WO2005073355A1 - Iron composition - Google Patents

Iron composition Download PDF

Info

Publication number
WO2005073355A1
WO2005073355A1 PCT/JP2005/001534 JP2005001534W WO2005073355A1 WO 2005073355 A1 WO2005073355 A1 WO 2005073355A1 JP 2005001534 W JP2005001534 W JP 2005001534W WO 2005073355 A1 WO2005073355 A1 WO 2005073355A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
oil
composition
fat
sample
Prior art date
Application number
PCT/JP2005/001534
Other languages
French (fr)
Japanese (ja)
Inventor
Naoteru Honda
Kazuaki Sakaguchi
Katsuyasu Nakata
Hironobu Nanbu
Original Assignee
Taiyo Kagaku Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Kagaku Co., Ltd. filed Critical Taiyo Kagaku Co., Ltd.
Publication of WO2005073355A1 publication Critical patent/WO2005073355A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/007Other edible oils or fats, e.g. shortenings, cooking oils characterised by ingredients other than fatty acid triglycerides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/06Preservation of finished products
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to an iron composition having no action of promoting oxidative deterioration of fats and oils, comprising an iron salt having an average particle size of 1 ⁇ m or less, and a phospholipid and Z or lysophospholipid.
  • Fats and oils have a serious problem of acidification deterioration, and fats and oils deteriorate during storage and heat treatment, causing deterioration of flavor and odor, and causing many diseases. Therefore, degraded fats and oils have low commercial value. Measures to prevent the deterioration of fats and oils are cited as an indispensable technique for using fats and oils. Factors that deteriorate oils and fats include the presence of light, oxygen, and minerals. Among them, heavy metals such as copper, iron, manganese, and nickel promote deterioration of oils and fats. Among metals contained in foods, copper is the strongest in promoting oxidation, followed by iron.
  • Inorganic iron such as ferrous sulfate and iron citrate, commonly used for iron enrichment in foods promotes the degradation of fats and oils contained in foods.
  • iron As described above, prevention of deterioration of fats and oils by iron is an important problem. Techniques for solving the problem are still established, and therefore, for foods containing fats and oils and fats and oils. There is almost no precedent for strengthening iron.
  • the antioxidant action of tocopherol and the effect of condensed phosphate as a synergist are also known (for example, see Non-Patent Document 1), but they were not always satisfactory.
  • Non-Patent Document 1 Minoru Aoyama et al., "Study on Improvement of Occurrence Effect of Tocofurol on Oxidation (20th Report)", Oil Chemistry, Japan Oil Chemical Society, Vol. 38, No. 1, p. 78 , January 1989
  • an object of the present invention is to provide an iron composition having no oxidative deterioration promoting action of fats and oils and having high oxidation stability, and an iron-enriched fat and oil composition which has little promotion of oxidative deterioration by iron during storage.
  • the task is to
  • the inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, it has been found that iron salts finely divided to an average particle diameter of 1 ⁇ m or less can be reverse liposome-treated by phospholipid and Z or lysophospholipid.
  • the iron composition prepared by the chemical conversion was mixed with fats and oils, it was found that an iron-enriched fat and oil composition which was less likely to promote oxidative degradation by iron and was stable could be obtained, thereby completing the present invention.
  • An iron composition containing an iron salt having an average particle diameter of 1 m or less, and a phospholipid and Z or lysophospholipid;
  • the iron composition according to [1], which is coated with the iron salt can lipid and Z or lysophospholipid;
  • An iron-enriched oil / fat composition comprising: a fat / oil; and the iron composition according to [1] or [2];
  • the present invention has no effect of promoting the oxidative deterioration of fats and oils! / High oxidation stability! It is possible to provide an iron-enriched fat or oil composition, and an iron composition and an iron-enriched fat or oil composition that is less oxidatively degraded by iron during storage.
  • the iron composition and the iron-enriched oil and fat composition of the present invention are stable, with little promotion of oxidative deterioration of oils and fats during storage by iron, and are therefore stable. It can be used in various other industrial fields.
  • the iron composition of the present invention contains an iron salt having an average particle diameter of 1 ⁇ m or less, a phospholipid and Z or lysophospholipid.
  • the iron salt since the iron salt is coated with the phospholipid and Z or lysophospholipid (that is, it is reverse ribosomized as described later), The elution of iron into fats and oils can be suppressed, and therefore, the promotion of oxidative degradation of fats and oils by iron can be suppressed.
  • a stable iron composition in which the promotion of oxidative deterioration by iron is suppressed even when added to fats and oils, an iron-fortified fats and oils composition containing the iron composition, and the iron-reinforced fats and oils composition are provided.
  • a food or beverage containing the product can be obtained.
  • the iron salt in the present invention is not particularly limited.
  • ferrous sulfate, ferric chloride, ferrous sodium citrate, ferrous citrate, sodium EDTA iron, dalconic acid Iron, iron lactate, ferrous pyrophosphate, ferric pyrophosphate and the like are more preferable, with ferrous pyrophosphate being preferred.
  • salts derived from other minerals such as manganese salts and nickel salts can be used in combination.
  • the salt in this case include a calcium salt, a magnesium salt, a zinc salt, a manganese salt, a nickel salt, a chromium salt, a selenium salt, a copper salt, a molybdenum salt, and an iodine salt. Mixtures of the above can be used.
  • the phospholipid in the present invention is not particularly limited as long as it is a phospholipid conjugate, for example, soybean lecithin, egg yolk lecithin, rapeseed lecithin, cottonseed lecithin from which animal or plant power is also extracted.
  • lecithin such as corn lecithin, and the like.
  • their constituents phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine, phosphatidylserine, phosphatidic acid, sphingomyelin, phosphatidylglycerol, and their hydrogenated catalysts
  • Phospholipids such as syrup products, acetylated products, hydroxylated products, halogenated products, sulfonated products, and derivatives thereof are also included in the phospholipids of the present invention.
  • the lysophospholipid in the present invention is an enzymatically degraded phospholipid obtained by treating the above phospholipid with phospholipase, and is, for example, lyso-soybean lecithin, lyso-yolk lecithin, lyso-rape lecithin. And lyso-cotton lecithin, lyso-corn lecithin, lysophosphatidylcholine, lysophosphatidylinositol, lysophosphatidylethanolamine, lysophosphatidylserine, lysophosphingomyelin and the like.
  • the above phospholipid and Z or lysophospholipid may be used alone or in combination of two or more. Preferably, one or more lysophospholipids are used.
  • the particle size of the iron salt used in the iron composition of the present invention needs to have an average particle diameter of 1 ⁇ m or less.
  • the iron salt is a coarse particle having an average particle diameter larger than 1 ⁇ m, this is another reason that the texture of a food or drink containing the iron composition containing the iron salt is significantly impaired in terms of roughness.
  • the iron salt is a coarse particle having an average particle diameter larger than: m, the particle, which has poor dispersion stability when stored in fats and oils, causes precipitation and separation.
  • the iron salt is a coarse particle having an average particle size of more than 1 ⁇ m, it is very difficult to form a reverse ribosome.
  • the average particle size of the iron salt used in the present invention is 1 ⁇ m or less, preferably 0.5 / zm or less, more preferably 0.3 m or less. is there.
  • an existing method can be used for measuring the average particle diameter of the iron salt, and the method is not particularly limited, and for example, a dynamic light scattering method or a laser diffraction light scattering method can be used.
  • An iron salt having an average particle size larger than the above range can be used in the present invention by making it fine within the above range.
  • a neutral salt-forming method or a milling method using a mill can be used to refine the iron salt, and the refined iron salt can be produced without any limitation by the production of the iron composition of the present invention.
  • the neutralization salt formation method is relatively suitable for adjusting the fineness of the iron salt, but since water is required as a solvent, it is necessary to dehydrate before adding fat to fats and oils. Particle size is easily increased to 1 m or more.
  • the milling method using a mill is more preferable because the fats and oils can be used as a dispersion medium, and the iron salt can be directly added to the fats and oils after the fine adjustment of the iron salt.
  • a wet milling device such as a Koball mill can be used.
  • the HLB value In order to obtain a stable reverse ribosome, it is preferable to adjust the HLB value by adding a phospholipid and a lysophospholipid, which is an enzymatic degradation product thereof, at an appropriate mixing ratio. That is, the mixing ratio of lysophospholipid is preferably 0 to 500 parts by weight, more preferably 10 to 400 parts by weight, per 100 parts by weight of phospholipid.
  • the HLB value after adjustment is not particularly limited, it is preferably 7-12, and more preferably 7.5-11.
  • ribosomes are substances stabilized with a bimolecular membrane in an aqueous solvent, but the solvent in the present invention is an oil or fat. Therefore, the researchers of the present invention have found that, as a result of repeated ingenuity, a reverse ribosome, that is, a reverse vesicle structure, is formed in fats and oils by a specific preparation method. In some cases, it was found that a stable reverse ribosome was formed. That is, the method for producing the iron composition of the present invention is not particularly limited, but is exemplified below as a preferred method.
  • the phospholipids and Z or lysophosphorus lipids necessary for the reverse ribosome are first described.
  • a method of reverse liposomeizing an iron salt by adding an emulsifier which may be used in combination may be mentioned.
  • the emulsifier that may be used in combination is not particularly limited, and examples thereof include polyglycerin fatty acid ester, diglycerin fatty acid ester, glycerin fatty acid ester, propylene glycol fatty acid ester, and polyhydric alcohol alone or as a mixture. And preferably polyglycerin fatty acid ester.
  • the type of fat or oil used as a solvent is particularly Although not limited, examples of the fatty acid composition of the fats and oils include fats and oils containing unsaturated fatty acids.
  • the amount of the fat or oil used as a solvent is preferably 100 to 9900 parts by weight of the fat or oil based on 100 parts by weight of the iron salt from the viewpoint of stably reverse ribosome-forming the iron salt. Even more preferably 200-2000 parts by weight.
  • the mixing ratio of iron salt to phospholipid and Z or lysophospholipid is preferably 0.1 to 100 parts by weight per 100 parts by weight of iron salt. It is more preferable that the amount be 1 to 50 parts by weight.
  • the amount of the emulsifier is preferably 0.5 to 250 parts by weight per 100 parts by weight of iron salt. Is more preferable.
  • the temperature at which reverse ribosome formation is performed may be appropriately set according to the type of fats and oils used, etc. The temperature is preferably 10-70 ° C.
  • the time for reverse ribosome formation may be appropriately set so that the iron salt is in a state of reverse ribosome formation.From the viewpoint of complete reverse ribosome formation, for example, when a homogenizer is used. Is preferably 1 to 30 minutes.
  • the iron salt prepared by the above method is reverse-ribosomalized with a bimolecular membrane comprising phospholipids and Z or lysophospholipids as essential, so that the dispersibility is stably maintained and the contents are eluted. To prevent this, oxidative stability is also provided. In addition, whether or not the iron salt is reverse ribosomized can be confirmed by, for example, an electron microscope, a gel filtration method, an osmotic response method, or the like.
  • the iron thread composition (iron salt reverse-ribosomalized with phospholipid and Z or lysophospholipid) of the present invention can be obtained.
  • the iron composition of the present invention is obtained in a state where the iron composition is contained in fats and oils used as a solvent.
  • the iron composition of the present invention may be used as it is contained in fats and oils, or may be used with the fats and oils used as a solvent separated.
  • the composition of the present invention is mixed with, for example, a fat or oil which is desired to suppress the promotion of oxidative degradation by iron. (Containing fats and oils).
  • the fats and oils used in the iron-enriched fat and oil composition of the present invention are not particularly limited, and include known fats and oils components used in fields such as food and drink, feed, cosmetics, pharmaceuticals, and industry. It can be used without particular limitation.
  • the oil or fat component may be in a liquid state. The liquid may be in a liquid state at normal temperature. Even if it is in a solid state at normal temperature, it may be dissolved in a liquid state by heating. It can be used without any restrictions.
  • Examples of the fats and oils component include antioxidants, nutrient enhancers, drugs and plant and animal extract substances, hydrocarbons, plant and animal fats and oils, higher alcohols, waxes, silicone-based substances, sterols, and the like.
  • the iron-enriched fat composition of the present invention includes any one of a fat component containing an unsaturated fatty acid as the fatty acid composition constituting the fat or oil or a fat component containing only the saturated fatty acid as the fatty acid composition constituting the fat.
  • the fats and oils components may be used alone or in combination of two or more.
  • the iron-enriched oil-and-fat composition that is stable against oxidation is mixed with the above-mentioned oil and fat component by adding an iron salt (iron composition of the present invention) that has been micronized and reverse liposomalized with phospholipid and Z or lysophospholipid. Obtainable.
  • the emulsifier having a high hydrophilicity tends to coagulate and exhibit no performance.
  • emulsifiers having high lipophilicity tend to be uniformly dispersed in fats and oils, and do not exhibit performance. Therefore, when the conditions for reverse ribosome formation with phospholipids and Z or lysophospholipids are also taken into account, the effect of the present invention, in which a polar intermediate emulsifier having an HLB of about 6 to 12 is preferred as an adsorbent film, is more exhibited. You.
  • the addition amount of these emulsifiers is preferably 0 to 500 parts by weight based on 100 parts by weight of the total amount of the phospholipid and Z or lysophospholipid.
  • the foods and drinks containing the iron-enriched oil and fat composition of the present invention include all kinds of foods and drinks containing oils and fats.
  • oils and fats In particular, margarine, butter, dressing, cream, cheese, baby milk powder, etc. preferable.
  • These foods and drinks are prepared by, for example, blending an iron composition obtained by micronizing iron salts in advance and reverse ribosome-forming with phospholipid and Z or lysophospholipid into oils and fats stable against oxidation.
  • the iron-enriched oil-and-fat composition thus obtained can be produced by blending the composition with food or drink.
  • the present invention is characterized in that a food or drink containing oils and fats is mixed with a phospholipid and an iron thread composition reversely ribosomized with Z or lysophospholipid after pulverizing an iron salt.
  • the iron salt when the iron salt is added to an iron-enriched fat or oil composition or a food or drink containing the iron-enriched fat or oil composition, the iron salt is refined and reverse liposome-ized with phospholipid and Z or lysophospholipid.
  • the compounding amount of the manufactured iron composition there is no particular limitation, and a physically possible amount can be compounded.
  • the iron-enriched oil-and-fat composition and the food and drink containing the iron-enriched oil-and-fat composition are added to the iron in the iron composition.
  • the amount of the salt is preferably 0.001 to 5.0 parts by weight, more preferably 0.005 to 1.0 part by weight.
  • the iron-enriched oil / fat composition of the present invention is an oil-in-water emulsion
  • it can be used for water-based foods and beverages, and the effect of the present invention for preventing the fat / oil from accelerating the deterioration of iridescence is exhibited.
  • foods and drinks include secondary products of flour such as cookies, bread, and rice, processed rice products such as rice porridge, cooked rice, processed meat and fish meat, soft drinks, milk drinks, Drinks such as carbonated drinks and alcoholic drinks are exemplified.
  • the iron-enriched fat / oil composition containing the iron composition of the present invention.
  • the iron-enriched oil / fat composition has a peroxide value (POV) of 5 or less, more preferably 3 or less, and still more preferably 2 or less.
  • POV peroxide value
  • the POV can be measured, for example, in accordance with the AOM test (Chemical analysis method for oils and fats, Japan Oil Chemistry Association Cd2.4.28.181).
  • Example 1 1 kg of the iron composition prepared in Example 1 (product A of the present invention) was dispersed in a stirrer and mixed with 100 kg of the DHA-containing fat and oil to prepare an iron-fortified DHA formulation (iron-reinforced fat and oil composition) (Sample 1: Iron content 0.03%) o
  • an iron-fortified DHA formulation iron-reinforced fat and oil composition
  • Example 1 Iron content 0.03%
  • a comparative product instead of Alkg of the present invention, 0.15 kg of ferrous sulfate heptahydrate and 0.85 kg of rapeseed oil were mixed, and lecithin and enzymatic degradation
  • An iron-fortified DHA preparation was prepared in the same manner as in Sample 1 except that lecithin was not added (Sample 2: iron content: 0.03%).
  • the stability of the prepared oils against autoxidation is defined by the CDM test using a Rancimat apparatus (manufactured by Metronome Co., Ltd.) in accordance with the CDM test (Nippon Oil Chemistry Association, Standard Test Method for Fats and Oils, cd 2.4.28.2.93). The length of the induction period of the sardine was measured, and the oxidative stability was evaluated.
  • an iron-enriched corn oil formulation was prepared in the same manner as in Sample 1 except that 0.15 kg of the Japanese product was mixed with 0.35 kg of rapeseed oil, and lecithin and enzymatically-decomposed lecithin were not added (Sample 7: iron content 0.03 %). Further, as a comparative product, the same as sample 1 except that 0.3 kg of sodium ferrous citrate and 0.2 kg of rapeseed oil were added instead of 5 kg of the product of the present invention, and lecithin and enzymatically-decomposed lecithin were not added. To prepare an iron-enriched corn oil formulation (Sample 8: iron content 0.03%).
  • the product of the present invention was mixed with 0.1 kg of ferric pyrophosphate having an average particle size of 20 m and 0.4 kg of rapeseed oil instead of 5 kg of the present product BO, and without addition of lecithin and enzymatically decomposed lecithin.
  • An iron-enriched corn oil formulation was prepared in the same manner as in Sample 1 (Sample 9: iron content: 0.03%). Furthermore, corn oil without iron agent was prepared as a control (sample 10). Using the above samples 6-10, a forced oil deterioration test and a peroxide value measurement test were conducted in the same manner as the test examples. The results are shown in Table 2 below.
  • Sample 6 containing the iron composition of the present invention showed little change in the induction period of oxidation, whereas Sample 6 containing the iron composition of the present invention did not change in contrast to the corn oil containing no iron of Sample 10.
  • Samples 7-9 which contain iron other than the above, tended to cause iridescence deterioration very early in the induction period and were unstable.
  • the peroxidation value of Sample 6 to which the iron composition of the present invention was added was higher than that of any of Samples 7 to 9 to which other iron was added.
  • a comparative product instead of the product A of the present invention in sample 11, 0.06% by weight of ferrous sulfate heptahydrate and 0.356% by weight of rapeseed oil were mixed (sample 12: iron content 0.012%), 0.12% by weight of sodium ferrous citrate and 0.296% by weight of rapeseed oil (Sample 13: 0.0125% of iron content), 0.04% by weight of ferric pyrophosphate having an average particle diameter of 20 m and 0.376% by weight of rapeseed oil % (Sample 14: iron content 0.0125%) was manufactured.
  • Example 16 iron content 0.025%) containing the product B of the present invention shown in Example 2 was produced.
  • Vitamin B 1 0.0018
  • the iron composition and the iron-enriched oil / fat composition of the present invention are stable with almost no oxidative deterioration of oils and fats during storage by iron, and are therefore stable. It can be used in various other industrial fields, and its industrial utility value is great.

Abstract

An iron composition that does not exhibit any activity of accelerating the oxidative deterioration of fat or oil and has high stability against oxidation. There is further provided an iron enriched fat or oil composition being less susceptible to the acceleration of oxidative deterioration by iron during storage, characterized in that the above iron composition is contained.

Description

明 細 書  Specification
鉄組成物  Iron composition
技術分野  Technical field
[0001] 本発明は、平均粒子径 1 μ m以下の鉄塩と、リン脂質および Zまたはリゾリン脂質を 含有することを特徴とする油脂の酸化劣化促進作用を有さない鉄組成物に関する。 背景技術  The present invention relates to an iron composition having no action of promoting oxidative deterioration of fats and oils, comprising an iron salt having an average particle size of 1 μm or less, and a phospholipid and Z or lysophospholipid. Background art
[0002] 鉄は血中の蛋白質であるヘモグロビンに結合した状態で存在し、鉄不足の状態に なると組織中の貯蔵鉄力も補われることが知られている。貯蔵鉄が不足した状態は潜 在性貧血症と呼ばれ、発展途上国力 先進国において世界的な問題となっている。 この傾向は、女子高生や若い成人女性において特に顕著であり、その結果鉄欠乏 性貧血を起こす女性が多数見られる。この原因としては、食生活に由来する点が一 番大きいと考えられるが、女性の場合は、生理的な出血、妊娠による鉄需要の増カロ、 およびダイエットによる摂取不足等、鉄不足による貧血になり易い環境下にあることも 特徴的な原因である。従って、鉄の摂取にあたっては、毎日、毎食、あらゆる機会に 適当量の鉄を摂取することが望まれている。  [0002] It is known that iron exists in a state bound to hemoglobin, which is a protein in blood, and when iron deficiency occurs, the stored iron power in tissues is supplemented. A shortage of stored iron is called latent anemia and is a global problem in developing countries and developed countries. This tendency is particularly evident in high school girls and young adult women, resulting in many women with iron deficiency anemia. The most likely cause of this is dietary habits, but women suffer from anemia due to iron deficiency, such as physiological bleeding, increased caloric demand for iron due to pregnancy, and insufficient intake due to diet. Another characteristic feature is that the environment is prone to becoming vulnerable. Therefore, when taking iron, it is desirable to take an appropriate amount of iron every day, every meal, and at every opportunity.
[0003] 鉄の摂取に関しては、上記に示したように、鉄を強化した種々の食品や基本的な食 材の提供が望まれている。しかし、油脂類や油脂を含有する食品に鉄を強化すること には、鉄が該油脂類ゃ該食品の酸化劣化を促進させてしまうという問題点があった。  [0003] Regarding the intake of iron, as described above, it is desired to provide various foods and basic foods fortified with iron. However, fortifying iron to fats and oils and foods containing fats and oils has a problem that iron promotes oxidative deterioration of the fats and oils ゃ the food.
[0004] 油脂類には酸ィ匕劣化という大きな問題があり、油脂類は保存中や加熱処理中劣化 し、風味の劣化や悪臭の原因となったり、多くの疾病を引き起こす原因となる。従って 、劣化した油脂類は商品価値が低ぐ油脂類の劣化を防止するための対策が、油脂 類を利用する上で不可欠な技術として挙げられる。油脂類を劣化させる要因としては 、光、酸素、ミネラルの存在等が挙げられるが、その中でも、銅、鉄、マンガン、 -ッケ ル等の重金属が油脂類の劣化を促進する。また、食品中に含まれている金属の中で は、銅が最も酸化の促進力が強ぐ次いで鉄が強いとされている。食品への鉄強化 に通常用いられる硫酸第一鉄やクェン酸鉄等の無機鉄は、食品中に含まれる油脂 類の劣化を促進する。 [0005] 上記のように、鉄による油脂類の酸ィ匕劣化防止は重要な問題である力 それを解 決する技術が 、まだ確立されて 、な 、為、油脂類や油脂を含有する食品に鉄を強 化することは殆ど前例がない。なお、トコフエロールの抗酸ィ匕作用と縮合リン酸塩のシ ネルギストとしての効果も知られている(例えば、非特許文献 1参照。)が、必ずしも満 足できるものではな力 た。 [0004] Fats and oils have a serious problem of acidification deterioration, and fats and oils deteriorate during storage and heat treatment, causing deterioration of flavor and odor, and causing many diseases. Therefore, degraded fats and oils have low commercial value. Measures to prevent the deterioration of fats and oils are cited as an indispensable technique for using fats and oils. Factors that deteriorate oils and fats include the presence of light, oxygen, and minerals. Among them, heavy metals such as copper, iron, manganese, and nickel promote deterioration of oils and fats. Among metals contained in foods, copper is the strongest in promoting oxidation, followed by iron. Inorganic iron, such as ferrous sulfate and iron citrate, commonly used for iron enrichment in foods promotes the degradation of fats and oils contained in foods. [0005] As described above, prevention of deterioration of fats and oils by iron is an important problem. Techniques for solving the problem are still established, and therefore, for foods containing fats and oils and fats and oils. There is almost no precedent for strengthening iron. In addition, the antioxidant action of tocopherol and the effect of condensed phosphate as a synergist are also known (for example, see Non-Patent Document 1), but they were not always satisfactory.
[0006] 非特許文献 1 :青山 稔ら, 「トコフ ロールの酸ィ匕防止効果向上に関する研究 (第 20 報)」,油化学, 日本油化学協会,第 38卷,第 1号, p. 78, 1989年 1月  [0006] Non-Patent Document 1: Minoru Aoyama et al., "Study on Improvement of Occurrence Effect of Tocofurol on Oxidation (20th Report)", Oil Chemistry, Japan Oil Chemical Society, Vol. 38, No. 1, p. 78 , January 1989
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 従って、本発明の目的は、油脂の酸化劣化促進作用を有さない酸化安定性の高 い鉄組成物、及び、保存時の鉄による酸化劣化促進が少ない鉄強化油脂組成物を 提供することを課題とする。 [0007] Accordingly, an object of the present invention is to provide an iron composition having no oxidative deterioration promoting action of fats and oils and having high oxidation stability, and an iron-enriched fat and oil composition which has little promotion of oxidative deterioration by iron during storage. The task is to
課題を解決するための手段  Means for solving the problem
[0008] 本発明者らは、上記課題を解決するために鋭意研究を行った結果、平均粒子径 1 μ m以下に微細化した鉄塩を、リン脂質および Zまたはリゾリン脂質により逆リポソ一 ム化して調製された鉄組成物を油脂類に配合したところ、鉄による酸ィ匕劣化の促進 が少なぐ安定である鉄強化油脂組成物を得られることを見出し、本発明を完成させ た。 [0008] The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, it has been found that iron salts finely divided to an average particle diameter of 1 μm or less can be reverse liposome-treated by phospholipid and Z or lysophospholipid. When the iron composition prepared by the chemical conversion was mixed with fats and oils, it was found that an iron-enriched fat and oil composition which was less likely to promote oxidative degradation by iron and was stable could be obtained, thereby completing the present invention.
[0009] すなわち本発明は、  [0009] That is, the present invention provides
[1] 平均粒子径 1 m以下の鉄塩と、リン脂質および Zまたはリゾリン脂質を含有す る鉄組成物;  [1] An iron composition containing an iron salt having an average particle diameter of 1 m or less, and a phospholipid and Z or lysophospholipid;
[2] 前記鉄塩カ^ン脂質および Zまたはリゾリン脂質により被覆されている、 [1]記載 の鉄組成物;  [2] The iron composition according to [1], which is coated with the iron salt can lipid and Z or lysophospholipid;
[3] 油脂と、 [1]または [2]記載の鉄組成物を含有することを特徴とする鉄強化油脂 組成物;  [3] An iron-enriched oil / fat composition comprising: a fat / oil; and the iron composition according to [1] or [2];
[4] 油脂を構成する脂肪酸組成として不飽和脂肪酸を含有する油脂である、 [3]記 載の鉄強化油脂組成物;  [4] The iron-enriched fat or oil composition according to [3], which is an oil or fat containing an unsaturated fatty acid as a fatty acid composition constituting the fat or oil;
[5] 30°Cで 10日間保存した後の過酸化物価 (POV)が 5以下であることを特徴とす る、 [3]又は [4]記載の鉄強化油脂組成物;ならびに [5] The peroxide value (POV) after storage at 30 ° C for 10 days is 5 or less. [3] or the iron-enriched fat / oil composition according to [4];
[6] [3]-[5] ヽずれか記載の鉄強化油脂組成物を含有することを特徴とする飲食品 に関する。  [6] [3]-[5] A food or drink characterized by containing the iron-enriched fat or oil composition described in any one of the above.
発明の効果  The invention's effect
[0010] 本発明によれば、油脂の酸化劣化促進作用を有さな!/ヽ酸化安定性の高!、鉄組成 物、及び、保存時の鉄による酸化劣化促進が少ない鉄強化油脂組成物を提供する ことができる。また、本発明の鉄組成物及び鉄強化油脂組成物は、鉄による保存中 の油脂類の酸化劣化の促進が殆ど見られず安定であるので、飲食品、飼料、化粧品 、医薬品、農薬、機械その他各種工業分野において利用することができる。  [0010] According to the present invention, it has no effect of promoting the oxidative deterioration of fats and oils! / High oxidation stability! It is possible to provide an iron-enriched fat or oil composition, and an iron composition and an iron-enriched fat or oil composition that is less oxidatively degraded by iron during storage. In addition, the iron composition and the iron-enriched oil and fat composition of the present invention are stable, with little promotion of oxidative deterioration of oils and fats during storage by iron, and are therefore stable. It can be used in various other industrial fields.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、まず本発明の鉄組成物について詳述する。本発明の鉄組成物は、平均粒子 径 1 μ m以下の鉄塩と、リン脂質および Zまたはリゾリン脂質を含有することを 1つの 大きな特徴とする。本発明の鉄組成物においては、鉄塩がリン脂質および Zまたはリ ゾリン脂質によって被覆されている(すなわち、後述のようにして逆リボソーム化されて いる)ために、油脂に添加しても、鉄の油脂中への溶出を抑えることができ、そのため 、鉄による油脂の酸ィ匕劣化の促進を抑制することができる。よって、本発明により、油 脂に添加しても鉄による酸化劣化の促進が抑制された安定な鉄組成物、その鉄組成 物を含有する鉄強化油脂組成物、及びその鉄強化油脂組成物を含有する飲食品を 得ることができる。 Hereinafter, first, the iron composition of the present invention will be described in detail. One major feature of the iron composition of the present invention is that it contains an iron salt having an average particle diameter of 1 μm or less, a phospholipid and Z or lysophospholipid. In the iron composition of the present invention, since the iron salt is coated with the phospholipid and Z or lysophospholipid (that is, it is reverse ribosomized as described later), The elution of iron into fats and oils can be suppressed, and therefore, the promotion of oxidative degradation of fats and oils by iron can be suppressed. Thus, according to the present invention, a stable iron composition in which the promotion of oxidative deterioration by iron is suppressed even when added to fats and oils, an iron-fortified fats and oils composition containing the iron composition, and the iron-reinforced fats and oils composition are provided. A food or beverage containing the product can be obtained.
[0012] 本発明における鉄塩は、特に限定するものではなぐ例えば硫酸第一鉄、塩ィ匕第 二鉄、クェン酸第一鉄ナトリウム、クェン酸第一鉄、 EDTA鉄ナトリウム、ダルコン酸 第一鉄、乳酸鉄、ピロリン酸第一鉄、ピロリン酸第二鉄等が挙げられる。さらに、味、 食品成分との反応性、消化粘膜刺激性などの観点から、ピロリン酸第二鉄、ピロリン 酸第一鉄が好ましぐピロリン酸第二鉄がより好ましい。  The iron salt in the present invention is not particularly limited. For example, ferrous sulfate, ferric chloride, ferrous sodium citrate, ferrous citrate, sodium EDTA iron, dalconic acid Iron, iron lactate, ferrous pyrophosphate, ferric pyrophosphate and the like. Further, from the viewpoints of taste, reactivity with food ingredients, irritation to digestive mucosa, and the like, ferric pyrophosphate and ferric pyrophosphate are more preferable, with ferrous pyrophosphate being preferred.
[0013] また、鉄塩に加えて、マンガン塩やニッケル塩等の他ミネラル由来の塩を併用する ことも可能である。その場合の塩としては、例えばカルシウム塩、マグネシウム塩、亜 鉛塩、マンガン塩、ニッケル塩、クロム塩、セレン塩、銅塩、モリブデン塩、ヨウ素塩等 が挙げられ、所望により 1種または 2種以上の混合物を用いることができる。 [0014] 本発明におけるリン脂質とは、リン脂質ィ匕合物であれば、特に限定されるものでは なぐ例えば、動物又は植物力も抽出される大豆レシチン、卵黄レシチン、菜種レシ チン、綿実レシチン、トウモロコシレシチン等、一般にレシチンと呼ばれるものが挙げ られる。また、それらの構成成分である、フォスファチジルコリン、フォスファチジルイノ シトール、フォスファチジルエタノールァミン、フォスファチジルセリン、フォスファチジ ン酸、スフインゴミエリン、フォスファチジルグリセロール及びそれらの水素添カ卩品、ァ セチル化品、ヒドロキシルイ匕品、ハロゲン化品、スルホン化品等のリン脂質及びその 誘導体等も本発明におけるリン脂質に含まれる。 [0013] In addition to iron salts, salts derived from other minerals such as manganese salts and nickel salts can be used in combination. Examples of the salt in this case include a calcium salt, a magnesium salt, a zinc salt, a manganese salt, a nickel salt, a chromium salt, a selenium salt, a copper salt, a molybdenum salt, and an iodine salt. Mixtures of the above can be used. [0014] The phospholipid in the present invention is not particularly limited as long as it is a phospholipid conjugate, for example, soybean lecithin, egg yolk lecithin, rapeseed lecithin, cottonseed lecithin from which animal or plant power is also extracted. And lecithin, such as corn lecithin, and the like. In addition, their constituents, phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine, phosphatidylserine, phosphatidic acid, sphingomyelin, phosphatidylglycerol, and their hydrogenated catalysts Phospholipids such as syrup products, acetylated products, hydroxylated products, halogenated products, sulfonated products, and derivatives thereof are also included in the phospholipids of the present invention.
[0015] 本発明におけるリゾリン脂質とは、上記のようなリン脂質をフォスホリパーゼで処理し て得られる酵素分解リン脂質のことであり、例えば、リゾ大豆レシチン、リゾ卵黄レシチ ン、リゾ菜種レシチン、リゾ綿実レシチン、リゾトウモロコシレシチン、リゾフォスファチジ ルコリン、リゾフォスファチジルイノシトール、リゾフォスファチジルエタノールァミン、リ ゾフォスファチジルセリン、リゾスフインゴミエリン等が挙げられる。  [0015] The lysophospholipid in the present invention is an enzymatically degraded phospholipid obtained by treating the above phospholipid with phospholipase, and is, for example, lyso-soybean lecithin, lyso-yolk lecithin, lyso-rape lecithin. And lyso-cotton lecithin, lyso-corn lecithin, lysophosphatidylcholine, lysophosphatidylinositol, lysophosphatidylethanolamine, lysophosphatidylserine, lysophosphingomyelin and the like.
[0016] 上記リン脂質および Zまたはリゾリン脂質は単独で用いても良ぐまた 2種以上を併 用しても良い。好ましくは、リゾリン脂質の 1種又は 2種以上を用いる。  The above phospholipid and Z or lysophospholipid may be used alone or in combination of two or more. Preferably, one or more lysophospholipids are used.
[0017] 本発明の鉄組成物に使用される鉄塩の粒子サイズとしては、平均粒子径が 1 μ m 以下であることが必要である。鉄塩が 1 μ mより大きな平均粒子径を有する粗大粒子 であるとき、該鉄塩を含む鉄組成物を含有してなる飲食品の食感をざらつきの面で 著しく損なうとの理由力もである。また、鉄塩が: mより大きな平均粒子径を有する 粗大粒子であるとき、油脂中に保存される際の分散安定性においても悪ぐ該粒子 は沈殿分離を引き起こす。また、鉄塩が 1 μ mより大きな平均粒子径を有する粗大粒 子であるとき、逆リボソームの作成が非常に困難となる。すなわち、たとえ鉄塩の粒子 表面を逆リボソーム化したとしても、粒子の曲率が非常に小さい為、その逆リボソーム による分子の膜を安定に保てない等の問題がある。これらの問題を解決する為に、 本発明に使用される鉄塩の平均粒子径は 1 μ m以下であり、好ましくは 0. 5 /z m以 下であり、更に好ましくは 0. 3 m以下である。ここで、鉄塩の平均粒子径の測定に ついては既存の方法を用いることができ、特に限定されるものではなぐ例えば動的 光散乱法やレーザー回折光散乱法を用いることができる。 [0018] 前記範囲より大きな平均粒子径を有する鉄塩は、前記範囲内に微細化することに よって本発明に使用することができる。鉄塩の微細化には、例えば中和造塩法また はミルによる摩砕法等の公知の技術を用いることができ、微細化された鉄塩は何ら制 限無く本発明の鉄組成物の製造に用いることができる。なお、中和造塩法は鉄塩の 微細化の調整には比較的好適であるが、水を溶媒として必要とする為、油脂に添カロ する前に脱水する必要があり、その場合に平均粒子径が 1 m以上に粗大化しやす い。一方、ミルによる摩砕法は油脂類を分散媒として使用できるため、鉄塩の微細化 調整後、該鉄塩をそのまま油脂に添加することができるため、より好適である。ミルに よる摩砕法には、例えばコボールミル等の湿式摩砕装置を使用することができる。 [0017] The particle size of the iron salt used in the iron composition of the present invention needs to have an average particle diameter of 1 µm or less. When the iron salt is a coarse particle having an average particle diameter larger than 1 μm, this is another reason that the texture of a food or drink containing the iron composition containing the iron salt is significantly impaired in terms of roughness. . In addition, when the iron salt is a coarse particle having an average particle diameter larger than: m, the particle, which has poor dispersion stability when stored in fats and oils, causes precipitation and separation. In addition, when the iron salt is a coarse particle having an average particle size of more than 1 μm, it is very difficult to form a reverse ribosome. That is, even if the surface of the iron salt particles is reverse-ribosomalized, the curvature of the particles is so small that the reverse ribosome cannot stably maintain the molecular film. In order to solve these problems, the average particle size of the iron salt used in the present invention is 1 μm or less, preferably 0.5 / zm or less, more preferably 0.3 m or less. is there. Here, an existing method can be used for measuring the average particle diameter of the iron salt, and the method is not particularly limited, and for example, a dynamic light scattering method or a laser diffraction light scattering method can be used. [0018] An iron salt having an average particle size larger than the above range can be used in the present invention by making it fine within the above range. Known techniques such as a neutral salt-forming method or a milling method using a mill can be used to refine the iron salt, and the refined iron salt can be produced without any limitation by the production of the iron composition of the present invention. Can be used. In addition, the neutralization salt formation method is relatively suitable for adjusting the fineness of the iron salt, but since water is required as a solvent, it is necessary to dehydrate before adding fat to fats and oils. Particle size is easily increased to 1 m or more. On the other hand, the milling method using a mill is more preferable because the fats and oils can be used as a dispersion medium, and the iron salt can be directly added to the fats and oils after the fine adjustment of the iron salt. For the milling method using a mill, for example, a wet milling device such as a Koball mill can be used.
[0019] 安定な逆リボソームを得るためには、リン脂質とその酵素分解物であるリゾリン脂質 を適当な配合比で添加し、 HLB値の調整をすることが好ましい。すなわち、その配合 比としてはリン脂質 100重量部に対してリゾリン脂質が 0— 500重量部であることが好 ましぐ 10— 400重量部であることが更に好ましい。調整後の HLB値としては特に限 定するものではないが、好ましくは 7— 12であり、更に好ましくは 7. 5— 11である。  [0019] In order to obtain a stable reverse ribosome, it is preferable to adjust the HLB value by adding a phospholipid and a lysophospholipid, which is an enzymatic degradation product thereof, at an appropriate mixing ratio. That is, the mixing ratio of lysophospholipid is preferably 0 to 500 parts by weight, more preferably 10 to 400 parts by weight, per 100 parts by weight of phospholipid. Although the HLB value after adjustment is not particularly limited, it is preferably 7-12, and more preferably 7.5-11.
[0020] 通常、リボソームとは水系の溶媒中に 2分子膜で安定化された物質となるが、本発 明における溶媒は油脂類である。そこで、本発明の研究者らは創意工夫を重ねた結 果、特定の作成法により油脂中において逆型のリボソームすなわち逆べシクル構造 を形成することを見出し、さらに内相物質力 Sミネラル塩の場合は安定な逆リボソーム が形成されることを見出した。すなわち、本発明の鉄組成物の製造方法は特に限定 されないが、好ましい方法の 1つとして以下に例示する。その製造方法としては、例え ば、油脂中で鉄塩をコボールミルやホモジナイザー等の湿式摩砕装置により微細化 するにあたって、あら力じめ逆リボソームに必要なリン脂質および Zまたはリゾリン脂 質や、その他の、併用しても良い乳化剤を添加しておくことにより、鉄塩を逆リポソ一 ム化する方法が挙げられる。ここで、併用してもよい乳化剤としては特に限定されるも のではないが、例えばポリグリセリン脂肪酸エステル、ジグリセリン脂肪酸エステル、グ リセリン脂肪酸エステル、プロピレングリコール脂肪酸エステル、多価アルコールの単 品あるいは混合物、好ましくはポリグリセリン脂肪酸エステル等が挙げられる。  [0020] Normally, ribosomes are substances stabilized with a bimolecular membrane in an aqueous solvent, but the solvent in the present invention is an oil or fat. Therefore, the researchers of the present invention have found that, as a result of repeated ingenuity, a reverse ribosome, that is, a reverse vesicle structure, is formed in fats and oils by a specific preparation method. In some cases, it was found that a stable reverse ribosome was formed. That is, the method for producing the iron composition of the present invention is not particularly limited, but is exemplified below as a preferred method. For example, when iron salts are refined in oils and fats by a wet mill such as a coball mill or homogenizer, the phospholipids and Z or lysophosphorus lipids necessary for the reverse ribosome are first described. However, a method of reverse liposomeizing an iron salt by adding an emulsifier which may be used in combination may be mentioned. Here, the emulsifier that may be used in combination is not particularly limited, and examples thereof include polyglycerin fatty acid ester, diglycerin fatty acid ester, glycerin fatty acid ester, propylene glycol fatty acid ester, and polyhydric alcohol alone or as a mixture. And preferably polyglycerin fatty acid ester.
[0021] なお、上記の作成方法において、溶媒として使用される油脂の種類としては、特に 限定されるものではな 、が、例えば油脂を構成する脂肪酸組成として不飽和脂肪酸 を含有する油脂等が挙げられる。また、溶媒として使用される油脂の量としては、鉄 塩を安定して逆リボソーム化するという観点から、鉄塩 100重量部に対して油脂の量 力 S 100— 9900重量部であることが好ましぐ 200— 2000重量部であることが更に好 ましい。また、鉄塩とリン脂質および Zまたはリゾリン脂質の配合比としては、同様の 観点から、鉄塩 100重量部あたりリン脂質および Zまたはリゾリン脂質が 0. 1— 100 重量部であることが好ましぐ 1一 50重量部であることが更に好ましい。なお、上記の ような乳化剤を併用する場合、該乳化剤の配合量としては、鉄塩 100重量部あたり該 乳ィ匕剤が 0— 500重量部であることが好ましぐ 0. 5— 250重量部であることが更に 好ましい。また、逆リボソーム化を行う際の温度は、使用される油脂の種類等に応じて 適宜設定されればよいが、逆リボソーム化を効率良く進行させるという観点力もは、溶 媒として使用される油脂の温度として 10— 70°Cが好ましい。また、逆リボソーム化を 行う時間としては、鉄塩が逆リボソーム化された状態となるように適宜設定されればよ いが、逆リボソーム化を完全に行うという観点からは、例えばホモジナイザーを用いる 場合は 1一 30分が好ましい。 [0021] In the above-mentioned production method, the type of fat or oil used as a solvent is particularly Although not limited, examples of the fatty acid composition of the fats and oils include fats and oils containing unsaturated fatty acids. The amount of the fat or oil used as a solvent is preferably 100 to 9900 parts by weight of the fat or oil based on 100 parts by weight of the iron salt from the viewpoint of stably reverse ribosome-forming the iron salt. Even more preferably 200-2000 parts by weight. From the same viewpoint, the mixing ratio of iron salt to phospholipid and Z or lysophospholipid is preferably 0.1 to 100 parts by weight per 100 parts by weight of iron salt. It is more preferable that the amount be 1 to 50 parts by weight. When the emulsifier as described above is used in combination, the amount of the emulsifier is preferably 0.5 to 250 parts by weight per 100 parts by weight of iron salt. Is more preferable. Further, the temperature at which reverse ribosome formation is performed may be appropriately set according to the type of fats and oils used, etc. The temperature is preferably 10-70 ° C. The time for reverse ribosome formation may be appropriately set so that the iron salt is in a state of reverse ribosome formation.From the viewpoint of complete reverse ribosome formation, for example, when a homogenizer is used. Is preferably 1 to 30 minutes.
[0022] 上記方法で調製された鉄塩はリン脂質および Zまたはリゾリン脂質を必須とする 2 分子膜で逆リボソーム化されており、分散性が安定に保持されると共に、内容物の溶 出を防ぐ為、酸化安定性も付与される。なお、鉄塩が逆リボソーム化されているかどう かの確認は、例えば電子顕微鏡、ゲル濾過法、又は浸透圧応答法などにより行うこと ができる。 [0022] The iron salt prepared by the above method is reverse-ribosomalized with a bimolecular membrane comprising phospholipids and Z or lysophospholipids as essential, so that the dispersibility is stably maintained and the contents are eluted. To prevent this, oxidative stability is also provided. In addition, whether or not the iron salt is reverse ribosomized can be confirmed by, for example, an electron microscope, a gel filtration method, an osmotic response method, or the like.
[0023] 以上のようにして、本発明の鉄糸且成物(リン脂質および Zまたはリゾリン脂質により 逆リボソーム化された鉄塩)を得ることができる。また、上記のような方法を用いた場合 、本発明の鉄組成物は、溶媒として使用した油脂中に含有された状態で得られる。 本発明の鉄組成物は、このように油脂中に含有された状態のまま使用されても良ぐ あるいは、溶媒として使用した油脂力も分離された状態で使用されてもよい。本発明 の組成物は、例えば、鉄による酸ィ匕劣化促進を抑制したい油脂と混合して、本発明 の鉄強化油脂組成物(リン脂質および Zまたはリゾリン脂質により逆リボソーム化され た鉄塩を含有する油脂)として使用することができる。 [0024] 本発明の鉄強化油脂組成物に使われる油脂としては、特に限定されるものではなく 、飲食品、飼料、化粧品、医薬品及び工業等の分野で利用される公知の油脂類成 分を特に制限無く用いることができる。該油脂類成分としては液体状態のものを用い る力 常温で液体状態のものでもよぐまた、常温で固体状態であっても、加温により 溶解して液体状態となるものであれば、特に制限無く用いることができる。該油脂類 成分としては、例えば、抗酸化剤、栄養強化剤、薬剤及び動植物抽出物質、炭化水 素類、動植物性油脂類、高級アルコール類、ワックス類、シリコーン系物質、ステロー ル類、これらを酵素処理 (加水分解、エステル交換)や化学的処理 (水素添加)したも の等が挙げられ、具体的には、ミックストコフエロール、 dl- α -トコフエロール、トコトリ ェノール、ごま抽出物、 β—カロチン、ビタミン Α、ローズマリー油、ビタミン D類、ビタミ ン Κ類、ビタミン Q類、必須脂肪酸、米ぬカゝ抽出物、 γ—オリザノール、センプリエキス 、プロポリス抽出物、セージ抽出物、ペッパー抽出物、スクワレン、スツボンオイル、肝 油、大豆油、ナタネ油、コーン油、綿実油、サフラワー油、ヒマヮリ油、落花生油、小 麦胚芽油、玄米胚芽油、ハトムギ油、マ力ダミアンナッツ油、ガーリックオイル、魚油、 卵油、卵黄油、流動パラフィン、イソパラフィン、ワセリン、スクヮラン、スクワレン、テレ ピン油、ミリスチン酸イソプロピル、ミリスチン酸イソパルミチルエステル、ミリスチン酸 2-オタチルドデシルエステル、 2—ェチルへキサン酸グリセリルエステル、トリ— 2—ェチ ルへキサン酸グリセリルエステル、魚硬化油、コレステロール、フィトステロール、ラノリ ン、エイコサペンタエン酸、ドコサへキサェン酸等が挙げられる。 [0023] As described above, the iron thread composition (iron salt reverse-ribosomalized with phospholipid and Z or lysophospholipid) of the present invention can be obtained. When the above-described method is used, the iron composition of the present invention is obtained in a state where the iron composition is contained in fats and oils used as a solvent. The iron composition of the present invention may be used as it is contained in fats and oils, or may be used with the fats and oils used as a solvent separated. The composition of the present invention is mixed with, for example, a fat or oil which is desired to suppress the promotion of oxidative degradation by iron. (Containing fats and oils). [0024] The fats and oils used in the iron-enriched fat and oil composition of the present invention are not particularly limited, and include known fats and oils components used in fields such as food and drink, feed, cosmetics, pharmaceuticals, and industry. It can be used without particular limitation. The oil or fat component may be in a liquid state. The liquid may be in a liquid state at normal temperature. Even if it is in a solid state at normal temperature, it may be dissolved in a liquid state by heating. It can be used without any restrictions. Examples of the fats and oils component include antioxidants, nutrient enhancers, drugs and plant and animal extract substances, hydrocarbons, plant and animal fats and oils, higher alcohols, waxes, silicone-based substances, sterols, and the like. Enzyme-treated (hydrolyzed, transesterified) and chemically-treated (hydrogenated), etc., specifically, mixed tocopherol, dl-α-tocopherol, tocotrienol, sesame extract, β-carotene , Vitamin II, Rosemary Oil, Vitamin D, Vitamin II, Vitamin Q, Essential Fatty Acids, Rice Bran Extract, γ-Oryzanol, Sempri Extract, Propolis Extract, Sage Extract, Pepper Extract , Squalene, trouser oil, liver oil, soybean oil, rapeseed oil, corn oil, cottonseed oil, safflower oil, castor oil, peanut oil, wheat germ oil, brown rice germ oil Barley oil, mala damian nut oil, garlic oil, fish oil, egg oil, egg yolk oil, liquid paraffin, isoparaffin, vaseline, squalane, squalene, turpentine oil, isopropyl myristate, isopalmityl myristate, myristic acid 2- Examples include otatyl dodecyl ester, glyceryl 2-ethylhexanoate, glyceryl tri-2-ethylhexanoate, hardened fish oil, cholesterol, phytosterol, lanolin, eicosapentaenoic acid, docosahexanoic acid, and the like. .
[0025] 中でも、油脂を構成する脂肪酸組成として不飽和脂肪酸を含有する油脂類成分で ある場合に、油脂の酸ィ匕劣化促進が生じやすいが、本発明で用いる油脂としては、 力かる油脂を構成する脂肪酸組成として不飽和脂肪酸を含有する油脂類成分であ つても、油脂の酸ィ匕促進を効果的に抑えることができる。従って、本発明の鉄強化油 脂組成物には、油脂を構成する脂肪酸組成として不飽和脂肪酸を含有する油脂類 成分または油脂を構成する脂肪酸組成として飽和脂肪酸のみを含有する油脂類成 分のいずれも好適に用いることができるが、本発明における酸ィ匕促進抑制効果は、 油脂を構成する脂肪酸組成として不飽和脂肪酸を含有する油脂類成分を用いる場 合により顕著である。 [0026] また、上記油脂類成分は、単独で用いても、又は 2種以上を組み合わせて用いても 良い。上記油脂類成分に、微細化してリン脂質および Zまたはリゾリン脂質により逆リ ポソーム化した鉄塩 (本発明の鉄組成物)を配合することにより、酸化に対して安定な 鉄強化油脂組成物を得ることができる。 [0025] Above all, in the case of a fat or oil component containing an unsaturated fatty acid as the fatty acid composition of the fat or oil, the promotion of deterioration of the fat or oil by oxidization is likely to occur. Even if it is a fat component containing an unsaturated fatty acid as a constituent fatty acid composition, it is possible to effectively suppress the promotion of fat and oil oxidization. Therefore, the iron-enriched fat composition of the present invention includes any one of a fat component containing an unsaturated fatty acid as the fatty acid composition constituting the fat or oil or a fat component containing only the saturated fatty acid as the fatty acid composition constituting the fat. Can be suitably used, but the effect of suppressing the promotion of iridescence in the present invention is more remarkable when a fat or oil component containing an unsaturated fatty acid is used as the fatty acid composition of the fat or oil. [0026] The fats and oils components may be used alone or in combination of two or more. The iron-enriched oil-and-fat composition that is stable against oxidation is mixed with the above-mentioned oil and fat component by adding an iron salt (iron composition of the present invention) that has been micronized and reverse liposomalized with phospholipid and Z or lysophospholipid. Obtainable.
[0027] リン脂質および Zまたはリゾリン脂質の単用においても充分な逆リボソーム化による 酸ィ匕劣化安定ィ匕効果が得られるが、油脂組成物への分散性および逆リボソームの安 定性が得られない場合は補助剤として、ポリオキシチレン付加型界面活性剤、ショ糖 脂肪酸エステル、グリセリン脂肪酸エステル、プロピレングリコール脂肪酸エステル及 びソルビタン脂肪酸エステル等の飲食品用の乳化剤等の他の界面活性剤成分等と 併用することにより、より好ましいリン脂質および Zまたはリゾリン脂質の鉄塩への安 定逆リボソーム化の向上が認められる。また、油脂類中での乳化剤の挙動を見た場 合、親水性の高い乳化剤は凝集し性能を発揮しない傾向にある。また、親油性の高 い乳化剤は油脂へ均一分散してしまい、性能を発揮しない傾向にある。そのため、リ ン脂質および Zまたはリゾリン脂質との逆リボソーム化条件も考慮した場合、 HLBが 6— 12程度の極性的に中程度の乳化剤が吸着皮膜として好ましぐ本発明の効果が より発揮される。しかしながら、本発明によるリン脂質および Zまたはリゾリン脂質の逆 リボソーム化を損なわな 、添加量で処理が施されて 、なければ酸ィ匕劣化を抑制し、 安定に分散した鉄塩を得るに至らない可能性がある。すなわち、これらの乳化剤の添 加量としては、リン脂質および Zまたはリゾリン脂質の合計量 100重量部に対して、 0 一 500重量部が好ましい。  [0027] Even when phospholipid and Z or lysophospholipid are used alone, sufficient reverse ribosome formation can provide an oxidative degradation stability and stable effect, but dispersibility in an oil / fat composition and reverse ribosome stability can be obtained. If not, use as supplements other surfactant components such as polyoxytylene-added surfactants, emulsifiers for foods and beverages such as sucrose fatty acid esters, glycerin fatty acid esters, propylene glycol fatty acid esters and sorbitan fatty acid esters, etc. In combination with, more stable phospholipid and improvement of stable reverse ribosome formation of Z or lysophospholipid into an iron salt are recognized. In addition, when the behavior of the emulsifier in fats and oils is observed, the emulsifier having a high hydrophilicity tends to coagulate and exhibit no performance. In addition, emulsifiers having high lipophilicity tend to be uniformly dispersed in fats and oils, and do not exhibit performance. Therefore, when the conditions for reverse ribosome formation with phospholipids and Z or lysophospholipids are also taken into account, the effect of the present invention, in which a polar intermediate emulsifier having an HLB of about 6 to 12 is preferred as an adsorbent film, is more exhibited. You. However, if the treatment is carried out with the added amount without impairing the reverse ribosome formation of the phospholipid and the Z or lysophospholipid according to the present invention, unless the treatment is carried out, the oxidative degradation is suppressed, and a stable dispersed iron salt cannot be obtained. there is a possibility. That is, the addition amount of these emulsifiers is preferably 0 to 500 parts by weight based on 100 parts by weight of the total amount of the phospholipid and Z or lysophospholipid.
[0028] また、本発明の、鉄強化油脂組成物を含有する飲食品としては、油脂を含むあらゆ る飲食品が挙げられる力 特に、マーガリン、バター、ドレッシング、クリーム、チーズ、 育児粉乳等が好ましい。これらの飲食品は例えば、予め鉄塩を微細化し、リン脂質お よび Zまたはリゾリン脂質により逆リボソーム化することによって得られた鉄組成物を、 酸化に対して安定な油脂類に配合し、得られた鉄強化油脂組成物を飲食品に配合 すること〖こよって製造することができる。また、油脂類を含む飲食品に、鉄塩を微細化 してリン脂質および Zまたはリゾリン脂質により逆リボソーム化した鉄糸且成物を配合す ること〖こより、製造することちでさる。 [0029] 本発明においては、鉄強化油脂組成物や鉄強化油脂組成物を含有する飲食品に 配合する際の、鉄塩を微細化してリン脂質および Zまたはリゾリン脂質により逆リポソ ーム化して製造した鉄組成物の配合量については、特に制限はなぐ物理的に可能 な量を配合することができる。しかし、鉄の過剰摂取を避けなければならないというこ とも考慮しなければならないため、鉄強化油脂組成物や鉄強化油脂組成物を含有す る飲食品 100重量部に対し、鉄組成物中の鉄塩の量として 0. 001— 5. 0重量部で あることが好ましぐ 0. 005—1. 0重量部であることが更に好ましい。 [0028] The foods and drinks containing the iron-enriched oil and fat composition of the present invention include all kinds of foods and drinks containing oils and fats. In particular, margarine, butter, dressing, cream, cheese, baby milk powder, etc. preferable. These foods and drinks are prepared by, for example, blending an iron composition obtained by micronizing iron salts in advance and reverse ribosome-forming with phospholipid and Z or lysophospholipid into oils and fats stable against oxidation. The iron-enriched oil-and-fat composition thus obtained can be produced by blending the composition with food or drink. In addition, the present invention is characterized in that a food or drink containing oils and fats is mixed with a phospholipid and an iron thread composition reversely ribosomized with Z or lysophospholipid after pulverizing an iron salt. [0029] In the present invention, when the iron salt is added to an iron-enriched fat or oil composition or a food or drink containing the iron-enriched fat or oil composition, the iron salt is refined and reverse liposome-ized with phospholipid and Z or lysophospholipid. Regarding the compounding amount of the manufactured iron composition, there is no particular limitation, and a physically possible amount can be compounded. However, it must be taken into consideration that it is necessary to avoid excessive intake of iron.Therefore, 100 parts by weight of the iron-enriched oil-and-fat composition and the food and drink containing the iron-enriched oil-and-fat composition are added to the iron in the iron composition. The amount of the salt is preferably 0.001 to 5.0 parts by weight, more preferably 0.005 to 1.0 part by weight.
[0030] 本発明における鉄強化油脂組成物を水中油型のェマルジヨンとした場合、水系の 飲食品にも利用することができ、本発明の油脂の酸ィ匕劣化促進防止効果が発揮され る。その場合の飲食品としては、クッキー、パン、麵類等に代表される小麦粉 2次製品 、おかゆ、炊き込み飯等の米加工品、畜肉,魚肉等の加工品、及び清涼飲料、乳飲 料、炭酸飲料、アルコール飲料等の飲料などが挙げられる。  [0030] When the iron-enriched oil / fat composition of the present invention is an oil-in-water emulsion, it can be used for water-based foods and beverages, and the effect of the present invention for preventing the fat / oil from accelerating the deterioration of iridescence is exhibited. In this case, foods and drinks include secondary products of flour such as cookies, bread, and rice, processed rice products such as rice porridge, cooked rice, processed meat and fish meat, soft drinks, milk drinks, Drinks such as carbonated drinks and alcoholic drinks are exemplified.
[0031] 本発明において、「油脂の酸ィ匕劣化促進作用を有さない」とは、特に限定されるも のではないが、好ましくは、本発明の鉄組成物を含む鉄強化油脂組成物を 30°Cで 1 0日間保存した後の、該鉄強化油脂組成物の過酸化物価 (POV)が 5以下であり、よ り好ましくは 3以下、更に好ましくは 2以下であることをいう。ここで POVは、例えば A OM試験(日本油化学協会基準油脂分析試験法 Cd2. 4. 28. 1 81)に従って測 定することができる。  [0031] In the present invention, "having no action to promote the oxidative degradation of fats and oils" is not particularly limited, but preferably an iron-enriched fat / oil composition containing the iron composition of the present invention. After storage for 10 days at 30 ° C. means that the iron-enriched oil / fat composition has a peroxide value (POV) of 5 or less, more preferably 3 or less, and still more preferably 2 or less. Here, the POV can be measured, for example, in accordance with the AOM test (Chemical analysis method for oils and fats, Japan Oil Chemistry Association Cd2.4.28.181).
[0032] 次に実施例によって本発明を更に詳細に説明する。なお、本発明はこれらの実施 例に限定されるものではない。なお以下の実施例において、鉄含量についての「%」 との表示は全て「重量%」を意味するものとする。  Next, the present invention will be described in more detail by way of examples. Note that the present invention is not limited to these examples. In addition, in the following Examples, the expression "%" for the iron content means "% by weight".
実施例  Example
[0033] 実施例 1 Example 1
平均粒子径 20 mのピロリン酸第二鉄(富山薬品工業製) 10kgをナタネ油 86. 95 kgに分散させた溶液をダイノーミルによって平均粒子径約 0. 25 mのスラリーに調 製した。この溶液にレシチン (サンレシチン L 6 ;太陽ィ匕学製)を 1. 5kg、酵素分解レ シチン(サンレシチン A;太陽化学製)を 1. 5kg、及びビタミン E (Eオイル 600 ;理研ビ タミン製)を 0. 05kg添加溶解し、液温を 45°Cに加熱し、ホモジナイザーで 15分間処 理して逆リボソーム化した。生成した組成物を透明容器に充填して保存し、 10%ピロ リン酸第二鉄組成物 (本発明品 A)を得た。本発明品 Aが逆リボソーム化された状態 であることを、電子顕微鏡により確認した。 A solution in which 10 kg of ferric pyrophosphate having an average particle diameter of 20 m (manufactured by Toyama Pharmaceutical Co., Ltd.) was dispersed in 86.95 kg of rapeseed oil was prepared with a Dynomill into a slurry having an average particle diameter of about 0.25 m. 1.5 kg of lecithin (San lecithin L 6; manufactured by Taiyo-Danigaku), 1.5 kg of enzymatically-decomposed lecithin (San lecithin A; manufactured by Taiyo Kagaku), and vitamin E (E oil 600; RIKEN vitamin Was added and dissolved, and the solution was heated to 45 ° C and treated with a homogenizer for 15 minutes. To reverse ribosome. The resulting composition was filled and stored in a transparent container to obtain a 10% ferric pyrophosphate composition (Product A of the present invention). It was confirmed by an electron microscope that the product A of the present invention was in a reverse ribosome state.
[0034] 試験例 1 [0034] Test Example 1
DHA含有油脂 100kgに対して、実施例 1で調製した鉄組成物 (本発明品 A) 1kg を撹拌機で分散させて配合し、鉄強化 DHA製剤 (鉄強化油脂組成物)を調製した( 試料 1 :鉄含量 0. 03%) o次に比較品として、本発明品 Alkgの代わりに、硫酸第 1 鉄 7水和物 0. 15kgとナタネ油 0. 85kgとを配合し、レシチン及び酵素分解レシチン を添加しない以外は試料 1と同様にして鉄強化 DHA製剤を調製した (試料 2 :鉄含 量 0. 03%) oさらに比較品として、本発明品 Alkgの代わりにクェン酸第 1鉄ナトリウ ム 0. 3kgとナタネ油 0. 7kgを配合し、レシチン及び酵素分解レシチンを添カ卩しない 以外は試料 1と同様にして鉄強化 DHA製剤を調製した (試料 3 :鉄含量 0. 03%) o さらに比較品として、本発明品 Alkgの代わりに、平均粒子径 20 /z mのピロリン酸第 二鉄 0. 1kgとナタネ油 0. 9kgを配合し、レシチン及び酵素分解レシチンを添カ卩しな Vヽ以外は試料 1作成法と同様にして鉄強化 DHA製剤調製した (試料 4:鉄含量 0. 0 3%)。さらに、対照品として鉄無添加の DHA含有油脂を調製した (試料 5)。上記の 試料 1一 5を用いて油強制劣化試験および過酸化物価測定試験を行った。結果を表 1に示す。  1 kg of the iron composition prepared in Example 1 (product A of the present invention) was dispersed in a stirrer and mixed with 100 kg of the DHA-containing fat and oil to prepare an iron-fortified DHA formulation (iron-reinforced fat and oil composition) (Sample 1: Iron content 0.03%) o Next, as a comparative product, instead of Alkg of the present invention, 0.15 kg of ferrous sulfate heptahydrate and 0.85 kg of rapeseed oil were mixed, and lecithin and enzymatic degradation An iron-fortified DHA preparation was prepared in the same manner as in Sample 1 except that lecithin was not added (Sample 2: iron content: 0.03%). O As a comparative product, sodium ferrous citrate was used instead of Alkg of the present invention. 0.3 kg of rapeseed oil and 0.7 kg of rapeseed oil were prepared in the same manner as in Sample 1 except that lecithin and enzymatically-decomposed lecithin were not added (Sample 3: iron content 0.03%) o As a comparative product, instead of Alkg of the present invention, 0.1 kg of ferric pyrophosphate having an average particle diameter of 20 / zm and 0.9 kg of rapeseed oil were blended. Except lecithin and enzymatically decomposed lecithin 添Ka 卩 Shinano V ヽ was in the same manner as Sample 1 preparation method and iron-enriched DHA formulation prepared (Sample 4: Iron content 0.0 to 3%). In addition, a DHA-containing fat without iron was prepared as a control (Sample 5). Using the above Samples 115, a forced oil deterioration test and a peroxide value measurement test were performed. The results are shown in Table 1.
[0035] <油強制劣化試験 > <Oil forced degradation test>
調製油脂の自動酸化に対する安定性の評価は、 CDM試験(日本油化学協会基 準油脂分析試験法 cd2. 4. 28. 2— 93)に従い、ランシマット装置 (メトロノーム社製) で CDM試験により定義されている酸ィ匕誘導期の長さを測定し、酸化安定性を評価し た。  The stability of the prepared oils against autoxidation is defined by the CDM test using a Rancimat apparatus (manufactured by Metronome Co., Ltd.) in accordance with the CDM test (Nippon Oil Chemistry Association, Standard Test Method for Fats and Oils, cd 2.4.28.2.93). The length of the induction period of the sardine was measured, and the oxidative stability was evaluated.
<過酸化物価測定試験 >  <Peroxide value measurement test>
油強制劣化試験に供した試料と同様の試料について、 30°Cのオーブンに保存し、 10日後にサンプリングして過酸ィ匕物価 (POV)を測定した。分析法は、 AOM試験( 日本油化学協会基準油脂分析試験法 Cd2. 4. 28. 1 81)に従って行った。  The same sample as the sample subjected to the oil forced deterioration test was stored in an oven at 30 ° C., sampled 10 days later, and measured for peroxidation value (POV). The analysis was carried out in accordance with the AOM test (Japan Oil Chemistry Association Standard Oil and Fat Analysis Test Method Cd2.4.28.181).
[0036] [表 1] 酸化誘導期の長さ (時間) 過酸化物価 (P O V ) 試料中の鉄含量 (%) 試料 1 5. 3 1 . 3 Q . 03 試料 2 0. 2 28. 4 0. 03 試料 3 0. 3 16. 2 0. 03 試料 4 0. 2 14. 0 0. 03 試料 5 6. 1 0. 4 0 [Table 1] Oxidation induction period (hours) Peroxide value (POV) Iron content in sample (%) Sample 15.3 1.3 Q.03 Sample 20 0.228.4 40.03 Sample 30.3 16.2 0.03 Sample 4 0.2 14.0 0.03 Sample 5 6.1 1 0.40
[0037] 表 1の結果によると、試料 5の鉄無添加の DHA含有油脂に対し、本発明の鉄組成 物を含有した試料 1は酸化誘導期が殆ど変化しなかったのに対して、本発明以外の 鉄を含有した試料 2— 4は酸化誘導期が非常に早ぐ酸化劣化を起こしやすく不安 定であった。一方、過酸ィ匕物価においても、本発明品の鉄組成物を添加した試料 1 は、他の鉄を加えた試料 2— 4のどの試料と比べても酸ィ匕安定性が高力つた。 [0037] According to the results in Table 1, Sample 1 containing the iron composition of the present invention showed almost no change in the oxidation induction period, whereas Sample 5 containing the iron composition of the present invention did not change the oxidation induction period. Samples 2-4 containing iron other than the invention were unstable because the oxidation induction period was very early and oxidative degradation was likely to occur. On the other hand, the peroxidation value of Sample 1 to which the iron composition of the present invention was added was higher than that of any of Samples 2 to 4 to which other iron was added. .
[0038] 実施例 2  Example 2
平均粒子径 20 μ mのピロリン酸第二鉄(富山薬品工業製) 20kgを牛脂硬化油 66 . 6kgに分散させた溶液をダイノーミルによって平均粒子径約 0. 23 /z mのスラリーに 調製した。この溶液に、レシチン (サンレシチン L-6 ;太陽ィ匕学製)を 1. Okg、酵素分 解レシチン(サンレシチン A;太陽化学製)を 1. 5kg、ジグリセリンモノパルミチン酸ェ ステル(サンソフト Q— 16D ;太陽化学製)を 0. 8kg、フィトステロール 0. 05kg,卵黄 油(ヨークオイル 301;太陽化学製) 10kg、及びビタミン E (Eオイル 600 ;理研ビタミン 製)を 0. 05kg添加溶解し、液温を 45°Cに加熱し、ホモジナイザーで 15分間処理し て逆リボソーム化したあと、スプレークールによりパウダー化して、 20%ピロリン酸第 二鉄組成物 (本発明品 B)を得た。また、実施例 1と同様に、逆リボソーム化されたこと を確認した。  A solution in which 20 kg of ferric pyrophosphate having an average particle diameter of 20 μm (manufactured by Toyama Pharmaceutical Co., Ltd.) was dispersed in 66.6 kg of tallow hardened oil was prepared into a slurry having an average particle diameter of about 0.23 / zm using a Dyno mill. To this solution, 1. Okg of lecithin (San lecithin L-6; manufactured by Taiyo-Dagaku), 1.5 kg of enzyme-digested lecithin (San lecithin A; manufactured by Taiyo Kagaku), and diglycerin monopalmitate ester (San Lecithin A). 0.8 kg of Soft Q-16D; Taiyo Kagaku, 0.05 kg of phytosterol, 10 kg of yolk oil (Yoke Oil 301; Taiyo Kagaku), and 0.05 kg of vitamin E (E oil 600; Riken Vitamin) Then, the solution was heated to 45 ° C, treated with a homogenizer for 15 minutes to form reverse ribosomes, and then powdered by spray cooling to obtain a 20% ferric pyrophosphate composition (Product B of the present invention). . In addition, as in Example 1, it was confirmed that the ribosome was converted into reverse ribosome.
[0039] 試験例 2 [0039] Test Example 2
コーン油 100kgに対して実施例 2で調製した鉄組成物 (本発明品 B) 0. 5kgを撹拌 機で分散させて配合し、鉄強化コーン油製剤 (鉄強化油脂組成物)を調製した (試料 6 :鉄含量 0. 03%) oこの鉄強化コーン油製剤の油強制劣化試験および過酸化物価 測定試験を行った。次に比較品として、本発明品 BO. 5kgの代わりに硫酸第 1鉄 7水 和物を 0. 15kgとナタネ油 0. 35kgを配合し、レシチン及び酵素分解レシチンを添カロ しない以外は試料 1と同様にして鉄強化コーン油製剤を調製した (試料 7 :鉄含量 0. 03%)。さらに比較品として、本発明品 BO. 5kgの代わりにクェン酸第 1鉄ナトリウム を 0. 3kgとナタネ油 0. 2kgを配合し、レシチン及び酵素分解レシチンを添カ卩しない 以外は試料 1と同様にして鉄強化コーン油製剤を調製した (試料 8 :鉄含量 0. 03%) 。さらに比較品として、本発明品 BO. 5kgの代わりに平均粒子径 20 mのピロリン酸 第二鉄を 0. 1kgとナタネ油 0. 4kgを配合し、レシチン及び酵素分解レシチンを添カロ しない以外は試料 1と同様にして鉄強化コーン油製剤を調製した (試料 9 :鉄含量 0. 03%)。さらに、対照品として鉄剤無添加のコーン油を調製した (試料 10)。上記の試 料 6— 10を用いて試験例と同様の方法で油強制劣化試験および過酸化物価測定試 験を行った。結果を以下の表 2に示す。 0.5 kg of the iron composition (product B of the present invention) prepared in Example 2 with respect to 100 kg of corn oil was dispersed and blended with a stirrer to prepare an iron-enriched corn oil formulation (iron-enriched oil / fat composition) ( (Sample 6: iron content: 0.03%) o This iron-enriched corn oil formulation was subjected to a forced oil deterioration test and a peroxide value measurement test. Next, as a comparative product, ferrous sulfate 7 water An iron-enriched corn oil formulation was prepared in the same manner as in Sample 1 except that 0.15 kg of the Japanese product was mixed with 0.35 kg of rapeseed oil, and lecithin and enzymatically-decomposed lecithin were not added (Sample 7: iron content 0.03 %). Further, as a comparative product, the same as sample 1 except that 0.3 kg of sodium ferrous citrate and 0.2 kg of rapeseed oil were added instead of 5 kg of the product of the present invention, and lecithin and enzymatically-decomposed lecithin were not added. To prepare an iron-enriched corn oil formulation (Sample 8: iron content 0.03%). Further, as a comparative product, the product of the present invention was mixed with 0.1 kg of ferric pyrophosphate having an average particle size of 20 m and 0.4 kg of rapeseed oil instead of 5 kg of the present product BO, and without addition of lecithin and enzymatically decomposed lecithin. An iron-enriched corn oil formulation was prepared in the same manner as in Sample 1 (Sample 9: iron content: 0.03%). Furthermore, corn oil without iron agent was prepared as a control (sample 10). Using the above samples 6-10, a forced oil deterioration test and a peroxide value measurement test were conducted in the same manner as the test examples. The results are shown in Table 2 below.
[0040] [表 2] [0040] [Table 2]
Figure imgf000013_0001
Figure imgf000013_0001
[0041] 表 2の結果によると、試料 10の鉄無添加のコーン油に対し、本発明の鉄組成物を 含有した試料 6は酸化誘導期が殆ど変化しなかったのに対して、本発明以外の鉄を 含有した試料 7— 9は酸ィ匕誘導期が非常に早ぐ酸ィ匕劣化を起こしやすく不安定であ つた。一方、過酸ィ匕物価においても、本発明品の鉄組成物を添加した試料 6は他の 鉄を加えた試料 7から 9のどの試料と比べても酸ィ匕安定性が高力つた。 [0041] According to the results in Table 2, Sample 6 containing the iron composition of the present invention showed little change in the induction period of oxidation, whereas Sample 6 containing the iron composition of the present invention did not change in contrast to the corn oil containing no iron of Sample 10. Samples 7-9, which contain iron other than the above, tended to cause iridescence deterioration very early in the induction period and were unstable. On the other hand, the peroxidation value of Sample 6 to which the iron composition of the present invention was added was higher than that of any of Samples 7 to 9 to which other iron was added.
[0042] 試験例 3  Test Example 3
表 3に示した配合表に従って、実施例 1で得られた本発明品 Aを配合した鉄強化マ 一ガリン (試料 11 :鉄含量 0. 012%)を製造した。  According to the composition table shown in Table 3, iron-reinforced magarin (Sample 11: iron content 0.012%) containing the product A of the present invention obtained in Example 1 was produced.
[0043] [表 3] 原料 配合量 (重量%) [Table 3] Raw material blending amount (% by weight)
植物油脂 49.0  Vegetable oil 49.0
食用精製加工油脂 48.08  Edible refined oils and fats 48.08
1.0  1.0
粉乳 1.0  Milk powder 1.0
乳化剤 0.5  Emulsifier 0.5
香料 0.0002  Fragrance 0.0002
着色料 (βカロチン) 0.0013  Colorant (β-carotene) 0.0013
本発明品 A 0.416  Invention product A 0.416
[0044] また、比較品として、試料 11の本発明品 Aに代えて、硫酸第 1鉄 7水和物を 0.06 重量%とナタネ油 0.356重量%を配合 (試料 12:鉄含量 0.012%)、クェン酸第 1 鉄ナトリウムを 0.12重量%とナタネ油 0.296重量%を配合 (試料 13:鉄含量 0.01 25%)、平均粒子径 20 mのピロリン酸第二鉄を 0.04重量%とナタネ油 0.376重 量%を配合 (試料 14:鉄含量 0.0125%)した鉄強化マーガリンをそれぞれ製造した 。また、対照品として鉄剤無添加のマーガリンを製造し (試料 15)、それぞれの試料 につ!/ヽて同様の油強制劣化試験および過酸化物価測定試験を行った。油強制劣化 試験は試験例 1と同様に行い、過酸化物価測定試験は油強制劣化試験に供した試 料と同様の試料について、 30°Cのオーブンに保存し、 1週間後にサンプリングして過 酸化物価 (POV)を測定することにより行った。結果を以下の表 4に示す。 As a comparative product, instead of the product A of the present invention in sample 11, 0.06% by weight of ferrous sulfate heptahydrate and 0.356% by weight of rapeseed oil were mixed (sample 12: iron content 0.012%), 0.12% by weight of sodium ferrous citrate and 0.296% by weight of rapeseed oil (Sample 13: 0.0125% of iron content), 0.04% by weight of ferric pyrophosphate having an average particle diameter of 20 m and 0.376% by weight of rapeseed oil % (Sample 14: iron content 0.0125%) was manufactured. As a control, margarine without an iron agent was manufactured (Sample 15), and the same forced oil deterioration test and peroxide value measurement test were performed for each sample. The forced oil deterioration test was performed in the same manner as in Test Example 1.The peroxide value measurement test was performed on a sample similar to the sample subjected to the forced oil deterioration test, stored in a 30 ° C oven, sampled after one week, and then tested. This was performed by measuring the oxide value (POV). The results are shown in Table 4 below.
[0045] [表 4] 酸化誘導期の長さ (時間) 過酸化物価 (P O V) 試料中の鉄含量 (%) 試料 1 1 8.6 1.3 0.012 試料 1 2 0.3 16.4 0.012 試料 1 3 0.3 10.2 0.012 試料 1 4 0.4 8.1 0.012 試料 1 5 9.2 0.5 0 [Table 4] Length of oxidation induction period (hour) Peroxide value (POV) Iron content in sample (%) Sample 1 1 8.6 1.3 0.012 Sample 1 2 0.3 16.4 0.012 Sample 1 3 0.3 10.2 0.012 Sample 1 4 0.4 8.1 0.012 Sample 1 5 9.2 0.5 0
[0046] 表 4の結果によると、試料 15の鉄剤無添加のマーガリンに対し、本発明の鉄組成物 を含有した試料 11は酸ィ匕誘導期が殆ど変化しなカゝつたのに対して、本発明以外の 鉄を含有した試料 12— 14に関しては酸ィ匕誘導期が非常に早ぐ酸ィ匕劣化を起こし やすく不安定であった。一方、過酸ィ匕物価においても、本発明品の鉄剤を添加した 試料 11は他の鉄をカ卩えた試料 12— 14のどの試料と比べても酸ィ匕安定性が高かつ た。酸ィ匕劣化と風味の劣化が相関関係にあることからもわ力るように、風味良好な鉄 強化マーガリンを製造することができた。 [0046] According to the results in Table 4, Sample 11 containing the iron composition of the present invention showed a little change in the induction period of the iridescence, whereas Sample 11 containing the iron composition of the present invention showed little change compared to Margarine without the addition of the iron agent of Sample 15. Samples 12 to 14 containing iron other than the present invention tended to cause the iridescence deterioration very quickly and were unstable. On the other hand, also in peroxidation value, Sample 11 to which the iron agent of the present invention was added had higher stability than any of Samples 12 to 14 in which iron was added. The iron-enriched margarine having a good flavor was able to be produced, as can be seen from the correlation between the deterioration of the acid and the deterioration of the flavor.
[0047] 試験例 4  [0047] Test example 4
また、表 5に示した配合表に従って、実施例 2に示した本発明品 Bを配合した育児 用粉乳 (試料 16:鉄含量 0.025%)を製造した。  Further, according to the composition table shown in Table 5, a powdered milk for child care (Sample 16: iron content 0.025%) containing the product B of the present invention shown in Example 2 was produced.
[0048] [表 5] [Table 5]
原料 配合量 (重量%) Raw material blending amount (% by weight)
脱脂粉乳 83.58  Nonfat dry milk 83.58
デキストリン 5.0  Dextrin 5.0
イソマルトオリゴ糖 4.0  Isomaltooligosaccharide 4.0
精製コーン油 1.0  Refined corn oil 1.0
キャノーラ油 1.0  Canola oil 1.0
魚油 3.0  Fish oil 3.0
ガラク卜マンナン 2.0  Garaku Mannan 2.0
ビタミン A 0.003  Vitamin A 0.003
ビタミン B 1 0.0018  Vitamin B 1 0.0018
ビタミン B 2 0.0016  Vitamin B 2 0.0016
ビタミン B 6 0.0013  Vitamin B 6 0.0013
本発明品 B 0.417  Present product B 0.417
[0049] また、比較品として、試料 16の本発明品 Bに代えて、硫酸第 1鉄 7水和物を 0. 125 重量%とナタネ油 0.292重量%を配合 (試料 17:鉄含量 0.025%)、クェン酸第 1 鉄ナトリウムを 0.250重量%とナタネ油 0.167重量%を配合 (試料 18:鉄含量 0.0 25%)、平均粒子径 20 /imのピロリン酸第二鉄を 0.083重量%とナタネ油 0.334 重量%を配合 (試料 19:鉄含量 0.025%)した鉄強化マーガリンをそれぞれ製造し た。また、対照品として鉄剤無添加のマーガリンを製造した (試料 20)。試験例 1と同 様に、油強制劣化試験および過酸化物価測定試験を行った。なお、過酸化物価は、 油強制劣化試験に供した試料と同様の試料について、 30°Cのオーブンに保存し、 1 0日後にサンプリングして過酸ィ匕物価 (POV)を測定した。 [0049] As a comparative product, 0.125% by weight of ferrous sulfate heptahydrate and 0.292% by weight of rapeseed oil were mixed instead of Sample 16 of the present invention B (Sample 17: iron content 0.025% ), 0.250% by weight of sodium ferrous citrate and 0.167% by weight of rapeseed oil (Sample 18: 0.025% of iron content), 0.083% by weight of ferric pyrophosphate having an average particle diameter of 20 / im and rapeseed oil Iron-reinforced margarines containing 0.334% by weight (Sample 19: 0.025% iron content) were produced. As a control, margarine without an iron agent was manufactured (Sample 20). As in Test Example 1, an oil forced deterioration test and a peroxide value measurement test were performed. The peroxide value of the same sample as the sample subjected to the oil forced deterioration test was stored in an oven at 30 ° C., sampled 10 days later, and the peroxide value (POV) was measured.
[0050] [表 6] 酸化誘導期の長さ (時間) 過酸化物価 (P O V) 試料中の鉄含量 (%) 試料 1 6 20.6 0.4 0.025 試料 1 7 0.5 8.31 0.025 試料 1 8 0.3 7.46 0.025 試料 1 9 1.5 7.35 0.025 試料 2 0 50.6 0.1 0 [0050] [Table 6] Length of oxidation induction period (hour) Peroxide value (POV) Iron content in sample (%) Sample 1 6 20.6 0.4 0.025 Sample 1 7 0.5 8.31 0.025 Sample 1 8 0.3 7.46 0.025 Sample 1 9 1.5 7.35 0.025 Sample 2 0 50.6 0.1 0
[0051] 表 6の結果によると、試料 20の鉄剤無添加の育児用粉乳に対し、本発明の鉄組成 物を含有した試料 16は酸化誘導期が殆ど変化しなカゝったのに対して、本発明以外 の鉄剤を含有した試料 17— 19は酸ィ匕誘導期が非常に早ぐ酸ィ匕劣化を起こしやす く不安定であった。一方、過酸ィ匕物価においても、本発明品の鉄組成物を添加した 試料 16は他の鉄をカ卩えた試料 17— 19のどの試料と比べても酸ィ匕安定性が高かつ た。酸ィ匕劣化と風味の劣化が相関関係にあることからもわ力 ように、風味良好な育 児用粉乳を製造することができた。 [0051] According to the results in Table 6, Sample 16 containing the iron composition of the present invention showed almost no change in the induction period of oxidation, whereas Sample 20 containing the iron composition of the present invention did not change the iron powder in Sample 20. Thus, Samples 17-19 containing an iron agent other than the present invention were susceptible to iridescence deterioration very early in the induction period and were unstable. On the other hand, in terms of peroxidation value, Sample 16 to which the iron composition of the present invention was added had higher stability than any of Samples 17-19 obtained by adding other iron. . As a result of the correlation between the deterioration of the sardine and the deterioration of the flavor, it was possible to produce a powdered milk for childcare having a good flavor.
産業上の利用可能性  Industrial applicability
[0052] 本発明の鉄組成物及び鉄強化油脂組成物は、鉄による保存中の油脂類の酸化劣 化が殆ど見られず安定であるので、飲食品、飼料、化粧品、医薬品、農薬、機械その 他各種工業分野にお!/、て利用することができ、その産業上の利用価値は大である。 [0052] The iron composition and the iron-enriched oil / fat composition of the present invention are stable with almost no oxidative deterioration of oils and fats during storage by iron, and are therefore stable. It can be used in various other industrial fields, and its industrial utility value is great.

Claims

請求の範囲 The scope of the claims
[1] 平均粒子径 1 μ m以下の鉄塩と、リン脂質および Zまたはリゾリン脂質を含有する 鉄組成物。  [1] An iron composition containing an iron salt having an average particle size of 1 μm or less, a phospholipid, and Z or lysophospholipid.
[2] 前記鉄塩カ^ン脂質および Zまたはリゾリン脂質により被覆されている、請求項 1記 載の鉄組成物。  [2] The iron composition according to claim 1, which is coated with the iron salt can lipid and Z or lysophospholipid.
[3] 油脂と、請求項 1または 2記載の鉄組成物を含有することを特徴とする鉄強化油脂 組成物。  [3] An iron-enriched oil / fat composition comprising the oil / fat and the iron composition according to claim 1 or 2.
[4] 油脂を構成する脂肪酸組成として不飽和脂肪酸を含有する油脂である、請求項 3 記載の鉄強化油脂組成物。  [4] The iron-enriched fat / oil composition according to claim 3, which is an oil / fat containing an unsaturated fatty acid as a fatty acid composition constituting the fat / oil.
[5] 30°Cで 10日間保存した後の過酸化物価 (POV)が 5以下であることを特徴とする、 請求項 3又は 4記載の鉄強化油脂組成物。 [5] The iron-enriched fat / oil composition according to claim 3 or 4, wherein the peroxide value (POV) after storage at 30 ° C for 10 days is 5 or less.
[6] 請求項 3— 51ゝずれか記載の鉄強化油脂組成物を含有することを特徴とする飲食 [6] A food or beverage comprising the iron-enriched fat or oil composition according to any one of claims 3-51.
PCT/JP2005/001534 2004-02-02 2005-02-02 Iron composition WO2005073355A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-025633 2004-02-02
JP2004025633A JP2007224054A (en) 2004-02-02 2004-02-02 Iron composition

Publications (1)

Publication Number Publication Date
WO2005073355A1 true WO2005073355A1 (en) 2005-08-11

Family

ID=34823990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001534 WO2005073355A1 (en) 2004-02-02 2005-02-02 Iron composition

Country Status (2)

Country Link
JP (1) JP2007224054A (en)
WO (1) WO2005073355A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060919A (en) * 2005-08-29 2007-03-15 Taiyo Kagaku Co Ltd Probiotic
JP2007215480A (en) * 2006-02-16 2007-08-30 Taiyo Kagaku Co Ltd Iron-fortified food composition
WO2013003947A1 (en) * 2011-07-05 2013-01-10 Reinhold Vieth Iron supplement composition
WO2014103742A1 (en) * 2012-12-25 2014-07-03 ポーラ化成工業株式会社 Reverse vesicle composition and method for producing same
JP2014141461A (en) * 2012-12-25 2014-08-07 Pola Chem Ind Inc Reverse vesicle composition
JP2014201521A (en) * 2013-04-01 2014-10-27 ポーラ化成工業株式会社 Manufacturing method of reverse vesicle composition
JP2014201522A (en) * 2013-04-01 2014-10-27 ポーラ化成工業株式会社 Manufacturing method of reverse vesicle composition
JP2015523409A (en) * 2012-07-31 2015-08-13 アレスコ・ソチエタ・ア・レスポンサビリタ・リミタータAlesco s.r.l. Solid composition containing iron for use in iron deficiency conditions
CN105050982A (en) * 2013-02-20 2015-11-11 雅拉英国有限公司 Fertiliser coating containing micronutrients

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006031857A2 (en) * 2004-09-13 2006-03-23 Gilead Sciences, Inc. Delivering iron to an animal
JP6266205B2 (en) * 2012-11-28 2018-01-24 理研ビタミン株式会社 Method for suppressing deterioration of flavor of food and drink containing minerals, vitamin E and emulsifier
JP6454487B2 (en) * 2014-06-20 2019-01-16 太陽化学株式会社 Iron-containing powder composition
JP6137422B2 (en) * 2015-06-02 2017-05-31 不二製油株式会社 Manufacturing method of chocolate-like food

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998014072A1 (en) * 1996-10-03 1998-04-09 Taiyo Kagaku Co., Ltd. Mineral composition
JPH10225263A (en) * 1997-02-14 1998-08-25 Yakult Honsha Co Ltd Fermented milk enriched with iron and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998014072A1 (en) * 1996-10-03 1998-04-09 Taiyo Kagaku Co., Ltd. Mineral composition
JPH10225263A (en) * 1997-02-14 1998-08-25 Yakult Honsha Co Ltd Fermented milk enriched with iron and its production

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4751143B2 (en) * 2005-08-29 2011-08-17 太陽化学株式会社 Viable bacteria
JP2007060919A (en) * 2005-08-29 2007-03-15 Taiyo Kagaku Co Ltd Probiotic
JP2007215480A (en) * 2006-02-16 2007-08-30 Taiyo Kagaku Co Ltd Iron-fortified food composition
JP4673235B2 (en) * 2006-02-16 2011-04-20 太陽化学株式会社 Iron-reinforced food composition
AU2012278884B2 (en) * 2011-07-05 2017-06-29 The D Drops Company Inc. Iron supplement composition
WO2013003947A1 (en) * 2011-07-05 2013-01-10 Reinhold Vieth Iron supplement composition
US10188677B2 (en) 2011-07-05 2019-01-29 The D Drops Company Inc. Iron supplement composition
US10765752B2 (en) 2012-07-31 2020-09-08 Alesco S.R.L. Solid composition comprising iron for use in iron deficient conditions
JP2015523409A (en) * 2012-07-31 2015-08-13 アレスコ・ソチエタ・ア・レスポンサビリタ・リミタータAlesco s.r.l. Solid composition containing iron for use in iron deficiency conditions
WO2014103742A1 (en) * 2012-12-25 2014-07-03 ポーラ化成工業株式会社 Reverse vesicle composition and method for producing same
JP2014141461A (en) * 2012-12-25 2014-08-07 Pola Chem Ind Inc Reverse vesicle composition
US9994492B2 (en) 2013-02-20 2018-06-12 Yara Uk Limited Fertiliser coating containing micronutrients
CN105050982A (en) * 2013-02-20 2015-11-11 雅拉英国有限公司 Fertiliser coating containing micronutrients
US10118867B2 (en) 2013-02-20 2018-11-06 Yara Uk Limited Fertiliser coating containing micronutrients
CN105050982B (en) * 2013-02-20 2019-03-12 雅拉英国有限公司 Chemical fertilizer coating containing microelement
JP2014201522A (en) * 2013-04-01 2014-10-27 ポーラ化成工業株式会社 Manufacturing method of reverse vesicle composition
JP2014201521A (en) * 2013-04-01 2014-10-27 ポーラ化成工業株式会社 Manufacturing method of reverse vesicle composition

Also Published As

Publication number Publication date
JP2007224054A (en) 2007-09-06

Similar Documents

Publication Publication Date Title
WO2005073355A1 (en) Iron composition
CA2694054C (en) Omega-3 fatty acid fortified composition
EP1931212A2 (en) Dietary supplements and prepared foods containing triglyceride-recrystallized non-esterified phytosterols
Genot et al. Stabilization of omega-3 oils and enriched foods using emulsifiers
KR19990067557A (en) Mineral composition
CN106715381B (en) Fatty acid composition and method for fortifying a nutritional product with fatty acids
AU8364798A (en) Satiety product
JP2006507846A (en) Marine phospholipid composition
WO2002100412A2 (en) Stabilized dispersion of phytosterol in oil
WO1998039977A1 (en) Food containing fat or oil
JP2002514394A (en) Use of nanofoods in human and animal food end products
WO2019044351A1 (en) Fat or oil composition containing unsaturated fatty acid
JPH06172782A (en) Powder of fat and oil containing highly unsaturated fatty acid
JP2004261005A (en) Ubidecarenone preparation
JP6421252B2 (en) Oil composition and method for inhibiting oxidation of oil
WO2012151387A2 (en) Amphiphilic sterol/fat-based particles
JPS6344842A (en) O/w/o-type emulsified oil and fat composition
JP3511546B2 (en) Iron-enriched edible fats and oils
JP3364544B2 (en) How to prevent browning of dietary supplements
JP4007715B2 (en) Plant sterol-containing composition
Sinkiewicz Lipids and Food Quality
JP2006124488A (en) Aqueous dispersion of highly unsaturated fatty acid-containing phospholipid
WO2004107875A1 (en) Phospholipid-containing emulsifiable composition
JPH0739302A (en) Highly unsaturated fatty acid-containing fat and oil composition and highly unsaturated fatty acid-containing aqueous food
JP2005224228A (en) Emulsified oil and fat composition and food containing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP