WO2005075564A1 - Resin composition and molded object obtained by molding the same - Google Patents

Resin composition and molded object obtained by molding the same Download PDF

Info

Publication number
WO2005075564A1
WO2005075564A1 PCT/JP2005/001671 JP2005001671W WO2005075564A1 WO 2005075564 A1 WO2005075564 A1 WO 2005075564A1 JP 2005001671 W JP2005001671 W JP 2005001671W WO 2005075564 A1 WO2005075564 A1 WO 2005075564A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mass
resin composition
parts
biodegradable polyester
Prior art date
Application number
PCT/JP2005/001671
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroo Kamikawa
Original Assignee
Unitika Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd. filed Critical Unitika Ltd.
Priority to JP2005517742A priority Critical patent/JP5300173B2/en
Publication of WO2005075564A1 publication Critical patent/WO2005075564A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds

Definitions

  • the present invention relates to a resin composition and a molded product obtained by molding the same.
  • biodegradable polyester resins such as polylactic acid have attracted attention from the viewpoint of environmental protection.
  • polylactic acid is one of the resins with high heat resistance, and can be mass-produced.
  • polylactic acid can be produced using plants such as corn and sweet potato as raw materials, and can contribute to saving of dead resources such as petroleum.
  • ABS resin acrylonitrile Z-butadiene Z-styrene copolymer resin
  • PC resin a biodegradable polyester resin represented by the polylactic acid resin
  • PC resin a polycarbonate resin having high heat resistance
  • PA-07-109413 proposes a resin composition comprising a polylactic acid resin and an aromatic polycarbonate resin.
  • PA-11-140292 includes a polylactic acid and a crosslinked polycarbonate.
  • a resin composition containing the same has been proposed. In each case, the heat resistance is improved to a practical level as compared with polylactic acid alone.
  • JP-A-07-109413 it is desirable from the viewpoint of heat resistance and mechanical properties to blend an aromatic polycarbonate resin in a high proportion. Saving resources is not enough. Also, simply melting and kneading polylactic acid and polycarbonate makes it difficult to achieve uniform compatibility because the difference in melt viscosity is large.For example, the nozzle force of a kneading extruder causes the molten resin to be discharged with pulsation. However, there is a problem that stable pelletization is difficult.
  • JP-A-11 140292 also states that the use of cross-linked polycarbonate is desirable in terms of the effect of modifying the polylactic acid resin, and that a linear polycarbonate has a significant effect of modifying the impact resistance. Not been.
  • polycarbonate has a higher melt viscosity than polylactic acid, so it is difficult to mold a thin material having a thickness of less than lmm.
  • the melt viscosity is further increased, so that it is not preferable as a practical molding material.
  • JP-A-2001-123055 the components that can be alloyed with polylactic acid resin are limited to aliphatic polyester resins, and therefore, there is a problem that the heat resistance is low even if the impact resistance can be improved. is there. Further, according to the present inventors, the modified olefinic conjugate used as a compatibilizer in JP-A-2001-123055 was mixed with a polylactic acid resin and a polymer alloy of PC resin or polylactic acid resin. Even when mixed with a polymer alloy of PC resin and ABS resin, the improvement in impact resistance as a compatibilizing effect was hardly obtained.
  • the present invention solves the above-mentioned problems, and is an alloy of polylactic acid-based biodegradable polyester resin and PC resin having excellent compatibility, and a polylactic acid-based biodegradable polymer having excellent compatibility.
  • An alloy of a tellurium resin, a PC resin, and an ABS resin which aims to provide a resin composition that has excellent heat resistance and impact resistance, saves oil resources, and has a low environmental impact. .
  • the present inventors have conducted intensive studies, and as a result, have found that a crosslinked biodegradable polyester resin and polycarbonate A resin composition comprising a resin, or a resin composition further containing an acrylonitrile Z-butadiene Z styrene copolymer resin, and a silicone compound or an ethylene Z glycidyl meta having a specific structure further added to the resin composition.
  • the present inventors have found that the above-mentioned object is achieved by a resin composition containing a tallylate copolymer, and arrived at the present invention.
  • the gist of the present invention is as follows.
  • the silicone resin (D) O. 05-10 parts by mass is further contained per 100 parts by mass of the total amount of the resin ( ⁇ )-(C).
  • the total amount of the resin (A) — (C) is 100 parts by mass, and the modified Olefin conjugate (E) 0.1— Contains 20 parts by weight.
  • the mass ratio of the resins (B) and (C) is (B) / ⁇ (B) + (C) ⁇ ⁇ 0. The relationship of 3 is satisfied.
  • the crosslinked biodegradable polyester resin (A) is obtained by reacting the (meth) acrylate ester conjugate with 0.01 to 20 parts by mass per 100 parts by mass of the biodegradable polyester resin.
  • Crosslinked biodegradable polyester resin (A) is obtained by reacting peroxide with 0.01 to 20 parts by mass per 100 parts by mass of biodegradable polyester resin from (1) The resin composition of any one of (5) to (5).
  • the biodegradable polyester resin of (A) is mainly composed of polylactic acid or polylactic acid. Fat composition.
  • the total amount of the resin (A)-(C) is 100 parts by mass, and further the carpo-imide imidized product 0.01-1-5 A resin composition containing parts by weight.
  • the resin composition according to (8) which is a compound having an isocyanate as a terminal group in the carbodiimide bonding compound.
  • a resin composition and a molded article are provided.
  • the resin composition of the present invention can be formed into various molded articles by injection molding or the like.
  • the resin composition of the present invention can use a natural-derived resin as a biodegradable polyester resin, so that it can contribute to the saving of depleted resources such as petroleum, and The utility value above is extremely high.
  • the resin composition of the present invention comprises a crosslinked biodegradable polyester resin (A), a polycarbonate resin (B) and, if necessary, an acrylonitrile Z butadiene Z styrene copolymer resin (C). Are mixed.
  • the mixing ratio of the crosslinked biodegradable polyester resin (A) as the resin component is the same as that of the resin (A)-(C) as the resin component. It is 30-90% by mass, more preferably 50-70% by mass of the total 100% by mass.
  • the mixing ratio of the resin (A) is less than 30% by mass, the ratio of the biodegradable raw material is reduced, and the environmental advantage is reduced.
  • the amount of the resin (A) exceeds 90% by mass, physical properties such as heat resistance and impact resistance are impaired.
  • the crosslinked biodegradable polyester resin (A) is obtained by introducing a crosslinked structure into a biodegradable polyester resin.
  • Examples of the biodegradable polyester resin serving as the skeleton of the resin (A) include poly (L-lactic acid), poly (D-lactic acid), polydarcholate, polyproprolataton, polybutylene succinate, polyethylene succinate, and polybutylene. Adipate terephthalate, polybutylene succinate terephthalate and the like can be mentioned, and two or more of these may be used. Above all, heat resistance, molding In terms of properties, it is desirable to use poly (L-lactic acid), poly (D-lactic acid), or a mixture or copolymer thereof. From the viewpoint of biodegradability, it is preferable that poly (L-lactic acid) is mainly used. In addition, from the perspective of saving petroleum resources, poly (L-lactic acid), which is favored by biodegradable polyester resins produced from plant-derived raw materials, satisfies this condition.
  • Polylactic acid mainly composed of poly (L-lactic acid) has a different melting point depending on the ratio of the contained D-lactic acid component.
  • its melting point should be 160 ° C or more in consideration of the mechanical properties and heat resistance of the molded article obtained from the resin composition. Is preferred.
  • the proportion of the D-lactic acid component is less than about 3 mol%.
  • melt flow rate of a mixture of multiple biodegradable polyester resins at 190 ° C and a load of 21.2N is 0.1-50gZlO More preferably, it is 0.2 to 20 gZlO, more preferably 0.5 to 10 gZlO. If the melt flow rate exceeds 50 gZlO, the melt viscosity is too low, and the mechanical properties and heat resistance of the molded product may be poor. On the other hand, if the melt flow rate is less than 0.1 lgZlO, the load during molding may be too high and the operability may decrease.
  • the biodegradable polyester resin (A) is usually produced by a known melt polymerization method, and some of them are produced by further using a solid phase polymerization method.
  • a method for adjusting the melt flow rate of the biodegradable polyester resin to a predetermined range when the melt flow rate is too large, a small amount of a chain extender, for example, diisocyanate disulfide, bisoxane A method of increasing the molecular weight of the resin using a zolini conjugate, an epoxy conjugate, an acid anhydride, or the like can be used.
  • a method of mixing with a biodegradable polyester resin or a low molecular weight compound having a large melt flow rate can be used.
  • the crosslinked structure of the crosslinked biodegradable polyester resin (A) is not particularly limited. Even if the biodegradable polyester resin molecules are directly crosslinked, they may be indirectly crosslinked via a crosslinking aid. It may be a crosslinked one or a mixture of these crosslinked structures.
  • an electron beam is irradiated.
  • a known method such as a method using a polyfunctional compound such as a polyvalent isocyanate compound or the like can be applied.
  • radical crosslinking by use of a peroxidic acid is preferred.
  • peroxide examples include benzoyl peroxide, bis (butyl-butoxy) trimethylcyclohexane, bis (butyl-butoxy) cyclododecane, butylbis (butylperoxy) valerate, and dicumyl peroxide.
  • the amount of the peroxide is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass, per 100 parts by mass of the biodegradable polyester resin. Even if it exceeds 20 parts by mass, it can be used, but the effect is saturated and it is not economical. Since the peroxide is decomposed and consumed when mixed with the resin, even if used at the time of blending, the peroxide may not remain in the obtained resin composition.
  • cross-linking auxiliary agent examples include dibutylbenzene, diarylbenzene, divinylnaphthalene, divinylphenol, divinylcarbazole, dibutylpyridine, and their nuclear-substituted conjugates and closely related homologues; Atharylate, butylene glycol diatalylate, triethylene glycol diatalylate, 1,6-hexanediol diatalylate, tetramethylol methane tetraatalylate, ethylene glycol dimetharate, butylene glycol dimetharate, triethylene Glycono resin methacrylate, tetraethylene glycolone dimethacrylate, 1,6-hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate, 1,10-decane
  • Polybutylesters of aliphatic and aromatic polycarboxylic acids such as polyallyl ester, polyacryloyloxyalkyl ester, polymethacryloyloxyanolequinole ester, diethylene glycol divininole ether, hydroquinone divinyl ether, and bisphenol A diaryl ether; Aliphatic and aromatic polyhydric alcohols Polybutyl ethers or polyallyl ethers; triaryl cyanurate, triallyl isocyanurate, etc., cyranuric acid or isocyanuric acid allyl ester; triallyl phosphate, trisacryloxyshethyl phosphate, N-phenylmaleimide, N, N, Polyfunctional monomers such as maleimide compounds such as m-phenylenebismaleimide; compounds having two or more triple bonds such as dipropagyl phthalate and dipropagyl maleate can be used.
  • the amount of these crosslinking aids is not particularly limited, but is preferably
  • (meth) acrylic acid ester conjugates are preferred from the viewpoint of crosslinking reactivity.
  • the biodegradable polyester resin component is crosslinked, thereby improving mechanical strength, heat resistance and dimensional stability.
  • the (meth) acrylate ester conjugate has a high reactivity with the biodegradable resin and therefore has relatively little toxicity due to the remaining monomer, and has little coloring of the resin.
  • Compounds having a (meth) acryl group or having at least one (meth) acryl group and at least one glycidyl group or butyl group are preferred.
  • Specific compounds include glycidyl methacrylate, glycidyl atalylate, glycerol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolpropane triatalylate, aryloxy polyethylene glycol monoacrylate, and aryloxy polyethylene.
  • Glycol monomethacrylate ethylene glycol diatalate, ethylene glycol dimetharate, polyethylene glycol dimetharate, polyethylene glycol diatalylate, polypropylene glycol dimetharate, polypropylene glycol diatalylate, polytetramethylene glycol Dimetharylate, or a copolymer of an alkylene glycol in which these alkylene glycol moieties have different alkylene groups, Et al in, butanediol meth Tari rate, butanediol Atari rate or the like can be mentioned up.
  • the amount is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the biodegradable polyester resin. 05-10 parts by weight is even more preferred 0.1-5 parts by weight is even more preferred. It can be used in excess of 20 parts by mass as long as operability is not adversely affected.
  • a crosslinking agent such as a peroxide or a crosslinking aid
  • a method of melt-kneading using a general extruder can be used. Wear. It is preferable to use a twin-screw extruder in order to improve the kneading state.
  • the kneading temperature is in the range of (melting point of biodegradable polyester resin + 5 ° C)-1 (melting point of biodegradable polyester resin + 100 ° C).
  • the kneading time is preferably 20 seconds-30 minutes. If the temperature is lower than this range or for a short time, kneading and reaction become insufficient, and if the temperature is higher or longer, decomposition or coloring of the resin may occur.
  • a cross-linking agent such as a peroxide or a cross-linking aid is preferably in a solid state by supplying them using a dry blend or a powder feeder. And a method of directly injecting it into the barrel of an extruder.
  • a preferred method is to dissolve or disperse the crosslinking aid and a crosslinking agent such as Z or peroxide in a medium.
  • a method of injecting into a kneader There is a method of injecting into a kneader. According to this, operability can be significantly improved. That is, when a biodegradable polyester resin component and a crosslinking agent such as a peroxide are melt-kneaded, a solution or dispersion of a crosslinking aid is injected, or the polyester resin component is melt-kneaded. At this time, a solution or dispersion of a crosslinking aid and a crosslinking agent such as a peroxide can be injected or melt-kneaded.
  • a general medium is used and is not particularly limited.
  • a plasticizer excellent in compatibility with the biodegradable polyester resin according to the present invention is preferable.
  • a plasticizer for example, an aliphatic polycarboxylic acid ester derivative, an aliphatic polyhydric alcohol ester derivative, an aliphatic oxyester derivative, an aliphatic polyether derivative, an aliphatic polyether polyvalent carboxylic acid ester derivative, etc.
  • a plasticizer for example, an aliphatic polycarboxylic acid ester derivative, an aliphatic polyhydric alcohol ester derivative, an aliphatic oxyester derivative, an aliphatic polyether derivative, an aliphatic polyether polyvalent carboxylic acid este
  • Specific compounds include glycerin diacetate monolaurate, glycerin diacetate monoforce plate, dimethyl adipate, dibutyl adipate, triethylene glycol diacetate, acetyl methinole ricinoleate, acetinole tributynolec acid, Examples include polyethylene glycolone and dibutinole diglycol succinate.
  • the amount of the plasticizer used as a dispersion medium is preferably 30 parts by mass or less based on 100 parts by mass of the biodegradable polyester resin. Parts by mass are more preferred.
  • a plasticizer may not be used. However, when the reactivity is high, it is preferable to use 0.1 part by mass or more. Since this dispersion medium may volatilize when mixed with the resin, it may not remain in the obtained resin composition even when used in the production.
  • the component of the polycarbonate resin (B) in the present invention is a repeating unit composed of a bisphenol group residue and a carbonate residue.
  • Examples of the starting bisphenols include 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (3,5-dibutene 4-hydroxyphenyl) propane, and 2,2-bis (3,5-Dimethyl-4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1bis (3,5-dimethyl-4-hydroxyphenyl) cyclohexane Xan, 1,1-bis (4-hydroxyphenyl) decane, 1,4-bis (4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclododecane, 4,4'- Dihydroxydiphenyl ether, 4,4 'dithiodiphenol, 4,4' dihydroxy-3,3'-dichlorodiphenyl ether, 4,4 'dihydroxy-2,5-dihydroxydiphenyl ether and the like. .
  • Examples of the precursor for introducing the carbonate residue unit include phosgene and diphenyl carbonate.
  • the intrinsic viscosity of the polycarbonate resin (B) is preferably in the range of 0.40 to 0.64. If it exceeds 0.64, the melt viscosity of the resin composition may be so high that kneading extrusion or injection molding may be difficult. On the other hand, if it is less than 0.40, the impact strength of the obtained molded product may be insufficient.
  • the mixing ratio of the polycarbonate resin (B) is 10 to 70% by mass in the total amount of the resins (A) and (C) of 100% by mass.
  • the content of the resin (B) is less than 10% by mass, the heat resistance and impact resistance of the obtained resin composition are insufficient, and when it exceeds 70% by mass, the dependence of the raw material on petroleum resources is high. As a result, the degree of environmental contribution is low.
  • the above-mentioned crosslinked biodegradable polyester resin (A) and In addition to polycarbonate resin (B) and acrylonitrile Z butadiene Z styrene copolymer resin (C) may be used.
  • the resin (C) By adding the resin (C), the fluidity of the obtained resin composition at the time of molding is increased, and the residual strain inside the molded article is reduced, so that the warpage of the molded article can be reduced. Further, the appearance of the molded article can be made excellent.
  • the mixing ratio of the resin (C) is in the range of 0 to 50% by mass relative to the total amount of the resin (A)-(C) of 100% by mass. Further, the relationship between the mixing ratios of the resins (B) and (C) preferably satisfies (B) / ⁇ (B) + (C) ⁇ ⁇ 0.3 by mass ratio. When the ratio of the polycarbonate resin (B) to the total amount of the resin (B) and the resin (C) satisfying this formula is 0.3 or more, the heat resistance of the obtained resin composition is improved. Impact resistance is further improved.
  • Acrylonitrile Z butadiene Z styrene copolymer resin (C) is a resin generally referred to as "ABS resin” as described above, and contains an aliphatic conjugated diene monomer as an essential component.
  • ABS resin a resin generally referred to as "ABS resin” as described above, and contains an aliphatic conjugated diene monomer as an essential component.
  • a monomer containing a cyanide vinyl monomer and an aromatic vinyl monomer as essential components 30 to 95 It is a graft copolymer obtained by polymerizing mass%.
  • Examples of the aliphatic conjugated gen used herein include 1,3-butadiene, isoprene, and chloroprene.
  • 1,3-butadiene can be preferably used from the viewpoint of impact resistance.
  • the ratio of the aliphatic conjugated diene monomer is preferably 30 to 100 parts by mass based on 100 parts by mass of the total of the monomers used for producing the rubbery polymer. By setting the ratio to 30 parts by mass or more, a graft copolymer having good impact resistance can be obtained.
  • the other monomer is a diene monomer.
  • Various monomers copolymerizable with the polymer can be used.
  • cyanide-based monomer such as acrylonitrile and metal-tol-tolyl
  • aromatic-based monomer such as styrene, ⁇ -methylstyrene, ⁇ -chlorostyrene, and ⁇ -methylstyrene
  • acrylic acid examples include unsaturated carboxylic esters such as methyl, ethyl acrylate, ⁇ -butyl acrylate, 2-ethylhexyl acrylate, ⁇ -xysyl acrylate, methyl methacrylate, and ethyl methacrylate.
  • the monomer to be graft-polymerized to the rubber-like polymer contains vinyl cyanide-based monomer and aromatic vinyl-based monomer as essential components.
  • vinyl cyanide-based monomer include acrylonitrile, metharyl-tolyl, cyanidani biylidene, and the like. Among them, acrylonitrile is particularly preferred.
  • aromatic vinyl monomer examples include butyltoluenes such as styrene, ⁇ -methylstyrene and ⁇ -methylstyrene, halogenated styrenes such as ⁇ -chlorostyrene, ⁇ -t-butylstyrene, dimethylstyrene, and styrene. -Lunaphthalenes and the like. Of these, styrene and ⁇ -methylstyrene are particularly preferred.
  • monomers for graft polymerization in addition to vinyl cyanide-based monomers and aromatic vinyl-based monomers, other monomers can be used in combination, if desired.
  • specific examples thereof include unsaturated carboxylic esters such as methyl acrylate, ethyl acrylate, ⁇ -butyl acrylate, 2-ethylhexyl acrylate, ⁇ -xyl acrylate, methyl methacrylate, and ethyl methacrylate.
  • Unsaturated monomers such as maleic anhydride, itaconic anhydride and citraconic anhydride; maleimide, ⁇ -methylmaleimide, ⁇ -butylmaleimide, ⁇ -phenylmaleimide, ⁇ -cyclohexylmaleimide, etc. And an imide compound of an unsaturated dicarboxylic acid. These may be used alone or in combination of two or more.
  • the monomers for graft polymerization include, as necessary, glycidyl methacrylate, methacrylic acid, acrylic acid, methacrylamide, 2-hydroxyethyl methacrylate, and polyethylene glycol monomethacrylate. It is also possible to use 20% by mass or less, preferably 15% by mass or less based on the total of 100% by mass of the monomers for graft polymerization.
  • mass ratio 5-70. / 30-95, preferably 1065-3590.
  • metal catalyst When a metal catalyst is used during the polymerization of acrylonitrile Z butadiene Z styrene copolymer resin, it is preferable to remove the metal catalyst after the polymerization. This is because the metal catalyst promotes the hydrolysis of the biodegradable polyester resin, and may lower the wet heat resistance.
  • the resin (A)-(C) as each component may be mixed at a predetermined ratio in the final resin composition.
  • the mixing order and mixing method are not particularly limited.
  • the resin raw materials of the components (A), (B) and (C) may be melt-mixed simultaneously, or two of them may be mixed first, and then the other may be mixed. It is good.
  • the polycarbonate resin (B) and the acrylonitrile Z-butadiene Z-styrene copolymer resin (C) may be mixed in advance prior to blending the crosslinked biodegradable polyester resin (A). preferable.
  • the fluidity of the final resin composition during molding can be further improved, and the appearance of the molded article can be improved.
  • the mixture of the polycarbonate resin (B) and the acrylonitrile Z-butadiene Z-styrene copolymer resin (C) commercially available ones can also be used.
  • the resin composition of the present invention can further improve the impact resistance performance by blending the silicone conjugate (D).
  • the silicone conjugate is a polymer having a siloxane bond unit (formula 1).
  • R SiO (formula 2) as a basic unit is a linear polymer.
  • the type of the organic group R bonded to the silicon other than the main chain is not particularly limited, and any known organic group can be used.
  • any known organic group can be used.
  • a methyl group, a phenyl group, and hydrogen are mentioned.
  • a modified silicone compound modified with an organic functional group such as an epoxy group, an amino group, an alcohol group, or a carboxyl group, or an alkyl group, a polyether, or a higher fatty acid ester can also be used. Further, two or more of these may be used in combination.
  • the point of compatibility with the methylphenylsilicone conjugate material is also desirable.
  • the terminal group of the polymer is not particularly limited, and those having a methyl group, a phenyl group, and other functional groups can be used.
  • the trade names of these silicone conjugates are exemplified.
  • dimethyl silicone include the TSF451 series from GE Toshiba Silicone, KF96, KF96L, KF96H, KF69, KF92, KF961, KF961, KF965, and KF968 from Shin-Etsu Silicone. And so on.
  • Examples of methylphenol silicone include GE Toshiba Silicone's TSF431, TSF433, TSF434, TSF437, TSF4300, and Shin-Etsu Silicone's KF50, KF54, and KF56. No.
  • methyl hydrogen silicone examples include “TSF484" from GE Toshiba Silicone and “KF99” from Shin-Etsu Silicone.
  • Epoxy-modified silicone oils include “TSF4730” from GE Toshiba Silicones, “KF100T”, “KF101", “KF102” and “KF103” from Shin-Etsu Silicones.
  • Amino-modified silicones include GE Toshiba Silicone's TSF4700, TSF4701, TSF4702, TSF47 03, TSF4704, TSF4705, TSF4706, TSF4707, TSF4708, and TSF4708.
  • the amount is 0.05-10 parts by mass per 100 parts by mass of the total amount of the resins (A)-(C). If the amount is less than 0.05 part by mass, the effect of improving the impact resistance is poor. If the amount exceeds 10 parts by mass, bleed-out tends to occur, and the heat resistance tends to decrease.
  • the modified Olefin conjugate (E) as a compatibilizer, the compatibility can be enhanced and the impact resistance can be further improved.
  • the modified resin conjugate in the present invention is obtained by graft copolymerization of poly (meth) acrylate, poly (meth) acrylate, glycidyl methacrylate copolymer, polystyrene, acrylonitrile z styrene copolymer and the like. Add the olefin compound.
  • olefin conjugate examples include polyethylene, ethylene Z glycidyl methacrylate copolymer, ethylene Z ethyl acrylate copolymer, ethylene Z butyl acetate copolymer, and ethylene ethyl acrylate.
  • Water maleic acid copolymer and the like can be mentioned.
  • ethylene Z glycidyl methacrylate copolymer obtained by graft copolymerization of poly (methyl methacrylate) and poly (methyl methacrylate) Z-glycidyl methacrylate copolymer is excellent in impact resistance.
  • ethylene Z glycidyl methacrylate copolymer obtained by graft copolymerization of poly (methyl methacrylate) examples include “MODIPA A4200”, “AT13100”, and “AT13130” manufactured by NOF Corporation.
  • a specific trade name of an ethylene Z glycidyl methacrylate copolymer obtained by graft copolymerization of a poly (methyl methacrylate) Z glycidyl methacrylate copolymer is, for example, "AT13110" of Nihon Yushi Co., Ltd.
  • the compounding amount of the modified olefin conjugate (E) is preferably 0.1 to 20 parts by mass based on 100 parts by mass of the total amount of the resins (A) to (C). If the amount is less than 0.1 part by mass, the effect of compatibilization is hardly exhibited. If the amount exceeds 20 parts by mass, the heat resistance may be reduced.
  • a carbodiimide compound can be blended with the resin composition.
  • the moist heat resistance of the resin composition is improved by including the carpoimide compound, and a crosslinked structure is introduced between the crosslinked biodegradable polyester resin (A) and the polycarbonate resin (B).
  • the compatibility becomes better, and the mechanical properties of the resin composition also improve.
  • the carbodiimide compound include 4,4'-dicyclohexylmethanecarbodiimide, tetramethylxylylenecarbodiimide, N, N-dimethylphenylcarbodiimide, and N, N'-di-2,6-diisopropylphenylcarbodiimide. It is not particularly limited as long as it is a carbodiimide compound having one or more carbodiimide groups in a force molecule.
  • the carbodiimide compound a compound in which the terminal isocyanate group is sealed with a monoisocyanate or the like may be used, but the moist heat resistance and mechanical properties (particularly, impact resistance) of the resin composition are improved. From this viewpoint, it is preferable to use a carbodiimide compound having an isocyanate group left.
  • the isocyanate group has higher reactivity than the carbodiimide group, and a higher effect is obtained.
  • the carbodiimide compound can be produced by a conventionally known method, and can be produced by a carbodiimide reaction accompanied by a decarbonation reaction using a diisocyanate compound as a raw material. At this time, if the terminal blocking treatment is not performed, a carbodiimide conjugate having an isocyanate group at the terminal is obtained.
  • the amount of the carbodiimide compound is preferably 0.01 to 5 parts by mass, more preferably 0.1 to 13 parts by mass, per 100 parts by mass of the total amount of the resins (A) and (C). If the amount is less than 0.01 parts by mass, the effect of improving the wet heat resistance and the mechanical properties is not obtained, while if it exceeds 5 parts by mass, the heat resistance may be reduced.
  • the method of mixing the raw materials is not particularly limited, as long as each component is uniformly dispersed in the resin composition.
  • cross-linked biodegradable polyester resin (A), polycarbonate resin (B), acrylonitrile Z butadiene Z styrene copolymer resin (C), silicone resin conjugate (D), modified olefin resin Compound (E) and the like are uniformly blended using a tumbler or Henschel mixer, and then melt-kneaded to pelletize.
  • pellets in which two or more types of raw materials are melt-kneaded may be used.
  • a composition obtained by melt-kneading or copolymerizing a polycarbonate resin (B) and a silicone conjugate (D), or a composition obtained by mixing a polycarbonate resin (B) with acrylo-tolyl Z butadiene Z styrene Use a composition obtained by melt-kneading the system copolymer resin (C).
  • the raw materials other than the carpoimide conjugate are once melt-kneaded with an extruder, and then the carpo-imide conjugate is added and then melt-kneaded again, or extruded by a side feeder or the like.
  • a method of adding a carbodiimide compound in the middle of the machine For example, a method of adding a carbodiimide compound in the middle of the machine.
  • An organic or inorganic filler may be added to the resin composition for the purpose of improving mechanical strength and heat resistance.
  • the compounding amount is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the resin composition.
  • Examples of the inorganic filler include glass fibers, metal fibers, carbon fibers, metal whiskers, ceramic whiskers, fibrous reinforcing materials such as potassium titanate, talc, calcium carbonate, and charcoal.
  • Examples of the organic filler include naturally occurring polymers such as starch, fine cellulose particles, wood flour, okara, fir husk, bran and kenaf, and modified products thereof.
  • glass fibers which are preferred by fibrous reinforcing materials, are most preferable because they can improve heat resistance and impact resistance.
  • the glass fiber is preferably subjected to a surface treatment in order to enhance the adhesion to the resin component.
  • the hopper force may be added to the extruder at the same time as the other raw materials, or the intermediate force of the kneading machine may be added using a side feeder.
  • a master resin filled with a fibrous reinforcing material at a high concentration is prepared, and the master resin can be diluted with a base resin at the time of molding to be used so as to have a desired concentration.
  • the resin composition has a pigment, a heat stabilizer, an anti-oxidation agent, a weathering agent, a light-proofing agent, a flame retardant, a plasticizer, a lubricant, a mold release agent, as long as its properties are not significantly impaired.
  • An antistatic agent, a crystal nucleus material and the like can be added.
  • the heat stabilizer and the anti-oxidizing agent include hindered phenols, phosphorus-containing compounds, hindered amines, zeo compounds, copper compounds, alkali metal halides, and vitamin E.
  • As the flame retardant a halogen-based flame retardant, a phosphorus-based flame retardant, and an inorganic flame retardant can be used.
  • non-halogen flame retardant examples include phosphorus flame retardants, hydrated metal compounds (aluminum hydroxide, magnesium hydroxide), N-containing compounds (melamine-based, guadin-based), and inorganic compounds. (Borate, Mo compound).
  • examples of the inorganic crystal nucleus material include talc and phosphorus
  • examples of the organic crystal nucleus material include a sorbitol compound, benzoic acid and a metal salt of the compound, a phosphate metal salt, and a rosin compound. The method of mixing these with the resin composition is not particularly limited.
  • the resin composition of the present invention may be formed into various molded articles by a molding method such as injection molding, blow molding, extrusion molding, inflation molding, and vacuum molding, air pressure molding, and vacuum pressure molding after sheet processing. Can be.
  • a molding method such as injection molding, blow molding, extrusion molding, inflation molding, and vacuum molding, air pressure molding, and vacuum pressure molding after sheet processing.
  • the injection molding method is generally preferred
  • molding methods such as gas injection molding and injection press molding can be adopted.
  • Injection molding conditions suitable for the resin composition of the present invention vary depending on the resin composition ratio, but it is appropriate that the cylinder temperature is in the range of 180 to 260 ° C, more preferably 190 to 250 ° C. is there .
  • the mold temperature should be 140 ° C or less.
  • the cylinder temperature is too low, the operability becomes unstable, such as short-circuiting of the molded product, or it tends to overload.On the other hand, if the cylinder temperature is too high, the resin composition will decompose, In some cases, problems such as a decrease in the strength of the obtained molded body and coloring of the molded body may occur.
  • the heat resistance of the molded article made of the resin composition of the present invention can be enhanced by promoting crystallization by controlling the conditions during injection molding and performing heat treatment after molding.
  • a method for this for example, there is a method of promoting crystallization by cooling in a mold during injection molding. In this case, it is preferable to cool the mold for a predetermined time while keeping the mold temperature at the crystallization temperature of the resin composition ⁇ 20 ° C.
  • the mold temperature may be further lowered to the glass transition temperature of the resin composition or lower, and then the mold may be opened to remove the molded product.
  • the molded body include resin parts for electric shading products such as a personal computer housing, a printer housing, and a projector lamp housing, and automotive resins such as bumpers, inner panels, and door trims. Parts and the like. Further, it may be a film, a sheet, a hollow molded article, or the like.
  • test condition 4 the measurement was performed at 190 ° C and a load of 21.2N.
  • Test specimens were prepared as follows. In other words, using an injection molding machine (TOSHIBA MACHINE IS-80G), the resin is melted at a cylinder temperature of 210-240 ° C, and the injection pressure is 100MPa, the injection time is 15 seconds and the mold is 70 ° C. Fill and cool for 30 seconds.
  • TOSHIBA MACHINE IS-80G injection molding machine
  • the polylactic acid resin was cooled for 20 seconds at a cylinder temperature of 190 ° C., an injection pressure of 100 MPa, an injection time of 10 seconds, and a mold temperature of 30 ° C.
  • the cylinder temperature was 190 ° C
  • the injection pressure was 100MPa
  • the injection time was 15 seconds
  • the mold temperature was 100 ° C
  • the cooling was performed for 60 seconds.
  • test piece was obtained by the same molding method as in (3).
  • test pieces were obtained by the same molding method as in (3).
  • test pieces were obtained by the same molding method as in (3).
  • the bending strength test piece obtained in (6) was treated for 800 hours in an environment of a temperature of 60 ° C and a humidity of 95% RH, and then the bending strength was measured. .
  • molding is carried out using an injection molding machine (Toshiba Machine Co., IS-80G) at a cylinder temperature of 220 ° C, a mold temperature of 70 ° C, and an injection pressure of lOOMPa. Flow The moving length (mm) was measured.
  • the molding conditions of polylactic acid, crosslinked polylactic acid or crosslinked polylactic acid Z-polybutylene succinate resin were in accordance with (3). The larger the flow length, the better the fluidity.
  • a molding test of a square plate was performed (a square is a film gate, and a mold having a thickness of 60. Omm x 60.0 mm x a thickness of lmm was used).
  • the molding temperature was set at 220 ° C and the mold temperature was set at 70 ° C.
  • Injection speed ⁇ Injection pressure was set so that the molding shrinkage was 0.2%.
  • the obtained flat molded product was placed on a horizontal table with the convex side facing up, and the height was measured. The amount of warpage was evaluated as (warpage height) Z (length of flat plate diagonal) X 100 (%). If this value is 0.5% or less, it can be determined that there is no practical problem with the molded product.
  • Nozzle force of extruder The molten resin is discharged without pulsation, and the step of continuously pelletizing with a pelletizer that does not break the strand can be performed without any problem.
  • Nozzle force of extruder Molten resin is discharged with pulsation, and strands are easily cut.
  • the process up to pellet cutting may be interrupted.
  • the appearance of the molded product was observed and classified as follows.
  • cross-linked PLAZPBSJ cross-linked polylactic acid Z-polybutylene succinate resin
  • PCZABS Sumitomo Dow IM-6100
  • EGMA-gf-PMMA MODIPER A4200 manufactured by NOF Corporation
  • Each raw material was supplied to a twin-screw extruder (TEM-37BS, manufactured by Toshiba Machine Co., Ltd.) at the ratios shown in Tables 1, 3, and 4, where it was melt-kneaded at a processing temperature of 220 ° C to 240 ° C and extruded.
  • the resin was cut into pellets to obtain a resin composition A-HH. All the raw materials were supplied at the same time from the top feed port, except that the raw material was supplied by side feed when the carbodiimide compound was added.
  • Each raw material is supplied to a twin-screw extruder (TEM-37BS, manufactured by Toshiba Machine Co., Ltd.) at the ratios shown in Table 2-4, melt-kneaded at a processing temperature of 210 ° C-230 ° C, and extruded. Was cut into pellets to obtain a resin composition II-1UU.
  • the nozzle resin was also discharged while the molten resin was pulsating, and it was difficult to perform pellet siding.
  • the resin raw material was directly used for injection molding for preparing various test pieces.
  • Tables 14 to 14 summarize the results of the evaluation of various physical properties.
  • PLA has almost no improvement in IZOD impact strength when crosslinked by itself (Comparative Examples 6 and 7). Melt kneading of uncrosslinked PLA and PC results in poor operability. On the other hand, when the PLA is cross-linked and further melt-kneaded with PC, the operability is improved, and at the same time, the IZOD impact strength is significantly improved (comparison between Example 1 and Comparative Example 1). [0088] By blending the ABS component, the fluidity is improved, the amount of warpage is reduced, and the appearance is improved. The DTUL and IZOD impact strengths are also better than the PLA alone component (Examples 3-7, 10, 11).
  • the IZOD impact strength is improved (Examples 13 to 24).
  • the effect of improving the impact strength is observed in various silicone conjugates (Examples 13 to 17).
  • Such an effect is small in Comparative Example 8 in which the PLA is not crosslinked and Comparative Example 9 in which the amount of the crosslinked PLA is out of the range of the present invention.
  • Carposimidized conjugates having an isocyanate group are useful for improving heat and moisture resistance.
  • Comparative Examples 2 and 4 are obtained by adding a carbodiimide conjugate to the composition of Comparative Example 1, and the operability of melt kneading is improved as compared with Comparative Example 1, but PLA is crosslinked. ,, for
  • the IZOD impact strength is low and impractical.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

A resin composition. The composition comprises 30 to 90% by mass crosslinked biodegradable polyester resin (A), 10 to 70% by mass polycarbonate resin (B), and 0 to 50% by mass acrylonitrile/butadiene/styrene copolymer resin (C), the sum of the resins (A) to (C) being 100% by mass.

Description

明 細 書  Specification
樹脂組成物およびそれを成形してなる成形体  Resin composition and molded article obtained by molding the same
技術分野  Technical field
[0001] 本発明は榭脂組成物およびそれを成形してなる成形体に関する。  The present invention relates to a resin composition and a molded product obtained by molding the same.
背景技術  Background art
[0002] 近年、環境保全の見地から、ポリ乳酸をはじめとする生分解性ポリエステル榭脂が 注目されている。生分解性榭脂のなかでも、ポリ乳酸は耐熱性が高い樹脂の 1つで あり、大量生産が可能なためコストも安ぐ有用性が高い。さらに、ポリ乳酸はトウモロ コシゃサツマィモ等の植物を原料として製造することが可能で、石油等の枯渴資源 の節約に貢献できる。  [0002] In recent years, biodegradable polyester resins such as polylactic acid have attracted attention from the viewpoint of environmental protection. Among the biodegradable resins, polylactic acid is one of the resins with high heat resistance, and can be mass-produced. Furthermore, polylactic acid can be produced using plants such as corn and sweet potato as raw materials, and can contribute to saving of dead resources such as petroleum.
[0003] しかし、生分解性榭脂の中で耐熱性の高 、ポリ乳酸であっても、ポリプロピレン榭脂 、アクリロニトリル Zブタジエン Zスチレン系共重合榭脂(以下、「ABS榭脂」と略称す ることがある)、ポリエステル榭脂などの汎用樹脂と比べると、耐熱性は必ずしも十分 とはいえない。また、機械物性、とりわけ衝撃強度が低ぐ耐湿熱性も悪ぐ高温多湿 環境では劣化が顕著である。このため、汎用樹脂が使用されている自動車部品や家 電材などに使用する場合、その製品の寿命に到達する前に生分解性ポリエステル榭 脂の性能が低下してしまうという欠点がある。  [0003] However, even among polylactic acids having high heat resistance among biodegradable resins, polypropylene resin, acrylonitrile Z-butadiene Z-styrene copolymer resin (hereinafter abbreviated as "ABS resin"). Heat resistance is not always sufficient as compared with general-purpose resins such as polyester resin. Deterioration is remarkable in a high-temperature and high-humidity environment where mechanical properties, especially impact strength is low and wet heat resistance is poor. For this reason, when it is used for automobile parts and home appliances using general-purpose resin, there is a disadvantage that the performance of the biodegradable polyester resin is reduced before the life of the product is reached.
[0004] このようなポリ乳酸榭脂を代表とする生分解性ポリエステル榭脂の欠点を補うために 、生分解性ポリエステル榭脂耐熱性の高いポリカーボネート榭脂(以下、「PC樹脂」と 略称することがある)とのァロイが提案されている。  [0004] In order to compensate for the drawbacks of the biodegradable polyester resin represented by the polylactic acid resin, a biodegradable polyester resin and a polycarbonate resin having high heat resistance (hereinafter abbreviated as "PC resin"). May have been proposed).
[0005] 例え〖 P-A-07-109413には、ポリ乳酸樹脂と芳香族ポリカーボネート榭脂とか らなる樹脂組成物が提案されており、ま P-A-11-140292には、ポリ乳酸と架橋 ポリカーボネートとを含む榭脂組成物が提案されている。いずれも、耐熱性の点では 、ポリ乳酸単独に比べ実用的なレベルまで向上している。  [0005] For example, PA-07-109413 proposes a resin composition comprising a polylactic acid resin and an aromatic polycarbonate resin. PA-11-140292 includes a polylactic acid and a crosslinked polycarbonate. A resin composition containing the same has been proposed. In each case, the heat resistance is improved to a practical level as compared with polylactic acid alone.
[0006] また、ポリ乳酸樹脂と他の榭脂とを均一に相溶化させるために、ポリ乳酸系ァロイ榭 脂組成物にポリメタクリル酸メチルをグラフト共重合させた変性ォレフィンィ匕合物を相 溶化剤として使用することが提案されて ヽる (JP— A— 2001— 123055)。 発明の開示 [0006] Further, in order to uniformly compatibilize the polylactic acid resin with another resin, a modified olefin conjugate obtained by graft copolymerizing poly (methyl methacrylate) with a polylactic acid-based alloy resin composition is solubilized. It has been proposed for use as an agent (JP—A—2001—123055). Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] し力しながら JP-A-07-109413では、耐熱性、機械物性の点からは、芳香族ポリ カーボネート榭脂を高 、割合で配合することが望まし 、とされ、このため石油資源の 節約という点では十分と言えない。また、ポリ乳酸とポリカーボネートを単純に溶融混 練するだけでは、溶融粘度の差が大きいため、均一な相溶ィ匕が難しぐ例えば、混練 押出機のノズル力 溶融樹脂が脈動を伴って吐出され、安定したペレット化が困難で あるという問題がある。  According to JP-A-07-109413, it is desirable from the viewpoint of heat resistance and mechanical properties to blend an aromatic polycarbonate resin in a high proportion. Saving resources is not enough. Also, simply melting and kneading polylactic acid and polycarbonate makes it difficult to achieve uniform compatibility because the difference in melt viscosity is large.For example, the nozzle force of a kneading extruder causes the molten resin to be discharged with pulsation. However, there is a problem that stable pelletization is difficult.
[0008] JP— A— 11 140292でも、ポリ乳酸樹脂の改質効果という点では、架橋ポリカーボ ネートの使用が望ましいとされ、直鎖状のポリカーボネートでは、耐衝撃性の大幅な 改質効果は得られていない。また、成形性の点では、ポリ乳酸に比べポリカーボネー トは溶融粘度が高いため、厚み lmm未満の薄物の成形は難しい。架橋ポリカーボネ ートの場合は、さらに溶融粘度が高くなるため、実用的な成形材料としては好ましくな い。  [0008] JP-A-11 140292 also states that the use of cross-linked polycarbonate is desirable in terms of the effect of modifying the polylactic acid resin, and that a linear polycarbonate has a significant effect of modifying the impact resistance. Not been. In terms of moldability, polycarbonate has a higher melt viscosity than polylactic acid, so it is difficult to mold a thin material having a thickness of less than lmm. In the case of cross-linked polycarbonate, the melt viscosity is further increased, so that it is not preferable as a practical molding material.
[0009] JP— A— 2001— 123055では、ポリ乳酸樹脂とァロイ化する成分が脂肪族ポリエステ ル榭脂に限られており、このため耐衝撃性は改良できても耐熱性が低いという問題が ある。さらに、本発明者によると、 JP— A— 2001— 123055において相溶化剤として使 用されている変性ォレフィンィ匕合物をポリ乳酸系榭脂と PC榭脂のポリマーァロイまた はポリ乳酸系榭脂と PC榭脂と ABS榭脂とのポリマーァロイに混合してみても、相溶 化の効果としての耐衝撃性の向上がほとんど得られな力つた。  [0009] In JP-A-2001-123055, the components that can be alloyed with polylactic acid resin are limited to aliphatic polyester resins, and therefore, there is a problem that the heat resistance is low even if the impact resistance can be improved. is there. Further, according to the present inventors, the modified olefinic conjugate used as a compatibilizer in JP-A-2001-123055 was mixed with a polylactic acid resin and a polymer alloy of PC resin or polylactic acid resin. Even when mixed with a polymer alloy of PC resin and ABS resin, the improvement in impact resistance as a compatibilizing effect was hardly obtained.
[0010] 本発明は、上記課題を解決するものであり、相溶性に優れたポリ乳酸系生分解ポリ エステル榭脂と PC榭脂のァロイ、および、相溶性に優れたポリ乳酸系生分解ポリエス テル樹脂と PC榭脂と ABS榭脂のァロイであって、耐熱性、耐衝撃性に優れ、かつ石 油資源を節約できて環境負荷の低 ヽ榭脂組成物を提供することを目的とする。  [0010] The present invention solves the above-mentioned problems, and is an alloy of polylactic acid-based biodegradable polyester resin and PC resin having excellent compatibility, and a polylactic acid-based biodegradable polymer having excellent compatibility. An alloy of a tellurium resin, a PC resin, and an ABS resin, which aims to provide a resin composition that has excellent heat resistance and impact resistance, saves oil resources, and has a low environmental impact. .
[0011] さらに本発明は、耐湿熱性、成形加工性に優れた榭脂組成物を得ることを目的とす る。  [0011] Further, it is an object of the present invention to obtain a resin composition excellent in wet heat resistance and molding processability.
課題を解決するための手段  Means for solving the problem
[0012] 本発明者は、鋭意検討の結果、架橋生分解性ポリエステル榭脂とポリカーボネート 榭脂とからなる樹脂組成物、または、さらにアクリロニトリル Zブタジエン Zスチレン系 共重合樹脂が配合された榭脂組成物、およびこれらの榭脂組成物にさらにシリコー ン化合物や特定構造のエチレン Zグリシジルメタタリレート共重合体を配合した榭脂 組成物により上記目的が達成されることを見出し、本発明に到達した。 The present inventors have conducted intensive studies, and as a result, have found that a crosslinked biodegradable polyester resin and polycarbonate A resin composition comprising a resin, or a resin composition further containing an acrylonitrile Z-butadiene Z styrene copolymer resin, and a silicone compound or an ethylene Z glycidyl meta having a specific structure further added to the resin composition. The present inventors have found that the above-mentioned object is achieved by a resin composition containing a tallylate copolymer, and arrived at the present invention.
本発明の要旨は、以下の通りである。  The gist of the present invention is as follows.
(1)架橋生分解性ポリエステル榭脂 (A) 30— 90質量%、ポリカーボネート榭脂 (B) 1 0— 70質量0 /0およびアクリロニトリル Zブタジエン Zスチレン系共重合榭脂(C) 0— 5 0質量%を含み、榭脂 (A)— (C)の合計を 100質量%としたことを特徴とする榭脂組 成物。 (1) crosslinked biodegradable polyester榭脂(A) 30- 90 wt%, polycarbonate榭脂(B) 1 0- 70 mass 0/0 and acrylonitrile Z butadiene-Z styrene copolymer榭脂(C) 0- 5 A resin composition comprising 0% by mass and the total of resin (A)-(C) being 100% by mass.
(2) (1)の榭脂組成物において、榭脂 (Α)— (C)の合計量 100質量部あたりさらにシ リコーンィ匕合物(D) O. 05— 10質量部を含んでいる。  (2) In the resin composition of (1), the silicone resin (D) O. 05-10 parts by mass is further contained per 100 parts by mass of the total amount of the resin (Α)-(C).
(3) (1)または(2)の榭脂組成物において、榭脂 (A)— (C)の合計量 100質量部あ たり、さらに変性されたォレフインィ匕合物 (E) 0. 1— 20質量部を含んでいる。  (3) In the resin composition of (1) or (2), the total amount of the resin (A) — (C) is 100 parts by mass, and the modified Olefin conjugate (E) 0.1— Contains 20 parts by weight.
(4) (1)から(3)までのいずれかの榭脂組成物において、榭脂 (B)、 (C)の質量比が (B) /{ (B) + (C) }≥0. 3の関係をみたす。  (4) In any one of the resin compositions (1) to (3), the mass ratio of the resins (B) and (C) is (B) / {(B) + (C)} ≥0. The relationship of 3 is satisfied.
(5)架橋生分解性ポリエステル榭脂 (A)が、(メタ)アクリル酸エステルイ匕合物を、生 分解性ポリエステル榭脂 100質量部あたり 0. 01— 20質量部反応させて得られたも のである(1)から(4)までの!/、ずれかの榭脂組成物。  (5) The crosslinked biodegradable polyester resin (A) is obtained by reacting the (meth) acrylate ester conjugate with 0.01 to 20 parts by mass per 100 parts by mass of the biodegradable polyester resin. The resin composition according to any one of (1) to (4)!
(6)架橋生分解性ポリエステル榭脂 (A)が、過酸化物を、生分解性ポリエステル榭脂 100質量部あたり 0. 01— 20質量部反応させて得られたものである(1)から(5)まで のいずれかの榭脂組成物。  (6) Crosslinked biodegradable polyester resin (A) is obtained by reacting peroxide with 0.01 to 20 parts by mass per 100 parts by mass of biodegradable polyester resin from (1) The resin composition of any one of (5) to (5).
(7)架橋生分解性ポリエステル榭脂 (A)の生分解性ポリエステル榭脂がポリ乳酸ある いはポリ乳酸を主成分とするものである(1)から(6)までの 、ずれかの榭脂組成物。 (7) Crosslinked biodegradable polyester resin The biodegradable polyester resin of (A) is mainly composed of polylactic acid or polylactic acid. Fat composition.
(8) (1)から(7)までのいずれかの榭脂組成物において、榭脂 (A)—(C)の合計量 1 00質量部に対し、さらにカルポジイミドィ匕合物 0. 01— 5質量部を含んでいる榭脂組 成物。 (8) In any one of the resin compositions of (1) to (7), the total amount of the resin (A)-(C) is 100 parts by mass, and further the carpo-imide imidized product 0.01-1-5 A resin composition containing parts by weight.
(9) (8)の榭脂組成物において、カルポジイミドィ匕合物力 末端基としてイソシァネー トを有する化合物である。 (10)架橋生分解性ポリエステル榭脂 (A)の生分解性ポリエステル榭脂が、植物由来 原料力も製造されたものである(1)から(9)までの 、ずれかの榭脂組成物。 (9) The resin composition according to (8), which is a compound having an isocyanate as a terminal group in the carbodiimide bonding compound. (10) The resin composition according to any one of (1) to (9), wherein the biodegradable polyester resin of (A) is also produced from a plant-derived raw material.
(H) (1)から(10)まで ヽずれかに記載の榭脂組成物を成形してなる成形体。  (H) A molded article obtained by molding the resin composition according to any one of (1) to (10).
発明の効果  The invention's effect
[0014] 本発明によれば、優れた耐熱性、耐衝撃性、耐湿熱性を有し石油系製品への依存 度の低!ヽ榭脂組成物および成形体が提供される。  According to the present invention, it has excellent heat resistance, impact resistance, and moist heat resistance and has a low dependence on petroleum products! A resin composition and a molded article are provided.
[0015] 特に、 PC榭脂と ABS榭脂を併用することにより、成形性 (流動性、反り)が改善され る。 [0015] In particular, the combined use of PC resin and ABS resin improves the moldability (fluidity, warpage).
[0016] 本発明の榭脂組成物は、射出成形等により各種成形体とすることができる。  [0016] The resin composition of the present invention can be formed into various molded articles by injection molding or the like.
[0017] さらに、本発明の榭脂組成物は、生分解性ポリエステル榭脂として天然物由来の榭 脂を利用できるので、石油等の枯渴の可能性のある資源の節約に貢献でき、産業上 の利用価値は極めて高い。  [0017] Furthermore, the resin composition of the present invention can use a natural-derived resin as a biodegradable polyester resin, so that it can contribute to the saving of depleted resources such as petroleum, and The utility value above is extremely high.
発明の詳細な説明  Detailed description of the invention
[0018] 本発明の榭脂組成物は、架橋生分解性ポリエステル榭脂(A)と、ポリカーボネート 榭脂 (B)と、必要に応じさらにアクリロニトリル Zブタジエン Zスチレン系共重合榭脂( C)とが混合されたものである。  [0018] The resin composition of the present invention comprises a crosslinked biodegradable polyester resin (A), a polycarbonate resin (B) and, if necessary, an acrylonitrile Z butadiene Z styrene copolymer resin (C). Are mixed.
[0019] 本発明の榭脂組成物において、榭脂成分である架橋生分解性ポリエステル榭脂( A)の混合比率つまり配合割合は、榭脂成分である榭脂 (A)一 (C)の合計 100質量 %のうち 30— 90質量%、より好ましくは 50— 70質量%である。榭脂 (A)の混合比率 が 30質量%より小さくなると、生分解性原料の比率が小さくなり環境面でのメリットが 小さくなる。逆に榭脂 (A)の配合量が 90質量%を超えると、耐熱性、耐衝撃性などの 物性が損なわれる。  In the resin composition of the present invention, the mixing ratio of the crosslinked biodegradable polyester resin (A) as the resin component, that is, the mixing ratio, is the same as that of the resin (A)-(C) as the resin component. It is 30-90% by mass, more preferably 50-70% by mass of the total 100% by mass. When the mixing ratio of the resin (A) is less than 30% by mass, the ratio of the biodegradable raw material is reduced, and the environmental advantage is reduced. Conversely, if the amount of the resin (A) exceeds 90% by mass, physical properties such as heat resistance and impact resistance are impaired.
[0020] 架橋生分解性ポリエステル榭脂 (A)は、生分解性ポリエステル榭脂に架橋構造が 導入されたものである。  [0020] The crosslinked biodegradable polyester resin (A) is obtained by introducing a crosslinked structure into a biodegradable polyester resin.
[0021] 榭脂 (A)の骨格となる生分解性ポリエステル榭脂としては、ポリ (L 乳酸)、ポリ(D 乳酸)、ポリダルコール酸、ポリ力プロラタトン、ポリブチレンサクシネート、ポリエチレ ンサクシネート、ポリブチレンアジペートテレフタレート、ポリブチレンサクシネートテレ フタレート等が挙げられ、これらを 2種以上使用してもよい。なかでも、耐熱性、成形 性の面から、ポリ(L 乳酸)や、ポリ(D 乳酸)や、これらの混合物または共重合体を 用いること望ましい。生分解性の観点からは、ポリ(L-乳酸)を主体とすることが好まし い。また、石油資源節約という観点力もは、植物由来原料から製造された生分解性ポ リエステル榭脂が好ましぐポリ(L 乳酸)はこの条件を満たす。 [0021] Examples of the biodegradable polyester resin serving as the skeleton of the resin (A) include poly (L-lactic acid), poly (D-lactic acid), polydarcholate, polyproprolataton, polybutylene succinate, polyethylene succinate, and polybutylene. Adipate terephthalate, polybutylene succinate terephthalate and the like can be mentioned, and two or more of these may be used. Above all, heat resistance, molding In terms of properties, it is desirable to use poly (L-lactic acid), poly (D-lactic acid), or a mixture or copolymer thereof. From the viewpoint of biodegradability, it is preferable that poly (L-lactic acid) is mainly used. In addition, from the perspective of saving petroleum resources, poly (L-lactic acid), which is favored by biodegradable polyester resins produced from plant-derived raw materials, satisfies this condition.
[0022] ポリ(L 乳酸)を主体とするポリ乳酸は、含まれる D 乳酸成分の比率によってその 融点が異なる。本発明において、ポリ(L 乳酸)を主体とするポリ乳酸を用いる場合 は、榭脂組成物から得られる成形体の機械的特性や耐熱性を考慮すると、その融点 を 160°C以上とすることが好ましい。ポリ(L 乳酸)を主体とするポリ乳酸において、 融点を 160°C以上とするためには、 D 乳酸成分の割合を約 3モル%未満とすること が好適である。 [0022] Polylactic acid mainly composed of poly (L-lactic acid) has a different melting point depending on the ratio of the contained D-lactic acid component. In the present invention, when polylactic acid mainly composed of poly (L-lactic acid) is used, its melting point should be 160 ° C or more in consideration of the mechanical properties and heat resistance of the molded article obtained from the resin composition. Is preferred. In order to maintain a melting point of 160 ° C. or higher in poly (L-lactic acid) -based polylactic acid, it is preferable that the proportion of the D-lactic acid component is less than about 3 mol%.
[0023] 単体の生分解性ポリエステル榭脂ある!/ヽは複数の生分解性ポリエステル榭脂混合 物の、 190°C、荷重 21. 2Nにおけるメルトフローレートは、 0. 1— 50gZlO分である ことが好ましぐより好ましくは 0. 2— 20gZlO分であり、いっそう好ましくは 0. 5— 10 gZlO分である。メルトフローレートが 50gZlO分を超える場合は、溶融粘度が低す ぎて成形物の機械的特性や耐熱性が劣る場合がある。一方、メルトフローレートが 0 . lgZlO分未満の場合は、成形加工時の負荷が高くなりすぎて、操業性が低下する 場合がある。  [0023] There is a single biodegradable polyester resin! / ヽ means that the melt flow rate of a mixture of multiple biodegradable polyester resins at 190 ° C and a load of 21.2N is 0.1-50gZlO More preferably, it is 0.2 to 20 gZlO, more preferably 0.5 to 10 gZlO. If the melt flow rate exceeds 50 gZlO, the melt viscosity is too low, and the mechanical properties and heat resistance of the molded product may be poor. On the other hand, if the melt flow rate is less than 0.1 lgZlO, the load during molding may be too high and the operability may decrease.
[0024] 生分解性ポリエステル榭脂 (A)は、通常公知の溶融重合法で、ある!/、は、さらに固 相重合法を併用して、製造される。生分解性ポリエステル榭脂のメルトフローレートを 所定の範囲に調節する方法として、メルトフローレートが大きすぎる場合は、少量の 鎖長延長剤、例えば、ジイソシァネートイ匕合物、ビスォキサゾリンィ匕合物、エポキシィ匕 合物、酸無水物等を用いて榭脂の分子量を増大させる方法が使用できる。逆に、メ ルトフローレートが小さすぎる場合は、メルトフローレートの大きな生分解性ポリエステ ル榭脂や低分子量化合物と混合する方法が使用できる。  [0024] The biodegradable polyester resin (A) is usually produced by a known melt polymerization method, and some of them are produced by further using a solid phase polymerization method. As a method for adjusting the melt flow rate of the biodegradable polyester resin to a predetermined range, when the melt flow rate is too large, a small amount of a chain extender, for example, diisocyanate disulfide, bisoxane A method of increasing the molecular weight of the resin using a zolini conjugate, an epoxy conjugate, an acid anhydride, or the like can be used. Conversely, if the melt flow rate is too low, a method of mixing with a biodegradable polyester resin or a low molecular weight compound having a large melt flow rate can be used.
[0025] 架橋生分解性ポリエステル榭脂 (A)の架橋構造は、特に限定されるものではなぐ 生分解性ポリエステル榭脂分子同士が直接架橋したものでも、架橋助剤を介して間 接的に架橋したものでも、また、これらの架橋構造が混在したものでもよい。  [0025] The crosslinked structure of the crosslinked biodegradable polyester resin (A) is not particularly limited. Even if the biodegradable polyester resin molecules are directly crosslinked, they may be indirectly crosslinked via a crosslinking aid. It may be a crosslinked one or a mixture of these crosslinked structures.
[0026] 生分解性ポリエステル榭脂に架橋構造を導入する方法としては、電子線を照射す る方法や、多価イソシァネート化合物等の多官能性化合物を使用する方法などの、 公知の方法を適用できる。なかでも、架橋効率の点で、過酸ィ匕物の使用によるラジカ ル架橋が好ましい。 [0026] As a method for introducing a crosslinked structure into the biodegradable polyester resin, an electron beam is irradiated. A known method such as a method using a polyfunctional compound such as a polyvalent isocyanate compound or the like can be applied. Above all, from the viewpoint of crosslinking efficiency, radical crosslinking by use of a peroxidic acid is preferred.
[0027] 過酸化物の具体例としては、ベンゾィルパーオキサイド、ビス(ブチルバ一才キシ)ト リメチルシクロへキサン、ビス(ブチルバ一才キシ)シクロドデカン、ブチルビス(ブチル パーォキシ)バレレート、ジクミルパーオキサイド、ブチルパーォキシベンゾエート、ジ ブチルパーオキサイド、ビス(ブチルバ一才キシ)ジイソプロピルベンゼン、ジメチルジ (ブチルバ一才キシ)へキサン、ジメチルジ(ブチルバ一才キシ)へキシン、ブチルバ 一ォキシクメン等が挙げられる。過酸化物の配合量は、生分解性ポリエステル榭脂 1 00質量部に対して 0. 01— 20質量部が好ましぐさらに好ましくは 0. 1— 10質量部 である。 20質量部を超えても使用できるが、効果が飽和するばかりか、経済的でない 。過酸化物は、榭脂との混合の際に分解して消費されるため、たとえ配合時に使用さ れても、得られた榭脂組成物中には残存しな 、場合がある。  [0027] Specific examples of the peroxide include benzoyl peroxide, bis (butyl-butoxy) trimethylcyclohexane, bis (butyl-butoxy) cyclododecane, butylbis (butylperoxy) valerate, and dicumyl peroxide. Butyl peroxy benzoate, dibutyl peroxide, bis (butyl benzene) diisopropylbenzene, dimethyl di (butyl benzene) hexane, dimethyl di (butyl benzene) hexene, butyl benzocumene and the like. The amount of the peroxide is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass, per 100 parts by mass of the biodegradable polyester resin. Even if it exceeds 20 parts by mass, it can be used, but the effect is saturated and it is not economical. Since the peroxide is decomposed and consumed when mixed with the resin, even if used at the time of blending, the peroxide may not remain in the obtained resin composition.
[0028] 架橋効率をあげるために、過酸ィ匕物とともに架橋助剤を使用するのが好ましい。架 橋助剤としては、ジビュルベンゼン、ジァリルベンゼン、ジビ-ルナフタレン、ジビ- ルフエ-ル、ジビ-ルカルバゾール、ジビュルピリジンおよびこれらの核置換ィ匕合物 や近縁同族体;エチレングリコールジアタリレート、ブチレングリコールジアタリレート、 トリエチレングリコールジアタリレート、 1, 6—へキサンジオールジアタリレート、テトラメ チロールメタンテトラアタリレート、エチレングリコールジメタタリレート、ブチレングリコ ールジメタタリレート、トリエチレングリコーノレジメタクリレート、テトラエチレングリコーノレ ジメタタリレート、 1, 6—へキサンジオールジメタタリレート、 1, 9ーノナンジオールジメ タクリレート、 1, 10—デカンジオールジメタタリレート、トリメチロールプロパントリメタク リレート、テトラメチロールメタンテトラメタタリレート等の多官能性 (メタ)アクリル酸系化 合物;ジビュルフタレート、ジァリルフタレート、ジァリルマレエート、ビスアタリロイルォ キシェチルテレフタレート等の脂肪族および芳香族多価カルボン酸のポリビュルエス テル;ポリアリルエステル、ポリアクリロイルォキシアルキルエステル、ポリメタクリロイル ォキシァノレキノレエステル、ジエチレングリコールジビニノレエーテル、ヒドロキノンジビ二 ルエーテル、ビスフエノール Aジァリルエーテル等の脂肪族および芳香族多価アルコ ールのポリビュルエーテルやポリアリルエーテル;トリァリルシアヌレート、トリアリルイソ シァヌレート等のシァヌール酸又はイソシァヌール酸のァリルエステル;トリアリルホス フェート、トリスアクリルォキシェチルホスフェート、 N—フエ-ルマレイミド、 N, N,一 m— フエ-レンビスマレイミド等のマレイミド系化合物;フタル酸ジプロパギル、マレイン酸 ジプロパギル等の 2個以上の三重結合を有する化合物などの多官能性モノマーを使 用することができる。これらの架橋助剤の使用量は、特に限定されないが、効果的に 架橋構造を付与する観点からは、生分解性ポリエステル榭脂 100質量部に対して 30 質量部以下が好ましい。 [0028] In order to increase the cross-linking efficiency, it is preferable to use a cross-linking auxiliary agent together with the peroxide. Examples of the crosslinking assistant include dibutylbenzene, diarylbenzene, divinylnaphthalene, divinylphenol, divinylcarbazole, dibutylpyridine, and their nuclear-substituted conjugates and closely related homologues; Atharylate, butylene glycol diatalylate, triethylene glycol diatalylate, 1,6-hexanediol diatalylate, tetramethylol methane tetraatalylate, ethylene glycol dimetharate, butylene glycol dimetharate, triethylene Glycono resin methacrylate, tetraethylene glycolone dimethacrylate, 1,6-hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate, 1,10-decanediol dimethacrylate, trimethylolpropane trimethacrylate (Meth) acrylic acid compounds such as dibutyl phthalate, tetramethylol methane tetramethacrylate, etc .; dibutyl phthalate, diaryl phthalate, diaryl maleate, bis atalilloyl xicetyl terephthalate, etc. Polybutylesters of aliphatic and aromatic polycarboxylic acids; such as polyallyl ester, polyacryloyloxyalkyl ester, polymethacryloyloxyanolequinole ester, diethylene glycol divininole ether, hydroquinone divinyl ether, and bisphenol A diaryl ether; Aliphatic and aromatic polyhydric alcohols Polybutyl ethers or polyallyl ethers; triaryl cyanurate, triallyl isocyanurate, etc., cyranuric acid or isocyanuric acid allyl ester; triallyl phosphate, trisacryloxyshethyl phosphate, N-phenylmaleimide, N, N, Polyfunctional monomers such as maleimide compounds such as m-phenylenebismaleimide; compounds having two or more triple bonds such as dipropagyl phthalate and dipropagyl maleate can be used. The amount of these crosslinking aids is not particularly limited, but is preferably 30 parts by mass or less based on 100 parts by mass of the biodegradable polyester resin from the viewpoint of effectively providing a crosslinked structure.
[0029] 上記架橋助剤中、架橋反応性の点から (メタ)アクリル酸エステルイ匕合物が好ましい 。この成分を介して、生分解性ポリエステル榭脂成分が架橋され、それによつて機械 的強度、耐熱性、寸法安定性が向上する。(メタ)アクリル酸エステルイ匕合物としては 、生分解性榭脂との反応性が高くしたがってモノマーが残りにくぐ毒性が比較的少 なぐ榭脂の着色も少ないことから、分子内に 2個以上の (メタ)アクリル基を有するか 、または 1個以上の (メタ)アクリル基と 1個以上のグリシジル基もしくはビュル基とを有 する化合物が好ましい。具体的な化合物としては、グリシジルメタタリレート、グリシジ ルアタリレート、グリセロールジメタタリレート、トリメチロールプロパントリメタタリレート、 トリメチロールプロパントリアタリレート、ァリロキシポリエチレングリコールモノアクリレー ト、ァリロキシポリエチレングリコールモノメタタリレート、エチレングリコールジアタリレ ート、エチレングリコールジメタタリレート、ポリエチレングリコールジメタタリレート、ポリ エチレングリコールジアタリレート、ポリプロピレングリコールジメタタリレート、ポリプロ ピレングリコールジアタリレート、ポリテトラメチレングリコールジメタタリレート、または、 これらのアルキレングリコール部が異種のアルキレン基をもつアルキレングリコールの 共重合体、さらに、ブタンジオールメタタリレート、ブタンジオールアタリレート等が挙 げられる。 [0029] Among the above crosslinking assistants, (meth) acrylic acid ester conjugates are preferred from the viewpoint of crosslinking reactivity. Via this component, the biodegradable polyester resin component is crosslinked, thereby improving mechanical strength, heat resistance and dimensional stability. The (meth) acrylate ester conjugate has a high reactivity with the biodegradable resin and therefore has relatively little toxicity due to the remaining monomer, and has little coloring of the resin. Compounds having a (meth) acryl group or having at least one (meth) acryl group and at least one glycidyl group or butyl group are preferred. Specific compounds include glycidyl methacrylate, glycidyl atalylate, glycerol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolpropane triatalylate, aryloxy polyethylene glycol monoacrylate, and aryloxy polyethylene. Glycol monomethacrylate, ethylene glycol diatalate, ethylene glycol dimetharate, polyethylene glycol dimetharate, polyethylene glycol diatalylate, polypropylene glycol dimetharate, polypropylene glycol diatalylate, polytetramethylene glycol Dimetharylate, or a copolymer of an alkylene glycol in which these alkylene glycol moieties have different alkylene groups, Et al in, butanediol meth Tari rate, butanediol Atari rate or the like can be mentioned up.
[0030] 架橋助剤として (メタ)アクリル酸エステル化合物を配合する場合、その量は、生分 解性ポリエステル榭脂 100質量部に対して、 0. 01— 20質量部が好ましぐ 0. 05— 10質量部がさらに好ましぐ 0. 1一 5質量部がよりいつそう好ましい。操業性に特に支 障が出ない範囲で、 20質量部を超えて使用することもできる。 [0031] 生分解性ポリエステル榭脂に、上記した過酸化物などの架橋剤や、架橋助剤を配 合する手段としては、一般的な押出機を用いて溶融混練する方法を挙げることがで きる。混練状態をよくする意味で二軸の押出機を使用することが好ましい。混練温度 は(生分解性ポリエステル榭脂の融点 + 5°C)一(生分解性ポリエステル榭脂の融点 + 100°C)の範囲力 また、混練時間は 20秒一 30分力 それぞれ好ましい。この範 囲より低温や短時間であると、混練や反応が不充分となり、また高温や長時間である と榭脂の分解や着色が起きることがある。配合に際しては、過酸化物などの架橋剤や 架橋助剤が固体状であればこれらをドライブレンドや粉体フィーダ一を用いて供給す る方法が好ましぐ液体状であれば加圧ポンプを用いて押出機のバレルに直接注入 する方法が好ましい。 When a (meth) acrylate compound is blended as a crosslinking aid, the amount is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the biodegradable polyester resin. 05-10 parts by weight is even more preferred 0.1-5 parts by weight is even more preferred. It can be used in excess of 20 parts by mass as long as operability is not adversely affected. [0031] As a means for mixing a crosslinking agent such as a peroxide or a crosslinking aid to the biodegradable polyester resin, a method of melt-kneading using a general extruder can be used. Wear. It is preferable to use a twin-screw extruder in order to improve the kneading state. The kneading temperature is in the range of (melting point of biodegradable polyester resin + 5 ° C)-1 (melting point of biodegradable polyester resin + 100 ° C). The kneading time is preferably 20 seconds-30 minutes. If the temperature is lower than this range or for a short time, kneading and reaction become insufficient, and if the temperature is higher or longer, decomposition or coloring of the resin may occur. When compounding, a cross-linking agent such as a peroxide or a cross-linking aid is preferably in a solid state by supplying them using a dry blend or a powder feeder. And a method of directly injecting it into the barrel of an extruder.
[0032] 架橋助剤と過酸化物などの架橋剤とを併用して配合する場合の好ま ヽ方法とし て、架橋助剤および Zまたは過酸化物などの架橋剤を媒体に溶解又は分散して混 練機に注入する方法が挙げられる。これによれば、操業性を格段に改良することがで きる。すなわち、生分解性ポリエステル榭脂成分と過酸化物などの架橋剤とを溶融混 練して ヽるときに架橋助剤の溶解液または分散液を注入したり、ポリエステル榭脂成 分を溶融混練!ヽるときに、架橋助剤と過酸化物などの架橋剤との溶解液又は分散液 を注入したりして、溶融混練することできる。  [0032] In a case where a crosslinking aid and a crosslinking agent such as a peroxide are used in combination, a preferred method is to dissolve or disperse the crosslinking aid and a crosslinking agent such as Z or peroxide in a medium. There is a method of injecting into a kneader. According to this, operability can be significantly improved. That is, when a biodegradable polyester resin component and a crosslinking agent such as a peroxide are melt-kneaded, a solution or dispersion of a crosslinking aid is injected, or the polyester resin component is melt-kneaded. At this time, a solution or dispersion of a crosslinking aid and a crosslinking agent such as a peroxide can be injected or melt-kneaded.
[0033] 架橋助剤および Zまたは過酸化物などの架橋剤を溶解または分散させる媒体とし ては、一般的なものが用いられ、特に限定されない。なかでも、本発明にもとづく生分 解性ポリエステル榭脂との相溶性に優れた可塑剤が好ましい。例えば、脂肪族多価 カルボン酸エステル誘導体、脂肪族多価アルコールエステル誘導体、脂肪族ォキシ エステル誘導体、脂肪族ポリエーテル誘導体、脂肪族ポリエーテル多価カルボン酸 エステル誘導体など力 選ばれた 1種以上の可塑剤などが挙げられる。具体的な化 合物としては、グリセリンジァセトモノラウレート、グリセリンジァセトモノ力プレート、ジメ チルアジペート、ジブチルアジペート、トリエチレングリコールジアセテート、ァセチル リシノーノレ酸メチノレ、ァセチノレトリブチノレクェン酸、ポリエチレングリコーノレ、ジブチノレ ジグリコールサクシネートなどが挙げられる。分散媒体としての可塑剤の使用量は、 生分解性ポリエステル榭脂 100質量部に対し 30質量部以下が好ましぐ 0. 1一 20 質量部がさらに好ましい。架橋助剤や、過酸化物などの架橋剤の反応性が低い場合 は、可塑剤を使用しなくてもよいが、反応性が高い場合は、 0. 1質量部以上用いるこ とが好ましい。この分散媒体は、榭脂との混合時に揮発することがあるため、たとえ製 造時に使用しても、得られた榭脂組成物中には残存しない場合がある。 [0033] As a medium for dissolving or dispersing the crosslinking assistant and the crosslinking agent such as Z or peroxide, a general medium is used and is not particularly limited. Among them, a plasticizer excellent in compatibility with the biodegradable polyester resin according to the present invention is preferable. For example, an aliphatic polycarboxylic acid ester derivative, an aliphatic polyhydric alcohol ester derivative, an aliphatic oxyester derivative, an aliphatic polyether derivative, an aliphatic polyether polyvalent carboxylic acid ester derivative, etc. And a plasticizer. Specific compounds include glycerin diacetate monolaurate, glycerin diacetate monoforce plate, dimethyl adipate, dibutyl adipate, triethylene glycol diacetate, acetyl methinole ricinoleate, acetinole tributynolec acid, Examples include polyethylene glycolone and dibutinole diglycol succinate. The amount of the plasticizer used as a dispersion medium is preferably 30 parts by mass or less based on 100 parts by mass of the biodegradable polyester resin. Parts by mass are more preferred. When the reactivity of the crosslinking aid or the crosslinking agent such as a peroxide is low, a plasticizer may not be used. However, when the reactivity is high, it is preferable to use 0.1 part by mass or more. Since this dispersion medium may volatilize when mixed with the resin, it may not remain in the obtained resin composition even when used in the production.
[0034] 本発明におけるポリカーボネート榭脂(B)の成分は、ビスフエノール類残基とカーボ ネート残基とで構成される繰り返し単位カゝらなる。  [0034] The component of the polycarbonate resin (B) in the present invention is a repeating unit composed of a bisphenol group residue and a carbonate residue.
[0035] 原料のビスフエノール類としては、例えば 2, 2 ビス(4ーヒドロキシフエ-ル)プロパ ン、 2, 2—ビス(3, 5—ジブ口モー 4ーヒドロキシフエ-ル)プロパン、 2, 2—ビス(3, 5—ジ メチルー 4ーヒドロキシフエ-ル)プロパン、 1, 1—ビス(4—ヒドロキシフエ-ル)シクロへ キサン、 1, 1 ビス(3, 5—ジメチルー 4—ヒドロキシフエ-ル)シクロへキサン、 1, 1ービ ス(4ーヒドロキシフエ-ル)デカン、 1, 4—ビス(4—ヒドロキシフエ-ル)プロパン、 1, 1— ビス(4ーヒドロキシフエ-ル)シクロドデカン、 4, 4' ージヒドロキシジフエニルエーテル 、 4, 4' ージチォジフエノール、 4, 4' ージヒドロキシー 3, 3' —ジクロロジフエニルェ 一テル、 4, 4' ージヒドロキシー 2, 5—ジヒドロキシジフエ-ルエーテル等が挙げられる 。その他にも、米国特許明細書第 2, 999, 835号、第 3, 028, 365号、第 3, 334, 154号および第 4, 131, 575号に記載されているジフヱノールが使用できる。これら は単独で使用してもょ 、し、ある 、は 2種類以上混合して使用してもょ 、。  Examples of the starting bisphenols include 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (3,5-dibutene 4-hydroxyphenyl) propane, and 2,2-bis (3,5-Dimethyl-4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1bis (3,5-dimethyl-4-hydroxyphenyl) cyclohexane Xan, 1,1-bis (4-hydroxyphenyl) decane, 1,4-bis (4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclododecane, 4,4'- Dihydroxydiphenyl ether, 4,4 'dithiodiphenol, 4,4' dihydroxy-3,3'-dichlorodiphenyl ether, 4,4 'dihydroxy-2,5-dihydroxydiphenyl ether and the like. . In addition, diphenols described in U.S. Pat. Nos. 2,999,835, 3,028,365, 3,334,154 and 4,131,575 can be used. These may be used alone, or some may be used in combination of two or more.
[0036] カーボネート残基単位を導入するための前駆物質としては、例えばホスゲン、ジフ ェニルカーボネート等が挙げられる。  [0036] Examples of the precursor for introducing the carbonate residue unit include phosgene and diphenyl carbonate.
[0037] ポリカーボネート榭脂(B)の極限粘度は、 0. 40-0. 64の範囲にあることが好まし い。 0. 64を超えると、榭脂組成物の溶融粘度が高くなつて、混練押出や射出成形が 困難になる場合がある。一方 0. 40を下回ると、得られる成形品の衝撃強度が不足す る場合がある。  [0037] The intrinsic viscosity of the polycarbonate resin (B) is preferably in the range of 0.40 to 0.64. If it exceeds 0.64, the melt viscosity of the resin composition may be so high that kneading extrusion or injection molding may be difficult. On the other hand, if it is less than 0.40, the impact strength of the obtained molded product may be insufficient.
[0038] ポリカーボネート榭脂 (B)の配合割合は、榭脂 (A)— (C)の合計量 100質量%中、 10— 70質量%である。榭脂(B)分の配合量が 10質量%未満のときには、得られる 榭脂組成物の耐熱性、耐衝撃性能が不足し、 70質量%を超えると、原料の石油資 源依存度が高くなつて、環境貢献度が低くなる。  [0038] The mixing ratio of the polycarbonate resin (B) is 10 to 70% by mass in the total amount of the resins (A) and (C) of 100% by mass. When the content of the resin (B) is less than 10% by mass, the heat resistance and impact resistance of the obtained resin composition are insufficient, and when it exceeds 70% by mass, the dependence of the raw material on petroleum resources is high. As a result, the degree of environmental contribution is low.
[0039] 本発明の榭脂組成物においては、既述の架橋生分解性ポリエステル榭脂 (A)およ びポリカーボネート榭脂(B)に加えて、さらに、アクリロニトリル Zブタジエン Zスチレ ン系共重合榭脂 (C)を使用してもよい。榭脂 (C)の添カ卩によって、得られる榭脂組成 物の成形時の流動性が高まり、成形品内部の残留歪みが小さくなる結果、成形品の 反りを小さくすることができる。また、成形品の外観を優れたものとすることができる。 [0039] In the resin composition of the present invention, the above-mentioned crosslinked biodegradable polyester resin (A) and In addition to polycarbonate resin (B) and acrylonitrile Z butadiene Z styrene copolymer resin (C) may be used. By adding the resin (C), the fluidity of the obtained resin composition at the time of molding is increased, and the residual strain inside the molded article is reduced, so that the warpage of the molded article can be reduced. Further, the appearance of the molded article can be made excellent.
[0040] 榭脂(C)の配合割合は、榭脂 (A)— (C)の合計量 100質量%に対して 0— 50質量 %の範囲である。また、榭脂 (B)、 (C)の配合割合の関係は、質量比で、 (B) /{ (B) + (C) }≥0. 3を満たすことが好ま 、。この式をみたすところの、榭脂 (B)と榭脂 (C )との合計量におけるポリカーボネート榭脂(B)の割合が 0. 3以上のときには、得られ る榭脂組成物の耐熱性、耐衝撃性がさらに向上する。  [0040] The mixing ratio of the resin (C) is in the range of 0 to 50% by mass relative to the total amount of the resin (A)-(C) of 100% by mass. Further, the relationship between the mixing ratios of the resins (B) and (C) preferably satisfies (B) / {(B) + (C)} ≥0.3 by mass ratio. When the ratio of the polycarbonate resin (B) to the total amount of the resin (B) and the resin (C) satisfying this formula is 0.3 or more, the heat resistance of the obtained resin composition is improved. Impact resistance is further improved.
[0041] アクリロニトリル Zブタジエン Zスチレン系共重合榭脂(C)は、上述のように一般に「 ABS榭脂」と略称される榭脂であり、脂肪族共役ジェン系単量体を必須成分とする 単量体を重合してなるゴム状重合体 5— 70質量%の存在下に、シアンィ匕ビ二ル系単 量体および芳香族ビュル系単量体を必須成分とする単量体 30— 95質量%を重合 してなるグラフト共重合体である。  [0041] Acrylonitrile Z butadiene Z styrene copolymer resin (C) is a resin generally referred to as "ABS resin" as described above, and contains an aliphatic conjugated diene monomer as an essential component. In the presence of 5 to 70% by mass of a rubbery polymer obtained by polymerizing monomers, a monomer containing a cyanide vinyl monomer and an aromatic vinyl monomer as essential components 30 to 95 It is a graft copolymer obtained by polymerizing mass%.
[0042] ここで用いられる脂肪族共役ジェンとしては、 1,3—ブタジエン、イソプレン、クロロプ レン等が挙げられる。特に、耐衝撃性の点から 1,3—ブタジエンを好ましく用いること ができる。ゴム状重合体を製造するために用いる単量体の合計 100質量部を基準と して、脂肪族共役ジェン系単量体の割合は、 30— 100質量部であることが好ましい 。この割合を 30質量部以上にすることで、良好な耐衝撃性を有するグラフト共重合体 が得られる。  [0042] Examples of the aliphatic conjugated gen used herein include 1,3-butadiene, isoprene, and chloroprene. In particular, 1,3-butadiene can be preferably used from the viewpoint of impact resistance. The ratio of the aliphatic conjugated diene monomer is preferably 30 to 100 parts by mass based on 100 parts by mass of the total of the monomers used for producing the rubbery polymer. By setting the ratio to 30 parts by mass or more, a graft copolymer having good impact resistance can be obtained.
[0043] ゴム状重合体を製造するために用いる単量体として、脂肪族共役ジェン系単量体 と他の単量体を併用する場合に、他の単量体としては、ジェン系単量体と共重合可 能な各種単量体を用いることができる。その具体例としては、アクリロニトリル、メタタリ 口-トリル等のシアン化ビュル系単量体;スチレン、 α—メチルスチレン、 ρ—クロロスチ レン、 ρ—メチルスチレン等の芳香族ビュル系単量体;アクリル酸メチル、アクリル酸ェ チル、アクリル酸 η—ブチル、 2—ェチルへキシルアタリレート、 η キシルアタリレート 、メタクリル酸メチル、メタクリル酸ェチル等の不飽和カルボン酸エステル等が挙げら れる。 [0044] ゴム状重合体にグラフト重合させる単量体は、上述のように、シアン化ビニル系単量 体および芳香族ビニル系単量体を必須成分とする。シアン化ビニル系単量体の具体 例としては、アクリロニトリル、メタタリ口-トリル、シアンィ匕ビユリデン等が挙げられる。 なかでも、特に、アクリロニトリルが好ましい。芳香族ビニル系単量体の具体例として は、スチレン、 α—メチルスチレン、 ρ—メチルスチレン等のビュルトルエン類、 ρ—クロ ルスチレン等のハロゲン化スチレン類、 ρ— tーブチルスチレン、ジメチルスチレン、ビ- ルナフタレン類等が挙げられる。なかでも、特に、スチレン、 α—メチルスチレンが好ま しい。 [0043] When an aliphatic conjugated diene monomer and another monomer are used in combination as the monomer used for producing the rubbery polymer, the other monomer is a diene monomer. Various monomers copolymerizable with the polymer can be used. Specific examples thereof include a cyanide-based monomer such as acrylonitrile and metal-tol-tolyl; an aromatic-based monomer such as styrene, α -methylstyrene, ρ-chlorostyrene, and ρ-methylstyrene; acrylic acid Examples include unsaturated carboxylic esters such as methyl, ethyl acrylate, η-butyl acrylate, 2-ethylhexyl acrylate, η-xysyl acrylate, methyl methacrylate, and ethyl methacrylate. As described above, the monomer to be graft-polymerized to the rubber-like polymer contains vinyl cyanide-based monomer and aromatic vinyl-based monomer as essential components. Specific examples of the vinyl cyanide-based monomer include acrylonitrile, metharyl-tolyl, cyanidani biylidene, and the like. Among them, acrylonitrile is particularly preferred. Specific examples of the aromatic vinyl monomer include butyltoluenes such as styrene, α-methylstyrene and ρ-methylstyrene, halogenated styrenes such as ρ-chlorostyrene, ρ-t-butylstyrene, dimethylstyrene, and styrene. -Lunaphthalenes and the like. Of these, styrene and α-methylstyrene are particularly preferred.
[0045] グラフト重合用単量体として、シアン化ビニル系単量体および芳香族ビニル系単量 体以外に、さらに、所望に応じて他の単量体を併用することもできる。その具体例とし ては、アクリル酸メチル、アクリル酸ェチル、アクリル酸 η—ブチル、アクリル酸 2—ェチ ルへキシル、アクリル酸 η キシル、メタクリル酸メチル、メタクリル酸ェチル等の不 飽和カルボン酸エステル系単量体;無水マレイン酸、無水ィタコン酸、無水シトラコン 酸等の不飽和ジカルボン酸無水物;マレイミド、 Ν—メチルマレイミド、 Ν—ブチルマレ イミド、 Ν—フエ-ルマレイミド、 Ν—シクロへキシルマレイミド等の不飽和ジカルボン酸 のイミド化合物等が挙げられる。これらは、一種単独で用いることも二種以上を併用 することちでさる。  [0045] As monomers for graft polymerization, in addition to vinyl cyanide-based monomers and aromatic vinyl-based monomers, other monomers can be used in combination, if desired. Specific examples thereof include unsaturated carboxylic esters such as methyl acrylate, ethyl acrylate, η-butyl acrylate, 2-ethylhexyl acrylate, η-xyl acrylate, methyl methacrylate, and ethyl methacrylate. Unsaturated monomers such as maleic anhydride, itaconic anhydride and citraconic anhydride; maleimide, Ν-methylmaleimide, Ν-butylmaleimide, Ν-phenylmaleimide, Ν-cyclohexylmaleimide, etc. And an imide compound of an unsaturated dicarboxylic acid. These may be used alone or in combination of two or more.
[0046] これらの単量体の使用割合は、通常、全体の質量を 100として、シアンィ匕ビニル系 単量体 Ζ芳香族ビニル系単量体 Ζその他の単量体(質量比) = 10—50/50—90 Ζ0— 40、好ましくは 15 45Ζ55 85Ζ0 20である。  [0046] These monomers are usually used in a ratio of 100% of the total mass to 100% of the total amount of cyanide vinyl monomer / aromatic vinyl monomer / other monomer (mass ratio) = 10— 50 / 50-90Ζ0-40, preferably 15 45Ζ55 85Ζ020.
[0047] さらに、グラフト重合用単量体には、必要に応じて、グリシジルメタタリレート、メタタリ ル酸、アクリル酸、メタクリルアミド、 2—ヒドロキシェチルメタタリレート、ポリエチレングリ コールモノメタタリレート等を、グラフト重合用単量体合計 100質量%を基準として、 2 0質量%以下、好ましくは 15質量%以下併用することも可能である。  [0047] Further, the monomers for graft polymerization include, as necessary, glycidyl methacrylate, methacrylic acid, acrylic acid, methacrylamide, 2-hydroxyethyl methacrylate, and polyethylene glycol monomethacrylate. It is also possible to use 20% by mass or less, preferably 15% by mass or less based on the total of 100% by mass of the monomers for graft polymerization.
[0048] グラフト共重合体の製造において、ゴム状重合体とグラフト重合用単量体混合物と の比率は、上述のように、ゴム状重合体 Ζ単量体混合物(質量比) = 5-70/30- 95、好ましくは 10 65Ζ35 90である。ゴム状重合体が 5質量%未満の場合は、 榭脂中のゴム状重合体の割合が必然的に低くなり、耐衝撃性が低下する。一方、 70 質量0 /oを超える場合はゴム状重合体へのグラフト率が低くなつて、榭脂中のゴム状重 合体の分散が不十分となり、耐衝撃性を発現し得ない。 [0048] In the production of the graft copolymer, the ratio of the rubbery polymer and the monomer mixture for graft polymerization was, as described above, the ratio of the rubbery polymer to the monomer mixture (mass ratio) = 5-70. / 30-95, preferably 1065-3590. When the amount of the rubber-like polymer is less than 5% by mass, the proportion of the rubber-like polymer in the resin is inevitably reduced, and the impact resistance is reduced. Meanwhile, 70 If the mass is more than 0 / o, the graft ratio to the rubber-like polymer becomes low, and the dispersion of the rubber-like polymer in the resin becomes insufficient, so that impact resistance cannot be exhibited.
[0049] アクリロニトリル Zブタジエン Zスチレン系共重合樹脂の重合時に金属触媒を使用 する場合は、重合後に、これを除去することが好ましい。金属触媒は、生分解性ポリ エステル榭脂の加水分解を促進し、耐湿熱性能を低下させる場合があるからである。  When a metal catalyst is used during the polymerization of acrylonitrile Z butadiene Z styrene copolymer resin, it is preferable to remove the metal catalyst after the polymerization. This is because the metal catalyst promotes the hydrolysis of the biodegradable polyester resin, and may lower the wet heat resistance.
[0050] 本発明の榭脂組成物において、各成分としての榭脂 (A)—(C)は、最終的な榭脂 組成物中にお 、て所定の割合で配合されて 、ればよ 、。それらの混合順序や混合 方法は、特に限定されない。例えば、(A)、(B)および (C)成分の各榭脂原料を同時 に溶融混合してもよいし、いずれカゝ 2種を先に混合したのち、他の 1種を混合してもよ い。し力しながら、ポリカーボネート榭脂(B)とアクリロニトリル Zブタジエン Zスチレン 系共重合榭脂 (C)とは、架橋生分解ポリエステル榭脂 (A)の配合に先立って予め混 合しておくことが好ましい。このようにすれば、最終的な榭脂組成物の成形時の流動 性をさらに良好にして、成形品外観を優れたものとすることができる。ポリカーボネー ト榭脂 (B)とアクリロニトリル Zブタジエン Zスチレン系共重合榭脂 (C)との混合物は 、市販されているものを用いることもできる。  [0050] In the resin composition of the present invention, the resin (A)-(C) as each component may be mixed at a predetermined ratio in the final resin composition. ,. The mixing order and mixing method are not particularly limited. For example, the resin raw materials of the components (A), (B) and (C) may be melt-mixed simultaneously, or two of them may be mixed first, and then the other may be mixed. It is good. While mixing, the polycarbonate resin (B) and the acrylonitrile Z-butadiene Z-styrene copolymer resin (C) may be mixed in advance prior to blending the crosslinked biodegradable polyester resin (A). preferable. By doing so, the fluidity of the final resin composition during molding can be further improved, and the appearance of the molded article can be improved. As the mixture of the polycarbonate resin (B) and the acrylonitrile Z-butadiene Z-styrene copolymer resin (C), commercially available ones can also be used.
[0051] 本発明の榭脂組成物は、シリコーンィ匕合物 (D)を配合することによって、耐衝撃性 能をさらに向上させることができる。シリコーンィ匕合物とは、シロキサン結合単位 (式 1 )を有する重合体である。 R SiO (式 2)を基本単位としたものは直鎖状の重合体とな  [0051] The resin composition of the present invention can further improve the impact resistance performance by blending the silicone conjugate (D). The silicone conjugate is a polymer having a siloxane bond unit (formula 1). R SiO (formula 2) as a basic unit is a linear polymer.
2  2
る力 RSiO (式 3)または SiO (式 4)単位を導入して分岐構造を有したものでも  Even if a unit has a branched structure by introducing RSiO (Formula 3) or SiO (Formula 4) units
1. 5 2. 0  1.5.2.0
よい。 Good.
01 in 01 in
C C
置〕0053 Place) 0053
£0052 £ 0052
(ε) — ο— ί s—〇一 (ε) — ο— ί s—〇 一
Figure imgf000015_0001
Figure imgf000015_0001
[ε^] [ οο] l.9T00/S00Zdf/X3d 179SS.0/S00Z OAV [0055] [化 4] [ε ^] [οο] l.9T00 / S00Zdf / X3d 179SS.0 / S00Z OAV [0055] [Formula 4]
Figure imgf000016_0001
Figure imgf000016_0001
—〇一 S i —〇一 ( 4 ) —〇 一 S i —〇 一 (4)
Figure imgf000016_0002
Figure imgf000016_0002
[0056] ただし、分岐の数が多すぎると、シリコーン化合物が生分解性ポリエステル榭脂お よびポリカーボネート榭脂中へ均一に分散しにくくなるため、過度の分岐構造は好ま しくない。主鎖以外のケィ素に結合する有機基 Rの種類は、特に制限はなぐ適宜公 知のものを使用できる。例えば、一般的には、メチル基、フ ニル基、水素が挙げら れる。このほかに、エポキシ基、アミノ基、アルコール基、カルボキシル基等の有機官 能基や、アルキル基、ポリエーテル、高級脂肪酸エステル等で変性した変性シリコー ン化合物も使用できる。さらにこれらを 2種以上併用してもよい。ただし、成形品にお いてシリコーン化合物のブリードアウトが問題になる場合や、耐熱性が求められる場 合は、メチルフエニルシリコーンィ匕合物力 相溶性の点力も望ましい。 However, if the number of branches is too large, it becomes difficult for the silicone compound to be uniformly dispersed in the biodegradable polyester resin and the polycarbonate resin, so that an excessively branched structure is not preferred. The type of the organic group R bonded to the silicon other than the main chain is not particularly limited, and any known organic group can be used. For example, generally, a methyl group, a phenyl group, and hydrogen are mentioned. In addition, a modified silicone compound modified with an organic functional group such as an epoxy group, an amino group, an alcohol group, or a carboxyl group, or an alkyl group, a polyether, or a higher fatty acid ester can also be used. Further, two or more of these may be used in combination. However, when bleed-out of the silicone compound becomes a problem in the molded product or when heat resistance is required, the point of compatibility with the methylphenylsilicone conjugate material is also desirable.
[0057] 重合体の末端基に関しても特に制限はなぐメチル基、フ ニル基、その他の官能 基を有するものを使用できる。 [0058] これらのシリコーンィ匕合物の商品名を例示する。ジメチルシリコーンとしては、 GE東 芝シリコーン社の「TSF451」シリーズ、信越シリコーン社の「KF96」、「KF96L」、「 KF96H」、「KF69」、「KF92」、「KF961」、「KF965」、「KF968」などが挙げられ る。メチルフエ-ルシリコーンとしては、 GE東芝シリコーン社の「TSF431」、「TSF43 3」、「TSF434」、「TSF437」、「TSF4300」、信越シリコーン社の「KF50」、「KF5 4」、「KF56」が挙げられる。メチルハイドロジェンシリコーンとしては、 GE東芝シリコ ーン社の「TSF484」、信越シリコーン社の「KF99」が挙げられる。エポキシ変性シリ コーンオイルとしては、 GE東芝シリコーン社の「TSF4730」、信越シリコーン社の「K F100T」、「KF101」、「KF102」、「KF103」が挙げられる。ァミノ変性シリコーンとし ては、 GE東芝シリコーン社の「TSF4700」、「TSF4701」、「TSF4702」、「TSF47 03」、「TSF4704」、「TSF4705」、「TSF4706」、「TSF4707」、「TSF4708」、「T SF4709」、信越シリコーン社の「KF857」、「KF858」、「KF859」、「KF861」、「K F864」、「KF880」が挙げられる。アルコール変性シリコーンとしては、信越シリコー ン社の「KF851」が挙げられる。カルボシキル変性シリコーンとしては、 GE東芝シリコ ーン社の「TSF4770」、信越シリコーン社の「X— 22— 3710」、 「 ー22—370 ^」カ 挙げられる。アルキル変性シリコーンオイルとしては、 GE東芝シリコーン社製の「TS F4421」、「XF42— A3161」が挙げられる。 The terminal group of the polymer is not particularly limited, and those having a methyl group, a phenyl group, and other functional groups can be used. [0058] The trade names of these silicone conjugates are exemplified. Examples of dimethyl silicone include the TSF451 series from GE Toshiba Silicone, KF96, KF96L, KF96H, KF69, KF92, KF961, KF961, KF965, and KF968 from Shin-Etsu Silicone. And so on. Examples of methylphenol silicone include GE Toshiba Silicone's TSF431, TSF433, TSF434, TSF437, TSF4300, and Shin-Etsu Silicone's KF50, KF54, and KF56. No. Examples of methyl hydrogen silicone include "TSF484" from GE Toshiba Silicone and "KF99" from Shin-Etsu Silicone. Epoxy-modified silicone oils include "TSF4730" from GE Toshiba Silicones, "KF100T", "KF101", "KF102" and "KF103" from Shin-Etsu Silicones. Amino-modified silicones include GE Toshiba Silicone's TSF4700, TSF4701, TSF4702, TSF47 03, TSF4704, TSF4705, TSF4706, TSF4707, TSF4708, and TSF4708. TSF4709 "and Shin-Etsu Silicone's" KF857 "," KF858 "," KF859 "," KF861 "," KF864 ", and" KF880 ". An example of alcohol-modified silicone is Shin-Etsu Silicone's “KF851”. Examples of carboxyl-modified silicone include GE Toshiba Silicone's "TSF4770" and Shin-Etsu Silicone's "X-22-3710" and "-22-370 ^". Examples of the alkyl-modified silicone oil include “TS F4421” and “XF42-A3161” manufactured by GE Toshiba Silicone.
[0059] シリコーンィ匕合物を配合する場合、その量は、榭脂 (A)— (C)の合計量 100質量 部あたり、 0. 05— 10質量部である。 0. 05質量部未満であると耐衝撃性改善効果に 乏しぐ 10質量部を超えると、ブリードアウトが発生しやすくなり、耐熱性も低下しやす くなる。  [0059] When the silicone conjugate is blended, the amount is 0.05-10 parts by mass per 100 parts by mass of the total amount of the resins (A)-(C). If the amount is less than 0.05 part by mass, the effect of improving the impact resistance is poor. If the amount exceeds 10 parts by mass, bleed-out tends to occur, and the heat resistance tends to decrease.
[0060] 榭脂組成物には、変性されたォレフインィ匕合物 (E)を相溶化剤として使用すること により、相溶性を高め、また耐衝撃性をよりいっそう向上させることができる。本発明に おける変性されたォレフインィ匕合物とは、ポリ(メタ)アタリレート、ポリ (メタ)アタリレート zグリシジルメタタリレート共重合体、ポリスチレン、アクリロニトリル zスチレン共重合 体等がグラフト共重合されたォレフイン化合物を 、う。そのォレフィンィ匕合物としては、 ポリエチレン、エチレン Zグリシジルメタタリレート共重合体、エチレン Zェチルアタリ レート共重合体、エチレン Z酢酸ビュル共重合体、エチレン ェチルアタリレート 無 水マレイン酸共重合体等が挙げられる。特に、ポリメタクリル酸メチル、ポリメタクリル 酸メチル Zグリシジルメタタリレート共重合体がグラフト共重合されたエチレン Zグリシ ジルメタタリレート共重合体力 耐衝撃性に優れる。ポリメタクリル酸メチルがグラフト 共重合されたエチレン Zグリシジルメタタリレート共重合体の具体的な商品名を例示 すると、 日本油脂社の「モディパー A4200」、「AT13100」、「AT13130」等が挙げ られる。ポリメタクリル酸メチル Zグリシジルメタタリレート共重合体がグラフト共重合さ れたエチレン Zグリシジルメタタリレート共重合体の具体的な商品名を例示すると、 日 本油脂社の「AT13110」が挙げられる。 [0060] In the resin composition, by using the modified Olefin conjugate (E) as a compatibilizer, the compatibility can be enhanced and the impact resistance can be further improved. The modified resin conjugate in the present invention is obtained by graft copolymerization of poly (meth) acrylate, poly (meth) acrylate, glycidyl methacrylate copolymer, polystyrene, acrylonitrile z styrene copolymer and the like. Add the olefin compound. Examples of the olefin conjugate include polyethylene, ethylene Z glycidyl methacrylate copolymer, ethylene Z ethyl acrylate copolymer, ethylene Z butyl acetate copolymer, and ethylene ethyl acrylate. Water maleic acid copolymer and the like can be mentioned. In particular, ethylene Z glycidyl methacrylate copolymer obtained by graft copolymerization of poly (methyl methacrylate) and poly (methyl methacrylate) Z-glycidyl methacrylate copolymer is excellent in impact resistance. Specific examples of the trade names of the ethylene Z glycidyl methacrylate copolymer obtained by graft copolymerization of poly (methyl methacrylate) include “MODIPA A4200”, “AT13100”, and “AT13130” manufactured by NOF Corporation. A specific trade name of an ethylene Z glycidyl methacrylate copolymer obtained by graft copolymerization of a poly (methyl methacrylate) Z glycidyl methacrylate copolymer is, for example, "AT13110" of Nihon Yushi Co., Ltd.
[0061] 変性されたォレフインィ匕合物 (E)の配合量は、榭脂 (A)— (C)の合計量 100質量 部に対し、 0. 1— 20質量部が好ましい。 0. 1質量部未満では相溶化の効果が発現 しにくぐ 20質量部を超えると耐熱性が低下することがある。  [0061] The compounding amount of the modified olefin conjugate (E) is preferably 0.1 to 20 parts by mass based on 100 parts by mass of the total amount of the resins (A) to (C). If the amount is less than 0.1 part by mass, the effect of compatibilization is hardly exhibited. If the amount exceeds 20 parts by mass, the heat resistance may be reduced.
[0062] 榭脂組成物には、カルポジイミド化合物を配合することができる。カルポジイミド化 合物を含有させることによって榭脂組成物の耐湿熱性が向上し、また、架橋生分解 性ポリエステル榭脂 (A)およびポリカーボネート榭脂 (B)間で架橋構造が導入され、 溶融混練による相溶性もより良好になり、榭脂組成物の機械物性も向上する。カルボ ジイミド化合物としては、 4, 4' ージシクロへキシルメタンカルボジイミド、テトラメチル キシリレンカルボジイミド、 N, N—ジメチルフエ-ルカルボジイミド、 N, N' —ジー 2, 6 ージイソプロピルフエニルカルポジイミド等があげられる力 分子中に 1個以上のカル ポジイミド基を有するカルポジイミド化合物であれば、特に限定されな 、。  [0062] A carbodiimide compound can be blended with the resin composition. The moist heat resistance of the resin composition is improved by including the carpoimide compound, and a crosslinked structure is introduced between the crosslinked biodegradable polyester resin (A) and the polycarbonate resin (B). The compatibility becomes better, and the mechanical properties of the resin composition also improve. Examples of the carbodiimide compound include 4,4'-dicyclohexylmethanecarbodiimide, tetramethylxylylenecarbodiimide, N, N-dimethylphenylcarbodiimide, and N, N'-di-2,6-diisopropylphenylcarbodiimide. It is not particularly limited as long as it is a carbodiimide compound having one or more carbodiimide groups in a force molecule.
[0063] カルポジイミド化合物として、末端イソシァネート基をモノイソシァネート等で封止し たものを使用してもょ ヽが、榭脂組成物の耐湿熱性と機械物性 (特に耐衝撃性)の向 上の点からは、イソシァネート基を残したカルポジイミド化合物を使用することが好ま しい。イソシァネート基は、カルポジイミド基より高い反応性を有し、より高い効果が得 られる。  [0063] As the carbodiimide compound, a compound in which the terminal isocyanate group is sealed with a monoisocyanate or the like may be used, but the moist heat resistance and mechanical properties (particularly, impact resistance) of the resin composition are improved. From this viewpoint, it is preferable to use a carbodiimide compound having an isocyanate group left. The isocyanate group has higher reactivity than the carbodiimide group, and a higher effect is obtained.
[0064] カルポジイミド化合物は、従来から知られて!/、る方法で製造でき、ジイソシァネート 化合物を原料とする脱二酸化炭素反応を伴うカルポジイミド反応により製造すること ができる。この際に末端封止処理をおこなわなければ、末端にイソシァネート基を有 するカルポジイミドィ匕合物となる。 [0065] カルポジイミド化合物の配合量は、榭脂 (A)— (C)の合計量 100質量部に対して 0 . 01— 5質量部が好ましぐ 0. 1一 3質量部が特に好ましい。配合量が 0. 01質量部 未満であると、耐湿熱性と機械物性の向上の効果が見られず、一方、 5質量部を超 えると耐熱性が低下する場合がある。 [0064] The carbodiimide compound can be produced by a conventionally known method, and can be produced by a carbodiimide reaction accompanied by a decarbonation reaction using a diisocyanate compound as a raw material. At this time, if the terminal blocking treatment is not performed, a carbodiimide conjugate having an isocyanate group at the terminal is obtained. [0065] The amount of the carbodiimide compound is preferably 0.01 to 5 parts by mass, more preferably 0.1 to 13 parts by mass, per 100 parts by mass of the total amount of the resins (A) and (C). If the amount is less than 0.01 parts by mass, the effect of improving the wet heat resistance and the mechanical properties is not obtained, while if it exceeds 5 parts by mass, the heat resistance may be reduced.
[0066] 榭脂組成物の製造に際して、原料を配合する方法は、特に限定されるものではなく 、榭脂組成物中に各成分が均一に分散されている状態になればよい。例えば、架橋 生分解性ポリエステル榭脂 (A)、ポリカーボネート榭脂(B)、アクリロニトリル Zブタジ ェン Zスチレン系共重合榭脂 (C)、シリコーンィ匕合物 (D)、変性されたォレフインィ匕 合物(E)などを、タンブラ一あるいはヘンシェルミキサーを用いて均一にブレンドした 後に溶融混練してペレットィヒする方法が挙げられる。  [0066] In producing the resin composition, the method of mixing the raw materials is not particularly limited, as long as each component is uniformly dispersed in the resin composition. For example, cross-linked biodegradable polyester resin (A), polycarbonate resin (B), acrylonitrile Z butadiene Z styrene copolymer resin (C), silicone resin conjugate (D), modified olefin resin Compound (E) and the like are uniformly blended using a tumbler or Henschel mixer, and then melt-kneaded to pelletize.
[0067] より均一な分散のために、あら力じめ 2種類以上の原料が溶融混練されたペレットを 使用してもよい。例えば、ポリカーボネート榭脂(B)とシリコーンィ匕合物(D)とが溶融 混練された組成物あるいは共重合された組成物や、ポリカーボネート榭脂 (B)とァク リロ-トリル Zブタジエン Zスチレン系共重合榭脂 (C)とが溶融混練された組成物を 使用してちょい。 For more uniform dispersion, pellets in which two or more types of raw materials are melt-kneaded may be used. For example, a composition obtained by melt-kneading or copolymerizing a polycarbonate resin (B) and a silicone conjugate (D), or a composition obtained by mixing a polycarbonate resin (B) with acrylo-tolyl Z butadiene Z styrene Use a composition obtained by melt-kneading the system copolymer resin (C).
[0068] カルポジイミド化合物を用いる場合には、他の榭脂原料を溶融混練して、ある程度 相溶ィ匕が進んだ段階で追加して溶融混練するのが好まし 、。同時に溶融混練すると 、他の原料成分間の相溶化、特にポリ (メタ)アタリレートがグラフト共重合されたェチ レン Zグリシジルメタタリレート共重合体を用いたときに、この成分による相溶化反応 が阻害される場合がある。混合操作の例としては、カルポジイミドィ匕合物以外の原料 を押出機で一度溶融混練したあとに、カルポジイミドィ匕合物を追加して、再度、溶融 混練する方法や、または、サイドフィーダ等により、押出機の途中からカルポジイミド 化合物を添加する方法などが挙げられる。  [0068] In the case of using a carbodiimide compound, it is preferable to melt and knead other resin raw materials, and to melt and knead the mixture at a stage where the compatibility has progressed to some extent. When melt kneading is performed at the same time, the compatibilization between other raw material components, especially when an ethylene Z glycidyl methacrylate copolymer grafted with poly (meth) acrylate is used, the compatibilization reaction due to this component occurs. May be inhibited. As an example of the mixing operation, the raw materials other than the carpoimide conjugate are once melt-kneaded with an extruder, and then the carpo-imide conjugate is added and then melt-kneaded again, or extruded by a side feeder or the like. For example, a method of adding a carbodiimide compound in the middle of the machine.
[0069] 榭脂組成物には、機械的強度や耐熱性の向上を目的として、有機または無機の充 填材を添加してもよい。その配合量は、榭脂組成物 100質量部に対し、 1一 50質量 部が好ましい。  [0069] An organic or inorganic filler may be added to the resin composition for the purpose of improving mechanical strength and heat resistance. The compounding amount is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the resin composition.
[0070] 無機充填材としては、ガラス繊維、金属繊維、炭素繊維、金属ウイスカー、セラミック ゥイスカー、チタン酸カリウム等の繊維状強化材のほか、タルク、炭酸カルシウム、炭 酸亜鉛、ワラストナイト、シリカ、アルミナ、酸化マグネシウム、ケィ酸カルシウム、アル ミン酸ナトリウム、アルミン酸カルシウム、アルミノ珪酸ナトリウム、珪酸マグネシウム、ガ ラスバルーン、カーボンブラック、酸化亜鉛、三酸化アンチモン、ゼォライト、ハイド口 タルサイト、窒化ホウ素、グラフアイトが挙げられる。有機充填材としては、澱粉、セル ロース微粒子、木粉、おから、モミ殻、フスマ、ケナフ等の天然に存在するポリマーや これらの変性品が挙げられる。 [0070] Examples of the inorganic filler include glass fibers, metal fibers, carbon fibers, metal whiskers, ceramic whiskers, fibrous reinforcing materials such as potassium titanate, talc, calcium carbonate, and charcoal. Zinc oxide, wollastonite, silica, alumina, magnesium oxide, calcium silicate, sodium aluminate, calcium aluminate, sodium aluminosilicate, magnesium silicate, glass balloon, carbon black, zinc oxide, antimony trioxide, zeolite, Hydrate Talcite, boron nitride, graphite. Examples of the organic filler include naturally occurring polymers such as starch, fine cellulose particles, wood flour, okara, fir husk, bran and kenaf, and modified products thereof.
[0071] なかでも繊維状強化材が好ましぐ特にガラス繊維が、耐熱性、耐衝撃性を向上可 能という理由力も最も好ましい。ガラス繊維は、榭脂成分との密着性を高めるために 表面処理を施したものが好ましい。繊維状強化材の添加の方法としては、押出機に おいてホッパー力 他の原料と同時に添カ卩してもよいし、サイドフィーダを用いて混練 機の途中力 添加することもできる。また、繊維状強化材を高濃度に充填したマスタ 一榭脂を作製しておき、これを成形時にベース榭脂で希釈して所望の濃度となるよう に使用することちできる。  [0071] Above all, glass fibers, which are preferred by fibrous reinforcing materials, are most preferable because they can improve heat resistance and impact resistance. The glass fiber is preferably subjected to a surface treatment in order to enhance the adhesion to the resin component. As a method of adding the fibrous reinforcing material, the hopper force may be added to the extruder at the same time as the other raw materials, or the intermediate force of the kneading machine may be added using a side feeder. In addition, a master resin filled with a fibrous reinforcing material at a high concentration is prepared, and the master resin can be diluted with a base resin at the time of molding to be used so as to have a desired concentration.
[0072] 榭脂組成物には、その特性を大きく損なわない範囲内で、顔料、熱安定剤、酸ィ匕 防止剤、耐候剤、耐光剤、難燃剤、可塑剤、滑剤、離型剤、帯電防止剤、結晶核材 等を添加することができる。熱安定剤や酸ィ匕防止剤としては、たとえばヒンダードフエ ノール類、リンィ匕合物、ヒンダードァミン、ィォゥ化合物、銅化合物、アルカリ金属のハ ロゲン化物、ビタミン Eが挙げられる。難燃剤としては、ハロゲン系難燃剤、リン系難燃 剤、無機系難燃剤が使用できるが、環境を配慮した場合、非ハロゲン系難燃剤の使 用が望ましい。非ハロゲン系難燃剤としては、リン系難燃剤、水和金属化合物 (水酸 化アルミニウム、水酸ィ匕マグネシウム)、 N含有ィ匕合物 (メラミン系、グァ-ジン系)、無 機系化合物 (硼酸塩、 Mo化合物)が挙げられる。無機結晶核材としては、タルク、力 ォリン等が挙げられ、有機結晶核材としては、ソルビトール化合物、安息香酸および その化合物の金属塩、燐酸エステル金属塩、ロジン化合物等が挙げられる。なお、 榭脂組成物にこれらを混合する方法は特に限定されない。  [0072] The resin composition has a pigment, a heat stabilizer, an anti-oxidation agent, a weathering agent, a light-proofing agent, a flame retardant, a plasticizer, a lubricant, a mold release agent, as long as its properties are not significantly impaired. An antistatic agent, a crystal nucleus material and the like can be added. Examples of the heat stabilizer and the anti-oxidizing agent include hindered phenols, phosphorus-containing compounds, hindered amines, zeo compounds, copper compounds, alkali metal halides, and vitamin E. As the flame retardant, a halogen-based flame retardant, a phosphorus-based flame retardant, and an inorganic flame retardant can be used. However, in consideration of the environment, it is preferable to use a non-halogen flame retardant. Examples of non-halogen flame retardants include phosphorus flame retardants, hydrated metal compounds (aluminum hydroxide, magnesium hydroxide), N-containing compounds (melamine-based, guadin-based), and inorganic compounds. (Borate, Mo compound). Examples of the inorganic crystal nucleus material include talc and phosphorus, and examples of the organic crystal nucleus material include a sorbitol compound, benzoic acid and a metal salt of the compound, a phosphate metal salt, and a rosin compound. The method of mixing these with the resin composition is not particularly limited.
[0073] 本発明の榭脂組成物は、射出成形、ブロー成形、押出成形、インフレーション成形 、およびシート加工後の真空成形、圧空成形、真空圧空成形等の成形方法により、 各種成形体とすることができる。とりわけ、射出成形法と採ることが好ましぐ一般的な 射出成形法のほか、ガス射出成形、射出プレス成形等の成形方法も採用できる。本 発明の榭脂組成物に適した射出成形条件は、榭脂組成比によって変動するが、シリ ンダ温度を 180— 260°C、より好ましくは 190— 250°Cの範囲とするのが適当である 。金型温度は 140°C以下にするのがよい。シリンダ温度が低すぎると成形品にショー トが発生するなど操業性が不安定になったり、過負荷に陥りやすくなつたりし、逆にシ リンダ温度が高すぎると榭脂組成物が分解し、得られる成形体の強度が低下したり、 着色する等の問題が発生する場合がある。 [0073] The resin composition of the present invention may be formed into various molded articles by a molding method such as injection molding, blow molding, extrusion molding, inflation molding, and vacuum molding, air pressure molding, and vacuum pressure molding after sheet processing. Can be. In particular, the injection molding method is generally preferred In addition to the injection molding method, molding methods such as gas injection molding and injection press molding can be adopted. Injection molding conditions suitable for the resin composition of the present invention vary depending on the resin composition ratio, but it is appropriate that the cylinder temperature is in the range of 180 to 260 ° C, more preferably 190 to 250 ° C. is there . The mold temperature should be 140 ° C or less. If the cylinder temperature is too low, the operability becomes unstable, such as short-circuiting of the molded product, or it tends to overload.On the other hand, if the cylinder temperature is too high, the resin composition will decompose, In some cases, problems such as a decrease in the strength of the obtained molded body and coloring of the molded body may occur.
[0074] 本発明の榭脂組成物からなる成形体は、射出成形時の条件制御や成形後の熱処 理によって結晶化を促進させることにより、その耐熱性を高めることができる。このた めの方法として、例えば、射出成形時に金型内での冷却にて結晶化を促進させる方 法がある。その場合には、金型温度を榭脂組成物の結晶化温度 ± 20°Cとして、所定 時間冷却するのが望ましい。金型力 の離型性を考慮して、さらにその後に金型温 度を榭脂組成物のガラス転移温度以下まで下げてから、金型を開 、て成形品を取り 出してもよい。成形後に結晶化を促進させる方法として、得られた成形品を、再度、 結晶化温度 ± 20°Cで熱処理することが好ましい。結晶化温度が複数存在する場合 は、各温度で同様の処理を実施してもよぐガラス転移温度が複数存在する場合は、 成形上の問題な!/ヽガラス転移温度を選択すればょ ヽ。  The heat resistance of the molded article made of the resin composition of the present invention can be enhanced by promoting crystallization by controlling the conditions during injection molding and performing heat treatment after molding. As a method for this, for example, there is a method of promoting crystallization by cooling in a mold during injection molding. In this case, it is preferable to cool the mold for a predetermined time while keeping the mold temperature at the crystallization temperature of the resin composition ± 20 ° C. In consideration of the releasability of the mold force, the mold temperature may be further lowered to the glass transition temperature of the resin composition or lower, and then the mold may be opened to remove the molded product. As a method of accelerating crystallization after molding, it is preferable to heat-treat the obtained molded article again at a crystallization temperature of ± 20 ° C. If there are multiple crystallization temperatures, the same treatment is performed at each temperature. If there are multiple glass transition temperatures, there is no problem in molding! / ヽ Select the glass transition temperature. .
[0075] 成形体の具体例としては、パソコンの筐体、プリンタの筐体、プロジェクターランプの 筐体等の電ィ匕製品用榭脂部品や、バンパー、インナーパネル、ドアトリム等の自動車 用榭脂部品等が挙げられる。また、フィルム、シート、中空成形品などとすることもでき る。  [0075] Specific examples of the molded body include resin parts for electric shading products such as a personal computer housing, a printer housing, and a projector lamp housing, and automotive resins such as bumpers, inner panels, and door trims. Parts and the like. Further, it may be a film, a sheet, a hollow molded article, or the like.
実施例  Example
[0076] 以下、本発明を実施例によりさらに具体的に説明する。ただし、本発明は以下の実 施例に限定されるものではない。  Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following embodiments.
1.評価項目  1.Evaluation items
(1)メルトフローレート(MFR):  (1) Melt flow rate (MFR):
JIS規格 K 7210 (試験条件 4)に従い、 190°C、荷重 21. 2Nで測定した。 According to JIS K7210 (test condition 4), the measurement was performed at 190 ° C and a load of 21.2N.
(2)極限粘度 (IV) : フエノール Zl, 1, 2, 2—テトラクロロェタン混合溶媒 (質量比 6Z4)を用い、温度 2 0°Cで測定した。 (2) Intrinsic viscosity (IV): The measurement was carried out at a temperature of 20 ° C. using a phenol Zl, 1,2,2-tetrachloroethane mixed solvent (mass ratio 6Z4).
(3)熱変形温度 (DTUL) :  (3) Heat distortion temperature (DTUL):
ASTM規格 D— 648に従い、荷重 0. 45MPaで測定した。試験片は次のように作 成した。すなわち、射出成形機 (東芝機械社製 IS— 80G型)を用い、シリンダ温度 21 0— 240°Cで榭脂を溶融して、射出圧力 100MPa、射出時間 15秒で 70°Cの金型に 充填し、 30秒間冷却した。  Measured at a load of 0.45 MPa according to ASTM standard D-648. Test specimens were prepared as follows. In other words, using an injection molding machine (TOSHIBA MACHINE IS-80G), the resin is melted at a cylinder temperature of 210-240 ° C, and the injection pressure is 100MPa, the injection time is 15 seconds and the mold is 70 ° C. Fill and cool for 30 seconds.
[0077] ただし、ポリ乳酸榭脂に関しては、シリンダ温度 190°C、射出圧力 100MPa、射出 時間 10秒、金型温度 30°Cとして、 20秒間冷却とした。  However, the polylactic acid resin was cooled for 20 seconds at a cylinder temperature of 190 ° C., an injection pressure of 100 MPa, an injection time of 10 seconds, and a mold temperature of 30 ° C.
[0078] 架橋ポリ乳酸榭脂または架橋ポリ乳酸 Zポリブチレンサクシネート榭脂に関しては、 シリンダ温度 190°C、射出圧力 100MPa、射出時間 15秒、金型温度 100°Cとして、 60秒間冷却とした。  [0078] Regarding the crosslinked polylactic acid resin or the crosslinked polylactic acid Z polybutylene succinate resin, the cylinder temperature was 190 ° C, the injection pressure was 100MPa, the injection time was 15 seconds, the mold temperature was 100 ° C, and the cooling was performed for 60 seconds. .
(4)衝撃強度 (IZOD衝撃強度):  (4) Impact strength (IZOD impact strength):
ASTM規格 D— 256に従 、、ノッチ (V字型切込み)付き試験片を用いて測定した。 試験片は(3)と同様の成形方法により得た。  According to ASTM standard D-256, the measurement was performed using a test piece with a notch (V-shaped notch). The test piece was obtained by the same molding method as in (3).
(5)曲げ弾性率:  (5) Flexural modulus:
ASTM規格 D— 790に従い、変形速度 ImmZ分で荷重をかけて測定した。試験 片は(3)と同様の成形方法により得た。  According to ASTM standard D-790, it was measured with a load applied at a deformation speed of ImmZ. Test pieces were obtained by the same molding method as in (3).
(6)曲げ強度:  (6) Bending strength:
ASTM規格 D— 790に従い、変形速度 ImmZ分で荷重をかけて測定した。試験 片は(3)と同様の成形方法により得た。  According to ASTM standard D-790, it was measured with a load applied at a deformation speed of ImmZ. Test pieces were obtained by the same molding method as in (3).
(7)耐湿熱性:  (7) Moisture and heat resistance:
(6)で得られた曲げ強度試験片を温度 60°C、湿度 95%RHの環境下で 800時間 処理した後、曲げ強度を測定して、処理時間 0の値に対する強度保持率によって表 した。  The bending strength test piece obtained in (6) was treated for 800 hours in an environment of a temperature of 60 ° C and a humidity of 95% RH, and then the bending strength was measured. .
(8)流動性:  (8) Liquidity:
厚み lmmのバー状金型を使用し、射出成形機 (東芝機械社製 IS— 80G型)によつ て、シリンダ温度 220°C、金型温度 70°C、射出圧力 lOOMPaで成形をおこない、流 動長 (mm)を測定した。ポリ乳酸、架橋ポリ乳酸または架橋ポリ乳酸 Zポリプチレン サクシネート榭脂の成形条件は、(3)に準じた。流動長が大きいほど流動性に優れて いる。 Using a bar-shaped mold with a thickness of lmm, molding is carried out using an injection molding machine (Toshiba Machine Co., IS-80G) at a cylinder temperature of 220 ° C, a mold temperature of 70 ° C, and an injection pressure of lOOMPa. Flow The moving length (mm) was measured. The molding conditions of polylactic acid, crosslinked polylactic acid or crosslinked polylactic acid Z-polybutylene succinate resin were in accordance with (3). The larger the flow length, the better the fluidity.
(9)反り量:  (9) Warpage:
正方形平板の成形試験を実施した (正方形の一辺がフィルムゲートで 60. Omm X 60. 0mm X厚み lmmの金型を使用)。成形温度は 220°C、金型温度は 70°Cに、そ れぞれ設定した。ポリ乳酸、架橋ポリ乳酸または架橋ポリ乳酸 Zポリブチレンサクシネ ート榭脂の成形条件は、(3)に準じた。射出速度 ·射出圧力は、成形収縮率が 0. 2 %となるように設定した。得られた平板成形品を凸側を上にして水平な台の上に置き 、その高さを測定した。反り量は、(反り高さ) Z (平板対角線長さ) X 100 (%)で評価 した。この値が 0. 5%以下であれば成形品の実用上問題ない範囲と判断できる。 A molding test of a square plate was performed (a square is a film gate, and a mold having a thickness of 60. Omm x 60.0 mm x a thickness of lmm was used). The molding temperature was set at 220 ° C and the mold temperature was set at 70 ° C. The molding conditions for polylactic acid, crosslinked polylactic acid, or crosslinked polylactic acid Z polybutylene succinate resin conformed to (3). Injection speed · Injection pressure was set so that the molding shrinkage was 0.2%. The obtained flat molded product was placed on a horizontal table with the convex side facing up, and the height was measured. The amount of warpage was evaluated as (warpage height) Z (length of flat plate diagonal) X 100 (%). If this value is 0.5% or less, it can be determined that there is no practical problem with the molded product.
(10)コンパゥンド操業性: ( 10 ) Compound operability:
コンパゥンド時の状態を観察して、下記のように評価した。  The state at the time of compounding was observed and evaluated as follows.
[0079] 〇:押出し機のノズル力 溶融樹脂が脈動することなく吐出され、ストランドが切れる ことがなぐペレタイザ一で連続的にペレツトイ匕する工程を問題なく実施可能。 〇: Nozzle force of extruder The molten resin is discharged without pulsation, and the step of continuously pelletizing with a pelletizer that does not break the strand can be performed without any problem.
[0080] △:押出し機のノズル力 溶融樹脂が脈動をもって吐出され、ストランドが切れ易ぐ ペレツトイ匕までの工程が中断されることがある。 Δ: Nozzle force of extruder Molten resin is discharged with pulsation, and strands are easily cut. The process up to pellet cutting may be interrupted.
(11)成形品外観:  (11) Molded product appearance:
成形品の外観を観察して、下記のよう分類し、〇を合格とした。  The appearance of the molded product was observed and classified as follows.
[0081] 〇:ムラはほとんど目立たな 、。  〇: The unevenness is almost inconspicuous.
[0082] △:ムラが目立つ Δ: unevenness is conspicuous
X:ムラが非常に目立つ。  X: The unevenness is very conspicuous.
2.原料  2. Raw materials
(1)ポリ乳酸榭脂:  (1) Polylactic acid resin:
カーギルダウ社製 Nature Works 6201DK;MFR= lOgZlO分、融点 168°C (以下、「PLA」と略称する)。  Cargill Dow's Nature Works 6201DK; MFR = IOgZlO content, melting point 168 ° C (hereinafter abbreviated as “PLA”).
(2)架橋ポリ乳酸榭脂:  (2) Cross-linked polylactic acid resin:
次の通りに作製した。 [0083] 二軸押出機 (東芝機械社製 TEM-37BS)を使用してトップフィーダ力も PLAを供 給し、加工温度 190°Cで溶融混練押出しをおこなった。その際、架橋助剤としてのポ リエチレングリコールジメタタリレート(日本油脂社製)(以下、「PEGDM」と略称する) 1. 0質量部と、架橋剤としてのジー t ブチルパーオキサイド(日本油脂社製) 1. 0質 量部とを、可塑剤であるグリセリンジァセトモノラ力プレート 2. 5質量部に溶解した溶 液を、ポンプを用いて混練機の途中から注入した。そして、吐出された榭脂をペレット 状にカッティングして、架橋生分解性ポリエステル榭脂(以下、「架橋 PLA」と略称す る)を得た。得られた架橋 PLAの MFRは 1. 2gZlO分であった。 It was prepared as follows. [0083] Using a twin-screw extruder (TEM-37BS, manufactured by Toshiba Machine Co., Ltd.), the top feeder force was also supplied with PLA, and melt kneading and extrusion were performed at a processing temperature of 190 ° C. At that time, 1.0 part by mass of polyethylene glycol dimethalate (manufactured by NOF Corporation) as a crosslinking aid (hereinafter abbreviated as “PEGDM”) and tert-butyl peroxide (NOF Corporation) as a crosslinking agent A solution in which 1.0 mass part was dissolved in 2.5 parts by mass of a glycerin diacetomonola force plate as a plasticizer was injected from the middle of the kneader using a pump. The discharged resin was cut into pellets to obtain a crosslinked biodegradable polyester resin (hereinafter, abbreviated as “crosslinked PLA”). The MFR of the obtained crosslinked PLA was 1.2 gZlO.
(3)架橋ポリ乳酸 Zポリブチレンサクシネート榭脂:  (3) Cross-linked polylactic acid Z polybutylene succinate resin:
次の通りに作製した。  It was prepared as follows.
[0084] 二軸押出機 (東芝機械社製 TEM-37BS)を使用して、 PLAとポリブチレンサクシネ 一ト榭脂(三菱ィ匕学社製 GS-Pla AZ-71T)とが(PLA) / (ポリブチレンサクシネ ート榭脂) = 90ZlOの質量比率で混合されたチップをトップフィーダ力も供給し、加 ェ温度 190°Cで溶融混練押出しをおこなった。その際に、架橋助剤としての PEGD Ml. 0質量部と、架橋剤としてのジー t ブチルパーオキサイド(日本油脂製) 1. 0質 量部とを、可塑剤であるグリセリンジァセトモノラ力プレート 2. 5質量部に溶解した溶 液を、混練機の途中からポンプを用いて注入した。そして、吐出された榭脂をペレット 状にカッティングして、架橋ポリ乳酸 Zポリブチレンサクシネート榭脂(以下、「架橋 P LAZPBSJと略称する)を得た。得られた架橋 PLAZPBSの MFRは 1. 5gZlO分 であった。  [0084] Using a twin-screw extruder (TEM-37BS, manufactured by Toshiba Machine Co., Ltd.), PLA and polybutylene succinyl resin (GS-Pla AZ-71T, manufactured by Mitsubishi Iridaku Co., Ltd.) were combined (PLA). Chips mixed at a mass ratio of / (polybutylene succinate resin) = 90ZlO were also supplied with the top feeder force, and were melt-kneaded and extruded at a heating temperature of 190 ° C. At that time, 0 parts by mass of PEGD Ml. As a cross-linking aid and 1.0 parts by mass of di-t-butyl peroxide (manufactured by NOF Corporation) as a cross-linking agent were combined with glycerin diacetomonola resin as a plasticizer. The solution dissolved in 2.5 parts by mass of the plate was injected using a pump from the middle of the kneader. The discharged resin was cut into pellets to obtain a cross-linked polylactic acid Z-polybutylene succinate resin (hereinafter, abbreviated as “cross-linked PLAZPBSJ”. The MFR of the obtained cross-linked PLAZPBS was 1. The content was 5 gZlO.
(4) PC榭脂:  (4) PC resin:
住友ダウ社製 200— 13 (IV=0. 49)。  200-13 manufactured by Sumitomo Dow (IV = 0.49).
(5) PC榭脂 ZABS榭脂の混合体 (PC榭脂比率約 40質量0 /0): (5) mixture of PC榭脂ZABS榭脂(PC榭脂ratio of about 40 weight 0/0):
住友ダウ社製 IM-6100 (以下、「PCZABS」と略称する)。  Sumitomo Dow IM-6100 (hereinafter abbreviated as "PCZABS").
(6)ポリメタクリル酸メチルがグラフト共重合されたエチレングリシジルメタタリレート共 重合体:  (6) Ethylene glycidyl methacrylate copolymer obtained by graft copolymerization of poly (methyl methacrylate):
日本油脂社製モディパー A4200 (以下、「EGMA - gf - PMMA」と略称する)。 MODIPER A4200 manufactured by NOF Corporation (hereinafter abbreviated as “EGMA-gf-PMMA”).
(7)シリコーン化合物: •GE東芝シリコーン社製メチルフエ-ルシリコーンオイル TSF- 433(7) Silicone compound: • GE Toshiba Silicone Methyl Feel Silicone Oil TSF-433
•信越シリコーン社製メチルフエ-ルシリコーンオイル KF— 54 • Shin-Etsu Silicone Co., Ltd.
•GE東芝シリコーン社製ァミノ変性シリコーンオイル TSF4707  • GE Toshiba Silicone Amino-modified silicone oil TSF4707
•GE東芝シリコーン社製エポキシ変性シリコーンオイル TSF4730  • Epoxy-modified silicone oil TSF4730 manufactured by GE Toshiba Silicone
•GE東芝シリコーン社製ヒドロキシ末端メチルフエ-ルシリコーン YF3804  • GE Toshiba Silicone's hydroxy-terminated methylphenol silicone YF3804
(8)カルポジイミドィ匕合物:  (8) Carposimidii conjugate:
•日清紡社製 LA— 1 ;イソシァネート基含有率 1一 3%  • Nisshinbo LA-1; isocyanate group content 13%
•日清紡社製 HMV— 8CA;イソシァネート基封止品  • Nisshinbo HMV—8CA; isocyanate-based encapsulated product
実施例 1一 34  Example 11
各原料を、表 1、 3、 4に示す割合で二軸押出機 (東芝機械社製 TEM-37BS)に供 給し、加工温度 220°C— 240°Cで溶融混練押出しをおこない、吐出された榭脂をぺ レット状にカッティングして、榭脂組成物 A— HHを得た。なおカルポジイミド化合物を 添加する場合にサイドフィードで供給した他は、全ての原料をトップフィード口から同 時に供給した。  Each raw material was supplied to a twin-screw extruder (TEM-37BS, manufactured by Toshiba Machine Co., Ltd.) at the ratios shown in Tables 1, 3, and 4, where it was melt-kneaded at a processing temperature of 220 ° C to 240 ° C and extruded. The resin was cut into pellets to obtain a resin composition A-HH. All the raw materials were supplied at the same time from the top feed port, except that the raw material was supplied by side feed when the carbodiimide compound was added.
比較例 1一 13  Comparative Example 11
各原料を、表 2— 4に示す割合で二軸押出機 (東芝機械社製 TEM-37BS)に供給 し、加工温度 210°C— 230°Cで溶融混練押出しをおこない、吐出された榭脂をペレ ット状にカッティングして、榭脂組成物 II一 UUを得た。この場合に、比較例 1、 2、 4、 8、 12、 13では、ノズル力も溶融樹脂が脈動しながら吐出されて、ペレツトイ匕が困難 であった。なお、比較例 6、 7では榭脂原料をそのまま各種試験片作成の射出成形に 供した。  Each raw material is supplied to a twin-screw extruder (TEM-37BS, manufactured by Toshiba Machine Co., Ltd.) at the ratios shown in Table 2-4, melt-kneaded at a processing temperature of 210 ° C-230 ° C, and extruded. Was cut into pellets to obtain a resin composition II-1UU. In this case, in Comparative Examples 1, 2, 4, 8, 12, and 13, the nozzle resin was also discharged while the molten resin was pulsating, and it was difficult to perform pellet siding. In Comparative Examples 6 and 7, the resin raw material was directly used for injection molding for preparing various test pieces.
[0085] 各種物性評価を行った結果をまとめて表 1一 4に示す。  [0085] Tables 14 to 14 summarize the results of the evaluation of various physical properties.
[0086] 実施例 1一 34では、 DTUL、 IZOD衝撃強度に優れた榭脂組成物が得られた。さ らに、次のことが明らかである。  [0086] In Examples 1 to 34, a resin composition having excellent DTUL and IZOD impact strength was obtained. In addition, the following is clear.
[0087] PLAは、それ自体を架橋しただけでは IZOD衝撃強度はほとんど向上しな ヽ (比較 例 6と 7の対比)。架橋していない PLAと PCとを溶融混練すると操業性に劣る。これ に対し、 PLAを架橋したうえで、さらに PCと溶融混練した場合は、操業性が改良され 、同時に IZOD衝撃強度が大幅に向上している(実施例 1と比較例 1との対比)。 [0088] ABS成分を配合することにより、流動性が改良され、反り量が小さくなり、外観も向 上している。 DTUL、 IZOD衝撃強度も、 PLA単独成分に比べれば良好である(実 施例 3— 7、 10、 11)。 [0087] PLA has almost no improvement in IZOD impact strength when crosslinked by itself (Comparative Examples 6 and 7). Melt kneading of uncrosslinked PLA and PC results in poor operability. On the other hand, when the PLA is cross-linked and further melt-kneaded with PC, the operability is improved, and at the same time, the IZOD impact strength is significantly improved (comparison between Example 1 and Comparative Example 1). [0088] By blending the ABS component, the fluidity is improved, the amount of warpage is reduced, and the appearance is improved. The DTUL and IZOD impact strengths are also better than the PLA alone component (Examples 3-7, 10, 11).
[0089] シリコーンィ匕合物を配合することにより、 IZOD衝撃強度が向上している(実施例 13 一 24)。また、種々のシリコーンィ匕合物において衝撃強度の向上効果が見られる(実 施例 13— 17)。こうした効果は、 PLAを架橋していない比較例 8や、架橋 PLAの量 が本発明の範囲を外れる比較例 9では小さい。 [0089] By blending the silicone ridge, the IZOD impact strength is improved (Examples 13 to 24). In addition, the effect of improving the impact strength is observed in various silicone conjugates (Examples 13 to 17). Such an effect is small in Comparative Example 8 in which the PLA is not crosslinked and Comparative Example 9 in which the amount of the crosslinked PLA is out of the range of the present invention.
[0090] EGMA— gf— PMMAを添加することで、 IZOD衝撃強度は向上して!/ヽる(実施例 2 [0090] The addition of EGMA-gf-PMMA improved the IZOD impact strength! / Puru (Example 2)
5— 34)。こうした効果は、 PLAを架橋していない比較例 12、 13や、架橋 PLAの量 が本発明の範囲を外れる比較例 10、 11では小さ 、。 5—34). These effects are small in Comparative Examples 12 and 13 in which the PLA is not crosslinked and Comparative Examples 10 and 11 in which the amount of the crosslinked PLA is out of the range of the present invention.
[0091] シリコーン化合物と EGMA— gf— PMMAとを併用すると、 IZOD衝撃強度はさらに 向上する(実施例 28、 29、 31)。 [0091] When the silicone compound is used in combination with EGMA-gf-PMMA, the IZOD impact strength is further improved (Examples 28, 29 and 31).
[0092] カルポジイミド化合物の添カ卩により耐湿熱性が改良される(実施例 8— 12、 20、 29[0092] The moist heat resistance is improved by the addition of a carpoimide compound (Examples 8-12, 20, 29)
、 33)。イソシァネート基を有するカルポジイミドィ匕合物は耐湿熱性の改良のほ力、 IZ, 33). Carposimidized conjugates having an isocyanate group are useful for improving heat and moisture resistance.
OD衝撃強度をも向上させる効果を有する(実施例 8と 12の対比)。 It has the effect of also improving the OD impact strength (comparing Examples 8 and 12).
[0093] 比較例 2、 4は、比較例 1の組成にカルポジイミドィ匕合物を添加したものであり、比較 例 1と比べて溶融混練の操業性は改善されて 、るが、 PLAが架橋されて 、な 、ため[0093] Comparative Examples 2 and 4 are obtained by adding a carbodiimide conjugate to the composition of Comparative Example 1, and the operability of melt kneading is improved as compared with Comparative Example 1, but PLA is crosslinked. ,,, For
、 IZOD衝撃強度は低ぐ実用的でない。 The IZOD impact strength is low and impractical.
[0094] 比較例 3、 5では、 PCの割合が少なすぎるため、 DTULと IZOD衝撃強度がほとん ど向上していない。 [0094] In Comparative Examples 3 and 5, the proportion of PC was too small, so that the DTUL and IZOD impact strength were hardly improved.
[0095] [表 1] [0095] [Table 1]
表 1 実施例 実施例 実施例 実施例 実施例 実施例 実施例 実施例 実施例 実施例 実施例Table 1 Example Example Example Example Example Example Example Example Example Example Example Example Example
1 2 3 4 5 6 7 8 9 10 1 1 12 棚旨糸纖 A B C D E F G H 1 J κ し 誠 樹脂成分 PLA 1 2 3 4 5 6 7 8 9 10 1 1 12 Shear yarn Fiber A B C D E F G H 1 J κ Shi Makoto Resin component PLA
(質 架 iSPLA 50 70 50 70 50 70 50 70 50 70 50 架 ^S LVPBS 50  (Frame iSPLA 50 70 50 70 50 70 50 70 50 70 50 frame ^ S LVPBS 50
PC 50 30 30 18 50 30 50 PC 50 30 30 18 50 30 50
ABS 20 12 ABS 20 12
PC/ABS (40/60) 50 30 50 50 30 シリコーン TSF433  PC / ABS (40/60) 50 30 50 50 30 Silicone TSF433
化合物 KF54  Compound KF54
TSF4707  TSF4707
TSF4730  TSF4730
YF3804  YF3804
グラフ卜共 EGMA-gf^PMMA  EGMA-gf ^ PMMA
重合体  Polymer
カルポジィ LA- 1 1.5 1.5 1.5 1.5 ミド化合物 H V-8CA 1.5 コンパゥンド操業性 〇 〇 O 〇 〇 O 〇 0 〇 〇 〇 〇 物性 DTUL(。C) 126 114 95 83 99 88 94 123 111 95 85 122 曲げ ¾)S(MPa) 113 1 16 92 100 93 102 84 1 16 120 96 108 1 15 曲げ弾性率 (GPa) 3.2 3.7 2.9 3.3 2.9 3.3 2.4 3.3 3.7 3.0 3.5 3.3 Karposi LA- 1 1.5 1.5 1.5 1.5 Mid compound H V-8CA 1.5 Compound operability 〇 〇 O 〇 〇 O 〇 0 〇 〇 〇 〇 Physical properties DTUL (.C) 126 114 95 83 99 88 94 123 111 95 85 122 Bending ¾ ) S (MPa) 113 1 16 92 100 93 102 84 1 16 120 96 108 1 15 Flexural modulus (GPa) 3.2 3.7 2.9 3.3 2.9 3.3 2.4 3.3 3.7 3.0 3.5 3.3
EOD歸弓嫉 (J/m) 98 65 65 54 62 50 75 125 72 71 52 105 耐湿熱性 (%) 57 38 39 35 43 33 45 100 100 100 100 90 反り量(%) 0.10 0.08 0.06 0.06 0.07 0.06 0.06 0.11 0.08 0.08 0.06 0.11 流動性 (mm) 87 1 10 120 136 115 134 125 81 101 108 127 79 成形品外観 厶 厶 厶 Δ 厶 EOD Return bow jeal (J / m) 98 65 65 54 62 50 75 125 72 71 52 105 Moisture and heat resistance (%) 57 38 39 35 43 33 45 100 100 100 100 90 Warpage (%) 0.10 0.08 0.06 0.06 0.07 0.06 0.06 0.11 0.08 0.08 0.06 0.11 Flowability (mm) 87 1 10 120 136 115 134 125 81 101 108 127 79 Appearance of molded product
表 2 謹列 腿列 細 J;瞧 麵列 應列 麵列 1 2 3 4 5 6 7 樹脂誠物 U JJ KK LL MM NN 00 誠 樹脂成分 PLA 50 50 50 100Table 2 Honorable Thighs Fine J; 瞧 麵 Rows 麵 Rows 1 2 3 4 5 6 7 Resin Seiko U JJ KK LL MM NN 00 Makoto Resin Component PLA 50 50 50 100
(質量部) 架 ίΐΡ 95 95 100 架 ilPLA/PBS (Mass part) Frame ίΐΡ 95 95 100 Frame ilPLA / PBS
PC 50 50 5 5  PC 50 50 5 5
ABS ABS
PC/ABS (40/60) 50 PC / ABS (40/60) 50
シリコーン TSF433  Silicone TSF433
化合物  Compound
〔 s KF54  [S KF54
〕¾0097 TSF4707 ¾0097 TSF4707
TSF4730  TSF4730
YF3804  YF3804
ゲラフト共 EGMA-gf-PMMA  GERMAFT-EGMA-gf-PMMA
重合体  Polymer
カルボジィ -1 1.5 1.5 1.5 ミド化合物 HMV-8GA  Carbodi-1 1.5 1.5 1.5 Mid compound HMV-8GA
コンパゥンド'操業性 厶 〇 O 〇 〇 - - 物性 DTUL(°C) 123 121 61 92 63 57 74 曲げ強度 (MPa) 105 1 13 125 91 121 121 129 曲げ弾性率 (GPa) 2.9 3.0 4.4 2.7 4.3 3.8 4.7 Compound's operability 〇 O 〇 〇--Physical properties DTUL (° C) 123 121 61 92 63 57 74 Flexural strength (MPa) 105 1 13 125 91 121 121 129 Flexural modulus (GPa) 2.9 3.0 4.4 2.7 4.3 3.8 4.7
IZOD衝擎¾嫉 (J/m) 31 35 28 31 29 26 24 耐湿熱性 (。/。) 52 85 37 76 29 0 0 反り量(%) 0.09 0.10 0.05 0.07 0.05 0.05 0.05 性 (mm) 110 106 127 135 138 209 142 成形品外観 厶 X 厶 厶 Δ 〇 〇 IZOD impact jewel (J / m) 31 35 28 31 29 26 24 Moisture / heat resistance (./.) 52 85 37 76 29 0 0 Warpage (%) 0.09 0.10 0.05 0.07 0.05 0.05 0.05 Property (mm) 110 106 127 135 138 209 142 Molded product appearance X X X X X
表 3 Table 3
Figure imgf000029_0001
Figure imgf000029_0001
〔 u寸8600 (U dimension 8600
表 4 Table 4
Figure imgf000031_0001
Figure imgf000031_0001

Claims

請求の範囲 The scope of the claims
[1] 架橋生分解性ポリエステル榭脂(A) 30— 90質量0 /0、ポリカーボネート榭脂 (B) 10 一 70質量0 /0およびアクリロニトリル Zブタジエン Zスチレン系共重合榭脂(C) 0— 50 質量%を含み、榭脂 (A)— (C)の合計を 100質量%としたことを特徴とする榭脂組成 物。 [1] cross biodegradable polyester榭脂(A) 30- 90 wt 0/0, polycarbonate榭脂(B) 10 one 70 mass 0/0 and acrylonitrile Z butadiene-Z styrene copolymer榭脂(C) 0- A resin composition containing 50% by mass, wherein the total of resin (A)-(C) is 100% by mass.
[2] 榭脂 (A)—(C)の合計量 100質量部あたり、さらにシリコーンィ匕合物(D) 0. 05— 1 0質量部を含んでいることを特徴とする請求項 1記載の榭脂組成物。  [2] The method according to claim 1, wherein the silicone resin conjugate (D) further contains 0.05-10 parts by mass per 100 parts by mass of the total amount of the resin (A)-(C). Fat composition.
[3] 榭脂 (A)— (C)の合計量 100質量部あたり、さらに変性されたォレフインィ匕合物 (E ) 0. 1一 20質量部を含んで 、ることを特徴とする請求項 1または 2記載の榭脂組成物  [3] The composition according to claim 1, further comprising 0.1 to 20 parts by mass of the modified Olefin conjugate (E) per 100 parts by mass of the total amount of the resins (A) to (C). The resin composition according to 1 or 2
[4] 榭脂 (B)と榭脂 (C)との質量比が (B) Z{ (B) + (C) }≥0. 3の関係をみたすことを 特徴とする請求項 1から 3までのいずれ力 1項に記載の榭脂組成物。 [4] The mass ratio between the resin (B) and the resin (C) satisfies the relationship of (B) Z {(B) + (C)} ≥0.3. The resin composition according to item 1, wherein
[5] 架橋生分解性ポリエステル榭脂 (A)力 (メタ)アクリル酸エステルイ匕合物を、生分 解性ポリエステル榭脂 100質量部あたり 0. 01— 20質量部反応させて得られたもの であることを特徴とする請求項 1から 4までのいずれか 1項に記載の榭脂組成物。 [5] Cross-linked biodegradable polyester resin (A) strength obtained by reacting (meth) acrylic acid ester conjugate with 0.01 to 20 parts by mass per 100 parts by mass of biodegradable polyester resin The resin composition according to any one of claims 1 to 4, characterized in that:
[6] 架橋生分解性ポリエステル榭脂 (A)が、過酸化物を、生分解性ポリエステル榭脂 1[6] Crosslinked biodegradable polyester resin (A) converts peroxide to biodegradable polyester resin 1
00質量部あたり 0. 01— 20質量部反応させて得られたものであることを特徴とする請 求項 1から 5までのいずれ力 1項に記載の榭脂組成物。 6. The resin composition according to claim 1, wherein the resin composition is obtained by reacting 0.01 to 20 parts by mass per 100 parts by mass.
[7] 架橋生分解性ポリエステル榭脂 (A)の生分解性ポリエステル榭脂がポリ乳酸ある!/ヽ はポリ乳酸を主成分とするものであることを特徴とする請求項 1から 6までのいずれか[7] The biodegradable polyester resin of the crosslinked biodegradable polyester resin (A) is polylactic acid! / ヽ is mainly composed of polylactic acid. either
1項に記載の榭脂組成物。 Item 4. The resin composition according to Item 1.
[8] 榭脂 (A)— (C)の合計量 100質量部に対し、さらにカルポジイミドィ匕合物 0. 01— 5 質量部を含んで 、ることを特徴とする請求項 1から 7までの 、ずれか 1項に記載の榭 脂組成物。 [8] The method according to any one of claims 1 to 7, further comprising 0.01 to 5 parts by mass of the carbodiimidized conjugate with respect to 100 parts by mass of the total amount of the resins (A) to (C). The resin composition according to item 1.
[9] カルポジイミド化合物が、末端基としてイソシァネートを有する化合物であることを特 徴とする請求項 8記載の榭脂組成物。  [9] The resin composition according to [8], wherein the carbodiimide compound is a compound having an isocyanate as a terminal group.
[10] 架橋生分解性ポリエステル榭脂 (A)の生分解性ポリエステル榭脂が、植物由来原 料力 製造されたものであることを特徴とする請求項 1から 9までのいずれか 1項に記 載の榭脂組成物。 [10] The method according to any one of claims 1 to 9, wherein the biodegradable polyester resin of the crosslinked biodegradable polyester resin (A) is produced from a plant-derived material. Record The resin composition described above.
請求項 1から 10までのいずれか 1項に記載の榭脂組成物を成形してなる成形体。  A molded article obtained by molding the resin composition according to any one of claims 1 to 10.
PCT/JP2005/001671 2004-02-06 2005-02-04 Resin composition and molded object obtained by molding the same WO2005075564A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005517742A JP5300173B2 (en) 2004-02-06 2005-02-04 Resin composition and molded body formed by molding the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-030896 2004-02-06
JP2004030896 2004-02-06
JP2004217337 2004-07-26
JP2004-217337 2004-07-26

Publications (1)

Publication Number Publication Date
WO2005075564A1 true WO2005075564A1 (en) 2005-08-18

Family

ID=34840156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001671 WO2005075564A1 (en) 2004-02-06 2005-02-04 Resin composition and molded object obtained by molding the same

Country Status (2)

Country Link
JP (1) JP5300173B2 (en)
WO (1) WO2005075564A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248160A (en) * 2004-02-06 2005-09-15 Osaka Gas Co Ltd Biodegradable plastic material and molded article
JP2006241209A (en) * 2005-03-01 2006-09-14 Idemitsu Kosan Co Ltd Thermoplastic resin composition and molded product
JP2007077368A (en) * 2005-09-16 2007-03-29 Fujitsu Ltd Resin box and method for producing the same
JP2007211111A (en) * 2006-02-08 2007-08-23 Mitsubishi Chemicals Corp Thermoplastic resin composition and resin-molded article
JP2007217448A (en) * 2006-02-14 2007-08-30 Advanced Plastics Compounds Co Aliphatic polyester-based resin composition
JP2007291172A (en) * 2006-04-21 2007-11-08 Nippon A & L Kk Thermoplastic resin composition
JP2007321096A (en) * 2006-06-02 2007-12-13 Umg Abs Ltd Polylactic acid-based thermoplastic resin composition and its molded article
WO2008102536A1 (en) * 2007-02-23 2008-08-28 Unitika Ltd. Resin composition, and molded article produced from the same
WO2009008209A1 (en) * 2007-07-06 2009-01-15 Sumitomo Electric Industries, Ltd. Resin composition and process for producing molded object from the resin composition
JP2009235193A (en) * 2008-03-26 2009-10-15 Fuji Xerox Co Ltd Resin composition and resin molded article
JP2009256405A (en) * 2008-04-11 2009-11-05 Toyota Motor Corp Aliphatic polyester resin composition and molded article
WO2009136593A1 (en) * 2008-05-07 2009-11-12 出光興産株式会社 Thermoplastic resin composition, and molded article
JP2010514887A (en) * 2006-12-29 2010-05-06 チェイル インダストリーズ インコーポレイテッド Thermoplastic resin composition with improved impact resistance
WO2010101291A1 (en) * 2009-03-06 2010-09-10 日本電気株式会社 Polysiloxane-modified polylactic acid composition, composition utilizing same, molded article, and production method
KR101059340B1 (en) 2008-01-16 2011-08-24 주식회사 엘지화학 Biodegradable polylactic acid resin composition with improved heat resistance and manufacturing method thereof
WO2012029421A1 (en) * 2010-09-03 2012-03-08 日本電気株式会社 Polysiloxane-modified polylactic acid resin composition and process for producing same
JP2012131905A (en) * 2010-12-22 2012-07-12 Unitika Ltd Thermoplastic resin composition, and molding comprising the same
JP2012136716A (en) * 2012-04-20 2012-07-19 Mitsubishi Engineering Plastics Corp Thermoplastic resin composition and resin-molded article
US8445593B2 (en) 2004-09-17 2013-05-21 Toray Industries, Inc. Resin composition and molded article comprising the same
JP2013227461A (en) * 2012-04-27 2013-11-07 Sumika Styron Polycarbonate Ltd Crosslinkable polycarbonate resin composition and molded article produced from the same
US8586658B2 (en) 2006-02-14 2013-11-19 Nec Corporation Polylactic acid resin composition and molded item
JP2021024983A (en) * 2019-08-07 2021-02-22 テクノUmg株式会社 Resin composition and molding thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371172A (en) * 2001-06-14 2002-12-26 Toyota Motor Corp Lactic acid polymer composition and method of producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4655342B2 (en) * 2000-07-14 2011-03-23 東レ株式会社 Polylactic acid resin composition and molded article
ITMI20020865A1 (en) * 2002-04-22 2003-10-22 Novamont Spa BIODEGRADABLE POLYESTERS OBTAINED BY REACTIVE EXTRUSION
JP2004155871A (en) * 2002-11-05 2004-06-03 Nippon Polyester Co Ltd Method for producing polyester resin and polyester resin
US7351772B2 (en) * 2003-06-27 2008-04-01 Unitika Ltd. Aliphatic polyester resin composition, preparation method thereof, and molded article and foamed article produced from the resin composition
JP2005281424A (en) * 2004-03-29 2005-10-13 Unitika Ltd Block copolymer, method for producing the same and resin composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371172A (en) * 2001-06-14 2002-12-26 Toyota Motor Corp Lactic acid polymer composition and method of producing the same

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248160A (en) * 2004-02-06 2005-09-15 Osaka Gas Co Ltd Biodegradable plastic material and molded article
JP4491337B2 (en) * 2004-02-06 2010-06-30 大阪瓦斯株式会社 Biodegradable plastic material and molded body
US8445593B2 (en) 2004-09-17 2013-05-21 Toray Industries, Inc. Resin composition and molded article comprising the same
JP2006241209A (en) * 2005-03-01 2006-09-14 Idemitsu Kosan Co Ltd Thermoplastic resin composition and molded product
JP2007077368A (en) * 2005-09-16 2007-03-29 Fujitsu Ltd Resin box and method for producing the same
JP2007211111A (en) * 2006-02-08 2007-08-23 Mitsubishi Chemicals Corp Thermoplastic resin composition and resin-molded article
JP5661997B2 (en) * 2006-02-14 2015-01-28 日本電気株式会社 Polylactic acid resin composition and molded article
JP2007217448A (en) * 2006-02-14 2007-08-30 Advanced Plastics Compounds Co Aliphatic polyester-based resin composition
US8586658B2 (en) 2006-02-14 2013-11-19 Nec Corporation Polylactic acid resin composition and molded item
JP2007291172A (en) * 2006-04-21 2007-11-08 Nippon A & L Kk Thermoplastic resin composition
JP2007321096A (en) * 2006-06-02 2007-12-13 Umg Abs Ltd Polylactic acid-based thermoplastic resin composition and its molded article
JP2010514887A (en) * 2006-12-29 2010-05-06 チェイル インダストリーズ インコーポレイテッド Thermoplastic resin composition with improved impact resistance
WO2008102536A1 (en) * 2007-02-23 2008-08-28 Unitika Ltd. Resin composition, and molded article produced from the same
US8415008B2 (en) 2007-02-23 2013-04-09 Unitika Ltd. Resin composition, and molded article produced from the same
WO2009008209A1 (en) * 2007-07-06 2009-01-15 Sumitomo Electric Industries, Ltd. Resin composition and process for producing molded object from the resin composition
KR101059340B1 (en) 2008-01-16 2011-08-24 주식회사 엘지화학 Biodegradable polylactic acid resin composition with improved heat resistance and manufacturing method thereof
US7879954B2 (en) 2008-03-26 2011-02-01 Fuji Xerox Co., Ltd. Resin composition and resin molded article
JP4645669B2 (en) * 2008-03-26 2011-03-09 富士ゼロックス株式会社 Resin molded body
JP2009235193A (en) * 2008-03-26 2009-10-15 Fuji Xerox Co Ltd Resin composition and resin molded article
JP2009256405A (en) * 2008-04-11 2009-11-05 Toyota Motor Corp Aliphatic polyester resin composition and molded article
US20110060089A1 (en) * 2008-05-07 2011-03-10 Idemitsu Kosan Co., Ltd. Thermoplastic resin composition, and molded article
WO2009136593A1 (en) * 2008-05-07 2009-11-12 出光興産株式会社 Thermoplastic resin composition, and molded article
WO2010101291A1 (en) * 2009-03-06 2010-09-10 日本電気株式会社 Polysiloxane-modified polylactic acid composition, composition utilizing same, molded article, and production method
CN102414257A (en) * 2009-03-06 2012-04-11 日本电气株式会社 Polysiloxane-modified polylactic acid composition, composition utilizing same, molded article, and production method
JP5573833B2 (en) * 2009-03-06 2014-08-20 日本電気株式会社 Polysiloxane-modified polylactic acid composition, composition using the same, molded article, and production method
WO2012029421A1 (en) * 2010-09-03 2012-03-08 日本電気株式会社 Polysiloxane-modified polylactic acid resin composition and process for producing same
JP2012131905A (en) * 2010-12-22 2012-07-12 Unitika Ltd Thermoplastic resin composition, and molding comprising the same
JP2012136716A (en) * 2012-04-20 2012-07-19 Mitsubishi Engineering Plastics Corp Thermoplastic resin composition and resin-molded article
JP2013227461A (en) * 2012-04-27 2013-11-07 Sumika Styron Polycarbonate Ltd Crosslinkable polycarbonate resin composition and molded article produced from the same
JP2021024983A (en) * 2019-08-07 2021-02-22 テクノUmg株式会社 Resin composition and molding thereof
JP7406935B2 (en) 2019-08-07 2023-12-28 テクノUmg株式会社 Resin compositions and molded products thereof

Also Published As

Publication number Publication date
JP5300173B2 (en) 2013-09-25
JPWO2005075564A1 (en) 2007-10-11

Similar Documents

Publication Publication Date Title
WO2005075564A1 (en) Resin composition and molded object obtained by molding the same
KR100962387B1 (en) Polylactic acid resin composition
JP5409846B2 (en) Compact
KR100989116B1 (en) Environmental-friendly polylactic acid resin composition
EP2186846B1 (en) Natural Fiber-Reinforced Polylactic Acid Resin Composition and Molded Product Made Using the Same
KR100709878B1 (en) Polycarbonate/polyester alloy resin composition having excellent impact-resistance, flowability and articles using the same
KR100810684B1 (en) Polymer alloy composition
EP2125954B1 (en) Composite of nylon polymer
JP2010121131A (en) Natural fiber-reinforced polylactic acid resin composition and molded article using the same
WO2007015448A1 (en) Resin composition and molded article comprising the same
KR20100065325A (en) Polyester mixture with improved flowability and good mechanical properties
JPS58101147A (en) Impact-modifiable glass fiber/inorganic reinforced polyester blend
KR101067141B1 (en) Environmentally Friendly Resin Composition
EP2025714B1 (en) Glass fiber reinforced polycarbonate resin composition having excellent impact strength and flowability and method for preparing the same
JP4643154B2 (en) A thermoplastic resin composition and a molded body formed by molding the same.
JPS5989348A (en) Modified thermoplastic polyester forming composition and formd product
JP2008255269A (en) Resin composition and molded article prepared by molding the same
KR101261294B1 (en) and Thermoplastic composition having impact modifier having core-shell structure
WO2012031054A1 (en) Thermoplastic composition having improved melt flowability
KR20090073847A (en) Clay-reinforced polylactice acid-polyamide compositie resin composition
JP2007262339A (en) Polylactic acid-based polyester resin composition, method for producing the same and molding using the same
KR101746265B1 (en) Environment friendly thermoplastic resin composition having improved weldline and plastics comprising same
JP5832199B2 (en) Black resin composition and molded article formed by molding the resin composition
JP3358334B2 (en) Thermoplastic resin composition
NL2002910C2 (en) Environmentally-friendly polylactic acid resin composition.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005517742

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase