WO2005076904A2 - Procede permettant de retirer du co2 dans des champs d'hydrates de gaz naturel et de recuperer simultanement du methane - Google Patents

Procede permettant de retirer du co2 dans des champs d'hydrates de gaz naturel et de recuperer simultanement du methane Download PDF

Info

Publication number
WO2005076904A2
WO2005076904A2 PCT/US2005/003485 US2005003485W WO2005076904A2 WO 2005076904 A2 WO2005076904 A2 WO 2005076904A2 US 2005003485 W US2005003485 W US 2005003485W WO 2005076904 A2 WO2005076904 A2 WO 2005076904A2
Authority
WO
WIPO (PCT)
Prior art keywords
methane
hydrate
carbon dioxide
gas
laser
Prior art date
Application number
PCT/US2005/003485
Other languages
English (en)
Other versions
WO2005076904A3 (fr
Inventor
Alwarappa Sivaraman
Original Assignee
Gas Technology Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gas Technology Institute filed Critical Gas Technology Institute
Publication of WO2005076904A2 publication Critical patent/WO2005076904A2/fr
Publication of WO2005076904A3 publication Critical patent/WO2005076904A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/005Waste disposal systems
    • E21B41/0057Disposal of a fluid by injection into a subterranean formation
    • E21B41/0064Carbon dioxide sequestration
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0099Equipment or details not covered by groups E21B15/00 - E21B40/00 specially adapted for drilling for or production of natural hydrate or clathrate gas reservoirs; Drilling through or monitoring of formations containing gas hydrates or clathrates
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/164Injecting CO2 or carbonated water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/70Combining sequestration of CO2 and exploitation of hydrocarbons by injecting CO2 or carbonated water in oil wells

