WO2005073700A1 - Liquid type identification device - Google Patents

Liquid type identification device Download PDF

Info

Publication number
WO2005073700A1
WO2005073700A1 PCT/JP2005/000894 JP2005000894W WO2005073700A1 WO 2005073700 A1 WO2005073700 A1 WO 2005073700A1 JP 2005000894 W JP2005000894 W JP 2005000894W WO 2005073700 A1 WO2005073700 A1 WO 2005073700A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
temperature
voltage value
measured
liquid type
Prior art date
Application number
PCT/JP2005/000894
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiaki Kawanishi
Takayuki Takahata
Kiyoshi Yamagishi
Original Assignee
Mitsui Mining & Smelting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd. filed Critical Mitsui Mining & Smelting Co., Ltd.
Priority to AT05704072T priority Critical patent/ATE468530T1/en
Priority to EP05704072A priority patent/EP1715330B1/en
Priority to DE602005021313T priority patent/DE602005021313D1/en
Priority to US10/586,920 priority patent/US7493802B2/en
Publication of WO2005073700A1 publication Critical patent/WO2005073700A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/18Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by changes in the thermal conductivity of a surrounding material to be tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; viscous liquids; paints; inks
    • G01N33/28Oils, i.e. hydrocarbon liquids

Definitions

  • the present invention relates to a liquid type identification device that identifies the type of a liquid by using the thermal properties of the liquid.
  • gasoline or light oil is generally used as fuel. These are mixtures of various hydrocarbons and other materials.
  • plant-based fuels in gasoline are used as fuel for internal combustion engines. It has been considered to mix alcohols such as ethanol or methanol.
  • the material composition of these fuels is determined according to the material composition and distilling conditions of crude oil, which is a raw material for gasoline and light oil, and the amount of alcohol added. Therefore, the characteristics of the combustion of these fuels vary depending on the material composition. Etc.) may not be optimal for other fuels
  • the detected fuel type is similar to a predetermined fuel type
  • Patent Document 1 discloses a method in which a heating element is heated by energization, and a thermosensitive element is heated by this heat generation.
  • a fluid identification method in which the fluid to be identified thermally influences the heat transfer from the heating element to the temperature-sensitive body, and the type of the fluid to be identified is determined based on the electrical output corresponding to the electrical resistance of the temperature-sensitive body. Further, there is disclosed an apparatus in which energization of a heating element is periodically performed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-153561 (in particular, paragraphs [0042] and [0049])
  • Patent Document 1 can identify fluids having considerably different properties, such as water, air, and oil, using representative values, for example. Accurate and quick distinction between hydrocarbon liquid and alcohol liquid Cannot be done well enough.
  • the present invention provides an identification device that can accurately, quickly, and easily identify a hydrocarbon-based liquid and an alcohol-based liquid that can be used as fuel in particular. It is intended for that purpose.
  • the present invention provides an identification device capable of accurately, quickly and easily identifying what kind of liquid to be measured is a hydrocarbon liquid or an alcohol liquid. The purpose is.
  • a liquid type identification device for identifying a liquid to be measured belonging to a hydrocarbon-based liquid or an alcohol-based liquid,
  • the identification sensor unit includes an indirectly heated liquid type detection unit including a heating element and a temperature sensing element, and the liquid to be measured. And a liquid temperature detecting unit for detecting the temperature of the
  • a single pulse voltage is applied to the heating element of the indirectly heated liquid type detection unit to cause the heating element to generate heat, and includes a temperature sensing element of the indirectly heated liquid type detection unit and the liquid temperature detection unit. And a discriminating operation unit for discriminating the liquid to be measured based on the output of the liquid type detection circuit, wherein the discriminating operation unit determines the initial temperature of the thermosensitive element when the heat generating element generates heat.
  • the first voltage value corresponding to the liquid type corresponding to the difference from the first temperature at the lapse of the first time from the start of the single pulse application, the initial temperature of the thermosensitive element, and the first temperature from the start of the single pulse application.
  • a liquid type identification device wherein the liquid to be measured is identified by a liquid type-corresponding second voltage value corresponding to a difference from a second temperature at a lapse of a second time longer than the second time.
  • the second time is an application time of the single pulse.
  • the first time is ⁇ or less of the application time of the single pulse.
  • the first time is 0.5-1.5 seconds.
  • the application time of the single pulse is 3 to 10 seconds.
  • the voltage value corresponding to the initial temperature of the temperature sensitive body is obtained by using an average initial voltage value obtained by sampling and averaging the initial voltage before the application of the single pulse to the heating element a predetermined number of times.
  • an average first voltage value obtained by sampling and averaging the first voltage at a lapse of a first time a predetermined number of times from the start of the single pulse application to the heating element (2)
  • an average second voltage value obtained by sampling a predetermined number of times of a second voltage after a lapse of a second time from the start of the single pulse application to the heating element and averaging the same is used.
  • the difference between the average first voltage value and the average initial voltage value is used as the liquid type corresponding first voltage value
  • the average second voltage value and the average initial voltage value are used as the liquid type corresponding second voltage value.
  • the difference from the voltage value is used.
  • a liquid temperature corresponding output value corresponding to the liquid temperature of the liquid to be measured is input from the liquid temperature detection unit to the identification calculation unit, and the identification calculation unit
  • the liquid temperature correspondence obtained for the measurement target liquid to be identified is obtained using a calibration curve prepared based on the plurality of types of reference liquids to be measured and showing the relationship of the liquid type corresponding first voltage value to the liquid temperature. Based on the output value and the liquid type-corresponding first voltage value, it is determined whether the liquid to be measured is a hydrocarbon liquid or an alcohol liquid.
  • a liquid temperature corresponding output value corresponding to the liquid temperature of the liquid to be measured is input from the liquid temperature detecting unit to the identification calculation unit, and the identification calculation unit includes a hydrocarbon-based liquid.
  • the identification calculation unit includes a hydrocarbon-based liquid.
  • the identification calculation unit includes a microcomputer.
  • the indirectly heated liquid type detection unit and the liquid temperature detection unit are respectively a heat transfer member for the liquid type detection unit and a heat transfer for the liquid temperature detection unit for heat exchange with the liquid to be measured. It has a member.
  • a single pulse voltage is applied to the heating element of the indirectly heated liquid type detection unit to cause the heating element to generate heat, and the identification calculation unit based on the output of the liquid type detection circuit, Said
  • the liquid to be measured belonging to hydrocarbon liquid or alcohol liquid is identified based on the liquid type first voltage value and liquid type corresponding second voltage value when the heating element generates heat. And it can be easily identified.
  • an average initial voltage value is used as a voltage value corresponding to the initial temperature of the temperature sensing element
  • the average first voltage value is used as a voltage value corresponding to the first temperature of the temperature sensing element
  • the average second voltage value is used as a voltage value corresponding to the second temperature of the thermosensitive body
  • the difference between the average first voltage value and the average initial voltage value is used as the liquid type corresponding first voltage value
  • the liquid temperature-corresponding output value obtained for the liquid to be measured and the liquid type-corresponding first voltage value are used.
  • the calibration curve indicating the relationship the liquid to be measured is identified based on the output value corresponding to the liquid temperature obtained for the liquid to be measured, the second voltage value corresponding to the liquid type, and the result of the determination. By doing so, more accurate identification becomes possible.
  • FIG. 1 is a schematic configuration diagram showing a use state of an embodiment of a liquid type identification device according to the present invention
  • FIG. 24 is a partial cross-sectional view thereof.
  • the measured liquid supply path supplies the measured liquid from the tank of the measured liquid (fuel) to the internal combustion engine.
  • the measured liquid supply path of the present invention is not limited to this.
  • a path for supplying the liquid to be measured from a tank to a tank lorry, or a path for supplying the liquid to be measured from a large tank to a small tank may be used.
  • a liquid type identification device 1 for identifying the type of the liquid to be measured is arranged in the course of supplying the liquid to be measured from the liquid tank T to the internal combustion engine E to the liquid to be measured. ing.
  • the identification device 1 includes a measurement section 3, a first flow passage 4T having one end connected to a tank side portion (pipe) 14T, which is an upstream portion of the liquid supply path, by a pipe joint 8T, and a liquid to be measured.
  • An internal combustion engine-side portion (pipe) 14E which is a downstream portion of the supply path, includes a second flow passage 4E, one end of which is connected by a pipe joint 8E.
  • the measuring section 3 has a liquid flow path 20 to be measured formed by the case substrate 2a and the case force bar 2b, and one end of the flow path (the lower end in FIGS. 13A and 13B) has the first flow path 4T. And the other end (the upper end in FIGS. 13 to 13) is connected to the other end of the second flow passage 4E.
  • the identification device of the present embodiment is connected to the measuring section 3 and a part of the first flow path 4T (that is, as shown in FIG. 1, connected to the tank side portion 14T of the liquid supply path to be measured).
  • Part of the second flow passage 4E (that is, the part other than the end connected to the engine side part 14E of the liquid supply path to be measured as shown in FIG. 1). It has a housing 6 for housing.
  • the portion of the first flow passage 4T outside the housing 6 (that is, the end connected to the tank side portion 14T of the liquid supply path to be measured) is covered with a heat insulating coating material 4T1, and the second flow passage 4E The portion outside the housing 6 (that is, the end connected to the engine side portion 14E of the liquid supply path to be measured) is covered with the heat insulating coating 4E1.
  • a circuit board 12 constituting a liquid type detection circuit described later is arranged in the housing 6, a circuit board 12 constituting a liquid type detection circuit described later is arranged.
  • the circuit board 12 is provided with a microcomputer (microcomputer) constituting a discrimination calculation unit described later. Further, a wiring 13 for communication between the circuit board 12 and the outside is provided.
  • the interior space of the housing 6 (a part excluding the measurement unit 3, the first flow passage 4T, the second flow passage 4 ', the circuit board 12, and the like) is filled with a heat insulating material.
  • a heat insulating material and the heat insulating covering materials 4 1 and 4E1 for example, those made of rubber or foamed plastic can be used.
  • the measuring unit 3 includes an identification sensor unit 2 disposed facing the liquid flow path 20 to be measured.
  • the identification sensor section 2 has an indirectly heated liquid type detection section 21 including a heating element and a temperature sensing element, and a liquid temperature detection section 22 for measuring the temperature of the liquid to be measured.
  • Indirectly heated liquid type detection unit 21 The liquid temperature detector 22 is arranged at a certain distance in the vertical direction.
  • Fig. 5 shows a cross-sectional view of the indirectly heated liquid type detection unit 21.
  • the indirectly heated liquid type detection unit 21 and the liquid temperature detection unit 22 are integrated by a mold resin 23.
  • the indirectly heated liquid type detection unit 21 is composed of a thin film chip 21a including a heating element and a temperature sensing element, and a liquid joined by the thin film chip and a bonding material 2 lb. It has a metal fin 21c as a heat transfer member for the seed detection section, and external electrode terminals 21e electrically connected to electrodes of a heating element and a temperature sensing element of a thin film chip, respectively, by bonding wires 21d.
  • the liquid temperature detecting section 22 has a similar configuration, and has a metal fin 22c and an external electrode terminal 22e as a heat transfer member for the liquid temperature detecting section.
  • FIG. 6 is an exploded perspective view of the thin film chip 21a of the indirectly heated liquid type detection unit 21.
  • the thin film chip 2 la is composed of, for example, Al O force, a substrate 21al made of Ti, a temperature sensing element 21a2 made of Ti / Pt,
  • An inter-layer insulating film 21a3 consisting of 2 3 2
  • a heating element 21a4 consisting of TaSiO
  • the temperature sensing element 21a2 is formed in a meandering pattern (not shown).
  • the thin film chip 22a of the liquid temperature detecting section 22 has the same structure, but only the temperature sensing element 22a2 is operated without operating the heat generating element.
  • the indirectly heated liquid type detection unit 21 and the mold resin 23 of the liquid temperature detection unit 22 are attached to the case substrate 2 a of the measurement unit 3.
  • the case substrate 2a is provided with a cover member 2d so as to pass through the fins 21c for the liquid type detection unit and the fins 22c for the liquid temperature detection unit.
  • a liquid introduction passage 24 to be measured is formed which extends vertically in FIG. 13 through the liquid type detecting portion fins 21c and the liquid temperature detecting portion fins 22c and is open at both upper and lower ends.
  • the cover member 2d when the cover member 2d is attached to the case substrate 2a, the flange portion of the mold resin 23 is pressed toward the case substrate 2a, whereby the mold resin 23 is displaced. It is fixed against.
  • the case substrate 2a, the case cover 2b, the cover member 2d, the first flow passage 4T, and the second flow passage 4E are made of a corrosion-resistant material such as stainless steel.
  • FIG. 7 shows a configuration of a circuit for identifying a liquid type in the present embodiment.
  • the above-mentioned indirectly heated liquid A bridge circuit 68 is formed by the temperature sensing element 21a2 of the seed detection unit 21, the temperature sensing element 22a2 of the liquid temperature detection unit 22, and the two resistors 64 and 66.
  • the output of the bridge circuit 68 is input to the differential amplifier 70, and the output of the differential amplifier (also referred to as the liquid type detection circuit output or sensor output) constitutes a discrimination calculation unit via an AZD converter not shown.
  • Microcomputer microcomputer Input to 72.
  • the microcomputer 72 receives a liquid temperature corresponding output value corresponding to the liquid temperature to be measured from the temperature sensing element 22a2 of the liquid temperature detecting section 22 via the liquid temperature detecting amplifier 71. On the other hand, the microcomputer 72 outputs a heater control signal for controlling the opening and closing of the switch 74 located on the power supply path to the heating element 21a4 of the indirectly heated liquid type detection unit 21.
  • liquid type identification is performed when the engine operation is stopped.
  • the supply path of the liquid to be measured from the tank T to the engine E is always filled with the liquid to be measured, including the inside of the liquid flow path 20, the first flow path 4T, and the second flow path 4E of the identification device 1. are doing. Therefore, at the time of liquid type identification, the liquid to be measured in the liquid flow path 20 to be measured, including the liquid introduction path 24 to be measured, is not substantially forced to flow ideally.
  • the switch 74 When the switch 74 is closed for a predetermined time (for example, 3 to 10 seconds; 4 seconds in FIG. 8) by a heater control signal output from the microcomputer 72 to the switch 74, the predetermined height of the heating element 21a4 is raised.
  • a single pulse voltage P (for example, 10 V) is applied to cause the heating element to generate heat.
  • the output voltage (sensor output) Q of the differential amplifier 70 gradually increases during application of the voltage to the heating element 21a4, and gradually decreases after the voltage application to the heating element 21a4, as shown in FIG. I do.
  • the microcomputer 72 samples the sensor output for a predetermined number of times (for example, 256 times) for a predetermined time (for example, 0.1 second) before the start of voltage application to the heating element 21a4.
  • the average initial voltage value VI is obtained by calculating the average value. This average initial voltage value VI corresponds to the initial temperature of the thermosensitive body 21a2.
  • a first time (for example, 1Z2 or less of the application time of a single pulse, which is less than 0.1Z2, which is a relatively short time from the start of voltage application to the heating element).
  • 5-1. 5 seconds; 1 second in Fig. 8 (Sensor output at the end of the first time) Is sampled a predetermined number of times (for example, 256 times), and an operation for taking the average value is performed to obtain an average first voltage value V2.
  • This average first voltage value V2 corresponds to the first temperature at the time when the first time for applying a single pulse to the temperature sensing element 21a2 elapses.
  • a second time for example, a single pulse application time; 4 seconds in FIG. 8 that is a relatively long time from the start of voltage application to the heating element has elapsed.
  • the sensor output is sampled a predetermined number of times (for example, 256 times), and an average is calculated to obtain an average second voltage value V3.
  • This average second voltage value V3 corresponds to the second temperature when a second time has elapsed since the start of the single pulse application to the temperature sensing element 21a2.
  • part of the heat generated in the heating element 21a4 based on the voltage application of the single pulse as described above is transmitted to the temperature sensing element 21a2 via the liquid to be measured.
  • this heat transfer There are two main forms of this heat transfer that differ depending on the time from the start of pulse application. That is, in the first stage within a relatively short time (eg, 1.5 seconds) from the start of pulse application, heat transfer is mainly conduction. On the other hand, in the second stage after the first stage, heat transfer is mainly dominated by natural convection. This is because in the second stage, natural convection occurs due to the liquid to be measured heated in the first stage, and the ratio of heat transfer thereby increases.
  • the heat transfer by conduction in the first stage greatly depends on the thermal conductivity of the liquid to be measured.
  • the heat transfer by natural convection in the second stage greatly depends on the kinematic viscosity of the liquid to be measured.
  • Figure 9 shows the relationship.
  • Figure 10 shows the relationship.
  • the relationship between the temperature and the liquid type-corresponding first voltage value V01 for some known liquids to be measured (reference liquids to be measured) belonging to hydrocarbon liquids and alcohol liquids is described.
  • the first calibration curve shown is obtained in advance, and this calibration curve is stored in the storage means of the microcomputer 72.
  • An example of the first calibration curve is shown in FIG. In this example, a first calibration curve is created for reference liquids to be measured having thermal conductivity ⁇ of ⁇ 1 and ⁇ 2.
  • the type of the liquid to be measured (here, the liquid In the identification by the first voltage value ⁇ , the type of the liquid to be measured is specified by the thermal conductivity; I) when identifying the liquid temperature from the temperature sensing element 22a2 of the liquid temperature detection unit 22.
  • the output value T corresponding to the liquid temperature input through the amplifier 71 is also used.
  • FIG. 12 shows an example of the output value T corresponding to the liquid temperature.
  • Such a calibration curve is also stored in the storage means of the microcomputer 72.
  • a temperature value is obtained from the liquid temperature corresponding output value T obtained for the liquid to be measured, using the calibration curve of FIG. Based on the obtained temperature values, next, in the first calibration curve of FIG. 11, the first voltage values V01 ( ⁇ 1; t), V01 ( ⁇ ) corresponding to the liquid type of each calibration curve corresponding to the temperature value t. 2; t). Then, ⁇ of the liquid type corresponding first voltage value V01 ( ⁇ ; ⁇ ) obtained for the liquid to be measured is converted to the liquid type corresponding first voltage value V01 ( ⁇ 1; ⁇ ), V0l (2 ; t) to determine. That is, based on ⁇ «, ⁇ 01 ( ⁇ ; ⁇ ), V01 ( ⁇ l; t), V01 ( ⁇ 2; t),
  • the liquid type can be accurately and quickly (instantly) identified. Note that by using the liquid temperature-dependent output value T instead of the temperature as the first calibration curve in Fig. 11, the storage of the calibration curve in Fig. 12 and the conversion using this can also be omitted.
  • the liquid to be measured is determined by determining the magnitude relationship between the obtained liquid type-corresponding first voltage value V01 and the boundary value Vs to determine whether the liquid to be measured is a hydrocarbon liquid or an alcohol liquid. It is possible to determine to which of these the two belong.
  • FIG. 13 relates to a hydrocarbon-based liquid.
  • a second calibration curve is created for reference liquids having kinematic viscosities V of V1 and V2.
  • FIG. 14 relates to an alcohol-based liquid.
  • a second calibration curve is created for reference liquids having kinematic viscosities V of V3 and V4.
  • the second calibration curve in FIG. 13 is used in the following identification. If the liquid to be measured is determined to be an alcohol-based liquid by the above-described identification using the liquid type-corresponding first voltage value V01, the following calibration in FIG. Use lines.
  • the type of the liquid to be measured (here In the identification by the liquid type-corresponding second voltage value V02, the type of the liquid to be measured is specified by the kinematic viscosity V).
  • the above-mentioned liquid temperature corresponding output value T input via the detection amplifier 71 is also used.
  • a temperature value is obtained from the output value T corresponding to the liquid temperature to be measured using the calibration curve in FIG. Let the obtained temperature value be t, and then, in the second calibration curve of FIG. 13 or FIG. 14, the liquid type-corresponding second voltage value V02 (vl; t) of each calibration curve corresponding to the temperature value t V02 (v2; t) or V02 (v3; t), V02 (v4; t) is obtained.
  • VX of the liquid type corresponding second voltage value V02 x; t) obtained for the liquid to be measured is converted to the liquid type corresponding second voltage value V02 (V l; t), V02 ( V2; t) or V02 (v3; t) and V02 (v4; t) are determined by performing a proportional operation. That is, vx «, V01 (vx; t), V02 (V l; t), V02 (v 2; t) or (vx; t), V02 (v3; t), V02 (v4; t)
  • the liquid type can be accurately and quickly (instantly) identified. Note that by using the liquid temperature corresponding output value T instead of the temperature as the second calibration curve in FIGS. 13 and 14, the storage of the calibration curve in FIG. 12 and the conversion using the same are omitted. Talk about things.
  • a signal indicating the value of the liquid type (thermal conductivity ⁇ or kinematic viscosity V) obtained as described above is output via a D / A converter (not shown) to the output buffer circuit 76 shown in FIG. This is output as an analog output to the main computer (ECU), which controls combustion of the engine of the automobile (not shown).
  • the analog output voltage value corresponding to the liquid temperature is also output to the main computer (ECU).
  • the signals indicating the liquid type value and the liquid temperature value can be taken out as digital output as required, and can be input to a device that performs display, alarm, and other operations.
  • the liquid to be measured around the liquid type detection unit fins 21c and the liquid temperature detection unit fins 22c is required to be as strong as possible based on external factors. From the viewpoint that it is preferable to suppress the flow, it is preferable to use a cover member 2d, particularly one having a vertical liquid introduction path to be measured. Note that the cover member 2d also functions as a protection member for preventing contact of foreign matter.
  • the cover member 2d further improves the accuracy of liquid type identification when the inclination angle of the measuring unit 3, especially the identification sensor unit 2 with respect to the vertical direction changes, and when the cover member does not exist. It also has the function of improving. That is, if the cover member does not exist, The change in the form in which the heat generated from the heating element is transmitted to the thermosensitive body by the natural convection is large in response to the change in the temperature, the change in the second voltage value V02 corresponding to the liquid type of the same liquid to be measured is large. For this reason, the tilt angle range that does not cause confusion with the output value in the case of another type of liquid to be measured is relatively narrow.
  • the cover member 2d when the cover member 2d is present, the change in the form in which the heat generated from the heating element is transmitted to the temperature sensing element by the natural convection with respect to the change in the inclination angle is small (ie, Natural convection is always mainly generated along the liquid introduction path in the cover member 2d). Therefore, the change of the second voltage value V02 corresponding to the liquid type of the same liquid to be measured is small.
  • the tilt angle range that does not cause confusion with the output value of the liquid to be measured is relatively wide.
  • the fuel to be supplied to the internal combustion engine is used as the fluid to be measured.
  • the fluid to be measured is a hydrocarbon-based liquid or an alcohol-based liquid in another form. You can. Examples of such a form include a sample form for quality control of a petroleum plant or for analysis of hydrocarbon liquid and alcohol liquid in the environment. Further, the present invention can also be used as an apparatus for measuring the thermal conductivity and the kinematic viscosity of a hydrocarbon-based liquid and an alcohol-based liquid sample.
  • FIG. 1 is a schematic configuration diagram showing a use state of an embodiment of a liquid type identification device according to the present invention.
  • FIG. 2 is a partial cross-sectional view of the liquid type identification device of FIG. 1.
  • FIG. 3 is a partial cross-sectional view of the liquid type identification device of FIG. 1.
  • FIG. 4 is a partial cross-sectional view of the liquid type identification device of FIG. 1.
  • FIG. 5 is a sectional view of an indirectly heated liquid type detection unit.
  • FIG. 6 is an exploded perspective view of a thin film chip of the indirectly heated liquid type detection unit.
  • FIG. 7 is a configuration diagram of a circuit for identifying a liquid type.
  • FIG. 8 is a diagram showing a relationship between a single pulse voltage P applied to a heating element and a sensor output Q.
  • FIG. 9 is a diagram showing a relationship between a liquid type-corresponding first voltage value V01 and the thermal conductivity of the liquid to be measured.
  • FIG. 10 is a diagram showing the relationship between the liquid type-corresponding second voltage value V02 and the kinematic viscosity of the liquid to be measured.
  • Garden 11 is a diagram showing an example of a first calibration curve.
  • Fig. 12 is a diagram showing an example of a liquid temperature corresponding output value T.
  • Garden 13 is a diagram showing an example of a second calibration curve.
  • Garden 14 is a diagram showing an example of a second calibration curve.

Abstract

There is provided an identification device capable of accurately, rapidly, and easily identifying a hydrocarbon-based liquid and alcohol-based liquid. An identification sensor unit (2) is arranged to face a flow passage (20) of a liquid to be measured and includes an indirect heating type liquid type detection unit (21) having a heating body and a temperature-sensitive body, and a liquid temperature detecting unit (22) for detecting the temperature of the liquid to be measured. The identification sensor further includes an identification calculation unit for applying a single pulse voltage to the heating body of the liquid type detection unit (21) so as to generate heat and identifying the liquid to be measured according to an output of a liquid type detection circuit formed by the temperature-sensitive body of the liquid temperature detecting unit (21) and the liquid temperature detection unit. The identification calculation unit identifies the liquid to be measured according to a liquid-type-corresponding first voltage value corresponding to a difference between the initial temperature of the temperature-sensitive body when the heating body generates heat and a first temperature at the moment when a first time has elapsed from the start of application of the single pulse and a liquid-type-corresponding second voltage value corresponding to a difference between the initial temperature of the temperature-sensitive body and a second temperature at the moment when a second time longer than the first time has elapsed from the start of application of the single pulse.

Description

明 細 書  Specification
液種識別装置  Liquid type identification device
技術分野  Technical field
[0001] 本発明は、液体の熱的性質を利用して当該液体の種類を識別する液種識別装置 に関するものである。  The present invention relates to a liquid type identification device that identifies the type of a liquid by using the thermal properties of the liquid.
背景技術  Background art
[0002] 自動車の内燃エンジンでは、燃料として一般的にはガソリンまたは軽油が使用され る。これらは、多種の炭化水素その他の材料の混合体である。しかるに、将来におい て化石燃料の産出量が減少するおそれがあること及び地球温暖化防止のため炭酸 ガス排出量の削減が要請されることから、内燃エンジンの燃料としてガソリン中に植 物由来の燃料であるアルコール例えばエタノールまたはメタノールを混合することが 検討されている。  [0002] In an internal combustion engine of an automobile, gasoline or light oil is generally used as fuel. These are mixtures of various hydrocarbons and other materials. However, since there is a possibility that the output of fossil fuels will decrease in the future and reduction of carbon dioxide emissions is required to prevent global warming, plant-based fuels in gasoline are used as fuel for internal combustion engines. It has been considered to mix alcohols such as ethanol or methanol.
[0003] これらの燃料の材料組成はガソリンや軽油の原料となる原油の材料組成及び留出 条件、さらにはアルコール添加量などに応じて決まる。従って、これら燃料の燃焼に 関する特性はその材料組成に応じて異なり、このため、或る材料組成の燃料の燃焼 を前提として内燃エンジンの側の燃焼条件 (空燃比や単位時間あたりの燃料噴射量 など)を最適に設定したとしても、他の燃料に関しては最適条件とならない場合がある  [0003] The material composition of these fuels is determined according to the material composition and distilling conditions of crude oil, which is a raw material for gasoline and light oil, and the amount of alcohol added. Therefore, the characteristics of the combustion of these fuels vary depending on the material composition. Etc.) may not be optimal for other fuels
[0004] 内燃エンジンの出力効率を向上させて燃費を向上させ且つ排気ガス中の不完全 燃焼生成物である炭化水素 (HC)や一酸化炭素(C〇)などの量を低減するためには 、実際に内燃エンジンに供給される燃料に応じて理想的な比率にて空気を混合する (即ち空燃比を最適化して)等の制御を行って燃焼させることが必要である。 [0004] In order to improve the fuel efficiency by improving the output efficiency of an internal combustion engine and to reduce the amount of incomplete combustion products such as hydrocarbons (HC) and carbon monoxide (C〇) in exhaust gas, It is necessary to perform combustion by performing control such as mixing air at an ideal ratio (that is, optimizing the air-fuel ratio) according to the fuel actually supplied to the internal combustion engine.
[0005] 燃料の材料組成を一定にし最適燃焼条件が変化しないようにするために、上記化 石燃料の成分である個々の炭化水素たとえばペンタン、シクロへキサン、オクタン等 、或いは個々のアルコールたとえばメタノール、エタノール等を、それぞれ単独でまた はせいぜい 2種程度を混合して燃料として使用することが考えられている。この種の 燃料には、大別して、炭化水素系燃料とアルコール系燃料とがある。 [0006] 而して、このような各種の燃料が巿中において並行して用いられるようになると、燃 料タンクへの燃料補給の際に誤って所定のもの以外の燃料が補給されるおそれがあ る。内燃エンジンへと供給される燃料が所定のものと異なる場合には、エンジンの出 力効率が極端に低下することがあり、そのような事態の発生は避けなければならない [0005] In order to keep the material composition of the fuel constant and not to change the optimal combustion conditions, individual hydrocarbons such as pentane, cyclohexane, octane, etc., which are components of the fossil fuel, or individual alcohols such as methanol , Ethanol and the like are considered to be used as fuel, either alone or as a mixture of at most two types. This type of fuel is roughly divided into hydrocarbon fuel and alcohol fuel. [0006] Therefore, if such various fuels are used in parallel in the fuel tank, there is a risk that fuel other than the predetermined fuel may be erroneously supplied when refueling the fuel tank. is there. If the fuel supplied to the internal combustion engine is different from the prescribed one, the output efficiency of the engine may be extremely reduced, and such a situation must be avoided
[0007] このため、 自動車の側でも、燃料タンクから内燃エンジンへと供給される燃料の種 類を実際に検知して、その種類が所定のものであることの確認を行うことが望ましい。 [0007] For this reason, it is desirable that the type of fuel supplied from the fuel tank to the internal combustion engine is also actually detected on the vehicle side to confirm that the type is predetermined.
[0008] また、検知された燃料の種類が所定のものと類似のものである場合には、検知され た燃料の種類に応じて内燃エンジンの燃焼条件の最適化を図ることが望ましい。即 ち、内燃エンジンに実際に供給される燃料の種類を識別し、その識別結果に応じて 内燃エンジンの燃焼条件を適宜設定することで、実際に燃焼に供される燃料の種類 に応じた好適な燃焼状態(即ち、内燃エンジンの出力トノレクを高め、排気ガス中の不 完全燃焼生成物の量を低減する燃焼状態)を実現することが望ましレ、。  [0008] Further, when the detected fuel type is similar to a predetermined fuel type, it is desirable to optimize the combustion conditions of the internal combustion engine according to the detected fuel type. That is, the type of fuel actually supplied to the internal combustion engine is identified, and the combustion conditions of the internal combustion engine are appropriately set in accordance with the identification result. It is desirable to achieve a stable combustion state (ie, a combustion state that increases the output tonnolek of the internal combustion engine and reduces the amount of incomplete combustion products in the exhaust gas).
[0009] 力べして、炭化水素系燃料とアルコール系燃料とでは互いに燃焼特性及び物性が 大きく異なるので、先ず被測定液体 (燃料)がこれらのうちのいずれに属するかを判 別することが肝要である。また、被測定液体 (燃料)が炭化水素系燃料またはアルコ ール系燃料のうちのどのようなものであるかを識別することが好ましい。  [0009] Since the combustion characteristics and the physical properties of hydrocarbon fuels and alcohol fuels are greatly different from each other, it is important to first determine to which of these the liquid to be measured (fuel) belongs. It is. Further, it is preferable to identify what kind of liquid to be measured (fuel) is a hydrocarbon fuel or an alcohol fuel.
[0010] 液体を含む流体の種類を識別する方法としては、例えば特開平 11 - 153561号公 報(特許文献 1)に、通電により発熱体を発熱させ、この発熱により感温体を加熱し、 発熱体から感温体への熱伝達に対し被識別流体により熱的影響を与え、感温体の 電気抵抗に対応する電気的出力に基づき、被識別流体の種類を判別する流体識別 方法であって、発熱体への通電を周期的に行うもの、が開示されている。  [0010] As a method of identifying the type of fluid containing a liquid, for example, Japanese Unexamined Patent Publication No. 11-153561 (Patent Document 1) discloses a method in which a heating element is heated by energization, and a thermosensitive element is heated by this heat generation. A fluid identification method in which the fluid to be identified thermally influences the heat transfer from the heating element to the temperature-sensitive body, and the type of the fluid to be identified is determined based on the electrical output corresponding to the electrical resistance of the temperature-sensitive body. Further, there is disclosed an apparatus in which energization of a heating element is periodically performed.
特許文献 1 :特開平 11—153561号公報(特に、段落 [0042] [0049] ) 発明の開示  Patent Document 1: Japanese Patent Application Laid-Open No. 11-153561 (in particular, paragraphs [0042] and [0049])
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] し力 ながら、特許文献 1に記載の流体識別方法は、たとえば水と空気と油などの 性状のかなり異なる流体について、代表値によって識別を行うことが可能であるが、 上記の様な炭化水素系液体とアルコール系液体との峻別を正確且つ迅速に行うこと は十分良好にはなし得ない。 [0011] However, the fluid identification method described in Patent Document 1 can identify fluids having considerably different properties, such as water, air, and oil, using representative values, for example. Accurate and quick distinction between hydrocarbon liquid and alcohol liquid Cannot be done well enough.
[0012] 本発明は、以上のような現状に鑑みて、特に燃料として使用され得る炭化水素系液 体とアルコール系液体とを正確且つ迅速且つ簡易に識別することの可能な識別装置 を提供することを目的とするものである。  [0012] In view of the above situation, the present invention provides an identification device that can accurately, quickly, and easily identify a hydrocarbon-based liquid and an alcohol-based liquid that can be used as fuel in particular. It is intended for that purpose.
[0013] また、本発明は、被測定液体が炭化水素系液体またはアルコール系液体のうちの どのようなものであるかを正確且つ迅速且つ簡易に識別することの可能な識別装置 を提供することを目的とするものである。 [0013] Further, the present invention provides an identification device capable of accurately, quickly and easily identifying what kind of liquid to be measured is a hydrocarbon liquid or an alcohol liquid. The purpose is.
課題を解決するための手段  Means for solving the problem
[0014] 本発明によれば、上記目的を達成するものとして、 According to the present invention, the above object is achieved by:
炭化水素系液体またはアルコール系液体に属する被測定液体を識別する液種識 別装置であって、  A liquid type identification device for identifying a liquid to be measured belonging to a hydrocarbon-based liquid or an alcohol-based liquid,
前記被測定液体の流通経路に臨んで配置された識別センサー部を備えており、前 記識別センサー部は発熱体及び感温体を含んでなる傍熱型液種検知部と前記被測 定液体の温度を検知する液温検知部とを有しており、  An identification sensor unit is provided facing the flow path of the liquid to be measured. The identification sensor unit includes an indirectly heated liquid type detection unit including a heating element and a temperature sensing element, and the liquid to be measured. And a liquid temperature detecting unit for detecting the temperature of the
前記傍熱型液種検知部の発熱体に対して単一パルス電圧を印加して前記発熱体 を発熱させ、前記傍熱型液種検知部の感温体と前記液温検知部とを含んでなる液 種検知回路の出力に基づき前記被測定液体の識別を行う識別演算部を備えており 、該識別演算部は、前記発熱体の発熱の際の、前記感温体の初期温度と前記単一 パルス印加の開始から第 1の時間経過時の第 1温度との差に対応する液種対応第 1 電圧値及び前記感温体の初期温度と前記単一パルス印加の開始から前記第 1の時 間より長い第 2の時間経過時の第 2温度との差に対応する液種対応第 2電圧値により 、前記被測定液体の識別を行うことを特徴とする液種識別装置、  A single pulse voltage is applied to the heating element of the indirectly heated liquid type detection unit to cause the heating element to generate heat, and includes a temperature sensing element of the indirectly heated liquid type detection unit and the liquid temperature detection unit. And a discriminating operation unit for discriminating the liquid to be measured based on the output of the liquid type detection circuit, wherein the discriminating operation unit determines the initial temperature of the thermosensitive element when the heat generating element generates heat. The first voltage value corresponding to the liquid type corresponding to the difference from the first temperature at the lapse of the first time from the start of the single pulse application, the initial temperature of the thermosensitive element, and the first temperature from the start of the single pulse application. A liquid type identification device, wherein the liquid to be measured is identified by a liquid type-corresponding second voltage value corresponding to a difference from a second temperature at a lapse of a second time longer than the second time.
が提供される。  Is provided.
[0015] 本発明の一態様においては、前記第 2の時間は前記単一パルスの印加時間である 。本発明の一態様においては、前記第 1の時間は前記単一パルスの印加時間の 1/ 2以下である。本発明の一態様においては、前記第 1の時間は 0. 5— 1. 5秒である。 本発明の一態様においては、前記単一パルスの印加時間は 3— 10秒である。  [0015] In one embodiment of the present invention, the second time is an application time of the single pulse. In one embodiment of the present invention, the first time is 以下 or less of the application time of the single pulse. In one embodiment of the present invention, the first time is 0.5-1.5 seconds. In one embodiment of the present invention, the application time of the single pulse is 3 to 10 seconds.
[0016] 本発明の一態様においては、前記感温体の初期温度に対応する電圧値として前 記発熱体に対する前記単一パルス印加の開始前の初期電圧を所定回数サンプリン グして平均することで得られた平均初期電圧値を用い、前記感温体の第 1温度に対 応する電圧値として前記発熱体に対する前記単一パルス印加の開始から第 1の時間 経過時の第 1電圧を所定回数サンプリングして平均することで得られた平均第 1電圧 値を用い、前記感温体の第 2温度に対応する電圧値として前記発熱体に対する前記 単一パルス印加の開始から第 2の時間経過時の第 2電圧を所定回数サンプリングし て平均することで得られた平均第 2電圧値を用い、前記液種対応第 1電圧値として前 記平均第 1電圧値と前記平均初期電圧値との差を用い、前記液種対応第 2電圧値と して前記平均第 2電圧値と前記平均初期電圧値との差を用いる。 In one embodiment of the present invention, the voltage value corresponding to the initial temperature of the temperature sensitive body A voltage value corresponding to the first temperature of the temperature sensing element is obtained by using an average initial voltage value obtained by sampling and averaging the initial voltage before the application of the single pulse to the heating element a predetermined number of times. As an average first voltage value obtained by sampling and averaging the first voltage at a lapse of a first time a predetermined number of times from the start of the single pulse application to the heating element, (2) As a voltage value corresponding to the temperature, an average second voltage value obtained by sampling a predetermined number of times of a second voltage after a lapse of a second time from the start of the single pulse application to the heating element and averaging the same is used. The difference between the average first voltage value and the average initial voltage value is used as the liquid type corresponding first voltage value, and the average second voltage value and the average initial voltage value are used as the liquid type corresponding second voltage value. The difference from the voltage value is used.
[0017] 本発明の一態様においては、前記識別演算部には前記液温検知部から前記被測 定液体の液温に対応する液温対応出力値が入力され、前記識別演算部では、既知 の複数の種類の参照被測定液体にっレ、て作成され液温に対する液種対応第 1電圧 値の関係を示す検量線を用いて、識別対象の被測定液体について得られた前記液 温対応出力値と前記液種対応第 1電圧値とに基づき、前記被測定液体が炭化水素 系液体及びアルコール系液体のうちのいずれであるかの判別を行う。本発明の一態 様においては、前記識別演算部には前記液温検知部から前記被測定液体の液温 に対応する液温対応出力値が入力され、前記識別演算部では、炭化水素系液体及 びアルコール系液体につきそれぞれ既知の複数の種類の参照被測定液体について 作成され液温に対する液種対応第 2電圧値の関係を示す検量線を用いて、識別対 象の被測定液体について得られた前記液温対応出力値と前記液種対応第 2電圧値 と前記判別の結果とに基づき、前記被測定液体の識別を行う。 In one aspect of the present invention, a liquid temperature corresponding output value corresponding to the liquid temperature of the liquid to be measured is input from the liquid temperature detection unit to the identification calculation unit, and the identification calculation unit The liquid temperature correspondence obtained for the measurement target liquid to be identified is obtained using a calibration curve prepared based on the plurality of types of reference liquids to be measured and showing the relationship of the liquid type corresponding first voltage value to the liquid temperature. Based on the output value and the liquid type-corresponding first voltage value, it is determined whether the liquid to be measured is a hydrocarbon liquid or an alcohol liquid. In one embodiment of the present invention, a liquid temperature corresponding output value corresponding to the liquid temperature of the liquid to be measured is input from the liquid temperature detecting unit to the identification calculation unit, and the identification calculation unit includes a hydrocarbon-based liquid. Using a calibration curve created for a plurality of types of reference liquids to be measured, each of which is known for alcoholic liquids, and showing the relationship between the liquid temperature and the second voltage value corresponding to the liquid type, it can be obtained for the liquid to be identified. The liquid to be measured is identified based on the output value corresponding to the liquid temperature, the second voltage value corresponding to the liquid type, and the result of the determination.
[0018] 本発明の一態様においては、前記識別演算部はマイクロコンピュータを含んでなる 。本発明の一態様においては、前記傍熱型液種検知部及び液温検知部はそれぞれ 前記被測定液体との熱交換のための液種検知部用熱伝達部材及び液温検知部用 熱伝達部材を備えている。 [0018] In one embodiment of the present invention, the identification calculation unit includes a microcomputer. In one aspect of the present invention, the indirectly heated liquid type detection unit and the liquid temperature detection unit are respectively a heat transfer member for the liquid type detection unit and a heat transfer for the liquid temperature detection unit for heat exchange with the liquid to be measured. It has a member.
発明の効果  The invention's effect
[0019] 本発明によれば、傍熱型液種検知部の発熱体に対して単一パルス電圧を印加して 前記発熱体を発熱させ、液種検知回路の出力に基づき識別演算部において、前記 発熱体の発熱の際の液種対応第 1電圧値及び液種対応第 2電圧値により炭化水素 系液体またはアルコール系液体に属する被測定液体の識別を行うようにしたので、 被測定液体を迅速且つ容易に識別することが可能である。 [0019] According to the present invention, a single pulse voltage is applied to the heating element of the indirectly heated liquid type detection unit to cause the heating element to generate heat, and the identification calculation unit based on the output of the liquid type detection circuit, Said The liquid to be measured belonging to hydrocarbon liquid or alcohol liquid is identified based on the liquid type first voltage value and liquid type corresponding second voltage value when the heating element generates heat. And it can be easily identified.
[0020] 特に、前記感温体の初期温度に対応する電圧値として平均初期電圧値を用い、前 記感温体の第 1温度に対応する電圧値として平均第 1電圧値を用レ、、前記感温体の 第 2温度に対応する電圧値として平均第 2電圧値を用い、前記液種対応第 1電圧値 として前記平均第 1電圧値と前記平均初期電圧値との差を用い、前記液種対応第 2 電圧値として前記平均第 2電圧値と前記平均初期電圧値との差を用いることで、より 安定した識別が可能である。  [0020] In particular, an average initial voltage value is used as a voltage value corresponding to the initial temperature of the temperature sensing element, and the average first voltage value is used as a voltage value corresponding to the first temperature of the temperature sensing element, The average second voltage value is used as a voltage value corresponding to the second temperature of the thermosensitive body, and the difference between the average first voltage value and the average initial voltage value is used as the liquid type corresponding first voltage value, By using the difference between the average second voltage value and the average initial voltage value as the liquid type-corresponding second voltage value, more stable identification is possible.
[0021] また、液温に対する液種対応第 1電圧値の関係を示す第 1の検量線を用いて、被 測定液体について得られた液温対応出力値と前記液種対応第 1電圧値とに基づき、 前記被測定液体が炭化水素系液体及びアルコール系液体のうちのいずれであるか の判別を行い、炭化水素系液体及びアルコール系液体のそれぞれについての液温 に対する液種対応第 2電圧値の関係を示す検量線を用いて、被測定液体について 得られた液温対応出力値と前記液種対応第 2電圧値と前記判別の結果とに基づき、 前記被測定液体の識別を行うようにすることで、より精度の高い識別が可能となる。 発明を実施するための最良の形態  [0021] Further, using a first calibration curve indicating the relationship between the liquid temperature and the liquid type-corresponding first voltage value, the liquid temperature-corresponding output value obtained for the liquid to be measured and the liquid type-corresponding first voltage value are used. A determination is made as to whether the liquid to be measured is a hydrocarbon-based liquid or an alcohol-based liquid based on the above, and the liquid type-corresponding second voltage value for the liquid temperature of each of the hydrocarbon-based liquid and the alcohol-based liquid Using the calibration curve indicating the relationship, the liquid to be measured is identified based on the output value corresponding to the liquid temperature obtained for the liquid to be measured, the second voltage value corresponding to the liquid type, and the result of the determination. By doing so, more accurate identification becomes possible. BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、本発明の実施の形態を、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0023] 図 1は本発明による液種識別装置の一実施形態の使用状態を示す模式的構成図 であり、図 2 4はその部分断面図である。本実施形態では被測定液体供給経路が 被測定液体 (燃料)のタンクから内燃エンジンへと被測定液体を供給するものである が、本発明の被測定液体供給経路は、これに限定されることはなぐ例えばタンクか らタンクローリーへと被測定液体を供給する経路、或いは大型タンクから小型タンク へと被測定液体を供給する経路などであってもよい。 FIG. 1 is a schematic configuration diagram showing a use state of an embodiment of a liquid type identification device according to the present invention, and FIG. 24 is a partial cross-sectional view thereof. In the present embodiment, the measured liquid supply path supplies the measured liquid from the tank of the measured liquid (fuel) to the internal combustion engine. However, the measured liquid supply path of the present invention is not limited to this. For example, a path for supplying the liquid to be measured from a tank to a tank lorry, or a path for supplying the liquid to be measured from a large tank to a small tank may be used.
[0024] 図 1に示されているように、被測定液体タンク Tから内燃エンジン Eへと被測定液体 を供給する経路の途中に被測定液体の種類を識別する液種識別装置 1が配置され ている。識別装置 1は、測定部 3と、被測定液体供給経路の上流側部分たるタンク側 部分 (配管) 14Tに管継手 8Tにより一端が接続される第 1流通路 4Tと、被測定液体 供給経路の下流側部分たる内燃エンジン側部分 (配管) 14Eに管継手 8Eにより一端 が接続される第 2流通路 4Eとを備えている。測定部 3は、ケース基板 2a及びケース力 バー 2bにより形成される被測定液体流通経路 20を有しており、該流通経路はその 一端(図 1一 3では下端)が上記第 1流通路 4Tの他端と接続されており且つ他端(図 1一 3では上端)が上記第 2流通路 4Eの他端と接続されている。 As shown in FIG. 1, a liquid type identification device 1 for identifying the type of the liquid to be measured is arranged in the course of supplying the liquid to be measured from the liquid tank T to the internal combustion engine E to the liquid to be measured. ing. The identification device 1 includes a measurement section 3, a first flow passage 4T having one end connected to a tank side portion (pipe) 14T, which is an upstream portion of the liquid supply path, by a pipe joint 8T, and a liquid to be measured. An internal combustion engine-side portion (pipe) 14E, which is a downstream portion of the supply path, includes a second flow passage 4E, one end of which is connected by a pipe joint 8E. The measuring section 3 has a liquid flow path 20 to be measured formed by the case substrate 2a and the case force bar 2b, and one end of the flow path (the lower end in FIGS. 13A and 13B) has the first flow path 4T. And the other end (the upper end in FIGS. 13 to 13) is connected to the other end of the second flow passage 4E.
[0025] 本実施形態の識別装置は、上記の測定部 3、第 1流通路 4Tの一部(即ち、図 1に 示されているように被測定液体供給経路のタンク側部分 14Tと接続される端部を除く 部分)及び第 2流通路 4Eの一部(即ち、図 1に示されているように被測定液体供給経 路のエンジン側部分 14Eと接続される端部を除く部分)を収容するハウジング 6を備 えている。更に、第 1流通路 4Tのハウジング 6外の部分 (即ち、被測定液体供給経路 のタンク側部分 14Tと接続される端部)は断熱被覆材 4T1により覆われており、第 2 流通路 4Eのハウジング 6外の部分 (即ち、被測定液体供給経路のエンジン側部分 1 4Eと接続される端部)は断熱被覆材 4E1により覆われてレ、る。  The identification device of the present embodiment is connected to the measuring section 3 and a part of the first flow path 4T (that is, as shown in FIG. 1, connected to the tank side portion 14T of the liquid supply path to be measured). Part of the second flow passage 4E (that is, the part other than the end connected to the engine side part 14E of the liquid supply path to be measured as shown in FIG. 1). It has a housing 6 for housing. Further, the portion of the first flow passage 4T outside the housing 6 (that is, the end connected to the tank side portion 14T of the liquid supply path to be measured) is covered with a heat insulating coating material 4T1, and the second flow passage 4E The portion outside the housing 6 (that is, the end connected to the engine side portion 14E of the liquid supply path to be measured) is covered with the heat insulating coating 4E1.
[0026] ハウジング 6内には、後述する液種検知回路を構成する回路基板 12が配置されて いる。該回路基板 12には、後述する識別演算部を構成するマイクロコンピュータ(マ イコン)が搭載されている。また、回路基板 12と外部との通信のための配線 13が設け られている。  In the housing 6, a circuit board 12 constituting a liquid type detection circuit described later is arranged. The circuit board 12 is provided with a microcomputer (microcomputer) constituting a discrimination calculation unit described later. Further, a wiring 13 for communication between the circuit board 12 and the outside is provided.
[0027] ハウジング 6の内部空間(測定部 3、第 1流通路 4T、第 2流通路 4Ε及び回路基板 1 2等を除く部分)には断熱材が充填されている。この断熱材及び上記断熱被覆材 4Τ 1 , 4E1としては、例えば、ゴムまたは発泡プラスチックなどからなるものを使用するこ とができる。力べして、第 1流通路 4Τ及び第 2流通路 4Εが金属製であっても、断熱被 覆材 4T1 , 4Τ1、ハウジング 6及びその内部の断熱材が存在することで、測定部 3に 対する外部温度の影響を低減することができ、識別精度を向上させることができる。 ハウジング 6を設けない場合には、第 1流通路 4Τ及び第 2流通路 4Εの全体に断熱 被覆を施すことが好ましい。  [0027] The interior space of the housing 6 (a part excluding the measurement unit 3, the first flow passage 4T, the second flow passage 4 ', the circuit board 12, and the like) is filled with a heat insulating material. As the heat insulating material and the heat insulating covering materials 4 1 and 4E1, for example, those made of rubber or foamed plastic can be used. By force, even if the first flow passage 4 通路 and the second flow passage 4Ε are made of metal, the presence of the heat insulating coverings 4T1, 4Τ1, the housing 6, and the heat insulating material inside the housing 6 The influence of the external temperature can be reduced, and the identification accuracy can be improved. When the housing 6 is not provided, it is preferable to apply a heat insulating coating to the entire first flow passage 4Τ and the second flow passage 4Ε.
[0028] また、測定部 3は、被測定液体流通経路 20に臨んで配置された識別センサー部 2 を有する。識別センサー部 2は、発熱体及び感温体を含んでなる傍熱型液種検知部 21と被測定液体温度を測定する液温検知部 22とを有する。傍熱型液種検知部 21と 液温検知部 22とは、上下方向に一定距離隔てて配置されている。図 5に傍熱型液種 検知部 21の断面図を示す。 [0028] The measuring unit 3 includes an identification sensor unit 2 disposed facing the liquid flow path 20 to be measured. The identification sensor section 2 has an indirectly heated liquid type detection section 21 including a heating element and a temperature sensing element, and a liquid temperature detection section 22 for measuring the temperature of the liquid to be measured. Indirectly heated liquid type detection unit 21 The liquid temperature detector 22 is arranged at a certain distance in the vertical direction. Fig. 5 shows a cross-sectional view of the indirectly heated liquid type detection unit 21.
[0029] 図示されているように、これら傍熱型液種検知部 21と液温検知部 22とは、モールド 樹脂 23によって一体化されている。図 5に示されているように、傍熱型液種検知部 2 1は、発熱体及び感温体を含んでなる薄膜チップ 21 a、該薄膜チップと接合材 2 lbに より接合された液種検知部用熱伝達部材としての金属製フィン 21c、及び薄膜チップ の発熱体の電極及び感温体の電極とそれぞれボンディングワイヤー 21dにより電気 的に接続されている外部電極端子 21eを有する。液温検知部 22も同様な構成を有 しており、液温検知部用熱伝達部材としての金属製フィン 22c及び外部電極端子 22 eを有する。 As shown, the indirectly heated liquid type detection unit 21 and the liquid temperature detection unit 22 are integrated by a mold resin 23. As shown in FIG. 5, the indirectly heated liquid type detection unit 21 is composed of a thin film chip 21a including a heating element and a temperature sensing element, and a liquid joined by the thin film chip and a bonding material 2 lb. It has a metal fin 21c as a heat transfer member for the seed detection section, and external electrode terminals 21e electrically connected to electrodes of a heating element and a temperature sensing element of a thin film chip, respectively, by bonding wires 21d. The liquid temperature detecting section 22 has a similar configuration, and has a metal fin 22c and an external electrode terminal 22e as a heat transfer member for the liquid temperature detecting section.
[0030] 図 6に傍熱型液種検知部 21の薄膜チップ 21aの分解斜視図を示す。薄膜チップ 2 laは、たとえば Al O力、らなる基板 21alと、 Ti/Ptからなる感温体 21a2と、 SiOか  FIG. 6 is an exploded perspective view of the thin film chip 21a of the indirectly heated liquid type detection unit 21. The thin film chip 2 la is composed of, for example, Al O force, a substrate 21al made of Ti, a temperature sensing element 21a2 made of Ti / Pt,
2 3 2 らなる層間絶縁膜 21a3と、 TaSiO力 なる発熱体 21a4及び Niからなる発熱体電  An inter-layer insulating film 21a3 consisting of 2 3 2, a heating element 21a4 consisting of TaSiO
2  2
極 21a5と、 SiO力 なる保護膜 21a6と、 Ti/Auからなる電極パッド 21 a7とを、順に  The pole 21a5, the protective film 21a6 with SiO force, and the electrode pad 21a7 made of Ti / Au
2  2
適宜積層したものからなる。感温体 21a2は、図示はされていないが蛇行パターン状 に形成されている。尚、液温検知部 22の薄膜チップ 22aも同様な構造であるが、発 熱体を作用させずに感温体 22a2のみを作用させる。  It consists of what was laminated suitably. The temperature sensing element 21a2 is formed in a meandering pattern (not shown). The thin film chip 22a of the liquid temperature detecting section 22 has the same structure, but only the temperature sensing element 22a2 is operated without operating the heat generating element.
[0031] 図 3及び図 4に示されているように、測定部 3のケース基板 2aに、傍熱型液種検知 部 21及び液温検知部 22のモールド樹脂 23が取り付けられている。ケース基板 2aに は、液種検知部用フィン 21c及び液温検知部用フィン 22cを経由するようにカバー部 材 2dが付設されている。このカバー部材により、液種検知部用フィン 21c及び液温検 知部用フィン 22cを順次通って図 1一 3で上下方向に延びた上下両端開放の被測定 液体導入路 24が形成される。尚、図 4に示されているように、カバー部材 2dをケース 基板 2aに取り付けることでモールド樹脂 23のフランジ部がケース基板 2aの方へと押 圧され、これによりモールド樹脂 23がケース基板 2aに対して固定されてレ、る。  As shown in FIGS. 3 and 4, the indirectly heated liquid type detection unit 21 and the mold resin 23 of the liquid temperature detection unit 22 are attached to the case substrate 2 a of the measurement unit 3. The case substrate 2a is provided with a cover member 2d so as to pass through the fins 21c for the liquid type detection unit and the fins 22c for the liquid temperature detection unit. With this cover member, a liquid introduction passage 24 to be measured is formed which extends vertically in FIG. 13 through the liquid type detecting portion fins 21c and the liquid temperature detecting portion fins 22c and is open at both upper and lower ends. As shown in FIG. 4, when the cover member 2d is attached to the case substrate 2a, the flange portion of the mold resin 23 is pressed toward the case substrate 2a, whereby the mold resin 23 is displaced. It is fixed against.
[0032] 以上のケース基板 2a、ケースカバー 2b、カバー部材 2d、第 1流通路 4T及び第 2流 通路 4Eは、レ、ずれも耐腐食性材料たとえばステンレススチールからなる。  [0032] The case substrate 2a, the case cover 2b, the cover member 2d, the first flow passage 4T, and the second flow passage 4E are made of a corrosion-resistant material such as stainless steel.
[0033] 図 7に、本実施形態における液種識別ための回路の構成を示す。上記の傍熱型液 種検知部 21の感温体 21a2、液温検知部 22の感温体 22a2、及び 2つの抵抗体 64 , 66によりブリッジ回路 68が形成されている。このブリッジ回路 68の出力が差動増幅 器 70に入力され、該差動増幅器の出力(液種検知回路出力またはセンサー出力とも いう)が不図示の AZD変換器を介して識別演算部を構成するマイコン (マイクロコン ピュータ) 72に入力される。また、マイコン 72には液温検知部 22の感温体 22a2から 液温検知増幅器 71を経て被測定液体液温に対応する液温対応出力値が入力され る。一方、マイコン 72からは傍熱型液種検知部 21の発熱体 21a4への通電経路に位 置するスィッチ 74に対してその開閉を制御するヒーター制御信号が出力される。 FIG. 7 shows a configuration of a circuit for identifying a liquid type in the present embodiment. The above-mentioned indirectly heated liquid A bridge circuit 68 is formed by the temperature sensing element 21a2 of the seed detection unit 21, the temperature sensing element 22a2 of the liquid temperature detection unit 22, and the two resistors 64 and 66. The output of the bridge circuit 68 is input to the differential amplifier 70, and the output of the differential amplifier (also referred to as the liquid type detection circuit output or sensor output) constitutes a discrimination calculation unit via an AZD converter not shown. Microcomputer (microcomputer) Input to 72. The microcomputer 72 receives a liquid temperature corresponding output value corresponding to the liquid temperature to be measured from the temperature sensing element 22a2 of the liquid temperature detecting section 22 via the liquid temperature detecting amplifier 71. On the other hand, the microcomputer 72 outputs a heater control signal for controlling the opening and closing of the switch 74 located on the power supply path to the heating element 21a4 of the indirectly heated liquid type detection unit 21.
[0034] 以下、本実施形態における液種識別動作につき説明する。 Hereinafter, the liquid type identification operation in the present embodiment will be described.
[0035] 液種識別の際には、タンク Tからエンジン Eへの被測定液体の供給を停止する。即 ち、液種識別は、エンジン動作停止状態で行われる。タンク Tからエンジン Eへの被 測定液体の供給経路には、識別装置 1の被測定液体流通経路 20、第 1流通路 4T 及び第 2流通路 4Eの内部を含めて、常に被測定液体が充満している。従って、液種 識別の際には、被測定液体導入路 24内を含めて被測定液体流通経路 20内の被測 定液体は、理想的には実質上強制流動せしめられることはない。  When the liquid type is identified, supply of the liquid to be measured from the tank T to the engine E is stopped. That is, the liquid type identification is performed when the engine operation is stopped. The supply path of the liquid to be measured from the tank T to the engine E is always filled with the liquid to be measured, including the inside of the liquid flow path 20, the first flow path 4T, and the second flow path 4E of the identification device 1. are doing. Therefore, at the time of liquid type identification, the liquid to be measured in the liquid flow path 20 to be measured, including the liquid introduction path 24 to be measured, is not substantially forced to flow ideally.
[0036] マイコン 72からスィッチ 74に対して出力されるヒーター制御信号により、該スィッチ 74を所定時間(たとえば 3— 10秒間;図 8では 4秒間)閉じることで、発熱体 21a4に 対して所定高さ(たとえば 10V)の単一パルス電圧 Pを印加して該発熱体を発熱させ る。この時の差動増幅器 70の出力電圧(センサー出力) Qは、図 8に示されるように、 発熱体 21a4への電圧印加中は次第に増加し、発熱体 21a4への電圧印加終了後 は次第に減少する。  When the switch 74 is closed for a predetermined time (for example, 3 to 10 seconds; 4 seconds in FIG. 8) by a heater control signal output from the microcomputer 72 to the switch 74, the predetermined height of the heating element 21a4 is raised. A single pulse voltage P (for example, 10 V) is applied to cause the heating element to generate heat. At this time, the output voltage (sensor output) Q of the differential amplifier 70 gradually increases during application of the voltage to the heating element 21a4, and gradually decreases after the voltage application to the heating element 21a4, as shown in FIG. I do.
[0037] マイコン 72では、図 8に示されているように、発熱体 21a4への電圧印加の開始前 の所定時間(たとえば 0. 1秒間)センサー出力を所定回数 (たとえば 256回)サンプリ ングし、その平均値を得る演算を行って平均初期電圧値 VIを得る。この平均初期電 圧値 VIは、感温体 21 a2の初期温度に対応する。  As shown in FIG. 8, the microcomputer 72 samples the sensor output for a predetermined number of times (for example, 256 times) for a predetermined time (for example, 0.1 second) before the start of voltage application to the heating element 21a4. The average initial voltage value VI is obtained by calculating the average value. This average initial voltage value VI corresponds to the initial temperature of the thermosensitive body 21a2.
[0038] また、図 8に示されているように、発熱体への電圧印加の開始から比較的短い時間 である第 1の時間(例えば単一パルスの印加時間の 1Z2以下であって 0. 5-1. 5秒 間;図 8では 1秒間)経過時(具体的には第 1の時間の経過の直前)にセンサー出力 を所定回数 (たとえば 256回)サンプリングし、その平均値をとる演算を行って平均第 1電圧値 V2を得る。この平均第 1電圧値 V2は、感温体 21a2の単一ノ ルス印加開始 力 第 1の時間経過時の第 1温度に対応する。そして、平均初期電圧値 VIと平均第 1電圧値 V2との差 V01 (=V2-V1)を液種対応第 1電圧値として得る。 Further, as shown in FIG. 8, a first time (for example, 1Z2 or less of the application time of a single pulse, which is less than 0.1Z2, which is a relatively short time from the start of voltage application to the heating element). 5-1. 5 seconds; 1 second in Fig. 8) (Sensor output at the end of the first time) Is sampled a predetermined number of times (for example, 256 times), and an operation for taking the average value is performed to obtain an average first voltage value V2. This average first voltage value V2 corresponds to the first temperature at the time when the first time for applying a single pulse to the temperature sensing element 21a2 elapses. Then, a difference V01 (= V2-V1) between the average initial voltage value VI and the average first voltage value V2 is obtained as a liquid type-corresponding first voltage value.
[0039] また、図 8に示されているように、発熱体への電圧印加の開始から比較的長い時間 である第 2の時間(例えば単一パルスの印加時間;図 8では 4秒間)経過時(具体的に は第 2の時間の経過の直前)にセンサー出力を所定回数 (たとえば 256回)サンプリ ングし、その平均値をとる演算を行って平均第 2電圧値 V3を得る。この平均第 2電圧 値 V3は、感温体 21a2の単一パルス印加開始から第 2の時間経過時の第 2温度に対 応する。そして、平均初期電圧値 VIと平均第 2電圧値 V3との差 V02 (=V3-V1)を 液種対応第 2電圧値として得る。  Further, as shown in FIG. 8, a second time (for example, a single pulse application time; 4 seconds in FIG. 8) that is a relatively long time from the start of voltage application to the heating element has elapsed. At this time (specifically, immediately before the lapse of the second time), the sensor output is sampled a predetermined number of times (for example, 256 times), and an average is calculated to obtain an average second voltage value V3. This average second voltage value V3 corresponds to the second temperature when a second time has elapsed since the start of the single pulse application to the temperature sensing element 21a2. Then, a difference V02 (= V3-V1) between the average initial voltage value VI and the average second voltage value V3 is obtained as a liquid type-corresponding second voltage value.
[0040] ところで、以上のような単一パルスの電圧印加に基づき発熱体 21a4で発生した熱 の一部は被測定液体を介して感温体 21a2へと伝達される。この熱伝達には、パルス 印加開始からの時間に依存して異なる主として 2つの形態がある。即ち、パルス印加 開始から比較的短い時間(例えば 1. 5秒)内の第 1段階では、熱伝達は主として伝導 が支配的である。これに対して、第 1段階後の第 2段階では、熱伝達は主として自然 対流が支配的である。これは、第 2段階では、第 1段階で加熱された被測定液体によ る自然対流が発生し、これによる熱伝達の比率が高くなるからである。  By the way, part of the heat generated in the heating element 21a4 based on the voltage application of the single pulse as described above is transmitted to the temperature sensing element 21a2 via the liquid to be measured. There are two main forms of this heat transfer that differ depending on the time from the start of pulse application. That is, in the first stage within a relatively short time (eg, 1.5 seconds) from the start of pulse application, heat transfer is mainly conduction. On the other hand, in the second stage after the first stage, heat transfer is mainly dominated by natural convection. This is because in the second stage, natural convection occurs due to the liquid to be measured heated in the first stage, and the ratio of heat transfer thereby increases.
[0041] 第 1段階での伝導による熱伝達には被測定液体の熱伝導率の関与が大きぐ第 2 段階での自然対流による熱伝達には被測定液体の動粘度の関与が大きい。炭化水 素系液体及びアルコール系液体に属する既知の幾つかの被測定液体 (炭化水素系 液体としてシクロへキサン、ペンタン、オクタン、トルエン、 o—キシレン、及び、アルコ ール系液体としてメタノール、エタノール、プロパノール)について、本実施形態の装 置で上記第 1の時間を 1. 5秒として得られた液種対応第 1電圧値 V01 (=V2-V1) と被測定液体の熱伝導率との関係を、図 9に示す。また、同一の被測定液体につい て、本実施形態の装置で上記第 2の時間を 5秒として得られた液種対応第 2電圧値 V 02 (=V3-V1)と被測定液体の動粘度との関係を、図 10に示す。  [0041] The heat transfer by conduction in the first stage greatly depends on the thermal conductivity of the liquid to be measured. The heat transfer by natural convection in the second stage greatly depends on the kinematic viscosity of the liquid to be measured. Some known liquids to be measured belonging to hydrocarbon liquids and alcohol liquids (cyclohexane, pentane, octane, toluene, o-xylene as hydrocarbon liquids, and methanol and ethanol as alcohol liquids) , Propanol), the first voltage value V01 (= V2-V1) corresponding to the liquid type obtained with the first time being 1.5 seconds in the apparatus of the present embodiment and the thermal conductivity of the liquid to be measured. Figure 9 shows the relationship. Further, for the same liquid to be measured, the second voltage value V 02 (= V3-V1) corresponding to the liquid type obtained by setting the second time to 5 seconds with the apparatus of the present embodiment and the kinematic viscosity of the liquid to be measured. Figure 10 shows the relationship.
[0042] 図 9から、液種対応第 1電圧値 V01と被測定液体の熱伝導率とにかなりの相関があ り、し力もアルコール系液体は液種対応第 1電圧値 V01が境界値 Vsより小さい領域 に位置し且つ炭化水素系液体は境界値 Vsより大きい領域に位置することがわかる。 また、図 10から、液種対応第 2電圧値 V02と炭化水素系液体の動粘度及びアルコー ル系液体の動粘度とにそれぞれ独立にかなりの相関があることがわかる。 [0042] From FIG. 9, there is a considerable correlation between the liquid type-corresponding first voltage value V01 and the thermal conductivity of the liquid to be measured. It can also be seen that the alcohol-based liquid is located in a region where the first voltage value V01 corresponding to the liquid type is smaller than the boundary value Vs, and the hydrocarbon-based liquid is located in a region larger than the boundary value Vs. Also, from FIG. 10, it can be seen that the liquid type-corresponding second voltage value V02 and the kinematic viscosity of the hydrocarbon-based liquid and the kinematic viscosity of the alcohol-based liquid have a considerable correlation independently of each other.
[0043] そこで、本実施形態では、炭化水素系液体及びアルコール系液体に属する既知の 幾つかの被測定液体 (参照被測定液体)について、温度と液種対応第 1電圧値 V01 との関係を示す第 1の検量線を予め得ておき、この検量線をマイコン 72の記憶手段 に記憶しておく。第 1検量線の例を図 11に示す。この例では、熱伝導率 λが λ 1及 び λ 2の参照被測定液体について、第 1の検量線が作成されている。  Therefore, in the present embodiment, the relationship between the temperature and the liquid type-corresponding first voltage value V01 for some known liquids to be measured (reference liquids to be measured) belonging to hydrocarbon liquids and alcohol liquids is described. The first calibration curve shown is obtained in advance, and this calibration curve is stored in the storage means of the microcomputer 72. An example of the first calibration curve is shown in FIG. In this example, a first calibration curve is created for reference liquids to be measured having thermal conductivity λ of λ 1 and λ 2.
[0044] 図 11に示されているように、液種対応第 1電圧値 V01は温度に依存するので、この 第 1の検量線を用いて測定対象の被測定液体の種類 (ここでは、液種対応第 1電圧 値 νοιによる識別では、熱伝導率; Iにより被測定液体の種類を特定している)を識 別する際には、液温検知部 22の感温体 22a2から液温検知増幅器 71を介して入力 される液温対応出力値 Tをも用いる。液温対応出力値 Tの一例を図 12に示す。この ような検量線をもマイコン 72の記憶手段に記憶しておく。  As shown in FIG. 11, since the liquid type-corresponding first voltage value V01 depends on the temperature, the type of the liquid to be measured (here, the liquid In the identification by the first voltage value νοι, the type of the liquid to be measured is specified by the thermal conductivity; I) when identifying the liquid temperature from the temperature sensing element 22a2 of the liquid temperature detection unit 22. The output value T corresponding to the liquid temperature input through the amplifier 71 is also used. FIG. 12 shows an example of the output value T corresponding to the liquid temperature. Such a calibration curve is also stored in the storage means of the microcomputer 72.
[0045] 測定に際しては、先ず、測定対象の被測定液体について得た液温対応出力値 Tか ら図 12の検量線を用いて温度値を得る。得られた温度値を して、次に、図 11の第 1の検量線において、温度値 tに対応する各検量線の液種対応第 1電圧値 V01 ( λ 1 ; t), V01(^2;t)を得る。そして、測定対象の被測定液体について得た液種対応第 1電圧値 V01 ( λχ;ΐ)の λχを、各検量線の液種対応第 1電圧値 V01 (λ1;ΐ), V0 l( 2;t)を用いた比例演算を行って、決定する。即ち、 λχ«、ν01(λχ;ΐ), V01 (λ l;t), V01(^2;t)に基づき、以下の式  At the time of measurement, first, a temperature value is obtained from the liquid temperature corresponding output value T obtained for the liquid to be measured, using the calibration curve of FIG. Based on the obtained temperature values, next, in the first calibration curve of FIG. 11, the first voltage values V01 (λ 1; t), V01 (^) corresponding to the liquid type of each calibration curve corresponding to the temperature value t. 2; t). Then, λχ of the liquid type corresponding first voltage value V01 (λχ; ΐ) obtained for the liquid to be measured is converted to the liquid type corresponding first voltage value V01 (λ1; ΐ), V0l (2 ; t) to determine. That is, based on λχ «, ν01 (λχ; ΐ), V01 (λ l; t), V01 (^ 2; t),
(λ2_λ 1) [V01( x;t)— ν01(λ l;t)] (λ2_λ 1) [V01 (x; t) — ν01 (λ l; t)]
/[ν01(λ2;ί)-ν01(λ l;t)]  / [ν01 (λ2; ί) -ν01 (λ l; t)]
力、ら求める。以上のようにして液種の識別を正確に且つ迅速に(瞬時に)行うことがで きる。尚、図 11の第 1の検量線として温度の代わりに液温対応出力値 Tを用いたもの を採用することで、図 12の検量線の記憶及びこれを用いた換算を省略することもでき る。 Ask for power. As described above, the liquid type can be accurately and quickly (instantly) identified. Note that by using the liquid temperature-dependent output value T instead of the temperature as the first calibration curve in Fig. 11, the storage of the calibration curve in Fig. 12 and the conversion using this can also be omitted. The
[0046] 図 9からわかるように、得られた液種対応第 1電圧値 V01にっき境界値 Vsとの大小 関係を判定することで、被測定液体が炭化水素系液体及びアルコール系液体のうち のいずれに属するものであるかの判別を行うことができる。  As can be seen from FIG. 9, the liquid to be measured is determined by determining the magnitude relationship between the obtained liquid type-corresponding first voltage value V01 and the boundary value Vs to determine whether the liquid to be measured is a hydrocarbon liquid or an alcohol liquid. It is possible to determine to which of these the two belong.
[0047] 一方、本実施形態では、上記炭化水素系液体及びアルコール系液体のそれぞれ に関して、幾つかの被測定液体 (参照被測定液体)について、温度と液種対応第 2 電圧値 V02との関係を示す第 2の検量線を予め得ておき、この検量線をマイコン 72 の記憶手段に記憶しておく。第 2検量線の例を図 13及び図 14に示す。図 13は炭化 水素系液体に関するものであり、この例では、動粘度 Vが V 1及び V 2の参照被測 定液体について第 2の検量線が作成されている。また、図 14はアルコール系液体に 関するものであり、この例では、動粘度 Vが V 3及び V 4の参照被測定液体について 、第 2の検量線が作成されている。上記の液種対応第 1電圧値 V01を用いた識別で 被測定液体が炭化水素系液体であると判別された場合には、以下の識別において 図 13の第 2の検量線を使用する。また、上記の液種対応第 1電圧値 V01を用いた識 別で被測定液体がアルコール系液体であると判別された場合には、以下の識別に ぉレ、て図 14の第 2の検量線を使用する。  On the other hand, in the present embodiment, for each of the hydrocarbon-based liquid and the alcohol-based liquid, the relationship between the temperature and the liquid type-corresponding second voltage value V02 for some liquids to be measured (reference liquids to be measured). Is obtained in advance, and this calibration curve is stored in the storage means of the microcomputer 72. Figures 13 and 14 show examples of the second calibration curve. FIG. 13 relates to a hydrocarbon-based liquid. In this example, a second calibration curve is created for reference liquids having kinematic viscosities V of V1 and V2. FIG. 14 relates to an alcohol-based liquid. In this example, a second calibration curve is created for reference liquids having kinematic viscosities V of V3 and V4. When it is determined that the liquid to be measured is a hydrocarbon liquid by the above-described identification using the first voltage value corresponding to the liquid type V01, the second calibration curve in FIG. 13 is used in the following identification. If the liquid to be measured is determined to be an alcohol-based liquid by the above-described identification using the liquid type-corresponding first voltage value V01, the following calibration in FIG. Use lines.
[0048] 図 13及び図 14に示されているように、液種対応第 2電圧値 V02は温度に依存する ので、この第 2の検量線を用いて測定対象の被測定液体の種類 (ここでは、液種対 応第 2電圧値 V02による識別では、動粘度 Vにより被測定液体の種類を特定してい る)を識別する際には、液温検知部 22の感温体 22a2から液温検知増幅器 71を介し て入力される上記液温対応出力値 Tをも用いる。  As shown in FIG. 13 and FIG. 14, since the liquid type-corresponding second voltage value V02 depends on the temperature, the type of the liquid to be measured (here In the identification by the liquid type-corresponding second voltage value V02, the type of the liquid to be measured is specified by the kinematic viscosity V). The above-mentioned liquid temperature corresponding output value T input via the detection amplifier 71 is also used.
[0049] 測定に際しては、先ず、測定対象の被測定液体にっレ、て得た液温対応出力値 Tか ら図 12の検量線を用いて温度値を得る。得られた温度値を tとして、次に、図 13また は図 14の第 2の検量線において、温度値 tに対応する各検量線の液種対応第 2電圧 値 V02(v l;t), V02(v 2;t)または V02( v 3;t), V02 ( v 4 ;t)を得る。そして、測 定対象の被測定液体について得た液種対応第 2電圧値 V02 x;t)の V Xを、各検 量線の液種対応第 2電圧値 V02 ( V l;t) , V02 ( V 2;t)または V02 ( v 3;t) , V02 ( v4;t)を用いた比例演算を行って、決定する。即ち、 v x«、V01( v x;t) , V02( V l;t), V02(v 2;t)または(vx;t), V02( v 3;t), V02( v4;t)に基づき、以下の 式 At the time of measurement, first, a temperature value is obtained from the output value T corresponding to the liquid temperature to be measured using the calibration curve in FIG. Let the obtained temperature value be t, and then, in the second calibration curve of FIG. 13 or FIG. 14, the liquid type-corresponding second voltage value V02 (vl; t) of each calibration curve corresponding to the temperature value t V02 (v2; t) or V02 (v3; t), V02 (v4; t) is obtained. Then, VX of the liquid type corresponding second voltage value V02 x; t) obtained for the liquid to be measured is converted to the liquid type corresponding second voltage value V02 (V l; t), V02 ( V2; t) or V02 (v3; t) and V02 (v4; t) are determined by performing a proportional operation. That is, vx «, V01 (vx; t), V02 (V l; t), V02 (v 2; t) or (vx; t), V02 (v3; t), V02 (v4; t)
v x= 1 +  v x = 1 +
( v 2-v 1) [V02( vx;t)-V02(v l;t)]  (v 2-v 1) [V02 (vx; t) -V02 (v l; t)]
/[V02( v 2;t)-V02( v l;t)]  / [V02 (v2; t) -V02 (vl; t)]
または、  Or
v x= 3 +  v x = 3 +
( v 4- v 3) [V02( vx;t)-V02(v 3;t)]  (v 4-v 3) [V02 (vx; t) -V02 (v 3; t)]
/[V02( v4;t)-V02( v 3;t)]  / [V02 (v4; t) -V02 (v3; t)]
力、ら求める。以上のようにして液種の識別を正確に且つ迅速に(瞬時に)行うことがで きる。尚、図 13及び図 14の第 2の検量線として温度の代わりに液温対応出力値 Tを 用いたものを採用することで、図 12の検量線の記憶及びこれを用いた換算を省略す ることちでさる。  Ask for power. As described above, the liquid type can be accurately and quickly (instantly) identified. Note that by using the liquid temperature corresponding output value T instead of the temperature as the second calibration curve in FIGS. 13 and 14, the storage of the calibration curve in FIG. 12 and the conversion using the same are omitted. Talk about things.
[0050] 以上のようにして得られた液種の値 (熱伝導率 λまたは動粘度 V )を示す信号が不 図示の D/A変換器を介して、図 7に示される出力バッファ回路 76へと出力され、こ こからアナログ出力として不図示の自動車のエンジンの燃焼制御などを行うメインコ ンピュータ(ECU)へと出力される。液温対応のアナログ出力電圧値もメインコンビュ ータ(ECU)へと出力される。一方、液種値及び液温値を示す信号は、必要に応じて デジタル出力として取り出して、表示、警報その他の動作を行う機器へと入力すること ができる。  A signal indicating the value of the liquid type (thermal conductivity λ or kinematic viscosity V) obtained as described above is output via a D / A converter (not shown) to the output buffer circuit 76 shown in FIG. This is output as an analog output to the main computer (ECU), which controls combustion of the engine of the automobile (not shown). The analog output voltage value corresponding to the liquid temperature is also output to the main computer (ECU). On the other hand, the signals indicating the liquid type value and the liquid temperature value can be taken out as digital output as required, and can be input to a device that performs display, alarm, and other operations.
[0051] なお、以上のような液種識別の精度を高めるためには、液種検知部用フィン 21c及 び液温検知部用フィン 22cの周囲の被測定液体にできるだけ外的要因に基づく強 制流動が生じに《するのが好ましぐこの点からカバー部材 2dとくに上下方向の被 測定液体導入路を形成するようにしたものの使用は好ましい。尚、カバー部材 2dは、 異物の接触を防止する保護部材としても機能する。  In order to improve the accuracy of the liquid type identification as described above, the liquid to be measured around the liquid type detection unit fins 21c and the liquid temperature detection unit fins 22c is required to be as strong as possible based on external factors. From the viewpoint that it is preferable to suppress the flow, it is preferable to use a cover member 2d, particularly one having a vertical liquid introduction path to be measured. Note that the cover member 2d also functions as a protection member for preventing contact of foreign matter.
[0052] カバー部材 2dは、更に、測定部 3特に識別センサー部 2の鉛直方向に対する傾角 が変化する場合にぉレ、て、カバー部材が存在しなレ、場合に比べ液種識別の精度を 向上させるという機能をも発揮する。即ち、カバー部材が存在しない場合には、傾角 の変化に対して、発熱体から発せられた熱が上記自然対流により感温体に伝達され る形態の変化が大きぐ従って、同一被測定液体の液種対応第 2電圧値 V02の変化 が大きぐこのため他種類の被測定液体の場合の出力値との混同を生じない傾角範 囲は比較的狭くなる。これに対して、カバー部材 2dが存在する場合には、傾角の変 化に対して、発熱体から発せられた熱が上記自然対流により感温体に伝達される形 態の変化が小さく(即ち、 自然対流は常に主としてカバー部材 2d内の被測定液体導 入路に沿ってなされる)、従って、同一被測定液体の液種対応第 2電圧値 V02の変 ィ匕が小さぐこのため他種類の被測定液体の場合の出力値との混同を生じない傾角 範囲は比較的広い。 [0052] The cover member 2d further improves the accuracy of liquid type identification when the inclination angle of the measuring unit 3, especially the identification sensor unit 2 with respect to the vertical direction changes, and when the cover member does not exist. It also has the function of improving. That is, if the cover member does not exist, The change in the form in which the heat generated from the heating element is transmitted to the thermosensitive body by the natural convection is large in response to the change in the temperature, the change in the second voltage value V02 corresponding to the liquid type of the same liquid to be measured is large. For this reason, the tilt angle range that does not cause confusion with the output value in the case of another type of liquid to be measured is relatively narrow. On the other hand, when the cover member 2d is present, the change in the form in which the heat generated from the heating element is transmitted to the temperature sensing element by the natural convection with respect to the change in the inclination angle is small (ie, Natural convection is always mainly generated along the liquid introduction path in the cover member 2d). Therefore, the change of the second voltage value V02 corresponding to the liquid type of the same liquid to be measured is small. The tilt angle range that does not cause confusion with the output value of the liquid to be measured is relatively wide.
[0053] 以上の実施形態では被測定流体として内燃エンジンに供給される燃料が用いられ ているが、本発明では、被測定流体はその他の形態の炭化水素系液体及びアルコ ール系液体であってもよレ、。そのような形態としては、石油プラントの品質管理のため 又は環境中の炭化水素系液体及びアルコール系液体の分析のための試料の形態 が例示される。また、本発明は、炭化水素系液体及びアルコール系液体の試料に対 する熱伝導率や動粘度の測定のための装置として利用することも可能である。  In the above embodiments, the fuel to be supplied to the internal combustion engine is used as the fluid to be measured. However, in the present invention, the fluid to be measured is a hydrocarbon-based liquid or an alcohol-based liquid in another form. You can. Examples of such a form include a sample form for quality control of a petroleum plant or for analysis of hydrocarbon liquid and alcohol liquid in the environment. Further, the present invention can also be used as an apparatus for measuring the thermal conductivity and the kinematic viscosity of a hydrocarbon-based liquid and an alcohol-based liquid sample.
図面の簡単な説明  Brief Description of Drawings
[0054] [図 1]本発明による液種識別装置の一実施形態の使用状態を示す模式的構成図で ある。  FIG. 1 is a schematic configuration diagram showing a use state of an embodiment of a liquid type identification device according to the present invention.
[図 2]図 1の液種識別装置の部分断面図である。  FIG. 2 is a partial cross-sectional view of the liquid type identification device of FIG. 1.
[図 3]図 1の液種識別装置の部分断面図である。  FIG. 3 is a partial cross-sectional view of the liquid type identification device of FIG. 1.
[図 4]図 1の液種識別装置の部分断面図である。  FIG. 4 is a partial cross-sectional view of the liquid type identification device of FIG. 1.
[図 5]傍熱型液種検知部の断面図である。  FIG. 5 is a sectional view of an indirectly heated liquid type detection unit.
[図 6]傍熱型液種検知部の薄膜チップの分解斜視図である。  FIG. 6 is an exploded perspective view of a thin film chip of the indirectly heated liquid type detection unit.
[図 7]液種識別ための回路の構成図である。  FIG. 7 is a configuration diagram of a circuit for identifying a liquid type.
[図 8]発熱体に印加される単一パルス電圧 Pとセンサー出力 Qとの関係を示す図であ る。  FIG. 8 is a diagram showing a relationship between a single pulse voltage P applied to a heating element and a sensor output Q.
[図 9]液種対応第 1電圧値 V01と被測定液体の熱伝導率との関係を示す図である。  FIG. 9 is a diagram showing a relationship between a liquid type-corresponding first voltage value V01 and the thermal conductivity of the liquid to be measured.
[図 10]液種対応第 2電圧値 V02と被測定液体の動粘度との関係を示す図である。 園 11]第 1の検量線の例を示す図である。 FIG. 10 is a diagram showing the relationship between the liquid type-corresponding second voltage value V02 and the kinematic viscosity of the liquid to be measured. Garden 11] is a diagram showing an example of a first calibration curve.
園 12]液温対応出力値 Tの一例を示す図である。 園 13]第 2の検量線の例を示す図である。 Fig. 12 is a diagram showing an example of a liquid temperature corresponding output value T. Garden 13] is a diagram showing an example of a second calibration curve.
園 14]第 2の検量線の例を示す図である。 Garden 14] is a diagram showing an example of a second calibration curve.
符号の説明 Explanation of symbols
1 識別装置  1 Identification device
2 識別センサー部  2 Identification sensor
2a ケース基板  2a Case board
2b ケースカバー  2b case cover
2d カバー部材  2d cover member
21 傍熱型液種検知部  21 Indirectly heated liquid type detector
22 液温検知部  22 Liquid temperature detector
23 モールド樹脂  23 Mold resin
24 被測定液体導入路  24 Liquid passage for measurement
21a 薄膜チップ  21a Thin film chip
21b 接合材  21b bonding material
21c, 22c 金属製フィン  21c, 22c metal fin
21d ボンディングワイヤー  21d bonding wire
21e, 22e 外部電極端子  21e, 22e External electrode terminal
21al 基板  21al substrate
21a2, 22a2 感温体  21a2, 22a2 Thermocouple
21a3 層間絶縁膜  21a3 Interlayer insulating film
21a4 発熱体  21a4 Heating element
21a5 発熱体電極  21a5 Heating element electrode
21a6 保護膜  21a6 Protective film
21a7 電極パッド  21a7 Electrode pad
3 測定部  3 Measurement section
4T 第 1流通路 4E 第 2流通路 4T 1st passage 4E 2nd passage
4T1 , 4E1 断熱被覆材  4T1, 4E1 Insulation coating
6 ハウジング  6 Housing
8T, 8E 管継手  8T, 8E fittings
12 回路基板  12 Circuit board
13 配線  13 Wiring
14T 被測定液体供給経路のタンク側部分  14T Tank side of liquid supply path to be measured
14E 被測定液体供給経路の内燃エンジン側部分 14E Internal combustion engine side of liquid supply path to be measured
20 被測定液体流通経路 20 Flow path of liquid to be measured
64, 66 抵抗体  64, 66 resistor
68 ブリッジ回路  68 bridge circuit
70 差動増幅器  70 Differential amplifier
71 液温検知増幅器  71 Liquid temperature detection amplifier
72 マイコン(マイクロコンピュータ)  72 Microcomputer
74 スィッチ  74 switches
76 出力バッファ回路  76 Output buffer circuit
T タンク  T tank
E 内燃エンジン  E internal combustion engine

Claims

請求の範囲 The scope of the claims
[1] 炭化水素系液体またはアルコール系液体に属する被測定液体を識別する液種識別 装置であって、  [1] A liquid type identification device for identifying a liquid to be measured belonging to a hydrocarbon liquid or an alcohol liquid,
前記被測定液体の流通経路に臨んで配置された識別センサー部を備えており、前 記識別センサー部は発熱体及び感温体を含んでなる傍熱型液種検知部と前記被測 定液体の温度を検知する液温検知部とを有しており、  An identification sensor unit is provided facing the flow path of the liquid to be measured. The identification sensor unit includes an indirectly heated liquid type detection unit including a heating element and a temperature sensing element, and the liquid to be measured. And a liquid temperature detecting unit for detecting the temperature of the
前記傍熱型液種検知部の発熱体に対して単一パルス電圧を印加して前記発熱体 を発熱させ、前記傍熱型液種検知部の感温体と前記液温検知部とを含んでなる液 種検知回路の出力に基づき前記被測定液体の識別を行う識別演算部を備えており A single pulse voltage is applied to the heating element of the indirectly heated liquid type detection unit to cause the heating element to generate heat, and includes a temperature sensing element of the indirectly heated liquid type detection unit and the liquid temperature detection unit. And a discrimination calculation unit for discriminating the liquid to be measured based on the output of the liquid type detection circuit comprising
、該識別演算部は、前記発熱体の発熱の際の、前記感温体の初期温度と前記単一 パルス印加の開始から第 iの時間経過時の第 i温度との差に対応する液種対応第ェ 電圧値及び前記感温体の初期温度と前記単一パルス印加の開始から前記第 1の時 間より長い第 2の時間経過時の第 2温度との差に対応する液種対応第 2電圧値により 、前記被測定液体の識別を行うことを特徴とする液種識別装置。 The discrimination calculation unit is configured to calculate a liquid type corresponding to a difference between an initial temperature of the thermosensitive body and an i-th temperature after an i-th time has elapsed from the start of the single pulse application when the heating element generates heat. Corresponding second liquid type corresponding to the difference between the voltage value and the initial temperature of the temperature sensing element and the second temperature after the second time longer than the first time from the start of the single pulse application. (2) A liquid type identification device that identifies the liquid to be measured based on two voltage values.
[2] 前記第 2の時間は前記単一パルスの印加時間であることを特徴とする、請求項 1に記 載の液種識別装置。 [2] The liquid type identification device according to claim 1, wherein the second time is an application time of the single pulse.
[3] 前記第 1の時間は前記単一パルスの印加時間の 1Z2以下であることを特徴とする、 請求項 1に記載の液種識別装置。  3. The liquid type identification device according to claim 1, wherein the first time is 1Z2 or less of the application time of the single pulse.
[4] 前記第 1の時間は 0. 5-1. 5秒であることを特徴とする、請求項 1に記載の液種識別 装置。 [4] The liquid type identification device according to claim 1, wherein the first time is 0.5 to 1.5 seconds.
[5] 前記単一パルスの印加時間は 3 10秒であることを特徴とする、請求項 1に記載の 液種識別装置。  [5] The liquid type identification device according to claim 1, wherein the application time of the single pulse is 310 seconds.
[6] 前記感温体の初期温度に対応する電圧値として前記発熱体に対する前記単一パル ス印加の開始前の初期電圧を所定回数サンプリングして平均することで得られた平 均初期電圧値を用い、前記感温体の第 1温度に対応する電圧値として前記発熱体 に対する前記単一パルス印加の開始から第 1の時間経過時の第 1電圧を所定回数 サンプリングして平均することで得られた平均第 1電圧値を用い、前記感温体の第 2 温度に対応する電圧値として前記発熱体に対する前記単一パルス印加の開始から 第 2の時間経過時の第 2電圧を所定回数サンプリングして平均することで得られた平 均第 2電圧値を用い、前記液種対応第 1電圧値として前記平均第 1電圧値と前記平 均初期電圧値との差を用い、前記液種対応第 2電圧値として前記平均第 2電圧値と 前記平均初期電圧値との差を用いることを特徴とする、請求項 1に記載の液種識別 装置。 [6] An average initial voltage value obtained by sampling a predetermined number of times and averaging the initial voltage before the start of the single pulse application to the heating element as a voltage value corresponding to the initial temperature of the temperature sensing element. And sampling the first voltage after a lapse of a first time from the start of the single pulse application to the heating element a predetermined number of times as a voltage value corresponding to a first temperature of the temperature sensing element and averaging the first voltage. Using the averaged first voltage value obtained as the voltage value corresponding to the second temperature of the temperature sensing element from the start of the single pulse application to the heating element. Using the average second voltage value obtained by sampling and averaging the second voltage after the second time a predetermined number of times, the average first voltage value and the average value as the liquid type corresponding first voltage value are used. The liquid type according to claim 1, wherein a difference between the average second voltage value and the average initial voltage value is used as the liquid type-corresponding second voltage value using a difference from the average initial voltage value. Identification device.
[7] 前記識別演算部には前記液温検知部から前記被測定液体の液温に対応する液温 対応出力値が入力され、前記識別演算部では、既知の複数の種類の参照被測定液 体について作成され液温に対する液種対応第 1電圧値の関係を示す検量線を用い て、識別対象の被測定液体について得られた前記液温対応出力値と前記液種対応 第 1電圧値とに基づき、前記被測定液体が炭化水素系液体及びアルコール系液体 のうちのいずれであるかの判別を行うことを特徴とする、請求項 1に記載の液種識別 装置。  [7] A liquid temperature corresponding output value corresponding to the liquid temperature of the liquid to be measured is input from the liquid temperature detection unit to the identification calculation unit, and the identification calculation unit outputs a plurality of known types of reference measurement liquids. The output value corresponding to the liquid temperature and the first voltage value corresponding to the liquid type obtained for the measurement target liquid to be identified are obtained using a calibration curve created for the body and indicating the relationship between the liquid type corresponding first voltage value and the liquid temperature. 2. The liquid type identification device according to claim 1, wherein a determination is made as to whether the liquid to be measured is a hydrocarbon-based liquid or an alcohol-based liquid.
[8] 前記識別演算部には前記液温検知部から前記被測定液体の液温に対応する液温 対応出力値が入力され、前記識別演算部では、炭化水素系液体及びアルコール系 液体につきそれぞれ既知の複数の種類の参照被測定液体について作成され液温に 対する液種対応第 2電圧値の関係を示す検量線を用いて、識別対象の被測定液体 について得られた前記液温対応出力値と前記液種対応第 2電圧値と前記判別の結 果とに基づき、前記被測定液体の識別を行うことを特徴とする、請求項 7に記載の液 種識別装置。  [8] A liquid temperature corresponding output value corresponding to the liquid temperature of the liquid to be measured is input from the liquid temperature detecting unit to the discrimination calculation unit, and the discrimination calculation unit calculates a hydrocarbon-based liquid and an alcohol-based liquid respectively. Using a calibration curve created for a plurality of known types of reference liquids to be measured and showing the relationship between the liquid temperature and the liquid-type-corresponding second voltage value, the liquid temperature-corresponding output value obtained for the liquid to be identified as the measurement target 8. The liquid type identification apparatus according to claim 7, wherein the liquid to be measured is identified based on the liquid type corresponding second voltage value and the result of the determination.
[9] 前記識別演算部はマイクロコンピュータを含んでなることを特徴とする、請求項 1に記 載の液種識別装置。  [9] The liquid type identification device according to claim 1, wherein the identification calculation unit includes a microcomputer.
[10] 前記傍熱型液種検知部及び液温検知部はそれぞれ前記被測定液体との熱交換の ための液種検知部用熱伝達部材及び液温検知部用熱伝達部材を備えていることを 特徴とする、請求項 1に記載の液種識別装置。  [10] The indirectly heated liquid type detection unit and the liquid temperature detection unit include a liquid type detection unit heat transfer member and a liquid temperature detection unit heat transfer member for heat exchange with the liquid to be measured. The liquid type identification device according to claim 1, wherein:
PCT/JP2005/000894 2004-01-30 2005-01-25 Liquid type identification device WO2005073700A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT05704072T ATE468530T1 (en) 2004-01-30 2005-01-25 DEVICE FOR IDENTIFYING TYPES OF LIQUID
EP05704072A EP1715330B1 (en) 2004-01-30 2005-01-25 Liquid type identification device
DE602005021313T DE602005021313D1 (en) 2004-01-30 2005-01-25 DEVICE FOR IDENTIFYING LIQUID TYPES
US10/586,920 US7493802B2 (en) 2004-01-30 2005-01-25 Liquid type identification device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-023645 2004-01-30
JP2004023645A JP3987041B2 (en) 2004-01-30 2004-01-30 Liquid type identification device

Publications (1)

Publication Number Publication Date
WO2005073700A1 true WO2005073700A1 (en) 2005-08-11

Family

ID=34823879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000894 WO2005073700A1 (en) 2004-01-30 2005-01-25 Liquid type identification device

Country Status (6)

Country Link
US (1) US7493802B2 (en)
EP (1) EP1715330B1 (en)
JP (1) JP3987041B2 (en)
AT (1) ATE468530T1 (en)
DE (1) DE602005021313D1 (en)
WO (1) WO2005073700A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4038492B2 (en) * 2004-05-28 2008-01-23 三井金属鉱業株式会社 Liquid type identification method and liquid type identification device
JP2007155502A (en) * 2005-12-05 2007-06-21 Ricoh Co Ltd Detector
US7925449B2 (en) * 2006-09-18 2011-04-12 Cfph, Llc Products and processes for analyzing octane content
JP2010025628A (en) * 2008-07-16 2010-02-04 Mitsui Mining & Smelting Co Ltd Fluid identification method and fluid identification device
US8539938B2 (en) 2009-03-12 2013-09-24 Ford Global Technologies, Llc Fuel systems and methods for controlling fuel systems in a vehicle with multiple fuel tanks
US8627858B2 (en) * 2009-03-12 2014-01-14 Ford Global Technologies, Llc Methods and systems for selectively fuelling a vehicle
ITMI20111313A1 (en) * 2011-07-14 2013-01-15 Carpigiani Group Ali Spa ICE CREAM PREPARATION MACHINE
CN105203580A (en) * 2015-09-28 2015-12-30 安徽神剑新材料股份有限公司 Heating mechanism for gelling detection of powder coating
FR3056012B1 (en) * 2016-09-15 2018-09-28 Sncf Mobilites LIQUID CIRCULATION DETECTION DEVICE FOR IMMERSION TRANSFORMER
JP2020148684A (en) * 2019-03-14 2020-09-17 オムロン株式会社 Flow rate measurement device, gas meter with flow rate measurement device, flow rate measurement device unit for gas meter
CN112763539B (en) * 2020-12-25 2023-11-07 北京航星机器制造有限公司 Detection device and detection method for liquid in metal container

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04178550A (en) * 1990-11-14 1992-06-25 Hitachi Ltd Thermal fuel nature sensor
JPH0533712Y2 (en) * 1987-09-22 1993-08-26
JPH11237356A (en) * 1998-02-19 1999-08-31 Mitsui Mining & Smelting Co Ltd Method and device for identifying fluid
JP2001004422A (en) * 1999-06-24 2001-01-12 Mitsui Mining & Smelting Co Ltd Flow rate sensor having fluid identifying function
JP2004101385A (en) * 2002-09-10 2004-04-02 Mitsui Mining & Smelting Co Ltd Apparatus and method for identifying liquid type of gasoline
JP2004125465A (en) * 2002-09-30 2004-04-22 Mitsui Mining & Smelting Co Ltd Gasoline type identification device, and gasoline type identification method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153561A (en) 1997-11-21 1999-06-08 Mitsui Mining & Smelting Co Ltd Method and device for identifying fluid
JP4038492B2 (en) * 2004-05-28 2008-01-23 三井金属鉱業株式会社 Liquid type identification method and liquid type identification device
JP4188287B2 (en) * 2004-07-15 2008-11-26 三井金属鉱業株式会社 Thermal sensor and measuring apparatus using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533712Y2 (en) * 1987-09-22 1993-08-26
JPH04178550A (en) * 1990-11-14 1992-06-25 Hitachi Ltd Thermal fuel nature sensor
JPH11237356A (en) * 1998-02-19 1999-08-31 Mitsui Mining & Smelting Co Ltd Method and device for identifying fluid
JP2001004422A (en) * 1999-06-24 2001-01-12 Mitsui Mining & Smelting Co Ltd Flow rate sensor having fluid identifying function
JP2004101385A (en) * 2002-09-10 2004-04-02 Mitsui Mining & Smelting Co Ltd Apparatus and method for identifying liquid type of gasoline
JP2004125465A (en) * 2002-09-30 2004-04-22 Mitsui Mining & Smelting Co Ltd Gasoline type identification device, and gasoline type identification method

Also Published As

Publication number Publication date
EP1715330B1 (en) 2010-05-19
EP1715330A4 (en) 2007-05-23
US7493802B2 (en) 2009-02-24
DE602005021313D1 (en) 2010-07-01
US20070151331A1 (en) 2007-07-05
EP1715330A1 (en) 2006-10-25
JP3987041B2 (en) 2007-10-03
JP2005214856A (en) 2005-08-11
ATE468530T1 (en) 2010-06-15

Similar Documents

Publication Publication Date Title
WO2005073700A1 (en) Liquid type identification device
JP4038492B2 (en) Liquid type identification method and liquid type identification device
JP3883198B2 (en) Urea concentration identification device for urea solution
WO2006046457A1 (en) Liquid level detecting method and liquid level detecting device
US7647844B2 (en) Device and method of detecting flow rate/liquid kind, and device and method of detecting liquid kind
EP1947450A1 (en) Method and device for measuring thermal conductivity, and gas component ratio measuring device
EP1538437B1 (en) Method for identifying concentration of urea, and method for reducing exhaust gas of car using the same
WO2005026709A1 (en) Urea concentration identification device for urea solution
JP2004125465A (en) Gasoline type identification device, and gasoline type identification method
JP2007292724A (en) Apparatus and method for identifying fluid
JP3758625B2 (en) Gasoline liquid type identification device and gasoline liquid type identification method
JPH11194055A (en) Decision method for exhaust-gas temperature and air fuel ratio number (lambda) and sensor device for execution of the same
JP2007292730A (en) Apparatus and method for identifying fluid
JP2005030888A (en) Flow and liquid type detecting apparatus and method
WO2009099014A1 (en) Fluid identifying method and fluid identifying apparatus
JP2005188301A (en) Device for discriminating kind of gasoline
JP2008026205A (en) Thermal gas flow sensor and apparatus for controlling internal combustion engine using the same
US20100212400A1 (en) Detection unit mold package and fluid discrimination sensor module using the mold package
JP2007225609A (en) Fluid identification device and fluid identification method
JP2007263949A (en) Fluid identification device and fluid identification method
EP2146199A1 (en) Fluid identification method and fluid identification apparatus
JP2007263950A (en) Fluid identification device and method
JP2007240537A (en) Method and apparatus for concentration identification, and method and apparatus for liquid level detection
Lambert et al. Fuel driveability index sensor
Lange et al. Thermal mass flow sensor for measurement of liquids (water)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10586920

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005704072

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005704072

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10586920

Country of ref document: US