明 細 書 Specification
バルブ金属の製造方法 Manufacturing method of valve metal
技術分野 Technical field
[0001] 本発明は、コンデンサやキャパシタに使用されるバルブ金属粉末の製造方法に関 する。 The present invention relates to a method for producing a capacitor and a valve metal powder used for the capacitor.
本願は、 2004年 2月 16日に出願された特願 2004— 038409号に対し優先権を主 張し、その内容をここに援用する。 This application claims the priority of Japanese Patent Application No. 2004-038409 filed on Feb. 16, 2004, the contents of which are incorporated herein by reference.
背景技術 Background art
[0002] タンタルやニオブの金属粉末は耐食性に優れ、さらにその酸ィ匕物が誘電体である ことから、コンデンサやキャパシタに広く使用されている。従来、タンタル金属粉末を 製造する方法としては、例えば、攪拌機付き反応器内で、塩ィ匕カリウムや塩ィ匕ナトリウ ムなどの溶融塩中にフッ化タンタルカリウムおよびナトリウムを添カ卩し、フッ化タンタル カリウムをナトリウムで還元してタンタル金属粉末を得る方法が知られている(例えば、 特許文献 1参照)。 [0002] Tantalum and niobium metal powders are widely used in capacitors and capacitors because of their excellent corrosion resistance and their oxides are dielectrics. Conventionally, as a method for producing tantalum metal powder, for example, potassium and sodium tantalum fluoride are added to a molten salt such as potassium salt and sodium salt in a reactor equipped with a stirrer, and then the solution is added. A method of obtaining potassium tantalum metal powder by reducing potassium tantalum fluoride with sodium is known (for example, see Patent Document 1).
また、固体状のマグネシウムやカルシウムなどの還元剤を予め加熱してガス化し、 そのガス化した還元剤を加熱した反応器内に導入し、還元反応における温度や時間 を選択して、還元剤とバルブ金属の酸化物とを反応させる方法が提案されている(例 えば、特許文献 2参照)。 In addition, a solid reducing agent such as magnesium or calcium is heated and gasified in advance, and the gasified reducing agent is introduced into a heated reactor, and the temperature and time in the reduction reaction are selected, and the reducing agent is combined with the reducing agent. A method of reacting a valve metal with an oxide has been proposed (for example, see Patent Document 2).
特許文献 1 :米国特許第 2950185号明細書 Patent Document 1: U.S. Pat.No. 2,950,185
特許文献 2:特表 2002 - 544375号公報 Patent Document 2: Japanese Patent Publication No. 2002-544375
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0003] し力しながら、特許文献 1に記載の方法では、後処理が複雑で製造に要する費用 および時間が多大であり、特に、フッ化物や塩化物を含む化合物の廃棄が問題であ る。さらに、フッ化タンタルカリウムをナトリウムで還元する方法をニオブに適用するこ とも知られている力 フッ化ニオブカリウムをナトリウムで還元する方法では、フッ化二 ォブカリウムは容易に沈殿しな 、上に、反応性および腐食性が高 、ために得られる
ニオブ金属粉末の純度が低い。そのため、品質の高いニオブ金属粉末を得ることが 困難なことが問題である。 [0003] However, the method described in Patent Literature 1 requires complicated post-treatment and requires a large amount of cost and time for production. In particular, disposal of a compound containing fluoride or chloride is a problem. . Furthermore, in the method of reducing potassium niobium fluoride with sodium, which is also known to apply the method of reducing potassium tantalum fluoride with sodium, potassium diobium fluoride does not easily precipitate. Highly reactive and corrosive, obtained for Low purity of niobium metal powder. Therefore, it is difficult to obtain high quality niobium metal powder.
また、特許文献 2に記載の方法は、固体マグネシウムをガス化させるための加熱と 反応のための加熱とが別工程であり、エネルギー消費に無駄がある。 Further, in the method described in Patent Document 2, heating for gasifying solid magnesium and heating for reaction are separate steps, and there is no waste in energy consumption.
本発明は、前記事情を鑑みてなされたものであり、後処理が簡便で、タンタル金属 粉末だけでなく高品質のニオブ金属粉末を得ることができ、し力もエネルギー消費に 無駄が少な!/、バルブ金属粉末の製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, is easy to perform post-treatment, and can obtain not only a tantalum metal powder but also a high-quality niobium metal powder. An object of the present invention is to provide a method for producing valve metal powder.
課題を解決するための手段 Means for solving the problem
[0004] 本発明の第一の態様に係るバルブ金属粉末の製造方法は、加熱したバルブ金属 の酸ィ匕物またはバルブ金属の酸ィ匕物と固体還元剤の一部との混合物に固体還元剤 を添加することを特徴とする。 [0004] The method for producing a valve metal powder according to the first aspect of the present invention provides a method for solid-state reduction of a heated valve metal oxide or a mixture of a valve metal oxide and a part of a solid reducing agent. It is characterized by adding an agent.
上記ノ レブ金属粉末の製造方法は、減圧下で行うことが好ま 、。 The method for producing the knob metal powder is preferably performed under reduced pressure.
上記バルブ金属粉末の製造方法にぉ 、ては、バルブ金属の酸化物を分割供給す ることが好ましい。 In the production method of the valve metal powder, it is preferable to separately supply the oxide of the valve metal.
また、上記バルブ金属粉末の製造方法は、攪拌下で行うことが好ましい。 本発明の第二の態様に係るバルブ金属粉末の製造方法は、バルブ金属の酸ィ匕物 と固体還元剤とを混合した後、これらを加熱することを特徴とする。 Further, the method for producing the valve metal powder is preferably performed under stirring. The method for producing a valve metal powder according to the second aspect of the present invention is characterized in that after mixing an oxidized product of a valve metal and a solid reducing agent, these are heated.
さらに、上記バルブ金属粉末の製造方法においては、加熱温度が 900— 1100°C であることが好ましい。 Further, in the above method for producing valve metal powder, the heating temperature is preferably 900-1100 ° C.
[0005] また、上記バルブ金属の製造方法にお!、て、加熱温度は 500— 900°Cであっても よい。 [0005] In the above method for producing a valve metal, the heating temperature may be 500 to 900 ° C.
上記バルブ金属の製造方法にぉ 、て、前記加熱したバルブ金属の酸ィ匕物または バルブ金属の酸ィ匕物と固体還元剤とは液相で反応させることが好ましい。 In the above method for producing a valve metal, it is preferable that the heated oxidized valve metal or the oxidized valve metal is reacted with a solid reducing agent in a liquid phase.
本発明の第三の態様に係るバルブ金属粉末の製造方法は、 The method for producing a valve metal powder according to the third aspect of the present invention,
バルブ金属の酸化物と固体還元剤とを混合する工程と、 Mixing a valve metal oxide and a solid reducing agent,
前記ノ レブ金属の酸ィ匕物と固体還元剤との混合物を徐々に加熱して所定温度ま で昇温し、前記所定温度に維持して前記バルブ金属の酸化物と前記固体還元剤と を反応させる工程とを具備する。
[0006] 上記第三の態様に係るバルブ金属粉末の製造方法において、前記所定温度は 50 0— 900°Cであるのが好ましい。 The mixture of the oxidized product of the knob metal and the solid reducing agent is gradually heated to a predetermined temperature, and is maintained at the predetermined temperature to mix the valve metal oxide and the solid reducing agent. Reacting. [0006] In the method for producing a valve metal powder according to the third aspect, the predetermined temperature is preferably 500 to 900 ° C.
上記第三の態様に係るバルブ金属粉末の製造方法にお!、て、前記バルブ金属の 酸化物と固体還元剤との混合物を徐々に加熱して所定温度まで昇温し、前記所定 温度に維持して前記バルブ金属と前記固体還元剤とを反応させる工程は、密閉雰 囲気下で行うのが好まし 、。 In the method for producing a valve metal powder according to the third aspect, the mixture of the valve metal oxide and the solid reducing agent is gradually heated to a predetermined temperature, and is maintained at the predetermined temperature. The step of reacting the valve metal with the solid reducing agent is preferably performed in a closed atmosphere.
上記第三の態様に係るバルブ金属粉末の製造方法にお!、て、前記バルブ金属の 酸化物と固体還元剤との混合物を徐々に加熱して所定温度まで昇温し、前記所定 温度に維持して前記バルブ金属と前記固体還元剤とを反応させる工程は、攪拌しな 力 Sら行うのが好ましい。 In the method for producing a valve metal powder according to the third aspect, the mixture of the valve metal oxide and the solid reducing agent is gradually heated to a predetermined temperature, and is maintained at the predetermined temperature. The step of reacting the valve metal with the solid reducing agent is preferably performed with stirring.
[0007] 本発明の第四の態様に係るバルブ金属粉末の製造方法は、 [0007] The method for producing a valve metal powder according to a fourth aspect of the present invention comprises:
加熱したバルブ金属の酸ィ匕物に固体還元剤を徐々に添カ卩して前記バルブ金属の 酸化物と前記固体還元剤とを反応させることを特徴とするバルブ金属粉末の製造方 法である。 A method for producing valve metal powder, characterized by gradually adding a solid reducing agent to a heated valve metal oxide and reacting the valve metal oxide with the solid reducing agent. .
上記第四の態様に係るバルブ金属粉末の製造方法にぉ 、て、前記バルブ金属の 酸化物は 900— 1100°Cに加熱されて 、るのが好まし!/、。 In the method for producing a valve metal powder according to the fourth aspect, the oxide of the valve metal is preferably heated to 900-1100 ° C.! /.
上記第四の態様に係るバルブ金属粉末の製造方法において、前記固体還元剤の 添カ卩は密閉雰囲気下で行うのが好ましい。 In the method for producing a valve metal powder according to the fourth aspect, it is preferable that the addition of the solid reducing agent is performed in a closed atmosphere.
上記第四の態様に係るバルブ金属粉末の製造方法において、前記固体還元剤の 添カ卩はバルブ金属の酸ィ匕物を攪拌しながら行うのが好ましい。 In the method for producing a valve metal powder according to the fourth aspect, it is preferable that the addition of the solid reducing agent is performed while stirring the oxidized product of the valve metal.
上記第三または第四の態様に係るバルブ金属粉末の製造方法において、希釈剤 として、前記バルブ金属粉末および Zまたは固体還元剤酸化物を更に含んで 、るこ とが好ましい。 In the method for producing a valve metal powder according to the third or fourth aspect, it is preferable that the valve metal powder and Z or a solid reducing agent oxide are further included as a diluent.
[0008] なお、バルブ金属とは、一般的には、アルミニウム、タンタル、ニオブ、チタン、ハフ ユウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモンなど、陽極酸化によ り表面にその酸ィ匕物の皮膜が形成するもののことであるが、本発明においては、前記 金属のうちのタンタルおよびニオブを総称してバルブ金属と称する。また、バルブ金 属には、一酸ィ匕タンタルなどの Ta Oより酸ィ匕数の低い低級酸ィ匕物が含まれてもよ
い。低級酸ィ匕物であってもコンデンサのアノードとして用いることができるからである。 発明の効果 [0008] In addition, the valve metal generally means aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, or the like, whose surface is anodized by anodic oxidation. In the present invention, tantalum and niobium among the above metals are collectively referred to as a valve metal. In addition, the valve metal may include a lower oxidized material having a lower oxidized number than TaO, such as tantalum monooxide. Yes. This is because even a low-grade oxidant can be used as an anode of a capacitor. The invention's effect
[0009] 本発明のバルブ金属粉末の製造方法によれば、後処理が簡便で、タンタル金属粉 末だけでなく高品質のニオブ金属粉末を得ることができる。しかも、固体マグネシウム をガス化させるための加熱と反応のための加熱を共通にできるので、エネルギー消 費に無駄が少ない。その結果、バルブ金属粉末を製造するのに要するコストを少なく できる。 [0009] According to the method for producing a valve metal powder of the present invention, post-processing is simple, and not only a tantalum metal powder but also a high-quality niobium metal powder can be obtained. In addition, since heating for gasifying solid magnesium and heating for reaction can be shared, there is little waste in energy consumption. As a result, the cost required for producing the valve metal powder can be reduced.
本発明のバルブ金属粉末の製造方法においては、減圧下で行えば、常圧の場合 より低 、温度で固体還元剤をガス化できるので、エネルギー消費量をより少なくでき る。 In the production method of the valve metal powder of the present invention, when performed under reduced pressure, the solid reducing agent can be gasified at a lower temperature than at normal pressure, so that the energy consumption can be further reduced.
また、本発明のバルブ金属粉末の製造方法においては、バルブ金属の酸化物を 分割供給することで、バルブ金属粉末の粗大化をより防ぐことができる。 In the method for producing valve metal powder of the present invention, the valve metal powder can be prevented from becoming coarser by dividing and supplying the valve metal oxide.
更に、本発明の第三の態様および第四の態様に係るバルブ金属粉末の製造方法 によれば、還元剤を固体状態で使用することにより、バルブ金属の水酸化物を適度 に造粒しながら還元することが可能となり、以後の凝集工程を経ることなくコンデンサ 用に適したバルブ金属粉末を得ることができる。 Further, according to the valve metal powder production method according to the third and fourth aspects of the present invention, the hydroxide of the valve metal is appropriately granulated by using the reducing agent in a solid state. Thus, the valve metal powder suitable for a capacitor can be obtained without going through the subsequent aggregation step.
図面の簡単な説明 Brief Description of Drawings
[0010] [図 1]図 1は本発明に係る一実施形態で使用される製造装置を示す概略構成図であ る。 FIG. 1 is a schematic configuration diagram showing a manufacturing apparatus used in an embodiment according to the present invention.
符号の説明 Explanation of symbols
[0011] 10 製造装置 [0011] 10 Manufacturing equipment
11 反応室 11 Reaction chamber
12 攪拌機 12 Stirrer
13 ヒータ 13 heater
14 ガス導出入管 14 Gas lead-in / out pipe
15 還元剤供給管 15 Reducing agent supply pipe
16 酸化物供給管 16 Oxide supply pipe
21 バルブ
26 マグネット 21 Valve 26 magnet
27 攪拌軸 27 Stirring shaft
28 攪拌翼 28 Stirrer blade
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 本発明のバルブ金属粉末の製造方法の一実施形態について説明する。 An embodiment of the method for producing a valve metal powder of the present invention will be described.
本実施形態は、固体還元剤として固体マグネシウムを用い、タンタル酸化物からタ ンタル金属粉末を製造する例である。 This embodiment is an example in which solid magnesium is used as a solid reducing agent to produce tantalum metal powder from tantalum oxide.
図 1に、このタンタル金属粉末の製造方法を行うための製造装置の概略構成図を 示す。 FIG. 1 shows a schematic configuration diagram of a manufacturing apparatus for performing the method for manufacturing tantalum metal powder.
この製造装置 10は、タンタル酸ィ匕物 (Ta O )と固体マグネシウムとの反応を行うス This production apparatus 10 is a device that performs a reaction between tantalum acid sardine (Ta 2 O 3) and solid magnesium.
2 5 twenty five
テンレス製の反応室 11と、反応室 11内の内容物を攪拌する攪拌機 12と、反応室 11 を加熱するヒータ 13と、反応室 11にガスを導出入させるためのガス導出入管 14と、 固体マグネシウムを反応室 11内に供給する還元剤供給管 15と、タンタル酸化物を 反応室 11内に供給する酸化物供給管 16とを有している。 A reaction chamber 11 made of Tenres, a stirrer 12 for stirring the contents in the reaction chamber 11, a heater 13 for heating the reaction chamber 11, a gas outlet / inlet pipe 14 for introducing and introducing gas into the reaction chamber 11, and a solid It has a reducing agent supply pipe 15 that supplies magnesium into the reaction chamber 11 and an oxide supply pipe 16 that supplies tantalum oxide into the reaction chamber 11.
[0013] この製造装置 10において、ガス導出入管 14には、反応室 11内部を減圧した後に その状態を保てるように閉止可能なバルブ 21が設置されている。また、還元剤供給 管 15および酸ィ匕物供給管 16は、その先端が反応室 11内の下部に位置するように 設けられている。 [0013] In the manufacturing apparatus 10, a valve 21 that can be closed is installed in the gas outlet / inlet pipe 14 so that the inside of the reaction chamber 11 can be maintained after the pressure inside the reaction chamber 11 is reduced. Further, the reducing agent supply pipe 15 and the oxidizing substance supply pipe 16 are provided such that their tips are located at the lower part in the reaction chamber 11.
[0014] 攪拌機 12は、反応室 11の外側に配置され、回転駆動するモータ 25と、モータ 25 に接続された円筒状のマグネット 26と、反応室 11の内側に配置され、モータ 25に連 動して回転する攪拌軸 27と、攪拌軸 26に取り付けられた攪拌翼 28とを有しており、 反応室 11内に供給された内容物を攪拌混合できるようになって 、る。 The stirrer 12 is disposed outside the reaction chamber 11 and is a motor 25 that is driven to rotate, a cylindrical magnet 26 connected to the motor 25, and is disposed inside the reaction chamber 11 and is linked to the motor 25. It has a stirring shaft 27 that rotates by rotation and a stirring blade 28 attached to the stirring shaft 26 so that the contents supplied into the reaction chamber 11 can be stirred and mixed.
[0015] 上記製造装置 10を用いたタンタル金属粉末の製造方法では、まず、酸化物供給 管 16を介して反応室 11内にタンタル酸ィ匕物を供給した後、バルブ 21を開き、ガス導 出入管 14を介して反応室 11内のガスを排出して減圧する。次いで、バルブ 21を閉 めた後、反応室 11内を攪拌機 12で攪拌し、ヒータ 13で加熱する。そして、その加熱 温度を継続した状態で、還元剤供給管 15を介して固体マグネシウムの一部を添加し
、さらに、そのタンタル酸ィ匕物と固体マグネシウムの一部との混合物に固体マグネシ ゥムを新たに添加する。そして、タンタル酸化物が金属に還元されるまで、固体マグ ネシゥムの添カ卩を継続する。固体マグネシウムの添カ卩は連続的であってもよいし、間 欠的であってもよ!/ヽが、急激に反応しな!ヽ程度の量を添加する。 In the method for producing tantalum metal powder using the production apparatus 10, first, tantalum oxide is supplied into the reaction chamber 11 through the oxide supply pipe 16, then the valve 21 is opened, and the gas The gas in the reaction chamber 11 is discharged through the inlet / outlet pipe 14 to reduce the pressure. Next, after closing the valve 21, the inside of the reaction chamber 11 is stirred by the stirrer 12 and heated by the heater 13. Then, while the heating temperature is maintained, a part of the solid magnesium is added through the reducing agent supply pipe 15. Further, solid magnesium is newly added to the mixture of the tantalum oxide and a part of solid magnesium. Then, the addition of solid magnesium is continued until the tantalum oxide is reduced to metal. The solid magnesium added may be continuous or intermittent, and the amount added is about ヽ, which does not rapidly react.
[0016] 上記製造方法における攪拌では、攪拌機 12のモータ 25の回転をマグネット 26に 伝達し、さらにマグネット 26の磁力で反応室 11内の攪拌軸上部 29に回転を伝えて 攪拌軸 27を回転させる。このように、モータ 25の回転を磁力で攪拌軸 27に伝達すれ ば、攪拌軸 27の軸封にグランドパッキングを用いずに済む上に、密閉容器内の攪拌 軸を回転させることができるので、反応室 11の密閉性を高くすることができる。 In the stirring in the above manufacturing method, the rotation of the motor 25 of the stirrer 12 is transmitted to the magnet 26, and the rotation of the motor 26 is transmitted to the upper portion 29 of the stirring shaft in the reaction chamber 11 by the magnetic force of the magnet 26 to rotate the stirring shaft 27. . In this way, if the rotation of the motor 25 is transmitted to the stirring shaft 27 by magnetic force, it is not necessary to use the gland packing for sealing the stirring shaft 27, and the stirring shaft in the sealed container can be rotated. The tightness of the reaction chamber 11 can be increased.
[0017] タンタル酸化物に固体マグネシウムを添カ卩する際の加熱温度は 900— 1100°Cで あることが好ましい。加熱温度が 900°C未満であると、反応室内を減圧してもタンタル 酸ィ匕物と固体マグネシウムとの反応性が低くなる傾向にあり、 1100°Cを超えると急激 に反応して得られるタンタル金属粉末が粗大化する傾向にある。 [0017] The heating temperature when adding solid magnesium to tantalum oxide is preferably 900 to 1100 ° C. If the heating temperature is lower than 900 ° C, the reactivity between the tantalum oxide and solid magnesium tends to be low even if the pressure in the reaction chamber is reduced, and if it exceeds 1100 ° C, it is obtained by rapid reaction. Tantalum metal powder tends to be coarse.
[0018] 上記製造方法においては、固体マグネシウムを添加する前に、圧力が大気圧にな らな 、程度に反応室 11内にガス導出入管 14を介してアルゴンガスを封入しておくこ とが好ましい。ステンレスとマグネシウムとは親和性が高いので、ガス化したマグネシ
、が、反応室内にアルゴンガスを封 入しておくと、反応室内壁にマグネシウムが付着することを防止できる。 In the above manufacturing method, before adding solid magnesium, argon gas may be sealed in the reaction chamber 11 through the gas inlet / outlet pipe 14 to a degree that the pressure becomes atmospheric pressure. preferable. Since stainless steel and magnesium have high affinity, gasified magnesium However, if argon gas is sealed in the reaction chamber, magnesium can be prevented from adhering to the inner wall of the reaction chamber.
[0019] 以上説明した実施形態では、加熱したタンタル酸ィ匕物に固体マグネシウムの一部 を添カ卩しており、その固体マグネシウムはタンタル酸ィ匕物表面上でガス化し、そのガ ス化した固体マグネシウムがタンタル酸ィ匕物と反応してタンタル金属粉末を生成させ る。すなわち、固体マグネシウムのガス化および固体マグネシウムとタンタル酸化物と の反応を同時に行うので、固体マグネシウムをガス化させるための加熱と反応させる ための加熱とを共通にでき、エネルギー消費に無駄を少なくできる。 In the embodiment described above, a portion of solid magnesium is added to the heated tantalum sulfide, and the solid magnesium is gasified on the surface of the tantalum sulfide and the gas is converted to a gas. The solid magnesium thus reacted reacts with the tantalum oxide to produce tantalum metal powder. That is, since the gasification of solid magnesium and the reaction of solid magnesium and tantalum oxide are performed simultaneously, heating for gasifying solid magnesium and heating for reaction can be shared, and waste of energy consumption can be reduced. .
また、タンタル酸ィ匕物を原料として用いる上に溶融塩を用いな 、から後処理が簡便 であり、製造に要する費用および時間を削減できる。特に、フッ化物や塩化物を含む 化合物廃棄の問題を省略できる。 In addition, since the tantalum oxide is used as a raw material and no molten salt is used, post-treatment is simple, and the cost and time required for production can be reduced. In particular, the problem of discarding compounds containing fluoride and chloride can be omitted.
[0020] また、上述した製造方法では、タンタル酸ィ匕物に固体マグネシウムの一部を添加し
た後、そのタンタル酸ィ匕物と固体マグネシウムの一部との混合物に固体マグネシウム を新たに添加することで、タンタル酸ィ匕物を還元するのに必要な量の固体マグネシゥ ムを分割して添加土る。よって、急激な発熱を抑えることができ、タンタル金属粉末の 粗大化を防ぐことができる。ただし、固体マグネシウムは、反応熱を除去できる程度に 反応する量を添加する。 [0020] Further, in the above-described production method, a part of solid magnesium is added to the tantalum sardine. After that, solid magnesium is newly added to the mixture of the tantalum oxide and a part of the solid magnesium to divide the amount of solid magnesium necessary to reduce the tantalum oxide. Add soil. Therefore, rapid heat generation can be suppressed, and coarsening of the tantalum metal powder can be prevented. However, solid magnesium is added in an amount that reacts to the extent that heat of reaction can be removed.
[0021] また、上述した製造方法にぉ 、ては、減圧下でタンタル酸ィ匕物に固体マグネシウム を添加するので、常圧より低い温度で固体マグネシウムをガス化でき、エネルギー消 費量をより削減できる。 [0021] In addition, in the above-mentioned production method, since solid magnesium is added to tantalum oxide under reduced pressure, solid magnesium can be gasified at a temperature lower than normal pressure, and energy consumption can be further reduced. Can be reduced.
さらに、上記製造方法では、攪拌機で攪拌しながら固体マグネシウムを添加するの で、タンタル酸ィ匕物と固体マグネシウムとの反応を均一化でき、局所的な温度の上昇 を防いで、タンタル酸ィ匕物の粗大化をより防ぐことができる。さらに、攪拌することで、 粒状化するので、タンタル酸ィ匕物の形状は粒子状でなくてもよいから、スプレードライ などで造粒されたタンタル酸ィ匕物を用いなくてもよ 、。 Furthermore, in the above-mentioned production method, the solid magnesium is added while stirring with a stirrer, so that the reaction between the tantalum oxide and the solid magnesium can be homogenized, and a local rise in temperature can be prevented. It is possible to further prevent the product from becoming coarse. Furthermore, since the particles are granulated by stirring, the shape of the tantalum sulfide may not be particulate, so that the tantalum sulfide used by granulation by spray drying or the like may not be used.
[0022] なお、本発明は上述した実施形態に限定されない。例えば、上述した実施形態で は、タンタル酸ィ匕物を加熱した後、固体マグネシウムの一部を添加する方法であった 力 タンタル酸ィ匕物に予め固体マグネシウムを加え、混合した後、加熱してもよい。た だし、その場合には、固体マグネシウム量が多すぎないようにする力、加熱温度を上 げすぎな!、ように注意する。固体マグネシウム量が多すぎた場合または加熱温度を 上げすぎた場合には、暴走反応を引き起こすおそれがある。 [0022] The present invention is not limited to the above-described embodiment. For example, in the above-described embodiment, after heating the tantalum iris, solid magnesium was previously added to the force tantalum iris, mixed, and then heated. May be. However, in that case, care should be taken not to increase the amount of solid magnesium and the heating temperature too much! If the amount of solid magnesium is too high or the heating temperature is too high, a runaway reaction may occur.
また、タンタル酸ィ匕物に固体マグネシウムを分割して添加した力 タンタル酸ィ匕物に 他の固体還元剤を添加してもよい。他の固体還元剤としては固体カルシウム、固体リ チウムなどが挙げられる。 Further, the power of dividing and adding solid magnesium to tantalum iris may be added to the tantalum iris. Other solid reducing agents include solid calcium and solid lithium.
[0023] また、上述した実施形態では、固体マグネシウムのみを分割して添加した力 タンタ ル酸ィ匕物も分割して供給してもよ ヽ。タンタル酸ィ匕物も分割して供給すれば急激な 反応をより抑えることができ、得られるタンタル金属粉末の粗大化をより防ぐことができ る。タンタル酸ィ匕物の添カ卩は連続的であってもよいし、間欠的であってもよい。また、 タンタル酸ィ匕物を添加する場合には、固体マグネシウムとは独立して添加してもよ ヽ し、固体マグネシウムと混合して力 添カ卩してもょ 、。
また、上述した実施形態において、タンタル酸ィ匕物をニオブ酸ィ匕物に置き換えて、 ニオブ酸ィ匕物からニオブ金属粉末を製造することもできる。ニオブ酸ィ匕物の場合もタ ンタル酸ィ匕物の場合と同様の効果を発揮する上に、反応性および腐食性が高いフッ 化ニオブカリウムを原料として用いないから高品質のニオブ金属粉末を得ることがで きる。 Further, in the above-described embodiment, the tantalum oxide may be divided and supplied by dividing and adding only solid magnesium. If the tantalum oxide is also divided and supplied, the rapid reaction can be further suppressed, and the resulting tantalum metal powder can be further prevented from becoming coarse. The tuna soup of the tantalum sardine may be continuous or intermittent. In addition, when adding tantalum acid stilts, they may be added independently of solid magnesium, or mixed with solid magnesium and subjected to forced addition. In the above-described embodiment, the niobium metal powder can also be manufactured from the niobium aniride by replacing the tantalum aniride with the niobium aniride. In the case of niobium oxide, the same effects as those of tantalum oxide are exhibited, and high-quality niobium metal powder is used because potassium niobium fluoride, which is highly reactive and corrosive, is not used as a raw material. Obtainable.
[0024] タンタル酸ィ匕物と固体還元剤との反応時には希釈剤が添加されていてもよい。希釈 剤が添加されていれば、反応物質の濃度を低下させることができるので、急激な反応 をより抑えることができる上に発熱量を低くできる。よって、金属粉末の粗大化をより 防ぐことができる。 [0024] A diluent may be added at the time of reaction between the tantalum oxide and the solid reducing agent. If a diluent is added, the concentration of the reactants can be reduced, so that a rapid reaction can be further suppressed and the calorific value can be reduced. Therefore, coarsening of the metal powder can be further prevented.
ここで、希釈剤とは、タンタル酸化物と固体還元剤との反応に関与しないものである 希釈剤としては得られる金属粉末の不純物にならないもの、つまり、固体還元剤の酸 化物あるいは目的物質であるバルブ金属粉末が好ましぐ例えば、タンタル酸化物と 固体マグネシウムとの反応の場合には、タンタル金属や酸ィ匕マグネシウムが好まし ヽ Here, the diluent is a substance that does not participate in the reaction between the tantalum oxide and the solid reducing agent.A diluent that does not become an impurity of the obtained metal powder, that is, an oxide or a target substance of the solid reducing agent. For example, in the case of a reaction between tantalum oxide and solid magnesium, tantalum metal or magnesium oxide is preferred.
。さらに、希釈剤として粗粒子のものを用いれば、反応後、篩だけで希釈剤を分離で きるので、タンタル金属と固体マグネシウムとに分離しやすい。 . Further, when coarse particles are used as the diluent, the diluent can be separated only by a sieve after the reaction, and thus it is easy to separate into tantalum metal and solid magnesium.
[0025] さらに、本発明では、必ずしも反応室を減圧しなくてもよいし、攪拌しなくてもよいが 、減圧するとエネルギー消費量をより少なくでき、攪拌すると粗大化がより防止されて いるので好ましい。ただし、攪拌しなくても、固体還元剤を均一に添加すれば、粗大 化を防ぐことができる。固体還元剤を均一に添加する方法としては、例えば、還元剤 供給管の先端を反応室内で自在に可動できるようにして添加位置を適宜変更しなが ら固体還元剤を添加する方法などが挙げられる。このようにして、固体還元剤を均一 に添加すれば、バルブ金属の酸ィ匕物と固体還元剤とを穏和に反応させることができ るから、得られる金属粉末の粗大化を防ぐことができる。 [0025] Furthermore, in the present invention, the pressure in the reaction chamber does not necessarily have to be reduced, and stirring is not necessary. However, when the pressure is reduced, the energy consumption can be reduced, and when the stirring is performed, coarsening is further prevented. preferable. However, even without stirring, coarsening can be prevented by uniformly adding the solid reducing agent. As a method of uniformly adding the solid reducing agent, for example, a method of adding the solid reducing agent while appropriately changing the addition position by making the tip of the reducing agent supply pipe freely movable in the reaction chamber, and the like. Can be In this manner, if the solid reducing agent is uniformly added, the oxidized product of the valve metal and the solid reducing agent can be gently reacted with each other, so that the resulting metal powder can be prevented from becoming coarse. .
[0026] 上述した製造方法によって得られたバルブ金属粉末は、主に固体電解コンデンサ に使用される。一般的に固体電解コンデンサを製造するには、タンタル金属粉末に バインダを加えてプレス成形した後、焼結して多孔質焼結体を製造する。次いで、多 孔質焼結体にリード線を埋め込んで力 プレス成形し、焼結して、リード線を一体ィ匕
させる。そして、これをリン酸、硝酸等の電解溶液中で化成処理(陽極酸化)して表面 に酸化物を形成して、固体電解コンデンサ用のアノードと誘電体とを得る。 [0026] The valve metal powder obtained by the above-described manufacturing method is mainly used for a solid electrolytic capacitor. Generally, to manufacture a solid electrolytic capacitor, a binder is added to tantalum metal powder, press-molded, and then sintered to produce a porous sintered body. Next, the lead wire is embedded in the porous sintered body, pressed by force, sintered, and the lead wire is integrally formed. Let This is subjected to a chemical conversion treatment (anodic oxidation) in an electrolytic solution such as phosphoric acid or nitric acid to form an oxide on the surface, thereby obtaining an anode for a solid electrolytic capacitor and a dielectric.
そして、公知の方法で二酸化マンガン、酸化鉛や導電性高分子等の力ソード、ダラ ファイト層、銀ペースト層を酸ィ匕物上に順次形成し、次いで、その上に陰極端子をノヽ ンダ付けなどで接続した後、榭脂外被を形成して固体電解コンデンサを得る。 Then, a power source such as manganese dioxide, lead oxide, or a conductive polymer, a dalaphite layer, and a silver paste layer are sequentially formed on the oxide by a known method, and then a cathode terminal is mounted thereon. After connection, a resin jacket is formed to obtain a solid electrolytic capacitor.
実施例 1 Example 1
[0027] 以下、本発明のバルブ金属粉末の製造方法の実施例について説明する。 Hereinafter, examples of the method for producing valve metal powder of the present invention will be described.
440gの酸化タンタル原料(平均粒子径 3 μ mでほぼ球形の粉体)を 200rpmで攪 拌しながら 500°Cに予熱し、 5gの固体マグネシウムを発熱状況を観察しながら、発熱 が収まったら添加するように制御しつつ 30回添加した。直径 2— 3cm程度の黒色塊 状のものが得られた。これは手で容易に解砕可能であった。これを砕いたものを 60メ ッシュの篩にかけ、篩分けられた 60メッシュパス品を酸洗浄した後分析すると、高純 度のタンタノレ金属であることが判明した。 440 g of tantalum oxide raw material (approximately spherical powder with an average particle diameter of 3 μm) was preheated to 500 ° C while stirring at 200 rpm, and 5 g of solid magnesium was added when the heat generation stopped while observing the heat generation status It was added 30 times while controlling so that A black mass with a diameter of about 2-3 cm was obtained. It was easily disintegratable by hand. The crushed product was sieved through a 60-mesh sieve, and the sieved 60-mesh pass product was washed with an acid and analyzed. As a result, it was found that the metal was high-purity tantanole metal.
実施例 2 Example 2
[0028] 1kgの酸化タンタル原料(平均粒子径 3 μ mでほぼ球形の粉体)を 70rpmで攪拌し ながら 500°Cに予熱し、 1一 3gの固体マグネシウムを発熱状況を観察しながら発熱 が収まったら添加することを繰り返し、 470gまで添カ卩して 950°Cに達した。直径 2— 3 cm程度の黒色塊状のものが得られた。これは手で容易に解砕可能であった。これを 、たものを 60メッシュの篩にかけ、篩分けられた 60メッシュパス品を酸洗浄した後 分析すると、高純度のタンタル金属であることが判明した。 [0028] 1 kg of a tantalum oxide raw material (approximately spherical powder having an average particle diameter of 3 µm) is preheated to 500 ° C with stirring at 70 rpm, and 13 g of solid magnesium is heated while observing the heat generation state. When it was settled, the addition was repeated, and the mixture was added to 470 g to reach 950 ° C. A black mass of about 2-3 cm in diameter was obtained. It was easily disintegratable by hand. The dried product was sieved through a 60-mesh sieve, and the sieved 60-mesh pass product was washed with an acid and then analyzed.
実施例 3 Example 3
[0029] 平均粒子径 7. の酸ィ匕マグネシウム 450gと酸ィ匕タンタル 450gとを 700°Cに 予熱し、 250rpmで攪拌しながら 5gの固体マグネシウムを発熱状況を観察しながら、 発熱が収まったら添加するように制御しつつ 40回添加した。得られた粉体を 60— 40 0メッシュの篩で処理し、得られた粉体を酸洗浄し、得られたものを分析すると、高純 度のタンタノレ金属であることが判明した。 [0029] 450g of magnesium oxide and 450g of magnesium tantalum having an average particle diameter of 7 were preheated to 700 ° C, and while stirring at 250rpm, 5g of solid magnesium was observed while the heat generation was stopped. The addition was performed 40 times while controlling the addition. The obtained powder was treated with a 60-400 mesh sieve, the obtained powder was washed with an acid, and the obtained powder was analyzed. As a result, it was found that the powder was a highly pure tantanole metal.
実施例 4
[0030] 平均粒子径 2. l ^ m (比表面積 7. 8m2)の酸化マグネシウム 350gに予めマグネシ ゥム 150gを 900°Cで溶融含浸させたものを還元剤に使用し、 450gの酸ィ匕タンタル を添加後混合し、 900°Cで反応させた。得られた粉体を 60— 400メッシュの篩で処 理し、得られた粉体を酸洗浄し、得られたものを分析すると、高純度のタンタル金属 であることが判明した。 Example 4 [0030] 350 g of magnesium oxide having an average particle size of 2. l ^ m (specific surface area: 7.8 m 2 ) previously impregnated with 150 g of magnesium at 900 ° C is used as a reducing agent. After adding tanitantalum, they were mixed and reacted at 900 ° C. The obtained powder was treated with a 60-400 mesh sieve, the obtained powder was washed with an acid, and the obtained product was analyzed. As a result, it was found to be high-purity tantalum metal.
比較例 Comparative example
[0031] 440gの酸ィ匕タンタル原料を 900°Cに予熱し、 25gの固体マグネシウムを 5回添カロし たところ、硬い塊が発生し、これを分析すると、酸ィ匕タンタルマグネシウムが検出され た。 [0031] When 440 g of tantalum raw material was preheated to 900 ° C, and 25 g of solid magnesium was added five times, a hard lump was generated. When this was analyzed, tantalum magnesium iridani was detected. Was.
[0032] (知見) [0032] (Knowledge)
以上の実施例および比較例から、以下のような知見が得られた。 The following findings were obtained from the above Examples and Comparative Examples.
実施例 1一 4の結果から、直径数センチ程度の酸化物原料と還元剤とが反応した金 属と還元剤酸ィ匕物との塊が出来たように見える力 この塊は手で容易に砕ける程度 の脆いものであり、多孔質体を造粒する結果となった。そのため、本発明のノ レブ金 属粉末の製造方法を使用することにより、多段階の工程を経ることなく連続的に還元 を行うことが可能となる。結果物はマグネシウムとの複合物とはならず、多孔質の金属 タンタルが得られた。 From the results of Examples 14 to 14, it can be seen from the results that a mass of a metal obtained by reacting an oxide material having a diameter of about several centimeters with a reducing agent and a reducing agent oxidized product was formed by hand. It was brittle enough to break, resulting in granulation of the porous body. Therefore, by using the method for producing a knurled metal powder of the present invention, reduction can be performed continuously without going through multiple steps. The result was not a composite with magnesium, and a porous metal tantalum was obtained.
500°C力 マグネシウム添加を開始し、 800°C程度で維持すれば攪拌還元反応は可 能であった。真空引きと!/、う条件下でもマグネシウムの融点や沸点の影響は同等で あろうと考えられる。 500 ° C strength Magnesium addition was started and maintained at about 800 ° C, enabling agitation reduction reaction. It is thought that the effects of the melting point and boiling point of magnesium will be the same even under vacuuming and under the conditions of! /.
酸ィ匕タンタルとマグネシウムとの接触時間が問題である。融点近くでも充分接触させ ると急激な反応を起こすが、一度酸ィ匕マグネシウム膜が生成すると、急激な反応はし なくなると考えられる。 The contact time between tantalum and magnesium is problematic. It is thought that a rapid reaction occurs when sufficiently contacted even near the melting point, but once the magnesium oxide film is formed, the rapid reaction stops.
マグネシウムをガス化することでマイルドに還元反応を起こさせることは可能となるが 、特開 2003— 277822号公報に記載されているように、原料として用いた酸化タンタ ルの形状を引き継 、で、そのままの形状が最終製品であるタンタルの形状として残る ため、原料の段階での形状の調整が必要となり、微細な酸化タンタルを使用すると、 コンデンサ用のタンタルに必要とされる以後の凝集工程が難しくなる。
一方、本発明の方法のように、マグネシウムを固体状で使用することにより、酸ィ匕タン タルを適度に造粒しながら還元することが可能となり、以後の凝集工程を経ることなく コンデンサ用に適したタンタル粉末を得ることができる。 Although it is possible to cause a mild reduction reaction by gasifying magnesium, as described in JP-A-2003-277822, the shape of tantalum oxide used as a raw material is taken over. However, since the shape remains as the shape of the final product, tantalum, it is necessary to adjust the shape at the raw material stage.If fine tantalum oxide is used, the subsequent aggregation process required for tantalum for capacitors will be required. It becomes difficult. On the other hand, by using magnesium in a solid state as in the method of the present invention, it is possible to reduce oxidized tantalum while appropriately granulating it, and to use it for a capacitor without a subsequent aggregation step. A suitable tantalum powder can be obtained.
産業上の利用可能性 Industrial applicability
本発明のバルブ金属粉末の製造方法は、タンタル金属粉末やニオブ金属粉末な どの製造に適用することができる。
The method for producing a valve metal powder of the present invention can be applied to the production of tantalum metal powder, niobium metal powder, and the like.