Definitions

  • This invention relates to a process for storage and sequestration of carbon dioxide (C0 2 ). More particularly, this invention relates to a process for underground storage and sequestration of carbon dioxide in submerged sea areas of natural gas hydrate deposits.
  • Carbon dioxide capture would be most efficiently applied to large "point sources” in order to gain economies of scale both in the capture process itself and in subsequent transportation and storage.
  • sources include fossil-fuel power stations, oil refineries, petrochemical plant, cement works and iron and steel plants.
  • transportation is most likely to be by pipeline in preference to batch handling, although liquefied gas tankers have been suggested as an option for a demonstration project.
  • a range of storage options have been proposed, including injection into depleted oil and/or gas reservoirs, geological aquifers, deep unminable coal seams and on or below the deep ocean bed.
  • FIG. 1 is a schematic diagram showing a laser imaging system employed for the purpose of verifying the concept of this invention
  • Fig. 2 is a graphical representation showing conditions for methane hydrate formation as part of the conceptual verification;
  • Fig.3 is a laser image showing methane hydrate embedded in sediment;
  • Fig. 4 is a laser image showing methane hydrate embedded in the sediment near the sediment surface;
  • Fig.5 is a laser image of the sediment after completion of a test to verify operability of this invention
  • Fig. 6 is a diagram showing the gas chromatographic analysis of a gas phase sample (100 mole % C0 2 ) at the start of a test to verify operability of this invention.
  • Fig. 7 is a diagram showing the gas chromatographic analysis of a gas phase sample after 68 hours (27.67 mol % of methane) of operation of a test to verify operability of this invention.
  • the invention claimed herein is a method for sequestration and storage of C0 2 in which the C0 2 to be sequestered and stored is injected into a subterranean methane hydrate field whereby the methane in the methane hydrate field is displaced by the C0 2 and, in so doing, the methane is released for collection.
  • the laser imaging tool comprises two primary components, a laser operation component 10 and an analytical component 11.
  • the laser operation component 10 comprises an air-cooled, solid-state diode laser 13 operating with a peak power of 200W at a wavelength of 808nm with pulse energy up to 20mJ, available from Oxford Lasers Company, U.K., a high-pressure sapphire cell 12 into which a sample to be tested is introduced, a diffuser 14 intermediate laser 13, and a high-resolution digital camera 21 capable of image capture at up to 10,000 frames per second disposed on a side of sapphire cell 12 opposite laser 13.
  • the analytical component 11 comprises a high resolution digital camera control unit 19 operably connected to camera 21 and laser control unit 16 operably connected to laser 13. Also included within the analytical component 11 are a PC monitor 17 operably connected to a computer processing unit (CPU) 18 to monitor and store data, a video monitor 20 operably connected to the high resolution digital camera control unit 19 and a video cassette recorder 22 to record the imaging events in the sapphire cell 12.
  • the laser imaging system is capable of operating at high pressures (1500 psia) and low temperatures (- 40°C to 100°C).
  • the high-pressure sapphire cell was packed with wet (water) sand sediment of about 30% porosity, similar to that of the Gulf of Mexico sediment, connected into the laser imaging system and charged with pure methane to a pressure of 700 psia.
  • a NESLAB chiller available from Thermo NESLAB, Portsmouth, NH, was used to cool and heat the cell at programmed rates (0.1 ° C per minute). The temperature of the cell initially was reduced from about 25°C to about 2°C.
  • the pressure and temperature in the sapphire cell were measured simultaneously using a digital pressure sensor and thermocouple, respectively. Laser pulses from the laser illuminated the sapphire cell.
  • the laser beam acts as a very short- duration strobe lamp for the high-speed digital camera, freezing the rapid action of hydrate formation and dissociation in the sediments in the sapphire cell.
  • the high-resolution digital camera recorded the imaging events.
  • a computer controlled the system while also collecting and processing pressure, temperature, time, and image data. Temperature and pressure measurements were tracked in real time.
  • Methane and C0 2 content were analyzed using a Hewlett Packard (HP) gas chromatograph three times: at the start, after 68 hours, and after 92 hours. The data were collected and analyzed. The results of these tests confirm that the methane gas released from the hydrate field was displaced by CO 2 .
  • methane hydrate was formed, based upon the use of a calculated 0.0263 moles of methane, in the sediment at 3.5°C during the cooling run. The system was then cooled to about 2°C and held at that temperature for 2 hours.
  • Fig. 6 shows the gas chromatographic analysis of the sample from the gas phase (a single peak representative of 100 mole % C0 2 ) at the start of the test.
  • Fig.7 shows the gas chromatographic analysis of the sample from the gas phase after 68 hours (two peaks, one of which is representative of 27.67 mole % of methane). After the first sampling, thermodynamic material balance calculations indicated that 0.0235 moles (89.35 %) of methane were released out of the total 0.0263 moles of methane utilized in the hydrate sediment. At the end of 92 hours, gas chromatographic analysis of the gas-phase sample confirmed a methane content of 17.97 mol %.
  • Implementation of the method of this invention may be carried out in a variety of manners.
  • One of the simplest implementations involves the use of concentric conduits in which the carbon dioxide is injected through the inner conduit into the methane hydrate field and displaced methane is collected in the annular region between the inner and outer concentric conduits for transmission away from the resulting carbon dioxide hydrate field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treating Waste Gases (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

L'invention concerne un procédé permettant de retirer et de stocker du CO2, du dioxyde de carbone gazeux étant injecté dans un champ de méthane hydraté souterrain, de déplacer du méthane dans le champ de méthane hydraté avec le dioxyde de carbone, et de former de l'hydrate de dioxyde de carbone. Le méthane déplacé peut ensuite être récupéré.
PCT/US2005/003485 2004-02-04 2005-01-28 Procede permettant de retirer du co2 dans des champs d'hydrates de gaz naturel et de recuperer simultanement du methane WO2005076904A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/771,869 2004-02-04
US10/771,869 US20050121200A1 (en) 2003-12-04 2004-02-04 Process to sequester CO2 in natural gas hydrate fields and simultaneously recover methane

Publications (2)

Publication Number Publication Date
WO2005076904A2 true WO2005076904A2 (fr) 2005-08-25
WO2005076904A3 WO2005076904A3 (fr) 2006-06-08

Family

ID=34860773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/003485 WO2005076904A2 (fr) 2004-02-04 2005-01-28 Procede permettant de retirer du co2 dans des champs d'hydrates de gaz naturel et de recuperer simultanement du methane

Country Status (2)

Country Link
US (1) US20050121200A1 (fr)
WO (1) WO2005076904A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009007453A1 (de) 2009-02-04 2010-08-12 Leibniz-Institut für Meereswissenschaften Verfahren zur Erdgasförderung aus Kohlenwasserstoff-Hydraten bei gleichzeitiger Speicherung von Kohlendioxid in geologischen Formationen

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080072495A1 (en) * 1999-12-30 2008-03-27 Waycuilis John J Hydrate formation for gas separation or transport
US6978837B2 (en) * 2003-11-13 2005-12-27 Yemington Charles R Production of natural gas from hydrates
CN1920251B (zh) * 2006-09-07 2010-08-18 中国科学院广州能源研究所 一种原位催化氧化热化学法开采天然气水合物的方法及装置
MX2010014145A (es) * 2008-06-19 2011-02-25 Mi Llc Metodo para producir hidrocarburos gaseosos de yacimientos tapados por hidrato.
US8232438B2 (en) * 2008-08-25 2012-07-31 Chevron U.S.A. Inc. Method and system for jointly producing and processing hydrocarbons from natural gas hydrate and conventional hydrocarbon reservoirs
WO2012021810A2 (fr) * 2010-08-13 2012-02-16 Board Of Regents, The University Of Texas System Stockage de dioxyde de carbone et production de méthane et d'énergie géothermique à partir des aquifères salins profonds
CN102454394A (zh) * 2010-10-15 2012-05-16 中国海洋石油总公司 从天然气水合物中置换出甲烷的方法
US20120097401A1 (en) * 2010-10-25 2012-04-26 Conocophillips Company Selective hydrate production with co2 and controlled depressurization
US9291051B2 (en) 2010-10-28 2016-03-22 Conocophillips Company Reservoir pressure testing to determine hydrate composition
WO2013056732A1 (fr) 2011-10-19 2013-04-25 Statoil Petroleum As Procédé amélioré pour la conversion de gaz naturel en hydrocarbures
CN102704894B (zh) * 2012-05-30 2015-03-11 上海交通大学 原位开采海底天然气水合物的装置及其方法
US9435239B2 (en) 2013-08-01 2016-09-06 Elwha Llc Systems, methods, and apparatuses related to vehicles with reduced emissions
US9708947B2 (en) 2013-08-01 2017-07-18 Elwha Llc Systems, methods, and apparatuses related to vehicles with reduced emissions
US9494064B2 (en) 2013-08-01 2016-11-15 Elwha Llc Systems, methods, and apparatuses related to vehicles with reduced emissions
US9574476B2 (en) 2013-08-01 2017-02-21 Elwha Llc Systems, methods, and apparatuses related to vehicles with reduced emissions
WO2015026328A1 (fr) * 2013-08-20 2015-02-26 Halliburton Energy Services, Inc. Procédés et systèmes de séquestration du dioxyde de carbone dans une formation souterraine
KR101440753B1 (ko) * 2013-10-22 2014-09-17 한국과학기술원 이산화탄소와 공기 혼합가스 주입법을 이용한 가스 하이드레이트 생산 방법
WO2015065412A1 (fr) * 2013-10-31 2015-05-07 Siemens Energy, Inc. Système et procédé de production de méthane
CN103573233A (zh) * 2013-11-21 2014-02-12 辽宁石油化工大学 一种开采冻土区天然气水合物的方法与装置
DE102015107252A1 (de) * 2015-05-08 2016-11-10 Geomar Helmholtz-Zentrum Für Ozeanforschung Kiel - Stiftung Des Öffentlichen Rechts Mechanisches Tiefseesedimente-, marine Rohstofflagerstätten- und/oder Unterseehang- Stabilisierungsverfahren und/oder Regulierungs-/Konditionierungsverfahren der hydraulischen Eigenschaften von Tiefseesedimenten
CN112240186A (zh) * 2019-07-18 2021-01-19 中国石油天然气股份有限公司 一种天然气水合物注热-置换联合模拟开采装置及方法
CN114278257B (zh) * 2021-12-24 2023-12-15 中海石油(中国)有限公司 海上油田开采与超临界二氧化碳封存的同步装置与方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5261490A (en) * 1991-03-18 1993-11-16 Nkk Corporation Method for dumping and disposing of carbon dioxide gas and apparatus therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5261490A (en) * 1991-03-18 1993-11-16 Nkk Corporation Method for dumping and disposing of carbon dioxide gas and apparatus therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009007453A1 (de) 2009-02-04 2010-08-12 Leibniz-Institut für Meereswissenschaften Verfahren zur Erdgasförderung aus Kohlenwasserstoff-Hydraten bei gleichzeitiger Speicherung von Kohlendioxid in geologischen Formationen
WO2010088874A2 (fr) 2009-02-04 2010-08-12 Leibniz-Institut für Meereswissenschaften Procédé d'extraction de gaz naturel issu d'hydrates d'hydrocarbures avec stockage simultané de dioxyde de carbone dans des formations géologiques
DE102009007453B4 (de) * 2009-02-04 2011-02-17 Leibniz-Institut für Meereswissenschaften Verfahren zur Erdgasförderung aus Kohlenwasserstoff-Hydraten bei gleichzeitiger Speicherung von Kohlendioxid in geologischen Formationen
US8590619B2 (en) 2009-02-04 2013-11-26 Leibniz-Institut Fuer Meereswissenschaften Method for producing natural gas from hydrocarbon hydrates while simultaneously storing carbon dioxide in geological formations

Also Published As

Publication number Publication date
US20050121200A1 (en) 2005-06-09
WO2005076904A3 (fr) 2006-06-08

Similar Documents

Publication Publication Date Title
WO2005076904A2 (fr) Procede permettant de retirer du co2 dans des champs d'hydrates de gaz naturel et de recuperer simultanement du methane
CA2844919C (fr) Stockage de dioxyde de carbone et production de methane et d'energie geothermique a partir des aquiferes salins profonds
Nair et al. Influence of thermal stimulation on the methane hydrate dissociation in porous media under confined reservoir
Benson et al. Carbon dioxide capture and storage: An overview with emphasis on capture and storage in deep geological formations
Herzog et al. Carbon capture and storage from fossil fuel use
Jadhawar et al. Subsurface carbon dioxide storage through clathrate hydrate formation
Bandilla Carbon capture and storage
Lee et al. Enhanced CH4 recovery induced via structural transformation in the CH4/CO2 replacement that occurs in sH hydrates
CA2062258A1 (fr) Methode de mise en decharge brute et d'elimination de gaz carbonique, et appareil connexe
Zhang et al. Sequestering CO2 as CO2 hydrate in an offshore saline aquifer by reservoir pressure management
Ji et al. CO2 storage in deep saline aquifers
Mok et al. NaCl-induced enhancement of thermodynamic and kinetic CO2 selectivity in CO2+ N2 hydrate formation and its significance for CO2 sequestration
JPH0671161A (ja) 炭酸ガス固定化方法
Bashir et al. Comprehensive review of CO2 geological storage: Exploring principles, mechanisms, and prospects
Mwakipunda et al. Carbon dioxide sequestration in low porosity and permeability deep saline aquifer: numerical simulation method
McGrail et al. Using carbon dioxide to enhance recovery of methane from gas hydrate reservoirs: final summary report
Omar et al. A new enhanced gas recovery scheme using carbonated water and supercritical CO 2
KR101118622B1 (ko) 이산화탄소의 저장 상태 모니터링 및 누출 여부의 검출 방법
Dooley et al. An assessment of the commercial availability of carbon dioxide capture and storage technologies as of June 2009
Sheppard et al. Sustaining fossil fuel use in a carbon-constrained world by rapid commercialization of carbon capture and sequestration
US20240060397A1 (en) Apparatus for injecting carbon dioxide into underground, method for evaluating same, and method for producing same
Karaei et al. CO2 storage in low permeable carbonate reservoirs: permeability and interfacial tension (IFT) changes during CO2 injection in an Iranian carbonate reservoir
Aimard et al. The CO2 pilot at Lacq: an integrated oxycombustion CO2 capture and geological storage project in the South West of France
Nakajima et al. Morphological Observations of Gas Hydrate Formation in Gas-Seawater Systems
US20210381758A1 (en) Methods of separating carbon dioxide from flue gas and sequestering liquid carbon dioxide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase