WO2003106082A1 - Method for producing metal powder and formed product of raw material for metal - Google Patents

Method for producing metal powder and formed product of raw material for metal Download PDF

Info

Publication number
WO2003106082A1
WO2003106082A1 PCT/JP2003/007481 JP0307481W WO03106082A1 WO 2003106082 A1 WO2003106082 A1 WO 2003106082A1 JP 0307481 W JP0307481 W JP 0307481W WO 03106082 A1 WO03106082 A1 WO 03106082A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
raw material
compound
molded body
niobium
Prior art date
Application number
PCT/JP2003/007481
Other languages
French (fr)
Japanese (ja)
Inventor
岡部 徹
今葷倍 正名
Original Assignee
財団法人生産技術研究奨励会
コンパニア ブラジレイラ ヂ メタルジア イ ミネラサウン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人生産技術研究奨励会, コンパニア ブラジレイラ ヂ メタルジア イ ミネラサウン filed Critical 財団法人生産技術研究奨励会
Priority to BR0311690-5A priority Critical patent/BR0311690A/en
Priority to DE60329388T priority patent/DE60329388D1/en
Priority to US10/517,036 priority patent/US20060107788A1/en
Priority to EP03760145A priority patent/EP1512475B1/en
Priority to AU2003252463A priority patent/AU2003252463A1/en
Publication of WO2003106082A1 publication Critical patent/WO2003106082A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/001Starting from powder comprising reducible metal compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2413Binding; Briquetting ; Granulating enduration of pellets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/24Obtaining niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • C22B34/1268Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams

Definitions

  • the present invention relates to a method for producing a metal powder, and a metal raw material compact applicable to the method for producing the metal powder.
  • High melting point rare metals such as niobium and tantalum, not only have high melting points, but are also chemically active at high temperatures, so advanced technology is required to turn massive metals into powders.
  • the atomization method of powdering by spraying a liquid of a metal obtained by dissolving a metal is one of the effective powder production methods. Expensive equipment is required to dissolve the iron.
  • HDH hydrolysis, pulverization, dehydrogenation method
  • a rare metal is reacted with hydrogen to form a hydride and then mechanically pulverize it. Difficult to manufacture.
  • high-melting point metals such as tantalum are industrially manufactured in powder form as a material for capacitors, but this powder is mainly used as a metal whose raw material is reduced by using an active metal as a reducing agent. It is manufactured by the thermal reduction method.
  • Use of the metal thermal reduction method has the advantage that powdered tantalum can be directly produced by a reduction reaction. However, it is difficult to efficiently produce a large amount of uniform powder by the reduction reaction, and there is a drawback that the uniformity of the obtained powder is reduced particularly when the reaction amount is increased.
  • a large amount of halide-based molten salt is used as a reaction medium (diluting salt), and by adding a small amount of a raw material to the reaction medium little by little, a uniform reduction reaction proceeds to form a powder.
  • Manufactures tantalum Although this method is suitable for producing a high-purity and uniform powder, it has disadvantages such as requiring a large amount of reaction medium salt, and difficulty in increasing the size and speed of the process. Even if niobium is reduced by a method using a large amount of reaction medium salt according to the above-mentioned method, a uniform powder can be obtained. It is difficult to obtain a suitable powder. Disclosure of the invention
  • the present invention provides a method for producing a metal by reducing a metal compound using a metal compound as a raw material, wherein the metal compound is mixed with a binder, molded, and then fired to form a metal raw material molded body.
  • a method for producing a metal powder comprising: a forming step of producing; and a reducing step of reducing the metal raw material molded body to generate a metal by bringing the metal raw material molded body into contact with an active metal as a reducing agent. I do.
  • a niobium compound can be used.
  • a tantalum compound can be used as the metal compound.
  • a compound of a metal element selected from zirconium, titanium, hafnium, a rare earth metal, and an actinide metal can be used.
  • a metal compound, a binder, and an active metal compound as a reduction aid can be mixed to form a metal raw material molded body.
  • At least one active metal selected from calcium, magnesium, sodium, potassium, and potassium.
  • the reduction aid it is preferable to use a compound of at least one active metal selected from calcium, magnesium, sodium, potassium, and potassium. It is preferable to use niobium oxide or halogenated niobium as the niobium compound.
  • the temperature of the compact in the reduction step is set to 600 ° C. or more and 130 ° C. or less.
  • the method for producing a metal powder preferably further includes a step of separating the metal generated in the reduction step from the active metal and by-products by an acid treatment.
  • the present invention provides a metal raw material obtained by mixing a metal compound and a binder, molding and firing the mixture.
  • a molded article, wherein a distance from an arbitrary position inside the molded article to the surface of the molded article is:
  • a metal raw material compact having a size of 1 O mm or less.
  • the metal compound includes a compound raw material of a metal element selected from niobium, zirconium, titanium, hafnium, tantalum, a rare earth metal, and an actinide metal.
  • the metal raw material molded body may contain a compound of at least one metal selected from calcium, magnesium, sodium, barium, and magnesium as a reduction aid.
  • the reduction aid is preferably an oxide, halide, or carbonate of at least one metal selected from calcium, magnesium, sodium, barium, and potassium.
  • FIG. 1 is a cross-sectional configuration diagram showing a metal manufacturing apparatus according to the present invention.
  • FIG. 2 is a diagram showing an electron micrograph of the niobium powder produced in Example 1.
  • FIG. 3 is a view showing electron micrographs of the tantalum powders produced in Experimental Examples A to E of Example 2.
  • FIG. 4 is a diagram showing electron micrographs of the tantalum powder produced in Experimental Examples F to K of Example 2.
  • 5A and 5B are graphs showing the particle size distribution of the tantalum powder produced in Example 2.
  • FIG. 5A and 5B are graphs showing the particle size distribution of the tantalum powder produced in Example 2.
  • the method for producing a metal powder according to the present invention is a method for producing a metal by reducing a metal compound using a metal compound as a raw material, mixing the metal compound with a binder, molding, and firing. And forming a metal raw material molded body by contacting the metal raw material molded body with an active metal as a reducing agent, thereby reducing the metal raw material molded body to generate a metal. It is characterized by.
  • the metal compound niobium compound, tantalum compound, zirconium compound, titanium compound, Hafnium compounds, rare earth metal compounds or actinide metal compounds can be used.
  • the method for producing a niobium powder according to the present invention is a method for producing a niobium by using a niobium compound as a raw material and reducing the niobium compound, wherein the niobium compound is mixed with a binder to produce a slurry.
  • Forming a niobium raw material molded body by forming it into a predetermined shape such as a plate, a line, or a granule, and baking the niobium raw material molded body, and bringing the active metal as a reducing agent into contact with the niobium raw material molded body Reducing the niobium compound to form niobium.
  • niobium oxide or niobium halide can be used as the niobium compound.
  • the active metal it is preferable to use one or more metals selected from calcium, magnesium, sodium, barium, and potassium. By reducing the niobium raw material compact using such an active metal, the reduction reaction can proceed efficiently. Furthermore, the use of magnesium as the active metal allows the reduction reaction to proceed most efficiently, and is particularly preferred.
  • the temperature of the molded body in the reduction step is 600 ° C. or more and 130 ° C. or less. If the temperature of the compact is lower than 600 ° C, the reducing agent has a low vapor pressure, and the reduction reaction tends not to proceed sufficiently. If the temperature of the compact exceeds 130 ° C, it is generated. Sintering of the niobium powder tends to proceed.
  • the active metal is brought into contact with the niobium raw material molded body in a vaporized state.
  • a niobium raw material compact is disposed in a vertical position using the support members, and an active metal is reduced in the reduction device.
  • the active metal is degassed and brought into contact with the niobium raw material compact to reduce the active metal.
  • the reaction can be performed.
  • the niobium raw material compact is arranged in the reduction device so that air permeability is maintained.
  • the vaporized active metal is diffused uniformly, so that the niobium raw material compact and the active metal can be brought into more uniform contact, and the reduction reaction progresses more uniformly in time and space, thereby reducing the reduction efficiency.
  • the niobium raw material compact does not come into direct contact with the reducing device, contamination from the reducing device can be prevented, and the purity of the obtained wipe powder can be increased.
  • an niobium raw material molded body can be produced by further mixing an active metal compound as a reduction aid in addition to the niobium compound and the binder.
  • the active metal compound as the reduction aid can be used also as a binder, but can also be used to control the deposition form of niobium powder and increase the acid treatment efficiency.
  • the reaction in the reduction step is more uniformly promoted by preparing the niobium raw material compact by mixing the niobium compound and the binder together with the active metal compound as a reduction aid, thereby increasing the production efficiency. Can be increased.
  • the particle size of the niobium powder to be produced can be controlled by adjusting the type of the reduction aid and the amount of the reduction aid. In addition, contamination from the reaction vessel can be effectively prevented.
  • the reduction aid it is preferable to use a compound of one or more metals selected from calcium, magnesium, sodium, potassium, and potassium, and oxides, halides, carbonates, and the like of these metals. More preferably, hydroxides, chlorides and / or fluorides are used.
  • the shape of the niobium raw material formed body is preferably formed such that the distance from an arbitrary position inside the formed body to the surface of the formed body is 10 mm or less.
  • the “distance from any position inside the molded body to the surface of the molded body” indicates the distance from any position inside the molded body to the shortest surface.
  • the reducing agent diffuses from the surface of the niobium raw material molded body into the inside, and the eob compound contained in the molded body is reduced.
  • the maximum diffusion distance of the reducing agent from the surface of the compact at the end of the reduction reaction is 10 mm or less, and from the surface of the compact.
  • the niobium raw material can be uniformly and rapidly reduced in the entire molded body without the diffusion treatment of the reducing agent diffused into the molded body being significantly different depending on the site.
  • the method for producing niobium powder may further include a step of separating the niobium generated in the reduction step from a reducing agent, a reduction aid, and a by-product by an acid treatment.
  • a step of separation by acid treatment niob, which is the target substance, and a reducing agent, a reduction auxiliary agent, and by-products generated by the reduction reaction can be easily separated, and high-purity niobium can be obtained. Can be manufactured in large quantities.
  • the production method according to the present invention since the niobium raw material compact is subjected to the reaction, the shape of the compact is substantially maintained even after reduction. Therefore, by performing an acid treatment on the molded body after the reduction, there is also an advantage that the reducing agent and the by-product can be efficiently removed.
  • a uniform powder cannot be obtained in the conventional rare metal manufacturing method is that if the amount of reduction is increased, the diffusion of the reducing agent into the raw material becomes non-uniform, and time and space This is probably because the progress of the reduction reaction becomes uneven.
  • a niobium raw material, a binder (binder), and a no or reduction aid are mixed to form a niobium raw material molded body, and an active metal is brought into contact with the molded body.
  • the reduction reaction is performed, so that even if the amount of reduction is increased, the reduction reaction can proceed uniformly in time and space.
  • the reduction process can be continued, increased in size, and the efficiency of batch processing can be increased with a simple device. That is, in the conventional metal thermal reduction reaction, it has been difficult to make the process continuous and increase the speed.
  • the compact of the niobium raw material used in the method for producing the niobium powder is manufactured, heat-treated, reduced, washed, etc. The process can be easily achieved, and the process can be easily made continuous and large.
  • the conventional method when the amount of the raw material is increased, the particle size and the like of the obtained powder are often non-uniform, and the productivity is low.
  • the reduction process can be easily increased in size and speed while maintaining uniformity of particle size, and productivity can be increased.
  • Figure 1 1 is a cross-sectional view illustrating an example of a metal manufacturing apparatus according to the present invention.
  • the production apparatus shown in FIG. 1 includes a reaction vessel 10 which is a closed vessel made of a heat-resistant material such as stainless steel, and a plurality of flat metal raw material molded bodies 12 arranged in the reaction vessel 10. Support members 13 and 14 are provided above and below the molded body 12 in order to support these molded bodies 12 in a vertical position. Then, the bottom of the reaction vessel 1 0, active metal 1 5 has been introduced as a reducing agent for reducing the metal material compacts 1 2. Although a heating means is not shown in the illustrated reaction vessel 10, a heating means for heating the inside of the reaction vessel 10 to a predetermined temperature and evaporating the active metal 15 can be provided.
  • the active metal 15 is heated and vaporized by the heating means to diffuse the gas of the active metal 15 into the reaction vessel 10, and the active metal 15 as a reducing agent is diffused from the surface of the molded body 12 to the inside. As a result, the metal compound contained in the molded body 12 is reduced to generate a metal.
  • niobium powder can be produced by a metal thermal reduction method using the above-described production apparatus.
  • a web raw material molded body containing a niobium compound as a raw material is produced.
  • the molded body is preferably formed by mixing a niobium raw material, a binder (binder), and a reduction aid into a predetermined shape, and then preferably formed at a temperature of 300 to 100 ° C., more preferably 800 ° C. It is obtained by baking at a temperature of about 100 ° C. to remove the binder.
  • the calcination temperature is lower than 300 ° C., the binder and the reduction aid cannot be sufficiently removed, the reaction efficiency in the subsequent reduction step decreases, and the purity of the obtained powder tends to decrease. If the temperature exceeds 100 ° C., the sintering proceeds rapidly, and the niobium raw material molded body tends to change greatly.
  • the firing step depends on the dimensions of the molded body, the heating temperature and the like, but is preferably performed for 1 to 12 hours, more preferably for about 1 to 6 hours, and even more preferably for about 3 to 6 hours. When firing is performed, it is preferable to perform firing in the atmosphere or in an oxygen atmosphere.
  • the niobium raw material for example, N b 2 O s, N b OX ( a lower oxides of niobium, X is from 0.5 to 2.
  • A is preferably 5
  • niobium compounds such as 2 N b F 7 can be used.
  • PC Mongolian 81 In the niobium raw material compact, PC Mongolian 81
  • the amount of kicking the niobium raw material 1 0 wt 0/0 or more, and more preferably 5 0 mass% or more. If the amount of the niobium raw material is 10% by mass or more, the reduction reaction is sufficiently performed, but the amount of the niobium raw material is 50% by mass. If it is less than / 0 , the amount of acid used when separating niobium powder by acid treatment tends to increase, and the leaching efficiency tends to decrease.
  • Any binder can be used without any problem as long as it is irrelevant to the reduction reaction and can be easily removed by heat treatment.
  • an organic compound such as collodion or cellulose can be used.
  • a reducing aid can be used as a binder, and a molded article can be formed by mixing with a niobium raw material and a reducing aid.
  • the amount of the binder in the above-mentioned raw material molded body is 5 to 80% by mass, more preferably 30 to 70% by mass, and still more preferably 30 to 50% by mass. / 0 is preferred. If the amount of the binder is less than 5% by mass or more than 80% by mass, the strength of the molded article tends to decrease, and the formation of the molded article tends to be difficult.
  • the reduction aid is added to the niobium raw material and the binder as needed to form a molded body together with these. By dispersing the reduction aid in the compact, the reaction efficiency in the reduction step can be increased, and the reduction of the niobium raw material can be performed more uniformly.
  • the reduction aid it is preferable to use a compound of at least one metal selected from the group consisting of calcium, magnesium, sodium, barium, and potassium, and oxides, halides, and carbonates of these metals are used. More preferably, salts, hydroxides, chlorides and / or fluorides are used. Specifically, calcium chloride, calcium carbonate, sodium carbonate, sodium chloride, or the like can be used alone or as a mixture.
  • the compounding amount of the reducing aid is such that the cation in the reducing aid is 0 to 2 mol, more preferably 0.5 to 1 mol, based on 1 mol of niobium contained in the molded article. Is preferred.
  • the cation in the reduction aid exceeds 2 moles per 1 mole of niobium contained in the compact, the amount of acid used for acid washing increases when separating the generated hops by the acid treatment. And the leaching efficiency tends to decrease.
  • the shape of the molded body produced in the molding step includes: It is preferable that the shortest distance from an arbitrary position to the surface of the molded body is 10 mm or less, more preferably 2 to 5 mm.
  • the diffusion distance of the reducing agent diffused from the surface of the molded body toward the inside in the reduction step described later can be made 1 Omm or less, so that the reduction reaction can be performed quickly and uniformly. You can proceed. More specifically, for example, a shape such as a plate, a line, and a granule can be mentioned. In the case of a plate, in order to meet the above conditions, the plate thickness may be set to 20 mm or less.
  • the distance between the outer periphery and the center in a cross section orthogonal to the center line in the length direction may be set to 1 Omm or less. Further, in the case of a granular shape, the diameter may be set to 2 O mm or less.
  • FIG. 1 illustrates a case where the molded body 12 is formed in a plate shape or a linear shape and these are supported in a vertical position
  • the arrangement state of the molded body 12 in the container is not limited to the illustrated arrangement. It can be appropriately changed according to the shape of the molded body.
  • An active metal 15 as a reducing agent is introduced into the bottom of the reaction vessel 10.
  • the active metal 15 it is preferable to use one or more metals selected from the group consisting of calcium, magnesium, sodium, barium, and magnesium.
  • the active metal 15 is disposed at the bottom of the container.
  • the active metal 15 may be disposed, for example, on a support member 14, and the molded bodies 12, 1 supported in a vertical position It may be arranged between two.
  • the active metal 15 is, in the reaction vessel 10, 100 to 100 parts by mass of the molded body 12, 50 to 400 parts by mass, more preferably 100 to 30 ° parts by mass. It is preferable to introduce.
  • the active metal 15 is used in less than 50 parts by mass, the reduction reaction tends not to be sufficiently performed, and when it is used in excess of 400 parts by mass, the reduction efficiency tends not to be improved.
  • reaction vessel 10 is sealed, and the preparation for the reduction step is completed.
  • the molded body 12 and the active metal 15 are introduced into the reaction vessel 10, and the reaction vessel 10 is placed in a heating furnace and heated. Then, the active metal 15 is vaporized by heating and is filled in the container 10, and at the same time, comes into contact with the molded body 12, and the reduction reaction proceeds from the surface of the molded body 12, and is contained in the molded body 12. Niobium raw material is reduced to niobium metal Is generated.
  • the temperature of the molded body 12 becomes 600 ° C. to 130 ° C. (more preferably, 800 ° C. to 100 ° C.).
  • the temperature is lower than 600 ° C, the vapor pressure of the active metal 15 as a reducing agent is low, and the reduction reaction does not tend to proceed sufficiently.
  • the temperature exceeds 130 ° C, niobium powder generated
  • the reaction time depends on the dimensions of the molded body 12, the heating temperature, etc., but is about 1 to 6 hours, more specifically, the thickness of the molded body 12 is large. In the case of a plate having a thickness of several mm and heating at a temperature of 800 ° C. or more, the reduction reaction is completed sufficiently if the temperature is maintained for 1 hour or more.
  • the molded body after the reaction is composed of niobium, which is a force that substantially retains the shape of the molded body 12 before the reaction, a compound (by-product) of an active metal generated by the reduction, an excess reducing agent, and It is roughly composed of a reduction aid.
  • an acid treatment for example, after acid cleaning, an acid substitution treatment with water or an organic solvent is performed.
  • Various acids such as hydrochloric acid, acetic acid, nitric acid, hydrofluoric acid, and sulfuric acid can be used for the acid cleaning.
  • a molded body having substantially the same shape as the charged molded body 12 and containing the generated niobium can be obtained, and therefore, in the subsequent separation step As for the acid treatment, the permeability of the acid is good, and the niobium powder can be separated quickly and uniformly.
  • the raw material molded article according to the present invention has a feature that a flow operation such as a heat treatment (molding) step, a reduction step, and an acid treatment step in the production process can be easily achieved.
  • a flow operation such as a heat treatment (molding) step, a reduction step, and an acid treatment step in the production process.
  • the process can be easily made continuous and the size can be increased.
  • a molded article containing a niobium raw material Since the raw material can be reduced at a high speed and uniformly by performing the reduction reaction through, the niobium powder obtained is also effective in that it has high purity and uniform particle size.
  • a target metal compound is used as a raw material, and in a molding step, this is mixed with a binder, molded into a predetermined shape, and then fired to form a metal raw material molded body.
  • the target metal powder can be produced by reducing the metal raw material compact with an active metal in the reduction step, and preferably separating the active metal and by-products by an acid treatment.
  • a compound containing a metal element such as zirconium, titanium, platinum, tantalum, a rare earth metal, or an actinide metal is preferably used.
  • the method for producing tantalum powder is a method for producing tantalum by using a tantalum compound as a raw material, reducing the tantalum compound, and mixing the tantalum compound with a binder to form a slurry. After forming into a predetermined shape such as a plate, a line, or a granule, and sintering to form a tantalum raw material molded body, the active metal as a reducing agent is brought into contact with the tantalum raw material molded body. A reduction step of reducing the tantalum compound to produce tantalum.
  • the tantalum compound tantalum oxide or tantalum halide can be used.
  • the firing temperature in the forming step is preferably about 300 to 100 ° C., more preferably about 800 to 100 ° C., and the firing time is, for example, the size of the molded body and the heating temperature. It is preferably about 0.5 to 12 hours, more preferably about 1 to 6 hours, and still more preferably about 1 to 3 hours. If the firing temperature is less than 300 ° C., the binder cannot be sufficiently removed from the molded body, the reaction efficiency in the subsequent reduction step is reduced, and the purity of the obtained powder tends to decrease, If the temperature exceeds 100 ° C., the tantalum raw material molded body tends to be deformed. When firing is performed, it is preferable to perform firing in the air or in an oxygen atmosphere.
  • the active metal calcium, magnesium, sodium, barium, and It is preferable to use at least one metal selected from metals and potassium. By performing reduction of the tantalum raw material compact using such an active metal, the reduction reaction can proceed efficiently. Further, it is particularly preferable to use magnesium as the active metal because the reduction reaction can proceed most efficiently.
  • the temperature of the compact in the reduction step is preferably from 600 to 130 ° C, more preferably from 800 to 100 ° C. If the temperature of the compact is less than 600 ° C, the reducing agent tends to have a low vapor pressure, and the reduction reaction does not proceed sufficiently. If the temperature of the compact exceeds 130 ° C, the tantalum formed Sintering of the powder tends to proceed. Further, the reaction time in the reduction step is a force S depending on the dimensions and heating temperature of the tantalum raw material molded article, about 1 to 24 hours, preferably about 1 to 6 hours, and more preferably 3 to 6 hours. It is about.
  • the active metal is brought into contact with the tantalum raw material molded body in a vaporized state.
  • the tantalum raw material compacts are arranged in a vertical position using the support members to reduce active metal.
  • the active metal is vaporized by being placed at the bottom of the device, on the support member, or between adjacent tantalum raw material compacts, and heating the reducing device with a heating device, and brought into contact with the tantalum raw material compacts.
  • a reduction reaction can be performed.
  • the tantalum raw material compact in the reduction device so that air permeability is maintained, the vaporized active metal diffuses uniformly, so that the tantalum raw material compact and the active metal can be more uniformly dispersed.
  • Contact can be made, and the reduction reaction proceeds more uniformly in time and space, and the reduction efficiency can be increased.
  • the tantalum raw material compact does not directly contact the reduction device, contamination from the reduction device can be prevented, and the purity of the obtained tantalum powder can be increased.
  • an active metal compound as a reduction aid may be further mixed in addition to the tantalum compound and the binder to form the tantalum raw material molded body.
  • the active metal compound as the reduction aid can be used also as a binder, but controls the precipitation form of the tantalum powder, 7481
  • the tantalum raw material molded body can be used to increase acid treatment efficiency.
  • the reaction in the reduction step is more uniformly promoted, Manufacturing efficiency can be increased.
  • the particle size of the generated tantalum powder can be controlled by adjusting the type of the reduction aid and the amount of the reduction aid mixed. Further, contamination from the reaction vessel can be effectively prevented.
  • the reduction aid it is preferable to use a compound of at least one metal selected from calcium, magnesium, sodium, potassium, and magnesium, and oxides, halides, and carbonates of these metals , Hydroxides, chlorides, and / or fluorides are more preferably used.
  • calcium chloride, calcium carbonate, sodium carbonate, sodium chloride, or the like is used alone or in combination. Can be used.
  • the compounding amount of the reduction aid is such that the cation in the reduction aid is 0 to 2 mol, more preferably 0.5 to 1 mol, relative to 1 mol of tantalum contained in the molded article. It is preferable to mix them.
  • the shape of the tantalum raw material formed body is formed such that the distance from an arbitrary position inside the formed body to the surface of the formed body is 10 mm or less. .
  • the “distance from any position inside the molded body to the surface of the molded body” indicates the distance from any position inside the molded body to the shortest surface.
  • the reducing agent diffuses from the surface of the tantalum raw material molded body to the inside, and the tantalum compound contained in the molded body is reduced.
  • the shape of the compact is the above-mentioned shape, the maximum diffusion distance of the reducing agent from the surface of the compact at the end of the reduction reaction is 10 mm or less, and the maximum diffusion distance from the surface of the compact to the inside of the compact is
  • the diffusion treatment of the reducing agent to be performed does not significantly differ depending on the part, and the tantalum raw material can be uniformly and rapidly reduced in the entire molded body.
  • the method for producing a tantalum powder further includes a step of separating the tantalum generated in the reduction step, a reducing agent, a reduction aid, and a by-product by an acid treatment.
  • a step of separation by acid treatment the target substance, tantalum, and the reducing agent, reduction aid, and by-products generated by the reduction reaction can be easily separated, and high-purity tantalum can be obtained. Can be manufactured in large quantities.
  • the production method according to the present invention since the tantalum raw material compact is subjected to the reaction, the shape of the compact is substantially maintained even after reduction. For this reason, by performing an acid treatment on the molded body after the reduction, there is also an advantage that the reducing agent and by-products can be efficiently removed.
  • niobium was produced by a metal thermal reduction reaction using the production apparatus shown in FIG.
  • a slurry was prepared by mixing the niobium raw material, the reducing aid, and the binder.
  • the binder was a 5% collodion solution (5% nitrocellulose, 40% ether, 55% ethanol) in the same volume as the raw material and auxiliary.
  • the obtained molded body was fired in a furnace in an air atmosphere at 1000 ° C. for 1 hour to completely remove the binder and the solvent water from the mixture of the niobium raw material and the auxiliary.
  • reducing agent is saved and carbon contamination in the generated niobium powder is reduced. Can be prevented.
  • a plurality of the molded bodies obtained in this manner were devised so that air permeability was ensured, and they were put into a reaction vessel 10 together with a magnesium reducing agent (active metal 15), and the reaction vessel 10 was tightly closed.
  • the reaction vessel 10 into which the molded body 12 and the reducing agent 15 are introduced is put into an electric furnace maintained at 100 ° C. for 6 hours, and the reduction reaction is sufficiently advanced. Removed and cooled.
  • the compact (mixture of niobium metal powder, auxiliary and MgO, Mg) obtained after reduction is roughly washed with an aqueous acetic acid solution (1 + 1) and then twice with an aqueous IN HC1 solution. After replacing with water, alcohol, and acetone, it was dried.
  • Fig. 2 shows that the raw material compact of 50 x 20 x 3 mm square was reacted with magnesium vapor at 1000 ° C for 6 hours to reduce the niobium raw material. After cooling, the acetic acid aqueous solution (1+ After rough washing in 1), wash twice with 1N HC1 aqueous solution, replace with water, alcohol, and acetone, and then dry. It is a figure showing a photograph. Incidentally, the diagram showing the photograph shown in FIG. 2 is arranged in a matrix according to the type of auxiliary agent (horizontal axis) and the cation ratio (vertical axis).
  • the particle size of the niobium powder could be controlled by changing the type and amount of the auxiliary agent in the raw material compact.
  • the width of one frame shown in the photograph is about 15 ⁇ m, and the particle size varies depending on the type and amount of the auxiliaries, but niobium powder having a primary particle size of about 0.5 to 3 m is obtained. Was done.
  • Example 2
  • tantalum was produced by a metal thermal reduction reaction using the production apparatus shown in FIG.
  • tantalum raw material T a 2 0 5
  • selecting one from among the assistant reducing agent C a C 1 2, C a C_ ⁇ 3, Na 2 C0 3, N a C 1
  • a binder were mixed to prepare a slurry.
  • the binder was a 5% collodion solution (5% trocellulose, 40% ether, 55% ethanol) in the same volume as the tantalum raw material and the reducing aid.
  • the viscosity of the slurry depends on the amount of reducing aid and binder added. was adjusted by changing
  • the obtained slurry was poured into a mold to produce a plate-like molded body having a thickness of 5 to 1 Omm.
  • the obtained compact was fired in a furnace in an air atmosphere at 1000 ° C. for 3 hours to completely remove the binder, the solvent, and the water from the mixture of the tantalum raw material and the auxiliary agent.
  • a reducing agent can be saved and carbon contamination in the generated tantalum powder can be prevented.
  • the resulting 4 to 10 compacts were placed in a reaction vessel 10 together with 20 g of a magnesium reducing agent (active metal 15) while maintaining the air permeability, and were welded with tungsten inert gas.
  • the reaction vessel 10 was sealed.
  • the reaction vessel 10 into which the molded body 12 and the reducing agent 15 are introduced is put into an electric furnace maintained at 700 to 1000 ° C. for 6 to 24 hours, and the reduction reaction is sufficiently advanced. Removed from the furnace and cooled.
  • the compact (mixture of metal tantalum powder, auxiliaries, and Mg and Mg) is roughly washed with an aqueous acetic acid solution (1 + 1), and then washed twice with an aqueous 1N HC1 solution. Further, after substitution with water, alcohol, and acetone, the mixture was dried.
  • X represents the number of moles of cation contained in the reduction aid per 1 mole of tantalum.
  • the morphology of the obtained tantalum powder was observed using a scanning electron microscope, and the particle size distribution was examined by optical diffraction analysis.
  • FIGS. 3 and 4 are photographs showing the morphology of the tantalum powder obtained in Experimental Examples A to K by scanning electron microscopy.
  • the obtained tantalum powder had a coral-like morphology with a particle size of 0.1 to 0.5 ⁇ m.
  • a calcium compound as an assistant reducing agent
  • the tantalum powder obtained by increasing the amount of the Increased in particle size.
  • FIG. 5A is a graph showing the particle size distribution of the tantalum powder obtained in Experiments B, D, and O. This indicates that a powder having a smaller particle size tends to be obtained when a sodium compound is used as a reduction aid than when a calcium compound is used. In addition, it was shown that when a calcium compound was used as a reduction aid, the particle size of the obtained tantalum powder became more uniform.
  • FIG. 5B is a graph showing the particle size distribution of the tantalum powder obtained in Experiments H, I, and O. As a result, it was shown that the particle size of the obtained tantalum powder was increased by increasing the amount of the reducing aid in the molded body.
  • the reduction reaction can proceed uniformly, and the reduction reaction can be performed by installing the molded body of the niobium raw material in the reduction device.
  • the reduction process can be continued, increased in size, and the efficiency of batch treatment can be performed with a simple device, and high-purity niobium powder can be efficiently produced directly from the niobium compound.
  • the reduction reaction can proceed uniformly, and the reduction process can be performed by installing a compact of the tantalum raw material in the reduction device and performing the reduction reaction. Continuity, upsizing, and batch processing efficiency can be performed with simple equipment, and high-purity tantalum powder can be efficiently produced directly from tantalum compounds.
  • a metal powder such as zirconium other than niobium and tantalum, titanium, hafnium, a rare earth metal, and an actinoid metal can be efficiently produced with high purity from a metal compound. Preferably, it can be manufactured continuously.
  • the metal raw material molded product according to the present invention is a metal compound molded product obtained by mixing a metal compound and a binder, forming the mixture into a predetermined shape, and firing the mixture.
  • the distance from any part of the part to the surface of the compact is set to 1 Omm or less, so that the diffusion distance of the reducing agent from the surface of the compact is 10 mm or less.
  • the metal compound can be uniformly and rapidly reduced.

Abstract

A method for producing a metal powder wherein a compound of the metal is used as a raw material and the compound is reduced, characterized in that it comprises a forming process of mixing the metal compound with a binding agent, forming the resultant mixture into a predetermined shape, and then firing, to prepare a formed product of the raw material for the metal, and a reducing process of contacting the formed product with an active metal, to thereby reduce the metal compound and form the metal. The method allows the direct production of a high pure metal powder from a compound of the metal with good efficiency, preferably with a continuous process and with ease.

Description

明 細 書 金属粉末の製造方法、 及び金属原料成形体 技術分野  Description Metal powder production method and metal raw material molded body
本発明は、 金属粉末の製造方法、 及びこの金属粉末の製造方法に適用すること ができる金属原料成形体に関するものである。 背景技術  The present invention relates to a method for producing a metal powder, and a metal raw material compact applicable to the method for producing the metal powder. Background art
ニオブやタンタルなどの高融点レアメタルは、 融点が高いだけでなく、 高温で は化学的に活性であるため、 塊状の金属を粉末状にするのは高度な技術が必要で ある。 このようなレアメタル粉末の製造方法として、 金属を溶解して得た金属の 液体を噴霧することにより粉末化するァトマイズ法は有効な粉末製造方法の一つ であるが、 レアメタルのような高融点金属を溶解するためには、 高価な装置が必 要である。  High melting point rare metals, such as niobium and tantalum, not only have high melting points, but are also chemically active at high temperatures, so advanced technology is required to turn massive metals into powders. As one of the effective methods for producing such rare metal powders, the atomization method of powdering by spraying a liquid of a metal obtained by dissolving a metal is one of the effective powder production methods. Expensive equipment is required to dissolve the iron.
また、 レアメタルと水素を反応させ、 いったん水素化物にして、 これを機械的 に粉碎する H D H法 (水素化 ·粉砕 ·脱水素法) があるが、 この方法は微細で均 —な粒度の粉末の製造が困難である。  There is also the HDH method (hydrogenation, pulverization, dehydrogenation method), in which a rare metal is reacted with hydrogen to form a hydride and then mechanically pulverize it. Difficult to manufacture.
現在、 タンタルなどの高融点金属は、 コンデンサ用の素材として粉末状のもの が工業的に製造されているが、 この粉末は、 主として活性な金属を還元剤として 利用して原料を環元する金属熱還元法により製造されている。 金属熱還元法を利 用すると、 還元反応により粉末状のタンタルを直接製造できる利点がある。 しか し、 還元反応により、 均一な粉末を多量に効率良く製造することは難しく、 特に 反応量を増大させると得られる粉末の均一性が低下するという欠点がある。 現状では多量のハライド系の溶融塩を反応媒体 (希釈塩) として利用し、 この 反応媒体に原料おょぴ還元剤を少量ずつ添加することにより、 均一な還元反応を 進行させて、 粉末状のタンタルを製造している。 この方法は、 高純度で均一な粉 末を製造するのに適しているが、 多量の反応媒体塩を必要とすること、 プロセス の大型化 ·高速化が困難であるといった難点を抱えている。 ニオブについても、 前記方法により多量の反応媒体塩を利用する方法で還元す れば、 均一な粉末が得られるが、 タンタルの製法と同様に、 反応媒体塩を用いず に還元する場合は、 均一な粉末を得ることが困難である。 発明の開示 At present, high-melting point metals such as tantalum are industrially manufactured in powder form as a material for capacitors, but this powder is mainly used as a metal whose raw material is reduced by using an active metal as a reducing agent. It is manufactured by the thermal reduction method. Use of the metal thermal reduction method has the advantage that powdered tantalum can be directly produced by a reduction reaction. However, it is difficult to efficiently produce a large amount of uniform powder by the reduction reaction, and there is a drawback that the uniformity of the obtained powder is reduced particularly when the reaction amount is increased. At present, a large amount of halide-based molten salt is used as a reaction medium (diluting salt), and by adding a small amount of a raw material to the reaction medium little by little, a uniform reduction reaction proceeds to form a powder. Manufactures tantalum. Although this method is suitable for producing a high-purity and uniform powder, it has disadvantages such as requiring a large amount of reaction medium salt, and difficulty in increasing the size and speed of the process. Even if niobium is reduced by a method using a large amount of reaction medium salt according to the above-mentioned method, a uniform powder can be obtained. It is difficult to obtain a suitable powder. Disclosure of the invention
本発明は、 金属化合物を原料とし、 前記金属化合物を還元して金属を製造する 方法であって、 前記金属化合物を粘結剤と混合して、 成形した後、 焼成して金属 原料成形体を作製する成形工程、 および前記金属原料成形体を還元剤としての活 性金属と接触させることにより、 前記金属原料成形体を還元して金属を生成する 還元工程、 を含む金属粉末の製造方法を提供する。  The present invention provides a method for producing a metal by reducing a metal compound using a metal compound as a raw material, wherein the metal compound is mixed with a binder, molded, and then fired to form a metal raw material molded body. A method for producing a metal powder, comprising: a forming step of producing; and a reducing step of reducing the metal raw material molded body to generate a metal by bringing the metal raw material molded body into contact with an active metal as a reducing agent. I do.
前記金属化合物として、 ニオブ化合物を用いることができる。 あるいは、 前記 金属化合物として、 タンタル化合物を用いることができる。 あるいは、 前記金属 化合物として、 ジルコニウム、 チタン、 ハフニウム、 希土類金属、 およびァクチ ノィ ド金属から選択される金属元素の化合物を用いることができる。  As the metal compound, a niobium compound can be used. Alternatively, a tantalum compound can be used as the metal compound. Alternatively, as the metal compound, a compound of a metal element selected from zirconium, titanium, hafnium, a rare earth metal, and an actinide metal can be used.
前記成形工程において、 金属化合物と、 粘結剤と、 還元助剤としての活性金属 化合物とを混合して、 金属原料成形体を成形することができる。  In the forming step, a metal compound, a binder, and an active metal compound as a reduction aid can be mixed to form a metal raw material molded body.
前記還元剤として、 カルシウム、 マグネシウム、 ナトリウム、 ノ リウム、 およ びカリゥムから選ばれる 1種以上の活性金属を用いることが好ましい。  As the reducing agent, it is preferable to use at least one active metal selected from calcium, magnesium, sodium, potassium, and potassium.
前記還元助剤として、 カルシウム、 マグネシウム、 ナトリウム、 ノ リウム、 お よびカリゥムから選ばれる 1種以上の活性金属の化合物を用いることが好ましい。 前記ニオブ化合物として、 酸化ニオブ又はハロゲン化ュォブを用いることが好 ましい。  As the reduction aid, it is preferable to use a compound of at least one active metal selected from calcium, magnesium, sodium, potassium, and potassium. It is preferable to use niobium oxide or halogenated niobium as the niobium compound.
前記還元工程における成形体の温度を、 6 0 0 °C以上 1 3 0 0 °C以下とするこ とが好ましい。  It is preferable that the temperature of the compact in the reduction step is set to 600 ° C. or more and 130 ° C. or less.
前記成形工程において、 金属原料成形体内部の任意の位置から成形体表面まで の距離が 1 0 mm以下である形状に、 金属原料成形体を成形することが好ましレ、。 金属粉末の製造方法は、 前記還元工程で生成した金属と、 活性金属及び副生成 物とを、 酸処理により分離する工程をさらに含むことが好ましい。  In the forming step, it is preferable to form the metal raw material molded body into a shape in which a distance from an arbitrary position inside the metal raw material molded body to the surface of the molded body is 10 mm or less. The method for producing a metal powder preferably further includes a step of separating the metal generated in the reduction step from the active metal and by-products by an acid treatment.
また、 本発明は、 金属化合物と粘結剤とを混合し、 成形後焼成してなる金属原 料成形体であって、 前記成形体内部の任意の位置から成形体表面までの距離が、Further, the present invention provides a metal raw material obtained by mixing a metal compound and a binder, molding and firing the mixture. A molded article, wherein a distance from an arbitrary position inside the molded article to the surface of the molded article is:
1 O mm以下である金属原料成形体を提供する。 Provide a metal raw material compact having a size of 1 O mm or less.
前記金属化合物が、 ニオブ、 ジルコニウム、 チタン、 ハフニウム、 タンタル、 希土類金属、 およぴァクチノィド金属から選択される金属元素の化合物原料を含 むことが好ましい。  It is preferable that the metal compound includes a compound raw material of a metal element selected from niobium, zirconium, titanium, hafnium, tantalum, a rare earth metal, and an actinide metal.
前記金属原料成形体が、 カルシウム、 マグネシウム、 ナトリウム、 バリウム、 および力リゥムから選ばれる 1種以上の金属の化合物を還元助剤として含むこと ができる。 前記還元助剤は、 カルシウム、 マグネシウム、 ナトリウム、 バリウム、 およびカリウムから選ばれる 1種以上の金属の酸化物、 ハロゲン化物、 もしくは 炭酸塩であることが好ましい。 図面の簡単な説明  The metal raw material molded body may contain a compound of at least one metal selected from calcium, magnesium, sodium, barium, and magnesium as a reduction aid. The reduction aid is preferably an oxide, halide, or carbonate of at least one metal selected from calcium, magnesium, sodium, barium, and potassium. BRIEF DESCRIPTION OF THE FIGURES
- 図 1は、 本発明に係る金属の製造装置を示す断面構成図である。  -FIG. 1 is a cross-sectional configuration diagram showing a metal manufacturing apparatus according to the present invention.
図 2は、 実施例 1において作製されたニオブ粉末の電子顕微鏡写真を表す図で ある。  FIG. 2 is a diagram showing an electron micrograph of the niobium powder produced in Example 1.
図 3は、 実施例 2の実験例 A〜Eにおいて作製されたタンタル粉末の電子顕微 鏡写真を表す図である。  FIG. 3 is a view showing electron micrographs of the tantalum powders produced in Experimental Examples A to E of Example 2.
図 4は、 実施例 2の実験例 F〜: Kにおいて作製されたタンタル粉末の電子顕微 鏡写真を表す図である。  FIG. 4 is a diagram showing electron micrographs of the tantalum powder produced in Experimental Examples F to K of Example 2.
図 5 Aおよび 5 Bは、 実施例 2において作製されたタンタル粉末の粒径分布を 示したグラフである。  5A and 5B are graphs showing the particle size distribution of the tantalum powder produced in Example 2. FIG.
' 発明を実施するための最良の形態 '' Best mode for carrying out the invention
本発明に係る金属粉末の製造方法は、 金属化合物を原料とし、 前記金属化合物 を還元して金属を製造する方法であって、 前記金属化合物を粘結剤と混合して、 成形した後、 焼成して金属原料成形体を作製する成形工程、 および前記金属原料 成形体を還元剤としての活性金属と接触させることにより、 前記金属原料成形体 を還元して金属を生成する還元工程、 を含むことを特徴とする。 前記金属化合物 として、 ニオブ化合物、 タンタル化合物、 ジルコニウム化合物、 チタン化合物、 ハフニウム化合物、 希土類金属化合物、 あるいはァクチノィ ド金属化合物を用い ることができる。 The method for producing a metal powder according to the present invention is a method for producing a metal by reducing a metal compound using a metal compound as a raw material, mixing the metal compound with a binder, molding, and firing. And forming a metal raw material molded body by contacting the metal raw material molded body with an active metal as a reducing agent, thereby reducing the metal raw material molded body to generate a metal. It is characterized by. As the metal compound, niobium compound, tantalum compound, zirconium compound, titanium compound, Hafnium compounds, rare earth metal compounds or actinide metal compounds can be used.
以下に、 本発明に係る金属粉末の製造方法の一例として、 ニオブ化合物を用い てニオブ粉末を製造する方法について、 具体的に説明する。  Hereinafter, as an example of the method for producing a metal powder according to the present invention, a method for producing a niobium powder using a niobium compound will be specifically described.
本発明に係るニオブ粉末の製造方法は、 ニオブ化合物を原料とし、 該ニオブ化 合物を還元してニオブを製造する方法であって、 前記ニオブ化合物を粘結剤と混 合してスラリーを作製し、 これを、 板状、 線状、 粒状などの所定形状に成形した 後、 焼成してニオブ原料成形体を作製する成形工程と、 前記ニオブ原料成形体に 還元剤としての活性金属を接触させることにより前記ニオブ化合物を還元して二 ォブを生成する還元工程とを含むことを特徴とする。 前記ニオブ化合物として、 酸化ニオブ又はハロゲン化ニオブを用いることができる。  The method for producing a niobium powder according to the present invention is a method for producing a niobium by using a niobium compound as a raw material and reducing the niobium compound, wherein the niobium compound is mixed with a binder to produce a slurry. Forming a niobium raw material molded body by forming it into a predetermined shape such as a plate, a line, or a granule, and baking the niobium raw material molded body, and bringing the active metal as a reducing agent into contact with the niobium raw material molded body Reducing the niobium compound to form niobium. As the niobium compound, niobium oxide or niobium halide can be used.
前記活性金属として、 カルシウム、 マグネシウム、 ナトリウム、 バリウム、 お よびカリゥムから選ばれる 1種以上の金属を用いることが好ましい。 このような 活性金属を用いてニオブ原料成形体の還元を行うことで、 効率よく還元反応を進 行させることができる。 さらに、 前記活性金属として、 マグネシウムを用いると、 最も効率よく還元反応を進行させることができるため、 特に好ましレ、。  As the active metal, it is preferable to use one or more metals selected from calcium, magnesium, sodium, barium, and potassium. By reducing the niobium raw material compact using such an active metal, the reduction reaction can proceed efficiently. Furthermore, the use of magnesium as the active metal allows the reduction reaction to proceed most efficiently, and is particularly preferred.
前記還元工程における成形体の温度は、 6 0 0 °C以上 1 3 0 0 °C以下とするこ とが好ましい。 成形体の温度が 6 0 0 °C未満では、 還元剤の蒸気圧が低く、 還元 反応が十分に進行しない傾向にあり、 成形体の温度が 1 3 0 0 °Cを越えると、 生 成するニオブ粉末の焼結が進行する傾向がある。  It is preferable that the temperature of the molded body in the reduction step is 600 ° C. or more and 130 ° C. or less. If the temperature of the compact is lower than 600 ° C, the reducing agent has a low vapor pressure, and the reduction reaction tends not to proceed sufficiently.If the temperature of the compact exceeds 130 ° C, it is generated. Sintering of the niobium powder tends to proceed.
また、.前記還元工程において、 活性金属を気化させた状態で、 ニオブ原料成形 体と接触させることが好ましい。 この場合、 還元装置内に、 ニオブ原料成形体を 通気性が保たれるように配置し、 還元反応を行わせることが好ましレ、。 例えば、 複数のニオブ原料成形体を縦位置に支持するための支持部材と加熱装置を有する 還元装置内に、 この支持部材を用いてニオブ原料成形体を縦位置に配置し、 活性 金属を還元装置の底部、 もしくは支持部材上、 もしくは隣接するニオブ原料成形 体の間に配置し、 加熱装置により還元装置を加熱することにより、 活性金属を気 ィ匕させ、 ニオブ原料成形体と接触させて、 還元反応を行わせることができる。 こ のように、 還元装置内に、 ニオブ原料成形体を通気性が保たれるように配置する ことにより、 気化した活性金属が均一に拡散するため、 ニオブ原料成形体と活性 金属とをより均一に接触させることができ、 時間的 '空間的に還元反応がより均 一に進行し、 還元効率を高めることができる。 また、 ニオブ原料成形体が還元装 置に直接接触することがないため、 還元装置からの汚染を防ぐことができ、 得ら れるェォプ粉末の純度を高めることができる。 In the reduction step, it is preferable that the active metal is brought into contact with the niobium raw material molded body in a vaporized state. In this case, it is preferable to arrange the niobium raw material molded body in the reduction device so that air permeability is maintained, and to perform a reduction reaction. For example, in a reduction device having a support member and a heating device for supporting a plurality of niobium raw material compacts in a vertical position, a niobium raw material compact is disposed in a vertical position using the support members, and an active metal is reduced in the reduction device. Is placed on the bottom or on the support member or between adjacent niobium raw material compacts, and by heating the reducing device with a heating device, the active metal is degassed and brought into contact with the niobium raw material compact to reduce the active metal. The reaction can be performed. In this way, the niobium raw material compact is arranged in the reduction device so that air permeability is maintained. As a result, the vaporized active metal is diffused uniformly, so that the niobium raw material compact and the active metal can be brought into more uniform contact, and the reduction reaction progresses more uniformly in time and space, thereby reducing the reduction efficiency. Can be increased. In addition, since the niobium raw material compact does not come into direct contact with the reducing device, contamination from the reducing device can be prevented, and the purity of the obtained wipe powder can be increased.
また、 前記ニオブ原料成形体を作製する成形工程において、 ニオブ化合物と粘 結剤に加えて、 還元助剤としての活性金属化合物をさらに混合してニオブ原料成 形体を作成することができる。 前記還元助剤としての活性金属化合物は、 粘結剤 としても利用することができるが、 ニオブ粉末の析出形態を制御し、 酸処理効率 を高めるために用いることもできる。 このように、 ニオブ原料成形体を、 ニオブ 化合物と粘結剤に加えて、 還元助剤としての活性金属化合物を混合して作製する ことにより、 還元工程における反応がより均一に促進され、 製造効率を高めるこ とができる。 さらに、 前記還元助剤の種類及び還元助剤の配合量を調節すること により、 生成されるニオブ粉末の粒径を制御することも可能である。 また、 反応 容器からの汚染を効果的に防止することができる。  Further, in the molding step of producing the niobium raw material molded body, an niobium raw material molded body can be produced by further mixing an active metal compound as a reduction aid in addition to the niobium compound and the binder. The active metal compound as the reduction aid can be used also as a binder, but can also be used to control the deposition form of niobium powder and increase the acid treatment efficiency. As described above, the reaction in the reduction step is more uniformly promoted by preparing the niobium raw material compact by mixing the niobium compound and the binder together with the active metal compound as a reduction aid, thereby increasing the production efficiency. Can be increased. Further, the particle size of the niobium powder to be produced can be controlled by adjusting the type of the reduction aid and the amount of the reduction aid. In addition, contamination from the reaction vessel can be effectively prevented.
前記還元助剤として、 カルシウム、 マグネシウム、 ナトリウム、 ノくリウム、 お よびカリゥムから選ばれる 1種以上の金属の化合物を用いることが好ましく、 こ れらの金属の酸化物、 ハロゲン化物、 炭酸塩、 水酸化物、 塩化物、 および/また はフッ化物を用いることがより好ましい。 このような活性金属化合物を還元助剤 として含む成形体を用いることで、 還元工程の反応効率及び均一性をより高める ことができる。  As the reduction aid, it is preferable to use a compound of one or more metals selected from calcium, magnesium, sodium, potassium, and potassium, and oxides, halides, carbonates, and the like of these metals. More preferably, hydroxides, chlorides and / or fluorides are used. By using a molded article containing such an active metal compound as a reduction aid, the reaction efficiency and uniformity of the reduction step can be further improved.
さらに、 前記成形工程において、 作製されるニオブ原料成形体の形状を、 成形 体内部の任意の位置から成形体表面までの距離が 1 0 mm以下となるように成形 することが好ましい。 前記の 「成形体内部の任意の位置から成形体表面までの距 離」 とは、 成形体の内部の任意の位置から最短距離にある表面までの距離を示し ている。 当該製造方法における還元工程においては、 ニオブ原料成形体表面から 内部へ還元剤が拡散し、 成形体に含まれるェォブ化合物が還元されることとなる。 従って、 成形体の形状を前記の形状とするならば、 還元反応終了時点において成 形体表面からの還元剤の最大の拡散距離は 1 0 mm以下となり、 成形体表面から 成形体内部に拡散される還元剤の拡散処理が部位により著しく異なることがなく、 成形体全体においてニオブ原料を均一かつ高速に還元することができる。 Further, in the forming step, the shape of the niobium raw material formed body is preferably formed such that the distance from an arbitrary position inside the formed body to the surface of the formed body is 10 mm or less. The “distance from any position inside the molded body to the surface of the molded body” indicates the distance from any position inside the molded body to the shortest surface. In the reduction step in the manufacturing method, the reducing agent diffuses from the surface of the niobium raw material molded body into the inside, and the eob compound contained in the molded body is reduced. Therefore, if the shape of the compact is the above-mentioned shape, the maximum diffusion distance of the reducing agent from the surface of the compact at the end of the reduction reaction is 10 mm or less, and from the surface of the compact. The niobium raw material can be uniformly and rapidly reduced in the entire molded body without the diffusion treatment of the reducing agent diffused into the molded body being significantly different depending on the site.
さらに、 前記ニオブ粉末の製造方法は、 前記還元工程で生成したニオブと、 還 元剤、 還元助剤、 及び副生成物とを、 酸処理により分離する工程をさらに含むこ とができる。 酸処理により分離する工程を設けることにより、 目的物であるニォ ブと、 還元剤、 還元助剤、 及び還元反応に伴い生じる副生成物とを、 容易に分離 することができ、 高純度のニオブを大量に製造することができる。 また、 本発明 に係る製造方法では、 ニオブ原料成形体を反応に供するため、 還元後にも前記成 形体の形状がほぼ保持される。 このため、 この還元後の成形体に対して酸処理を 行うことで、 効率よく還元剤及び副生成物を除去することができるという利点も 有する。  Further, the method for producing niobium powder may further include a step of separating the niobium generated in the reduction step from a reducing agent, a reduction aid, and a by-product by an acid treatment. By providing a step of separation by acid treatment, niob, which is the target substance, and a reducing agent, a reduction auxiliary agent, and by-products generated by the reduction reaction can be easily separated, and high-purity niobium can be obtained. Can be manufactured in large quantities. Further, in the production method according to the present invention, since the niobium raw material compact is subjected to the reaction, the shape of the compact is substantially maintained even after reduction. Therefore, by performing an acid treatment on the molded body after the reduction, there is also an advantage that the reducing agent and the by-product can be efficiently removed.
従来のレアメタルの製造方法において、 均一な粉末が得られない最大の理由は、 還元量を増大させると原料中への還元剤の拡散が不均一となり、 原料の部位によ つて時間的 ·空間的に還元反応の進行具合に不均一さが生じるためであると考え られる。 これに対して本発明に係るュォブ粉末の製造方法では、 ニオブ原料、 粘 結剤 (バインダ) 、 およびノまたは還元助剤を混合してニオブ原料成形体を作成 し、 これに活性金属を接触させることにより還元反応を行わせているので、 還元 量を増大させても、 時間的 ·空間的に還元反応を均一に進行させることができる。 また、 還元装置内にニオブ原料成形体を設置して還元反応を進行させることで、 還元プロセスの連続化、 大型化、 バッチ処理の効率化を簡便な装置で行うことが できる。 すなわち、 従来の金属熱還元反応では、 プロセスの連続化や高速化が困 難であつたが、 前記ニオブ粉末の製造方法で用いられるニオブ原料の成形体は、 その製造、 熱処理、 還元、 洗浄などの流れ作業が容易に達成できるため、 容易に プロセスを連続化、 大型化することができる。 また、 従来の方法では、 原料の量 を増大させると、 得られる粉末の粒径等が不均一となることが多く、 生産性が低 かったが、 前記製造方法によれば、 得られる粉末の粒径の均一性を保ちながら、 還元プロセスの大型化、 高速化を容易に達成することができ、 生産性を高めるこ とができる。  The most important reason why a uniform powder cannot be obtained in the conventional rare metal manufacturing method is that if the amount of reduction is increased, the diffusion of the reducing agent into the raw material becomes non-uniform, and time and space This is probably because the progress of the reduction reaction becomes uneven. On the other hand, in the method for producing a uob powder according to the present invention, a niobium raw material, a binder (binder), and a no or reduction aid are mixed to form a niobium raw material molded body, and an active metal is brought into contact with the molded body. As a result, the reduction reaction is performed, so that even if the amount of reduction is increased, the reduction reaction can proceed uniformly in time and space. In addition, by setting the niobium raw material compact in the reduction device and allowing the reduction reaction to proceed, the reduction process can be continued, increased in size, and the efficiency of batch processing can be increased with a simple device. That is, in the conventional metal thermal reduction reaction, it has been difficult to make the process continuous and increase the speed. However, the compact of the niobium raw material used in the method for producing the niobium powder is manufactured, heat-treated, reduced, washed, etc. The process can be easily achieved, and the process can be easily made continuous and large. In addition, in the conventional method, when the amount of the raw material is increased, the particle size and the like of the obtained powder are often non-uniform, and the productivity is low. The reduction process can be easily increased in size and speed while maintaining uniformity of particle size, and productivity can be increased.
次に、 本発明の第一の実施形態を図面を参照してさらに詳細に説明する。 図 1 は、 本発明に係る金属の製造装置の一例を示す断面図である。 Next, a first embodiment of the present invention will be described in more detail with reference to the drawings. Figure 1 1 is a cross-sectional view illustrating an example of a metal manufacturing apparatus according to the present invention.
図 1に示す製造装置は、 ステンレス鋼などの耐熱材からなる密閉容器である反 応容器 1 0と、 反応容器 1 0内に配設された複数の平板状の金属原料成形体 1 2 と、 これらの成形体 1 2を縦位置に支持するために成形体 1 2の上下に設けられ た支持部材 1 3 , 1 4とを備えて構成されている。 そして、 反応容器 1 0の底部 には、 成形体 1 2の金属原料を還元するための還元剤である活性金属 1 5が導入 されている。 尚、 図示した反応容器 1 0には、 加熱手段が示されていないが、 反 応容器 1 0内を所定温度に加熱し、 活性金属 1 5を気化させるための加熱手段を 設けることができる。 The production apparatus shown in FIG. 1 includes a reaction vessel 10 which is a closed vessel made of a heat-resistant material such as stainless steel, and a plurality of flat metal raw material molded bodies 12 arranged in the reaction vessel 10. Support members 13 and 14 are provided above and below the molded body 12 in order to support these molded bodies 12 in a vertical position. Then, the bottom of the reaction vessel 1 0, active metal 1 5 has been introduced as a reducing agent for reducing the metal material compacts 1 2. Although a heating means is not shown in the illustrated reaction vessel 10, a heating means for heating the inside of the reaction vessel 10 to a predetermined temperature and evaporating the active metal 15 can be provided.
そして、 前記加熱手段により活性金属 1 5を加熱気化させて反応容器 1 0中に 活性金属 1 5の気体を拡散させ、 成形体 1 2の表面から内部へ還元剤である活性 金属 1 5を拡散させることにより成形体 1 2に含まれる金属化合物を還元して金 属を生成するようになっている。  Then, the active metal 15 is heated and vaporized by the heating means to diffuse the gas of the active metal 15 into the reaction vessel 10, and the active metal 15 as a reducing agent is diffused from the surface of the molded body 12 to the inside. As a result, the metal compound contained in the molded body 12 is reduced to generate a metal.
本発明に係るニオブ粉末の製造方法では、 上述の製造装置を用いた金属熱還元 法によりニオブ粉末を製造することができる。 前記ュォプ粉末を製造するために、 まず、 成形工程において、 原料であるニオブ化合物を含むェォブ原料成形体を作 製する。 この成形体は、 ニオブ原料と粘結剤 (バインダ) と還元助剤とを混合し て所定形状に成形した後、 好ましくは、 3 0 0〜 1 0 0 0 °C、 より好ましくは 8 0 0〜 1 0 0 0 °C程度の温度で、 焼成して粘結剤を除去することにより得られる。 前記焼成温度が 3 0 0 °C未満では、 十分に粘結剤と還元助剤を除去することがで きず、 続く還元工程における反応効率が低下し、 得られる粉末の純度が低下する 傾向にあり、 1 0 0 0 °Cを超えると、 焼結が急激に進行して、 ニオブ原料成形体 が大きく変更する傾向にある。 また、 この焼成工程は、 成形体の寸法や加熱温度 等にも依存するが、 1〜1 2時間、 より好ましくは 1〜6時間程度、 さらにより 好ましくは 3〜 6時間程度行うことが好ましい。 また、 焼成を行う場合には、 大 気中又は酸素雰囲気中で行うのがよい。  In the method for producing niobium powder according to the present invention, niobium powder can be produced by a metal thermal reduction method using the above-described production apparatus. In order to produce the wool powder, first, in a molding step, a web raw material molded body containing a niobium compound as a raw material is produced. The molded body is preferably formed by mixing a niobium raw material, a binder (binder), and a reduction aid into a predetermined shape, and then preferably formed at a temperature of 300 to 100 ° C., more preferably 800 ° C. It is obtained by baking at a temperature of about 100 ° C. to remove the binder. If the calcination temperature is lower than 300 ° C., the binder and the reduction aid cannot be sufficiently removed, the reaction efficiency in the subsequent reduction step decreases, and the purity of the obtained powder tends to decrease. If the temperature exceeds 100 ° C., the sintering proceeds rapidly, and the niobium raw material molded body tends to change greatly. The firing step depends on the dimensions of the molded body, the heating temperature and the like, but is preferably performed for 1 to 12 hours, more preferably for about 1 to 6 hours, and even more preferably for about 3 to 6 hours. When firing is performed, it is preferable to perform firing in the atmosphere or in an oxygen atmosphere.
ニオブ原料としては、 例えば、 N b 2 O s、 N b O X (ニオブの低級酸化物で あって、 Xは 0 . 5〜2 . 5であることが好ましい) 、 N b C l 5、 または K 2 N b F 7等のニオブ化合物を用いることができる。 前記ニオブ原料成形体中にお PC蒙菌 81 The niobium raw material, for example, N b 2 O s, N b OX ( a lower oxides of niobium, X is from 0.5 to 2. A is preferably 5), N b C l 5 or K, niobium compounds such as 2 N b F 7 can be used. In the niobium raw material compact, PC Mongolian 81
けるニオブ原料の配合量は、 1 0質量0 /0以上、 より好ましくは 5 0質量%以上で あることが好ましい。 前記ニオブ原料の配合量が 1 0質量%以上であれば、 還元 反応が十分に行われるが、 前記ニオブ原料の配合量が 5 0質量。 /0未満である場合、 酸処理によってニオブ粉末を分離する際に、 酸の使用量が増大して、 リーチング 効率が低下する傾向にある。 The amount of kicking the niobium raw material, 1 0 wt 0/0 or more, and more preferably 5 0 mass% or more. If the amount of the niobium raw material is 10% by mass or more, the reduction reaction is sufficiently performed, but the amount of the niobium raw material is 50% by mass. If it is less than / 0 , the amount of acid used when separating niobium powder by acid treatment tends to increase, and the leaching efficiency tends to decrease.
粘結剤としては、 還元反応に無関係で、 熱処理により容易に除去することがで きるものであれば問題なく適用することができ、 例えば、 コロジオンやセルロー スなどの有機化合物を用いることができる。 また、 粘結剤として還元助剤を利用 することもでき、 ニオブ原料及び還元助剤と混合することで成形体を成形するこ ともできる。 前記-ォブ原料成形体中における粘結剤の配合量は、 5〜 8 0質 量%、 より好ましくは 3 0〜7 0質量%、 さらにより好ましくは 3 0〜5 0質 量。 /0であることが好ましい。 前記粘結剤の配合量が 5質量%未満あるいは 8 0質 量%を超える場合、 成形体の強度が低下し、 成形体の形成が困難になる傾向にあ る。 Any binder can be used without any problem as long as it is irrelevant to the reduction reaction and can be easily removed by heat treatment. For example, an organic compound such as collodion or cellulose can be used. Further, a reducing aid can be used as a binder, and a molded article can be formed by mixing with a niobium raw material and a reducing aid. The amount of the binder in the above-mentioned raw material molded body is 5 to 80% by mass, more preferably 30 to 70% by mass, and still more preferably 30 to 50% by mass. / 0 is preferred. If the amount of the binder is less than 5% by mass or more than 80% by mass, the strength of the molded article tends to decrease, and the formation of the molded article tends to be difficult.
還元助剤は、 必要に応じてニオブ原料及ぴ粘結剤に添加されてこれらとともに 成形体を構成する。 成形体中にこの還元助剤を分散しておくことで、 還元工程に おける反応効率を高め、 ニオブ原料の還元をより均一に行うことが可能となる。 この還元助剤としては、 カルシウム、 マグネシウム、 ナトリウム、 バリウム、 お よびカリゥムからなる群から選ばれる 1種以上の金属の化合物を用いることが好 ましく、 これらの金属の酸化物、 ハロゲン化物、 炭酸塩、 水酸化物、 塩化物、 お よび/またはフッ化物を用いることがより好ましい。 具体的には、 塩化カルシゥ ム、 炭酸カルシウム、 炭酸ナトリウム、 もしくは塩化ナトリウムなどを単独で、 あるいは混合して、 用いることができる。 前記還元助剤の配合量は、 成形体中に 含まれるニオブ 1モルに対して、 還元助剤中におけるカチオンが 0〜 2モル、 よ り好ましくは 0 . 5〜1モルとなるように配合することが好ましい。 成形体中に 含まれるニオブ 1モルに対して、 還元助剤中におけるカチオンが 2モルを超える 場合、 酸処理によって、 生成した-ォプを分離する際に、 酸洗浄に用いる酸の量 が増大し、 リーチング効率が低下する傾向にある。  The reduction aid is added to the niobium raw material and the binder as needed to form a molded body together with these. By dispersing the reduction aid in the compact, the reaction efficiency in the reduction step can be increased, and the reduction of the niobium raw material can be performed more uniformly. As the reduction aid, it is preferable to use a compound of at least one metal selected from the group consisting of calcium, magnesium, sodium, barium, and potassium, and oxides, halides, and carbonates of these metals are used. More preferably, salts, hydroxides, chlorides and / or fluorides are used. Specifically, calcium chloride, calcium carbonate, sodium carbonate, sodium chloride, or the like can be used alone or as a mixture. The compounding amount of the reducing aid is such that the cation in the reducing aid is 0 to 2 mol, more preferably 0.5 to 1 mol, based on 1 mol of niobium contained in the molded article. Is preferred. When the cation in the reduction aid exceeds 2 moles per 1 mole of niobium contained in the compact, the amount of acid used for acid washing increases when separating the generated hops by the acid treatment. And the leaching efficiency tends to decrease.
また、 前記成形工程において作製される成形体の形状としては、 成形体内部の 任意の位置から成形体表面までの最短の距離が、 1 0 mm以下、 より好ましくは 2〜 5 mmである形状とすることが好ましい。 このような形状とすることで、 後 述する還元工程において成形体表面から内部に向かって拡散する還元剤の拡散距 離を 1 O mm以下とすることができるので、 還元反応を高速かつ均一に進行させ ることができる。 より具体的には、 例えば板状、 線状、 粒状等の形状が挙げられ、 板状とする場合に前記の条件に合致するためには板厚を 2 0 mm以下とすれば良 く、 線状であれば長さ方向の中心線に直交する断面における外周と中心との距離 が 1 O mm以下となるようにすればよい。 また、 粒状とする場合には、 その直径 が 2 O mm以下となるようにすればよい。 In addition, the shape of the molded body produced in the molding step includes: It is preferable that the shortest distance from an arbitrary position to the surface of the molded body is 10 mm or less, more preferably 2 to 5 mm. By adopting such a shape, the diffusion distance of the reducing agent diffused from the surface of the molded body toward the inside in the reduction step described later can be made 1 Omm or less, so that the reduction reaction can be performed quickly and uniformly. You can proceed. More specifically, for example, a shape such as a plate, a line, and a granule can be mentioned. In the case of a plate, in order to meet the above conditions, the plate thickness may be set to 20 mm or less. In this case, the distance between the outer periphery and the center in a cross section orthogonal to the center line in the length direction may be set to 1 Omm or less. Further, in the case of a granular shape, the diameter may be set to 2 O mm or less.
次に、 前記成型工程により得られた成形体を、 図 1に示すように反応容器 1 0 内に成形体 1 2として導入する。 図 1では成形体 1 2を板状又は線状とし、 これ らを縦位置に支持した場合について図示しているが、 容器内における成形体 1 2 の配置状態は、 図示の配置に限定されず、 成形体の形状に応じて適宜変更するこ とができる。  Next, the molded body obtained by the molding step is introduced as a molded body 12 into a reaction vessel 10 as shown in FIG. Although FIG. 1 illustrates a case where the molded body 12 is formed in a plate shape or a linear shape and these are supported in a vertical position, the arrangement state of the molded body 12 in the container is not limited to the illustrated arrangement. It can be appropriately changed according to the shape of the molded body.
また、 反応容器 1 0内の底部に、 還元剤である活性金属 1 5を導入しておく。 この活性金属 1 5としては、 カルシウム、 マグネシウム、 ナトリウム、 バリウム、 および力リゥムからなる群から選ばれる 1種又は 2種以上の金属を用いることが 好ましい。 図示した製造装置では、 活性金属 1 5を容器底部に配置しているが、 活性金属 1 5は例えば支持部材 1 4上に配置しても良く、 縦位置に支持された成 形体 1 2, 1 2間に配置しても良い。 前記活性金属 1 5は、 反応容器 1 0内に、 1 0 0質量部の前記成形体 1 2に対して、 5 0〜 4 0 0質量部、 より好ましくは 1 0 0〜 3 0◦質量部、 導入することが好ましい。 前記活性金属 1 5を 5 0質量 部未満で用いた場合、 十分に還元反応が行われない傾向にあり、 4 0 0質量部を 超えて用いても、 還元効率が向上しない傾向にある。  An active metal 15 as a reducing agent is introduced into the bottom of the reaction vessel 10. As the active metal 15, it is preferable to use one or more metals selected from the group consisting of calcium, magnesium, sodium, barium, and magnesium. In the illustrated manufacturing apparatus, the active metal 15 is disposed at the bottom of the container. However, the active metal 15 may be disposed, for example, on a support member 14, and the molded bodies 12, 1 supported in a vertical position It may be arranged between two. The active metal 15 is, in the reaction vessel 10, 100 to 100 parts by mass of the molded body 12, 50 to 400 parts by mass, more preferably 100 to 30 ° parts by mass. It is preferable to introduce. When the active metal 15 is used in less than 50 parts by mass, the reduction reaction tends not to be sufficiently performed, and when it is used in excess of 400 parts by mass, the reduction efficiency tends not to be improved.
次いで、 反応容器 1 0を密閉して還元工程の準備を終了する。  Next, the reaction vessel 10 is sealed, and the preparation for the reduction step is completed.
そして、 成形体 1 2及ぴ活性金属 1 5を反応容器 1 0に導入し、 この反応容器 1 0を加熱炉内に配置し、 加熱する。 すると、 加熱により活性金属 1 5が気化さ れて容器 1 0内に充満されるとともに、 成形体 1 2と接触し、 成形体 1 2表面か ら還元反応が進行し、 成形体 1 2に含まれるニオブ原料が還元され、 金属ニオブ が生成される。 Then, the molded body 12 and the active metal 15 are introduced into the reaction vessel 10, and the reaction vessel 10 is placed in a heating furnace and heated. Then, the active metal 15 is vaporized by heating and is filled in the container 10, and at the same time, comes into contact with the molded body 12, and the reduction reaction proceeds from the surface of the molded body 12, and is contained in the molded body 12. Niobium raw material is reduced to niobium metal Is generated.
この還元工程において、 成形体 1 2の温度が 6 0 0 °C〜 1 3 0 0 ° (、 より好ま しくは 8 0 0〜1 0 0 0 °Cとなるように加熱することが好ましい。 前記温度が 6 0 0 °C未満の場合、 還元剤である活性金属 1 5の蒸気圧が低く、 還元反応が十分 に進行しない傾向にあり、 1 3 0 0 °Cを超える場合、 生成するニオブ粉末の焼結 が進行する傾向があるためである。 反応時間は、 成形体 1 2の寸法や加熱温度等 にもよるが、 1〜6時間程度、 より具体的には、 成形体 1 2を厚さ数 mmの板状 とし、 8 0 0 °C以上の温度で加熱する場合、 1時間以上保持すれば十分に還元反 応は終了する。  In the reduction step, it is preferable to heat the molded body 12 so that the temperature of the molded body 12 becomes 600 ° C. to 130 ° C. (more preferably, 800 ° C. to 100 ° C.). When the temperature is lower than 600 ° C, the vapor pressure of the active metal 15 as a reducing agent is low, and the reduction reaction does not tend to proceed sufficiently. When the temperature exceeds 130 ° C, niobium powder generated The reaction time depends on the dimensions of the molded body 12, the heating temperature, etc., but is about 1 to 6 hours, more specifically, the thickness of the molded body 12 is large. In the case of a plate having a thickness of several mm and heating at a temperature of 800 ° C. or more, the reduction reaction is completed sufficiently if the temperature is maintained for 1 hour or more.
次に、 反応容器 1 0の冷却後、 還元反応が終了した成形体を容器 1 0から取り 出す。 この反応後の成形体は、 反応前の成形体 1 2の形状をほぼ保持している力 生成したニオブと、 還元により生じた活性金属の化合物 (副生成物) 、 余剰の還 元剤、 及び還元助剤から概略構成されている。 次いで、 取り出された成形体を酸 処理することで、 生成したニオブと、 活性金属の化合物、 還元剤、 還元助剤、 お よび還元によって生じた反応生成物とを分離することができ、 ニオブ粉末を得る ことができる。 この酸処理としては、 例えば、 酸洗浄を行った後、 水あるいは有 機溶媒による酸の置換処理を行う。 前記酸洗浄には、 塩酸、 酢酸、 硝酸、 フッ酸、 もしくは硫酸など種々の酸を用いることができる。  Next, after the reaction vessel 10 is cooled, the compact after the reduction reaction is taken out of the vessel 10. The molded body after the reaction is composed of niobium, which is a force that substantially retains the shape of the molded body 12 before the reaction, a compound (by-product) of an active metal generated by the reduction, an excess reducing agent, and It is roughly composed of a reduction aid. Next, by subjecting the removed molded body to an acid treatment, it is possible to separate the generated niobium from the active metal compound, the reducing agent, the reduction aid, and the reaction product generated by the reduction, and the niobium powder Can be obtained. As the acid treatment, for example, after acid cleaning, an acid substitution treatment with water or an organic solvent is performed. Various acids such as hydrochloric acid, acetic acid, nitric acid, hydrofluoric acid, and sulfuric acid can be used for the acid cleaning.
本発明に係る製造方法においては、 還元反応が終了した後に、 投入した成形体 1 2とほぼ同様の形状を有し、 生成したニオブを含む成形体が得られるため、 そ の後の分離工程における酸処理についても酸の浸透性が良好であり、 ニオブ粉末 の分離を高速かつ均一に行うことが可能である。  In the production method according to the present invention, after the reduction reaction is completed, a molded body having substantially the same shape as the charged molded body 12 and containing the generated niobium can be obtained, and therefore, in the subsequent separation step As for the acid treatment, the permeability of the acid is good, and the niobium powder can be separated quickly and uniformly.
このように、 本発明に係る原料成形体は、 その製造工程における、 熱処理 (成 形) 工程、 還元工程、 および酸処理工程などの流れ作業が容易に達成できる特徴 を有しており、 多量に処理する場合においても成形体の大きさや数量を増加する ことで容易に対応することができ、 また成形体の処理数量を増やしたとしても反 応速度や反応の均一性が損なわれることがない。 従って、 本発明に係る製造方法 並びに原料成形体によれば、 容易にプロセスを連続化、 大型化することができる。 また、 本発明に係るニオブ粉末の製造方法によれば、 ニオブ原料を含む成形体 を介した還元反応を行うことで、 高速かつ均一に原料の還元を行うことができる ため、 得られるニオブ粉末が高純度で均一な粒度を有する点においても有効であ る。 , As described above, the raw material molded article according to the present invention has a feature that a flow operation such as a heat treatment (molding) step, a reduction step, and an acid treatment step in the production process can be easily achieved. In the case of processing, it is possible to easily cope with the problem by increasing the size and quantity of the molded body, and even if the processing quantity of the molded body is increased, the reaction speed and the uniformity of the reaction are not impaired. Therefore, according to the production method and the raw material compact according to the present invention, the process can be easily made continuous and the size can be increased. Further, according to the method for producing a niobium powder according to the present invention, a molded article containing a niobium raw material Since the raw material can be reduced at a high speed and uniformly by performing the reduction reaction through, the niobium powder obtained is also effective in that it has high purity and uniform particle size. ,
前記実施形態では、 ニオブ粉末の製造方法について詳細に説明したが、 本発明 に係る製造方法は、 他の金属粉末の製造にも同様に適用することができる。 すな わち、 目的とする金属の化合物を原料とし、 成形工程において、 これを粘結剤と 混合し、 所定形状に成形した後、 焼成して金属原料成形体を作成し、 得られた金 属原料成形体を還元工程において、 活性金属により還元させ、 好ましくは、 酸処 理によって、 活性金属と副生成物を分離することにより、 目的とする金属の粉末 を製造することができる。 前記金属の化合物として、 ジルコニウム、 チタン、 ノヽ フニゥム、 タンタル、 希土類金属、 もしくはァクチノイ ド金属等の金属元素を含 む化合物が好適に用いられる。  In the above embodiment, the method for producing niobium powder has been described in detail, but the production method according to the present invention can be similarly applied to the production of other metal powders. In other words, a target metal compound is used as a raw material, and in a molding step, this is mixed with a binder, molded into a predetermined shape, and then fired to form a metal raw material molded body. The target metal powder can be produced by reducing the metal raw material compact with an active metal in the reduction step, and preferably separating the active metal and by-products by an acid treatment. As the compound of the metal, a compound containing a metal element such as zirconium, titanium, platinum, tantalum, a rare earth metal, or an actinide metal is preferably used.
次に、 本発明に係るタンタル粉末の製造方法について、 更に説明する。 前記タ ンタル粉末の製造方法は、 タンタル化合物を原料とし、 該タンタル化合物を還元 してタンタルを製造する方法であって、 前記タンタル化合物を粘結剤と混合して スラリーを作製し、 これを、 板状、 線状、 粒状などの所定形状に成形した後、 焼 成してタンタル原料成形体を作製する成形工程と、 前記タンタル原料成形体に還 元剤としての活性金属を接触させることにより前記タンタル化合物を還元してタ ンタルを生成する還元工程とを含むことを特徴とする。 前記タンタル化合物とし て、 酸化タンタル又はハロゲン化タンタルなどを用いることができる。  Next, the method for producing tantalum powder according to the present invention will be further described. The method for producing tantalum powder is a method for producing tantalum by using a tantalum compound as a raw material, reducing the tantalum compound, and mixing the tantalum compound with a binder to form a slurry. After forming into a predetermined shape such as a plate, a line, or a granule, and sintering to form a tantalum raw material molded body, the active metal as a reducing agent is brought into contact with the tantalum raw material molded body. A reduction step of reducing the tantalum compound to produce tantalum. As the tantalum compound, tantalum oxide or tantalum halide can be used.
前記成形工程における焼成温度としては、 3 0 0〜 1 0 0 0 °C、 より好ましく は 8 0 0〜 1 0 0 0 °C程度が好ましく、 焼成時間としては、 成形体の寸法や加熱 温度等にも依存するが、 0 . 5〜 1 2時間程度、 より好ましくは 1〜6時間程度、 さらにより好ましくは 1〜 3時間程度が好ましレ、。 前記焼成温度が 3 0 0 °C未満 では、 成形体から粘結剤を十分に除去することができず、 続く還元工程における 反応効率が低下し、 得られる粉末の純度が低下する傾向にあり、 1 0 0 0 °Cを超 えると、 タンタル原料成形体が変形する傾向にある。 また、 焼成を行う場合には、 大気中又は酸素雰囲気中で行うのがよい。  The firing temperature in the forming step is preferably about 300 to 100 ° C., more preferably about 800 to 100 ° C., and the firing time is, for example, the size of the molded body and the heating temperature. It is preferably about 0.5 to 12 hours, more preferably about 1 to 6 hours, and still more preferably about 1 to 3 hours. If the firing temperature is less than 300 ° C., the binder cannot be sufficiently removed from the molded body, the reaction efficiency in the subsequent reduction step is reduced, and the purity of the obtained powder tends to decrease, If the temperature exceeds 100 ° C., the tantalum raw material molded body tends to be deformed. When firing is performed, it is preferable to perform firing in the air or in an oxygen atmosphere.
前記活性金属として、 カルシウム、 マグネシウム、 ナトリウム、 バリゥム、 お よびカリゥムから選ばれる 1種以上の金属を用いることが好ましい。 このような 活性金属を用いてタンタル原料成形体の還元を行うことで、 効率よく還元反応を 進行させることができる。 さらに、 前記活性金属として、 マグネシウムを用いる と、 最も効率よく還元反応を進行させることができるため、 特に好ましい。 As the active metal, calcium, magnesium, sodium, barium, and It is preferable to use at least one metal selected from metals and potassium. By performing reduction of the tantalum raw material compact using such an active metal, the reduction reaction can proceed efficiently. Further, it is particularly preferable to use magnesium as the active metal because the reduction reaction can proceed most efficiently.
前記還元工程における成形体の温度は、 6 0 0 °C〜 1 3 0 0 °C、 より好ましく は 8 0 0〜 1 0 0 0 °Cとすることが好ましい。 成形体の温度が 6 0 0 °C未満では、 還元剤の蒸気圧が低く、 還元反応が十分に進行しない傾向にあり、 成形体の温度 が 1 3 0 0 °Cを越えると、 生成するタンタル粉末の焼結が進行する傾向がある。 また、 前記還元工程における反応時間は、 タンタル原料成形体の寸法や加熱温度 等にもよる力 S、 1〜2 4時間程度、 好ましくは 1〜6時間程度、 さらにより好ま しくは 3〜 6時間程度である。  The temperature of the compact in the reduction step is preferably from 600 to 130 ° C, more preferably from 800 to 100 ° C. If the temperature of the compact is less than 600 ° C, the reducing agent tends to have a low vapor pressure, and the reduction reaction does not proceed sufficiently.If the temperature of the compact exceeds 130 ° C, the tantalum formed Sintering of the powder tends to proceed. Further, the reaction time in the reduction step is a force S depending on the dimensions and heating temperature of the tantalum raw material molded article, about 1 to 24 hours, preferably about 1 to 6 hours, and more preferably 3 to 6 hours. It is about.
また、 前記還元工程において、 活性金属を気化させた状態で、 タンタル原料成 形体と接触させることが好ましい。 この場合、 還元装置内に、 タンタル原料成形 体を通気性が保たれるように配置し、 還元反応を行わせることが好ましい。 例え ば、 複数のタンタル原料成形体を縦位置に支持するための支持部材と加熱装置を 有する還元装置内に、 この支持部材を用いてタンタル原料成形体を縦位置に配置 し、 活性金属を還元装置の底部、 もしくは支持部材上、 もしくは隣接するタンタ ル原料成形体の間に配置し、 加熱装置により還元装置を加熱することにより、 活 性金属を気化させ、 タンタル原料成形体と接触させて、 還元反応を行わせること ができる。 このように、 還元装置内に、 タンタル原料成形体を通気性が保たれる ように配置することにより、 気化した活性金属が均一に拡散するため、 タンタル 原料成形体と活性金属とをより均一に接触させることができ、 時間的 ·空間的に 還元反応がより均一に進行し、 還元効率を高めることができる。 また、 タンタル 原料成形体が還元装置に直接接触することがないため、 還元装置からの汚染を防 ぐことができ、 得られるタンタル粉末の純度を高めることができる。  In the reduction step, it is preferable that the active metal is brought into contact with the tantalum raw material molded body in a vaporized state. In this case, it is preferable to arrange the tantalum raw material molded body in the reduction device so that air permeability is maintained, and to perform the reduction reaction. For example, in a reduction device having a support member and a heating device for supporting a plurality of tantalum raw material compacts in a vertical position, the tantalum raw material compacts are arranged in a vertical position using the support members to reduce active metal. The active metal is vaporized by being placed at the bottom of the device, on the support member, or between adjacent tantalum raw material compacts, and heating the reducing device with a heating device, and brought into contact with the tantalum raw material compacts. A reduction reaction can be performed. In this way, by arranging the tantalum raw material compact in the reduction device so that air permeability is maintained, the vaporized active metal diffuses uniformly, so that the tantalum raw material compact and the active metal can be more uniformly dispersed. Contact can be made, and the reduction reaction proceeds more uniformly in time and space, and the reduction efficiency can be increased. In addition, since the tantalum raw material compact does not directly contact the reduction device, contamination from the reduction device can be prevented, and the purity of the obtained tantalum powder can be increased.
また、 前記タンタル原料成形体を作製する成形工程において、 タンタル化合物 および粘結剤に加えて、 還元助剤としての活性金属化合物をさらに混合してタン タル原料成形体を作成することができる。 前記還元助剤としての活性金属化合物 は、 粘結剤としても利用することができるが、 タンタル粉末の析出形態を制御し、 7481 Further, in the forming step of preparing the tantalum raw material molded body, an active metal compound as a reduction aid may be further mixed in addition to the tantalum compound and the binder to form the tantalum raw material molded body. The active metal compound as the reduction aid can be used also as a binder, but controls the precipitation form of the tantalum powder, 7481
13 酸処理効率を高めるために用いることもできる。 このように、 タンタル原料成形 体を、 タンタル化合物およぴ粘結剤に加えて、 還元助剤としての活性金属化合物 を混合して作製することにより、 還元工程における反応がより均一に促進され、 製造効率を高めることができる。 さらに、 前記還元助剤の種類及び還元助剤の配 合量を調節することにより、 生成されるタンタル粉末の粒径を制御することも可 能である。 また、 反応容器からの汚染を効果的に防止することができる。  13 Can be used to increase acid treatment efficiency. As described above, by forming the tantalum raw material molded body by mixing the tantalum compound and the binder with the active metal compound as a reduction aid, the reaction in the reduction step is more uniformly promoted, Manufacturing efficiency can be increased. Further, the particle size of the generated tantalum powder can be controlled by adjusting the type of the reduction aid and the amount of the reduction aid mixed. Further, contamination from the reaction vessel can be effectively prevented.
前記還元助剤として、 カルシウム、 マグネシウム、 ナトリウム、 ノくリウム、 お よび力リゥムから選ばれる 1種以上の金属の化合物を用いることが好ましく、 こ れらの金属の酸化物、 ハロゲン化物、 炭酸塩、 水酸化物、 塩化物、 および/また はフッ化物を用いることがより好ましく、 具体的には、 塩化カルシウム、 炭酸力 ルシゥム、 炭酸ナトリウム、 もしくは塩化ナトリウムなどを単独で、 あるいは混 合して、 用いることができる。 前記還元助剤の配合量は、 成形体中に含まれるタ ンタル 1モルに対して、 還元助剤中におけるカチオンが 0〜 2モル、 より好まし くは 0 . 5〜 1モルとなるように配合することが好ましい。 このような活性金属 化合物を還元助剤として含む成形体を用いることで、 還元工程の反応効率及び均 一性をより高めることができる。  As the reduction aid, it is preferable to use a compound of at least one metal selected from calcium, magnesium, sodium, potassium, and magnesium, and oxides, halides, and carbonates of these metals , Hydroxides, chlorides, and / or fluorides are more preferably used.Specifically, calcium chloride, calcium carbonate, sodium carbonate, sodium chloride, or the like is used alone or in combination. Can be used. The compounding amount of the reduction aid is such that the cation in the reduction aid is 0 to 2 mol, more preferably 0.5 to 1 mol, relative to 1 mol of tantalum contained in the molded article. It is preferable to mix them. By using a molded article containing such an active metal compound as a reduction aid, the reaction efficiency and uniformity of the reduction step can be further improved.
さらに、 前記成形工程において、 作製されるタンタル原料成形体の形状を、 成 形体内部の任意の位置から成形体表面までの距離が 1 0 mm以下となるように成 形することが好ましレ、。 前記の 「成形体内部の任意の位置から成形体表面までの 距離」 とは、 成形体の内部の任意の位置から最短距離にある表面までの距離を示 している。 当該製造方法における還元工程においては、 タンタル原料成形体表面 から内部へ還元剤が拡散し、 成形体に含まれるタンタル化合物が還元されること となる。 従って、 成形体の形状を前記の形状とするならば、 還元反応終了時点に おいて成形体表面からの還元剤の最大の拡散距離は 1 0 mm以下となり、 成形体 表面から成形体内部に拡散される還元剤の拡散処理が部位により著しく異なるこ とがなく、 成形体全体においてタンタル原料を均一かつ高速に還元することがで さる。  Further, in the forming step, it is preferable that the shape of the tantalum raw material formed body is formed such that the distance from an arbitrary position inside the formed body to the surface of the formed body is 10 mm or less. . The “distance from any position inside the molded body to the surface of the molded body” indicates the distance from any position inside the molded body to the shortest surface. In the reduction step in the manufacturing method, the reducing agent diffuses from the surface of the tantalum raw material molded body to the inside, and the tantalum compound contained in the molded body is reduced. Therefore, if the shape of the compact is the above-mentioned shape, the maximum diffusion distance of the reducing agent from the surface of the compact at the end of the reduction reaction is 10 mm or less, and the maximum diffusion distance from the surface of the compact to the inside of the compact is The diffusion treatment of the reducing agent to be performed does not significantly differ depending on the part, and the tantalum raw material can be uniformly and rapidly reduced in the entire molded body.
さらに、 前記タンタル粉末の製造方法は、 前記還元工程で生成したタンタルと、 還元剤、 還元助剤、 及び副生成物とを、 酸処理により分離する工程をさらに含む ことができる。 酸処理により分離する工程を設けることにより、 目的物であるタ ンタルと、 還元剤、 還元助剤、 及び還元反応に伴い生じる副生成物とを、 容易に 分離することができ、 高純度のタンタルを大量に製造することができる。 また、 本発明に係る製造方法では、 タンタル原料成形体を反応に供するため、 還元後に も前記成形体の形状がほぼ保持される。 このため、 この還元後の成形体に対して 酸処理を行うことで、 効率よく還元剤及び副生成物を除去することができるとい う利点も有する。 実施例 Further, the method for producing a tantalum powder further includes a step of separating the tantalum generated in the reduction step, a reducing agent, a reduction aid, and a by-product by an acid treatment. be able to. By providing a step of separation by acid treatment, the target substance, tantalum, and the reducing agent, reduction aid, and by-products generated by the reduction reaction can be easily separated, and high-purity tantalum can be obtained. Can be manufactured in large quantities. Further, in the production method according to the present invention, since the tantalum raw material compact is subjected to the reaction, the shape of the compact is substantially maintained even after reduction. For this reason, by performing an acid treatment on the molded body after the reduction, there is also an advantage that the reducing agent and by-products can be efficiently removed. Example
次に、 実施例により本発明を更に詳細に説明するが、 以下の実施例は本発明を 限定するものではない。 実施例 1  Next, the present invention will be described in more detail by way of examples, but the following examples do not limit the present invention. Example 1
本例では、 図 1に示す製造装置を用いて、 金属熱還元反応によるニオブの製造 を行った。  In this example, niobium was produced by a metal thermal reduction reaction using the production apparatus shown in FIG.
ニオブ原料 (Nb25、 100 g) に対し、 還元助剤 (C a C l 2, C a CO 3 , Na 2C〇3, N a C 1のうち 1種又は 2種以上を選択して添加した) は、 0 〜 80重量%添加した。 具体的には、 還元助剤添加重量は、 Nb lモルに対し、 助剤のカチオン (C a 2 +, N a +) が 0、 1Z10、 1/5, 1 2モルとなる ようにした。 To niobium raw material (Nb 25, 100 g), select one or more of the assistant reducing agent (C a C l 2, C a CO 3, Na 2 C_〇 3, N a C 1 Was added in an amount of 0 to 80% by weight. Specifically, the cations (C a 2 + , N a + ) of the auxiliaries were 0, 1Z10, 1/5, and 12 moles with respect to Nbl moles.
次いで、 前記ニオブ原料、 還元助剤と、 粘結剤を混合してスラリーを作製した。 粘結剤は、 前記原料と助剤と同体積の 5 %コロジオン溶液 ( 5 %二トロセルロー ス、 40%エーテル、 55%エタノール) とした。  Next, a slurry was prepared by mixing the niobium raw material, the reducing aid, and the binder. The binder was a 5% collodion solution (5% nitrocellulose, 40% ether, 55% ethanol) in the same volume as the raw material and auxiliary.
そして、 得られたスラリーに粘性を調節するためのアセトンを適量加えた後、 数 mm厚、 20 cm角の錶型に鎳込み、 複数の成形体を製造した。 成形体の厚さ は、 3 mm程度のものと 6 mm程度のものを 2種類用意した。  Then, an appropriate amount of acetone for adjusting the viscosity was added to the obtained slurry, and the mixture was poured into a 20 mm square mold having a thickness of several mm to produce a plurality of compacts. Two types of compacts were prepared, about 3 mm thick and about 6 mm thick.
次に、 得られた成形体を 1000°Cの大気雰囲気の炉で 1時間焼成し、 ニオブ 原料と助剤の混合物から、 粘結剤及び溶剤 '水分を完全に除去した。 このような 焼成を行うことで、 還元剤を節約し、 かつ生成したニオブ粉末中への炭素汚染を 防ぐことができる。 Next, the obtained molded body was fired in a furnace in an air atmosphere at 1000 ° C. for 1 hour to completely remove the binder and the solvent water from the mixture of the niobium raw material and the auxiliary. By performing such calcination, reducing agent is saved and carbon contamination in the generated niobium powder is reduced. Can be prevented.
こうして得られた成形体を複数個、 通気性が確保されるように工夫し、 マグネ シゥム還元剤 (活性金属 15) とともに反応容器 10に入れ、 反応容器 10を密 閉した。 次に、 この成形体 1 2と還元剤 15が導入された反応容器 10を、 1 0 00°Cに保持した電気炉に 6時間投入し、 還元反応を十分に進行させた後、 容器 ごと炉外に取出し、 冷却した。  A plurality of the molded bodies obtained in this manner were devised so that air permeability was ensured, and they were put into a reaction vessel 10 together with a magnesium reducing agent (active metal 15), and the reaction vessel 10 was tightly closed. Next, the reaction vessel 10 into which the molded body 12 and the reducing agent 15 are introduced is put into an electric furnace maintained at 100 ° C. for 6 hours, and the reduction reaction is sufficiently advanced. Removed and cooled.
還元後得られた成形体 (金属ニオブ粉末と助剤と MgO, Mgの混合物) は、 酢酸水溶液 ( 1 + 1 ) にて粗洗浄したのち、 IN HC 1水溶液にて 2回洗浄し、 さらに、 水、 アルコール、 およびアセトンで置換後、 乾燥させた。  The compact (mixture of niobium metal powder, auxiliary and MgO, Mg) obtained after reduction is roughly washed with an aqueous acetic acid solution (1 + 1) and then twice with an aqueous IN HC1 solution. After replacing with water, alcohol, and acetone, it was dried.
得られたニオブの評価:図 2は、 50 x 20 x 3 mm角の原料成形体を 100 0°Cで 6時間マグネシウム蒸気と反応させニオブ原料を還元し、 冷却後、 酢酸水 溶液 ( 1 + 1 ) にて粗洗浄したのち、 1 N HC 1水溶液にて 2回洗浄し、 さら に、 水、 アルコール、 およびアセトンで置換後、 乾燥させて得たニオブ粉末の走 査型電子顕微鏡による形態の写真を表す図である。 尚、 図 2に示す写真を表す図 は、 助剤の種類 (横軸) とカチオン比 (縦軸) によりマトリクス状に配置されて いる。  Evaluation of the obtained niobium: Fig. 2 shows that the raw material compact of 50 x 20 x 3 mm square was reacted with magnesium vapor at 1000 ° C for 6 hours to reduce the niobium raw material. After cooling, the acetic acid aqueous solution (1+ After rough washing in 1), wash twice with 1N HC1 aqueous solution, replace with water, alcohol, and acetone, and then dry. It is a figure showing a photograph. Incidentally, the diagram showing the photograph shown in FIG. 2 is arranged in a matrix according to the type of auxiliary agent (horizontal axis) and the cation ratio (vertical axis).
この図に示すように、 原料成形体中の助剤の種類と量を変化さることにより、 ニオブ粉末の粒度が制御できることがわかった。 写真を表す図の一コマの横幅は 約 1 5 μ mであり、 助剤の種類や量によつて粒度は異なるが、 0. 5〜 3 m程 度の一次粒径を有するニオブ粉末が得られた。 実施例 2  As shown in this figure, it was found that the particle size of the niobium powder could be controlled by changing the type and amount of the auxiliary agent in the raw material compact. The width of one frame shown in the photograph is about 15 μm, and the particle size varies depending on the type and amount of the auxiliaries, but niobium powder having a primary particle size of about 0.5 to 3 m is obtained. Was done. Example 2
本例においても、 図 1に示す製造装置を用いて、 金属熱還元反応によるタンタ ルの製造を行った。  Also in this example, tantalum was produced by a metal thermal reduction reaction using the production apparatus shown in FIG.
表 1に記載する組成で、 タンタル原料 (T a 205) 、 還元助剤 (C a C 12, C a C〇3, Na 2C03, N a C 1の中から 1種を選択して添加した) 、 粘結剤 を混合して、 スラリーを作製した。 粘結剤は、 前記タンタル原料と還元助剤と同 体積の 5 %コロジオン溶液 ( 5 %-トロセルロース、 40 %エーテル、 55 %ェ タノール) とした。 前記スラリーの粘性は、 添加する還元助剤および粘結剤の量 を変えることにより調節した。 In the composition described in Table 1, tantalum raw material (T a 2 0 5), selecting one from among the assistant reducing agent (C a C 1 2, C a C_〇 3, Na 2 C0 3, N a C 1 ) And a binder were mixed to prepare a slurry. The binder was a 5% collodion solution (5% trocellulose, 40% ether, 55% ethanol) in the same volume as the tantalum raw material and the reducing aid. The viscosity of the slurry depends on the amount of reducing aid and binder added. Was adjusted by changing
そして、 得られたスラリーを、 铸型に铸込み、 5〜1 Ommの厚さの板状の成 形体を製造した。  Then, the obtained slurry was poured into a mold to produce a plate-like molded body having a thickness of 5 to 1 Omm.
次に、 得られた成形体を 1000°Cの大気雰囲気の炉で 3時間焼成し、 タンタ ル原料と助剤の混合物から、 粘結剤及び溶剤 ·水分を完全に除去した。 このよう な焼成を行うことで、 還元剤を節約し、 かつ生成したタンタル粉末中への炭素汚 染を防ぐことができる。  Next, the obtained compact was fired in a furnace in an air atmosphere at 1000 ° C. for 3 hours to completely remove the binder, the solvent, and the water from the mixture of the tantalum raw material and the auxiliary agent. By performing such calcination, a reducing agent can be saved and carbon contamination in the generated tantalum powder can be prevented.
こうして得られた成形体 4〜10枚を、 通気性が確保されるように工夫し、 2 0 gのマグネシゥム還元剤 (活性金属 15) とともに反応容器 10に入れ、 タン グステン不活性ガスで溶接し、 反応容器 10を密閉した。 次に、 この成形体 12 と還元剤 15が導入された反応容器 10を、 700〜 1000 °Cに保持した電気 炉に 6から 24時間投入し、 還元反応を十分に進行させた後、 容器ごと炉外に取 出し、 冷却した。  The resulting 4 to 10 compacts were placed in a reaction vessel 10 together with 20 g of a magnesium reducing agent (active metal 15) while maintaining the air permeability, and were welded with tungsten inert gas. The reaction vessel 10 was sealed. Next, the reaction vessel 10 into which the molded body 12 and the reducing agent 15 are introduced is put into an electric furnace maintained at 700 to 1000 ° C. for 6 to 24 hours, and the reduction reaction is sufficiently advanced. Removed from the furnace and cooled.
還元後得られた成形体 (金属タンタル粉末と助剤と Mg〇, Mgの混合物) は、 酢酸水溶液 ( 1 + 1 ) にて粗洗浄したのち、 1 N HC 1水溶液にて 2回洗浄し、 さらに、 水、 アルコール、 およびアセトンで置換後、 乾燥させた。 After the reduction, the compact (mixture of metal tantalum powder, auxiliaries, and Mg and Mg) is roughly washed with an aqueous acetic acid solution (1 + 1), and then washed twice with an aqueous 1N HC1 solution. Further, after substitution with water, alcohol, and acetone, the mixture was dried.
Figure imgf000019_0001
Figure imgf000019_0001
なお、 表 1において、 Xは、 タンタル 1モルに対する還元助剤中に含まれるカチ オンのモル数を表す。  In Table 1, X represents the number of moles of cation contained in the reduction aid per 1 mole of tantalum.
得られたタンタル粉末について、 走査型電子顕微鏡を用いて形態を観察し、 さ らに光学回折分析法により、 粒径分布について調べた。  The morphology of the obtained tantalum powder was observed using a scanning electron microscope, and the particle size distribution was examined by optical diffraction analysis.
図 3および図 4は、 実験例 A〜 Kで得られたタンタル粉末の走查型電子顕微鏡 による形態の写真を表す図である。 図 3に示すように、 得られたタンタル粉末は、 粒径 0 . 1〜 0 . 5 μ mの珊瑚状の形態を有するものであった。 また、 還元助剤 としてカルシウム化合物を用いた場合、 得られるタンタル粉末の粒径が均一であ るのに対して、 還元助剤として N a C 1もしくは N a C〇3を用いた場合、 得ら れるタンタル粉末中には、 粒径 0 . 1〜0 . 2 μ ιηの小さな粒子と粒径 0 . 5 m程度の大きい粒子の 2種類の粒子が含まれていた。 また、 図 4に示すように、 成形体中における還元助剤の配合量を増やすことにより、 得られるタンタル粉末 の粒径が増加した。 FIGS. 3 and 4 are photographs showing the morphology of the tantalum powder obtained in Experimental Examples A to K by scanning electron microscopy. As shown in FIG. 3, the obtained tantalum powder had a coral-like morphology with a particle size of 0.1 to 0.5 μm. In the case of using a calcium compound as an assistant reducing agent, if with respect to the particle size of the tantalum powder obtained that Ru uniform der, with N a C 1 or N a C_〇 3 as a reducing aid, give The resulting tantalum powder contained two types of particles, a small particle having a particle size of 0.1 to 0.2 μιη and a large particle having a particle size of about 0.5 m. As shown in Fig. 4, the tantalum powder obtained by increasing the amount of the Increased in particle size.
図 5 Aは、 実験 B、 D、 および Oで得られたタンタル粉末の粒径分布について 示したグラフである。 これより、 還元助剤としてナトリウム化合物を用いた場合、 カルシウム化合物を用いた場合よりも、 粒径の小さな粉末が得られる傾向にある こと示された。 また、 還元助剤としてカルシウム化合物を用いた場合、 得られる タンタル粉末の粒径がより均一なものになることが示された。  FIG. 5A is a graph showing the particle size distribution of the tantalum powder obtained in Experiments B, D, and O. This indicates that a powder having a smaller particle size tends to be obtained when a sodium compound is used as a reduction aid than when a calcium compound is used. In addition, it was shown that when a calcium compound was used as a reduction aid, the particle size of the obtained tantalum powder became more uniform.
図 5 Bは、 実験 H、 I、 および Oで得られたタンタル粉末の粒径分布について 示したグラフである。 これにより、 成形体中における還元助剤の配合量をふやす ことにより、 得られるタンタル粉末の粒径が大きくなることが示された。  FIG. 5B is a graph showing the particle size distribution of the tantalum powder obtained in Experiments H, I, and O. As a result, it was shown that the particle size of the obtained tantalum powder was increased by increasing the amount of the reducing aid in the molded body.
これらの結果より、 原料成形体中の還元助剤の種類と量を変化さることにより、 タンタル粉末の粒度が制御できることが示された。 産業上の利用可能性  From these results, it was shown that the particle size of the tantalum powder can be controlled by changing the type and amount of the reduction aid in the raw material compact. Industrial applicability
以上詳細に説明したように、 本発明に係るニオブ粉末の製造方法によれば、 還 元反応を均一に進行させることができるとともに、 還元装置内にニオブ原料の成 形体を設置して還元反応を進行させることで還元プロセスの連続化、 大型化、 バ ツチ処理の効率化を簡便な装置で行うことができ、 ニオブ化合物から直接高純度 のニオブ粉末を効率よく製造することができる。  As described above in detail, according to the method for producing niobium powder according to the present invention, the reduction reaction can proceed uniformly, and the reduction reaction can be performed by installing the molded body of the niobium raw material in the reduction device. By proceeding, the reduction process can be continued, increased in size, and the efficiency of batch treatment can be performed with a simple device, and high-purity niobium powder can be efficiently produced directly from the niobium compound.
また、 本発明に係るタンタル粉末の製造方法によれば、 還元反応を均一に進行 させることができるとともに、 還元装置内にタンタル原料の成形体を設置して還 元反応を進行させることで還元プロセスの連続化、 大型化、 バッチ処理の効率化 を簡便な装置で行うことができ、 タンタル化合物から直接高純度のタンタル粉末 を効率よく製造することができる  Further, according to the method for producing a tantalum powder according to the present invention, the reduction reaction can proceed uniformly, and the reduction process can be performed by installing a compact of the tantalum raw material in the reduction device and performing the reduction reaction. Continuity, upsizing, and batch processing efficiency can be performed with simple equipment, and high-purity tantalum powder can be efficiently produced directly from tantalum compounds.
また、 本発明に係る金属粉末の製造方法によれば、 ニオブおよびタンタル以外 のジルコニウム、 チタン、 ハフニウム、 希土類金属、 ァクチノイド金属等の金属 粉末を金属化合物から高純度で効率よく製造することができ、 好ましくは連続的 に製造することができる。  Further, according to the method for producing a metal powder according to the present invention, a metal powder such as zirconium other than niobium and tantalum, titanium, hafnium, a rare earth metal, and an actinoid metal can be efficiently produced with high purity from a metal compound. Preferably, it can be manufactured continuously.
また、 本発明に係る金属原料成形体にあっては、 金属化合物と粘結剤とを混合 し、 所定形状に成形後焼成してなる金属化合物の成形体であって、 前記成形体内 部の任意の位置から成形体表面までの距離が、 1 O mm以下とされた構成を備え たことで、 成形体表面からの還元剤の拡散距離が 1 0 mm以下となるようにする ことができ、 均一かつ高速に金属化合物の還元を行うことができるものである。 The metal raw material molded product according to the present invention is a metal compound molded product obtained by mixing a metal compound and a binder, forming the mixture into a predetermined shape, and firing the mixture. The distance from any part of the part to the surface of the compact is set to 1 Omm or less, so that the diffusion distance of the reducing agent from the surface of the compact is 10 mm or less. The metal compound can be uniformly and rapidly reduced.

Claims

請 求 の 範 囲 The scope of the claims
1 . 金属化合物を原料とし、 前記金属化合物を還元して金属を製造する方法で あって、 1. A method for producing a metal by reducing a metal compound using a metal compound as a raw material,
前記金属化合物を粘結剤と混合して、 成形した後、 焼成して金属原料成形体を 作製する成形工程、 および  A molding step of mixing the metal compound with a binder, molding, and then firing to produce a metal raw material molded body; and
前記金属原料成形体を還元剤としての活性金属と接触させることにより、 前記 金属原料成形体を還元して金属を生成する還元工程、  A reducing step of reducing the metal raw material molded body to generate a metal by bringing the metal raw material molded body into contact with an active metal as a reducing agent;
を含む金属粉末の製造方法。 A method for producing a metal powder comprising:
2 . 前記金属化合物として、 ニオブ化合物が用いられる請求項 1に記載の金属 粉末の製造方法。 2. The method for producing a metal powder according to claim 1, wherein a niobium compound is used as the metal compound.
3 . 前記金属化合物として、 タンタル化合物が用いられる請求項 1に記載の金 属粉末の製造方法。 3. The method for producing a metal powder according to claim 1, wherein a tantalum compound is used as the metal compound.
4 . 前記金属化合物として、 ジルコニウム、 チタン、 ハフニウム、 希土類金属、 およびァクチノィド金属から選択される金属元素の化合物が用いられる請求項 1 に記載の金属粉末の製造方法。 4. The method for producing a metal powder according to claim 1, wherein the metal compound is a compound of a metal element selected from zirconium, titanium, hafnium, rare earth metal, and actinide metal.
5 . 前記成形工程において、 金属化合物と、 粘結剤と、 還元助剤としての活性 金属化合物とを混合して、 金属原料成形体を成形する請求項 1に記載の金属粉末 の製造方法。 5. The method for producing a metal powder according to claim 1, wherein in the forming step, a metal compound, a binder, and an active metal compound as a reduction aid are mixed to form a metal raw material molded body.
6 . 前記還元剤として、 カルシウム、 マグネシウム、 ナトリウム、 ノくリウム、 およびカリゥムから選ばれる 1種以上の活性金属を用いる請求項 1に記載の金属 粉末の製造方法。 6. The method for producing a metal powder according to claim 1, wherein as the reducing agent, at least one active metal selected from calcium, magnesium, sodium, potassium, and potassium is used.
7 . 前記還元助剤として、 カルシウム、 マグネシウム、 ナトリウム、 バリウム、 および力リゥムから選ばれる 1種以上の活性金属の化合物を用いる請求項 2に記 載の金属粉末の製造方法。 7. Calcium, magnesium, sodium, barium, 3. The method for producing a metal powder according to claim 2, wherein a compound of at least one active metal selected from the group consisting of an active metal and a steel is used.
8 . 前記ニオブ化合物として、 酸ィヒニオブ又はハロゲン化ニオブを用いる請求 項 2に記載の金属粉末の製造方法。 8. The method for producing a metal powder according to claim 2, wherein niobium acid or niobium halide is used as the niobium compound.
9 . 前記還元工程における成形体の温度を、 6 0 0 °C以上 1 3 0 0 °C以下とす る請求項 1に記載の金属粉末の製造方法。 9. The method for producing a metal powder according to claim 1, wherein the temperature of the compact in the reduction step is set to 600 ° C. or more and 130 ° C. or less.
1 0 . 前記成形工程において、 金属原料成形体内部の任意の位置から成形体表 面までの距離が 1 O mm以下である形状に、 金属原料成形体を成形する請求項 1 に記載の金属粉末の製造方法。 10. The metal powder according to claim 1, wherein in the forming step, the metal raw material molded body is formed into a shape in which a distance from an arbitrary position inside the metal raw material molded body to the surface of the molded body is 1 O mm or less. Manufacturing method.
1 1 . 前記還元工程で生成した金属と、 活性金属及び副生成物とを、 酸処理に より分離する工程をさらに含む請求項 1に記載の金属粉末の製造方法。 11. The method for producing a metal powder according to claim 1, further comprising a step of separating the metal generated in the reduction step from the active metal and by-products by an acid treatment.
1 2 . 金属化合物と粘結剤とを混合し、 成形後焼成してなる金属原料成形体で あって、 1 2. A metal raw material molded body obtained by mixing a metal compound and a binder, molding and firing.
前記成形体内部の任意の位置から成形体表面までの距離が、 1 0 mm以下であ る金属原料成形体。  A metal raw material molded body in which a distance from an arbitrary position inside the molded body to a surface of the molded body is 10 mm or less.
1 3 . 前記金属化合物が、 ニオブ、 ジルコニウム、 チタン、 ハフユウム、 タン タル、 希土類金属、 およびァクチノイド金属から選択される金属元素の化合物原 料を含む請求項 1 2に記載の金属原料成形体。 13. The molded metal raw material according to claim 12, wherein the metal compound includes a compound raw material of a metal element selected from niobium, zirconium, titanium, hafium, tantalum, a rare earth metal, and an actinoid metal.
1 4 . 前記金属原料成形体が、 カルシウム、 マグネシウム、 ナトリウム、 ノくリ ゥム、 および力リゥムから選ばれる 1種以上の金属の化合物を還元助剤として含 む請求項 1 2に記載の金属原料成形体。 14. The metal according to claim 12, wherein the metal raw material compact contains, as a reduction aid, a compound of at least one metal selected from calcium, magnesium, sodium, rubber, and steel. Raw material compact.
1 5 . 前記還元助剤が、 カルシウム、 マグネシウム、 ナトリゥム、 バリウム、 およびカリウムから選ばれる 1種以上の金属の酸化物、 ハロゲン化物、 もしくは 炭酸塩である請求項 1 4に記載の金属原料成形体。 15. The shaped metal raw material according to claim 14, wherein the reduction aid is an oxide, halide, or carbonate of at least one metal selected from calcium, magnesium, sodium, barium, and potassium. .
PCT/JP2003/007481 2002-06-13 2003-06-12 Method for producing metal powder and formed product of raw material for metal WO2003106082A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR0311690-5A BR0311690A (en) 2002-06-13 2003-06-12 Metal powder and metal compound feed production process
DE60329388T DE60329388D1 (en) 2002-06-13 2003-06-12 METHOD FOR PRODUCING METAL POWDER AND MANUFACTURED RAW MATERIAL PRODUCT FOR METAL
US10/517,036 US20060107788A1 (en) 2002-06-13 2003-06-12 Method for producing metal powder and formed product of raw material for metal
EP03760145A EP1512475B1 (en) 2002-06-13 2003-06-12 Method for producing metal powder and formed product of raw material for metal
AU2003252463A AU2003252463A1 (en) 2002-06-13 2003-06-12 Method for producing metal powder and formed product of raw material for metal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-173198 2002-06-13
JP2002173198 2002-06-13

Publications (1)

Publication Number Publication Date
WO2003106082A1 true WO2003106082A1 (en) 2003-12-24

Family

ID=29727901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007481 WO2003106082A1 (en) 2002-06-13 2003-06-12 Method for producing metal powder and formed product of raw material for metal

Country Status (7)

Country Link
US (1) US20060107788A1 (en)
EP (1) EP1512475B1 (en)
CN (1) CN1311943C (en)
AU (1) AU2003252463A1 (en)
BR (1) BR0311690A (en)
DE (1) DE60329388D1 (en)
WO (1) WO2003106082A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LV13528B (en) * 2006-09-25 2007-03-20 Ervins Blumbergs Method and apparatus for continuous producing of metallic tifanium and titanium-bases alloys
CN101624659B (en) * 2009-01-06 2011-06-15 李健民 Method for preparing low-oxygen metal zirconium
WO2011009014A2 (en) * 2009-07-17 2011-01-20 Boston Silicon Materials Llc Manufacturing and applications of metal powders and alloys
US20130209308A1 (en) * 2012-02-15 2013-08-15 Baker Hughes Incorporated Method of making a metallic powder and powder compact and powder and powder compact made thereby
CN105014089B (en) * 2014-04-28 2017-06-06 湖南华威景程材料科技有限公司 A kind of method that vacuum carbon reduction prepares hafnium metal powder
CN105002393A (en) * 2015-07-06 2015-10-28 刘实 Manufacturing method of Fe-Cu composite metal material, Fe-Cu composite metal material and application thereof
CN108624782A (en) * 2017-03-23 2018-10-09 江苏展钛科技有限公司 A method of preparing biological titanium alloy
CN109523177A (en) * 2018-11-21 2019-03-26 武汉钢铁有限公司 The method for improving coal powder formation rate and shaping strength

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4112841B1 (en) * 1963-02-04 1966-07-21
GB1549702A (en) * 1976-07-08 1979-08-08 Ncr Inc Metal powder production
JPS61284501A (en) * 1985-06-10 1986-12-15 Showa Kiyabotsuto Suupaa Metal Kk Production of tantalum powder
JPS6213506A (en) * 1985-07-11 1987-01-22 Sumitomo Metal Mining Co Ltd Production of rare earth metal powder
JPS62207805A (en) * 1986-03-07 1987-09-12 Sumitomo Metal Mining Co Ltd Production of titanium-containing alloy powder
US6136062A (en) 1998-10-13 2000-10-24 H. C. Starck Gmbh & Co. Kg Niobium powder and a process for the production of niobium and/or tantalum powders
WO2000067936A1 (en) 1998-05-06 2000-11-16 H.C. Starck, Inc. Metal powders produced by the reduction of the oxides with gaseous magnesium
JP2003013115A (en) * 2001-06-28 2003-01-15 Sumitomo Metal Mining Co Ltd Method for manufacturing niobium and/or tantalum powder

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1704257A (en) * 1923-02-12 1929-03-05 Westinghouse Lamp Co Method of preparing refractory metals
GB1094283A (en) * 1965-05-25 1967-12-06 Ciba Ltd Method for the manufacture of tantalum and/or niobium powder
DE2105932C3 (en) * 1971-02-09 1975-04-17 Bayer Ag, 5090 Leverkusen Agglomeration of ferrous titanium ores
US3839020A (en) * 1971-06-11 1974-10-01 Nippon Soda Co Process for the production of alloy sponge of titanium or zirconium base metal by mixing a halide of the alloying metal with titanium or zirconium tetrachloride and simultaneously reducing
DE2517180C3 (en) * 1975-04-18 1979-04-19 Fa. Hermann C. Starck Berlin, 1000 Berlin Process for the continuous production of fine, high-capacity earth acid metal powder for electrolytic capacitors
FR2531978B1 (en) * 1982-08-20 1985-07-12 Delachaux C PROCESS FOR THE MANUFACTURE OF HIGH PURITY METALS OR ALLOYS
CN1034264C (en) * 1991-03-23 1997-03-19 冶金工业部长沙矿冶研究院 Method for preparing microalloy iron powder by reduction grinding and selecting method
WO1993005190A1 (en) * 1991-09-04 1993-03-18 Nihon Millipore Kogyo Kabushiki Kaisha Process for producing porous metallic body
CN1123205A (en) * 1994-11-24 1996-05-29 中国科学院化工冶金研究所 Method for manufacturing peptide-nickel alloy powder
GB2303208B (en) * 1995-07-08 1998-01-21 Akio Usui Viscous liquid exothermic composition,exothermic device made thereof and manufacturing method of exothermic device
BR9707133A (en) * 1996-11-11 1999-05-18 Sumitomo Metal Ind Process to produce reduced iron and hot metal from fine iron oxides and installation to carry out the process
JP3493117B2 (en) * 1997-06-11 2004-02-03 株式会社 日立ディスプレイズ Liquid crystal display
CN1069564C (en) * 1998-07-07 2001-08-15 宁夏有色金属冶炼厂 Technology for making tantalum powder
JP3727232B2 (en) * 2000-09-26 2005-12-14 竹四 阿座上 Zinc recovery method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4112841B1 (en) * 1963-02-04 1966-07-21
GB1549702A (en) * 1976-07-08 1979-08-08 Ncr Inc Metal powder production
JPS61284501A (en) * 1985-06-10 1986-12-15 Showa Kiyabotsuto Suupaa Metal Kk Production of tantalum powder
JPS6213506A (en) * 1985-07-11 1987-01-22 Sumitomo Metal Mining Co Ltd Production of rare earth metal powder
JPS62207805A (en) * 1986-03-07 1987-09-12 Sumitomo Metal Mining Co Ltd Production of titanium-containing alloy powder
WO2000067936A1 (en) 1998-05-06 2000-11-16 H.C. Starck, Inc. Metal powders produced by the reduction of the oxides with gaseous magnesium
US6136062A (en) 1998-10-13 2000-10-24 H. C. Starck Gmbh & Co. Kg Niobium powder and a process for the production of niobium and/or tantalum powders
JP2003013115A (en) * 2001-06-28 2003-01-15 Sumitomo Metal Mining Co Ltd Method for manufacturing niobium and/or tantalum powder

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1512475A4

Also Published As

Publication number Publication date
CN1658991A (en) 2005-08-24
AU2003252463A1 (en) 2003-12-31
EP1512475A1 (en) 2005-03-09
EP1512475A4 (en) 2007-04-18
AU2003252463A8 (en) 2003-12-31
CN1311943C (en) 2007-04-25
EP1512475B1 (en) 2009-09-23
BR0311690A (en) 2005-03-22
US20060107788A1 (en) 2006-05-25
DE60329388D1 (en) 2009-11-05

Similar Documents

Publication Publication Date Title
JP4215911B2 (en) Niobium powder agglomerates
US4373947A (en) Process for the preparation of alloy powders which can be sintered and which are based on titanium
RU2378226C2 (en) Sintered body and use thereof
JP2022058729A (en) Reactive additive manufacturing
US9409141B2 (en) Methods for synthesizing metal oxide nanowires
JP4202609B2 (en) Metal powder produced by oxide reduction using gaseous magnesium
KR20010092260A (en) Metal Powders Produced by the Reduction of the Oxides with Gaseous Magnesium
KR100893415B1 (en) Metalothermic reduction of refractory metal oxides
CN103608481B (en) Can be used for manufacturing the powdered alloy based on uranium and molybdenum that nuclear fuel and being intended to produces radioisotopic target
WO2003106082A1 (en) Method for producing metal powder and formed product of raw material for metal
KR20230096980A (en) Method for producing alloy powder based on titanium metal
US4414188A (en) Production of zirconium diboride powder in a molten salt bath
JP2004156130A (en) Titanium oxide porous sintered compact for production of metal titanium by direct electrolysis process, and its manufacturing method
JP6784746B2 (en) Manufacturing method of metal container or tube, sponge titanium, and manufacturing method of titanium processed product or cast product
US20150064094A1 (en) Method of preparing titanium carbide powder
Okabe et al. Production of tantalum powder by magnesiothermic reduction of feed preform
US20060096418A1 (en) Process for the production of niobium and/or tantalum powder with large surface area
JP3937229B2 (en) Method for producing metal powder
JP2004169139A (en) Production method for high-purity titanium
JP3633543B2 (en) Method for producing niobium and / or tantalum powder
JP2688452B2 (en) Method for producing tantalum powder with high surface area and low metal impurities
RU2451577C2 (en) Method of fabricating tungsten oxide nanotubes
CN112973666B (en) Piezoelectric catalyst and preparation method thereof
JP2006045602A (en) Method for producing dendritic titanium powder
JPH09227965A (en) Refined metal ruthenium powder and its production

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038133423

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003760145

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003760145

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006107788

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10517036

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10517036

Country of ref document: US