraction method indicates that the amorphous carbon particles exhibit an amorphous structure and an L-layer structure (as is clear from the fact that the interplanar spacing is 3.43 A or more).
  • the mass loss rate in the presence of air at a holding temperature of 500 ° C for 60 minutes is less than 30%, and the reactivity to air is very poor.
  • the average particle size is 1-150 m, more preferably 110-10 m.
  • the shape of the non-circular cross-section having such sharp edges may be, for example, an anchoring effect with the matrix material at the time of compounding with a matrix material such as resin, rubber, cement, metal, or the like, A spike effect can be expected.
  • the amorphous carbon particles obtained by the production method according to the present invention have a specific surface area of 1-120 m 2 Zg measured by the BET method and a pore volume of 0.020-g measured by the nitrogen adsorption method. 0. It is about OOlmlZg and has relatively dense surface properties. Further, although not particularly limited, typical other characteristics include a bulk specific gravity measured by a manual filling method of 0.5-0.7 g / mU a true specific gravity measured in accordance with JISK21515.3. Is 1.9—2.1.
  • the amorphous carbon particles obtained by the production method according to the present invention can be used, for example, as they are.
  • it can be used as various catalyst carriers, fluidized bed media and the like.
  • the amorphous carbon particles according to the present invention have an affinity for the displacement of the oil-based base material and the aqueous base material, and therefore, impart conductivity, improve rigidity and mechanical strength, improve dimensional stability, and improve heat resistance.
  • it can be blended with a matrix material composed of various resins and organic substances such as rubber or inorganic substances such as cement and metal.
  • a resin or rubber molding material a coloring agent such as a light-shielding fiber, a resin or rubber modifier or filler, a resin or rubber conductivity imparting agent, for example, an antistatic material , Resistance materials in copiers,
  • liquid compositions such as lubricants, traction drive fluids, electrorheological fluids, non-linear optical materials, various inks, and coloring compositions such as paints can be considered.
  • a coloring agent such as a filler, an aggregate, etc.
  • a matrix material composed of an inorganic substance such as a cement composition, a metal, or glass.
  • Example 1 Preparation of amorphous carbon particles
  • the average particle size was 4.2 m
  • the standard deviation was 0.183
  • the average particle size was 0.75 ⁇ m. Particles below and above 20.0 m were not detected.
  • the obtained carbon particles were examined for various physical properties.
  • the specific surface area measured by the BET method was 10.8 m 2 Zg
  • the pore volume measured by the nitrogen adsorption method was 0.013 mlZg
  • the The bulk density measured by the filling method was 0.559 g / mU
  • the true specific gravity measured according to JISK21515.3 was 2.05.
  • the mass loss rate at 60 minutes at 500 ° C was measured with a differential thermobalance (TGD3000 manufactured by Vacuum Riko) (measurement conditions: 20 mg of sample, 20 ml of air flow, 20 min of heating rate 20 ° CZ). It was 9%, indicating that it was very unreactive. Further, when the amount of impurities contained in the obtained carbon emissions particles was measured by plasma ion source analyzer (ICP analyzer), V (vanadium) is 0.19 mass 0/0, Ni (nickel) is 0. 04 mass 0/0, I be less impurities carbon particles were obtained by high extraction effect ChikaraTsuta.
  • ICP analyzer plasma ion source analyzer
  • FIG. 2 shows an electron micrograph of the obtained carbon particles.
  • Example 2 The same operation as in Example 1 was carried out on the same petroleum coatas combustion ash as used in Example 1 except that the pulverizing step was not performed after the oven drying treatment, to obtain carbon particles.
  • the particle size of the obtained carbon was 61.2 m, which was large.
  • Example 1 Except for the operations in the following table, the same operations as in Example 1 were performed to obtain petroleum coatas combustion ash carbon particles. As shown in the table below, the obtained carbon particles were found to have a higher impurity metal content as compared with Example 1.
  • Acidic water used / unused used used used unused

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

A method for producing amorphous carbon particles characterized by having a non-circular cross section, exhibiting a mass reduction rate after the retention at 500°C for 60 minutes in the presence of air of less than 30 % and having an average particle diameter of 1 to 50 μm, characterized in that the method comprises (1) a step of moistening a combustion ash of a petroleum coke, (2) a step of adding an acidic water, followed by warming and agitation, to thereby extract a metal component in the combustion ash, (3) a step of separating an insoluble carbon component from the metal component dissolved in the acidic water, and (4) a step of drying and pulverizing the carbon component separated in the step (3). The above method allows the economical production of amorphous carbon particles having a high carbon purity, being free from the elution of a metal, being excellent in stiffness and strength, and being markedly reduced in the specific surface area and the pore volume, through the removal of a metal component from a combustion ash of a petroleum coke.

Description

明 細 書  Specification
アモルファスカーボン粒子の製造方法 技術分野  Manufacturing method of amorphous carbon particles
[0001] 本発明は、アモルファスカーボン粒子の製造方法に関するものである。詳しく述べ ると本発明は、材質強度、耐食性、導電性、耐熱性、寸法安定性などの特性に優れ 、かつ経済性にも優れたアモルファスカーボン粒子の製造方法に関するものである。 背景技術  The present invention relates to a method for producing amorphous carbon particles. More specifically, the present invention relates to a method for producing amorphous carbon particles having excellent properties such as material strength, corrosion resistance, conductivity, heat resistance, and dimensional stability, and also having excellent economic efficiency. Background art
[0002] アモルファスカーボンは、均質なガラス質の組織構造を備える異質な炭素材料であ り、優れた機械的強度、耐アルカリ性、耐酸性、導電性などの特性から、近年、各種 分野への応用が期待されている。従来、このような、アモルファスカーボンの製造方 法としては、例えば特許文献 1一 3に開示されるように、フエノール榭脂またはフルフリ ルアルコール榭脂等の熱硬化性榭脂の成形体を焼成炭化する方法が知られている 力 このように熱硬化性榭脂を焼成炭化する方法により得られたアモルファスカーボ ンは、コスト高となるのみならず、焼成時の残炭率が充分なものとはならず、材質強度 等が所期の値よりも劣ったものとなるものであった。  [0002] Amorphous carbon is a heterogeneous carbon material having a homogeneous glassy structure, and has recently been applied to various fields due to its excellent mechanical strength, alkali resistance, acid resistance, and conductivity. Is expected. Conventionally, as a method for producing such amorphous carbon, for example, as disclosed in Patent Documents 13 to 13, a molded article of a thermosetting resin such as phenol resin or furfuryl alcohol resin is fired and carbonized. Amorphous carbon obtained by calcining thermosetting resin in this way not only increases the cost, but also has a sufficient residual carbon ratio during firing. However, the material strength was inferior to the expected value.
[0003] ところで、石油コータスは、石炭よりも発熱量が高ぐ安価な炭素系燃料であり、現 在、産業用ボイラ等における燃料として広く用いられている。このような石油コータス を用いた燃焼炉より排出される燃焼灰には、一般的に 70質量%以上の割合で未燃 の炭素分が含まれており、乾燥熱量が石炭同等であるため、再度燃料としてセメント 焼成キルンで使用されたり、精鍊所の熔融炉等の還元用炭素材として使用されたりし ている。しカゝしながら、石油コータス燃焼灰に含まれる未燃の炭素分は活性や反応性 が極めて低い上に、燃焼灰には炭素分以外の不純物が多く含まれているため、石油 コータス燃焼灰の燃料や炭素材としての評価は低ぐ近い将来は産業廃棄物として 埋め立て等に処理される可能性が高 、と予想されて!、る。  [0003] By the way, petroleum coatas is an inexpensive carbon-based fuel having a higher calorific value than coal, and is currently widely used as a fuel in industrial boilers and the like. The combustion ash discharged from such a combustion furnace using petroleum coatas generally contains unburned carbon in a proportion of 70% by mass or more, and has a drying calorie equivalent to that of coal. It is used as fuel in cement firing kilns and as carbon material for reduction in melting furnaces at refineries. However, the unburned carbon content contained in petroleum coatas combustion ash has extremely low activity and reactivity, and the combustion ash contains many impurities other than carbon content. Its evaluation as a fuel or carbon material is low, and it is expected that in the near future it is highly likely that it will be disposed of as landfill, etc. as industrial waste!
[0004] 燃料灰中の未燃の炭素分を有効利用しょうとする技術が各種提唱されているが、そ の技術は石油コータス燃焼灰中の未燃の炭素分には適用できない場合が多い。例 えば、特許文献 4においては、微粉炭ボイラ灰を、比重が 1よりも小さくかつ水と非混 和性である有機溶剤と混合し、この混合物を水中に投じ、該微粉炭ボイラ灰中の炭 素分を該有機溶剤と共に浮上させて、この浮上物を炭素分と共に燃料として用いる 技術が開示されているが、石油コータス燃焼灰中の未燃の炭素分は、当該有機溶剤 と分離し水底に沈み浮上しな 、。 [0004] Various techniques have been proposed for effectively utilizing unburned carbon in fuel ash, but the technique is often not applicable to unburned carbon in petroleum coatas combustion ash. For example, in Patent Document 4, pulverized coal boiler ash is mixed with water having a specific gravity of less than 1 and water. A technique is disclosed in which a water-miscible organic solvent is mixed, the mixture is poured into water, carbon in the pulverized coal boiler ash is floated together with the organic solvent, and the float is used as a fuel together with the carbon. However, the unburned carbon content in the petroleum coatas combustion ash separates from the organic solvent and does not sink to the water floor and float.
[0005] また、特許文献 5にお 、ては、燃焼炉にお 、て燃料、酸化剤をノズルカゝら噴出して 形成した燃焼ガス中に、炭素を含むフライアッシュを酸化剤と共にノズルカゝら噴出し て、フライアッシュ中の炭素を燃焼させると共に、フライアッシュを溶融させ、この溶融 したフライアッシュを冷却炉で急冷して、炭素が少なくガラス化率の高 、フライアツシ ュを製造する技術が開示されているが、石油コータス燃焼灰にはシリカ分が極めて少 な 、ためにフライアッシュを製造することができな 、。  [0005] Further, in Patent Document 5, fly ash containing carbon is formed together with an oxidizing agent in a combustion gas formed by jetting a fuel and an oxidizing agent into the combustion furnace in a combustion furnace. Spraying to burn the carbon in the fly ash, melt the fly ash, and quench the molten fly ash in a cooling furnace to produce fly ash with low carbon and high vitrification rate. Although disclosed, petroleum-kotas combustion ash has an extremely low silica content, so fly ash cannot be produced.
[0006] これらの技術は、主に重油や石炭を燃料とする産業用ボイラの燃焼灰に対応したも のであり石油コータスを燃料とする産業用ボイラの燃焼灰には適用できない。また、こ れらの技術は、重油や石炭を燃料とした燃焼灰中に含まれる炭素分を燃料として利 用するか、あるいは炭素分を除去してフライアッシュの品質を高める技術であり、石油 コータスを燃料とした産業用ボイラからの燃焼灰中に含まれる炭素分の特異性に着 目し、より付加価値の高いものとして利用しょうとする技術ではな力つた。  [0006] These technologies are mainly applicable to the combustion ash of industrial boilers using heavy oil or coal as fuel, and cannot be applied to the combustion ash of industrial boilers using petroleum coatas as fuel. These technologies use carbon contained in the combustion ash that uses heavy oil or coal as fuel, or remove carbon to improve the quality of fly ash. Focusing on the peculiarity of the carbon content in the combustion ash from industrial boilers using Kotus as a fuel, it was not a technology that could be used as a value-added product.
[0007] このように、従来、石油コータスの燃焼灰の炭素分を有価物として利用する方法は 試みていられなかった。  [0007] As described above, no method has been hitherto attempted to utilize the carbon content of the combustion ash of petroleum coatas as a valuable resource.
特許文献 1 :日本国特公昭 39— 20061号公報  Patent Document 1: Japanese Patent Publication No. 39-20061
特許文献 2 :日本国特公昭 63— 59963号公報  Patent Document 2: Japanese Patent Publication No. 63-59963
特許文献 3 :日本国特開平 3— 164416号公報  Patent Document 3: Japanese Unexamined Patent Publication No. 3-164416
特許文献 4:日本国特開平 7-213949号公報  Patent document 4: Japanese Patent Application Laid-Open No. 7-213949
特許文献 5 :日本国特開平 10— 281438号公報  Patent Document 5: Japanese Patent Application Laid-Open No. 10-281438
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 従って、本発明は石油コータスの燃焼灰力 金属成分を除去し、カーボン純度が 高ぐ金属溶出がない、剛性、強度に優れ、比表面積および細孔容積が極めて小さ いアモルファスカーボン粒子の製造法を提供することを課題とするものである。 課題を解決するための手段 [0008] Accordingly, the present invention provides a method for removing amorphous carbon particles from petroleum coatas, which removes metal components, has high carbon purity, has no metal elution, has excellent rigidity and strength, and has an extremely small specific surface area and pore volume. It is an object to provide a manufacturing method. Means for solving the problem
[0009] 上記課題を解決する本発明は、(1)石油コータスの燃焼灰を加湿する工程、(2)酸 性水を添加し、加温'攪拌により燃焼灰中の金属分を抽出する工程、(3)前記(2)ェ 程において酸性水に溶解した金属分と、不溶のカーボン分とを分離する工程、およ び、(4)前記(3)工程において分離されたカーボン分を乾燥 *粉砕する工程を有する ことを特徴とする、非円形断面を有し、空気存在下で保持温度 500°Cで 60分の質量 減量率が 30%未満であり、平均粒子径 1一 50 mであることを特徴とするァモルファ スカーボン粒子の製造方法である。  [0009] The present invention for solving the above-mentioned problems includes (1) a step of humidifying the combustion ash of petroleum coatas, and (2) a step of adding an acid water and extracting a metal component in the combustion ash by heating and stirring. (3) a step of separating the metal dissolved in the acidic water in the step (2) from the insoluble carbon, and (4) drying the carbon separated in the step (3). * It has a non-circular cross section, characterized by having a pulverizing step, has a mass loss rate of less than 30% for 60 minutes at a holding temperature of 500 ° C in the presence of air, and has an average particle diameter of 1 to 50 m. A method for producing amorphous carbon particles.
[0010] 本発明はまた、金属抽出工程 (2)において、酸性水と共に還元剤を添加することを 特徴とするアモルファスカーボン粒子の製造方法を示すものである。  [0010] The present invention also shows a method for producing amorphous carbon particles, wherein a reducing agent is added together with acidic water in the metal extraction step (2).
[0011] 本発明はさらに、前記金属抽出工程 (2)において、還元剤が亜硫酸水、ヒドラジン または亜硫酸ナトリウムであることを特徴とするアモルファスカーボン粒子の製造方法 を示すものである。  [0011] The present invention further provides a method for producing amorphous carbon particles, wherein in the metal extraction step (2), the reducing agent is a sulfite solution, hydrazine or sodium sulfite.
[0012] 本発明はさらに、前記金属抽出工程(2)において、 pHO. 1-3. 0の酸性水を燃焼 灰に対し質量比 2— 10倍添加し、液温度 40°C以上、攪拌時間 90分以内として処理 することを特徴とするアモルファスカーボン粒子の製造方法を示すものである。  [0012] In the present invention, further, in the metal extraction step (2), acidic water having a pH of 1 to 3.0 is added in a ratio of 2 to 10 times the mass of the combustion ash, and the liquid temperature is 40 ° C or more, and the stirring time is It shows a method for producing amorphous carbon particles, characterized in that the treatment is performed within 90 minutes.
[0013] 本発明はまた、得られるアモルファスカーボン粒子は、 BET法にて測定した比表面 積が 20— lm2Zg、窒素吸着法により測定した細孔容積が 0. 020-0. OOlml/gと なるものであるアモルファスカーボン粒子の製造方法を示すものである。 [0013] The present invention also can be obtained amorphous carbon particles, specific surface area measured by BET method 20- lm 2 Zg, pore volume measured by the nitrogen adsorption method 0. 020-0. OOlml / g This shows a method for producing amorphous carbon particles.
[0014] 本発明はさらに、得られるアモルファスカーボン粒子は、 X線回折により測定した面 間隔が 3. 43A以上となるものであるアモルファスカーボン粒子の製造方法を示すも のである。  [0014] The present invention further provides a method for producing amorphous carbon particles in which the obtained amorphous carbon particles have a plane spacing of 3.43A or more as measured by X-ray diffraction.
発明の効果  The invention's effect
[0015] 本発明によれば、石油コータスの燃焼灰力 金属成分を除去し、カーボン純度が 高ぐ金属溶出がない、剛性、強度に優れ、比表面積および細孔容積が極めて小さ いアモルファスカーボン粒子を経済的に提供することができる。  [0015] According to the present invention, the combustion ash power of petroleum coatas removes metal components, increases carbon purity, does not elute metals, has excellent rigidity and strength, and has extremely small specific surface area and pore volume. Can be provided economically.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]本発明に係る製造方法において用いられる製造装置の構成を模式的に示す図 面である。 FIG. 1 is a diagram schematically showing a configuration of a manufacturing apparatus used in a manufacturing method according to the present invention. Plane.
[図 2]本発明に係る製造方法により得られたアモルファスカーボンの粒子形状を示す 倍率 20000倍の電子顕微鏡写真(図面代用写真)である。  FIG. 2 is an electron micrograph (a photograph substituted for a drawing) at a magnification of 20000 times showing the particle shape of amorphous carbon obtained by the production method according to the present invention.
符号の説明  Explanation of symbols
[0017] なお、図 1において用いられた符号は、それぞれ次のものを指すものである。  The symbols used in FIG. 1 indicate the following, respectively.
1 :燃焼灰、 2:搬送装置、 3 :水噴霧装置、 4:攪拌処理槽、 5 :硫酸、 6 :水、 7:還元剤 、 8 :ベルトフィルター、 9 :シャワー洗浄装置、 10:乾燥装置、 11 :粉砕装置、 12:回 収タンク、 13 :濾液処理槽、 14:濾過装置。  1: Combustion ash, 2: Transport device, 3: Water spray device, 4: Stirring tank, 5: Sulfuric acid, 6: Water, 7: Reducing agent, 8: Belt filter, 9: Shower washing device, 10: Drying device , 11: crusher, 12: recovery tank, 13: filtrate treatment tank, 14: filtration device.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、本発明を実施形態に基づき詳細に説明する。 Hereinafter, the present invention will be described in detail based on embodiments.
本発明者らは、石油コータス燃焼灰中の未燃の炭素分の有効利用を検討する過程 において、燃焼灰から灰分 (金属酸化物)を酸洗浄し、炭素分を固液分離し、乾燥、 粉砕、整粒して得られる炭素は、非晶質、すなわち、アモルファスなものであり、剛性 、強度、耐熱性に優れ、比表面積および細孔容積が極めて小さぐ粒子はフレーク 状や球状ではなく鋭角なエッジを有した非円形断面であり、粒子表面に鋭角な突起 や平滑曲面を有する複雑な形状を示すものであって、単体にて、あるいは榭脂ない しはゴム等の有機物、あるいはセメント、金属、ガラス等の無機物のマトリックス中に配 合すること〖こよって、優れた性能を発揮させ得ることを見出し、本発明に至ったもので ある。  In the process of examining the effective use of unburned carbon in petroleum knots combustion ash, the present inventors pickled ash (metal oxide) from combustion ash, solid-liquid separated carbon, dried, The carbon obtained by pulverization and sizing is amorphous, that is, amorphous, and has excellent rigidity, strength, heat resistance, and extremely small specific surface area and pore volume. Non-circular cross-section with sharp edges, showing a complex shape with sharp protrusions and smooth curved surfaces on the particle surface.It can be used alone or with an organic substance such as rubber or rubber, or cement. The present inventors have found that excellent performance can be exhibited by incorporating the compound in a matrix of an inorganic substance such as metal and glass, and the present invention has been accomplished.
[0019] 図 1は、本発明に係るアモルファスカーボン粒子の製造方法の一実施形態におい て用いられる製造装置の一実施形態を模式的に示す図面である。  FIG. 1 is a drawing schematically showing one embodiment of a production apparatus used in one embodiment of the method for producing amorphous carbon particles according to the present invention.
[0020] 図 1に示す製造装置においては、例えば、石油コータスを燃料として使用するボイ ラにおいて集塵機で捕集され回収された燃焼灰 1を原料として使用する。  [0020] In the manufacturing apparatus shown in Fig. 1, for example, combustion ash 1 collected and collected by a dust collector in a boiler using petroleum coatas as fuel is used as a raw material.
[0021] 石油コータスは、周知のように原油精製の過程にお!、て主に減圧蒸留装置から出 てくる重質残渣油(アスファルト分)を 500°C— 600°Cに加熱することでコーキング反 応を起こし、熱分解し、揮発するガソリン、灯油、軽油留分等の分離させた後に、固 形物として副生される炭素製品である。  [0021] As is well known, petroleum coatas mainly heats heavy residual oil (asphalt component) coming from a vacuum distillation unit to 500 ° C-600 ° C during the process of refining crude oil. It is a carbon product that is produced as a solid by separating caustic reaction, pyrolysis, and volatile gasoline, kerosene, and gas oil fractions.
[0022] 原油の産地および製造工程により性状に差違はあり、特に限定されるわけではな いが、石油コータスの性状としては、例えば、全水分 4一 8%、灰分 0. 3-0. 6%、揮 発分 10— 14%、発熱量 8000— 9000kcalZkg、硫黄分 0. 5—6%,ノナジゥム分 300— 2500ppm程度というものが例示できる。石油コータスとしては、比較的バナジ ゥム分、ニッケル分の含有量の多いものが適当である。 [0022] There are differences in properties depending on the place of production and the production process of crude oil, and there is no particular limitation. However, the properties of petroleum coatas include, for example, total moisture 4.8%, ash 0.3-0.6%, volatile content 10-14%, calorific value 8000-9000kcalZkg, sulfur content 0.5-6. %, Nonadium content 300 to 2500 ppm. As petroleum coatas, those having relatively high vanadium and nickel contents are suitable.
[0023] 原料となる燃焼灰は、このような石油コータスを燃料とする燃焼炉、例えば、微粉炭 ボイラ、ガス化炉などから回収されたものであり、このような燃焼炉における燃焼条件 としては、特に限定されるものではないが、例えば、酸化雰囲気下で 800— 1300°C にお!/、て 1一 24時間と!、つたものを例示できる。  [0023] The combustion ash as a raw material is recovered from a combustion furnace using such petroleum coatas as a fuel, for example, a pulverized coal boiler, a gasifier, and the like. Although it is not particularly limited, for example, the temperature may be 800-1300 ° C. in an oxidizing atmosphere!
[0024] 原料となる燃焼灰の組成としては、特に限定されるわけではな 、が、例えば、 H O  [0024] The composition of the combustion ash serving as a raw material is not particularly limited.
2 2
0. 1— 1質量%、C 72— 90質量%、H 0. 1— 1. 5質量%、0 1— 10質量%、 C1 0. 01—0. 1質量%、 NH 1一 3質量%、 SO 3— 20質量%、 V 0. 50—2. 0.1-1% by mass, C 72-90% by mass, H 0.1-1.5% by mass, 0.1-1% by mass, C1 0.01-1.1% by mass, NH1-3% by mass , SO 3-20% by mass, V 0.50-2.
3 4  3 4
50質量0 /0、Fe 0. 10—1. 00質量0 /0、 Mg 0. 02—0. 10質量0 /0、 P 0. 01—0. 10質量0 /0、 Ca 0. 05—0. 25質量0 /0、 Na 0. 05—0. 25質量0 /0、 K 0. 01—0. 05質量0 /0、 A1 0. 05—0. 30質量0 /0、 Si 0. 02—0. 80%, Ni 3500— 6500mg /Kg, Mo 50— lOOmgZKgといった組成を例示することができる。なお、参考の ために、代表的な一組成を示せば、 H O 0. 5質量%、 C 78. 9質量%、 H 0. 8 50 mass 0/0, Fe 0. 10-1. 00 mass 0/0, Mg 0. 02-0. 10 mass 0/0, P 0. 01-0. 10 mass 0/0, Ca 0. 05- 0.25 mass 0/0, Na 0. 05-0. 25 mass 0/0, K 0. 01-0. 05 mass 0/0, A1 0. 05-0. 30 mass 0/0, Si 0. For example, a composition such as 02-0.80%, Ni 3500-6500 mg / Kg, and Mo 50-100 mg ZKg can be exemplified. For reference, if one typical composition is shown, HO 0.5% by mass, C 78.9% by mass, H 0.8
2  2
質量%、 O 7. 14質量%、 C1 0. 04質量%、 NH 2. 45質量%、 SO 16. 10質  Mass%, O 7.14 mass%, C1 0.04 mass%, NH 2.45 mass%, SO 16.10 quality
3 4 量%、¥ 1. 00質量%、Fe 0. 23質量%、Mg 0. 07質量%、 P 0. 04質量%、 Ca 0. 21質量0 /0、 Na 0. 10質量0 /0、 K 0. 03質量0 /0、 A1 0. 24質量0 /0、 Si 0. 78%、 Ni 4600mg/Kg、Mo 90mg/Kgと!ヽぅもの力ある。 3 4 weight%, ¥ 1. 00 wt%, Fe 0. 23 mass%, Mg 0. 07 wt%, P 0. 04 mass%, Ca 0. 21 wt 0/0, Na 0. 10 mass 0/0 , K 0. 03 mass 0/0, A1 0. 24 mass 0/0, Si 0. 78% , Ni 4600mg / Kg, there is the power of Mo 90mg / Kg and!ヽUmo.
[0025] 図 1に示すように、このような燃焼炉より回収された燃焼灰 1を、まず、ベルトコンペ ァ等の搬送装置 2を用いて、攪拌処理槽 4へと搬送する。搬送装置 2上には、水噴霧 装置 3が設置し、搬送されてくる燃焼灰 1に対し、水を噴霧して加湿処理を施す。  As shown in FIG. 1, the combustion ash 1 collected from such a combustion furnace is first conveyed to a stirring tank 4 using a conveying device 2 such as a belt conveyor. A water spray device 3 is installed on the transport device 2 and sprays water on the transported combustion ash 1 to perform humidification.
[0026] 本発明においては、このように、加湿処理を行うことで後述するような金属抽出処理 工程における金属分の溶出を容易なものとし、短時間で高い収率を得ることができる  [0026] In the present invention, the humidification treatment facilitates the elution of the metal component in the metal extraction step as described later, and a high yield can be obtained in a short time.
[0027] なお、加湿処理の方法としては、例えば、図 1に示すような水噴霧方式、あるいは散 水、その他の一般的な加湿方法を用いることができるが、好ましくは水噴霧方式であ る。水噴霧方式によれば、燃焼灰に対し、水を霧状に噴霧するだけで均一に加湿可 能であり、非常に簡単に処理できるためである。 As a humidifying method, for example, a water spray method as shown in FIG. 1, water spraying, or other general humidifying methods can be used, but a water spray method is preferable. The According to the water spray method, the combustion ash can be uniformly humidified only by spraying water in the form of mist, and can be treated very easily.
[0028] また、加湿処理としては、特に限定されるものではないが、処理しょうとする燃焼灰 に対し質量比で、 10— 30質量%の割合となる水を添加することで行うことが望ましい 。このような割合の水を用いて加湿処理を行うと、燃焼灰の移送ないし装填時の粉塵 が実質的に発生せず、また、燃焼灰のハンドリングが容易となるためである。なお、前 記範囲を超えて極端に水の添加量を増やしてゆくと、加湿された燃焼灰が液状ィ匕し てしまう虞れがあり、一方、極端に水の添加量が少ないと前記したような加湿による所 期の効果が低くなつてしまう虞れがある。また、加湿処理を行った燃焼灰は、後述す る金属抽出処理工程における金属分の抽出率を向上させるために、 1日程度加湿状 態にて保持させてもよい。  [0028] The humidification treatment is not particularly limited, but is desirably performed by adding water in a ratio of 10 to 30% by mass to the combustion ash to be treated. . When the humidification treatment is performed using such a ratio of water, dust is not substantially generated when the combustion ash is transferred or loaded, and the handling of the combustion ash is facilitated. If the amount of water added is extremely increased beyond the range described above, the humidified combustion ash may be liquified, and on the other hand, as described above, the amount of water added is extremely small. The intended effect of such humidification may be reduced. Further, the combustion ash that has been subjected to the humidification treatment may be kept in a humidified state for about one day in order to improve the extraction rate of the metal in the metal extraction treatment step described below.
[0029] 次いで、攪拌処理槽 4に燃焼灰 1を装填し、そこに燃焼灰に対し、硫酸 5および水 6 によって調製された酸性水、並びに、必要に応じ還元剤 7を添加し、加温'攪拌により 燃焼灰中の金属分を抽出する。  [0029] Next, the combustion ash 1 is charged into the agitation treatment tank 4, and the combustion ash is added with acidic water prepared with sulfuric acid 5 and water 6 and, if necessary, a reducing agent 7, and heated. 'Extract metals in combustion ash by stirring.
[0030] 本発明において使用する酸性水の酸としては、図 1に示す硫酸のほか、塩酸、硝酸 等あるいはこれらの混合物を用いることができる力 好ましくは金属の溶解性に優れ る、硫酸または塩酸であり、最も好ましくは硫酸である。ここで、酸性水を添加しないと 金属抽出処理工程における金属分の抽出率が低下するため好ましくない。  As the acid of the acidic water used in the present invention, in addition to the sulfuric acid shown in FIG. 1, an acid capable of using hydrochloric acid, nitric acid or the like or a mixture thereof is preferably used. And most preferably sulfuric acid. Here, if the acidic water is not added, the extraction rate of the metal component in the metal extraction treatment step decreases, which is not preferable.
[0031] また、酸性水の pHとしては、特に限定されるものではないが、例えば、 pHO. 1一 3 . 0、より好ましくは pHO. 5-1. 0が望ましい。 pHO. 1未満であると、処理に大量の 酸性水を使用してしまう虞れがあり、一方 pHが 3. 0を越えるものであると、バナジウム に対する抽出効率が低下する虞れがあるためである。  [0031] Further, the pH of the acidic water is not particularly limited, but, for example, is preferably pH 0.11 to 3.0, more preferably pH 5.0 to 1.0. If the pH is less than 1, there is a risk that a large amount of acidic water will be used for the treatment, while if the pH exceeds 3.0, the extraction efficiency for vanadium may decrease. is there.
[0032] 酸性水の添加量としては、特に限定されるものではないが、例えば、処理しょうとす る燃焼灰 (乾燥質量)に対し、 2— 10倍となる量である。酸性水の添加量が 2倍未満 では、可溶分の十分な溶解処理が行えない虞れがある。一方添加量が 10倍を越え るものであると経済的でないのみならず、後述するような固液分離処理後の廃液処理 にかかる労力が大となる虞れがある。  [0032] The amount of the acidic water to be added is not particularly limited, but is, for example, an amount that is 2 to 10 times the amount of the combustion ash (dry mass) to be treated. If the amount of the acidic water is less than twice, there is a possibility that a sufficient dissolution treatment of the soluble component cannot be performed. On the other hand, if the addition amount exceeds 10 times, not only is it not economical, but also the labor required for the waste liquid treatment after the solid-liquid separation treatment described later may increase.
[0033] また、酸性水と共に、必要に応じ、添加される還元剤 7としては、特に限定されるも のではないが、例えば、亜硫酸、ヒドラジン、亜硫酸ナトリウム、ヒドロキシルアミン等を 用いることができ、好ましくは、還元作用に優れる、亜硫酸、ヒドラジンまたは亜硫酸 ナトリウムであり、より好ましくは亜硫酸である。 [0033] The reducing agent 7 added as necessary together with the acidic water is not particularly limited. However, for example, sulfurous acid, hydrazine, sodium sulfite, hydroxylamine and the like can be used. Sulfurous acid, hydrazine or sodium sulfite, which is excellent in reducing action, is more preferably sulfurous acid.
[0034] このような還元剤 7は、上記した酸性水とほぼ同時期に加温前に、燃焼灰に対して 添加される。なお、還元剤の添加量としては、特に限定されるものではないが、燃焼 灰(乾燥質量) 100質量部に対して還元剤を例えば、 0. 02-1. 0質量部、好ましく は 0. 1-0. 6質量部を添加することが望ましい。還元剤の添加量が 0. 02質量部未 満であると還元反応が十分に行われない虞れがあり、一方、 1. 0質量部を越えるもの であると残存した還元剤の処理を行う必要が生じ、プロセスの操作が煩雑となる虞れ があるためである。  [0034] Such a reducing agent 7 is added to the combustion ash almost at the same time as the above-mentioned acidic water and before heating. The amount of the reducing agent to be added is not particularly limited. For example, 0.02 to 1.0 part by mass, preferably 0.1 to 1.0 part by mass of the reducing agent per 100 parts by mass of the combustion ash (dry mass). It is desirable to add 1-0.6 parts by mass. If the amount of the reducing agent is less than 0.02 parts by mass, the reduction reaction may not be sufficiently performed, while if the amount exceeds 1.0 parts by mass, the remaining reducing agent is treated. This is because the necessity arises and the operation of the process may be complicated.
[0035] 攪拌処理槽 4にお ヽては、燃焼灰と酸性水および還元剤の混合スラリーとを、例え ば、 40°C以上、より好ましくは 50— 80°Cの温度となるように、加温し、所定の回転数 にて攪拌して、燃焼灰中の酸に可溶な金属分を十分に溶解させる。ここで、加温温 度を 40°C以上とするのは、それ未満の温度では抽出率が低下するためである。  [0035] In the stirring treatment tank 4, the combustion ash and the mixed slurry of the acidic water and the reducing agent are mixed at a temperature of, for example, 40 ° C or more, more preferably 50 to 80 ° C. The mixture is heated and stirred at a predetermined rotation speed to sufficiently dissolve the acid-soluble metals in the combustion ash. Here, the reason why the heating temperature is set to 40 ° C or higher is that at a temperature lower than 40 ° C, the extraction rate decreases.
[0036] また、攪拌方法としては、特に限定されるものではなぐ例えば、インペラ一傾斜 4 枚羽根を使った攪拌などの一般的な方法を用いることが可能である。また、攪拌条件 は、抽出液中の酸性水の濃度、溶液温度等に依存して適宜変更される。例えば、 p HO. 6の硫酸水溶液を燃焼灰に対し質量比 2倍量添加し、溶液温度 60°Cの場合に は、 90分程度の攪拌処理が適当である。  [0036] The stirring method is not particularly limited, and for example, a general method such as stirring using four impeller one-incline blades can be used. The stirring conditions are appropriately changed depending on the concentration of the acidic water in the extract, the solution temperature, and the like. For example, when a sulfuric acid aqueous solution of pHO.6 is added to the combustion ash in a double amount by mass ratio to the combustion ash, and the solution temperature is 60 ° C, a stirring treatment for about 90 minutes is appropriate.
[0037] 以上のような酸性水および還元剤を添加した金属抽出処理によって、燃焼灰中に 含まれる、例えば、 V、 Al、 Fe、 Mg、 Mo、 Ni等の金属成分は、水中へと溶解し、一 方、カーボン分は不溶のまま固形物として残留することとなる。  [0037] By the metal extraction treatment to which the acidic water and the reducing agent are added as described above, the metal components such as V, Al, Fe, Mg, Mo, and Ni contained in the combustion ash are dissolved in water. However, on the other hand, the carbon remains insoluble as a solid.
[0038] 所定時間経過後、攪拌処理槽 4カゝら取り出された混合スラリーは、固液分離装置に て固液分離にかけられる。  After a lapse of a predetermined time, the mixed slurry taken out from 4 parts of the stirring treatment tank is subjected to solid-liquid separation by a solid-liquid separation device.
[0039] 本発明において使用される固液分離装置として、特に限定されるわけではなぐ例 えば、プレツシャフィルター、遠心分離機、デカンタ、ベルトフィルター、トレイフィルタ 一、プリコートフィルター、セラミックフィルター、クリケットフィルター、プレスロールフィ ルター等の公知の各種のものを用いることができる。図 1には、固液分離装置として ベルトフィルター 8の使用を例示する。 [0039] Examples of the solid-liquid separation device used in the present invention include, but are not limited to, a pressure filter, a centrifuge, a decanter, a belt filter, a tray filter, a precoat filter, a ceramic filter, and a cricket. Various known filters such as a filter and a press roll filter can be used. Figure 1 shows a solid-liquid separation device. The use of the belt filter 8 is exemplified.
[0040] 図 1において、ベルトフィルター 8によって固液分離されると、フィルター上には、酸 性水に対して不溶であったカーボン分のみが実質的に残り、一方、酸性水に溶解し たバナジウム等の金属分を含む濾液は、固液分離装置 8の底部より回収タンク 12へ と回収される。 In FIG. 1, when the solid-liquid separation was performed by the belt filter 8, only the carbon insoluble in the acidic water substantially remained on the filter, while the carbon dissolved in the acidic water. The filtrate containing a metal component such as vanadium is collected from the bottom of the solid-liquid separator 8 into the collection tank 12.
[0041] 固液分離によってベルトフィルター 8上に残った湿潤カーボン分は、そのままコンペ ァによって搬送され、シャワー洗浄装置 9において例えば 20— 80°C、好ましくは約 6 0°C程度の温水にて十分に洗浄される。洗浄方法としても、付着する酸性水が十分 に除去できるものであれば特に限定されるものではなぐ各種の装置を用いることが できる。なお、洗浄に使用された水は、洗浄濾液として回収され、回収された洗浄水 は、必要に応じ、抽出酸性水として再利用されてもよい。  [0041] The wet carbon content remaining on the belt filter 8 due to the solid-liquid separation is conveyed as it is by a conveyor, and is heated in a shower washing device 9 at a temperature of, for example, about 20 to 80 ° C, preferably about 60 ° C. Washed thoroughly. The washing method is not particularly limited as long as the attached acidic water can be sufficiently removed, and various devices can be used. The water used for washing is collected as a washing filtrate, and the collected washing water may be reused as an acidic extraction water, if necessary.
[0042] 洗浄された湿潤カーボン分は、その後、乾燥装置 10へと搬送され、乾燥工程にか けられる。乾燥工程としては、特に限定されるものではないが、例えば 100— 200°C の温度での風乾、オーブン乾燥、自然乾燥などの処理で良い。本発明に係るァモル ファスカーボンが導電性を有することを利用し、通電による乾燥方式なども考えられる 。乾燥方法として好ましくは、粉塵防止、燃焼防止といった観点から、伝熱加熱型乾 燥法を用いることが望ましい。いずれの場合にも、本発明に係るアモルファスカーボ ンは比表面積と細孔容積が極めて小さぐ伝熱性に優れているため、非常に効率的 に乾燥させることが可能である。このような乾燥工程によって、例えば、含水量 30— 4 0質量%程度の湿潤カーボン分を、含水量 1. 0質量%未満の乾燥カーボン分とする  [0042] The washed wet carbon component is then conveyed to the drying device 10 and subjected to a drying step. The drying step is not particularly limited, but may be air drying at a temperature of 100 to 200 ° C., oven drying, natural drying, or the like. Utilizing the fact that the amorphous carbon according to the present invention has conductivity, a drying method by energization may be considered. As a drying method, it is desirable to use a heat transfer heating type drying method from the viewpoints of dust prevention and combustion prevention. In any case, since the amorphous carbon according to the present invention has an extremely small specific surface area and a small pore volume and is excellent in heat conductivity, it can be dried very efficiently. By such a drying step, for example, a wet carbon content having a water content of about 30 to 40% by mass is converted into a dry carbon content having a water content of less than 1.0% by mass.
[0043] 次いで、乾燥装置 10より取り出された乾燥カーボン分は、次いで、粉砕装置 11へ と搬送され、ここにおいて所定粒径、例えば平均粒子径 10 m未満へと粉砕される 。粉砕工程としては、特に限定されるものではないが、物理的粉砕機、例えばターボ ミル、ボールミル、ジェットミル、ローラーミル等を用いて粉砕処理することにより行な われる。なお、粉砕処理しょうとするカーボン分が高硬度で既に微粉状であるため、 粉砕装置としてはジェットミルを用いることが好まし 、。 Next, the dried carbon component removed from the drying device 10 is then conveyed to a crushing device 11, where it is crushed to a predetermined particle size, for example, an average particle size of less than 10 m. The pulverizing step is not particularly limited, but is performed by performing a pulverizing treatment using a physical pulverizer such as a turbo mill, a ball mill, a jet mill, a roller mill or the like. It is preferable to use a jet mill as the pulverizing device because the carbon component to be pulverized has a high hardness and is already in the form of fine powder.
[0044] 本発明の製造方法においては、粉砕処理後に必要に応じて、分級処理を行うこと ができる。 [0044] In the production method of the present invention, if necessary, a classification treatment may be performed after the pulverization treatment. Can do.
[0045] また、図 1に示す製造装置においては、前記固液分離処理において回収タンク 12 へと回収された濾液は、その後、濾液処理槽 13へと圧送される。この濾液処理槽 13 において、濾液には、例えば、アンモニア、苛性ソーダ等の pH調整剤が添加されて 、濾液の pHを 4一 7に調整する。これによつて、バナジウム等の酸ィ匕金属成分を析出 させる。その後、この析出物を含む濾液を濾過装置 14にかけて固液分離することに よって、バナジウム回収ケーキと、ニッケル含有濾液とに分離することができる。なお 、分離された金属の用途としては、レドックスフロー電池用電解液、ステンレス鋼用材 料等が挙げられる。さらに、 pHを調整することによって、バナジウムとニッケルの双方 を含有するケーキとして回収することもできる。  Further, in the manufacturing apparatus shown in FIG. 1, the filtrate collected in the collection tank 12 in the solid-liquid separation process is then pressure-fed to the filtrate treatment tank 13. In the filtrate treatment tank 13, a pH adjuster such as ammonia or caustic soda is added to the filtrate to adjust the pH of the filtrate to 417. Thereby, an oxidizing metal component such as vanadium is precipitated. Thereafter, the filtrate containing the precipitate is subjected to solid-liquid separation by the filtration device 14, whereby the vanadium recovery cake and the nickel-containing filtrate can be separated. Examples of uses of the separated metal include an electrolyte for a redox flow battery, a material for stainless steel, and the like. Furthermore, by adjusting the pH, it can be recovered as a cake containing both vanadium and nickel.
[0046] そして、本発明に係る製造方法により得られるカーボン粒子は、図 2に示すように、 黒鉛のようなフレーク状やカーボンブラックのような球状ではなぐ鋭角なエッジを有 した非円形断面であり、粒子表面に鋭角な突起や平滑曲面を有する複雑な形状を 有するものである。そして、 X線回折法により結晶構造を測定すると面間隔が 3. 43A 以上であることからも明らかなように、アモルファス構造ほ L層構造)を呈するァモルフ ァスカーボン粒子である。また、空気存在下で保持温度 500°Cで 60分の質量減量率 が 30%未満であり、空気に対する反応性が非常に乏しいものである。また、その平均 粒径は、 1一 50 m、より好ましくは 1一 10 mである。なお、このような鋭角なエッジ を有した非円形断面の形状は、例えば、榭脂、ゴム、セメント、金属などのマトリックス 材への複合時にマトリックス材とのアンカリング効果や、複合材表面でのスパイク効果 が期待できる。  As shown in FIG. 2, the carbon particles obtained by the production method according to the present invention have a non-circular cross section having sharp edges that are not flake-like like graphite or spherical like carbon black. It has a complicated shape with sharp projections and smooth curved surfaces on the particle surface. The crystal structure measured by the X-ray diffraction method indicates that the amorphous carbon particles exhibit an amorphous structure and an L-layer structure (as is clear from the fact that the interplanar spacing is 3.43 A or more). In addition, the mass loss rate in the presence of air at a holding temperature of 500 ° C for 60 minutes is less than 30%, and the reactivity to air is very poor. Further, the average particle size is 1-150 m, more preferably 110-10 m. The shape of the non-circular cross-section having such sharp edges may be, for example, an anchoring effect with the matrix material at the time of compounding with a matrix material such as resin, rubber, cement, metal, or the like, A spike effect can be expected.
[0047] また、本発明に係る製造方法により得られたアモルファスカーボン粒子は、 BET法 にて測定した比表面積が 1一 20m2Zg、窒素吸着法により測定した細孔容積が 0. 0 20-0. OOlmlZg程度であり、比較的緻密な表面性状を有するものである。さらに、 特に限定されるものではないが、代表的なその他の特性としては、手動充填法により 測定した嵩比重が 0. 5-0. 7g/mU JISK21515. 3に準拠して測定された真比重 が 1. 9—2. 1である。 [0047] The amorphous carbon particles obtained by the production method according to the present invention have a specific surface area of 1-120 m 2 Zg measured by the BET method and a pore volume of 0.020-g measured by the nitrogen adsorption method. 0. It is about OOlmlZg and has relatively dense surface properties. Further, although not particularly limited, typical other characteristics include a bulk specific gravity measured by a manual filling method of 0.5-0.7 g / mU a true specific gravity measured in accordance with JISK21515.3. Is 1.9—2.1.
[0048] 本発明に係る製造方法により得られるアモルファスカーボン粒子は、そのまま、例え ば、各種の触媒担体、流動層媒体等として使用することができる。また本発明に係る アモルファスカーボン粒子は、油性基材および水性基材の 、ずれに対しても親和性 を有すことから、導電性付与、剛性および機械的強度向上、寸法安定性向上、耐熱 性向上等を目的として、各種榭脂およびゴム等の有機物あるいはセメント、金属等の 無機物からなるマトリックス材に配合することができる。具体的には、例えば、榭脂な いしゴム成形材料、遮光性繊維等の着色剤、榭脂ないしゴムの改質剤ないし充填剤 、榭脂ないしゴムの導電性付与剤、例えば、帯電防止材料、複写機内の抵抗材料や[0048] The amorphous carbon particles obtained by the production method according to the present invention can be used, for example, as they are. For example, it can be used as various catalyst carriers, fluidized bed media and the like. In addition, the amorphous carbon particles according to the present invention have an affinity for the displacement of the oil-based base material and the aqueous base material, and therefore, impart conductivity, improve rigidity and mechanical strength, improve dimensional stability, and improve heat resistance. For the purpose of improvement and the like, it can be blended with a matrix material composed of various resins and organic substances such as rubber or inorganic substances such as cement and metal. Specifically, for example, a resin or rubber molding material, a coloring agent such as a light-shielding fiber, a resin or rubber modifier or filler, a resin or rubber conductivity imparting agent, for example, an antistatic material , Resistance materials in copiers,
PTC特性を利用した面状発熱体などにおける電気抵抗調整材、人工大理石などの 各種の用途に好ましく用いることができる。 It can be preferably used in various applications such as an electric resistance adjusting material for a sheet heating element utilizing PTC characteristics, artificial marble, and the like.
[0049] また、その他に、各種液状組成物、例えば、潤滑剤、トラクシヨンドライブ流体、電気 粘性流体や非線形光学材料、各種インキ、塗料等の着色性組成物などの用途への 応用も考えられる。  [0049] In addition, application to various liquid compositions such as lubricants, traction drive fluids, electrorheological fluids, non-linear optical materials, various inks, and coloring compositions such as paints can be considered. .
[0050] さらに、着色剤、充填材、骨材などといった各種用途において、セメント組成物、金 属、ガラス等の無機物カゝらなるマトリックス材へも好ましく配合され得る。 実施例  [0050] Further, in various applications such as a coloring agent, a filler, an aggregate, etc., it can be preferably blended with a matrix material composed of an inorganic substance such as a cement composition, a metal, or glass. Example
[0051] 以下、本発明を実施例に基づきより具体的に説明する。  Hereinafter, the present invention will be described more specifically based on examples.
[0052] 実施例 1:アモルファスカーボン粒子の調製 Example 1: Preparation of amorphous carbon particles
石油コークスを微粉炭ボイラ (燃焼条件:酸化雰囲気下で 800— 1300°C燃焼)で 燃焼させた後、集塵機で捕集された燃焼灰を回収した。  After burning petroleum coke in a pulverized coal boiler (combustion condition: burning at 800-1300 ° C in an oxidizing atmosphere), the combustion ash collected by a dust collector was recovered.
[0053] この燃焼灰の組成を分析したところ、水分 0. 4質量%、炭素分 86. 3質量%、水素[0053] Analysis of the composition of this combustion ash showed that the water content was 0.4% by mass, the carbon content was 86.3% by mass, and the hydrogen content was hydrogen.
0. 21質量0 /0、酸素 1. 23質量0 /0、 NH 1. 63%、 SO 4. 10質量0 /0、 V 1. 25 0.21 mass 0/0, oxygen 1.23 wt 0/0, NH 1. 63% , SO 4. 10 mass 0/0, V 1. 25
3 4  3 4
質量0 /0、 Ni 0. 58質量0 /0、 Fe 0. 56質量0 /0、 Mg 0. 06質量0 /0、 Ca 0. 25質量 %、Na 0. 16質量%、A1 0. 24質量%、 Si 0. 69%という成分結果が得られた。 Mass 0/0, Ni 0. 58 mass 0/0, Fe 0. 56 mass 0/0, Mg 0. 06 mass 0/0, Ca 0. 25 wt%, Na 0. 16 mass%, A1 0. 24 A component result of mass% and Si of 0.69% was obtained.
[0054] この燃焼灰 100質量部に対し、図 1に示すような製造装置を用いて、加湿処理した 後、攪拌処理槽において、酸性水(5%硫酸水溶液) 200質量部を加え、さらに還元 剤(亜硫酸水溶液) 0. 6質量部を加え、 pHを 0. 6に保ち、 60°Cに加温しながら、 1時 間攪拌し、次いで、酸に溶解する酸ィ匕金属分と不溶のカーボン分とをベルトフィルタ 一にて固液分離し、水洗を行なった後、 150°Cにてオーブン乾燥し、その後、ジェット ミルを用いて粉砕し、分級することによって、収率 75%にてカーボン粒子を得た。 [0054] After 100 parts by mass of the combustion ash was humidified by using a production apparatus as shown in Fig. 1, 200 parts by mass of acidic water (5% sulfuric acid aqueous solution) was added in a stirring treatment tank, and further reduced. Add 0.6 parts by mass of an aqueous solution (sulfurous acid aqueous solution), stir for 1 hour while maintaining the pH at 0.6 and heating to 60 ° C. The carbon content is separated into solid and liquid by a belt filter, washed with water, dried in an oven at 150 ° C, and then jetted. By pulverizing with a mill and classifying, carbon particles were obtained with a yield of 75%.
[0055] このようにして得られたカーボン粒子につきその粒径をレーザ回折法により調べたと ころ、その平均粒径は、 4. 2 m、標準偏差が 0. 183であり、 0. 75 μ m未満および 20. 0 m超の粒子は検出されなかった。  When the particle size of the carbon particles thus obtained was examined by a laser diffraction method, the average particle size was 4.2 m, the standard deviation was 0.183, and the average particle size was 0.75 μm. Particles below and above 20.0 m were not detected.
[0056] また、得られたカーボン粒子につき、諸物性を調べたところ、 BET法にて測定した 比表面積が 10. 8m2Zg、窒素吸着法により測定した細孔容積が 0. 013mlZg、手 動充填法により測定した嵩密度が 0. 559g/mU JISK21515. 3に準拠して測定さ れた真比重が 2. 05であった。 The obtained carbon particles were examined for various physical properties. The specific surface area measured by the BET method was 10.8 m 2 Zg, the pore volume measured by the nitrogen adsorption method was 0.013 mlZg, and the The bulk density measured by the filling method was 0.559 g / mU, and the true specific gravity measured according to JISK21515.3 was 2.05.
[0057] 次に、このカーボン粒子の結晶構造を X線回折法により測定したところ、面間隔 d( 隣接する二つの格子面の距離)は 3. 4587Aで、結晶子サイズ Lcは 3. 12Aであり、 アモルファス構造ほ L層構造)を呈して!/ヽることが示された。  Next, when the crystal structure of the carbon particles was measured by an X-ray diffraction method, the plane distance d (the distance between two adjacent lattice planes) was 3.4587 A, and the crystallite size Lc was 3.12 A. And an amorphous structure (L layer structure)!
[0058] さらに、このカーボン粒子の空気との反応性を調べるため、空気存在下で保持温度  [0058] Further, in order to investigate the reactivity of the carbon particles with air, the holding temperature in the presence of air was measured.
500°Cで 60分における質量減量率を示差熱天秤 (真空理工製 TGD3000)にて調 ベた (測定条件:試料量 20mg、空気流量 20mlZ分、昇温速度 20°CZ分)ところ、 1 3. 9%であり、非常に反応性の低いものであることがわ力つた。また得られたカーボ ン粒子に含まれる不純物量をプラズマイオン源分析装置 (ICP分析装置)にて測定し たところ、 V (バナジウム)が 0. 19質量0 /0、Ni (ニッケル)が 0. 04質量0 /0であり、高い 抽出効果により不純物の少ないカーボン粒子が得られたことがわ力つた。 The mass loss rate at 60 minutes at 500 ° C was measured with a differential thermobalance (TGD3000 manufactured by Vacuum Riko) (measurement conditions: 20 mg of sample, 20 ml of air flow, 20 min of heating rate 20 ° CZ). It was 9%, indicating that it was very unreactive. Further, when the amount of impurities contained in the obtained carbon emissions particles was measured by plasma ion source analyzer (ICP analyzer), V (vanadium) is 0.19 mass 0/0, Ni (nickel) is 0. 04 mass 0/0, I be less impurities carbon particles were obtained by high extraction effect ChikaraTsuta.
[0059] この得られたカーボン粒子の電子顕微鏡写真を図 2に示す。  FIG. 2 shows an electron micrograph of the obtained carbon particles.
[0060] 比較例 1  [0060] Comparative Example 1
比較として石炭コータスの 500°Cで 60分における質量減量率を実施例 1と同様の 条件にて調べたところ 60. 0%であり、明らかに特性の異なるものであることが判った  As a comparison, the mass loss rate of the coal coatas at 500 ° C for 60 minutes was examined under the same conditions as in Example 1 and found to be 60.0%, clearly having different characteristics.
[0061] 比較例 2 [0061] Comparative Example 2
実施例 1で用いたものと同じ石油コータス燃焼灰に対し、オーブン乾燥処理後にお V、て粉砕工程を行なわな 、以外は実施例 1と同様の操作を行なって、カーボン粒子 を得た。得られたカーボンの粒子径は 61. 2 mとなり、粒子径の大きなものとなった [0062] 比較例 3, 4 The same operation as in Example 1 was carried out on the same petroleum coatas combustion ash as used in Example 1 except that the pulverizing step was not performed after the oven drying treatment, to obtain carbon particles. The particle size of the obtained carbon was 61.2 m, which was large. [0062] Comparative Examples 3 and 4
下表の操作以外は実施例 1と同様の操作を行い、石油コータス燃焼灰カゝらカーボ ン粒子を得た。得られたカーボン粒子は下表に示す通り、不純物である金属分が実 施例 1と比較すると多いことがわ力つた。  Except for the operations in the following table, the same operations as in Example 1 were performed to obtain petroleum coatas combustion ash carbon particles. As shown in the table below, the obtained carbon particles were found to have a higher impurity metal content as compared with Example 1.
[0063] [表 1] 実施例 ] 比較例 3 比較例 4 [Table 1] Example] Comparative Example 3 Comparative Example 4
条件 加湿工程: あり/なし あり なし あり  Condition Humidification process: Yes / No Yes No Yes
酸性水:使用/未使用 使用 使用 未使用  Acidic water: used / unused used used unused
結果 V 質量% 0. 0. 62 0. 1  Result V mass% 0.0.62 0.1
N i 質量% 0. 04 0. 32 0. 4 1  Ni mass% 0.04 0.32 0.34 1

Claims

請求の範囲 The scope of the claims
[1] (1)石油コータスの燃焼灰を加湿する工程、  [1] (1) a step of humidifying the combustion ash of petroleum coatas,
(2)酸性水を添加し、加温'攪拌により燃焼灰中の金属分を抽出する工程、 (2) a step of adding acidic water and extracting metal components in the combustion ash by heating 'stirring,
(3)前記(2)工程にぉ 、て酸性水に溶解した金属分と、不溶のカーボン分とを分離 する工程、および (3) a step of separating the metal component dissolved in the acidic water from the insoluble carbon component in the step (2);
(4)前記(3)工程において分離されたカーボン分を乾燥 *粉砕する工程 を有することを特徴とする  (4) a step of drying and pulverizing the carbon component separated in the step (3).
非円形断面を有し、空気存在下で保持温度 500°Cで 60分の質量減量率が 30% 未満であり、平均粒子径 1一 50 μ mであることを特徴とするアモルファスカーボン粒 子の製造方法。  An amorphous carbon particle having a non-circular cross section, a mass loss rate of less than 30% for 60 minutes at a holding temperature of 500 ° C in the presence of air, and an average particle diameter of 1-150 μm. Production method.
[2] 金属抽出工程 (2)において、酸性水と共に還元剤を添加することを特徴とする請求 項 1記載のアモルファスカーボン粒子の製造方法。  2. The method for producing amorphous carbon particles according to claim 1, wherein in the metal extraction step (2), a reducing agent is added together with the acidic water.
[3] 金属抽出工程 (2)において、還元剤が亜硫酸水、ヒドラジンまたは亜硫酸ナトリウム であることを特徴とする請求項 2に記載のアモルファスカーボン粒子の製造方法。 3. The method for producing amorphous carbon particles according to claim 2, wherein in the metal extraction step (2), the reducing agent is a sulfite solution, hydrazine or sodium sulfite.
[4] 金属抽出工程(2)において、 pHO. 1-3. 0の酸性水を燃焼灰に対し質量比 2— 1[4] In the metal extraction step (2), acid water of pHO.
0倍添加し、液温度 40°C以上、攪拌時間 90分以内として処理することを特徴とする 請求項 1一 3のいずれ力 1つに記載のアモルファスカーボン粒子の製造方法。 The method for producing amorphous carbon particles according to any one of claims 13 to 13, wherein the processing is performed by adding 0 times, and treating the mixture at a liquid temperature of 40 ° C or more and a stirring time of 90 minutes or less.
[5] 得られるアモルファスカーボン粒子は、 BET法にて測定した比表面積が 20— lm2 ん窒素吸着法により測定した細孔容積が 0. 020-0. 001ml/gとなるものである 請求項 1一 4のいずれ力 1つに記載のアモルファスカーボン粒子の製造方法。 [5] The obtained amorphous carbon particles have a specific surface area measured by a BET method of 20-lm 2 and a pore volume measured by a nitrogen adsorption method of 0.002-0.001 ml / g. The method for producing amorphous carbon particles according to any one of Items 1-4.
[6] 得られるアモルファスカーボン粒子は、 X線回折により測定した面間隔が 3. 43A以 上となるものである請求項 1一 5のいずれ力 1つに記載のアモルファスカーボン粒子 の製造方法。 [6] The method for producing amorphous carbon particles according to any one of [15] to [15], wherein the obtained amorphous carbon particles have a plane distance measured by X-ray diffraction of 3.43A or more.
PCT/JP2005/002072 2004-02-12 2005-02-10 Method for producing amorphous carbon particles WO2005077826A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004035539A JP2007191316A (en) 2004-02-12 2004-02-12 Method for producing amorphous carbon particle
JP2004-035539 2004-02-12

Publications (1)

Publication Number Publication Date
WO2005077826A1 true WO2005077826A1 (en) 2005-08-25

Family

ID=34857690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002072 WO2005077826A1 (en) 2004-02-12 2005-02-10 Method for producing amorphous carbon particles

Country Status (2)

Country Link
JP (1) JP2007191316A (en)
WO (1) WO2005077826A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110640153A (en) * 2019-09-20 2020-01-03 曲源 Amorphous alloy preparation device and preparation method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090172998A1 (en) * 2008-01-08 2009-07-09 Carbonxt Group Limited System and method for refining carbonaceous material
CN101337669B (en) * 2008-08-12 2010-06-02 云南冶金集团总公司技术中心 Method for preparing high pure carbon from industrial carbon
JP6364692B2 (en) * 2014-02-28 2018-08-01 小松精練株式会社 Snow melting block

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183110A (en) * 1985-02-08 1986-08-15 Tokai Carbon Co Ltd Production of carbonaceous sphere
JPH11209768A (en) * 1998-01-20 1999-08-03 Kurimoto Ltd Production of carbide from flammable waste and apparatus therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183110A (en) * 1985-02-08 1986-08-15 Tokai Carbon Co Ltd Production of carbonaceous sphere
JPH11209768A (en) * 1998-01-20 1999-08-03 Kurimoto Ltd Production of carbide from flammable waste and apparatus therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110640153A (en) * 2019-09-20 2020-01-03 曲源 Amorphous alloy preparation device and preparation method
CN110640153B (en) * 2019-09-20 2023-10-03 秦皇岛市太极环纳米材料研究所 Amorphous alloy preparation device and preparation method

Also Published As

Publication number Publication date
JP2007191316A (en) 2007-08-02

Similar Documents

Publication Publication Date Title
Kühner et al. Manufacture of carbon black
CN103540172B (en) Method and system for preparing regenerative carbon black by deashing and modifying pyrolytic carbon of waste rubber and plastic products
EP2348136B1 (en) Metal recovery from hydroconverted heavy effluent
EP2334392B1 (en) Method and apparatus for the recovery of molybdenum from spent catalysts
JP5280072B2 (en) Coke production method
US20070172408A1 (en) Amorphous carbon particles and composite material used thereof
CN103124782B (en) By the Coal dressing that the biomass of adding and volatile matter control
JP5842592B2 (en) Reusing used magnesia carbon bricks
CN109536224B (en) Coal water slurry prepared from hazardous waste coal tar residues, and preparation method and application method thereof
CN117940534A (en) Method for producing biochar pellets with high fixed carbon content and optimized reactivity and biochar pellets obtained therefrom
BR112014025399B1 (en) METHOD FOR PROCESSING NON-FERROUS METALURGING SLINGS.
KR102305756B1 (en) Method of preparing artificial graphite negative electrode material from petcoke for rechargeable lithium battery and artificial graphite negative electrode material for rechargeable lithium battery prepared from the same and rechargeable lithium battery
US10941346B2 (en) Process for conversion of fuel grade coke to anode grade coke
CN109734129A (en) A kind of method that zirconium silicate ball fluidizing chlorination method produces refined zirconium tetrachloride and by-produced tetrachlorosilane
WO2005077826A1 (en) Method for producing amorphous carbon particles
CN104937076A (en) Method for processing combustible products, reactor for implementing same (variants) and apparatus comprising said reactor
US3136604A (en) Recovery of phosphorus from sludge
GB1560503A (en) Process for working up waste fly dusts
US3084029A (en) Recovery of phosphorus from sludge
JP2014122131A (en) Production method of high-purity silicon carbide powder
CN110668403A (en) Continuous production method of insoluble sulfur
RU2404271C1 (en) Processing method of unconditioned iron- and zinc-containing metallurgical wastes
US3416882A (en) Production of vanadium values from crude oil
Ri et al. Effective purification of graphite via low pulp density flotation-low temperature alkali roasting-acid leaching route: From laboratory-scale to pilot-scale
CN106318430A (en) System and method utilizing low-rank coal

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP