JP5348388B2 - Manufacturing method of fuel cell - Google Patents

Manufacturing method of fuel cell Download PDF

Info

Publication number
JP5348388B2
JP5348388B2 JP2008290195A JP2008290195A JP5348388B2 JP 5348388 B2 JP5348388 B2 JP 5348388B2 JP 2008290195 A JP2008290195 A JP 2008290195A JP 2008290195 A JP2008290195 A JP 2008290195A JP 5348388 B2 JP5348388 B2 JP 5348388B2
Authority
JP
Japan
Prior art keywords
electrolyte membrane
alignment mark
catalyst
fuel cell
reinforcing film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008290195A
Other languages
Japanese (ja)
Other versions
JP2010118237A (en
Inventor
和宏 谷脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008290195A priority Critical patent/JP5348388B2/en
Publication of JP2010118237A publication Critical patent/JP2010118237A/en
Application granted granted Critical
Publication of JP5348388B2 publication Critical patent/JP5348388B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池の製造方法に関するものである。   The present invention relates to a method for manufacturing a fuel cell.

燃料電池は、図2に示されるように、複数種類のセル構成部材が積層されることによって、セル(単セル)10が構成され、なおかつ、セル10が複数枚積層された燃料電池スタック11を構成することで、必要な電圧が確保されるものである。セル10の構造例としては、図3に示されるように、膜・電極接合体12(Membrane Electrode Assembly:以下、「MEA」という。)がセル10の厚み方向の中心部に配置され、その両面に、ガス拡散層14(アノード側/カソード側のガス拡散層14A、14C)、ガス流路16(アノード側/カソード側のガス流路16A、16C)、セパレータ18が夫々配置された構造となっている。なお、MEA12とガス拡散層14とが一体となった膜電極ガス拡散層接合体(MEGA:Membrane Electrode &Gas Diffusion Layer Assembly)が用いられる例もある。   As shown in FIG. 2, the fuel cell includes a fuel cell stack 11 in which a plurality of types of cell constituent members are stacked to form a cell (single cell) 10 and a plurality of cells 10 are stacked. By configuring, a necessary voltage is ensured. As an example of the structure of the cell 10, as shown in FIG. 3, a membrane / electrode assembly 12 (hereinafter referred to as “MEA”) is disposed at the center of the cell 10 in the thickness direction, and both surfaces thereof are arranged. Further, a gas diffusion layer 14 (anode side / cathode side gas diffusion layers 14A, 14C), a gas flow path 16 (anode side / cathode side gas flow paths 16A, 16C), and a separator 18 are arranged. ing. There is also an example in which a membrane electrode gas diffusion layer assembly (MEGA) in which the MEA 12 and the gas diffusion layer 14 are integrated is used.

又、膜・電極接合体12は、電解質膜と触媒層とを含むものであり、通常は電解質膜の表面に触媒を塗布することで触媒層を形成する。この、電解質膜に触媒を塗布する工程では、電解質膜に対する触媒の位置決めが重要であり、位置決め精度を高める手法として、電解質膜にアライメントマークを配置し、このアライメントマークを基準に触媒の塗布位置の決定を行うことが考えられる。しかしながら、電解質膜はヤング率が高く、触媒塗布工程中に電解質膜に伸びが生ずると、必要な位置精度が確保されないといった欠点がある。又、電解質膜は温度・湿度変化にも敏感であり、かかる変化によっても形状が変化してしまい、必要な位置精度を得ることは容易ではない。
そこで、電解質膜の保護シートにアライメントマークを配置し、このアライメントマークを基準に触媒の塗布位置の決定を行う手法も考案されている(例えば、特許文献1参照)。
The membrane / electrode assembly 12 includes an electrolyte membrane and a catalyst layer. Usually, the catalyst layer is formed by applying a catalyst to the surface of the electrolyte membrane. In this step of applying the catalyst to the electrolyte membrane, it is important to position the catalyst with respect to the electrolyte membrane. As a method for improving the positioning accuracy, an alignment mark is arranged on the electrolyte membrane, and the position of the catalyst application position is determined based on the alignment mark. A decision can be made. However, the electrolyte membrane has a high Young's modulus, and if the electrolyte membrane is stretched during the catalyst coating process, there is a drawback that the required positional accuracy cannot be ensured. Further, the electrolyte membrane is sensitive to changes in temperature and humidity, and the shape changes due to such changes, and it is not easy to obtain the required position accuracy.
In view of this, a technique has been devised in which an alignment mark is arranged on the protective sheet of the electrolyte membrane, and the catalyst application position is determined based on the alignment mark (see, for example, Patent Document 1).

特開2005−183182号公報JP 2005-183182 A

さて、電解質膜の保護シートにアライメントマークを配置し、このアライメントマークを基準に触媒の塗布位置の決定を行う手法によれば、電解質膜の物性に起因する触媒層の位置決め精度の低下を防ぐことが可能であるが、保護シートは他のセル構成部材と積層される際には、電解質膜と分離回収されるものであり、電解質膜とその他のセル構成部材との位置決め精度の向上には何ら寄与するものではない。
本発明は上記課題に鑑みてなされたものであり、その目的とするところは、燃料電池を構成するセル構成部材間の位置決め精度を高め、高精度に燃料電池を製造することを可能とするところにある。
Now, according to the method of placing an alignment mark on the protective sheet of the electrolyte membrane and determining the catalyst application position based on this alignment mark, it is possible to prevent a decrease in the positioning accuracy of the catalyst layer due to the physical properties of the electrolyte membrane. However, when the protective sheet is laminated with other cell constituent members, the protective sheet is separated and collected from the electrolyte membrane, so that there is no improvement in the positioning accuracy between the electrolyte membrane and the other cell constituent members. It does not contribute.
The present invention has been made in view of the above problems, and the object of the present invention is to increase the positioning accuracy between the cell constituent members constituting the fuel cell and to manufacture the fuel cell with high accuracy. It is in.

(発明の態様)
以下の発明の態様は、本発明の構成を例示するものであり、本発明の多様な構成の理解を容易にするために、項別けして説明するものである。各項は、本発明の技術的範囲を限定するものではなく、発明を実施するための最良の形態を参酌しつつ、各項の構成要素の一部を置換し、削除し、又は、更に他の構成要素を付加したものについても、本願発明の技術的範囲に含まれ得るものである。
(Aspect of the Invention)
The following aspects of the present invention exemplify the configuration of the present invention, and will be described separately for easy understanding of various configurations of the present invention. Each section does not limit the technical scope of the present invention, and some of the components of each section are replaced, deleted, or further while referring to the best mode for carrying out the invention. Those to which the above components are added can also be included in the technical scope of the present invention.

(1)電解質膜の表面に触媒層を形成し、前記電解質膜に拡散層を積層する工程を含む燃料電池の製造方法であって、補強フィルムに対するアライメントマークの付与を行う工程と、ロール状に巻き取られた電解質膜を当該ロールから巻き出して、前記電解質膜の少なくとも片面に、前記補強フィルムを接合する工程と、を含み、前記補強フィルムに対するアライメントマークの付与を行う工程では、前記アライメントマークを付与した後に、該アライメントマークを基準に、前記補強フィルムに電解質膜露出用開口を形成し、前記アライメントマークを視覚認識し、前記アライメントマークを基準に、電解質膜に触媒層を形成する工程、拡散層を接合する工程、必要な電極形状に切断する工程、ガス流路を積層する工程、セパレータを積層する工程のうちの少なくとも一つを含むことを特徴とする燃料電池の製造方法(請求項1)。
本項に記載の燃料電池の製造方法は、補強フィルムに対しアライメントマークを付与し、このアライメントマークを基準として、それ以降の工程、すなわち電解質膜に触媒層を形成する工程、拡散層を接合する工程、必要な電極形状に切断する工程、ガス流路を積層する工程、セパレータを積層する工程のうちの少なくとも一つを、正確且つ確実に行うものである。
(1) A method of manufacturing a fuel cell including a step of forming a catalyst layer on the surface of an electrolyte membrane and laminating a diffusion layer on the electrolyte membrane, the step of applying an alignment mark to a reinforcing film , and a roll shape Unwinding the wound electrolyte membrane from the roll and bonding the reinforcing film to at least one surface of the electrolyte membrane, and in the step of applying an alignment mark to the reinforcing film, the alignment mark After forming an electrolyte membrane exposure opening in the reinforcing film based on the alignment mark, visually recognizing the alignment mark, and forming a catalyst layer on the electrolyte membrane based on the alignment mark , The step of joining the diffusion layer, the step of cutting into the required electrode shape, the step of laminating the gas flow path, and laminating the separator That method for manufacturing a fuel cell characterized by comprising at least one of steps (claim 1).
In the fuel cell manufacturing method described in this section, an alignment mark is provided on the reinforcing film , and the subsequent steps, that is, a step of forming a catalyst layer on the electrolyte membrane, and a diffusion layer are joined based on the alignment mark. At least one of the process, the process of cutting into a necessary electrode shape, the process of laminating the gas flow path, and the process of laminating the separator is performed accurately and reliably.

又、補強フィルムに対するアライメントマークの付与を行う工程では、電解質膜の少なくとも片面に固定され電解質膜と一体化される補強フィルムの、電解質膜露出用開口の周辺部位にアライメントマークを付与する。 In the step of applying the alignment mark to the reinforcing film, the alignment mark is applied to the peripheral portion of the opening for exposing the electrolyte membrane of the reinforcing film that is fixed to at least one surface of the electrolyte membrane and integrated with the electrolyte membrane .

この際、アライメントマークを先に付与してから、前記電解質膜露出用開口の加工を行い、アライメントマークの付与後は、このアライメントマークを基準として、それ以降の工程を、正確且つ確実に行うものである。 At this time, after applying the alignment mark first, the opening for exposing the electrolyte membrane is processed, and after the alignment mark is applied, the subsequent steps are accurately and reliably performed based on the alignment mark. It is.

すなわち、このアライメントマークを基準として、電解質膜に触媒層を形成する工程、拡散層を接合する工程、必要な電極形状に切断する工程、ガス流路を積層する工程、セパレータを積層する工程のうちの少なくとも一つを実施することで、各工程の位置精度を、補強フィルムに付与したアライメントマークを基準として、高精度に得るものである。 That is, using the alignment mark as a reference, among the step of forming a catalyst layer on the electrolyte membrane, the step of bonding the diffusion layer, the step of cutting into the required electrode shape, the step of stacking the gas flow path, and the step of stacking the separator By implementing at least one of the above, the positional accuracy of each step is obtained with high accuracy on the basis of the alignment mark given to the reinforcing film.

なお、電解質膜の表面に形成される触媒層にアライメントマークを付与し、このアライメントマークを基準として、位置決めを正確且つ確実に行うこととしても良い。電解質膜単体では、その物性に起因してアライメントマークの位置精度を確保することが困難であるが、電解質膜に触媒層が形成された状態では、触媒層を構成する材料(白金等)のヤング率は電解質膜よりも低く、温度・湿度変化にも強いことから、触媒層に付与されたアライメントマークは、電解質膜に対するその他のセル構成部材の位置決め基準として機能するものである。 Incidentally, the alignment mark is applied to the catalyst layer formed on the surface of the electrolyte membrane, based on the alignment marks, it is also possible to position accurately and reliably. Although it is difficult to ensure the alignment mark position accuracy due to the physical properties of the electrolyte membrane alone, in the state in which the catalyst layer is formed on the electrolyte membrane, the Young of the material constituting the catalyst layer (platinum, etc.) Since the rate is lower than that of the electrolyte membrane and is resistant to changes in temperature and humidity, the alignment mark given to the catalyst layer functions as a positioning reference for other cell components relative to the electrolyte membrane.

本発明はこのように構成したので、燃料電池を構成するセル構成部材間の位置決め精度を高め、高精度に燃料電池を製造することが可能となる。   Since this invention was comprised in this way, it becomes possible to improve the positioning accuracy between the cell structural members which comprise a fuel cell, and to manufacture a fuel cell with high precision.

以下、本発明を実施するための最良の形態を添付図面に基づいて説明する。なお、従来技術と同一部分若しくは相当する部分については、詳しい説明を省略する。
図1には、本発明の実施の形態に係る燃料電池の製造方法に係る製造ライン20が概略的に示されている。この製造ライン20は、触媒膜ロール22をセットする軸24、触媒膜ロール22から巻き出された触媒膜26の巻き出し長さを検出するエンコーダ28、拡散層14を触媒膜26に積層するための積層ロボット30、触媒膜26を撮影するカメラ32、製造ライン20を制御するための、電子計算機によって構成された制御手段34を含むものである。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. Detailed description of the same or corresponding parts as those of the prior art will be omitted.
FIG. 1 schematically shows a production line 20 relating to a method for producing a fuel cell according to an embodiment of the present invention. In this production line 20, a shaft 24 for setting the catalyst film roll 22, an encoder 28 for detecting the unwinding length of the catalyst film 26 unwound from the catalyst film roll 22, and the diffusion layer 14 are laminated on the catalyst film 26. And a control means 34 constituted by an electronic computer for controlling the production line 20.

又、触媒膜26は、後述のように、電解質膜50の少なくとも片面に補強フィルム52が固定され電解質膜50と一体化され、なおかつ、電解質膜50の表面に触媒が塗布された状態となっている。そして、触媒膜26はロール状に巻かれ、触媒膜ロール22として製造ライン20に搬入されるものである。
なお、図1の製造ライン20では、補強フィルム52に拡散層14を熱圧プレスによって接合する装置の一例として、ベルトプレス装置が用いられており、図中、符号36はベルト、符号38はベルト36の案内ローラ、符号40はベルト36を介して触媒膜26及び拡散層14に対し熱と圧力とを付与するプレスローラである。
Further, as will be described later, the reinforcing film 52 is fixed to at least one surface of the electrolyte membrane 50 so that the catalyst membrane 26 is integrated with the electrolyte membrane 50, and the catalyst is applied to the surface of the electrolyte membrane 50. Yes. Then, the catalyst film 26 is wound in a roll shape and carried into the production line 20 as the catalyst film roll 22.
In the production line 20 of FIG. 1, a belt press apparatus is used as an example of an apparatus for joining the diffusion layer 14 to the reinforcing film 52 by hot pressing. In the figure, reference numeral 36 denotes a belt, and reference numeral 38 denotes a belt. Reference numeral 36 denotes a press roller that applies heat and pressure to the catalyst film 26 and the diffusion layer 14 via the belt 36.

ここで、本発明の実施の形態に係る燃料電池の製造手順を、図1を参照しながら説明する。まず、一般にロール状に巻かれた電解質膜50をロールから巻き出し、補強フィルム52と接合する。ここで用いられる補強フィルム52は、後述する燃料電池の製造工程において変形し難い素材であって、なおかつ、温度・湿度変化にも強く、燃料電池の運転環境に適した材料(例えば、PEN、PET、テフロン(登録商標)系PTE等)が用いられる。又、補強フィルム52には、電解質膜50と一体化される以前に、電解質膜露出用開口54が加工され、アライメントマーク56が付与される。
アライメントマーク56は、図示の例では十字マークであり、補強フィルム52に対し、プリント、刻印等、視覚的に視認可能な形態で付与されるものである。電解質膜露出用開口54の加工と、アライメントマーク56の付与とは、いずれを先に補強フィルム52に実施してもよい。しかしながら、アライメントマーク56を先に付与しておけば、電解質膜露出用開口54を加工する際にも、アライメントマーク56を基準として用いることができる。アライメントマーク56を用いた位置確認作業については、後述する拡散層14の積層工程と同じであり、詳しい説明は拡散層14の積層工程を参照されたい。
なお、補強フィルム52が接合された電解質膜50は、一般にはロール状に巻かれて後工程へと送られる。
Here, the manufacturing procedure of the fuel cell according to the embodiment of the present invention will be described with reference to FIG. First, generally, the electrolyte membrane 50 wound in a roll shape is unwound from the roll and joined to the reinforcing film 52. The reinforcing film 52 used here is a material that is not easily deformed in the manufacturing process of the fuel cell, which will be described later, and is also resistant to changes in temperature and humidity, and is suitable for the operating environment of the fuel cell (for example, PEN, PET). , Teflon (registered trademark) PT F E, etc.) is used. The reinforcing film 52 is processed with an electrolyte membrane exposure opening 54 and an alignment mark 56 before being integrated with the electrolyte membrane 50.
The alignment mark 56 is a cross mark in the illustrated example, and is given to the reinforcing film 52 in a form that can be visually recognized, such as printing or engraving. Either the processing of the electrolyte membrane exposure opening 54 or the application of the alignment mark 56 may be performed on the reinforcing film 52 first. However, if the alignment mark 56 is provided first, the alignment mark 56 can be used as a reference when the electrolyte membrane exposure opening 54 is processed. The position confirmation operation using the alignment mark 56 is the same as the layering process of the diffusion layer 14 to be described later, and the detailed description should refer to the layering process of the diffusion layer 14.
The electrolyte membrane 50 to which the reinforcing film 52 is bonded is generally wound in a roll shape and sent to a subsequent process.

続いて、補強フィルム52が接合された電解質膜50をロールから巻き出し、電解質膜露出用開口54から露出する部分に、触媒を塗布して触媒層を形成した触媒膜26を製造する。そして、一般に触媒膜26はロール状に巻かれ、触媒膜ロール22として取り扱われる。この際にも、カメラ(図1の符号32参照)を用いてアライメントマーク56を視覚認識して、アライメントマーク56を基準に触媒を塗布する位置を特定し、ダイヘッド、スプレー等の触媒塗布手段を制御し、高精度に触媒を塗布する。なお、アライメントマーク56を用いた位置確認作業についても、後述する拡散層14の積層工程と同じであり、詳しい説明は拡散層14の積層工程を参照されたい。 Subsequently, the electrolyte membrane 50 to which the reinforcing film 52 is bonded is unwound from the roll, and a catalyst is applied to a portion exposed from the electrolyte membrane exposure opening 54 to form a catalyst layer 26 in which a catalyst layer is formed . In general, the catalyst film 26 is wound in a roll shape and handled as the catalyst film roll 22. Also at this time, the alignment mark 56 is visually recognized using a camera (see reference numeral 32 in FIG. 1), the position where the catalyst is applied is specified based on the alignment mark 56, and a catalyst application means such as a die head or spray is provided. Control and apply the catalyst with high precision. Note that the position confirmation operation using the alignment mark 56 is also the same as the layering process of the diffusion layer 14 described later.

続いて、図1に示されるように、触媒膜ロール22は軸24にセットされ、触媒膜ロール22から巻き出された触媒膜26の巻き出し長さが、エンコーダ28により検出される。又、触媒膜ロール22から巻き出された触媒膜26のアライメントマーク56は、カメラ32によって撮影される。そして、カメラ32によって得られた画像は、制御手段34において符号34Aで示される表示画面のごとく画像処理され、エンコーダ28により検出される触媒膜26の巻き出し長さに係る情報と合わせて、触媒膜26に付されたアライメントマーク56の位置が正確に特定される。この、アライメントマーク56の位置情報に基づき、制御手段34により積層ロボット30を制御する。拡散層14は積層ロボット30に対し正確に位置決めされた状態で搬送され、拡散層14触媒膜26の適切な位置に積層される。そして、補強フィルム52に拡散層14を熱圧プレスによって接合することで、MEGAが構成される。 Subsequently, as shown in FIG. 1, the catalyst film roll 22 is set on the shaft 24, and the unwinding length of the catalyst film 26 unwound from the catalyst film roll 22 is detected by the encoder 28. The alignment mark 56 of the catalyst film 26 unwound from the catalyst film roll 22 is photographed by the camera 32. Then, the image obtained by the camera 32 is image-processed by the control means 34 as a display screen indicated by reference numeral 34A, and is combined with information relating to the unwinding length of the catalyst film 26 detected by the encoder 28. The position of the alignment mark 56 attached to the film 26 is accurately specified. Based on the positional information of the alignment mark 56, the stacking robot 30 is controlled by the control means 34. The diffusion layer 14 is conveyed in a state of being accurately positioned with respect to the stacking robot 30, and the diffusion layer 14 is stacked at an appropriate position of the catalyst film 26. And MEGA is comprised by joining the diffusion layer 14 to the reinforcement film 52 by hot press.

これ以降の工程、すなわち、必要な電極形状に切断する工程についても、同様にカメラ(図1の符号32参照)を用いてアライメントマーク56を視覚認識し、アライメントマーク56を基準に切断位置を特定し、制御手段34によりレーザーカッター等の切断装置を制御することにより、必要な電極形状を高精度に切り出すことができる。更に、ガス流路16、セパレータ18等(図3参照)のセル構成部材を積層する際にも、同様にしてアライメントマーク56を基準に位置決めを行うことができる。
このようにして製造されたセル10を、複数枚積層して固定することにより、燃料電池スタック11(図2参照)を得ることができる。
In the subsequent steps, that is, the step of cutting into the required electrode shape, the alignment mark 56 is visually recognized using the camera (see reference numeral 32 in FIG. 1), and the cutting position is specified based on the alignment mark 56. Then, by controlling a cutting device such as a laser cutter by the control means 34, the necessary electrode shape can be cut out with high accuracy. Further, when the cell constituent members such as the gas flow path 16 and the separator 18 (see FIG. 3) are stacked, the positioning can be similarly performed with the alignment mark 56 as a reference.
A fuel cell stack 11 (see FIG. 2) can be obtained by stacking and fixing a plurality of the cells 10 thus manufactured.

上記構成をなす、本発明の実施の形態によれば、次のような作用効果を得ることが可能である。まず、本発明の実施の形態に係る燃料電池の製造方法は、電解質膜50以外の、燃料電池の構成部材として最終的にセル内に残る部材ないし部位に対し、他のセル構成部材と共に積層する以前にアライメントマーク56を付与し、このアライメントマーク56を基準として、電解質膜50に対するその他のセル構成部材の位置決めを、正確且つ確実に行うものである。   According to the embodiment of the present invention configured as described above, the following operational effects can be obtained. First, in the method for manufacturing a fuel cell according to the embodiment of the present invention, members other than the electrolyte membrane 50 that are finally left in the cell as constituent members of the fuel cell are stacked together with other cell constituent members. The alignment mark 56 is previously provided, and the positioning of the other cell constituent members with respect to the electrolyte membrane 50 is performed accurately and reliably using the alignment mark 56 as a reference.

具体的には、電解質膜50の少なくとも片面に固定され電解質膜50と一体化される補強フィルム52の、電解質膜露出用開口54の周辺部位にアライメントマーク56を付与することで、このアライメントマーク56を基準として、電解質膜50に対するその他のセル構成部材の位置決めを行うものである。補強フィルム52は、PEN、PET、テフロン(登録商標)系PTE等、燃料電池の運転環境に適し、なおかつ、燃料電池の製造工程において変形し難い素材からなるものであり、付与されたアライメントマーク56の変形や位置ずれが生じ難く、これを視覚的に認識することで、電解質膜50に対するその他のセル構成部材の位置決めを、正確且つ確実に行うことが可能となる。 Specifically, this alignment mark 56 is provided by providing an alignment mark 56 around the electrolyte membrane exposure opening 54 of the reinforcing film 52 that is fixed to at least one surface of the electrolyte membrane 50 and integrated with the electrolyte membrane 50. As a reference, the other cell constituent members are positioned with respect to the electrolyte membrane 50. Reinforcing film 52 is suitable PEN, PET, Teflon (registered trademark) PT F E etc., the operating environment of the fuel cell, yet, which consist of a difficult to deform the material in the manufacturing process of the fuel cell, granted aligned The deformation and misalignment of the mark 56 hardly occur, and by visually recognizing this, it becomes possible to accurately and reliably position the other cell constituent members with respect to the electrolyte membrane 50.

又、必要に応じ、ロール状に巻き取られた電解質膜50を当該ロールから巻き出して補強フィルム52を接合し、この接合工程の前又は後に、補強フィルム52に対するアライメントマーク56の付与を行う工程を実施することで、アライメントマーク56の付与後は、このアライメントマーク56を基準として、電解質膜50に対するその他のセル構成部材の位置決めを、正確且つ確実に行うことができる。   In addition, if necessary, the electrolyte membrane 50 wound up in a roll shape is unwound from the roll to join the reinforcing film 52, and before or after this joining step, the alignment mark 56 is applied to the reinforcing film 52. By performing the above, after the alignment mark 56 is applied, the other cell constituent members can be accurately and reliably positioned with respect to the electrolyte membrane 50 with reference to the alignment mark 56.

すなわち、補強フィルム52に形成する電解質膜露出用開口54の位置精度、電解質膜50に対する触媒層の位置精度、電解質膜50に対する拡散層14の位置精度、電解質膜50を基準とする電極形状の外形の精度を、各々補強フィルム52に付与したアライメントマーク56を基準として、高精度に得ることが可能となる。更には、ガス流路16、セパレータ18等のセル構成部材の位置決めも、同様にして正確且つ確実に行うことが可能となる。 That is, the positional accuracy of the electrolyte membrane exposure opening 54 formed in the reinforcing film 52, the positional accuracy of the catalyst layer with respect to the electrolyte membrane 50, the positional accuracy of the diffusion layer 14 with respect to the electrolyte membrane 50, and the outer shape of the electrode shape based on the electrolyte membrane 50 Can be obtained with high accuracy with reference to the alignment mark 56 provided to each of the reinforcing films 52. Furthermore, positioning of cell constituent members such as the gas flow path 16 and the separator 18 can be performed accurately and reliably in the same manner.

本発明の実施の形態に係る燃料電池電極の製造方法に係る製造装置を、模式的に示した図である。It is the figure which showed typically the manufacturing apparatus which concerns on the manufacturing method of the fuel cell electrode which concerns on embodiment of this invention. 燃料電池スタックの立体模式図である。It is a three-dimensional schematic diagram of a fuel cell stack. 図2に示される燃料電池スタックを構成するセルの、構成部材を示す模式図である。It is a schematic diagram which shows the structural member of the cell which comprises the fuel cell stack shown by FIG.

10:セル、11:燃料電池スタック、12:膜・電極接合体、 14、14A、14C:ガス拡散層、 16、16A、16C:ガス流路、18:セパレータ、20:燃料電池の製造ライン、22:触媒膜ロール、24:軸、26:触媒膜、28:エンコーダ、30:積層ロボット、32:カメラ、34:制御手段、34A:表示画面、36:ベルト、38:案内ローラ、40:プレスローラ、50:電解質膜、52:補強フィルム、54:電解質膜露出用開口、56:アライメントマーク 10: Cell, 11: Fuel cell stack, 12: Membrane / electrode assembly, 14, 14A, 14C: Gas diffusion layer, 16, 16A, 16C: Gas flow path, 18: Separator, 20: Fuel cell production line, 22: catalyst film roll, 24: shaft, 26: catalyst film, 28: encoder, 30: stacking robot, 32: camera, 34: control means, 34A: display screen, 36: belt, 38: guide roller, 40: press Roller, 50: electrolyte membrane, 52: reinforcing film, 54: opening for exposing electrolyte membrane, 56: alignment mark

Claims (1)

電解質膜の表面に触媒層を形成し、前記電解質膜に拡散層を積層する工程を含む燃料電池の製造方法であって、
補強フィルムに対するアライメントマークの付与を行う工程と、
ロール状に巻き取られた電解質膜を当該ロールから巻き出して、前記電解質膜の少なくとも片面に、前記補強フィルムを接合する工程と、
を含み、
前記補強フィルムに対するアライメントマークの付与を行う工程では、前記アライメントマークを付与した後に、該アライメントマークを基準に、前記補強フィルムに電解質膜露出用開口を形成し、
前記アライメントマークを視覚認識し、前記アライメントマークを基準に、電解質膜に触媒層を形成する工程、拡散層を接合する工程、必要な電極形状に切断する工程、ガス流路を積層する工程、セパレータを積層する工程のうちの少なくとも一つを含むことを特徴とする燃料電池の製造方法。
A method for producing a fuel cell comprising a step of forming a catalyst layer on the surface of an electrolyte membrane and laminating a diffusion layer on the electrolyte membrane ,
A step of applying an alignment mark to the reinforcing film;
Unwinding the electrolyte membrane wound in a roll shape from the roll, and joining the reinforcing film to at least one surface of the electrolyte membrane; and
Including
In the step of applying an alignment mark to the reinforcing film, after providing the alignment mark, an opening for exposing an electrolyte membrane is formed in the reinforcing film with reference to the alignment mark.
The alignment mark visually recognize, based on the alignment mark, forming a catalyst layer on the electrolyte membrane, a step of bonding the diffusion layer, the step of cutting to the required electrode shape, laminating a gas flow passage, the separator A method for producing a fuel cell, comprising at least one of the steps of stacking layers .
JP2008290195A 2008-11-12 2008-11-12 Manufacturing method of fuel cell Expired - Fee Related JP5348388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008290195A JP5348388B2 (en) 2008-11-12 2008-11-12 Manufacturing method of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008290195A JP5348388B2 (en) 2008-11-12 2008-11-12 Manufacturing method of fuel cell

Publications (2)

Publication Number Publication Date
JP2010118237A JP2010118237A (en) 2010-05-27
JP5348388B2 true JP5348388B2 (en) 2013-11-20

Family

ID=42305791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008290195A Expired - Fee Related JP5348388B2 (en) 2008-11-12 2008-11-12 Manufacturing method of fuel cell

Country Status (1)

Country Link
JP (1) JP5348388B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5650443B2 (en) * 2010-06-15 2015-01-07 日本特殊陶業株式会社 Solid oxide fuel cell and method for producing the same
JP6029362B2 (en) * 2012-07-12 2016-11-24 東レエンジニアリング株式会社 Apparatus and method for laminating and laminating sheet substrates
KR101438900B1 (en) * 2012-08-21 2014-09-05 현대자동차주식회사 Device and method stacking fuel cell stack
JP6237271B2 (en) * 2014-01-29 2017-11-29 日産自動車株式会社 Manufacturing apparatus for metal separator for fuel cell and manufacturing method for metal separator for fuel cell
GB201611174D0 (en) * 2016-06-28 2016-08-10 Johnson Matthey Fuel Cells Ltd System and method for the manufacture of membrane electrode assemblies
JP7243350B2 (en) 2019-03-20 2023-03-22 凸版印刷株式会社 Membrane electrode assembly for fuel cell and polymer electrolyte fuel cell
JP7395370B2 (en) * 2020-01-29 2023-12-11 株式会社Screenホールディングス Manufacturing device and method for membrane electrode assembly with subgasket
JP7553246B2 (en) * 2020-02-24 2024-09-18 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Inspection system and inspection method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346867A (en) * 2002-05-27 2003-12-05 Seiko Epson Corp Fuel cell and its manufacturing method
JP4701604B2 (en) * 2003-11-13 2011-06-15 株式会社デンソー Manufacturing method of fuel cell
JP4802447B2 (en) * 2003-12-19 2011-10-26 日産自動車株式会社 Method for producing solid polymer membrane fuel cell
JP2005216598A (en) * 2004-01-28 2005-08-11 Nissan Motor Co Ltd Solid polymer membrane type fuel cell and its manufacturing method
JP2006310121A (en) * 2005-04-28 2006-11-09 Matsushita Electric Ind Co Ltd Manufacturing method for membrane electrode assembly
US8012284B2 (en) * 2006-12-15 2011-09-06 3M Innovative Properties Company Method and apparatus for fabricating roll good fuel cell subassemblies
US8288059B2 (en) * 2006-12-15 2012-10-16 3M Innovative Properties Company Processing methods and systems for assembling fuel cell perimeter gaskets
JP2008235096A (en) * 2007-03-22 2008-10-02 Toyota Motor Corp Manufacturing method of fuel cell, fuel cell separator, and its transport system
KR100821039B1 (en) * 2007-04-24 2008-04-08 삼성에스디아이 주식회사 Fuel cell stack and manufacturing method thereof

Also Published As

Publication number Publication date
JP2010118237A (en) 2010-05-27

Similar Documents

Publication Publication Date Title
JP5348388B2 (en) Manufacturing method of fuel cell
JP6691373B2 (en) Apparatus and method for manufacturing membrane electrode assembly for fuel cell
JP6202771B2 (en) Water transport structure
CN111180743B (en) Apparatus and method for manufacturing membrane electrode assembly for fuel cell
US11335921B2 (en) Method and system for setting cutting time of gasket during manufacture of MEA
KR20120125304A (en) Five-layer membrane electrode assembly with attached border and method of making same
CN111168765A (en) Cutting apparatus and method for manufacturing membrane electrode assembly for fuel cell
JP2021082414A (en) Apparatus and method for manufacturing membrane electrode assembly with sub-gasket
JP4882221B2 (en) Separator bonding method
JP5005214B2 (en) Fuel cell manufacturing method and fuel cell manufacturing apparatus
KR102698427B1 (en) Apparatus and Method for Manufacturing Membrane-Electrode Assembly
JP6225890B2 (en) Thermal transfer method and sheet roll exchange method
CN114207891B (en) Method for producing membrane electrode assembly with sub-gasket, device for producing membrane electrode assembly with sub-gasket, and sub-gasket base material
EP2319116B1 (en) Membrane-electrode assembly, method of producing the assembly, and solid polymer-type fuel cell employing the same
CN114128001B (en) Apparatus for producing membrane electrode assembly and method for producing membrane electrode assembly
JP2010225463A (en) Fuel cell electrode, and manufacturing method thereof
JP5979100B2 (en) Manufacturing method of membrane electrode assembly and electrolyte membrane winding roller
JP7290681B2 (en) Membrane electrode assembly and method for manufacturing membrane electrode assembly
JP2010212005A (en) Manufacturing method and manufacturing device of fuel cell electrode
JP7395370B2 (en) Manufacturing device and method for membrane electrode assembly with subgasket
JP6834856B2 (en) Manufacturing method of membrane electrode assembly
JP2005129343A (en) Membrane-electrode junction and fuel cell using it, and manufacturing method of these
WO2021010048A1 (en) Apparatus for manufacturing sub gasket-attached membrane electrode assembly and method for manufacturing sub gasket-attached membrane electrode assembly
JP2008146973A (en) Lamination method of mea, lamination system of mea, and sheet conveyor mechanism
JP6315408B2 (en) Resin frame

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130806

R151 Written notification of patent or utility model registration

Ref document number: 5348388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees