WO2005074061A1 - Solid polymer membrane fuel cell manufacturing method - Google Patents

Solid polymer membrane fuel cell manufacturing method Download PDF

Info

Publication number
WO2005074061A1
WO2005074061A1 PCT/JP2004/019845 JP2004019845W WO2005074061A1 WO 2005074061 A1 WO2005074061 A1 WO 2005074061A1 JP 2004019845 W JP2004019845 W JP 2004019845W WO 2005074061 A1 WO2005074061 A1 WO 2005074061A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
gas diffusion
diffusion layer
adhesive
solid polymer
Prior art date
Application number
PCT/JP2004/019845
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Fujiki
Yukihiro Maekawa
Takeshi Shimizu
Takayuki Hirao
Masanori Iwamoto
Sadao Miki
Haruhiko Suzuki
Hiroshi Saitou
Original Assignee
Nissan Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co., Ltd. filed Critical Nissan Motor Co., Ltd.
Priority to US10/587,489 priority Critical patent/US20070154628A1/en
Priority to DE112004002695T priority patent/DE112004002695T5/en
Publication of WO2005074061A1 publication Critical patent/WO2005074061A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a solid polymer membrane fuel cell.
  • BACKGROUND OF THE INVENTION JP2001-236971A published by the Japan Patent Office in 2001, discloses a method for manufacturing a solid polymer membrane fuel cell.
  • a catalyst is applied to both sides of a solid polymer membrane and dried to obtain a membrane electrode assembly (MEA).
  • MEA membrane electrode assembly
  • an electrolyte solution is applied to two gas diffusion layers (GDLs) prepared in advance, and the membrane electrode assembly is sandwiched between the two GDLs so that the applied surfaces are in contact with the MEA and integrated with a hot roll. I do. This is called the first unit
  • two second units are formed by bonding the cell frames to the two separations and adding the holes.
  • the first unit is sandwiched between two second units, and a hot roll is added to complete the solid polymer membrane fuel cell.
  • a process for obtaining a first unit by integrating a gas diffusion layer into a membrane electrode assembly, and a solid polymer membrane fuel by integrating a first unit and a second unit. Battery ⁇ Process is performed sequentially, so the manufacturing process becomes longer.
  • An object of the present invention is therefore to shorten the manufacturing process of a polymer electrolyte fuel cell.
  • the present invention provides a solid polymer film, a first gas diffusion layer and a first separator over one surface of a solid polymer film, Provided is a method for manufacturing a solid polymer membrane fuel cell in which a second gas diffusion layer and a second separator are laminated on one surface.
  • the manufacturing method includes applying an adhesive to a contact surface of the first separator with the first gas diffusion layer, and applying an adhesive to a contact surface of the second separator with the second gas diffusion layer.
  • the first separation layer, the first gas diffusion layer, the solid polymer film, the second gas diffusion layer, and the second separation layer are arranged between the pair of holding jigs in the stated order, An integrated fuel cell is obtained by heating the first and second separators while compressing them with a holding jig.
  • FIG. 1 is a schematic configuration diagram of a manufacturing apparatus illustrating a manufacturing process of a polymer electrolyte membrane fuel cell according to the present invention.
  • FIG. 2 is a schematic plan view of a supply mechanism for explaining a supply structure of a separator to a production apparatus.
  • FIG. 3 is a schematic configuration diagram of a manufacturing apparatus for explaining a hot pressing step according to the present invention.
  • FIG. I is an exploded vertical sectional view of the polymer electrolyte membrane fuel cell and the holding jig.
  • FIG. 5 is similar to FIG. 4, but shows another embodiment of the holding jig. Kasumiga 19845
  • FIG. 6 is similar to FIG. 6, but shows yet another embodiment of a holding jig. DESCRIPTION OF THE PREFERRED EMBODIMENT
  • a polymer electrolyte membrane fuel cell includes a membrane electrode assembly (MEA) 9, a first gas diffusion layer (GDL) 6A, and a second gas diffusion layer (MED). GDL) 6B, and the first separator 7A and the second separator 7B are integrated by using a pair of holding jigs 113 and 123.
  • the MEA 9, the gas diffusion layers 6A and 6B, and the separators 7A and 7B all have a rectangular planar shape.
  • MEA 9 has a structure in which a first catalyst layer 8A and a second catalyst layer 8B are formed at regular intervals on both surfaces of a solid polymer film 5 made of a perfluoroethylene sulfonic acid resin film.
  • the catalyst layers 8A and 8B are formed by applying an electrolyte solution containing platinum as a catalyst to the solid polymer film 5 in advance.
  • One of the catalyst layers 8A and 8B constitutes the anode of the fuel cell, and the other constitutes the cathode of the fuel cell.
  • the first catalyst layer 8A, the first GDL 6A, and the first separator 7A are disposed below the solid polymer film 5, and the second catalyst layer 8B, the second GDL 6B, and the second The separator 7B is disposed below the solid polymer film 5.
  • the holding jig 123 contacts the first separator 7A from below, and the holding jig 113 contacts the second separator 7B from above.
  • MEA 9 is supplied as roll 100.
  • the MEA 9 is wound on a roll with its surface covered with a protective film.
  • GDL 6A and 6B are made of carbon cloth and carbon paper with water repellent treatment.
  • the role of dispersing the anode gas and power source gas supplied from Separators 7A and 7B while diffusing them into the catalyst layers 8A and 8B. have.
  • the GDLs 6A and 6B are supplied in a state where they are mounted in advance inside a frame 6C made of an electrically insulating material. 2004/019845
  • the first separator 7A has a grooved gas passage 7C on one side facing the first GDL 6A.
  • a sealing groove 7E for filling a sealing gasket 10 is formed along the outer periphery of the first separator 7A.
  • a groove-shaped coolant passage 7D and a seal groove 7E for filling a gasket 10 for sealing are formed on the other surface of the first separator 7A.
  • the second separator 7B has a groove-shaped gas passage 7C on one side facing the second GDL 6B.
  • a seal groove 7E for filling a gasket 10 for sealing is formed along the outer periphery of the second separator 7A.
  • the other side of the second Separation 7B is flat.
  • the coolant passage 7D of the first separator 7A does not necessarily have to be formed, depending on the specifications of the fuel cell to be manufactured.
  • the first separation 7B may be the same as the separation 7A and the second separation 7B.
  • the coolant passage 7D it is possible to form a gas passage for another adjacent fuel cell at the time of stacking.
  • Separators 7A and 7B are formed by mixing graphite powder and plastic powder and compression-molding them with a heated press using a mold. Alternatively, it can be formed by press forming an expanded graphite sheet. Further, it can be formed using a metal.
  • the desired characteristics of Separators 7A and 7B are low electrical resistance and low gas permeability. Furthermore, in order to reduce the thickness of Separators 7A and 7B, it is desirable that they have excellent mechanical strength. Metal separators can meet these requirements.However, since separators 7A and 7B are exposed to both oxidizing and reducing atmospheres, it is necessary to use a corrosion-resistant metal or perform surface treatment with metal plating. preferable.
  • the present invention uses MEA 1, GDL 6A, 6E and Separation 7A, 7B configured as described above by using press machine 101 provided with holding jigs 113 and 123. Braid Stand up.
  • the MEA 9 is sent from the roll 100 to the press 101 in a substantially horizontal direction by a transport mechanism including a transport roller 102, a belt conveyor 103, and a discharge roller 104.
  • transport holes are formed at regular intervals on both sides of the MEA 9, and projections engaging with the transport holes are formed on the transport roller 102 and the discharge roller 104 at equal angular intervals.
  • the protective film covering the surface of the MEA 9 is taken up by the protective film take-up roller 105 when the MEA 1 is fed from the roll 100.
  • the first GDL 6A is supplied to the press 101 via the transport mechanism including the transport roller 106A, the belt conveyor 107, and the discharge roller 108, and passes below the MEA 9 to the press 101.
  • the second GDL 6B is supplied to the press 101 through the MEA 9 by the same transport mechanism.
  • the initial position of the transport of the first GDL 6A and the second GDL 6fB is a position over the transport roller 106 and the pelt conveyor 107, respectively. Delivery of GDLs 6A and 6B to these two initial positions is performed by the supply mechanism 200 shown in FIG.
  • the supply mechanism 200 is disposed beside the transport roller 106 and the belt conveyor 107.
  • the supply mechanism 200 includes a loading stage 201 and a robot 203.
  • the robot 203 has a rotating robot arm 202.
  • the GDLs 6A and 6B carried into the carry-in stage 201 are gripped by the rotating robot arm 202 and set to the expected position.
  • the mouth pot 203 has a structure in which GDLs 6A and 6B can be set at both the initial position of the first GDL: 6A of MEA 1 and the initial position of the second GDL 6B.
  • the first separator 7A is sent out to the press 101 by a transport mechanism including a transport roller 109, a belt conveyor 110, and a discharge roller 111.
  • the second separator 7B is also sent out to the press 101 by another transport mechanism having the same configuration.
  • the transport mechanism of the first separator 7A is located below the transport mechanism of the first GDL 6A.
  • the transport mechanism of the second separator 7B is located further above the transport mechanism of the second GDL 6B.
  • the initial positions of transport of the first separator 7A and the second separator 7B are positions that extend over the transport opening 109 and the belt conveyor 110, respectively.
  • the delivery of Separation 7A and 7B to these two initial positions will be carried out by a supply mechanism configured in the same way as the supply mechanism of GDL 6A and 6B.
  • the supply mechanism of Separators 7A and 7B is preferably arranged on the opposite side of the supply mechanism of GDL 6A and 6B so as not to interfere with the supply mechanism of GDL 6A and 6B.
  • the press machine 101 is supplied with the first separator 7A, the first GDL 6A, the MEA 9, the second GDL 6B, and the second separator 7B in this order.
  • Press 101 includes a lifting table 112, the c lifting table 112 of support 120 which is fixed to the upper first separator Isseki 7A, the first GDL 6A, MEA 9, the second
  • a holding jig 113 for placing the GDL 6B and the second separator 7B, and a vertical shaft 113A supporting the holding jig 113 are provided.
  • a rack 114 is formed on the shaft 113A.
  • the lifting table 112 further includes a pinion 115 that fits into the rack 114, a servomotor 116 that rotates the pinion 115, and a bearing 117 that guides the shaft 113A up and down.
  • the holding jig 113 has a built-in heater 118.
  • the support 120 includes a holding jig 123 for supporting the fuel cell components pushed up by the lifting table 112 downward.
  • a heater 121 is embedded in the holding jig 123.
  • a pair of cuts for cutting the MEA 9 are provided on the front and back of the support 120.
  • Adhesives containing phenolic or epoxy thermosetting resin are applied to limited surfaces of the two GDLs 6A and 6B facing the MEA 9 in advance.
  • the application of the adhesive is performed in the supply mechanism 200 or in the process of transporting the GDLs 6A and 6B by the transport mechanism.
  • the application position of the adhesive conveyance roller 102 does not interfere with the belt conveyor 103 and the discharge roller 104, the position c
  • Adhesives containing phenolic or epoxy thermosetting resin are applied to the surfaces of the two separators 7A and 7B facing GDL 6A and 6B, respectively. Specifically, in FIG. 3, an adhesive is applied to the partition wall 7F located between the gas passages 7C of the separators 7A and 7B. The adhesive is applied in the supply mechanism of Separators 7A and 7B or during the transport process of Separators 7A and 7B by the transport mechanism. Since adhesive is applied to the lower surface of Separator 7A, the adhesive application position is set so as not to interfere with the transport roller 109, belt conveyor 110, and discharge roller 111.
  • Hot pressing is a process in which MEA 9, GDL 6A, 6B and separators 7A, 7B are pressed while being heated, and these members are integrated by thermocompression bonding or thermal bonding.
  • Each transport mechanism has the first separation 7A, the first GDL 6A, the MEA 9, the second
  • the press 101 After laminating the GDL 6B and the second separator 7B in this order on the holding jig 113, the press 101 rotates the pinion 115 by the operation of the servo motor 116 as shown in FIG. And press the holding jig 113 toward the support 120 through the shaft 113A. increase.
  • the second separator 7B located at the top of the laminate comes into contact with the presser jig 123 of the support 120.
  • the holding jig 123 is heated by the heater 121 and the holding jig 113 is heated by the heater 118 in advance in the range of 80 to 150 degrees Celsius, respectively.
  • the MEA 9, GDL 6A, 6B and separators 7A, 7B are separated from each other for explanation, but when the holding jig 113 actually rises, these members are stacked. Rise in state.
  • the holding jig 113 is vertically moved to MEA 9, GDL 6A, 6B and separation jigs 7A, 7B stacked with the holding jig 123. And apply the specified pressure and heat.
  • the adhesive applied to GDL 6A, 6B is thermally bonded to MEA 9.
  • the thermosetting agent contained in the adhesive is cured by heating, the MEA 9 and the GDL 6A, 6B are firmly bonded.
  • the adhesive is applied only to a limited area, not to the entire surface of DGL 6A, 6B as described above. Therefore, in the fuel cell after completion, diffusion and permeation of the gas from the GDLs 6A and 6B to the catalyst layers 8A and 8B are performed without being hindered by the adhesive.
  • the electrolyte constituting the catalyst layers 8A and 8B is thermocompression-bonded to the GDLs 6A and 6B even on the side where no adhesive is applied, and the GDLs 6A and 6B and the catalyst layers 8A and 8B are brought into close contact with each other by the anchor effect.
  • the adhesive applied to the partition 7F of the separators 7A and 7B also firmly adheres the separators 7A and 7B to the GDLs 6A and 6B by curing the thermosetting agent.
  • the first stacked 7A, the first GDL 6A, the MEA 9, the second GDL 6B, and the second stacked 7A are stacked in this order in a single pot pressing process.
  • the fuel cell is completed in a short time.
  • the fuel cells integrated in the press machine 101 are carried out to a collecting place by a robot 300 having a mouth pot 301 shown in FIGS. 2004/019845
  • the supply mechanism and the transport mechanism again supply the separator 7A, GDL 6A, MEA 9, GDL 6B and separator 7B to the press machine 101, and integrate these parts by the press machine 101. And the transfer of the integrated fuel cell to the collection location by the robot 300 are repeatedly performed.
  • the separator 7A, GDL 6A, MEA 9, GDL 6B and separator 7B are integrated in a single hot press step, the manufacturing process of the polymer electrolyte membrane fuel cell is shortened. be able to.
  • MEA 9 in which catalyst layers 8A and 8B are coated at regular intervals on both surfaces of solid polymer membrane 5 is used, but catalyst layers 8A and 8B are formed on the surfaces of GDLs 6A and 6B.
  • the transport mechanism including the transport roller 102, the belt conveyor 103, and the discharge roller 104 supplies the single solid polymer film 5 to the press 101.
  • the supply mechanism 200 of the GDLs 6A and 6B supplies the catalyst layers 8A and 8B to the surfaces of the GDLs 6A and 6B facing the solid polymer film 5, and then supplies the GDLs 6A and 6B to the initial transport position.
  • the catalyst layers 8A and 8B are thermocompression-bonded to the solid polymer film 5 by hot pressing in a press 101. It is also possible to apply the catalyst layers 8A and 8B to predetermined positions of the solid polymer film 5 in the process of transporting the solid polymer film 5.
  • the subject of the method of manufacturing a fuel cell according to the present invention is hot pressing by a press 101, and any method may be used for supplying members to the press 101 and unloading the integrated fuel cell.
  • This embodiment is characterized by the shape of the upper surface of the holding jig 113.
  • an upward band-like projection 13 that fits into the groove-shaped coolant passage 7D formed in the first separator 7A is formed.
  • This is the holding jig 1 13
  • the separation 7A can be accurately positioned.
  • the band-shaped projections 13 of the holding jig 113 are fitted into the groove-shaped cooling passages 7D of the separator 7A, so that sufficient compressive force is laminated while avoiding concentration of stress. Can be added to the body.
  • the coolant passage 7D is formed also on the back surface of the second separator 7B, and the belt-like projection 13 of the second embodiment is formed on the upper surface of the holding jig 113 and the lower surface of the holding jig 123. Form each.
  • the support structure of the separators 7A and 7B in the hot press is further stabilized.
  • the second embodiment and the third embodiment can be applied to a separator having a gas passage instead of the coolant passage 7D.
  • the present invention has been described through some specific embodiments. However, the present invention is not limited to the above embodiments. For those skilled in the art, various modifications or changes can be made to these embodiments within the technical scope of the claims.
  • Applicable Industrial Field According to the present invention, the components of the stacked fuel cell can be hot-pressed once. Unite with be able to. Therefore, particularly favorable effects can be obtained by shortening the manufacturing process of the polymer electrolyte fuel cell alone and incorporating the present invention as a part of the manufacturing process of the fuel cell stack using a large number of fuel cells.

Abstract

A method for manufacturing a solid polymer membrane fuel cell in which a first gas-diffusing layer (6A) and a first separator (7A) are formed on one side of a membrane electrode composite body (9) and a second gas-diffusing layer (6B) and a second separator (7B) are formed on the other. An adhesive is applied to the contact surfaces of the first separator (7A) and the first gas-diffusing layer (6A), and an adhesive is applied to the contact surfaces of the second separator (7B) and the second gas-diffusing layer (6B). The first separator (7A), the first gas-diffusing layer (6A), the membrane electrode composite body (9), the second gas-diffusing layer (6B), and the second separator (7B) are stacked in order of mention between a pair of pressing jigs (113, 123). While the first and second separators (7A, 7B) are being compressed by means of the pressing jigs (113, 123), they are heated, thus manufacturing a one-piece fuel cell.

Description

明細書  Specification
固体高分子膜燃料電池の製造方法 発明の所属分野 この発明は、 固体高分子膜燃料電池の製造方法に関する。 発明の背景 日本国特許庁が 2001年に発行した JP2001 -236971Aは、 固体高分子膜燃料電池の 製造方法を開示している。  TECHNICAL FIELD The present invention relates to a method for manufacturing a solid polymer membrane fuel cell. BACKGROUND OF THE INVENTION JP2001-236971A, published by the Japan Patent Office in 2001, discloses a method for manufacturing a solid polymer membrane fuel cell.
この製造方法によれば、 まず固体高分子膜の両面に触媒を塗布し、 乾燥させて膜電極 接合体(MEA)を得る。 一方、 あらかじめ用意した 2枚のガス拡散層(GDL)に電解質溶 液を塗布し、 塗布面が MEAに接するように、 2枚の GDLで膜電極接合体を挟持して ホットロールににより一体化する。 これを第 1のユニットと称する  According to this manufacturing method, first, a catalyst is applied to both sides of a solid polymer membrane and dried to obtain a membrane electrode assembly (MEA). On the other hand, an electrolyte solution is applied to two gas diffusion layers (GDLs) prepared in advance, and the membrane electrode assembly is sandwiched between the two GDLs so that the applied surfaces are in contact with the MEA and integrated with a hot roll. I do. This is called the first unit
一方、 ふたつのセパレー夕にそれぞれセル枠を接着してホッ 1 ルを加えることでふ たつの第 2のュニットを形成する。  On the other hand, two second units are formed by bonding the cell frames to the two separations and adding the holes.
最後に、 第 1のュニッ卜をふたつの第 2のュニッ卜で挟持し、 ホットロールを加える ことで固体高分子膜燃料電池が完成する。 発明の開示 従来技術によれば、 ガス拡散層を膜電極接合体に一体化して第 1のュニットを得るブ ロセスと、 第 1のユニットと第 2のユニットとを一体化して固体高分子膜燃料電池を^ るプロセスとをシーケンシャルに行うため、 製造プロセスが長くなる。 Finally, the first unit is sandwiched between two second units, and a hot roll is added to complete the solid polymer membrane fuel cell. DISCLOSURE OF THE INVENTION According to the prior art, a process for obtaining a first unit by integrating a gas diffusion layer into a membrane electrode assembly, and a solid polymer membrane fuel by integrating a first unit and a second unit. Battery ^ Process is performed sequentially, so the manufacturing process becomes longer.
この発明の目的は、 したがって、 固体高分子膜燃料電池の製造プロセスを短縮するこ とである。  An object of the present invention is therefore to shorten the manufacturing process of a polymer electrolyte fuel cell.
以上の目的を達成するために、 この発明は、 固体高分子膜と、 固体高分子膜の一面に 第 1のガス拡散層と第 1のセパレ一夕 とを積層し、 固体高分子膜のもう一面に第 2 のガス拡散層と第 2のセパレ一夕 とを積層した固体高分子膜燃料電池、 の製造方法を 提供する。  In order to achieve the above object, the present invention provides a solid polymer film, a first gas diffusion layer and a first separator over one surface of a solid polymer film, Provided is a method for manufacturing a solid polymer membrane fuel cell in which a second gas diffusion layer and a second separator are laminated on one surface.
製造方法は、 第 1のセパレ一夕の第 1のガス拡散層との接触面に接着剤を塗布し、 第 2のセパレー夕の第 2のガス拡散層との接触面に接着剤を塗布し、 第 1のセパレー 夕 と第 1のガス拡散層と固体高分子膜と第 2のガス拡散層と第 2のセパレー夕 とを 一対の押え治具の間に記載順に重ねて配置し、 第 1のセパレー夕 と第 2のセパレー夕 を押え治具で圧縮しつつ加熱することで一体化された燃料電池を得ている。  The manufacturing method includes applying an adhesive to a contact surface of the first separator with the first gas diffusion layer, and applying an adhesive to a contact surface of the second separator with the second gas diffusion layer. The first separation layer, the first gas diffusion layer, the solid polymer film, the second gas diffusion layer, and the second separation layer are arranged between the pair of holding jigs in the stated order, An integrated fuel cell is obtained by heating the first and second separators while compressing them with a holding jig.
この発明の詳細並びに他の特徴や利点は、 明細書の以降の記載の中で説明されるとと もに、 添付された図面に示される。 ' 図面の簡単な説明  The details of the invention, as well as other features and advantages, are set forth in the accompanying description as well as set forth in the following description of the specification. '' Brief description of the drawings
FIG. 1はこの発明による、 固体高分子膜燃料電池の製造プロセス、 を説明する製造装 置の概略構成図である。 FIG. 1 is a schematic configuration diagram of a manufacturing apparatus illustrating a manufacturing process of a polymer electrolyte membrane fuel cell according to the present invention.
FIG. 2はセパレー夕の製造装置への供給構造を説明する、 供給メカニズムの概略平面 図である。  FIG. 2 is a schematic plan view of a supply mechanism for explaining a supply structure of a separator to a production apparatus.
FIG. 3はこの発明によるホットプレス工程を説明する製造装置の概略構成図である。  FIG. 3 is a schematic configuration diagram of a manufacturing apparatus for explaining a hot pressing step according to the present invention.
FIG. はは固体高分子膜燃料電池と押さえ治具の分解縦断面図である。  FIG. Is an exploded vertical sectional view of the polymer electrolyte membrane fuel cell and the holding jig.
FIG. 5は FIG. 4に類似するが、 押え治具に関する別の実施例を示す。 霞画 19845 FIG. 5 is similar to FIG. 4, but shows another embodiment of the holding jig. Kasumiga 19845
- 3 --3-
FIG. 6は FIG. に類似するが、 押え治具に関するさらに別の実施例を示す。 好ましい実施例の説明 図面の FIG. 3を参照すると、 固体高分子膜燃料電池は膜電極複合体(MEA) 9と、 第 1のガス拡散層(GDL) 6Aと、 第 2のガス拡散層(GDL) 6Bと、 第 1のセパレ一タ 7A と第 2のセパレータ 7Bとを、 一対の押え治具 113と 123を用いて一体化することで 製造される。 MEA 9と、 ガス拡散層 6A, 6Bと、 セパレ一夕 7A, 7Bはいずれも矩形の 平面形状を有する。 FIG. 6 is similar to FIG. 6, but shows yet another embodiment of a holding jig. DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to FIG. 3 of the drawings, a polymer electrolyte membrane fuel cell includes a membrane electrode assembly (MEA) 9, a first gas diffusion layer (GDL) 6A, and a second gas diffusion layer (MED). GDL) 6B, and the first separator 7A and the second separator 7B are integrated by using a pair of holding jigs 113 and 123. The MEA 9, the gas diffusion layers 6A and 6B, and the separators 7A and 7B all have a rectangular planar shape.
MEA 9はパーフルォロエチレンスルホン酸樹脂膜による固体高分子膜 5の両面に、 第 1の触媒層 8Aと第 2の触媒層 8Bとを一定の間隔で形成したものである。 触媒層 8A, 8Bは触媒としての白金を含む電解質液を、 あらかじめ固体高分子膜 5に塗布する ことで形成される。  MEA 9 has a structure in which a first catalyst layer 8A and a second catalyst layer 8B are formed at regular intervals on both surfaces of a solid polymer film 5 made of a perfluoroethylene sulfonic acid resin film. The catalyst layers 8A and 8B are formed by applying an electrolyte solution containing platinum as a catalyst to the solid polymer film 5 in advance.
触媒層 8A, 8Bの一方は燃料電池のアノードを、 もう一方は燃料電池のカソ一ドを構 成する。 第 1の触媒層 8A、 第 1の GDL 6A及び第 1のセパレ一タ 7Aは、 固体高分 子膜 5の下方に配置され、 第 2の触媒層 8B、 第 2の GDL 6B及び第 2のセパレー夕 7Bは固体高分子膜 5の下方に配置される。 押さえ治具 123は下方から第 1のセパレー 夕 7Aに当接し、 押え治具 113は上方から第 2のセパレ一夕 7Bに当接する。  One of the catalyst layers 8A and 8B constitutes the anode of the fuel cell, and the other constitutes the cathode of the fuel cell. The first catalyst layer 8A, the first GDL 6A, and the first separator 7A are disposed below the solid polymer film 5, and the second catalyst layer 8B, the second GDL 6B, and the second The separator 7B is disposed below the solid polymer film 5. The holding jig 123 contacts the first separator 7A from below, and the holding jig 113 contacts the second separator 7B from above.
FIG. 1に示すように、 MEA 9はロール 100として供給される。 触媒層 8A, 8Bを保 護するために、 MEA 9は保護フィルムで表面を覆った状態でロールに巻かれている。  As shown in FIG. 1, MEA 9 is supplied as roll 100. To protect the catalyst layers 8A, 8B, the MEA 9 is wound on a roll with its surface covered with a protective film.
GDL 6A, 6Bは、 カーボンクロスやカーボンぺーパを撥水処理したもので、 セパレ- 夕 7A, 7Bから供給されるアノードガスと力ソードガスを触媒層 8A, 8Bに向けて拡散 させつつ浸透させる役割を持つ。 GDL 6A, 6Bは、 それぞれ電気的絶縁材料で構成され たフレーム 6Cの内側にあらかじめ装着した状態で供給される。 2004/019845 GDL 6A and 6B are made of carbon cloth and carbon paper with water repellent treatment. The role of dispersing the anode gas and power source gas supplied from Separators 7A and 7B while diffusing them into the catalyst layers 8A and 8B. have. The GDLs 6A and 6B are supplied in a state where they are mounted in advance inside a frame 6C made of an electrically insulating material. 2004/019845
- 4 - 第 1のセパレー夕 7Aは、 第 1の GDL 6Aに臨む一面に溝状のガス通路 7Cを備え る。 ガス通路 7Cからのガスのリークを阻止するために、 第 1のセパレー夕 7Aには、 シール用のガスケット 10を充填するシール溝 7Eが外周に沿って形成されている。 さ らに、 第 1のセパレー夕 7Aのもう一方の面には、 溝状の冷却液通路 7Dとシール用の ガスケット 10を充填するシール溝 7Eとが形成されている。 -4-The first separator 7A has a grooved gas passage 7C on one side facing the first GDL 6A. In order to prevent gas from leaking from the gas passage 7C, a sealing groove 7E for filling a sealing gasket 10 is formed along the outer periphery of the first separator 7A. Further, a groove-shaped coolant passage 7D and a seal groove 7E for filling a gasket 10 for sealing are formed on the other surface of the first separator 7A.
第 2のセパレー夕 7Bは第 2の GDL 6Bに臨む一面に溝状のガス通路 7Cを備える。 ガス通路 7Cからのガスのリークを阻止するために、 第 2のセパレ一夕 7Aには、 シ一 ル用のガスケット 10を充填するシール溝 7Eが外周に沿って形成されている。 第 2の セパレー夕 7Bのもう一方の面はフラッ卜に形成されている。  The second separator 7B has a groove-shaped gas passage 7C on one side facing the second GDL 6B. In order to prevent gas from leaking from the gas passage 7C, a seal groove 7E for filling a gasket 10 for sealing is formed along the outer periphery of the second separator 7A. The other side of the second Separation 7B is flat.
第 1のセパレー夕 7Aの冷却液通路 7Dは製造する燃料電池の仕様に依存し、 必ずし も形成しなくても良い。 その場合には、 第 1のセパレー夕 7Bをセパレ一夕 7Aと第 2 のセパレー夕 7Bとを同一仕様とすることかできる。 燃料電池の仕様によっては、 冷却 液通路 7Dの代わりに、 積層時に隣接する別の燃料電池のためのガス通路を形成するこ とも可能である。  The coolant passage 7D of the first separator 7A does not necessarily have to be formed, depending on the specifications of the fuel cell to be manufactured. In that case, the first separation 7B may be the same as the separation 7A and the second separation 7B. Depending on the specifications of the fuel cell, instead of the coolant passage 7D, it is possible to form a gas passage for another adjacent fuel cell at the time of stacking.
セパレー夕 7A, 7Bは、 グラフアイト粉とプラスチック粉とを混合して金型による加 熱プレスにより圧縮成形することで形成される。 あるいは、 膨張黒鉛シートをプレス成 形することでも形成可能である。 さらに、 金属を用いて形成することも可能である。 セパレー夕 7A, 7Bに望まれる特性は、 電気抵抗が小さくガス透過性が低いことであ る。 さらに、 セパレ一夕 7A, 7Bの厚さを減らすために、 機械的強度に優れていること が望ましい。 金属製のセパレー夕はこれらの要求を満たすことができるが、 セパレー夕 7A, 7Bは酸化雰囲気と還元雰囲気の両方に晒されることから、 耐食性金属を用いたり、 金属メツキによる表面処理を施すことが好ましい。  Separators 7A and 7B are formed by mixing graphite powder and plastic powder and compression-molding them with a heated press using a mold. Alternatively, it can be formed by press forming an expanded graphite sheet. Further, it can be formed using a metal. The desired characteristics of Separators 7A and 7B are low electrical resistance and low gas permeability. Furthermore, in order to reduce the thickness of Separators 7A and 7B, it is desirable that they have excellent mechanical strength. Metal separators can meet these requirements.However, since separators 7A and 7B are exposed to both oxidizing and reducing atmospheres, it is necessary to use a corrosion-resistant metal or perform surface treatment with metal plating. preferable.
FIG. 1を参照すると、 この発明は、 以上のように構成された MEA 1 と GDL 6A, 6E とセパレ一夕 7A, 7Bとを、 押え治具 113と 123を備えたプレス機 101を用いて組み 立てる。 Referring to FIG. 1, the present invention uses MEA 1, GDL 6A, 6E and Separation 7A, 7B configured as described above by using press machine 101 provided with holding jigs 113 and 123. Braid Stand up.
MEA 9はロール 100から搬送ローラ 102、 ベルトコンベア 103、 及び排出ローラ 104からなる搬送メカニズムによって略水平方向にプレス機 101に向けて送り出される。 好ましくは、 MEA 9の両側部に一定間隔で搬送穴を形成し、 搬送ローラ 102と排出ロー ラ 104に搬送穴に係合する突起を、 等しい角度間隔で形成しておく。 このような構成に より、 MEA 9の搬送途中での弛みを防止し、 触媒層 8の形成間隔に合わせて一定長さ ずつ、 MEA 9を精度良くプレス機 101へ供給することができる。 また、 MEA 9に触媒 層 8A, 8Bの位置に対応したマークを付し、 プレス機 101にマークの読み取るセンサを 配置することも好ましい。 センサが読み取るマークに基づき MEA 9の送り出しを行う ことで、 プレス機 101内の所定の作業位置に触媒層 8A, 8Bを正確に配置することがで さる。  The MEA 9 is sent from the roll 100 to the press 101 in a substantially horizontal direction by a transport mechanism including a transport roller 102, a belt conveyor 103, and a discharge roller 104. Preferably, transport holes are formed at regular intervals on both sides of the MEA 9, and projections engaging with the transport holes are formed on the transport roller 102 and the discharge roller 104 at equal angular intervals. With such a configuration, it is possible to prevent the MEA 9 from being loosened during transportation, and to supply the MEA 9 to the press 101 with a certain length according to the interval at which the catalyst layer 8 is formed. It is also preferable to attach marks corresponding to the positions of the catalyst layers 8A and 8B to the MEA 9, and to arrange a sensor for reading the marks on the press 101. By feeding the MEA 9 based on the mark read by the sensor, the catalyst layers 8A and 8B can be accurately arranged at predetermined working positions in the press 101.
MEA 9の表面を覆う保護フィルムは、 ロール 100から MEA 1が送り出される際に、 保護フィルム巻取りローラ 105によって巻取られる。  The protective film covering the surface of the MEA 9 is taken up by the protective film take-up roller 105 when the MEA 1 is fed from the roll 100.
第 1の GDL 6Aは、 搬送ローラ 106A、 ベルトコンベア 107、 及び排出ローラ 108 からなる搬送メカニズムにより、 MEA 9の下方を通過してプレス機 101に供給される。 第 2の GDL 6Bは、 同じ構成による搬送メカニズムにより、 MEA 9の上方を通過して プレス機 101に供給される。  The first GDL 6A is supplied to the press 101 via the transport mechanism including the transport roller 106A, the belt conveyor 107, and the discharge roller 108, and passes below the MEA 9 to the press 101. The second GDL 6B is supplied to the press 101 through the MEA 9 by the same transport mechanism.
第 1の GDL 6Aと第 2の GDL 6fBの搬送の初期位置は、 それぞれ搬送ローラ 106 とペルトコンベア 107にまたがる位置である。 これらのふたつの初期位置への GDL 6A, 6Bの搬入は FIG. 2に示す供給メカニズム 200によって行う。  The initial position of the transport of the first GDL 6A and the second GDL 6fB is a position over the transport roller 106 and the pelt conveyor 107, respectively. Delivery of GDLs 6A and 6B to these two initial positions is performed by the supply mechanism 200 shown in FIG.
FIG. 2を参照すると、 供給メカニズム 200は搬送ローラ 106とベルトコンベア 107 の側方に配置される。 供給メカニズム 200は搬入ステージ 201 とロボット 203を備え る。 ロボット 203は旋回式ロポットアーム 202を備える。 搬入ステージ 201上に搬入 された GDL 6A, 6Bは旋回式ロポットアーム 202に把持され、 所期位置にセットされ る。 口ポット 203は MEA 1の第 1の GDL:6Aの初期位置と、 第 2の GDL 6Bの初 期位置の双方に GDL 6A, 6Bをセット可能な構造とする。 Referring to FIG. 2, the supply mechanism 200 is disposed beside the transport roller 106 and the belt conveyor 107. The supply mechanism 200 includes a loading stage 201 and a robot 203. The robot 203 has a rotating robot arm 202. The GDLs 6A and 6B carried into the carry-in stage 201 are gripped by the rotating robot arm 202 and set to the expected position. The The mouth pot 203 has a structure in which GDLs 6A and 6B can be set at both the initial position of the first GDL: 6A of MEA 1 and the initial position of the second GDL 6B.
再び FIG. 1を参照すると、 第 1のセパレータ 7Aは、 搬送ローラ 109と、 ベルトコ ンベア 110と、 排出ローラ 11 1からなる搬送メカニズムによってプレス機 101に向け て送り出される。 第 2のセパレー夕 7Bも同じ構成による別の搬送メカニズムによって プレス機 101に向けて送り出される。  Referring again to FIG. 1, the first separator 7A is sent out to the press 101 by a transport mechanism including a transport roller 109, a belt conveyor 110, and a discharge roller 111. The second separator 7B is also sent out to the press 101 by another transport mechanism having the same configuration.
第 1のセパレー夕 7Aの搬送メカニズムは、 第 1の GDL 6Aの搬送メカニズムのさ らに下方に配置される。 第 2のセパレー夕 7Bの搬送メカニズムは、 第 2の GDL 6B の搬送メカニズムのさらに上方に配置される。  The transport mechanism of the first separator 7A is located below the transport mechanism of the first GDL 6A. The transport mechanism of the second separator 7B is located further above the transport mechanism of the second GDL 6B.
第 1のセパレータ 7Aと第 2のセパレー夕 7Bの搬送の初期位置は、 それぞれ搬送口' ラ 109とベルトコンベア 1 10にまたがる位置である。 これらのふたつの初期位置への セパレ一夕 7A, 7Bの搬入は、 GDL 6A, 6Bの供給メカニズムと同様に構成された供給 メカニズムにより行う。 セパレ一夕 7A, 7Bの供給メカニズムは GDL 6A, 6Bの供給メ 力二ズムと千渉しないよう、 好ましくは搬送メカニズムを挟んで GDL 6A, 6Bの供給メ 力二ズムと反対側に配置する。  The initial positions of transport of the first separator 7A and the second separator 7B are positions that extend over the transport opening 109 and the belt conveyor 110, respectively. The delivery of Separation 7A and 7B to these two initial positions will be carried out by a supply mechanism configured in the same way as the supply mechanism of GDL 6A and 6B. The supply mechanism of Separators 7A and 7B is preferably arranged on the opposite side of the supply mechanism of GDL 6A and 6B so as not to interfere with the supply mechanism of GDL 6A and 6B.
以上の構成により、 プレス機 101には第 1のセパレー夕 7A、 第 1の GDL 6A、 MEA 9、 第 2の GDL 6B、 及び第 2のセパレー夕 7Bがこの順番で供給される。  With the above configuration, the press machine 101 is supplied with the first separator 7A, the first GDL 6A, the MEA 9, the second GDL 6B, and the second separator 7B in this order.
プレス機 101は、 昇降テーブル 112と、 その上方に固定された支持具 120からなる c 昇降テーブル 112は第 1のセパレ一夕 7A、 第 1の GDL 6A、 MEA 9、 第 2の Press 101 includes a lifting table 112, the c lifting table 112 of support 120 which is fixed to the upper first separator Isseki 7A, the first GDL 6A, MEA 9, the second
GDL 6B、 及び第 2のセパレー夕 7Bを載置する押え治具 1 13と、 押え治具 113を支 持する垂直のシャフト 1 13Aを備える。 シャフト 1 13Aにはラック 114が形成される。 昇降テーブル 1 12はラック 114に嚙み合うピニオン 115と、 ピニオン 115を回転駆動 するサーボモータ 116と、 シャフト 113Aの上下動を案内するベアリング 117をさら に備える。 押え治具 113にはヒータ 118が内蔵される。 支持具 120は、 昇降テーブル 112が押し上げた燃料電池の構成部材を下向きに支持 する押え治具 123を備える。 押え治具 123にはヒータ 121が埋設される。 MEA 9の 搬送方向に関して、 支持具 120の前面と背面には、 MEA 9を切断する一対のカツ夕 A holding jig 113 for placing the GDL 6B and the second separator 7B, and a vertical shaft 113A supporting the holding jig 113 are provided. A rack 114 is formed on the shaft 113A. The lifting table 112 further includes a pinion 115 that fits into the rack 114, a servomotor 116 that rotates the pinion 115, and a bearing 117 that guides the shaft 113A up and down. The holding jig 113 has a built-in heater 118. The support 120 includes a holding jig 123 for supporting the fuel cell components pushed up by the lifting table 112 downward. A heater 121 is embedded in the holding jig 123. Regarding the transport direction of the MEA 9, a pair of cuts for cutting the MEA 9 are provided on the front and back of the support 120.
122が取り付けられる。 122 is attached.
次に FIG. 3を参照して、 プレス機 101によるホットプレス工程を説明する。  Next, with reference to FIG. 3, a hot press process by the press machine 101 will be described.
2枚の GDL 6Aと 6Bの、 MEA 9に相対する面には、 限られた所定位置にあらかじ めフエノール系またはエポキシ系の熱硬化樹脂を含む接着剤をそれぞれ塗布しておく。 接着剤の塗布は供給メカニズム 200において行うか、 あるいは搬送メカニズムによる GDL 6A, 6Bの搬送過程で行う。  Adhesives containing phenolic or epoxy thermosetting resin are applied to limited surfaces of the two GDLs 6A and 6B facing the MEA 9 in advance. The application of the adhesive is performed in the supply mechanism 200 or in the process of transporting the GDLs 6A and 6B by the transport mechanism.
第 2の GDL 6Bに関しては、 下面に接着剤を塗布するので、 接着剤の塗布位置は搬 送ローラ 102、 ベルトコンベア 103、 及び排出ローラ 104と干渉しない位置に設定する c For the second GDL 6B, set to so applying an adhesive to the lower surface, the application position of the adhesive conveyance roller 102 does not interfere with the belt conveyor 103 and the discharge roller 104, the position c
2枚のセパレー夕 7A, 7Bの GDL 6A, 6Bに相対する面には、 あらかじめフエノール 系またはエポキシ系の熱硬化樹脂を含む接着剤をそれぞれ塗布しておく。 具体的には、 FIG. 3において、 セパレ一夕 7A, 7Bのガス通路 7Cの間に位置する隔壁部 7Fに接着 剤を塗布しておく。 接着剤の塗布はセパレ一夕 7A, 7Bの供給メカニズムにおいて行う があるいは、 搬送メカニズムによるセパレー夕 7A, 7Bの搬送過程で行う。 セパレー夕 7Aに関しては下面に接着剤を塗布するので、 接着剤の塗布位置は搬送ローラ 109、 ベル トコンベア 110及び排出ローラ 11 1と干渉しない位置に設定する。 Adhesives containing phenolic or epoxy thermosetting resin are applied to the surfaces of the two separators 7A and 7B facing GDL 6A and 6B, respectively. Specifically, in FIG. 3, an adhesive is applied to the partition wall 7F located between the gas passages 7C of the separators 7A and 7B. The adhesive is applied in the supply mechanism of Separators 7A and 7B or during the transport process of Separators 7A and 7B by the transport mechanism. Since adhesive is applied to the lower surface of Separator 7A, the adhesive application position is set so as not to interfere with the transport roller 109, belt conveyor 110, and discharge roller 111.
ホットプレスは、 MEA 9、 GDL 6A, 6Bおよびセパレー夕 7A, 7Bを加熱しつつプ レスすることで、 これらの部材を熱圧着または熱接着により一体化する工程である。  Hot pressing is a process in which MEA 9, GDL 6A, 6B and separators 7A, 7B are pressed while being heated, and these members are integrated by thermocompression bonding or thermal bonding.
各搬送メカニズムが、 第 1のセパレー夕 7A、 第 1の GDL 6A、 MEA 9、 第 2の  Each transport mechanism has the first separation 7A, the first GDL 6A, the MEA 9, the second
GDL 6B及び第 2のセパレー夕 7Bをこの順番で押え治具 1 13上に積層した後、 FIG. 3に示すようにプレス機 101はサーポモータ 116の運転によりピニオン 115を回転駆 動し、 ラック 114とシャフト 113Aを介して押え治具 113を支持具 120に向けて押し 上げる。 After laminating the GDL 6B and the second separator 7B in this order on the holding jig 113, the press 101 rotates the pinion 115 by the operation of the servo motor 116 as shown in FIG. And press the holding jig 113 toward the support 120 through the shaft 113A. increase.
FIG. 4を参照すると、 押え治具 113の上昇により、 積層体の最上部に位置する第 2 のセパレー夕 7Bは、 支持具 120の押え治具 123に当接する。 押え治具 123はヒータ 121によって、 押え治具 113はヒータ 118によって、 あらかじめそれぞれ摂氏 80度 から 150度の範囲に加熱しておく。 なお、 図では説明のために、 MEA 9、 GDL 6A, 6B 及びセパレー夕 7A, 7Bがそれぞれ離間しているが、 実際に押え治具 113が上昇する際 には、 これらの部材は積層された状態で上昇する。  Referring to FIG. 4, as the presser jig 113 rises, the second separator 7B located at the top of the laminate comes into contact with the presser jig 123 of the support 120. The holding jig 123 is heated by the heater 121 and the holding jig 113 is heated by the heater 118 in advance in the range of 80 to 150 degrees Celsius, respectively. In the figure, the MEA 9, GDL 6A, 6B and separators 7A, 7B are separated from each other for explanation, but when the holding jig 113 actually rises, these members are stacked. Rise in state.
第 2のセパレー夕 7Bが押え治具 123に当接した後、 押え治具 113は押え治具 123 との間で積層状態の MEA 9、 GDL 6A, 6B及びセパレ一夕 7A, 7Bに上下方向から所定 の圧力と熱とを加える。 その結果、 GDL 6A, 6Bに塗布した接着剤が MEA 9と熱接着 する。 具体的には、 接着剤に含まれる熱硬化剤が加熱により硬化することで、 MEA 9と GDL 6A, 6Bとを強固に接着する。  After the second separation tray 7B abuts on the holding jig 123, the holding jig 113 is vertically moved to MEA 9, GDL 6A, 6B and separation jigs 7A, 7B stacked with the holding jig 123. And apply the specified pressure and heat. As a result, the adhesive applied to GDL 6A, 6B is thermally bonded to MEA 9. Specifically, when the thermosetting agent contained in the adhesive is cured by heating, the MEA 9 and the GDL 6A, 6B are firmly bonded.
接着剤は前述のように DGL 6A, 6Bの全面ではなく、 限られた場所にのみに塗布され ている。 したがって、 完成後の燃料電池において、 GDL 6A, 6Bから触媒層 8A, 8Bへ のガスの拡散と浸透は、 接着剤に阻害されることなく行われる。 接着剤を塗布していな い面に関しても、 触媒層 8A, 8Bを構成する電解質が GDL 6A, 6Bに熱圧着し、 アンカ 効果で GDL 6A, 6Bと触媒層 8A, 8Bを隙間なく密着させる。  The adhesive is applied only to a limited area, not to the entire surface of DGL 6A, 6B as described above. Therefore, in the fuel cell after completion, diffusion and permeation of the gas from the GDLs 6A and 6B to the catalyst layers 8A and 8B are performed without being hindered by the adhesive. The electrolyte constituting the catalyst layers 8A and 8B is thermocompression-bonded to the GDLs 6A and 6B even on the side where no adhesive is applied, and the GDLs 6A and 6B and the catalyst layers 8A and 8B are brought into close contact with each other by the anchor effect.
また、 セパレ一夕 7A, 7Bの隔壁部 7Fに塗布した接着剤も、 熱硬化剤の硬化によつ て、 セパレー夕 7A, 7Bと GDL6A, 6Bとを強固に接着する。  The adhesive applied to the partition 7F of the separators 7A and 7B also firmly adheres the separators 7A and 7B to the GDLs 6A and 6B by curing the thermosetting agent.
このようにして、 第 1のセパレー夕 7A、 第 1の GDL 6A、 MEA 9、 第 2の GDL 6B及び第 2のセパレ一夕 7Aの順で積層された積層体は、 一度のポットプレス工程に より一体化され、 短時間のうちに燃料電池が完成する。  In this way, the first stacked 7A, the first GDL 6A, the MEA 9, the second GDL 6B, and the second stacked 7A are stacked in this order in a single pot pressing process. The fuel cell is completed in a short time.
プレス機 101において一体ィ匕された燃料電池は、 FIGs. 1 と 3に示す、 口ポットァー ム 301を備えたロボット 300により集積場所へと搬出される。 2004/019845 The fuel cells integrated in the press machine 101 are carried out to a collecting place by a robot 300 having a mouth pot 301 shown in FIGS. 2004/019845
- 9 - 以後は再び、 各供給メカニズムと搬送メカニズムによる、 セパレー夕 7A、 GDL 6A 、 MEA 9、 GDL 6B及びセパレー夕 7Bのプレス機 101への供給と、 プレス機 101に よるこれらの部材の一体化と、 一体化された燃料電池のロボット 300による集積場所へ と搬出とが繰り返し行われる。  After that, the supply mechanism and the transport mechanism again supply the separator 7A, GDL 6A, MEA 9, GDL 6B and separator 7B to the press machine 101, and integrate these parts by the press machine 101. And the transfer of the integrated fuel cell to the collection location by the robot 300 are repeatedly performed.
以上のように、 この発明は、 セパレー夕 7A、 GDL 6A、 MEA 9、 GDL 6B及びセパ レー夕 7Bを一度のホットプレス工程で一体化するので、 固体高分子膜燃料電池の製造 プロセスを短縮することができる。  As described above, according to the present invention, since the separator 7A, GDL 6A, MEA 9, GDL 6B and separator 7B are integrated in a single hot press step, the manufacturing process of the polymer electrolyte membrane fuel cell is shortened. be able to.
以上の実施例では、 固体高分子膜 5の両面に触媒層 8A, 8Bを一定間隔でコ一テング した MEA 9を用いているが、 触媒層 8A, 8Bを GDL 6A, 6Bの表面に形成することも 可能である。 この場合には、 搬送ローラ 102、 ベルトコンベア 103、 及び排出ローラ 104からなる搬送メカニズムが単体の固体高分子膜 5をプレス機 101に供給する。 一 方、 GDL 6A, 6Bの供給メカニズム 200は、 GDL 6A, 6Bの固体高分子膜 5に臨む面 に触媒層 8A, 8Bを塗布した後に、 GDL 6A, 6Bを搬送初期位置に供給する。 この場合 には、 プレス機 101におけるホットプレスにより触媒層 8A, 8Bを固体高分子膜 5に熱 圧着させる。 固体高分子膜 5の搬送工程で触媒層 8A, 8Bを固体高分子膜 5の所定位置 に塗布することも可能である。  In the above embodiment, MEA 9 in which catalyst layers 8A and 8B are coated at regular intervals on both surfaces of solid polymer membrane 5 is used, but catalyst layers 8A and 8B are formed on the surfaces of GDLs 6A and 6B. It is also possible. In this case, the transport mechanism including the transport roller 102, the belt conveyor 103, and the discharge roller 104 supplies the single solid polymer film 5 to the press 101. On the other hand, the supply mechanism 200 of the GDLs 6A and 6B supplies the catalyst layers 8A and 8B to the surfaces of the GDLs 6A and 6B facing the solid polymer film 5, and then supplies the GDLs 6A and 6B to the initial transport position. In this case, the catalyst layers 8A and 8B are thermocompression-bonded to the solid polymer film 5 by hot pressing in a press 101. It is also possible to apply the catalyst layers 8A and 8B to predetermined positions of the solid polymer film 5 in the process of transporting the solid polymer film 5.
この発明による燃料電池の製造方法の主題はプレス機 101によるホットプレスであり プレス機 101への部材の供給や、 一体化された燃料電池の搬出に関しては、 いかなる方 法を用いても良い。  The subject of the method of manufacturing a fuel cell according to the present invention is hot pressing by a press 101, and any method may be used for supplying members to the press 101 and unloading the integrated fuel cell.
次に FIG. 5を参照して、 プレス機 101の押さえ治具 1 13の形状に関するこの発明 ( 第 2の実施例を説明する。  Next, with reference to FIG. 5, a second embodiment of the present invention relating to the shape of the holding jig 113 of the press 101 will be described.
この実施例は、 押さえ治具 1 13の上面の形状に特徴を有する。 ここでは、 押さえ治: H 113の上面を平面に形成する代わりに、 第 1のセパレー夕 7Aに形成された溝状の冷却 液通路 7Dに嵌合する上向きの帯状突起 13を形成している。 押さえ治具 1 13にこのよ うな帯状突起 13を形成することで、 セパレー夕 7Aの位置決めが正確に行われる。 ま た、 セパレ一夕 7Aを黒鉛で形成する際には、 黒鉛の脆さのために、 プレス機 101が積 層体に十分な圧縮力を加えることが難しい。 この実施例のように、 押さえ治具 113の帯 状突起 13がセパレ一夕 7Aの溝状の冷却通路 7Dに嵌合することで、 応力の集中を回 避しつつ、 十分な圧縮力を積層体に加えることができる。 This embodiment is characterized by the shape of the upper surface of the holding jig 113. Here, instead of forming the upper surface of the holding member H113 into a flat surface, an upward band-like projection 13 that fits into the groove-shaped coolant passage 7D formed in the first separator 7A is formed. This is the holding jig 1 13 By forming such strip-like projections 13, the separation 7A can be accurately positioned. Further, when forming Separete 7A with graphite, it is difficult for the press 101 to apply a sufficient compressive force to the laminate due to the brittleness of the graphite. As in this embodiment, the band-shaped projections 13 of the holding jig 113 are fitted into the groove-shaped cooling passages 7D of the separator 7A, so that sufficient compressive force is laminated while avoiding concentration of stress. Can be added to the body.
次に FIG. 6を参照して、 プレス機 101の押さえ治具 123の形状に関するこの発明の 第 3の実施例を説明する。  Next, a third embodiment of the present invention relating to the shape of the holding jig 123 of the press 101 will be described with reference to FIG.
この実施例では、 第 2のセパレー夕 7Bの背面にも冷却液通路 7Dを形成するととも に、 第 2の実施例の帯状突起 13を押さえ治具 113の上面と、 押さえ治具 123の下面 にそれぞれ形成する。  In this embodiment, the coolant passage 7D is formed also on the back surface of the second separator 7B, and the belt-like projection 13 of the second embodiment is formed on the upper surface of the holding jig 113 and the lower surface of the holding jig 123. Form each.
この実施例によれば、 セパレー夕 7Aと 7Bが押さえ治具 1 13と押さえ治具 123に それぞれ隙間なく接するため、 ホットプレスにおけるセパレータ 7Aと 7Bの支持構造 がより一層安定する。  According to this embodiment, since the separators 7A and 7B are in contact with the holding jigs 113 and 123 without any gap, respectively, the support structure of the separators 7A and 7B in the hot press is further stabilized.
なお、 第 2の実施例と第 3の実施例は、 冷却液通路 7Dの代わりにガス通路を形成し たセパレータにも適用可能である。  The second embodiment and the third embodiment can be applied to a separator having a gas passage instead of the coolant passage 7D.
2004年 1月 28日を出願日とする日本国における特願 2004-019743号の内容をこ こに引用により合体する。  The contents of Japanese Patent Application No. 2004-019743, filed on January 28, 2004, are incorporated herein by reference.
以上のように、 この発明をいくつかの特定の実施例を通じて説明して来たが、 この発 明は上記の各実施例に限定されるものではない。 当業者にとっては、 クレームの技術範 囲でこれらの実施例にさよざまな修正あるいは変更を加えることが可能である 適用産業分野 この発明によれば、 積層した燃料電池の構成部材を一度のホットプレスで一体化する ことができる。 したがって、 固体高分子型燃料電池単体の製造プロセスを短縮できると ともに、 数多くの燃料電池を用いた燃料電池スタックの製造プロセスの一環としてこの 発明を取り入れることで特に好ましい効果が得られる。 As described above, the present invention has been described through some specific embodiments. However, the present invention is not limited to the above embodiments. For those skilled in the art, various modifications or changes can be made to these embodiments within the technical scope of the claims. Applicable Industrial Field According to the present invention, the components of the stacked fuel cell can be hot-pressed once. Unite with be able to. Therefore, particularly favorable effects can be obtained by shortening the manufacturing process of the polymer electrolyte fuel cell alone and incorporating the present invention as a part of the manufacturing process of the fuel cell stack using a large number of fuel cells.
この発明の実施例が包含する排他的性質あるいは特徴は以下のようにクレームされる。  The exclusive properties or features encompassed by embodiments of the present invention are claimed as follows.

Claims

請求の範囲 The scope of the claims
1.固体高分子膜(5)と、 固体高分子膜(5)の一面に第 1のガス拡散層(6A)と第 1のセ パレ一夕(7A)とを積層し、 固体高分子膜(5)のもう一面に第 2のガス拡散層(6B)と第 1. A solid polymer film (5), a first gas diffusion layer (6A) and a first separator (7A) laminated on one side of the solid polymer film (5), On the other side of (5), the second gas diffusion layer (6B)
2のセパレー夕(7B)とを積層した固体高分子膜燃料電池の製造方法において: 第 1のセパレー夕(7A)の第 1のガス拡散層(6A)との接触面に接着剤を塗布し; 第 2のセパレ一夕(7B)の第 2のガス拡散層(6B)との接触面に接着剤を塗布し; 第 1のセパレー夕(7A)と第 1のガス拡散層(6A)と固体高分子膜(5)と第 2のガス 拡散層(6B)と第 2のセパレー夕(7B)とを一対の押え治具(1 13、 123)の間に記載順 に重ねて配置し;  In the method for manufacturing a solid polymer membrane fuel cell in which the second separator (7B) is laminated, an adhesive is applied to a contact surface of the first separator (7A) with the first gas diffusion layer (6A). Applying an adhesive to the contact surface of the second separator (7B) with the second gas diffusion layer (6B); and applying the first separator (7A) and the first gas diffusion layer (6A) The solid polymer membrane (5), the second gas diffusion layer (6B), and the second separator (7B) are arranged between the pair of holding jigs (113, 123) in the stated order;
第 1のセパレー夕(7A)と第 2のセパレー夕(7B)を押え治具(1 13, 123)で圧縮しつ つ加熱することで一体化された燃料電池を得る。  The first separator (7A) and the second separator (7B) are compressed and heated by the holding jigs (113, 123) to obtain an integrated fuel cell.
2. 請求の範囲第 1項に記載の製造方法において、 第 1のセパレー夕(7A)は第 1 のガ ス拡散層(6A)に臨む溝状のガス通路(7C)を備え、 第 1 のセパレー夕(7A)に塗布する 接着剤はガス通路 C)を画成する隔壁部(7F)に塗布され、 第 2のセパレ一夕(7B)は 第 2のガス拡散層(6B)に臨む溝状のガス通路(7C)を備え、 第 2のセパレー夕(7B)に 塗布する接着剤はガス通路(7C)を画成する隔壁部(7F)に塗布される。 2. The manufacturing method according to claim 1, wherein the first separator (7A) includes a groove-shaped gas passage (7C) facing the first gas diffusion layer (6A); The adhesive applied to the separator (7A) is applied to the partition (7F) that defines the gas passage C), and the second separator (7B) is the groove facing the second gas diffusion layer (6B). An adhesive applied to the second separator (7B) is provided on the partition (7F) that defines the gas passage (7C).
3. 請求の範囲第 1項または 2項に記載の製造方法において、 固体高分子膜(5)の両面 にあらかじめ第 1 の触媒層 (8A) と第 2 の触媒層 (8B) をコーティングし、 押え治具 (113, 123)が第 1のセパレー夕(7A)と第 2のセパレー夕(7B)に加える圧縮力と熱に より、 第 1 のガス拡散層(6A)を第 1 の触媒層(8A)に熱圧着させ、 第 2のガス拡散層 (6B)を第 2の触媒層(8B)に熱圧着させる。 3. The production method according to claim 1 or 2, wherein a first catalyst layer (8A) and a second catalyst layer (8B) are previously coated on both surfaces of the solid polymer membrane (5), The first gas diffusion layer (6A) is converted into the first catalyst layer by the compression force and heat applied by the holding jigs (113, 123) to the first separation layer (7A) and the second separation layer (7B). (8A) is thermocompression bonded, and the second gas diffusion layer (6B) is thermocompression bonded to the second catalyst layer (8B).
4. 請求の範囲第 3項に記載の製造方法において、 第 1のガス拡散層(6A)の第 1の触 媒層(8A)に臨む一部の個所のみに接着剤を塗布し、 第 2のガス拡散層(6B)の第 2の 触媒層(8B)に臨む一部の個所のみに接着剤を塗布し、 押え治具(1 13, 123)が第 1のセ パレー夕(7A)と第 2のセパレータ(7B)に加える圧縮力と熱により、 第 1 のガス拡散 層(6A)を第 1 の触媒層(8A)に熱接着させ、 第 2のガス拡散層(6B)を第 2の触媒層 (8B)に熱接着させる。 4. The manufacturing method according to claim 3, wherein the adhesive is applied only to a part of the first gas diffusion layer (6A) facing the first catalyst layer (8A), The adhesive is applied only to a part of the gas diffusion layer (6B) facing the second catalyst layer (8B), and the holding jigs (113, 123) are attached to the first separator (7A). The first gas diffusion layer (6A) is thermally bonded to the first catalyst layer (8A) by the compression force and heat applied to the second separator (7B), and the second gas diffusion layer (6B) is bonded to the second gas diffusion layer (6B). Is thermally bonded to the catalyst layer (8B).
5. 請求の範囲第 1項に記載の製造方法において、 接着剤は熱硬化樹脂を含む。 5. In the manufacturing method according to claim 1, the adhesive includes a thermosetting resin.
6. 請求の範囲第 1項に記載の製造方法において、 第 1 のセパレー夕(7A)は押え治具 (1 13) に臨む面に凹部 (7D) を備え、 押え治具(113)は第 1 のセパレ一タ (7A)の凹部 (7D)に嵌合する凸部(13)を備える。 6. The manufacturing method according to claim 1, wherein the first separator (7A) has a recess (7D) on a surface facing the holding jig (113), and the holding jig (113) has It has a projection (13) that fits into the depression (7D) of the separator (7A).
7. 請求の範囲第 1 項に記載の製造方法において、 凹部(7D) は燃料電池の冷却液通路 (7D)である。 7. The manufacturing method according to claim 1, wherein the recess (7D) is a coolant passage (7D) of the fuel cell.
PCT/JP2004/019845 2004-01-28 2004-12-28 Solid polymer membrane fuel cell manufacturing method WO2005074061A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/587,489 US20070154628A1 (en) 2004-12-28 2004-12-28 Solid polymer membrane fuel-cell manufacturing method
DE112004002695T DE112004002695T5 (en) 2004-01-28 2004-12-28 Production method for a polymer electrolyte fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004019743A JP2005216598A (en) 2004-01-28 2004-01-28 Solid polymer membrane type fuel cell and its manufacturing method
JP2004-019743 2004-01-28

Publications (1)

Publication Number Publication Date
WO2005074061A1 true WO2005074061A1 (en) 2005-08-11

Family

ID=34823729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019845 WO2005074061A1 (en) 2004-01-28 2004-12-28 Solid polymer membrane fuel cell manufacturing method

Country Status (5)

Country Link
JP (1) JP2005216598A (en)
KR (1) KR100737660B1 (en)
CN (1) CN1906787A (en)
DE (1) DE112004002695T5 (en)
WO (1) WO2005074061A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7651581B2 (en) * 2005-12-20 2010-01-26 Gm Global Technology Operations, Inc. Catalyst coated diffusion media
US8431284B2 (en) * 2007-06-26 2013-04-30 GM Global Technology Operations LLC Low electrical resistance bipolar plate-diffusion media assembly
KR100957366B1 (en) * 2008-03-13 2010-05-12 현대자동차주식회사 Jig apparatus for fuel cell separator
KR100957370B1 (en) * 2008-04-29 2010-05-11 현대자동차주식회사 Auto assembly device and method of Membrane Electrode Assembly
JP5348388B2 (en) * 2008-11-12 2013-11-20 トヨタ自動車株式会社 Manufacturing method of fuel cell
KR101047761B1 (en) 2008-12-26 2011-07-07 엘지이노텍 주식회사 Semiconductor light emitting device
GB201207759D0 (en) 2012-05-03 2012-06-13 Imp Innovations Ltd Fuel cell
KR101703617B1 (en) * 2015-09-03 2017-02-07 현대자동차 주식회사 Heat treatment device of mea for fuel cell
FR3062958B1 (en) * 2017-02-10 2019-04-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives ELEMENTARY MODULE OF A FUEL CELL
FR3062960B1 (en) 2017-02-10 2021-05-21 Commissariat Energie Atomique FUEL CELL
JP6926999B2 (en) * 2017-12-05 2021-08-25 トヨタ自動車株式会社 How to manufacture fuel cell
WO2021049280A1 (en) * 2019-09-09 2021-03-18 Nok株式会社 Seal structure for fuel cell separator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878028A (en) * 1994-08-31 1996-03-22 Aqueous Res:Kk Solid polymer electrolyte fuel cell and its manufacture
JP2001236971A (en) * 2000-02-24 2001-08-31 Fuji Electric Co Ltd Method of producing solid high polymer fuel cell
JP2002124276A (en) * 2000-10-18 2002-04-26 Honda Motor Co Ltd Fuel cell seal mounting method and fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878028A (en) * 1994-08-31 1996-03-22 Aqueous Res:Kk Solid polymer electrolyte fuel cell and its manufacture
JP2001236971A (en) * 2000-02-24 2001-08-31 Fuji Electric Co Ltd Method of producing solid high polymer fuel cell
JP2002124276A (en) * 2000-10-18 2002-04-26 Honda Motor Co Ltd Fuel cell seal mounting method and fuel cell

Also Published As

Publication number Publication date
KR100737660B1 (en) 2007-07-09
CN1906787A (en) 2007-01-31
JP2005216598A (en) 2005-08-11
KR20070001104A (en) 2007-01-03
DE112004002695T5 (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP5164348B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell using the same
US9831504B2 (en) Single fuel cell and method of manufacturing single fuel cell
JP5182451B2 (en) Laminated body fixing jig, laminated joined body manufacturing system, and laminated joined body manufacturing method
JP5638508B2 (en) Manufacturing method of electrolyte membrane / electrode structure with resin frame for fuel cell
US9130206B2 (en) Method for manufacturing resin-framed membrane electrode assembly for fuel cell
JP6722574B2 (en) Electrolyte membrane with resin frame/electrode structure and method for manufacturing the same
WO2005074061A1 (en) Solid polymer membrane fuel cell manufacturing method
US20070087253A1 (en) Method of manufacturing a fuel cell array and a related array
CN1612391A (en) Fuel cell and its making method
KR20120117266A (en) Apparatus for manufacturing membrane-electrode assembly
JP2007172929A (en) Method of manufacturing membrane-electrode assembly and reinforced type electrolyte membrane for polymer electrolyte fuel cell, and membrane-electrode assembly and reinforced type electrolyte membrane obtained by the manufacturing method
JP2004303627A (en) Manufacturing method of electrolyte membrane-electrode jointed assembly for direct methanol type fuel cell
JP4882221B2 (en) Separator bonding method
JP2006502530A (en) Membrane electrochemical cell stack
US20210288338A1 (en) Fuel cell and method for producing fuel cell
JP5165947B2 (en) Membrane / electrode assembly and manufacturing method thereof
JP2010027234A (en) Fuel battery, and manufacturing method of electrode body of fuel battery cell
JP2016162650A (en) Method for manufacturing fuel battery single cell
JP6442554B2 (en) Manufacturing method and apparatus for electrolyte membrane / electrode structure with resin frame
JP6442555B2 (en) Manufacturing method of electrolyte membrane / electrode structure with resin frame
KR101304883B1 (en) Hot press apparatus for manufacturing membrane-electrode assembly and method for manufacturing membrane-electrode assembly using the same
JP5836060B2 (en) Manufacturing method of fuel cell
JP2005011624A (en) Cell member for solid polymer fuel battery and manufacturing method of the same
US20070137783A1 (en) Catalyst coated diffusion media
US20070154628A1 (en) Solid polymer membrane fuel-cell manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200480040576.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020067015070

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10587489

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120040026954

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067015070

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10587489

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112004002695

Country of ref document: DE

Date of ref document: 20070913

Kind code of ref document: P