WO2005075290A1 - Giravion - Google Patents

Giravion Download PDF

Info

Publication number
WO2005075290A1
WO2005075290A1 PCT/CN2004/000607 CN2004000607W WO2005075290A1 WO 2005075290 A1 WO2005075290 A1 WO 2005075290A1 CN 2004000607 W CN2004000607 W CN 2004000607W WO 2005075290 A1 WO2005075290 A1 WO 2005075290A1
Authority
WO
WIPO (PCT)
Prior art keywords
pitch
variable
propeller
rotor
blade
Prior art date
Application number
PCT/CN2004/000607
Other languages
English (en)
French (fr)
Inventor
Hong Zhang
Original Assignee
Hong Zhang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hong Zhang filed Critical Hong Zhang
Publication of WO2005075290A1 publication Critical patent/WO2005075290A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/02Gyroplanes
    • B64C27/021Rotor or rotor head construction
    • B64C27/025Rotor drives, in particular for taking off; Combination of autorotation rotors and driven rotors

Definitions

  • the invention belongs to an aeronautical aircraft, in particular to a new type of rotorcraft.
  • the traditional rotorcraft advances by the horizontal drive of the front or rear propellers of the fuselage, as shown in Figures 1 and 2.
  • the arc arrows on the plane of the rotor's rotation indicate the direction of rotation of the rotor.
  • Figure 1 briefly shows a blade and its blades. Cross-sectional views at three cross-sectional positions are also the same in FIGS. 3 and 5 referred to later).
  • the rotorcraft is flying forward at speed V; Figure 1 shows a pull-in propeller, and Figure 2 shows a propeller.
  • the airflow passes through the rotation plane of the rotor horizontally at a certain speed to drive the rotor to rotate at a high speed, so that the rotor can obtain lift and fly, and the blades have a negative pitch and a positive twist working state.
  • the air wake is basically parallel to the heading, there is no interference airflow that intersects with the fuselage, and the interference wake generated by the propeller during flight is also less. Therefore, the rotorcraft is more efficient in cruise flight and has lower fuel consumption.
  • the aircraft's rotors are in rotation during cruising.
  • the rotors have no pitch adjustment system and there is no reducer connected to the rotor main shaft.
  • the aircraft maintains a low noise and failure rate.
  • FIG. 5 is a schematic diagram of the comparison of the installation angles of traditional helicopters with positive-pitch rotor A, negative-pitch rotor A 'and traditional rotor-blades B at different radii; as can be seen from Fig. 4, the rotors generated during the flight of traditional helicopters
  • the downwash airflow is obstructed by the fuselage, and the airflow passes through the paddle from front to back, resulting in a large aerodynamic loss.
  • Rotor blade A which is designed in a positive pitch and negative torsion working state. Press down on the pitch control lever to adjust the rotor blade to negative pitch. The rotor turns from the angle of blade A to the angle of blade A ', and performs unforced forced landing by wind rotation.
  • the blade B of the rotorcraft is in a favorable working state; the blade tip of A 'is close to zero angle of attack, and even at a small negative angle of attack, only the middle front of the blade
  • the angle of attack is basically normal, the angle of attack in the middle of the blade is too large, the angle of attack at the root of the blade is too large, and even partial air flow separation occurs, which reduces the aerodynamic efficiency of rotation in the rotation state, and the descending speed is large. It is easy to cause occupants during a forced landing. Injury and poor safety performance.
  • Figure 6 is the relationship between the radius of the ideal rotor and the installation angle.
  • the curves A and B in the upper part of the figure are the comparison diagrams of the large and small different pitch conditions in the positive pitch state ( Figures 7, 15, 17 below).
  • the dashed lines in, 26, 28, 30, 38 are also replacement pages (Article 26) So);
  • the curves B 'and A' in the lower half of the figure are comparison diagrams of different pitch conditions in the negative pitch state, respectively.
  • FIG. 7 is a graph showing the relationship between the radius of the ideal torsion and linear torsion blades and the installation angle, where the thick solid lines A, A ', and B are the relationship curves between the radius of the linear torsion blades and the installation angle; A is a linear negative torsion propeller, B is a linear positive torsion propeller, and A, A, and B correspond to A, A, and B in FIG. 5, respectively.
  • the installation angles of rotors A and B basically meet the requirements of aerodynamic installation angles. When rotor A 'is used for the negative pitch state, this negative pitch state should be the normal working interval of rotor B. If rotor A 'is used instead of rotor B, the actual working efficiency of rotor A' will be significantly reduced.
  • a prior art "AH-56 'Xia'an' armed helicopter” is a single-rotor helicopter with aerodynamic layout of tail rotors. It is equipped with a propeller. It can only fly by helicopter at any time, and its propeller is only used to increase cruising speed. It does not have the ability to cruise in a rotorcraft mode, nor does it have the same excellent safety performance as a rotorcraft.
  • Another "mini-escape helicopter” in the prior art has a rotor blade with negative twist. It is equipped with a jet engine at the tip and drives the jet engine at a positive pitch.
  • the aircraft uses the helicopter's maneuvering mode for vertical take-off and landing or cruise; it also has horizontally driven propellers.
  • the aircraft can use the negative-pitch self-rotating rotor cruising flight under the impetus of the moving propellers in the horizontal zone.
  • This aircraft combines traditional helicopters and traditional rotorcraft. It partially solves the shortcomings of traditional helicopters and traditional rotorcraft, but it also has disadvantages: 1. This aircraft uses two different engines to make it The power system is relatively complicated; 2.
  • the pitch control blade of the above helicopter is formed by changing the fixed blade shaft of the ordinary fixed blade S giant blade to a pitch adjustment shaft.
  • the disadvantages of this type of pitch control blade are: the effective working range of the pitch is small, and The entire blade rotates at the same angle. It can work only when the pitch is set. When it is adjusted to deviate from the optimal value, only one section of the blade has high efficiency, and the installation angle error in other parts increases, and the efficiency is obvious. reduce.
  • the shortage of existing pitch control blades has restricted the development of various aircrafts that use pitch control blades to work.
  • An existing rotor with a servo flap 16 (see FIG. 8) has a conventional blade with a fixed torque, and its torque cannot be adjusted.
  • the servo flap 16 is used to adjust the lift of the rotor, and cannot be changed.
  • the blade has the basic characteristics of negative torsion, and its high-efficiency pitch adjustment range is small.
  • Figures 9-1 and 9-2 are side and front views of a traditional crossed twin rotor aircraft.
  • the installation angle between the rotor and the main shaft connected to it is equal to or less than 90 degrees.
  • the drooping degree increases the chance of the outer blades colliding with the ground.
  • the purpose of the present invention is to solve the above problems, and propose a new type of rotorcraft solution that combines the advantages of traditional helicopters and traditional rotorcrafts.
  • Its rotor blades have a wide range of pitch adjustment and it can use high-efficiency "torsional variable pitch""Pitch", the “torsional variable pitch” can be adjusted by the negative torsion of the positive pitch and the positive torsion of the negative pitch.
  • It can also use torsion-free propellers to take into account its different needs in both positive and negative working conditions, to avoid the low aerodynamic efficiency of conventional helicopter rotors during steady rotation; to meet vertical take-off and landing requirements, the rotors must be TH Pitch, when cruise requires negative rotor pitch Yes. It can achieve vertical take-off and landing in helicopter mode and high-efficiency cruise in rotorcraft mode. Its cruise fuel consumption is low, noise is low, safety performance is good, comprehensive cost is low, and performance is excellent.
  • the new rotorcraft uses the following technical solutions:
  • One of the solutions of a new type of rotorcraft includes a fuselage 5, a main shaft 2, a rotor 1, a horizontal drive clutch 15, a power system, a tail rotor 4 of the rotorcraft, and a horizontal drive propeller 3.
  • the characteristics are: 1
  • the torsional variable pitch propeller is adopted.
  • the torsional variable pitch propeller can be adjusted from positive pitch and negative torsion to negative bonus and positive torsion.
  • the variable pitch propeller 43 of the torsional pitch propeller is installed on the propeller shaft 26, and is at the root of the variable pitch propeller 43
  • the adjusting rod 27 is installed, and a variable torque group is installed on the variable torque propeller 43.
  • the aircraft can use the helicopter power system to drive the rotor 1 with positive pitch, and use helicopter to control its vertical take-off and landing or cruise; the negative-rotation rotor with self-rotation is used. 1. Its power is horizontally driven by the propeller 3 through the horizontal drive clutch 15, and its cruise is controlled by the rotorcraft. Its helicopter-type control system and rotorcraft control system constitute a dual-control system that is independent and mutually backup.
  • the above-mentioned torsional and variable-pitch propellers are aerodynamic variable-torque propellers.
  • the variable-torque propellers 43 include a prize blade main portion 43a and a swept-back blade tip portion 43b .
  • Variable torsional swept torsion; the transition between the blade main part 43a and the blade tip 43b is negative torsion; the variable torsion propeller 43 is an elastic material and can undergo elastic torsional deformation under the action of torsional moment. 1.
  • the rotor When the rotor is working in the cruise with negative pitch, its lift is provided by the blade main part 43a, and the blade tip 43b has very little lift.
  • the aerodynamic torque of the blade tip 43b is not enough to cause the variable pitch propeller 43 to twist and twist.
  • the paddle 43 basically maintains the normal twisting state at the time of design. 2.
  • the variable-torque propeller 43 is adjusted to a positive pitch, and the angle of attack of the propeller tip portion 43b is increased, so that the propeller tip portion 43b obtains sufficient aerodynamic negative torsional torque, thereby obtaining sufficient blades. Negative turn.
  • the above-mentioned aerodynamic variable-pitch propeller blade portion 43b is provided with an auxiliary wing.
  • the auxiliary wing is a component that can adjust the aerodynamic angle of attack of the blade tip portion 43b. 1.
  • the rotor works in the state of negative rotation pitch of the cruise, its lift Provided by the blade main part 43a, the aerodynamic angle of attack of the blade tip 43b adjusted by the auxiliary wing is small, so that the lift of the blade tip 43b is very small, and the aerodynamic torque of the blade tip 43b is not enough to cause the variable pitch propeller 43 to twist and twist
  • the paddle 43 basically maintains the normal twisting state at the time of design. 2.
  • variable-torque propeller 43 In the state of the power-driven rotor, the variable-torque propeller 43 is adjusted to a positive pitch, and the auxiliary wing of the blade tip 43b increases the angle of attack of the blade tip 43b, so that the blade tip 43b obtains sufficient aerodynamic negative torsional torque. So that the blade can get enough negative twist.
  • the above-mentioned torsional and variable-pitch propeller is a variable-swept aerodynamic variable-torque propeller.
  • the variable-torque propeller 43 includes a blade main part 43a and a variable-swept blade tip 43b.
  • the blade main part 43a is designed to be positively twisted.
  • the tip portion 43b is a twist-free variable sweep back; the blade main portion 43a and the blade tip portion 43b are rotationally connected through a connecting shaft 38; the blade tip portion 43b has a sliding weight 39 inside, and the sliding weight 39 uses a cascade drive cable ( Lever) 46, moving along the tangential direction of the rotor's rotation; when the blade is at a negative pitch, the sliding weight 39 is moved to the trailing edge of the blade tip 43b; when the blade is at a positive pitch At this time, the slide weight 39 is moved to the wing leading edge side of the blade tip portion 43b.
  • Lever cascade drive cable
  • variable torsion propeller 43 is an elastic material that can undergo elastic torsional deformation under the action of a torsional moment; the blade tip 43b uses a very rigid material, and its torsional deformation is extremely small under the action of a large torsional force vector.
  • Variable swept-type aerodynamic variable torsion propeller During the cruise state of the rotating rotor, the variable torsion propeller 43 is adjusted to negative pitch, the sliding weight 39 is moved backward, and the center of gravity and centrifugal force of the blade tip 43b are close to the trailing edge
  • the prize tip 43b and the blade main portion 43a are substantially on the same straight line.
  • the blade tip 43b receives a small aerodynamic torque with respect to the propeller shaft 26, and the variable torque propeller 43 maintains a twisted state at the time of design.
  • the variable torsion beam 43 is adjusted to a positive pitch, the sliding weight 39 is moved forward, and the center of gravity and centrifugal force of the blade tip portion 43b are close to the leading edge of the wing. Sweeping back, the blade tip 43b is significantly enhanced by the aerodynamic torque in the negative torsion direction with respect to the propeller shaft 26, and the variable torsion propeller 43 is changed into a negative torsion State.
  • the above-mentioned torsional and variable-pitch propeller is a inclined-flap variable-torque.
  • the variable-torque propeller 43 includes a main blade 21, an inclined flap, and a hinge shaft 20.
  • the inclined flap is wide at one end and narrow at one end.
  • the inclined flap passes through the hinge shaft. 20 Rotate one or both sides installed at the leading and trailing edges of the main blade 21;
  • the paddle can be composed of several sub-stage variable torsion blades to form a two-stage or multi-stage variable torsion blade.
  • the paddle tips are connected successively. .
  • the above-mentioned torsion group adopts a gear-to-torque structure, which includes four gears, F, G, and H; the two gears F and G are coaxially fixedly connected together, and are mounted on the fixed shaft bracket 33 of the rib frame inside the paddle root portion 24 Gear E meshes with gear F, gear H meshes with gear G; gear E is fixed and does not rotate; gear H is fixedly connected with main blade 21, and main blade 21 rotates with gear H; the variable torque group does not change during transmission There was looseness and no jamming.
  • the above-mentioned torsion group adopts a lever torsion group, and its fixed transmission shaft 60 is fixedly installed on the paddle shaft mounting frame 64; the main propeller transmission shaft 61 is fixed on the paddle shaft 26 via a link rod; and its root transmission shaft 62 is fixed on the paddle root 24; the fixed transmission shaft 60, the main paddle transmission shaft 61, and the paddle transmission shaft 62 are all hinged through the transmission hole and the variable torque linkage 63, and the three of them are linked with the variable torque linkage 63 Among them, one of the three transmission holes above the variable twisting linkage 63 is a circular hole, and the other two holes are strip holes.
  • the main shaft bracket 41a is fixed on the paddle shaft 26; the bearing of the rotating shaft of the transmission plate 40 is fixedly installed on the rib frame of the paddle root portion 24; the main paddle frame 41b is fixed on The inner end of the sleeve, the outer end of the sleeve 30 is fixedly connected to the main blade 21; its main frame 41a is hinged to the drive plate 40 through the shaft link 42a; the drive plate 40 is connected to the upper side of the controlled wing through the link 42b
  • the lower surface is articulated to drive the deflection of the controlled wing; each link in the variable torque group can also use a linkage cable; for a multi-stage variable torque propeller, its cascade drive cable (rod) 46 can move the front and rear The step-variable twist sets are connected together.
  • the rotor 1 connected to the upper end of the main shaft 2 uses a torsion-free variable pitch propeller.
  • the propeller can be adjusted from positive pitch to negative pitch; the aircraft can use the helicopter power system to drive the rotor 1 with positive pitch and take off and land vertically in a helicopter; the rotor uses negative rotation rotor 1 with its power driven by the horizontal drive clutch 15, It is driven horizontally by the propeller 3 and cruises as a rotorcraft.
  • a new type of rotorcraft solution three including the fuselage 5, power system, rotor 1, landing gear and other parts, which is characterized in that: the rotor blade 1 and the paddle transmission rod 53 is installed between the automatic pitch control system; The lift center of the blade is located at the rear of the propeller shaft 26.
  • a pitch limiter 59 is provided near the root of the rotor blade to limit the minimum pitch stroke. The limiter 59 limits the minimum pitch to the rotor.
  • the clutch 56 turns off its pitch control torque.
  • a new type of rotorcraft solution four including a fuselage 5, a power system, a tail 4, a landing gear, an upper main shaft 2, a rotor 1 at the upper end of the main shaft 2, and the like, characterized in that the rotor 1 is a tilt-up cross double rotor 1;
  • the mounting angle between each rotor 1 and its main shaft 2 is 90 ° + a degree.
  • angle a for a rotor using a rigid swing hinge hinge, the angle a is greater than zero degrees, equal to f, or smaller than the minimum swing angle of the rotor.
  • the angle a mentioned above for a hingeless rotor using a flexible swing hinge, the angle a is between the minimum swing angle and the maximum swing angle of the rotor. .
  • the aircraft uses the "pitch automatic limit" system to ensure that its rotors have reliability similar to that of traditional rotorcraft, and its safety and reliability are good.
  • the steering torque of the pitch control system can be canceled, which significantly reduces the fatigue loss of the pitch adjustment system. It can even use the aerodynamic force to control the propeller even when the pitch adjustment system has a transmission crack or other failure.
  • the role of the blade makes it automatically turn to the negative pitch state frosted by the cruise, and obtains sufficient rotor lift, thereby significantly improving the flight safety of the aircraft.
  • the aircraft is patrolling)! At 3 ⁇ 4, its rotors were in the rotation working state, and its main transmission and cyclic variable pitch system stopped working, minimizing the wear and fatigue loss of ⁇ , and thus significantly improving the reliability of the whole machine.
  • rotor 1 is a tilt-up cross-rotor 1.
  • the outer rotor blades sag under the condition that the two inner rotors of the #L body have the same angle with the traditional technology models. Minus / j, thereby reducing the probability of the outer rotor blades colliding with the ground.
  • High efficiency and low fuel consumption It uses the rotorcraft to work during cruising, and its aerodynamic efficiency is higher, which reduces fuel consumption.
  • the technology of the present invention can also be partially applied to other rotorcrafts such as helicopters or rotorcrafts, constituting a certain new type of rotorcraft with technological advancement.
  • rotor 1 main shaft 2, horizontal drive propeller 3, tail 4, fuselage 5, main reducer 11, output shaft 12, engine 13, main clutch 14, horizontal drive clutch 15, Hinge shaft 20, main blade 21, forward oblique flap 22, rear oblique flap 23, paddle root 24, variable twist group 25, paddle shaft 26, adjusting lever 27, convex pin 28, convex pin 29, bushing 30, Groove 31, groove 32, fixed shaft bracket 33, connecting shaft 38, sliding weight 39, transmission plate 40, main shaft frame 41a, main paddle frame 41b, shaft plate link 42a, link 42b, variable pitch propeller 43, Blade main part 43a, Blade tip 43b, Cascade drive cable (rod) 46, Pull Lever card 52, pitch transmission lever 53, tie rod 54, positioning pin 55, connection controller 56, prize hub 57, limit block 59, dynamic limit block 59a, static limit block 5%, fixed drive shaft 60, Main propeller drive shaft 61, propeller drive shaft 62, variable torque linkage 63, propeller shaft mount 64, gears E, F, G,
  • X in some figures represents the multiplication factor of the rotor blade radius length, and IX to 5X in the figure, etc., respectively indicate the corresponding blade radius positions.
  • Figures 1 and 2 are schematic diagrams of rotors and their wakes of prior art rotorcraft.
  • FIG. 3 is a schematic diagram of mounting angles of a positive pitch rotor of a conventional helicopter at different radii;
  • Figure 4 is a schematic diagram of a traditional helicopter's downwash airflow being obstructed by the fuselage (the airflow passes through the paddle from top to bottom);
  • FIG. 5 is a schematic diagram comparing the working states of a conventional helicopter with a positive rotor blade pitch A and a negative rotor blade pitch A ′ and a rotor blade B of a prior art rotorcraft.
  • Figure 6 is a schematic diagram of the comparison of the ideal negative torsion propellers with different positive and negative pitches A and B and the ideal positive torsion propellers with different pitches B 'and A'. .
  • Fig. 7 is a schematic diagram showing the comparison of the linear negative twist propellers A and A 'of a conventional helicopter and the linear positive twist propeller B of a conventional rotorcraft.
  • FIG. 8 is a schematic diagram of a rotor blade with a servo flap in the prior art.
  • Figure 9-1 and Figure 9-2 are a side view and a front view of a traditional cross-rotor helicopter;
  • -Figure 10-1 is a schematic diagram of a side view of a new cross-rotor with a propelling cross-rotor;
  • Figure 10-2 is a schematic drawing of a side view of a new type of rotary wing aircraft with a pull-in cross-rotor
  • 11-1, 11-2, and 1 1-3 are schematic diagrams of the side view, front view, and top view of the propulsion cross-rotor aircraft of the present invention, respectively;
  • FIG. 12 This aircraft is equipped with a horizontal drive clutch 15 and a propeller 3 on the basis of the conventional helicopter power system, and can be cruised by a rotorcraft.
  • FIG. 13-1 is a schematic structural diagram of a torsional variable pitch propeller.
  • a torsional variable pitch propeller 43 is mounted on a propeller shaft 26, an adjusting rod 27 is installed at the root of the variable pitch propeller 43, and a variable pitch propeller 43 is installed above the variable pitch propeller 43. Twist group 25.
  • Figure 13-2 is a schematic diagram of the structure of a torsional variable pitch propeller without a variable torque group.
  • Fig. 14 is a schematic diagram of a variable torque propeller 43 which is an aerodynamic variable torque propeller.
  • the propeller is designed as follows: the blade main part 43a is forward twisted; the blade tip 43b is swept back, 'the swept back part is twistless, The combination of the blade main part 43a and the blade tip 43b is a negative twist (see A 'in FIG. 15).
  • Fig. 15 is a characteristic diagram of the blade radius and the installation angle curve of the aerodynamic variable-torque propeller shown in Fig. 14 under two states of negative pitch A 'and positive pitch A.
  • Figure 16-1 is a type of aerodynamic variable-torque propeller with auxiliary wings as blade tip flaps on the basis of the blade shown in FIG. 14;
  • Figure 16-2 shows a type of auxiliary wings with blade tip flaps Pneumatic variable torque propeller, which uses a connecting rod variable torque group;
  • Figure 17 shows the blade radius and installation of the aerodynamic variable torque propeller shown in Figure 16 in two states: negative pitch and positive pitch A. Angle curve characteristic diagram.
  • Figures 18, 19, and 20 are schematic diagrams of three auxiliary wings equipped with different shaped blade tip flaps.
  • the blade tip 43b shown in FIG. 21 is an aerodynamic variable twist propeller of an adaptive auxiliary wing, which can be controlled and modified.
  • the variable aerodynamic mounting angle acts as the paddle tip flap in Figure 16.
  • Fig. 22 shows a variable-swept aerodynamic variable torque propeller.
  • the blade main portion 43a and the blade tip portion 43b are rotationally connected through a connecting shaft 38.
  • Fig. 22-1 shows that the blade is in a cruising state with a negative pitch.
  • the sliding weight 39 is Move to the trailing edge side of the blade tip 43b;
  • Figure 22-2 shows the blade is at a positive pitch, and the sliding weight 39 is moved to the leading edge side of the blade tip portion 43b.
  • Figure 23 is a variable swept-type aerodynamic variable torque using a link variable torque group Schematic diagram of the internal structure of the paddle;
  • Figures 24 and 25 are cross-sectional schematic diagrams of the swept-air swept dynamic variable-torque propellers in negative and positive pitch, respectively;
  • the torsional pitch rotor shown in Fig. 26 is a schematic diagram showing the relationship between the installation angle and the radius of each part of the blade of the swept-air swept-powered variable-torque propeller.
  • Figure 27-1 is a type of inclined flap variable twist propeller using only rear inclined flaps
  • FIG. 27-2 is an exploded schematic view of a tilt-flap variable twist propeller 43 using only a slanted flap;
  • FIG. 28 is a schematic diagram of the relationship between the blade radius and the mounting angle shown in FIG. 27; FIG.
  • Fig. 29 is a schematic diagram of the improvement of the blade shown in Fig. 27, which can correct the excessive compensation of the rear beveled fog shown in Fig. 27;
  • Fig. 30 is a graph about the relationship between the blade radius and the installation angle shown in Fig. 29; Over compensation of the rear inclined flaps shown in Figure 28 in the 1.2X to 2.4X position range;
  • Figure 32 is a type of oblique flap type twist including a main blade 21, a rear oblique flap 23 and a root 24 ;
  • Figure 33 is a schematic diagram of the structure of the variable-pitch propeller 43, which includes a main blade 21, a forward inclined flap 22, a rear inclined flap 23 and a root 24;
  • Fig. 34-1 is an exploded cross-sectional view of positive pitch and negative torsion at positions DD, E-E, and F-F shown in Fig. 33;
  • Fig. 34-2 is D-D, E-E, and FF shown in Fig. 33 An exploded cross-sectional view of a negative pitch and a positive twist at a cross-sectional position;
  • FIG. 35 is an assembly schematic diagram of the inclined flap type variable torque propeller 43;
  • Figure 36 is a schematic diagram of the assembly of a two-stage inclined flap type variable twist propeller (the hinge shaft 20 in the figure is omitted; the parts with skimming in this and the following figures are the components of the previous sub-stage inclined flap);
  • Fig. 37 is a kind of inclined flap variable twist propeller.
  • the blade root 24 and the backward inclined flap 23 are integrated into one. It has a forward inclined slant flap 23 'at the tip of the blade. 23, opposite to the twisting direction of the rear oblique flap 23 of the paddle base;
  • Figure 38 is the relationship between the rotor radius and the mounting angle of the blade shown in Figure 37;
  • Figures 39 and 40 show the cross sections of the different radial positions;
  • Fig. 39 shows the superimposed schematic diagram of the inclined flap variable twist propeller shown in Fig. 37 at different pitch states.
  • the upper part of the figure is a superimposed schematic diagram of positive pitch; the middle of the figure is a superimposed schematic diagram of a zero degree mounting angle; the lower part of the figure is a superimposed schematic diagram of negative pitch;
  • FIG. 40 corresponds to the inclined flap variable torsion propeller shown in FIG. 37, and the upper and lower parts of the figure are respectively a schematic sectional view of a positive propeller S and a negative pitch;
  • FIG. 41 is a schematic view of the structure of a slanted flap type twist propeller with the blade root 24 connected to the front and rear inclined flaps;
  • FIG. 42 is a secondary slanted flap type with the blade root 24 connected to the front and rear inclined flaps.
  • Schematic diagram of variable twist propeller (this figure and (Each component with skimming in Figures 43, 50, 53 is a component of the previous child oblique flap);
  • Fig. 43 is a schematic diagram of a two-stage oblique flap type variable twist prize structure composed of a main blade 21 and a rear oblique flap 23;
  • Fig. 44 is a schematic diagram of an aerodynamic variable twist propeller with auxiliary blades as tip blades, The paddle also incorporates diagonal flap technology, which adds a rear diagonal flap at the root zone.
  • FIG. 45 is an oblique flap type variable torque propeller of a gear variable torque group
  • FIG. 46 is a schematic diagram of a pair of inclined flap type variable propellers using a gear variable torque group
  • Figure 47 is a schematic diagram of a slanted flap type variable pitch propeller of a gear variable torque set; the gear torque changing structure of the variable torque set. The set is installed on the paddle root 24;
  • Fig. 48 is an oblique flap type twisting propeller using a lever twisting set; the twisting set on the left side of the figure is placed inside the blade root; and Fig. 49 is an enlarged schematic view of the lever twisting set.
  • FIG. 50 is a schematic diagram of a connecting rod torsion group of an inclined flap type torsion propeller
  • FIG. 51 is an internal schematic diagram of a combination of a gear variable torque group, a lever variable torque group and a connecting rod variable torque group;
  • Fig. 52 is a schematic sectional view of G-G in Fig. 50;
  • Figure 53 corresponds to the variable torque propeller shown in Figure 37, which is a schematic diagram of the internal link variable torque group;
  • Fig. 54_1 and Fig. 55-1 are schematic diagrams of the structure in which rotor 1 is provided with an automatic pitch limiting system; the difference between the two figures is that the structure of the positioning pin 55 and the connection controller 56 is different.
  • Figure 54-2 and Figure 55-2 are schematic diagrams of the local layout of Figure 54-1 and Figure 55-1, respectively, and Figures 4 and B are enlarged schematic diagrams of the connection to the controller 56.
  • the positioning pin 55 of the connection controller 56 shown in FIG. 54-3 is moved from the position on the upper side of the connection controller 56 to the lower side as shown in FIG. 54-2.
  • FIG. 56 is a cross-rotor double-rotor new-type rotorcraft with rotor 1 being a front view of a tilt-up cross double-rotor 1;
  • FIG. 57 is a partial front view of the cross-rotary double-rotor 1 of a new type rotor;
  • Fig. 58-1 and Fig. 58-2 are a schematic side view and a schematic plan view of a propulsion coaxial dual-rotor aircraft according to the present invention
  • Fig. 59-1 is a schematic side view of a pull-in single-rotor and tail rotor aircraft according to the present invention
  • 59-2 is a schematic side view of a propelling single-rotor plus tail rotor aircraft according to the present invention.
  • Figures 60-1 and 60-2 are schematic side-view and top-view schematic diagrams of a propelled horizontal twin-rotor aircraft of the present invention, respectively.
  • a new type of rotorcraft with a cross-rotor aerodynamic structure includes a fuselage 5, a conventional helicopter power system, a main shaft 2 on the upper fuselage, and a horizontally driven propeller 3 of the rotorcraft.
  • the output end of the conventional helicopter power system is the main shaft 2, the upper end of the main shaft 2 is connected to the rotor 1, and the rotor 1 uses a torsional variable pitch propeller.
  • the torsional variable pitch propeller can be adjusted from positive pitch and negative to negative pitch and positive torsion. As shown in Figure 13-2, it is composed of a variable pitch propeller 43, a propeller shaft 26, and an adjustment rod 27. As shown in FIG.
  • the aircraft can use the engine 13 in a conventional helicopter power system to drive the rotor 1 with a positive pitch at the upper end of the main shaft 2 through the output shaft 12 via the main clutch 14 and the main reducer 11, and use the helicopter to control its vertical take-off and landing;
  • a self-rotating negative-pitch rotor 1 is used for horizontal driving on the output shaft 12 of a conventional helicopter power system engine 13 through an additional horizontal drive clutch 15 and a spiral prize 3, and its cruise is controlled by a rotorcraft.
  • Its helicopter-type control system and rotorcraft control system constitute independent, Dual operating systems for backup.
  • the above-mentioned torsional pitch-pitch propellers are aerodynamic variable-torque propellers.
  • Figure 15 shows the relationship between the rotor radius of the propeller and the blade mounting angle.
  • the curves A and A 'respectively indicate that the blades work in the forward direction. Pitch and negative pitch status.
  • the variable twist propeller 43 is composed of a blade main portion 43a and a swept-back blade tip portion 43b.
  • This aerodynamic variable torque propeller is designed to be a blade suitable for working in a negative pitch state when it is not subject to external torque: the blade main part 43a is positive torsion, the blade tip 43b is swept back, and the swept part is No twist, the transition between the blade main part 43a and the blade tip 43b is negative torsion (see A 'in Figure 15), and the whole is mainly positive torsion; the variable torsion propeller 43 can play a significant role in the torsion force vector Under the elastic torsional deformation. 1.
  • the rotor When the rotor is operating in the state of negative rotation pitch during cruise, its lift is mainly provided by the blade main part 43a, and the installation angle of the blade tip 43b is small (see A 'in FIG.
  • variable pitch propeller 43 is gradually adjusted from negative pitch to positive pitch.
  • the aerodynamic angle of attack of the blade tip 43b is greater than that of the propeller.
  • the aerodynamic angle of attack of the root first reaches a favorable angle of attack, and its blade tip 43b first obtains greater lift, because the blade tip 43b swept back to generate a negative torsional moment on the blade, so that it has a negative pitch as a whole.
  • Positive torsion is mainly changed to negative torsion with a positive pitch as a whole (see curve A in FIG. 15).
  • the blades meet the basic working requirements of two different states of positive pitch, negative torsion and negative pitch and positive torsion.
  • this aircraft Due to the use of aerodynamic variable-torque propellers, this aircraft has achieved the conventional helicopter working mode of power-driven rotors working at positive pitch and negative torsion during vertical take-off and landing.
  • the horizontal drive clutch 15 When changing from vertical take-off to cruise flight, the horizontal drive clutch 15 is placed in the combined position to propel propeller 3 horizontally. After the speed increases, the pitch of rotor 1 is reduced (that is, the total pitch is reduced) to negative pitch.
  • the main clutch 14 is disengaged, and the rotor 1 of the rotor is operated in a conventional rotorcraft mode in a rotation state.
  • the rotor pitch that is, the total pitch
  • the power to rotor 1 should be turned on, and the power to propeller 3 should be turned off.
  • the rotorcraft can be flown during a long cruise, the rotor's variable-pitch system and the main reducer 11 stop working, so it can significantly improve its flight safety.
  • the auxiliary wing uses the aerodynamic variable-torque propeller of the blade tip flaps, the purpose of which is: 1. It can control the lift of the blade tip more accurately when it is working in the cruise state, and the torque generated by the lift force is less than that of the blade that twists the blade. Degree (see B 'in Figure 17). 2. During vertical power take-off and landing, the blade tip flaps added by the blade tip 43b should be used to increase the lift of the blade tip to obtain sufficient negative torque to make the blade main portion 43a negative torsion (see FIG. 17). As shown in B). Make it better aerodynamic effect.
  • the auxiliary wing is a component that can adjust the aerodynamic angle of attack of the blade tip 43b.
  • the auxiliary wing Wing see dashed line B 'in Figure 17 (Shown) Adjusting the aerodynamic angle of attack of the blade tip 43b is very small, so that the lift of the blade tip 43b is very small, and the aerodynamic torque of the blade tip 43b is not enough to twist the variable torque propeller 43, and the variable torque propeller 43 maintains a positive twist during design status. 2.
  • variable pitch propeller 43 In the state of power-driven rotor, the variable pitch propeller 43 is adjusted to a positive pitch, and the auxiliary wing of the blade tip part 43b is controlled by the variable pitch group (see the dotted line B in FIG. 17) to make the blade tip part
  • the aerodynamic angle of attack of 43b is increased, and the blade tip portion 43b thus obtains a sufficient aerodynamic negative torsional torque, thereby enabling the blade to obtain sufficient negative torsion.
  • “embodiment 2” is characterized in that after the auxiliary wing is used as the blade tip flap, the aerodynamic lift of the blade tip is easier to control, and its aerodynamic performance is further improved.
  • the above-mentioned torque conversion group adopts a connecting rod torque conversion group, and its main frame 41a is fixed on the paddle shaft 26 and cannot rotate; the bearing of the rotating shaft of the transmission plate 40 is fixedly installed on the rib frame; the transmission plate 40 and The drive discs 40 'are articulated through cascade drive cables (rods) 46 respectively; the drive discs 40 are articulated with the upper and lower surfaces of the controlled wing through a link 42b', the controlled wing is its blade tip flap;
  • the main frame 41a of the main frame 41a is hinged to the transmission disc 40 through a shaft link 42a; each link in the torque conversion group can also use a linkage cable.
  • the above-mentioned torsional variable pitch propeller can use an adaptive wing of the prior art to assist in changing the aerodynamic angle of attack of the adaptive wing.
  • the other parts are the same as in the "second embodiment".
  • This adaptive auxiliary wing can also perform the same function as the paddle-tip flap in the second embodiment.
  • the auxiliary wing of the prior art may also use another adaptive wing.
  • the auxiliary wing in this embodiment will use its own dedicated variable twist group to change the aerodynamic response of the adaptive wing. angle.
  • the other parts are the same as those of the "third embodiment".
  • the above-mentioned torsional variable pitch propellers are variable-swept aerodynamic variable torque propellers.
  • the variable torque propeller 43 of this aircraft is composed of a blade main part 43a and a
  • the blade portion 43b is composed of a variable swept back, and the blade main portion 43a is designed to be twisted forward, and the blade tip 43b is a variable swept back without twist; the blade main portion 43a and the blade tip 43b are rotationally connected through a connecting shaft 38;
  • the sliding weight 39 uses the control of a cascade transmission cable (rod) 46 in the twisting group to move in the tangential direction of the rotation of the rotor.
  • the sliding weight 39 When the sliding weight 39 is moved to the paddle When the blade 43b is at the trailing edge side, the blade is at a negative pitch; when the blade is at a positive pitch, the sliding weight 39 is moved to the blade leading edge side of the blade 43b, and the blade pitch is changed.
  • the portion 43b is swept back, and the variable-torque propeller 43 can undergo elastic torsional deformation under the action of a torsional moment; the blade tip portion 43b uses a very rigid material, and its torsional deformation under the action of the torsional moment is extremely small.
  • the other parts of the aerodynamic variable pitch propeller are the same as those of the "second embodiment".
  • variable pitch propeller 43 In the cruise state of the rotating rotor, the variable pitch propeller 43 is adjusted to a negative pitch, the sliding weight 39 of the variable pitch propeller 43 is moved to the trailing edge side of the blade tip 43b, and the centrifugal force acting point of the blade tip 43b Located at the rear side of the connecting shaft 38, under the action of centrifugal force, the blade tip portion 43b rotates counterclockwise in the connecting shaft 38, and the blade tip portion 43b turns to a direction substantially in the same straight line as the blade main portion 43a (see 22-1), the blade tip portion 43b receives extremely small aerodynamic torque with respect to the blade shaft 26, and the variable-torque blade 43 maintains the twisted state at the time of design.
  • Figure 24 is a superimposed schematic diagram of the negative-pitch section of the paddle.
  • the dotted lines, thin solid lines, and thick solid lines in Figure 24 correspond to the A-A, B-B, and CC sections in Figure 23, and Figures 22-1, 24, and A 'in Figure 26
  • the schematic diagram of the relationship of the installation angle radius of the negative pitch blades corresponds. .
  • variable twist propeller 43 When the paddle is in the state of vertical take-off and landing of the power-driven rotor, the variable twist propeller 43 is adjusted to a positive pitch, the sliding weight 39 is moved to the leading edge side of the blade tip portion 43b, and the action point of the centrifugal force of the blade tip portion 43b is also moved. Toward the leading edge of the blade tip portion 43b, the blade tip portion 43b is rotated clockwise by the connecting shaft 38 under the centrifugal force, and the blade tip portion 43b is swept back. As the blade tip portion 43b is swept back, it is significantly strengthened by the aerodynamic torque in the negative torsional direction with respect to the propeller shaft 26, and the variable torque propeller 43 is changed from a positive torsion state to a negative torsion state.
  • FIG. 25 is a superimposed schematic diagram of the positive pitch section of the paddle.
  • the dotted lines, thin solid lines, and thick solid lines in FIG. 25 correspond to the AA, BB, C-C sections in FIG. 23, and FIGS. 22-2, 25, and 26.
  • the schematic diagram of the relationship of the installation angle radius of the positive pitch blade shown in A corresponds to '.
  • the torsional variable pitch propeller shown in FIG. 26 is a schematic diagram of the relationship between the installation angle and the radius of the blades of the post-change swept aerodynamic variable torque propeller; A in the figure is a positive pitch and negative torsion state, and A in the figure is a negative propeller Distance, forward 3 ⁇ 4 turn state; it can be seen from the figure that the torsional characteristic curve of the propeller is closer to the ideal torsional curve, and the aerodynamic efficiency of the rotor of the propeller is further improved.
  • the variable torque group of the paddle is shown in the structure shown in FIG. 23.
  • the adjustment lever 27 is pushed down (from the paper surface outward to the paper surface), and the paddle root has a negative installation angle.
  • the paddle shaft 26 and the main shaft 41a are fixed and do not rotate, the transmission disc 40 rotates clockwise, and the cascade transmission cable (rod) 46 is driven by the pulley to move the sliding weight 39 to the wing trailing edge side.
  • the adjustment lever 27 is pushed up (from the inside of the paper surface to the outside of the paper surface), the propeller root is at a positive installation angle, and the propeller shaft 26 and the main frame 41a are fixed and do not rotate.
  • the disk 40 rotates counterclockwise, and the cascade drive cable (rod) 46 is driven by the pulley to move the sliding weight 39 toward the leading edge of the wing.
  • Its variable twist propeller 43 includes inclined flaps, a main blade 21 and a hinge shaft 20; the widths of the two ends of the inclined flaps are not equal.
  • Fig. 27-1 is a type of inclined flaps with a main blade 21 and a rear oblique flap 23, and the hinge ⁇ is changed from a 20-angled inclined flap to a twisted blade.
  • the inclined flap passes through the hinge shaft 20 and the main blade 21
  • Rotating, Figure 27_2 is an exploded view. The relationship between the blade radius and the mounting angle is shown in Figure 28.
  • FIG. 30 is a graph showing the relationship between the blade radius and the mounting angle shown in Fig. 29. Also, because the curve of the trailing edge of the rear oblique flap at the root has little effect on the blade pitch adjustment characteristics, FIG. 31 changed the curve of the trailing edge of the rear oblique flap close to the root to a straight line. The relationship between the leaf radius and the mounting angle is also basically shown in FIG. 30.
  • the inclined flaps can also include forward inclined flaps 22 and rear inclined flaps 23, and the paddle root 24 is also removed from the inclined flaps.
  • the roots are separated; the forward oblique flap 22 and the rear oblique flap 23 are respectively located on the leading edge side and the trailing edge side of the variable pitch propeller 43, and are connected to the main blade 21 through the hinge shaft 20 (see FIG. 35);
  • the blade root portion 24 is coaxially mounted on the blade shaft 26 with the main blade 21.
  • the blade shaft 26 passes through the blade root portion 24 with through holes at both ends, and the blade shaft 26 is inserted into the main blade 21 and connected thereto.
  • Grooves 31 and 32 that match and coincide with the convex pins 28 and 29 on the inner end surface of the award root 24 are formed on the end surface of the oblique flap.
  • the projection pin and the groove are used to transmit a torsional moment that changes the blade torsion ( (See Figures 32, 33, 35, 36, 45, and 50);
  • the variable pitch propellers 43 shown in Figures 35 and 45 consist of a main blade 21, a forward inclined flap 22, and a rear
  • the inclined flap 23, the propeller root 24, and the hinge shaft 20 are composed, and the cross sections of the three positions D-D, E-E, and FF in FIG.
  • variable-torque propeller 43 can reasonably change the blade torque when adjusting the pitch, so when: L is operated at positive pitch, negative torsion or negative pitch, positive torsion, All have high work efficiency.
  • the forward oblique flap 22 and the backward oblique flap 23 can also be combined with the propeller root portion 24 respectively (see Figs. 41 and 42).
  • the paddle can be composed of several sub-stage torsion paddles to form a two-stage or multi-stage torsion paddle.
  • the root portion 24 of the front-stage blade is connected to the tip of the rear-stage blade and is successively formed.
  • Figures 36, 37, 42, 43, and 53 show the two-stage pitcher with several different structures. Each part with skimming in the figure is a part of the previous sub-stage oblique flap.
  • Fig. 36 is a schematic diagram of a two-stage oblique flap type twisting assembly.
  • the variable pitch propeller 43 includes a main blade 21, a rear inclined flap 23, and a front-stage rear inclined flap 23 'of a blade tip.
  • the oblique flap 23 is opposite to the torsion direction of the rear oblique flap 23 at the root of the paddle;
  • Figure 38 is the relationship between the rotor radius and the installation angle of the blade shown in Figure 37; 40;
  • the upper part of FIG. 39 is a schematic diagram of the superposition of the positive pitch, the middle of FIG. 39 is a schematic diagram of the zero-degree mounting angle, and the lower part of FIG. 39 is a schematic view of the negative pitch superposition;
  • the upper part of the figure is an exploded diagram of positive pitch and negative torsion, and the lower part of the figure is an exploded diagram of negative pitch and positive torsion. .
  • the above-mentioned torsional variable pitch propeller is a combination of the aerodynamic fine pitch propeller and the oblique flap propeller propeller, and the other parts are the same as those of the “fourth embodiment, the fifth embodiment, the sixth embodiment” "the same.
  • the smaller torsion at the front is completed by the aerodynamic variable propeller; the larger torsion at the rear is performed by the rear inclined flap; the paddle further integrates the aerodynamic variable torsion and the inclined
  • the advantages of both the flap and the twist propeller are that their aerodynamic performance is better improved.
  • the above-mentioned variable torque group uses a gear variable torque group 25.
  • the other parts are the same as those of the "sixth and seventh embodiments".
  • the gear changing group '25 contains four gears E, F, G, H; two gears! ⁇ , G is coaxially fixed and connected together, and is mounted on a fixed shaft bracket 33 on a rib frame inside the paddle root portion 24; the gear E meshes with the gear F, the gear H meshes with the gear G; the gear E is fixed and does not rotate; the gear H passes through
  • the shaft sleeve 30 is fixedly connected to the main blade 21, and the main blade 21 rotates with the gear H; during the transmission process, the variable torque group does not loosen or jam.
  • the difference between FIG. 45 and FIG. 46 is that the propeller shaft 26 of the gear changing group shown in FIG. 45 is rotationally connected to the main blade 21, and the propeller of the gear changing group shown in FIG. 46 is fixedly connected to the main blade 21 by 26.
  • the above-mentioned variable torque group is a lever variable torque group, and other parts are the same as those in the "Eighth Embodiment".
  • the lever twisting group has a fixed transmission shaft 60, which is fixedly mounted on the paddle shaft mounting frame 64; a main propeller transmission shaft 61 is fixed on the paddle shaft 26 via a linkage rod; and a root transmission shaft 62 is fixed on the root 24
  • the fixed transmission shaft 60, the main propeller transmission shaft 61 and the propeller root transmission shaft 62 are articulated through the transmission hole and the variable torque linkage 63; among the three transmission 3 ⁇ 4 holes above the variable torque linkage 63, One hole is a round hole, and this round hole coincides with the corresponding transmission shaft precisely and smoothly; the other two on the variable torque linkage 63 are strip holes (see the left side of Figure 49).
  • FIG. 48 is a type of variable torque propeller 43 using a lever torsion group; the figure can be regarded as the combination of the propeller root 24 and the rear inclined flap 23; the propeller hub 57 is shown in the figure, but its swing hinge and The pendulum hinge is omitted and not shown.
  • the right side of the figure shows the lever twisting group exposed on the paddle root, and its structure is easy to install and handle; the left side of the figure shows the lever twisting group that has been placed in the paddle, which can reduce Aerodynamic resistance.
  • the propeller shaft mounting bracket 64 through which the propeller shaft passes is connected to the propeller hub.
  • FIG. 49 is an enlarged schematic view of the lever twisting group in FIG. 48.
  • variable torque group uses a connecting rod variable torque group, and the other parts are the same as those in "Embodiment VIII and Nine".
  • the above-mentioned torsion group uses a connecting rod and torsion group. Its main frame 41a is fixed on the paddle shaft 26 and cannot be rotated. The bearing of the rotating shaft of the transmission plate 40 is fixedly installed on the rib frame. The main frame 41b is fixed to the inner end of the shaft sleeve 30, and the outer end of the shaft sleeve 30 is fixedly connected to the main prize blade 21; the transmission plate 40 is connected through the connecting rod 42b is articulated with the upper and lower surfaces of the controlled wing to drive the deflection of the controlled wing.
  • the controlled wing is a bladed flap; for FIGS. 50, 52, and 53, the controlled wing is the main blade 21, so its drive plate 40 is connected to the main blade through the connecting rod 42b.
  • the frame 41b is hinged, and then the main blade 21 is controlled to rotate through the sleeve 30.
  • each link in the variable twisting group can also use a link cable, see the cascade drive cable (rod) 46 in Figure 16-2, 23, 50, 51, 53.
  • variable torque group adopts a combination of a gear variable torque group, a lever variable torque group and a connecting rod variable torque group, and the other parts are the same as those of the "Embodiment VIII, Nine, and Ten", respectively.
  • bevel teeth £ and F in Figure 51 correspond to the gears E and F in the gear twisting group, respectively.
  • a new type of rotorcraft differs from “Embodiment 1" in that the rotor 1 of this embodiment adopts a torque-free variable pitch propeller, which can be adjusted from positive pitch and negative torsion to negative pitch and positive Twisted; Others are the same as “Example 1".
  • Its structure includes a body 5, a main shaft 2, a rotor 1, a flat drive clutch 15, a horizontal drive propeller 3, a tail 4 and a helicopter power system; the rotor 1 connected to the upper end of the main shaft 2 uses a torsion-free variable pitch propeller, which The propeller can be adjusted from positive pitch to negative pitch; the aircraft can use the helicopter power system to drive the rotor 1 with positive pitch and take off and land in a helicopter manner; the rotor with negative rotation 1 adopts rotation and its power is driven by the horizontal drive clutch 15, It is driven horizontally by the propeller 3 and cruises as a rotorcraft.
  • a new type of rotorcraft is different from the above embodiments in that the blades of the rotor 1 and the pitch transmission rod 53
  • a pitch automatic limit system is installed between the rooms.
  • the "pitch automatic limit system” can be applied in any of the above-mentioned “any embodiment”, thereby forming a new embodiment that significantly improves its flight safety.
  • Its structure is: an automatic pitch control system is installed between the blades of the rotor 1 and the pitch transmission rod 53; the lift center of the blades is located on the rear side of the propeller shaft 26, and a paddle is arranged near the root of the rotor blade
  • the distance limit block 59 is used to limit the stroke of the smallest pitch.
  • the limit block 59 limits the minimum pitch to the installation angle position of the negative pitch where the rotor is required to work. See Figure 54-1, 55- 1.
  • the pitch transmission lever 53 transmits the pitch control torque to the blades through the connection controller 56; its positioning pin 55 is connected to the connection controller 56, and the positioning pin 55 can be placed in a locked position and a released position, respectively; Placing the positioning pin 55 in the locked position allows the connection controller 56 to turn on its pitch control torque; placing the positioning street '55 in the released position allows the connection controller 56 to disconnect its pitch control torque (see Figures 54-2, 54-3, and 55-2 are shown).
  • D The schematic diagrams of the automatic pitch control systems of 54 and 55 can be seen, and the aerodynamic force acts on the rear of the blade shaft, as shown by the vertical upward arrow in the figure.
  • the positioning pin 55 When the machine needs to perform vertical take-off and landing of the power rotor, the positioning pin 55 is placed in the locked position, so that the connection controller 56 turns on its pitch control torque, and then the adjustment lever 27 is pushed up to turn the rotor blades to positive Pitch interval.
  • the rotor pitch can be adjusted to a negative pitch state; 'You can also cancel the torque of the control lever 27 to make its blades Under the action of aerodynamic force, it automatically turns to the negative pitch position required for the rotor, and its dynamic limit block 59a is just blocked by the static limit block 5% and limited.
  • 54-2 can be used by the driver to place the positioning pin 55 in the locked position and the released position, respectively, to control the control torque of turning on or off the pitch. See Figure A in Figure 54-1. Press the pitch control lever to the negative propeller and push the positioning pin 55 inward. Then, the positioning pin 55 can be locked, the positioning pin 55 can be placed in the locked position, and the pitch can be turned on. As shown in FIG. 54B, pulling out the positioning pin 55 and placing the positioning pin 55 in the released position can cause the connection controller 56 to disconnect its pitch control torque.
  • connection controller 56 shown in 54-3 is different from the connection controller 56 shown in Fig. 54-2:
  • the former is before the pitch control torque is turned on, see A in Fig. 54-3
  • the pitch control lever should be pulled up first, and then the positioning pin 55 is pushed inward to place it in the locked position, so that the pitch control torque is turned on; before the latter is turned on, see Figure 54-
  • the pitch control lever should be pressed down first, and then the positioning pin 55 should be pushed inward to put it in the locked position to turn on the pitch control torque. .
  • the structure of the automatic pitch control system shown in Figures 55-1 and 55-2 is different from that shown in Figures 54-1, 54-2, and 54-3 in that the structure of the positioning pin 55 and the connection controller 56 is: The difference.
  • the positioning pin 55 in FIG. 55 can be placed in the released position and the locked position by pushing up and down the lever 54 respectively.
  • the lever 52 When the rotor is rotating, the lever 52 should be opened, and the lever 54 shown in Figure B in Figure 55-2 should be moved upwards.
  • the positioning pin 55 can be released to disconnect the pitch control torque from the controller 56.
  • the positioning pin 55 can be locked, so that the connection controller 56 turns on the pitch control torque.
  • the pitch control torque thus regaining control of the pitch.
  • the structure of rotor 1 is a double-rotor of a tilt-up type.
  • the installation angle between each rotor 1 and the main shaft 2 connected to it is 90 ° + a degree.
  • the degree of drooping of the rotor blades on the outer side of the fuselage is small, thereby reducing the chance of the outer rotor blades nt colliding with the ground.
  • the angle a mentioned above, for a rotor using a rigid swing hinge bearing, the angle a is greater than zero degrees, equal to or less than the minimum swing angle of the rotor.
  • the angle a is between the maximum / of the swing blade, the swing angle and the maximum swing angle.
  • Figure 57 is a schematic partial front view of a tilt-up double-rotor 1 of a new type rotorcraft; the installation angle between the rotor 1 and the main shaft 2 connected to it is (90 + a) degrees; the angle b in the figure is turned to the lateral and inner sides
  • a new type of rotorcraft is different from the foregoing embodiments in that this embodiment is an aerodynamic layout of a coaxial rotor.
  • This embodiment can apply the aerodynamic layout of the coaxial double rotor on the basis of "any one of the above-mentioned" Embodiment 1 "to" Thirteenth Embodiment "to form a new embodiment.
  • a new type of rotorcraft is different from the above embodiments in that this embodiment is an aerodynamic layout of a single rotor and a tail rotor.
  • the aerodynamic layout of the single rotor and tail rotor can be applied on the basis of "any of the embodiments" to "thirteenth embodiment” to form a new embodiment.
  • a new type of rotator aircraft is different from the above embodiments in that this embodiment is the aerodynamic layout of the horizontal double rotors.
  • the aerodynamic layout of the row of twin rotors can be applied on the basis of "any one of the above-mentioned" Embodiment 1 "to" Thirteenth Embodiment "to form a new embodiment.
  • a new type of rotorcraft is different from the above embodiments in that this embodiment is an aerodynamic layout of a tandem double rotor.
  • a new type of rotorcraft with the aerodynamic layout of the tandem double rotors can be applied to the base KB of "any of the embodiments" in the above-mentioned "Embodiment 1" to "Thirteenth Embodiment” to form a new implementation. example.
  • the torsional variable pitch paddle of the invention organically combines the flexibility of a helicopter with the safety, efficiency and low cost of a rotorcraft. At the same time, it also has an automatic pitch limitation system, which can cut off the torque control torque during the long cruise flight and use the aerodynamic force received by the blades to maintain the negative pitch it needs.
  • the advantages are:-First, the fatigue loss of the pitch adjustment system is significantly reduced; Second, in the event of a failure of the pitch adjustment system transmission failure, when the pitch control torque cannot be transmitted, the normal rotation can still be used The rotors continued to cruise or forced landing, thereby significantly improving the flight safety and life of the aircraft, and reducing maintenance costs.
  • the aircraft Because its insurance cost is inversely proportional to the safety of the aircraft and the life of the entire aircraft, the aircraft also reduces the insurance cost, and its overall cost is also significantly reduced. For the model that chooses the tilt-up double-rotor, it can significantly reduce the droop of the outer rotor, which further improves the safety of take-off and landing.
  • the conversion operation process is: increase the pitch of propeller 3 to increase traction, and at the same time, press down on the pitch control lever 6, so that the rotor is at a negative pitch of positive twist At this time, the power of rotor 1 is cut off simultaneously for the double-rotor type, and the power of the tail rotor is also cut off for the single-rotor plus tail type.
  • the operation systems of the two operation modes of the above one and two constitute a dual operation system independent of each other and backup each other, which significantly improves the reliability of the operation system of the aircraft.
  • this new type of rotorcraft adopts torsional variable-pitch propellers, helicopter-type vertical take-off and landing, and propeller-propelled gyroplane cruise.
  • the helicopter's flexible take-off and landing, the safety and high efficiency of the rotorcraft, low comprehensive cost, low noise, and other advantages are combined into an excellent aircraft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Toys (AREA)

Description

新型旋翼飞行器 技术领域
本发明属于一种航空飞行器, 特别是一种新型旋翼飞行器。
背景技术
传统旋翼机靠机身前部或后部螺旋桨的水平驱动前进, 见图 1、 图 2, (图中旋翼转动 平面的弧形箭头表示旋翼转动方向, 图 1简略地展示出一片桨叶及其三处截面位置的剖面 图,后面涉及的图 3、图 5亦相同)。旋翼机以速度 V向前飞行; 图 1所示为拉进式螺旋桨、 图 2所示为推进式螺旋桨。 气流以一定速度水平穿过旋翼转动平面驱动旋翼高速自转, 使 旋翼获得升力而飞行, 桨叶为负桨距、 正扭转工作状态。 气流通过旋翼以后的空气尾流与 航向基本平行, 没有与机身相交的干扰气流, 飞行中螺旋桨产生的干扰尾流亦较少, 所以 旋翼机巡航飞行的效率较高, 油耗较低。 该机在巡航时旋翼处于自转工作状态, 其旋翼没 有桨距调整系统、 也没有与旋翼主轴相连的减速器, 该机保持了较低的噪音和故障率。 该 机在空中失去动力以后, 处于负桨距、 正扭转的旋翼桨叶, 它所提供的安装角仍能符合其 迫降时空气动力学的要求, 具有正常的工作迎角, 保持较高的气动效率, 其下降速率低, 迫降时安全性能好; 该机出现故障, 对自身安全会造成重大影响的零部件只有旋翼、 连接 旋翼的主轴、 连接主轴的机身承力结构, 因此它的安全系数大、 可靠性高; 但它不能垂直 起降, 起落场地较大, 从而影响了它的广泛应用。
传统直升机靠动力, 经过主减速器驱动旋翼飞行, 见图 3、 图 4, 气流由旋翼桨盘的上 部向下穿过旋翼转动平面, 所以桨叶为正桨距、 负扭转。 图 5是传统直升机的正桨距旋翼 A、 负桨距旋翼 A' 和传统旋翼机专用的旋翼 B, 它们在不同半径处的安装角的比较示意图; 由图 4可见, 传统直升机飞行时旋翼产生的下洗气流受到机身阻碍, 气流是由前上至后下 地穿过桨盘, 产生较大的空气动力损耗。 直升机中占大多数的单旋翼机型, 其尾桨产生的 横向消旋气流与航向来流垂直, 会增加空气动力损耗。 这两种现象都会降低它巡航飞行的 空气动力效率, 增加燃料消耗。 直升机在飞行时, 周期变距系统、 主减速器始终在运行, 工作噪声大、 安全系数低。 见图 5, 该机若在空中失去动力, 它只能利用: 设计在正桨距、 负扭转工作状态的旋翼桨叶 A, 下压桨距操纵杆使旋翼桨叶调整至负桨距,其旋翼由桨叶 A 的角度转至桨叶 A' 的角度, 进行风 自转的无动力迫降。 桨叶 A' 与桨叶 B比较, 旋翼机 专用的桨叶 B处于有利的工作状态; 其 A' 的桨叶尖接近零迎角、 甚至处于小角度负迎角, 只有桨叶的中前部的迎角基本正常, 桨叶中部则迎角过大, 桨叶根部的迎角太大甚至产生 局部气流分离, 降低了以自转状态旋转的气动效率、 下降速度较大, 迫降时易对乘员造成 伤害, 安全性能差。
图 6为理想旋翼的半径与安装角关系曲线图, 图中上半部的曲线 A、 B分别为正桨距状 态的大、 小不同桨距状况的比较图 (后面的图 7、 15、 17、 26、 28、 30、 38中的虚线亦是 替换页(细则第 26条) 如此) ; 图的下半部的曲线 B' 、 A' 分别为负桨距状态的不同桨距状况的比较图。 图 7为 理想扭转和线性扭转桨叶的半径与安装角的关系曲线图, 其中的粗实线 A、 A' 、 B是线性 扭转桨叶之半径与安装角的关系曲线; 图中的 A、 A, 是线性负扭转桨、 B是线性正扭转桨, 其 A、 A, 、 B分别与图 5中的 A、 A, 、 B相对应。 旋翼 A和 B安装角基本符合气动安装角 的要求, 当使用旋翼 A' 用于负桨距状态, 此负桨距状态应为旋翼 B的正常工作区间。 使 用旋翼 A' 来代替旋翼 B , 其旋翼 A' 的实际工作效率将明显降低。
现有技术的一种 "AH-56 '夏安' 武装直升机", 是单旋翼加尾桨气动布局的直升机, 它安装有推进螺旋桨。 它在任何时候都只能以直升机方式飞行, 其推进螺旋桨仅是用来增 加巡航速度。 它不具备旋翼机方式的巡航飞行的能力, 也不具备旋翼机一样优良的安全性 能。
现有技术的另一种 "微型逃命直升机", 其旋翼桨叶为负扭转, 它在桨尖安装有喷气发 动机, 在正桨距时驱动桨尖喷气发动机。 该机釆用直升机的机动操纵方式进行垂直起降或 巡航; 它还有水平驱动的螺旋桨, 该机在水平 区动螺旋桨的推动下, 可以利用负桨距的自 转旋翼巡航飞行。 该机对传统直升机与传统旋翼机进行了结合, 它部分地解决了传统直升 机与传统旋翼机各自的不足,但它还存在有缺点: 1、这种飞行器要使用两种不同的发动机, 使其动力系统较为复杂; 2、 它的两种发动机各自使用不同的燃料, 互不通用, 从而增加了 对自身飞行的限制; 3、巡航时它利用负扭桨、负桨距的桨叶用于正扭转、负桨距范.围工作, 降低了巡航飞行时的旋翼气动效率; 4、该机只能釆用直升机的机动操纵这一种方式进行机 动飞行。
上述直升机的调距桨叶, 是将普通固定桨 S巨桨叶的固定桨轴改为桨距调整轴构成, 这 种调距桨叶的缺点是: 桨距的高效工作调整范围小, 调整时整个桨叶都以相同角度转动, 它只在设定桨距才能离效工作; 将它调整至偏离最佳值时, 只有桨叶的某一段效率高, 其 它部位安装角误差增大, 效率明显降低。 ώ于现有调距桨叶的不足, 从而限制了各种利用 调距桨叶工作的飞行器发展。
一种现有的带伺服襟翼 16的旋翼 (见图 8), 其扭度固定了的传统桨叶, 它的扭度无法 调整; 伺服襟翼 16是用来调整旋翼的升力, 不能改变其桨叶为负扭转的基本特性, 其高效 桨距调整范围小。
现有技术的无扭转桨叶, 该无扭桨仅被用于科学研究, 它从未被用于任何实用飞行器。 图 9-1和图 9-2为传统交叉双旋翼飞行器的侧视图和正视图,旋翼与其相连的主轴之间 的安装角为等于 90度或小于 90度, 其机身外 』的旋翼桨叶下垂程度较大, 增大了外侧桨 叶与地面相碰撞的机会。
发明内容
' 本发明的目的是针对上述问题, 提出了一利新型旋翼飞行器方案, 它兼有传统直升机 及传统旋翼机的优点, 其旋翼的桨距调节范围大, 它可以使用高效率的 "扭转变距桨" , 该 "扭转变距桨"能够由正桨距的负扭转调整 ¾J负桨距的正扭转。 它还可以使用无扭桨, 以兼顾它在正桨距和负桨距两种工作状态的不同需要, 避免传统直升机旋翼定常自转时过 低的气动效率; 满足垂直起降时, 要求旋翼为 TH桨距, 巡航时要求旋翼为负桨距的工作需 要。 它可以实现直升机方式垂直起降及旋翼机方式高效率巡航, 其巡航油耗低、 噪声小、 安全性能好、 综合成本低、 性能优良。
为了实现上述发明之目的, 新型旋翼飞行器采用了如下技术方案:
一种新型旋翼飞行器的方案之一, 包括机身 5、 主轴 2、 旋翼 1、 水平驱动离合器 15、 动力系统, 旋翼机的尾翼 4和水平驱动螺旋桨 3, 其特征是: 主轴 2上端联接的旋翼 1采 用了扭转变距桨, 扭转变距桨可由正桨距、 负扭转调整至负奖距、 正扭转; 扭转变距桨的 变扭桨 43安装在桨轴 26上, 在变扭桨 43根部安装调整杆 27, 在变扭桨 43上安装有变扭 组; 该机可利用直升机动力系统驱动正桨距的旋翼 1, 使用直升机方式操纵其垂直起降或 巡航; 采用自转的负桨距旋翼 1, 其动力通过水平驱动离合器 15, 由螺旋桨 3水平驱动, 使用旋翼机方式操纵其巡航。 它的直升机方式的操纵系统和旋翼机的操纵系统, 构成相互 独立、 互为备份的双操纵系统。
上述的扭转变距桨为气动力变扭桨, 变扭桨 43包括有奖叶主部 43a和后掠的桨尖部 43b; 桨叶主部 43a设计为正扭转、 桨尖部 ,43b为无扭转的可变后掠; 桨叶主部 43a和桨尖 部 43b相结合的过渡段为负扭转; 变扭桨 43为弹性材料, 能在扭转力矩作用下发生弹性的 扭转形变。 1、旋翼工作在巡航的自转负桨距状态时, 其升力由桨叶主部 43a提供, 桨尖部 43b升力很小, 桨尖部 43b的气动扭矩不足以使变扭桨 43扭转, 变扭桨 43基本保持设计 时的正扭转状态。 2、 工作在动力驱动旋翼状态时, 变扭桨 43调整至正桨距, 桨尖部 43b 的迎角加大, 桨尖部 43b由此获得足够的气动负扭转力矩, 从而使桨叶获得足够的负扭转。
上述的气动力变扭桨的桨尖部 43b设有一辅助翼, 辅助翼是一种可以调整桨尖部 43b 气动迎角的部件; 1、旋翼工作在巡航的自转负桨距状态时, 其升力由桨叶主部 43a提供, 经辅助翼调整桨尖部 43b的气动迎角很小, 使桨尖部 43b升力很小, 桨尖部 43b的气动扭 矩不足以使变扭桨 43扭转, 变扭桨 43基本保持设计时的正扭转状态。 2、 在动力驱动旋翼 状态时, 变扭桨 43调整至正桨距, 桨尖部 43b的辅助翼使桨尖部 43b的迎角加大, 桨尖部 43b由此获得足够的气动负扭转力矩, 从而使桨叶获得足够的负扭转。
上述的扭转变距桨为变后掠式气动力变扭桨,变扭桨 43包括有桨叶主部 43a和可变后 掠的桨尖部 43b; 桨叶主部 43a设计为正扭转; 桨尖部 43b为无扭转的可变后掠; 桨叶主 部 43a与桨尖部 43b通过连接轴 38转动相连; 桨尖部 43b内部有一滑动配重 39, 滑动配 重 39利用级联传动索 (杆) 46的控制, 沿着旋翼转动的切线方向移动; 当桨叶处于负桨 距时, 滑动配重 39被移至桨尖部 43b的翼后缘一侧; 当桨 Π十处于正桨距时, 滑动配重 39 被移至桨尖部 43b的翼前缘一侧。变扭桨 43为弹性材料, 能够在扭转力矩作用下发生弹性 的扭转形变; 桨尖部 43b使用刚性很好的材料, 它在扭转力矢巨作用下其扭转形变极小。 变 后掠式气动力变扭桨, 在自转旋翼的巡航状态时, 变扭桨 43 调整至负桨距, 滑动配重 39 后移, 桨尖部 43b的重心和离心力作用点接近翼后缘一侧, 奖尖部 43b与桨叶主部 43a基 本处于同一条直线上, 桨尖部 43b受到相对于桨轴 26的气动扭矩很小, 变扭桨 43保持设 计时的扭转状态。它在动力驱动旋翼垂直起降状态时, 变扭梁 43调整至正桨距, 滑动配重 39前移, 桨尖部 43b的重心和离心力作用点接近翼前缘一侧, 桨尖部 43b 向后掠, 桨尖部 43b受到相对于桨轴 26的负扭转方向的气动扭矩明显增强, 变扭桨 43改变成为负扭转状 态。
上述的扭转变距桨为斜襟翼变扭桨,变扭桨 43包括有主桨叶 21、斜襟翼和铰链轴 20, 其斜襟翼为一端宽、 一端窄, 斜襟翼通过铰链轴 20转动安装在主桨叶 21前后缘的单侧或 双侧; 该桨可由若干子级变扭桨组成二级或多级变扭桨,前级桨叶的桨根部 24与后级桨叶 的桨尖相连, 逐级接续而成。 .
上述的变扭组采用齿轮变扭结构, 它包含四个齿轮 、 F、 G、 H; 两个齿轮F、 G同轴固 定连结在一起, 安装在桨根部 24内部翼肋框架的固定轴架 33上; 齿轮 E与齿轮 F啮合、 齿轮 H与齿轮 G啮合; 齿轮 E固定不转; 齿轮 H与主桨叶 21固定连接, 主桨叶 21随齿轮 H转动; 变扭组在传动过程中即不发生松旷, 也不出现卡阻。
上述的变扭组采用杠杆变扭组, 其固定传动轴 60固定安装在桨轴安装架 64之上; 主 桨传动轴 61经连动杆固定在桨轴 26之上; ·其桨根传动轴 62固定在桨根部 24之上; 固定 传动轴 60、 主桨传动轴 61和桨根传动轴 62三者都穿过传动孔与变扭连动 63铰接, 它们 三者与变扭连动 63之间分别滑润吻合; 变'扭连动 63之上的三个传动孔之中, 有一孔为圆 孔, 另外的两个孔为条形孔。
上述的变扭组釆用连杆变扭组, 其主轴架 41a固定在桨轴 26之上; 传动盘 40的转轴 的轴承固定安装在桨根部 24的翼肋框架上; 主桨架 41b固定在轴套; ^的内端, 轴套 30外 端与主桨叶 21固定相连; 其主轴架 41a通过轴盘连杆 42a与传动盘 40铰接; 传动盘 40 通过连杆 42b与受控制翼的上、 下表面铰接, 带动受控制翼的偏转; 变扭组中的各个连杆 亦可使用连动索; 对于多级变扭桨而言, 其级联传动索 (杆) 46可将前、 后级变扭组连接 在一起。
一种新型旋翼飞行器方案二,
包括机身 5、 主轴 2、旋翼 1、 水平驱动离合器 15、 动力系统, 旋翼机的尾翼 4和水平 驱动螺旋桨 3, 其特征是: 主轴 2上端联接的旋翼 1采用了无扭转变距桨, 该桨可由正桨 距调整至负桨距; 该机可利用直升机动力系统驱动正桨距的旋翼 1, 以直升机方式垂直起 降; 采用自转的负桨距旋翼 1, 其动力通过水平驱动离合器 15, 由螺旋桨 3水平驱动, 以 旋翼机方式而巡航。
一种新型旋翼飞行器方案三, 包括机身 5、 动力系统、 旋翼 1 、 起落架等部分, 其特 征是: 旋翼 1的桨叶与桨 传动杆 53之间安装有桨距自动限位系统; 其桨叶的升力中心位 于桨轴 26的后部, 在靠近旋翼桨根部的附近设有桨距限位块 59, 用来限制最小桨距的行 程; 限位块 59将最小桨距限制在自转旋翼所需工作状态的负桨距的安装角位置;其桨距传 动杆 53, 通过连接控制器 56, 将桨距控制力矩传递到桨叶; 其定位销 55与连接控制器 56 相连, 定位销 55可分别置于锁定的位置及释放的位置; 将定位销 55 置于锁定的位置, 可 使连接控制器 56接通其桨距控制力矩; 将定位销 55置于释放的位置, 可使连接控制器 56 断开其桨距控制力矩。
一种新型旋翼飞行器方案四, 包括机身 5、动力系统、尾翼 4、起落架、 上部的主轴 2, 主轴 2上端的旋翼 1等, 其特征是: 旋翼 1为上仰式交叉双旋翼 1 ; 每只旋翼 1与其相连 的主轴 2之间的安装角为 90° + a度。 使其机身外侧之旋翼桨叶下垂的程度较小, 从而减 小了外侧旋翼桨叶与地面相互碰撞的机率。
上述的角 a, 对于使用钢性挥舞铰轴杀的旋翼, 角 a大于零度、 等 f或小于旋翼的最 小挥舞角。
上述的角 a, 对于使用柔性挥舞铰的无铰式旋翼, 角 a介于旋翼的最小挥舞角与最大 挥舞角之间。 .
本发明的优点是:
1、性能优良, 兼有传统直升机及传统旋翼机的优点, 其旋翼的桨距调节范围大, 它可 以使用高效率的 "扭转变距桨", 该 "扭转变距桨"能够由正桨距的负扭转调整到负桨距 的正扭转, 它满足了对旋翼的两种不同桨距和扭转的使用需求, 充分发挥了扭转变距桨的 工作优势。 它还可以使用无扭桨, 避免传统直升机旋翼定常自转时过低 气动效率; 满足 垂直起降时旋翼为动力正桨距, 螺旋桨水平驱动巡航时旋翼为自转负桨距的工作需要。
2、安全性能好: 该机使用了 "桨距自动限位"系统, 保证了它的旋翼具有与传统旋翼 机的旋翼相近的可靠性,其整机安全可靠性好。巡航中可以取消桨距控制 统的操纵力矩, 显著减轻了桨距调整系统的疲劳损耗; 它甚至在桨距调整系统发生传动昕裂等故障, 无法 传输操纵力矩时, 也可利用气动力对桨叶的作用, 使之自动转向巡航所霜的负桨距状态, 获得足够的旋翼升力, 从而显著地提高了该机的飞行安全性。 该机在巡)! ¾时其旋翼处于自 转工作状态, 其主变速器和周期变距系统停止工作, 最大限度地减少了 ^ &们的磨损和疲劳 损耗, 从而显著地提高了整机的可靠性。
对于交叉双旋翼机型, 其旋翼 1为上仰式交叉双旋翼 1 , 在保证其 #L身内侧两只旋翼 与传统技术机型具有相同夹角的情况下, 其外侧旋翼桨叶下垂的程度减 /j、, 从而降低了外 侧旋翼桨叶与地面相互碰撞的机率。
3、低噪声: 它在巡航时主变速器不工作、 周期变距系统也不运行, 于单旋翼加尾桨 机型的尾桨和尾桨传动系统都停止运行, 其巡航飞行的噪声明显减小。
4、 高效率低油耗: 它在巡航时利用旋翼机方式进行工作, 其气动效 较高, 减少了耗 油量。
5、综合成本低:它的主变速器和周期变距系统和尾桨和尾桨传动系 只在垂直起降时 才需要参与运行, 其损耗小维护费用低, 因其保险成本与飞行器的安全性 I整机寿命成反 比, 从而使该机还降低了 ί桌险成本和营运成本, 从而降低了该机的综合成才。
6、本发明之技术还可以部分地应用在直升机或旋翼机等其它的旋翼 行器之上, 构成 技术进步的某种新型旋翼飞行器。
附图说明
附图中各个部件名称与标号对应为- 旋翼 1、 主轴 2 、 水平驱动螺旋桨 3 、 尾翼 4、 机身 5、 主减速器 11、 输出轴 12、 发 动机 13、 主离合器 14、 水平驱动离合器 15、 铰链轴 20、 主桨叶 21、 前斜襟翼 22、 后斜襟 翼 23、桨根部 24、变扭组 25、桨轴 26、调整杆 27 、 凸销 28、 凸销 29、 轴套 30、 凹槽 31、 凹槽 32、 固定轴架 33、 连接轴 38、滑动配重 39、 传动盘 40、 主轴架 41a、 主桨架 41b、 轴 盘连杆 42a、 连杆 42b、 变扭桨 43、 桨叶主部 43a、 桨尖部 43b、 级联传动索 (杆) 46、 拉 杆卡 52、 桨距传动杆 53、 拉杆 54、 定位销 55、.连接控制器 56、 奖毂 57、 限位块 59 、 动 限位块 59a、静限位块 5%、固定传动轴 60、主桨传动轴 61、桨根传动轴 62、变扭连动 63、 桨轴安装架 64、 齿轮 E、 F、 G、 Ho
部分图中的 X代表旋翼桨叶半径长度的倍率系数, 图中的 IX至 5X等, 分别表示相应 的桨叶半径位置。
图 1、 图 2是现有技术旋翼机的旋翼及其尾流示意图。
图 3是传统直升机的正桨距旋翼在不同半径处的安装角的示意图;
图 4 是传统直升机下洗气流受到机身阻碍的示意图(气流是由前上至后下地穿过桨 盘);
图 5是传统直升机的动力旋翼正桨距 A与其自转负桨距 A' 及现有技术旋翼机的旋翼 B 的工作状态比较示意图。
图 6是理想负扭转桨的正桨距大小不同桨距 A和 B与理想正扭转桨的负桨距处于不同 桨距 B' 和 A' 的比较示意图。 .
图 7是传统直升机的线性负扭转桨 A及 A' 与传统旋翼机的线性正扭转桨 B的比较示 意图。
图 8是现有技术中一种带有伺服襟翼的旋翼桨叶示意图。
图 9-1、 图 9-2是一种传统交叉双旋翼直升机的侧视图与正枧图; - 图 10-1是推进式的交叉双旋翼, 新型旋翼飞行器侧视示意图;
图 10-2是拉进式的交叉双旋翼, 新型旋翼飞行器侧视示意图;
图 11-1、 11-2、 1 1-3分别是本发明的推进式交叉双旋翼飞行器侧视、 正视、 俯视三面 示意图;
图 12该机在常规直升机动力系统基础上, 新增设了水平驱动离合器 15和螺旋桨 3, 可采用旋翼机方式巡航。
图 13-1是扭转变距桨的结构示意图, 其扭转变距桨的变扭桨 43安装在桨轴 26上, 在 变扭桨 43根部安装调整杆 27, 在变扭桨 43之上安装变扭组 25。
图 13-2是一种没有变扭组的扭转变距桨的结构示意图。
图 14是一种变扭桨 43为气动力变扭桨的示意图, 该桨设计为: 桨叶主部 43a为正扭 转; 其桨尖部 43b为后掠,'该后掠部分为无扭转, 桨叶主部 43a禾 Π桨尖部 43b相结合的过 渡段为负扭转 (见图 15中的 A' 所示)。
图 15则是图 14所示的气动力变扭桨在负桨距 A' 与正桨距 A两种状态下的桨叶半径 与安装角曲线特性图。
图 16-1是在图 14所示桨叶基础上加了辅助翼为桨尖襟翼的一种气动力变扭桨; 图 16-2所示的是一种辅助翼为桨尖襟翼的气动力变扭桨, 该桨使用了连杆变扭组; 图 17则是图 16所示的气动力变扭桨在负桨距 , 与正桨距 A两种状态下的桨叶半径 与安装角曲线特性图。
图 18、 19、 20分别是三种装有不同形状的桨尖襟翼之辅助翼的示意图。
图 21所示桨尖部 43b为自适应辅助翼的气动力变扭桨,该自适应辅助翼可以受控而改 变气动安装角, 起到图 16中桨尖襟翼的作用。
图 22为变后掠式气动力变扭桨,桨叶主部 43a与桨尖部 43b通过连接轴 38转动相连; 图 22-1表示桨叶处于负桨距的巡航状态, 滑动配重 39被移至桨尖部 43b的翼后缘一 侧;
图 22- 2表示桨叶处于正桨距, 滑动配重 39被移至桨尖部 43b的翼前缘一侧; 图 23是一种使用连杆变扭组的变后掠式气动力变扭桨的内部结构示意图;
图 24、 25 分别为变后掠气动力变扭桨处于负桨距和正桨距工作状态的剖面叠加示意 图; . ■
图 26所示的扭转变距桨为变后掠气动力变扭桨的桨叶各部位的安装角与半径关系示 意图。
图 27-1是一种只用后斜襟翼的斜襟翼变扭桨;
图 27-2是一种只用后斜襟翼的斜襟翼式变扭桨 43分解示意图;
图 28是关于图 27所示的桨叶半径与 装角关系示意图;
图 29是对图 27所示桨叶的改进示意图, 它可以纠正图 27所示后斜襟雾的过量补偿; 图 30是关于图 29所示的桨叶半径与安装角关系图线; 它纠正了图 28在 1. 2X至 2. 4X 位置区间所示后斜襟翼的过量补偿;
图 31所示的后斜襟翼,其后缘之曲线形状被改为直线的示意图; 这是因为靠近桨根部 分后缘的形状对其变距曲线的误差影响很小;
图 32是一种包含主桨叶 21、 后斜襟翼 23与桨根 24的斜襟翼式变扭 ;
图 33是变扭桨 43为斜襟翼式变扭桨的结构示意图, 它包含主桨叶 21、 前斜襟翼 22、 后斜襟翼 23和桨根 24;
图 34-1是图 33所示 D-D、 E- E、 F- F剖面位置的正桨距、 负扭转的分解剖面图; 图 34-2是图 33所示 D- D、 E- E、 F-F剖面位置的负桨距、 正扭转的分解剖面图; 图 35是斜襟翼式变扭桨 43的装配示意图;
图 36是二级斜襟翼式变扭桨装配示意图(图中的铰链轴 20被省略;本图与下图中各个 带撇的零部件, 是前一子级斜襟翼的零部件);
图 37是一种斜襟翼变扭桨,其桨根部 24与后斜襟翼 23合二而一,它在桨尖有一个前 一子级的后斜襟翼 23' , 该后斜襟翼 23, 与桨根部的后斜襟翼 23的扭转方向相反;
图 38是图 37所示桨叶的旋翼半径与安装角的关系曲线; 其不同半径位置的剖面见图 39、 图 40;
图 39表示为图 37所示斜襟翼变扭桨, 处于不同桨距状态的叠加示意图。 该图的上部 表示为正桨距叠加示意图; 该图的中间表示的是零度安装角的叠加示意图; 该图的下部表 示为负桨距叠加示意图;
图 40对应为图 37所示斜襟翼变扭桨, 图的上部和下部分别处于正桨 S巨和负桨距状态 的剖面示意图;
图 41是桨根部 24与前、 后斜襟翼连为一体的斜襟翼式变扭桨结构示意图; 图 42是桨根部 24与前、后斜襟翼连为一体的二级斜襟翼式变扭桨结构示意图(本图与 图 43、 50、 53中各个带撇的零部件, 都是前一子级斜襟翼的零部件);
图 43是由主桨叶 21、 后斜襟翼 23构成的二级斜襟翼式变扭奖结构示意图; 图 44所示的是一种辅助翼为桨尖襟翼的气动变扭桨示意图, 该桨还结合了斜襟翼技 术, 增加了桨根区的后斜襟翼。
图 45是一种齿轮变扭组的斜襟翼式变扭桨;
图 46是一付使用齿轮变扭组的斜襟翼式变扭桨示意图;
图 47是一种齿轮变扭组的斜襟翼式变扭桨示意图; 其齿轮变扭结构的变扭.组是安装 在桨根部 24上; '
图 48是使用杠杆变扭组的斜襟翼式变扭桨; 图左侧的变扭组被置于桨根内部; 图 49是杠杆变扭组的放大示意图。
图 50是一种斜襟翼式变扭桨的连杆变扭组的示意图;
图 51是一种齿轮变扭组、 杠杆变扭组与连杆变扭组相结合的内部示意图;
图 52是图 50中的 G-G剖面示意图; ,
图 53对应图 37所示的变扭桨, 该图是其内部的连杆变扭组的示意图; .
图 54_1、图 55-1是旋翼 1设有桨距自动限位系统的结构示意图;两图的区别在于定位 销 55和连接控制器 56的结构有所不同。
图 54-2、 图 55-2分别是图 54-1、 图 55- 1的局布示意图, 其中的图4、 图 B则是连接 控制器 56的放大示意图。
图 54-3所示的连接控制器 56, 其定位销 55由图 54-2所示位于连接控制器 56上侧的 位置移至下侧。
图 56是一种交叉双旋翼的新型旋翼飞行器,其旋翼 1为上仰式交叉双旋翼 1的正视图; 图 57是新型旋翼飞行器的上仰式交叉双旋翼 1的局部正视示意图;
图 58-1、 图 58-2是本发明推进式同轴双旋翼飞行器侧视示意图和俯视示意图; 图 59-1是本发明拉进式单旋翼加尾桨旋翼飞行器侧视示意图;
图 59-2是本发明推进式单旋翼加尾桨旋翼飞行器侧视示意图;
图 60-1、 60-2分别是本发明推进式横列双旋翼飞行器的侧视禾 Π俯视示意图。
具体实施方式
实施例一 '
见图 10、 11、 12、 13-2, 一种交叉双旋翼气动结构的新型旋翼飞行器, 它包括机身 5、 常规直升机动力系统、 机身上部的主轴 2和旋翼机的水平驱动螺旋桨 3、 水平驱动离合器 15、尾翼 4等。 常规直升机动力系统输出端为主轴 2, 主轴 2上端联接旋翼 1, 旋翼 1釆用 扭转变距桨,扭转变距桨可由正桨距、负扭转调整至负桨距、正扭转;扭转变距桨如图 13-2 所示, 是由变扭桨 43、 桨轴 26、 调整杆 27组成。 图 12所示, 该机可利用常规直升机动力 系统中的发动机 13通过输出轴 12经主离合器 14、主减速器 11驱动主轴 2上端正桨距的旋 翼 1, 使用直升机方式操纵其垂直起降; 采用自转的负桨距旋翼 1, 在常规直升机动力系统 发动机 13的输出轴 12之上通过增设的水平驱动离合器 15和螺旋奖 3进行水平驱动,使用 旋翼机方式操纵其巡航。它的直升机方式的操纵系统和旋翼机的操纵系统, 构成相互独立、 互为备份的双操纵系统。
在图 10-1、 图 10-2中实线旋翼 1为正桨距、 负扭转时, 为动力旋翼的垂直起降状态; 虚线旋翼 1为负桨距、 正扭转时, 在螺旋桨 3的水平驱动下, 利用自转旋翼, 以旋翼机方 式飞行的状态。
见图 14、 图 15, 上述扭转变距桨为气动力变扭桨, 图 15表示该桨的旋翼半径与桨叶 安装角的关系曲线图, 曲线 A和 A' 分别表示桨叶工作在正桨距和负桨距状态。 变扭桨 43 由桨叶主部 43a和后掠的桨尖部 43b组成。 该气动力变扭桨被设计成, 在不受外部扭矩作 用时, 是适合负桨距状态工作的桨叶: 桨叶主部 43a为正扭转, 桨尖部 43b为后掠, 后掠 部分为无扭转, 桨叶主部 43a和桨尖部 43b相结合的过渡段为负扭转(见图 15的 A' ) , 其整体是以正扭转为主; 变扭桨 43能在扭转力矢巨作用下发生弹性的扭转形变。 1、 旋翼工 作在巡航的自转负桨距状态时, 其升力主要由桨叶主部 43a提供, 桨尖部 43b的安装角很 小 (见图 15中的 A' 所示), 其升力较小, 桨尖部 43b的气动扭矩不足以使变扭桨 43扭转, 变扭桨 43保持设计时的正扭转状态。 2、在动力 §区动旋翼状态时, 变扭桨 43由负桨距逐渐 调整至正桨距, 当桨叶各叶素同步增大相同的角度时, 桨尖部 43b的气动迎角比桨根的气 动迎角先达到有利迎角, 其桨尖部 43b首先获得更大的升力, 因为桨尖部 43b后掠而对桨 叶产生负扭转力矩, 使其由原来整体是以负桨距的正扭转为主转变为整体以正桨距的负扭 转为主 (见图 15的曲线 A所示)。桨叶满足了正桨距、 负扭转和负桨距、正扭转的两种不同 状态的基本工作要求。
该机由于使用了气动力变扭桨, 从而达到了在垂直起降时用动力驱动旋翼工作于正桨 距、 负扭转的常规直升机工作方式。 在由垂直起飞向巡航飞行转换时, 将水平驱动离合器 15置于结合的位置使螺旋桨 3水平驱动, 航速增大之后减小旋翼 1的桨距(也就是减小总 距)至负桨距, 同时使主离合器 14分离, 其旋翼 1工作于自转状态的常规旋翼机方式。 在 由巡航飞行转换至垂直降落时, 应同步增大旋翼的桨距 (也就是增大总距) 、 接通送至旋 翼 1的动力、 断开通至螺旋桨 3的动力。
该实施例, 由于能够在长时间的巡航过程中, 以旋翼机方式飞行, 其旋翼的变距系统 和主减速器 11停止工作, 因此它可以显著提高其飞行安全性。
实施例二
见图 16-1、 16-2、 17、 18、 19、 20, 上述的气动力变扭桨, 它的桨尖部 43b增设有一 辅助翼, 其辅助翼是使用桨尖襟翼的气动力变扭奖, 该气动力变扭桨比 "实施例一"多了 变扭组, 其它部分与 "实施例一"相同。
辅助翼使用桨尖襟翼的气动力变扭桨, 其目的是: 1、 在其工作于巡航状态时, 能够更 准确地控制桨尖的升力, 其升力产生的扭矩要小于使桨叶扭转的程度 (见图 17中的 B' 所 示)。 2、 在动力垂直起降时, 又要利用桨尖部 43b增加的桨尖襟翼, 使桨尖增大升力, 获 得足够的负扭矩, 使桨叶主部 43a为负扭转 (见图 17中的 B所示)。使其获得更好的气动效 果。
辅助翼是一种可以调整桨尖部 43b气动迎角的部件, 1、旋翼工作在巡航的自转负桨距 状态时, 其升力由桨叶主部 43a提供, 在变扭组的控制下, 辅助翼 (见图 17中的虚线 B' 所示)调整桨尖部 43b的气动迎角很小, 使桨尖部 43b升力很小, 桨尖部 43b的气动扭矩不 足以使变扭桨 43扭转, 变扭桨 43保持设计时的正扭转状态。 2、 在动力驱动旋翼状态时, 变扭桨 43调整至正桨距, 桨尖部 43b的辅助翼, 在变扭组的控制下, (见图 17中的虚线 B 所示)使桨尖部 43b的气动迎角加大, 桨尖部 43b由此获得足够的气动负扭转力矩, 从而使 桨叶获得足够的负扭转。 "实施例二 "与 "实施例一"相比较, 其的特点是, 使用辅助翼 为桨尖襟翼之后, 其桨尖气动升力更易于控制, 其气动性能也进一歩改善。
见图 16-2, 上述的变扭组采用连杆变扭组, 其主轴架 41a固定在桨轴 26之上不能转 动; 传动盘 40转轴的轴承固定安装在翼肋框架上; 传动盘 40与传动盘 40' 之间, 分别通 过级联传动索 (杆) 46铰接; 传动盘 40, 通过连杆 42b' 与受控制翼的上、 下表面铰接, 该受控制翼是其桨尖襟翼; 其主轴架 41a通过轴盘连杆 42a与传动盘 40铰接; 其变扭组 中的各个连杆亦可使用连动索。
实施例三
见图 21, 上述的扭转变距桨, 其辅助募可使用已有技术的一种自适应翼, 用以改变该 自适应翼的气动迎角。 其它部分与 "实施例二"相同。
该自适应辅助翼也可以很好地完成与 "实施例二"中桨尖襟翼相同的功能。
实施例四 f
上述的扭转变距桨, 其辅助翼也可使用已有技术的另一种自适应翼, 该实施例中的辅 助翼将使用自己专用的变扭组,用以改变该自适应翼的气动迎角。其它部分与 "实施例三" 相同。
实施例五 '
见图 22-1、 22-2、 23、 24、 25、 26, 上述的扭转变距桨为变后掠式气动力变扭桨, 该 机的变扭桨 43由桨叶主部 43a和可变后掠的桨尖部 43b组成,桨叶主部 43a设计为正扭转、 桨尖部 43b为无扭转的可变后掠; 桨叶主部 43a与桨尖部 43b通过连接轴 38转动相连; 桨 尖部 43b内部有一滑动配重 39, 滑动配重 39利用变扭组中的级联传动索(杆) 46的控制, 沿着旋翼转动的切线方向移动; 当滑动配重 39被移至桨尖部 43b的翼后缘一侧时, 桨叶处 于负桨距; 当桨叶处于正桨距时, 滑动配重 39被移至桨尖部 43b的翼前缘一侧, 变扭桨桨 尖部 43b后掠,变扭桨 43能够在扭转力矩作用下发生弹性的扭转形变; 桨尖部 43b使用刚 性很好的材料, 它在扭转力矩作用下其扭转形变极小。 该气动力变扭桨的其它部分与 "实 施例二"相同。
变后掠气动力变扭桨的工作原理: 旋翼转动时, 桨尖部 43b受到向后的气动阻力远小 于受到的离心力, 所以气动阻力可以忽略, 其桨尖部 43b主要受到离 、力的作用。
它在自转旋翼的巡航状态时,变扭桨 43调整至负桨距,变扭桨 43的滑动配重 39被移 至桨尖部 43b的翼后缘一侧, 桨尖部 43b的离心力作用点处于连接轴 38的后侧, 在离心力 的作用下, 桨尖部 43b沿连接轴 38逆时针的方向转动, 桨尖部 43b 转至与桨叶主部 43a 基本处于同一条直线的方向上 (见图 22-1),桨尖部 43b受到相对于桨轴 26的气动扭矩极小, 变扭桨 43保持设计时的扭转状态。图 24是该桨的负桨距剖面叠加示意图,图 24中的虚线、 细实线和粗实线分别对应图 23中的 A- A、 B- B、 C-C剖面, 图 22-1、 24与图 26中 A' 所示 负桨距桨叶的安装角半径关系示意图相对应。 .
该桨处于动力驱动旋翼垂直起降状态时, 变扭桨 43调整至正桨距, 滑动配重 39被移 至桨尖部 43b的翼前缘一侧,桨尖部 43b的离心力作用点也移向桨尖部 43b的翼前缘一侧, 桨尖部 43b在该离心力的作用下,桨尖部 43b沿连接轴 38顺时针的方向转动, 桨尖部 43b 转至后掠。 桨尖部 43b 由于后掠, 它受到相对于桨轴 26的负扭转方向的气动扭矩明显增 强, 变扭桨 43由正扭转改变成为负扭转状态。 图 25是该桨的正桨距剖面叠加示意图, 图 25中的虚线、 细实线和粗实线分别对应图 23中的 A-A、 B-B、 C- C剖面, 图 22-2、 25与图 26中 A所示正桨距桨叶的安装角半径关系示意图相对应'。
图 26所示的扭转变距桨为变后掠气动力变扭桨的桨叶各部位的安装角与半径关系示 意图; 图中 A为正桨距、 负扭转状态, 图中 A, 为负桨距、 正¾转状态; 由图可见, 该桨 的扭转特性曲线与理想扭转曲线更为接近,'该桨的旋翼气动效率进一步提高。
该桨的变扭组见图 23所示结构,在调至负桨距状态时, 如图 23所示, 下压调整杆 27 (由纸面外向纸面里方向) , 桨根呈负安装角, 桨轴 26和主轴架 41a固定不转, 传动盘 40顺时针转动, 级联传动索(杆) 46经过滑轮的传动, 使滑动配重 39向翼后缘一侧移动。 在调至正桨距状态时, 如图 23所示, 上推调整杆 27 (由纸面里向纸面外方向) , 桨根呈 正安装角, 桨轴 26和主轴架 41a固定不转, 传动盘 40逆时针转动, 级联传动索 (杆) 46 经过滑轮的传动, 使滑动配重 39向翼前缘一侧移动。 ·
实施例六
见图 27-1、 27-2、 28、 29、 30、 31、 53, 上述的扭转变距桨为斜襟翼变扭桨, 其它部 分与 "实施例二"相同。 '
其变扭桨 43包含有斜襟翼、 主桨叶 21和铰链轴 20; 其斜襟翼两端的宽度不相等。 图 27 - 1是一种只有主桨叶 21、后斜襟翼 23的斜襟翼变扭桨和铰链 ΐ由 20的斜襟翼变扭桨, 斜 襟翼通过铰链轴 20与主桨叶 21转动相连, 图 27_2是其分解示意图,其桨叶半径与安装角 的关系曲线如图 28所示, 图 28中的粗实线 Α表示的是正桨距曲线, 图 28中的粗实线 A' 表示的是负桨距曲线; 图 29是对图 28所示桨叶的改进, 它可以纠正后斜襟翼的过量补偿, 这里将其后斜襟翼的后缘中段补偿过量的直线段的后斜襟翼削减一些, 将其改为曲线, 使 之在 1. 21至 2. 4X附近的扭转误差减小。 图 30是关于图 29所示的桨叶半径与安装角关系 图线。还由于, 桨根处的后斜襟翼的后缘的曲线对桨叶桨距调整特性影响不大, 图 31将其 后斜襟翼靠近桨根部分的后缘之曲线改为直线, 其桨叶半径与安装角关系曲线也基本如图 30所示。
见图 33、 34-1、 34-2、 36、 41、 42、 45、 50, 斜襟翼还可以同时包含前斜襟翼 22和后 斜襟翼 23, 其桨根部 24也从斜襟翼的根部分离出来; 前斜襟翼 22和后斜襟翼 23分别位 于变扭桨 43的前缘一侧和后缘一侧, 分别通过铰链轴 20与主桨叶 21相连 (见图 35 ) ; 桨根部 24与主桨叶 21同轴安装在桨轴 26上, 桨轴 26穿过两端面开有通孔的桨根部 24, 桨轴 26插入主桨叶 21与之相连。 在斜襟翼根部端面上开有与奖根部 24内侧端面的凸销 28、 29相互匹配、吻合的凹槽 31、 32,该凸销与凹槽用来传递改变桨叶扭度的扭转力矩 (见 图 32、 33、 35、 36、 45、 50) ; 图 35、 45所示的变扭桨 43由主桨叶 21、 前斜襟翼 22、 后 斜襟翼 23、 桨根部 24、 铰链轴 20组成, 图 33中的 D- D、 E- E、 F-F三处剖面位置酌正桨距 和负桨距的剖面图, 分别见图 34-1、 图 34-2所示; 该变扭桨 43因其在调整桨距时能够合 理地改变桨叶扭度, 所以当其: L作在正桨距、 负扭转或负桨距、 正扭转时, 都具有很高的 工作效率。 前斜襟翼 22和后斜襟翼 23也可分别与桨根部 24相结合 (见图 41、 42)。
该桨可由若干子级变扭桨组成二级或多级变扭桨,前级桨叶的桨根部 24与后级桨叶的 桨尖相连, 逐级接续而成。 图 36、 37、 42、 43、 53所示是几种不同结构的二级变 桨, 图 中各个带撇的零部件, 是前一子级斜襟翼的零部件。 图 36是二级斜襟翼式变扭 装配示 意图。 图 37所示的一种二级斜襟翼变扭桨, 其变扭桨 43包含有主桨叶 21、 后斜襟翼 23 和桨尖的前一子级后斜襟翼 23' , 该后斜襟翼 23, 与桨根部的后斜襟翼 23的扭转方向相 反; 图 38是图 37所示桨叶的旋翼半径与安装角的关系曲线; 其不同半径位置的着 lj面见图 39、 40; 图 39的上部表示为正桨距叠加示意图、 图 39中间表示的是零度安装角酌叠加示 意图、 图 39的下部表示为负桨距叠加示意图; 图 40为对应不同桨叶半径位置的各剖面分 解示章图, 图的上部为正桨距、 负扭转的分解示意图, 图的下部为负桨距、 正扭转的分解 示意图。 .
实施例七
见图 44, 为了进一步改进旋翼的气动力性能, 上述的扭转变距桨为气动力变细桨与斜 襟翼变扭桨的结合, 其它部分与 "实施例四、 实施例五、 实施例六"相同。 它中、.前部较 小的扭转是由气动力变扭桨来完成; 它后部较大的扭转, 则是由后斜襟翼来完成; 该桨进 一步集合了气动力变扭桨与斜襟翼变扭桨两者的优点, 其气动性能得到更好的改善。
实施例八 '
见图 13-1、 45、 46、 47, 上述的变扭组采用齿轮变扭组 25, 其它部分与 "实施例六、 七"相同。 齿轮变扭组' 25包含四个齿轮 E、 F、 G、 H; 两个齿轮!^、 G同轴固定连结在一起, 安装在桨根部 24内部翼肋框架上的固定轴架 33上; 齿轮 E与齿轮 F啮合、 齿轮 H与齿轮 G啮合; 齿轮 E固定不转; 齿轮 H通过轴套 30与主桨叶 21固定连接, 主桨叶 21 随齿轮 H 转动; 变扭组在传动过程中即不发生松旷, 也不出现卡阻。 图 45与图 46的区别在于, 图 45所示齿轮变扭组的桨轴 26与主桨叶 21转动相连, 图 46所示齿轮变扭组的桨 $由 26与主 桨叶 21固定相连。
实施例九 '
见图 48、 49, 上述的变扭组釆用杠杆变扭组, 其它部分与 "实施例八"相同。 杠杆变 扭组有固定传动轴 60, 固定安装在桨轴安装架 64之上; 主桨传动轴 61经连动杆固定在桨 轴 26之上; 其桨根传动轴 62固定在桨根部 24之上; 其固定传动轴 60、 主桨传动轴 61和 桨根传动轴 62三者都穿过传动孔与变扭连动 63铰接;变扭连动 63之上的三个传 ¾1孔之中, 有一孔为圆孔, 该圆孔与对应的传动轴精密滑润吻合;变扭连动 63上另外的两个 为条形 孔 (见图 49左侧所示) , 两传动孔宽度保证与对应的传动轴精密滑润吻合。 图 48是一种使 用了杠杆变扭组的变扭桨 43; 该图中可视为其桨根部 24与后斜襟翼 23合并在一起; 图中 画了桨毂 57, 但其挥舞铰与摆振铰省略未画。 图的右侧示意的是, 裸露在桨根之夕卜的杠杆 变扭组, 其结构安装处理方便; 图的左侧示意的杠杆变扭组已置入桨根之内, 这可以减小 气动阻力,该桨的桨轴通过的桨轴安装架 64与桨毂相连。图 49是将图 48中的杠杆变扭组, 放大了的示意图。
实施例十
见图 16-2、 23、 50、 52、 53, 上述的变扭组采用连杆变扭组, 其它部分与 "实施例八、 九"相同。
见图 16-2、 50、 52、 53, 上述的变扭组采用连杆变扭组, 其主轴架 41a固定在桨轴 26 之上不能转动; 传动盘 40转轴的轴承固定安装在翼肋框架上;其主轴架 41a通过轴盘连杆 42a与传动盘 40铰接; 主桨架 41b固定在轴套 30的内端, 轴套 30外端与主奖叶 21固定 相连; 传动盘 40通过连杆 42b与受控制翼的上、 下表面铰接, 带动受控制翼的偏转。 对于 图 16-2来说, 其受控制翼为桨尖襟翼; 对于图 50、 52、 53来讲, 受控制翼是主桨叶 21, 所以其传动盘 40是通过连杆 42b与主桨架 41b铰接,再经过轴套 30控制其主桨叶 21转动。
对于由若干子级桨叶组成的二级或多级变扭桨 43, 其前一子级与后一子级奖叶的变扭 组 25,.使用级联传动索(杆) 46将前后变扭组相连; 其变扭组中的各个连杆亦可使用连动 索, 参见图 16-2、 23、 50、 51、 53中的级联传动索 (杆) 46。
实施例十一
见图 51, 上述的变扭组采用齿轮变扭组、 杠杆变扭组与连杆变扭组的组合, 其它部分 分别与 "实施例八、 九、 十"相同。 - 图 51中的伞齿£、 F分别相当于齿轮变扭组中的齿轮 E、 F。
实施例十二
一种新型旋翼飞行器, 它与 "实施例一"的区别在于, 本实施例的旋翼 1采用无扭变 距桨, 该无扭变距桨可由正桨距、 负扭转调整至负桨距、 正扭转; 其它与 "实施例一"相 同。 其结构包括有机身' 5、 主轴 2、 旋翼 1、 7平驱动离合器 15、 水平驱动螺旋桨 3、 尾翼 4和直升机动力系统; 主轴 2上端联接的旋翼 1釆用了无扭转变距桨, 该桨可由正桨距调 整至负桨距; 该机可利用直升机动力系统驱动正桨距的旋翼 1, 以直升机方式連直起降; 采用自转的负桨距旋翼 1, 其动力通过水平驱动离合器 15, 由螺旋桨 3水平驱动, 以旋翼 机方式而巡航。
实施例十三
见图 54-1、 54-2、 54-3, 55-1、 54-2, 一种新型旋翼飞行器, 它与上述各实施例的区 别在于, 旋翼 1的桨叶与桨距传动杆 53之间安装有桨距自动限位系统。 "桨距自动限位系 统"可以在上述 "任意一个实施例"中应用, 从而组成一个明显提高其飞行安全性的新实 施例。其结构是: 旋翼 1的桨叶与桨距传动杆 53之间安装有桨距自动限位系统; 其桨叶的 升力中心位于桨轴 26的后侧, 在靠近旋翼桨根部的附近设有桨距限位块 59, 用来限制最 ■小桨距的行程; 限位块 59将最小桨距限制在自转旋翼所需工作状态的负桨距的安装角位 置; 见图 54-1、 55-1 , 其桨距传动杆 53, 通过连接控制器 56将桨距控制力矩传递到桨叶; 其定位销 55与连接控制器 56相连, 定位销 55可分别置于锁定的位置及释放的位置; 将定 位销 55 置于锁定的位置, 可使连接控制器 56接通其桨距控制力矩; 将定位街' 55置于释 放的位置, 可使连接控制器 56断开其桨距控制力矩 (见图 54-2、 54-3、 55-2折示)。 从图 54、 55的桨距自动限位系统结构示意图可见, 其气动力作用于桨叶轴的后方, 如图中垂直 向上的箭头所示。
该机在需要进行动力旋翼的垂直起降时, 将定位销 55置于锁定的位置, 使得连接控 制器 56接通其桨距控制力矩, 再上推调整杆 27, 使旋翼桨叶转至正桨距区间。 当其进行 自转旋翼的巡航飞行时, 除了可以在变距受控状态时下拉调整杆 27, 将旋翼桨距调整至负 桨距状态; '还可以撤消控制调整杆 27的力矩, 使其桨叶在气动力的作用下, 自动转至自转 旋翼所需的负桨距位置,其动限位块 59a恰好被静限位块 5%阻挡而限位。 图 54- 2中的定 位销 55、 连接控制器 56, 可由驾驶员将定位销 55分别置于锁定的位置及释放的位置, 用 来控制接通或断开桨距的控制力矩。 见图 54- 2中的 A图, 将桨距操纵杆压至负桨巨, 向内 推动定位销 55, 则能锁紧定位销 55, 使定位销 55置于锁定的位置, 接通桨距控 力矩; 如图 54中的 B图, 拔出定位销 55, 将定位销 55置于释放的位置, 可使连接控制器 56断 开其桨距控制力矩。
¾ 54-3所示的连接控制器 56, 它与图 , 54- 2所示的连接控制器 56, 其区别在予: 前者 在接通桨距控制力矩前, 见图 54-3中的 A所示, 应先上拉桨距操纵杆, 再内推定位销 55, 将其置于锁定的位置, 从而接通桨距控制力矩; 后者在接通桨距控制力矩前, 见图 54-2中 的 A所示, 应先下压桨距操纵杆, 再内推定位销 55, 将其置于锁定的位置, 从而接通桨距 控制力矩。 .
图 55-1、 55-2所示的桨距自动限位系统的结构与图 54-1、 54-2、 54-3所示的结构区 别在于: 定位销 55和连接控制器 56的结构有所不同。 图 55中的定位销 55可以通过上推 和下压拉杆 54,分别将其置于释放的位置及锁定的位置。旋翼在自转时,应打开拉杆卡 52, 向上搬动图 55-2中的图 B所示的拉杆 54, 释放定位销 55, 可以使连接控制器 56断开桨距 控制力矩; 在需要对旋翼进行桨距操纵时, 向下搬图 55-2中的图 A所示的拉杆 54, 被拉 杆卡 52卡住, 则能锁紧定位销 55, 使得连接控制器 56接通桨距控制力矩, 从而重新恢复 对桨距的操纵。
实施例十四
见图 56、 57, 一种新型旋翼飞行器, 它与上述各实施例的区别在于, 其旋翼 1为上仰 式交叉双旋翼。 本实施例可以在上述各 "实施例"中应用该 "上仰式交叉双旋翼" , 从而 组成一个明显提高其起降安全性的新实施例。
旋翼 1为上仰式交叉双旋翼的结构是; 每只旋翼 1与其相连的主轴 2之间的安装角为 90° + a度。 使其机身外侧之旋翼桨叶下垂的程度较小, 从而减小了外侧旋翼桨 nt与地面 相互碰撞的机率。 上述的角 a, 对于使用钢性挥舞铰轴承的旋翼, 角 a大于零度、 等于或 小于旋翼的最小挥舞角。 对于使用柔性挥舞铰的无铰式旋翼, 角 a介于旋翼的最 /』、挥舞角 与最大挥舞角之间。
对比图 9-2和图 56可见,在保证其机身内侧两只旋翼与传统技术机型具有相同夹角的 情况下, 此时两只内侧旋翼之间的避撞性能相近, 但其外侧旋翼桨叶下垂的程度较小, 从 而减小了外侧旋翼桨叶与地面相互碰撞的机率。 旋翼 1与其相连的主轴 2之间的安装角为 (90 + a)度, 本发明的图 57与传统技术的图 9-2的区别在于: 前者的角 a大于零度, 后者 的角 a小于或等于零度。
图 57是新型旋翼飞行器的上仰式交叉双旋翼 1的局部正视示意图;旋翼 1与其相连的 主轴 2之间的安装角为 (90 + a)度; 图中的角 b是转至横向、 内侧略向上扬的一只桨叶与 水平线的夹角,该角一般应大于 6度,小于 20度;角 c是旋翼的主轴 2与垂线之间的夹角, 其角 c与角 a和角 b之间满足: c = b - a ; 角 d是转至横向、 外侧下垂的一只桨叶与水 平线的夹角, 其角 d与角 a和角 b之间满足: d = b - 2a。
将图 9-2常规技术方案与图 56、 图 57的本发明方案比较, 在其内侧旋翼桨叶角 b同 为 12度的情况下, 传统技术的角 a = 0度、 设本发明技^:的角 a = 4度的情况下, 其外便 ij 旋翼桨叶的下垂角: 传统技术方案为 12度, 本发明方案为 4度, 两者有着明显的差别。 所 以, 图 56、 图 57所示的方案, 在避免外侧旋翼桨叶向下触地的方面具有明显的优势。
实施例十五
见 58-1、 图 58-2, 一种新型旋翼飞行器, 它与上述各实施例的区别在于, 本实施例为 同轴 旋翼的气动布局。 本实施例可以在上述 "实施例一"至 "实施例十三"中 "任意一 个实施例"的基础上应用该同轴双旋翼的气动布局, 从而组成一个新的实施例。
实施例十六
见 59-1、 图 59-2, 一种新型旋翼飞行器, 它与上述各实施例的区别在于, 本实施例为 单旋翼加尾桨的气动布局。 本实施例可以在上述 "实施例一"至 "实施例十三"中 "任意 一个实施例"的基础上应用该单旋翼加尾桨的气动布局, 从而组成一个新的实施例。
实施例十七
见图 60-1、 图 60-2, 一种新型旋糞飞行器, 它与上述各实施例的区别在于, 本实施例 为横列双旋翼的气动布局。 本实施例可以在上述 "实施例一"至 "实施例十三"中 "任意 一个实施例"的基础上应用该横列双旋翼的气动布局, 从而组成一个新的实施例。
实施例十八
一种新型旋翼飞行器, 它与上述各实施例的区别在于, 本实施例为纵列双旋翼的气动 布局。 本实施例可以在上述 "实施例一"至 "实施例十三".中 "任意一个实施例"的基 KB 上应用该纵列双旋翼的气动布局的新型旋翼飞行器, 从而组成一个新的实施例。
本发明的扭转变距桨, 将直升机的灵活和旋翼机的安全、 高效、 成本低有机地结合在 一起。 同时, 它还具有桨距自动限位系统, 使其在长时间的巡航飞行过程中, 可以切断奖 距控制力矩, 利用桨叶受到的气动力来维持它所需要的负桨距, 它由此带来的优势在于- 一则、 显著减轻了桨距调整系统的疲劳损耗; 二来、 在万一发生桨距调整系统传动断裂的 故障, 无法传输桨距操纵力矩时, 可以利用仍能正常自转的旋翼继续巡航或迫降, 从而显 著地提高了该机的飞行安全性和整机寿命、 降低了维护成本。 因其保险成本与飞行器的安 全性和整机寿命成反比, 从而使该机还降低了保险成本, 其综合成本亦明显降低。 对于选 用了上仰式交叉双旋翼的机型, 它可以明显地降低外侧旋翼的下垂程度, 使该机进一步提 高了起降的安全性。
将本发明的各项新技术, 部分地应用在某种旋翼飞行器之上, 就可以构成具有某种技 术改进的一种新型旋翼飞行器。 本发明的新型旋翼飞行器的起飞及机动操纵过程如下:
起飞过程 (对于只设置总距变距系统的新型旋翼飞行器):先由发动机 13驱动旋翼 1转 动, 向上拉桨距操纵杆 6, 至旋翼 1为正桨距而产生升力, 水平牵引螺旋桨 3调整至适当 的小桨距, 使其平衡旋翼 1向后的分力而垂直离开地面。 加大螺旋桨 3的桨距, 增大牵引 力而前飞, 当航速接近巡航速度时, 将旋翼 1由动力驱动的飞行状态转换到迎面气流驱动 的自转前飞状态。在这个转换过程中, 旋翼 1转动方向不变、转速稳定, 转换操作过程是: 加大螺旋桨 3的桨距增大牵引力, 同时下压桨距操纵杆 6, 使旋翼处于正扭转的负桨距; 此时, 对于双旋翼机型同时切断旋翼 1的动力, 对于单旋翼加尾桨机型还要将尾桨的动力 一并切断。
对于配备有周期变距系统的高机动机型, 需要动力驱动旋翼 1, 操纵周期变距系统而 垂直起飞; 驱动其螺旋桨使其前飞, 将周期变距回中、 旋翼压至负桨距, 切断通向旋翼 1 的动力, 顺利转换至巡航飞行状态。
机动操纵: .
一、 动力驱动旋翼状态的机动操纵: 其操纵过程与常规直升机相似。 :
二、 自转旋翼状态的机动操纵: 它以旋翼机方式飞行, 利用水平尾翼与垂直尾翼的控 制舵面, 操纵其横向及纵向机动。
上述一、 二的两种运行方式的操纵系统, 构成相互独立、 互为备份的双操纵系统, 显 著地提高了该机操纵系统的可靠性。
总之, 该新型旋翼飞行器, 采用了扭转变距桨, 利用直升机方式垂直起降、 螺旋桨推 进的旋翼机方式巡航, 它还采用了桨距自动限位系统、 上仰式交叉双旋翼等技术, 每直升 机的起降灵活与旋翼机的安全高效、 综合成本低、 噪音小等优点集于一身的优良飞行器。

Claims

权 利 要 求 书
1、 一种新型旋翼飞行器, 包括机身 5、 主轴 2、 旋翼 1、 水平驱动离合器 15、 动力系 统, 旋翼机的尾翼 4和水平驱动螺旋桨 3, 其特征是: 主轴 2上端联接的旋翼 1采用了扭 转变距桨, 扭转变距桨可由正桨距、 负扭转调整至负桨距、 正扭转; 扭转变距桨的变扭桨 43安装在桨轴 26上, 在变扭桨 43根部安装调整杆 27, 在变扭桨 43上安装有变扭组; 该 机可利用动力系统驱动正桨距的旋翼 1, 使用直升机方式操纵其垂直起降; 采用自转的负 桨距旋翼 1, 其动力通过水平驱动离合器 15, 由螺旋桨 3水平驱动, 使用旋翼机方式操纵 其巡航。
2、 根据权利要求 1所述的新型旋翼飞行器, 其特征是: 扭转变距桨为气动力变扭桨, 变扭桨 43包括有桨叶主部 43a和后掠的桨尖部 43b; 桨叶主部 43a设计为正扭转、 桨尖部 43b为无扭转的可变后掠; 桨叶主部 43a和桨尖部 43相结合的过渡段为负扭转; 变扭桨 43 为弹性材料, 能在扭转力矩作用下发生弹性的扭转形变。
3、 根据权利要求 1所述的新型旋翼飞行器, 其特征是: 扭转变距桨为气动力变扭桨, 其桨尖部 43b设有一辅助翼。
4、 根据权利要求 1所述的新型旋翼飞行器, 其特征是: 扭转变距桨为变后掠式气动力 变扭桨, 变扭桨 43包括有桨叶主部 43a和可变后掠的桨尖部 43b; 桨叶主部 43a设计为正 扭转; 桨尖部 43b为可变后掠、 无扭转; 桨叶主部 43a与桨尖部 43b通过连接轴 38转动相 连;桨尖部 43b内部有一滑动配重 39,滑动配重 39可以沿着旋翼转动的切线方向移动, 桨 尖部 43b的离心力作用点随滑动配重 39的移动而改变。
5、 根据权利要求 1所述的新型旋翼飞行器, 其特征是: 扭转变距桨为斜襟翼变扭桨, 变扭桨 43包括有主桨叶 21、 斜襟翼和铰链轴 20, 其斜襟翼为一端宽、 一端窄, 斜襟翼通 过铰链轴 20转动连接在主桨叶 21前、后缘的单侧或双侧; 和斜襟翼分离的桨根部 24与主 桨叶 21同轴安装在桨轴 26上; 该桨可由若干子级变扭桨组成二级或多级变扭桨, 前级桨 叶的桨根部 24与后级桨叶的桨尖相连, 逐级接续而成。
6、 根据权利要求 1所述的新型旋翼飞行器, 其特征是: 变扭组采用杠杆变扭组, 其固 定传动轴 60固定安装在桨轴安装架 64之上;主桨传动轴 61经连动杆固定在桨轴 26之上; 其桨根传动轴 62固定在桨根部 24之上; 固定传动轴 60、 主桨传动轴 61和桨根传动轴 62 三者都穿过传动孔与变扭连动 63铰接; 变扭连动 63之上的三个传动孔之中, 有一孔为圆 孔, 另外的两个孔为条形孔。
7、 根据权利要求 1所述的新型旋翼飞行器, 其特征是: 变扭组釆用连杆变扭组, 其主 轴架 41a固定在桨轴 26之上;传动盘 40的转轴的轴承固定安装在翼肋框架上;主桨架 41b 固定在轴套 30的内端, 轴套 30外端与主桨叶 21固定相连; 其主轴架 41a通过轴盘连杆 42a与传动盘 40 铰接; 传动盘 40通过连杆 42b与受控制翼的上、 下表面铰接, 带动受控 制翼的偏转; 变扭组中的各个连杆亦可使用连动索; 对于多级变扭桨而言, 其级联传动索
(杆) 46可将前、 后级变扭组连接在一起。
17
替换页《細则第 26条)
8、 一种新型旋翼飞行器, 包括机身 5、 主轴 2、 旋翼 1、 水平驱动离合器 15、 动力系 统, 旋翼机的尾翼 4和水平驱动螺旋桨 3, 其特征是: 主轴 2上端联接的旋翼 1采用了无 扭转变距桨, 该桨可由正桨距调整至负桨距; 该机可利用直升机动力系统驱动正桨距的旋 翼 1, 使用直升机方式操纵其垂直起降; 釆用自转的负桨距旋翼 1, 其动力通过水平驱动离 合器 15, 由螺旋桨 3水平驱动, 使用旋翼机方式操纵其巡航。
9、一种新型旋翼飞行器,包括机身 5、动力系统、旋翼 1 、起落架等部分, 其特征是: 旋翼 1的桨叶与桨距传动杆 53之间安装有桨距自动限位系统;其桨叶的升力中心位于 桨轴 26的后部, 在靠近旋翼桨根部的附近设有桨距限位块 59, 用来限制最小桨距的行程; 限位块 59将最小桨距限制在自转旋翼所需工作状态的负桨距的安装角位置;其桨距传动杆 53,通过连接控制器 56,将桨距控制力矩传递到桨叶.;其定位销 55与连接控制器 56相连, 定位销 55可分别置于锁定的位置及释放的'位置; 将定位销 55置于锁定的位置, 可使连接 控制器 56接通其桨距控制力矩;将定位销 55置于释放的位置,可使连接控制器 56断幵其 桨距控制力矩。 -
10、 一种新型旋翼飞行器, 包括机身 5、 动力系统、 尾翼 4、 起落架、 上部的主轴 2, 主轴 2上端的旋翼 1等, 其特征是: 其旋翼 1为上仰式交叉双旋翼 1; 每只旋翼 1与其相 连的主轴 2之间的安装角为 90° + a度, 角 a在大于零度、 小于旋翼的最大挥舞角之间选 取。 ·
PCT/CN2004/000607 2004-02-02 2004-06-07 Giravion WO2005075290A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200410002697.2 2004-02-02
CNB2004100026972A CN100486867C (zh) 2004-02-02 2004-02-02 一种直升旋翼机

Publications (1)

Publication Number Publication Date
WO2005075290A1 true WO2005075290A1 (fr) 2005-08-18

Family

ID=34832056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2004/000607 WO2005075290A1 (fr) 2004-02-02 2004-06-07 Giravion

Country Status (2)

Country Link
CN (1) CN100486867C (zh)
WO (1) WO2005075290A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012079100A2 (de) 2010-12-09 2012-06-21 Fd-Composites Gmbh Rotorblätter eines tragschraubers
CN106741912A (zh) * 2017-01-03 2017-05-31 山东鹰翼航空科技有限公司 一种可折叠长航时多旋翼无人机
CN109466751A (zh) * 2018-12-29 2019-03-15 河南三和航空工业有限公司 一种直升旋翼机
CN110341939A (zh) * 2019-08-30 2019-10-18 吉林大学 一种h型可变桨距四旋翼植保无人机
WO2021219711A1 (fr) * 2020-04-29 2021-11-04 Roldan De Perera Sylvain Aeronef

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102161380A (zh) * 2010-02-22 2011-08-24 黄永胜 提高旋翼机起飞的安全性与起飞效率
CN102589524B (zh) * 2011-01-13 2014-01-08 国家电网公司 一种电力线路巡检方法
EP3225543B1 (en) * 2016-04-01 2018-11-14 AIRBUS HELICOPTERS DEUTSCHLAND GmbH A propeller assembly with at least two propeller blades
CN106564588B (zh) * 2016-11-07 2023-10-31 天津凤凰智能科技有限公司 一种无人直升机桨叶及无人直升机
CA3085153C (en) * 2017-12-14 2023-02-21 Kawasaki Jukogyo Kabushiki Kaisha Rotor craft including variable blade torsional angle mechanism

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142837A (en) * 1977-11-11 1979-03-06 United Technologies Corporation Helicopter blade
US4730795A (en) * 1984-03-26 1988-03-15 David Constant V Heliplane
JPH0481391A (ja) * 1990-07-23 1992-03-16 Mitsubishi Heavy Ind Ltd ヘリコプタ
JPH0699894A (ja) * 1992-09-17 1994-04-12 Mitsubishi Heavy Ind Ltd 低騒音ヘリコプタ
US5474424A (en) * 1991-07-03 1995-12-12 Aerospatiale Societe Nationale Industrielle Rotorcraft rotor head, which is rigid in drag and articulated in pitch and flapping
JPH10264898A (ja) * 1997-03-21 1998-10-06 Commuter Herikoputa Senshin Gijutsu Kenkyusho:Kk 回転翼機用接地センサ
US6062508A (en) * 1998-08-26 2000-05-16 Black; Franklin E. Compound aircraft
CN1472113A (zh) * 2002-08-02 2004-02-04 洪 章 新型旋翼飞行器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142837A (en) * 1977-11-11 1979-03-06 United Technologies Corporation Helicopter blade
US4730795A (en) * 1984-03-26 1988-03-15 David Constant V Heliplane
JPH0481391A (ja) * 1990-07-23 1992-03-16 Mitsubishi Heavy Ind Ltd ヘリコプタ
US5474424A (en) * 1991-07-03 1995-12-12 Aerospatiale Societe Nationale Industrielle Rotorcraft rotor head, which is rigid in drag and articulated in pitch and flapping
JPH0699894A (ja) * 1992-09-17 1994-04-12 Mitsubishi Heavy Ind Ltd 低騒音ヘリコプタ
JPH10264898A (ja) * 1997-03-21 1998-10-06 Commuter Herikoputa Senshin Gijutsu Kenkyusho:Kk 回転翼機用接地センサ
US6062508A (en) * 1998-08-26 2000-05-16 Black; Franklin E. Compound aircraft
CN1472113A (zh) * 2002-08-02 2004-02-04 洪 章 新型旋翼飞行器

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012079100A2 (de) 2010-12-09 2012-06-21 Fd-Composites Gmbh Rotorblätter eines tragschraubers
CN106741912A (zh) * 2017-01-03 2017-05-31 山东鹰翼航空科技有限公司 一种可折叠长航时多旋翼无人机
CN106741912B (zh) * 2017-01-03 2023-11-17 山东鹰翼航空科技有限公司 一种可折叠长航时多旋翼无人机
CN109466751A (zh) * 2018-12-29 2019-03-15 河南三和航空工业有限公司 一种直升旋翼机
CN109466751B (zh) * 2018-12-29 2024-02-06 河南三和航空工业有限公司 一种直升旋翼机
CN110341939A (zh) * 2019-08-30 2019-10-18 吉林大学 一种h型可变桨距四旋翼植保无人机
CN110341939B (zh) * 2019-08-30 2022-08-16 吉林大学 一种h型可变桨距四旋翼植保无人机
WO2021219711A1 (fr) * 2020-04-29 2021-11-04 Roldan De Perera Sylvain Aeronef
FR3109766A1 (fr) * 2020-04-29 2021-11-05 Sylvain ROLDAN DE PERERA Aéronef

Also Published As

Publication number Publication date
CN100486867C (zh) 2009-05-13
CN1651309A (zh) 2005-08-10

Similar Documents

Publication Publication Date Title
CN106043692B (zh) 一种多自由度仿鸟扑翼飞行器
CN106585976B (zh) 一种倾转旋翼/升力风扇高速长航时飞行器布局
CN103863563B (zh) 一种可垂直/短距起降的鸭式布局飞机
US7370828B2 (en) Rotary wing aircraft
US5240204A (en) Lift generating method and apparatus for aircraft
US7281680B2 (en) VTOL/STOL ducted propeller aircraft
CN108945481B (zh) 在板翼下方安装驱动机构增强升力并实现垂直起降的方法
CN110901890A (zh) 一种旋翼可分类设计的高速旋翼飞行器
CN213800172U (zh) 一种交叉式倾转旋翼机
JP2023512851A (ja) 固定前方傾斜ロータを使用して剛体翼の空気力学をシミュレートする垂直離着陸航空機
WO2023060678A1 (zh) 飞行器及共轴双旋翼组件
WO2005075290A1 (fr) Giravion
CN109466751B (zh) 一种直升旋翼机
CN209581870U (zh) 基于摆线桨技术的涵道卷流旋翼飞行器
CN110053759A (zh) 一种变体机翼垂直起降无人机
CN112027072A (zh) 复合式倾转动力纵列变翼逆速旋翼飞行器
CN109823528B (zh) 一种用分段倾转底驱式板翼实现垂直起降和水平飞行的航空器
CN107215458B (zh) 电动双共轴倾转旋翼飞行器
CN209427011U (zh) 一种直升旋翼机
JPH03292294A (ja) 垂直離着陸航空機
CN213832108U (zh) 复合式倾转动力纵列变翼逆速旋翼飞行器
CA2141481A1 (en) Aircraft with "s"-rotor/"c" blades folding to the "o"-wing
CN107284656A (zh) 共轴双桨同向旋翼机构及其飞行器
CN213566470U (zh) 复合式前拉进纵列自转双旋翼飞行器
CN209956209U (zh) 一种变体机翼垂直起降无人机

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase