WO2005072886A1 - Control method and control device for a roll stand - Google Patents

Control method and control device for a roll stand Download PDF

Info

Publication number
WO2005072886A1
WO2005072886A1 PCT/EP2005/000845 EP2005000845W WO2005072886A1 WO 2005072886 A1 WO2005072886 A1 WO 2005072886A1 EP 2005000845 W EP2005000845 W EP 2005000845W WO 2005072886 A1 WO2005072886 A1 WO 2005072886A1
Authority
WO
WIPO (PCT)
Prior art keywords
flatness
control
control method
thickness
controller
Prior art date
Application number
PCT/EP2005/000845
Other languages
German (de)
French (fr)
Inventor
Mohieddine Jelali
Andreas Wolff
Ulrich Müller
Frank Gorgels
Roger Lathe
Gert Mücke
Original Assignee
Betriebsforschungsinstitut VDEh-Institut für angewandte Forschung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34813080&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005072886(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Betriebsforschungsinstitut VDEh-Institut für angewandte Forschung GmbH filed Critical Betriebsforschungsinstitut VDEh-Institut für angewandte Forschung GmbH
Priority to DE502005008137T priority Critical patent/DE502005008137D1/en
Priority to AT05707062T priority patent/ATE442918T1/en
Priority to EP05707062A priority patent/EP1711283B1/en
Publication of WO2005072886A1 publication Critical patent/WO2005072886A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/48Tension control; Compression control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/02Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/04Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring thickness, width, diameter or other transverse dimensions of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/06Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring tension or compression

Definitions

  • the invention relates to a control method and a controller for a roll stand, or for the roll stands of a rolling mill.
  • a control system for the strip flatness is described for example in EP 1 181 992 A2.
  • the flatness of the strip is recorded using a measuring system and compared with the result of an explicit, linear or non-linear online profile and flatness model that takes into account all the essential variables involved in the rolling process (bending, swiveling, shifting, thermal crowning).
  • the flatness error determined is broken down into orthogonal components for simplified optimization in the control system.
  • This generation of the flatness error to be taken into account in the following regulation is designed as an event-triggered scanning system for taking into account flatness measuring systems with a variable sampling time.
  • the flatness error determined is fed to a multivariable controller.
  • the known control system also has a prediction of the controlled variable, which is included in the dynamic optimization and extends beyond the dead time.
  • There is also a feedforward control that takes into account the properties of the incoming strip, the variation of the rolling force and thermal crowning.
  • this control system does not meet the high quality requirements for the rolled product.
  • the object of the invention is to create an improved control method for a roll stand.
  • the invention is based on the basic idea of regulating the thickness, tension and flatness with a single controller in the context of an integrated, model-predictive thickness, tension and flatness control.
  • the integrated control takes into account the influence that the adjustment of manipulated variables has on the thickness, tension and flatness of the rolled strip and can optimize the manipulated variable change in such a way that a selected quality of the thickness control and the flatness control is achieved.
  • the quality of the thickness control and the quality of the flatness control can be weighted differently in the quality function of the controller.
  • the use of an integrated control leads to an improvement in performance and stability in the control compared to controls that are designed separately from one another. It was found that an interaction of the two control loops can be determined in particular due to the cross-coupling between thickness and flatness.
  • the prescribed thickness tolerance and the desired flatness could not be achieved at the same time.
  • the flatness control was set less quickly to avoid the risk of instability. As a result, however, it cannot react to rapidly changing flatness errors, so that the flatness quality that can be achieved is severely limited.
  • a common controller can regulate both the prescribed thickness tolerance and the desired flatness.
  • the final thickness particularly in the case of very small strip thicknesses, such as occur, for example, in cold rolling, depends on the trains applied.
  • the rolling forces also depend on the strip tension. This results in a strong coupling between tension, thickness and flatness control. According to the invention, these are taken into account in the one controller by the model used by the controller. As a result, as is conventional, the thickness and flatness control no longer have to be set more slowly, so that even rapid fluctuations in thickness and flatness can be regulated well.
  • input variables for the controller are generated as a function of the measured values of the measuring systems in the control method according to the invention. These input variables are used by the controller to generate at least one control signal for at least one control variable of the roll stand based on an integrated, model-predictive thickness, tension and flatness control. Separate measuring systems for the thickness, flatness and tension of the strip are preferably provided. However, measurement systems can also be used within the scope of this invention which simultaneously determine several sizes, for example the thickness and the flatness.
  • the control variables of the rolling process are understood in particular to be roll bending, roll swiveling, roll shifting, roll cooling, in particular selective multi-zone cooling and also changing the shape of the backup roll.
  • the controller uses a prediction model to predictively predict the future system behavior.
  • the controller is preferably an MPC controller (Model Predictive Control), which is embedded in an IMC structure (Infernal Model Control).
  • MPC controllers are well known from Camacho EF, Bordons C: Model Predictive Control, Springer, 1999, and Maciejowski JM: Predictive Control with Constraints, Prentice Hall, 2002, which is why they are fully relevant for the description of MPC controllers and their design reference is made to these publications.
  • MC structures are particularly from Garcia C.E., Morari M .: Infernal model control. 1. A unifying review and some new results, Ind. Eng. Chem. Process Des. Dev. 21 (1982), p. 308-323, well known, which is why full reference is made to this publication for the description of IMC structures and their interpretation.
  • the controller preferably also includes an integrated thickness profile control.
  • the manipulated variables that are used to control the thickness profile often correspond to those that are also used to control the thickness and flatness.
  • the controller is constructed as a multivariable controller with dynamic optimization, into which the thickness and the flatness are weighted differently.
  • a dynamic optimization algorithm is preferably used to determine optimal actuator positions, taking into account predetermined manipulated variable restrictions of the manipulated and controlled variables.
  • the quality of the controller can be represented in the controller by the following cost function: J Süicke> Spianheit) - Soicke J Dicke + ⁇ Planheit ⁇ Flatness
  • compliance with the thickness tolerance can be assigned a greater weight, i.e. a goic> gpi a n he i t .
  • Deviations from the target thickness are punished much more than deviations from the target flatness.
  • the quality functions for thickness and flatness can be represented as follows, for example:
  • Thickness - ( ⁇ soll - A ist ( ⁇ )) ⁇ Dioke (ü ⁇ K ( ⁇ )) 1 T
  • the quality of the thickness control and the quality of the flatness control can be achieved by the following quality function:
  • the quadratic flatness error is minimized under the proviso that the thickness deviation must always be smaller than an upper bound.
  • the solvability of this optimization problem can be guaranteed by suitable measures, for example with the help of a feasible SQP algorithm (see Maciejowski JM: Predictive Control with Constraints, Prentice Hall, 2002, to which reference is made in full for the solvability of the optimization problem becomes).
  • the train to be taken into account is usually included in the thickness, since the thickness strongly depends on the train.
  • optimization algorithms can also be set up that optimize the three sizes thickness, flatness and tension separately.
  • the prediction of the controlled variable is preferably included in the dynamic optimization.
  • the prediction preferably goes beyond dead time compensation.
  • the controller preferably takes into account restrictions, in particular for the actuating signals of the manipulated variables and the systematic softening of the restrictions depending on their importance for the trouble-free operation of the roll stand.
  • the restrictions are in particular absolute values and rates of change of the manipulated variables. This ensures the feasibility of the optimization problem.
  • certain boundary conditions of the rolling stand can be met when rolling sheet metal. For example, for crown excenter of a Sendzimir mill stand, only certain maximum relative positions with each other are allowed. By taking such boundary conditions into account, the setting options of the roll stands, for example a Sendzimir stand, can be fully utilized.
  • the controller preferably uses an explicit, linear or non-linear, online-capable profile and flatness model that takes into account the essential variables and actuators involved in the rolling process, in particular roll bending, roll swiveling, roll shifting, roll cooling and / or the change in the support roll shape.
  • the design of such models is, for example, from Berger B., Mücke G., NeuRock E., Fleischer H. (1982) Regulation of flatness and tension distribution on a 20-roll cold rolling mill, BFI report No. 893 (final report of the ECSC research project No. 7210.EA 109); Jelali M. (2000) Explicit modeis of thickness profile and tension stress distribution for process control applications. Steel Research 71, No. 6 + 7, 228-232; Schneider A.
  • Simplified prediction models are preferably used in part in the controller, for example by linearizing and simplifying corresponding relationships of the complex model.
  • the design of such models is, for example, from Jelali M. (2000) Explicit modeis of thickness profile and tension stress distribution for process control applications. Steel Research 71, No. 6 + 7, 228-232 well known, which is why full reference is made to these publications for the description of such models and their interpretation.
  • the control method preferably has at least one adaptation method for the online-compatible profile and flatness model, the online-compatible prediction model and / or a set-up model.
  • the adaptation method preferably adapts selected parameters of the model components. These adaptation methods should preferably be designed to be robust against model structure errors. By adapting the models, changes in the dynamic behavior of the roll stand can be taken into account, such as those resulting from wear or the replacement of components. In this way, the adaptation process can adapt the setup models from stitch to stitch.
  • an event-triggered scanning system which takes into account flatness measuring systems with variable scanning times.
  • the flatness course determined from the measurements of the flatness measuring system is broken down into orthogonal components with the help of orthogonal function systems.
  • Interferences resulting from this can be compensated for by a feedforward control used in a preferred embodiment, which takes into account the properties of the incoming strip, the variation of the rolling force and / or the variation of the thermal crown.
  • the interference can be compensated for in a separate module or integrated into the model predictive control.
  • the flatness measurement system is preferably used to estimate the flatness profile over the width of the strip on the basis of measurement results which are determined at different times and in particular at different points along the width of the strip.
  • the current manipulated variables are preferably taken into account here.
  • the flatness course is particularly preferably determined immediately after the next new measured value of a sensor is available. This produces a more up-to-date estimate of the flatness curve, which is not dependent on all measured values being available across the width of the strip.
  • a switching Kaiman filter is preferably used to calculate the flatness during one revolution of the measuring roller. For the construction of a switching Cayman filter, please refer to the parallel application 103 06 837.6.
  • This determination of the flatness course can also be used when using flatness measuring rolls, such as those used in cold rolling, the planning process can be determined promptly.
  • Sensors are arranged on the flatness measuring roller distributed over the radius and the width. These provide information about the flatness of the strip present at the respective location at the respective measuring point in time, spaced from one another and with respect to the width position. By estimating the flatness course after the determination of each individual measured value, rapidly changing flatness changes can also be taken into account. In the case of measuring systems in which all measured values are initially determined over the width of the strip and a complete flatness distribution can only be determined after a complete rotation of the flatness measuring roller, especially in the case of rapidly changing flatness distributions, this leads to considerable measuring errors.
  • a controller according to the invention implements the previously described method steps and properties individually or in combination.
  • the coupling that exists between thickness, tension and flatness is taken into account by a decoupling matrix, which can be calculated from the inverse of the overall transmission matrix from the thickness and flatness control system.
  • the control structure shown as can be used, for example, for a cold rolling mill (rolling mill) 1, has above all a flatness measuring system 2, a multivariable controller 3 (MPC module thickness and flatness) and a draft control 4.
  • a flatness measuring system 2 can be arranged both in front of and behind the scaffold 1 so that the scaffold 1 can be used in reversing operation.
  • the rolling stand 1 is used in this exemplary embodiment for rolling very thin strips. There is a strong link between the influencing variables thickness and tension on the rolling result.
  • the flatness deviation is determined by means of a flatness measuring system at the scaffold outlet.
  • the flatness measuring system is preferably based on a flatness measuring roller. This measures the belt tension discretely at individual measuring points distributed over the measuring roller width and the measuring roller circumference.
  • the flatness course (flatness distribution) is estimated directly from the individual measurement results.
  • the estimated flatness course is broken down into orthogonal (independent) components. The type of decomposition used is changed depending on the type of flatness error that occurs in order to describe the flatness error with as few components as possible and thus to simplify the optimization problem.
  • the orthogonal components determined in this way are compared with values provided by an online-capable model of the system.
  • the resulting difference is used as a controlled variable and fed to the multivariable controller 3.
  • the multivariable controller consists of an online-capable model and dynamic optimization, taking into account manipulated variable restrictions and the predicted process variable curve.
  • the controller determines control signals for roll bending, roll swiveling, axial shifting of the rolls, as well as for multi-zone cooling and, if necessary, a change in the support roll shape.
  • a disturbance variable is applied to compensate for these influences.
  • a pilot control is carried out, which is likewise introduced into the actuating signals determined by the multivariable controller.
  • the controller selects a primary manipulated variable via which it preferably influences the rolling process.
  • a primary manipulated variable For strip thicknesses below a specified size, the train is used as the primary manipulated variable.
  • the pitch force and the pitch position of the rollers are then treated as an additional secondary manipulated variable.
  • the models are adapted online while rolling a single strip (in-bar adaptation).
  • in-bar adaptation compensates for relatively rapid changes, for example caused by changes in the temperature of the belt, while the bundle-to-bundle adaptation compensates for wear-related changes.
  • An event generator allows the use of an event-triggered scanning system to take into account flatness measuring systems with variable scanning times.

Abstract

According to the invention, the thickness, traction forces and flatness is controlled by means of a single control device as part of an integrated, model-predictive thickness, traction and flatness control operation. The integrated control device takes into account the influence the adjustment of the control variables has on the thickness, the traction force and the flatness of the rolled strip and optimises the modifications of the control variable in such a way that a selected quality of the thickness and the flatness control is obtained. The quality of the thickness and the quality of the flatness control, which are weighted differently, can effect the quality function of the control device. The use of the integrated control device improves the performance and the stability of the control device in relation to the control devices which are arranged in a separate manner from each other.

Description

"Regelverfahren und Regler für ein Walzgerüst" "Control method and controller for a roll stand"
Die Erfindung betrifft ein Regelverfahren und einen Regler für ein Walzgerüst, bzw. für die Walzgerüste einer Walzstraße.The invention relates to a control method and a controller for a roll stand, or for the roll stands of a rolling mill.
Beim Walzen von Bändern, insbesondere beim Kaltwalzen, sind für die Regelung der Planheit und der Dicke des Bandes am Auslauf des Gerüsts und zur Regelung des auf das Band wirkenden Zugs voneinander getrennte Regelungssysteme vorgesehen.When rolling strips, in particular cold rolling, separate control systems are provided for regulating the flatness and the thickness of the strip at the outlet of the stand and for regulating the tension acting on the strip.
Ein Regelsystem für die Bandplanheit ist beispielsweise in EP 1 181 992 A2 beschrieben. Dort wird die Planheit des Bandes mit einem Meßsystem erfaßt und mit dem Ergebnis eines expliziten, linearen oder nichtlinearen onlinefähigen Profil- und Planheitsmodell, das alle wesentlichen am Walzprozeß beteiligten Größen (Biegen, Schwenken, Verschieben, thermische Bombierung) berücksichtigt, verglichen. Der ermittelte Planheitsfehler wird zur vereinfachten Optimierung im Regelsystem in orthogonale Komponenten zerlegt. Diese Erzeugung des in der nachfolgenden Regelung zu berücksichtigenden Planheitsfehlers ist als ereignisgetriggertes Abtastsystem zur Berücksichtigung von Planheitsmeßsystemen mit variabler Abtastzeit ausgebildet. Der ermittelte Planheitsfehler wird einem Mehrgrößenregler zugeführt. Das bekannte Regelsystem weist ferner eine Prädiktion der Regelgröße auf, die in die dynamische Optimierung einbezogen wird und über die Totzeit hinausgeht auf. Ferner erfolgt eine Störgrößenaufschaltung, die die Eigenschaften des einlaufenden Bandes, die Variation von Walzkraft und thermischer Bombierung berücksichtigt. Es hat sich jedoch gezeigt, daß dieses Regelsystem den hohen Qualitätsanforderungen an das Walzprodukt nicht gerecht wird.A control system for the strip flatness is described for example in EP 1 181 992 A2. There, the flatness of the strip is recorded using a measuring system and compared with the result of an explicit, linear or non-linear online profile and flatness model that takes into account all the essential variables involved in the rolling process (bending, swiveling, shifting, thermal crowning). The flatness error determined is broken down into orthogonal components for simplified optimization in the control system. This generation of the flatness error to be taken into account in the following regulation is designed as an event-triggered scanning system for taking into account flatness measuring systems with a variable sampling time. The flatness error determined is fed to a multivariable controller. The known control system also has a prediction of the controlled variable, which is included in the dynamic optimization and extends beyond the dead time. There is also a feedforward control that takes into account the properties of the incoming strip, the variation of the rolling force and thermal crowning. However, it has been shown that this control system does not meet the high quality requirements for the rolled product.
Eine integrierte Dicken- und Planheitsregelung für 20-Rollengerüste wird in Pu H., Nern H.-J., Roemer R., Nour Eidin H. A., Kern P., Jelali M.: State- observer design and verification towards developing an integrated flatness- thickness control System for the 20 roll sendzimir düster mill, Proc. Intern. Conf. on Steel Rolling (Steel Rolling '98), 1998, The Iron and Steel Institute of Japan, Chiba, p. 124-129, und Pu H., Nern H.-J., Nour Eidin H. A., Jelali M., Totz O., Kern P.: The Hardware-in-Loop simulations and online tests of an integrated thickness and flatness control System for the 20 rolls sendzimir cold rolling mill, Proc. Intern. Conf. on Modelling of Metal Rolling Processes, 1999, London, p. 208-216 und Pu H., Mikhailov L., Nern H.-J., Kern P., Nour Eidin H. A.: Optimal control of thickness and flatness for the 20 rolls Sendzimir cold rolling mill, Proc. IFAC World Congress, 1999, Beijing, China, p. 481-486 beschrieben. Auch die dort beschriebenen Regelverfahren können den hohen Qualitätsanforderungen an das Walzprodukt nicht gerecht werden.An integrated thickness and flatness control for 20-roll stands is described in Pu H., Nern H.-J., Roemer R., Nour Eidin HA, Kern P., Jelali M .: State- observer design and verification towards developing an integrated flatness - thickness control system for the 20 roll sendzimir düster mill, Proc. Intern. Conf. on Steel Rolling (Steel Rolling '98), 1998, The Iron and Steel Institute of Japan, Chiba, p. 124-129, and Pu H., Nern H.-J., Nour Eidin HA, Jelali M., Totz O., Kern P .: The Hardware-in-Loop simulations and online tests of an integrated thickness and flatness control system for the 20 rolls sendzimir cold rolling mill, Proc. Intern. Conf. on Modeling of Metal Rolling Processes, 1999, London, p. 208-216 and Pu H., Mikhailov L., Nern H.-J., Kern P., Nour Eidin HA: Optimal control of thickness and flatness for the 20 rolls Sendzimir cold rolling mill, Proc. IFAC World Congress, 1999, Beijing, China, p. 481-486. The control methods described there also cannot meet the high quality requirements for the rolled product.
Vor diesem Hintergrund liegt der Erfindung die Aufgabe zugrunde, ein verbessertes Regelverfahren für ein Walzgerüst zu schaffen.Against this background, the object of the invention is to create an improved control method for a roll stand.
Diese Aufgabe wird durch den Gegenstand der unabhängigen Ansprüche gelöst. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.This object is solved by the subject matter of the independent claims. Advantageous refinements are specified in the subclaims.
Die Erfindung geht von dem Grundgedanken aus, die Regelung der Dicke, des Zugs und der Planheit mit einem einzigen Regler im Rahmen einer integrierten, modellprädiktiven Dicken-, Zug- und Planheitsregelung durchzuführen. Die integrierte Regelung berücksichtigt dabei den Einfluß, den die Verstellung von Stellgrößen sowohl auf die Dicke, den Zug als auch auf die Planheit des gewalzten Bandes hat und kann die Stellgrößenveränderung dahingehend optimieren, daß eine gewählte Güte der Dickenregelung und der Planheitsregelung erzielt wird. Dabei können die Güte der Dickenregelung und die Güte der Planheitsregelung unterschiedlich gewichtet in die Gütefunktion des Reglers eingehen. Der Einsatz einer integrierten Regelung führt zu einer Performanceverbesserung und Stabilitätsverbesserung in der Regelung gegenüber voneinander separat ausgelegten Regelungen. Es wurde festgestellt, daß insbesondere aufgrund der Querkoppelung zwischen Dicke und Planheit eine Interaktion der beiden Regelkreise festgestellt werden kann. Insbesondere bei dünnen Bändern konnten herkömmlich die vorgeschriebene Dickentoleranz und die gewünschte Planheit nicht gleichzeitig erreicht werden. So wurde nämlich im allgemeinen die Planheitsregelung weniger schnell eingestellt, um die Gefahr der Instabilität zu vermeiden. Hierdurch kann sie jedoch auf sich schnell ändernde Planheitsfehler nicht reagieren, so daß die erreichbare Planheitsgüte stark beschränkt ist. Durch das gleichzeitige Berücksichtigen der Dickenregelungsgüte und der Plan- heitsregelungsgüte kann ein gemeinsamer Regler sowohl die vorgeschriebene Dickentoleranz als auch die gewünschte Planheit einregeln.The invention is based on the basic idea of regulating the thickness, tension and flatness with a single controller in the context of an integrated, model-predictive thickness, tension and flatness control. The integrated control takes into account the influence that the adjustment of manipulated variables has on the thickness, tension and flatness of the rolled strip and can optimize the manipulated variable change in such a way that a selected quality of the thickness control and the flatness control is achieved. The quality of the thickness control and the quality of the flatness control can be weighted differently in the quality function of the controller. The use of an integrated control leads to an improvement in performance and stability in the control compared to controls that are designed separately from one another. It was found that an interaction of the two control loops can be determined in particular due to the cross-coupling between thickness and flatness. In the case of thin strips in particular, the prescribed thickness tolerance and the desired flatness could not be achieved at the same time. In general, the flatness control was set less quickly to avoid the risk of instability. As a result, however, it cannot react to rapidly changing flatness errors, so that the flatness quality that can be achieved is severely limited. By taking the thickness control quality and the flatness control quality into account at the same time, a common controller can regulate both the prescribed thickness tolerance and the desired flatness.
Außerdem hängt die Enddicke, insbesondere bei sehr kleinen Banddicken, wie sie beispielsweise beim Kaltwalzen auftreten, von den aufgebrachten Zügen ab. Auch die Walzkräfte hängen von den Bandzügen ab. Dadurch ergibt sich eine starke Kopplung zwischen Zug-, Dicken- und Planheitsregelung. Diese werden erfindungsgemäß durch das von dem Regler verwendete Modell in dem einen Regler berücksichtigt. Dadurch müssen, wie herkömmlich, die Dicken- und Planheitsregelung nicht mehr langsamer eingestellt werden, so daß auch schnelle Dicken- und Planheitsschwankungen gut ausgeregelt werden können.In addition, the final thickness, particularly in the case of very small strip thicknesses, such as occur, for example, in cold rolling, depends on the trains applied. The rolling forces also depend on the strip tension. This results in a strong coupling between tension, thickness and flatness control. According to the invention, these are taken into account in the one controller by the model used by the controller. As a result, as is conventional, the thickness and flatness control no longer have to be set more slowly, so that even rapid fluctuations in thickness and flatness can be regulated well.
Hierfür werden bei dem erfindungsgemäßen Regelverfahren Eingangsgrößen für den Regler in Abhängigkeit der Meßwerte der Meßsysteme erzeugt. Diese Eingangsgrößen werden von dem Regler verwendet, um mindestens ein Stellsignal für mindestens eine Stellgröße des Walzgerüsts aufgrund einer integrierten, modellprädiktiven Dicken-, Zug- und Planheitsregelung zu erzeugen. Vorzugsweise sind separate Meßsysteme für die Dicke, die Planheit und den Zug des Bands vorgesehen. Allerdings können im Rahmen dieser Erfindung auch Meßsysteme eingesetzt werden, die mehrere Größen, beispielsweise die Dicke und die Planheit, gleichzeitig ermitteln. Als Stellgrößen des Walzprozesses werden insbesondere das Walzenbiegen, das Walzenschwenken, das Walzenverschieben, das Walzenkühlen, insbesondere eine selektive Mehrzonenkühlung und auch die Änderung der Stützwalzenform verstanden.For this purpose, input variables for the controller are generated as a function of the measured values of the measuring systems in the control method according to the invention. These input variables are used by the controller to generate at least one control signal for at least one control variable of the roll stand based on an integrated, model-predictive thickness, tension and flatness control. Separate measuring systems for the thickness, flatness and tension of the strip are preferably provided. However, measurement systems can also be used within the scope of this invention which simultaneously determine several sizes, for example the thickness and the flatness. The control variables of the rolling process are understood in particular to be roll bending, roll swiveling, roll shifting, roll cooling, in particular selective multi-zone cooling and also changing the shape of the backup roll.
Der Regler berechnet mit Hilfe eines Prädiktionsmodells prädiktiv (vorausschauend) das zukünftige Systemverhalten. Der Regler ist vorzugsweise ein MPC-Regler (Model Predictive Control), der in eine IMC-Struktur (Infernal Model Control) eingebettet ist. MPC-Regler sind zum Beispiel aus Camacho E. F., Bordons C: Model Predictive Control, Springer, 1999, und Maciejowski J. M.: Predictive Control with Constraints, Prentice Hall, 2002, gut bekannt, weshalb für die Beschreibung von MPC-Reglern und deren Auslegung vollinhaltlich auf diese Veröffentlichungen Bezug genommen wird. I MC-Strukturen sind insbesondere aus Garcia C. E., Morari M.: Infernal model control. 1. A unifying review and some new results, Ind. Eng. Chem. Process Des. Dev. 21 (1982), p. 308-323, gut bekannt, weshalb für die Beschreibung von IMC- Strukturen und deren Auslegung vollinhaltlich auf diese Veröffentlichung Bezug genommen wird.The controller uses a prediction model to predictively predict the future system behavior. The controller is preferably an MPC controller (Model Predictive Control), which is embedded in an IMC structure (Infernal Model Control). For example, MPC controllers are well known from Camacho EF, Bordons C: Model Predictive Control, Springer, 1999, and Maciejowski JM: Predictive Control with Constraints, Prentice Hall, 2002, which is why they are fully relevant for the description of MPC controllers and their design reference is made to these publications. MC structures are particularly from Garcia C.E., Morari M .: Infernal model control. 1. A unifying review and some new results, Ind. Eng. Chem. Process Des. Dev. 21 (1982), p. 308-323, well known, which is why full reference is made to this publication for the description of IMC structures and their interpretation.
Vorzugsweise beinhaltet der Regler ferner eine integrierte Dickenprofilsregelung. Die Stellgrößen, die für die Regelung des Dickenprofils eingesetzt werden, entsprechen häufig denen, die auch für die Regelung der Dicke und der Planheit eingesetzt werden.The controller preferably also includes an integrated thickness profile control. The manipulated variables that are used to control the thickness profile often correspond to those that are also used to control the thickness and flatness.
In einer bevorzugten Ausführungsform ist der Regler als Mehrgrößenregler mit einer dynamischen Optimierung aufgebaut, in die die Dicke und die Planheit unterschiedlich gewichtet eingehen. Es wird vorzugsweise ein dynamischer Optimierungsalgorithmus verwendet, um optimale Stellgliedpositionen unter Berücksichtigung von vorgegebenen Stellgrößenbeschränkungen der Stell- und Regelgrößen zu bestimmen. Beispielsweise kann in dem Regler die Güte des Reglers durch folgende Kostenfunktion dargestellt werden: J Süicke > Spianheit ) Soicke J Dicke + <§Planheit Α PlanheitIn a preferred embodiment, the controller is constructed as a multivariable controller with dynamic optimization, into which the thickness and the flatness are weighted differently. A dynamic optimization algorithm is preferably used to determine optimal actuator positions, taking into account predetermined manipulated variable restrictions of the manipulated and controlled variables. For example, the quality of the controller can be represented in the controller by the following cost function: J Süicke> Spianheit) - Soicke J Dicke + <§Planheit Α Flatness
In diese Gütefunktion gehen die Gütefunktionen für die Dicke Joicke und für die Planheit Jpianneit durch die Gewichtungsfaktoren gDicke und g ianheit unterschiedlich gewichtet ein. Aus Produktionsgründen kann beispielsweise der Einhaltung der Dickentoleranz ein größeres Gewicht, also ein goic e > gpianheit, zugeordnet werden. Damit werden Abweichungen von der Solldicke wesentlich stärker bestraft als Abweichungen von der Sollplanheit.In this merit function the quality functions for the thickness Joic go ke and for the flatness Jpianneit by the weighting factors g D icke and gi a n t he i a weighted differently. For production reasons, for example, compliance with the thickness tolerance can be assigned a greater weight, i.e. a goic> gpi a n he i t . Deviations from the target thickness are punished much more than deviations from the target flatness.
Die Gütefunktionen für die Dicke und die Planheit lassen sich beispielsweise wie folgt darstellen:The quality functions for thickness and flatness can be represented as follows, for example:
1 T1 part
^Dicke = - (Äsoll - Aist (σ)) ÖDioke ( ü ~ K (σ)) 1 T^ Thickness = - ( Ä soll - A ist ( σ )) ÖDioke (ü ~ K ( σ )) 1 T
^Planheit = ~A ( ^soll ~ ^ist ) öpianheit ( ^soll ~~ ^ist ) ^ flatness = ~ A (^ should ~ ^ is) openness (^ should ~~ ^ is)
Alternativ kann die Güte der Dickenregelung und die Güte der Planheitsregelung durch das folgende Gütefunktional erreicht werden:Alternatively, the quality of the thickness control and the quality of the flatness control can be achieved by the following quality function:
HU11 lanheitC") u Hst ~" "soll | - ^tolmax ' |σist '-'"soll | — σ"tolmaxHU 11 lanheitC ") u Hst ~ " "Soll | - ^ tolmax '| σ ist - ' - '" Soll | - σ " tolmax
Dabei wird der quadratische Planheitsfehler unter der Maßgabe minimiert, daß die Dickenabweichung immer kleiner sein muß als eine obere Schranke. Die Lösbarkeit dieses Optimierungsproblems kann durch geeignete Maßnahmen, beispielsweise mit Hilfe eines Feasible-SQP-Algorithmus, garantiert werden (hierzu wird auf Maciejowski J.M.: Predictive Control with Constraints, Prentice Hall, 2002, verwiesen, auf die für die Lösbarkeit des Optimierungsproblems vollinhaltlich Bezug genommen wird). In den genannten Optimierungsalgorithmen geht der mitzuberücksichtigende Zug meist über die Dicke mit ein, da die Dicke stark vom Zug abhängt. Allerdings können auch Optimierungsaglorithmen aufgestellt werden, die die drei Größen Dicke, Planheit und Zug separat optimieren.The quadratic flatness error is minimized under the proviso that the thickness deviation must always be smaller than an upper bound. The solvability of this optimization problem can be guaranteed by suitable measures, for example with the help of a feasible SQP algorithm (see Maciejowski JM: Predictive Control with Constraints, Prentice Hall, 2002, to which reference is made in full for the solvability of the optimization problem becomes). In the optimization algorithms mentioned, the train to be taken into account is usually included in the thickness, since the thickness strongly depends on the train. However, optimization algorithms can also be set up that optimize the three sizes thickness, flatness and tension separately.
Vorzugsweise geht die Prädiktion der Regelgröße in die dynamische Optimierung ein. Dabei geht die Prädiktion vorzugsweise über die Totzeitkompensation hinaus.The prediction of the controlled variable is preferably included in the dynamic optimization. The prediction preferably goes beyond dead time compensation.
Vorzugsweise berücksichtigt der Regler Beschränkungen, insbesondere für die Stellsignale der Stellgrößen und die systematische Aufweichung der Beschränkungen in Abhängigkeit von ihrer Wichtigkeit für den störungsfreien Betrieb des Walzgerüsts. Die Beschränkungen sind insbesondere absolute Werte und Änderungsgeschwindigkeiten der Stellgrößen. Hierdurch wird die Feasibility des Optimierungsproblems gewahrt. Hierdurch können bestimmte Randbedingungen des Walzgerüsts beim Walzen von Blechen eingehalten werden. Beispielsweise sind für crown-excenter eines Sendzimirwalzgerüsts nur bestimmte maximale relative Anstellungen untereinander erlaubt. Durch Berücksichtigung derartiger Randbedingungen können die Stellmöglichkeiten der Walzgerüste, beispielsweise eines Sendzimirgerüsts vollständig ausgenutzt werden.The controller preferably takes into account restrictions, in particular for the actuating signals of the manipulated variables and the systematic softening of the restrictions depending on their importance for the trouble-free operation of the roll stand. The restrictions are in particular absolute values and rates of change of the manipulated variables. This ensures the feasibility of the optimization problem. As a result, certain boundary conditions of the rolling stand can be met when rolling sheet metal. For example, for crown excenter of a Sendzimir mill stand, only certain maximum relative positions with each other are allowed. By taking such boundary conditions into account, the setting options of the roll stands, for example a Sendzimir stand, can be fully utilized.
Der Regler verwendet vorzugsweise ein explizites, lineares oder nicht lineares online-fähiges Profil- und Planheitsmodell, das die wesentlichen am Walzprozeß beteiligten Größen und Stellglieder, insbesondere das Walzenbiegen, das Walzenschwenken, das Walzenverschieben, die Walzenkühlung und/oder die Änderung der Stützwalzenform berücksichtigt. Die Auslegung derartiger Modelle ist beispielsweise aus Berger B., Mücke G., Neuschütz E., Fleischer H. (1982) Regelung der Planheit und der Zugspannungsverteilung an einem 20-Rollen-Kaltwalzgerüst, BFI Bericht Nr. 893 (Abschlußbericht des EGKS-Forschungsvorhabens Nr. 7210.EA 109); Jelali M. (2000) Explicit modeis of thickness profile and tension stress distribution for process control applications. Steel Research 71 , No. 6+7, 228-232; Schneider A. (2000) Online Modelling and Optimisation for a 20-high Rolling, Mill. Dissertation, University of Wuppertal gut bekannt, weshalb für die Beschreibung von derartigen Modellen und deren Auslegung vollinhaltlich auf diese Veröffentlichungen Bezug genommen wird. In einer bevorzugten Ausgestaltung des Regelverfahrens wird ferner ein explizites, online-fähiges Funktionsmodell verwendet, das Sollwerte für die Planheitsregelung berechnet.The controller preferably uses an explicit, linear or non-linear, online-capable profile and flatness model that takes into account the essential variables and actuators involved in the rolling process, in particular roll bending, roll swiveling, roll shifting, roll cooling and / or the change in the support roll shape. The design of such models is, for example, from Berger B., Mücke G., Neuschütz E., Fleischer H. (1982) Regulation of flatness and tension distribution on a 20-roll cold rolling mill, BFI report No. 893 (final report of the ECSC research project No. 7210.EA 109); Jelali M. (2000) Explicit modeis of thickness profile and tension stress distribution for process control applications. Steel Research 71, No. 6 + 7, 228-232; Schneider A. (2000) Online Modeling and Optimization for a 20-high Rolling, Mill. Dissertation, University of Wuppertal well known, which is why full reference is made to these publications for the description of such models and their interpretation. In a preferred embodiment of the control method, an explicit, online-capable function model is also used, which calculates setpoints for the flatness control.
Bevorzugt werden teilweise im Regler vereinfachte Prädiktionsmodelle eingesetzt, beispielsweise durch Linearisierung und Vereinfachung entsprechender Zusammenhänge des komplexen Modells. Die Auslegung derartiger Modelle ist beispielsweise aus Jelali M. (2000) Explicit modeis of thickness profile and tension stress distribution for process control applications. Steel Research 71 , No. 6+7, 228-232 gut bekannt, weshalb für die Beschreibung von derartigen Modellen und deren Auslegung vollinhaltlich auf diese Veröffentlichungen Bezug genommen wird.Simplified prediction models are preferably used in part in the controller, for example by linearizing and simplifying corresponding relationships of the complex model. The design of such models is, for example, from Jelali M. (2000) Explicit modeis of thickness profile and tension stress distribution for process control applications. Steel Research 71, No. 6 + 7, 228-232 well known, which is why full reference is made to these publications for the description of such models and their interpretation.
Vorzugsweise weist das Regelverfahren mindestens ein Adaptionsverfahren für das online-fähige Profil- und Planheitsmodell, das online-fähige Prädiktionsmodell und/oder ein Set-up-Modell auf. Das Adaptionsverfahren adaptiert vorzugsweise ausgewählte Parameter der Modellkomponenten. Diese Adaptionsverfahren sind vorzugsweise robust gegenüber Modellstrukturfehlern auszulegen. Durch diese Adaption der Modelle können Veränderungen des dynamischen Verhaltens des Walzgerüsts berücksichtigt werden, wie sie sich beispielsweise aufgrund von Verschleiß oder durch den Austausch von Bauteilen ergibt. So kann das Adaptionsverfahren die Setup-Modelle von Stich zu Stich adaptieren.The control method preferably has at least one adaptation method for the online-compatible profile and flatness model, the online-compatible prediction model and / or a set-up model. The adaptation method preferably adapts selected parameters of the model components. These adaptation methods should preferably be designed to be robust against model structure errors. By adapting the models, changes in the dynamic behavior of the roll stand can be taken into account, such as those resulting from wear or the replacement of components. In this way, the adaptation process can adapt the setup models from stitch to stitch.
Gemäß einer vorteilhaften Ausgestaltung des erfindungsgemäßen Regelverfahrens wird ein ereignisgetriggertes Abtastsystem eingesetzt, das Plan- heitsmeßsysteme mit variablen Abtastzeiten berücksichtigt. Um die Zahl der Regelgrößen möglichst klein zu halten und damit das Optimierungsproblem zu vereinfachen, wird gemäß einer vorteilhaften Ausgestaltung des Regelverfahrens der aus den Messungen des Planheitsmeßsy- stems ermittelte Planheitsverlauf mit Hilfe von orthogonalen Funktionssystemen in orthogonale Komponenten zerlegt. Hierfür können insbesondere das Chebyshew-Polynom (hierfür wird vollinhaltlich auf Press W.H., Teu- kolsky S.A., Vetterling W.T., Flannery B. P.: Numerical Recipies in C, Cambridge University Press, 1992, verwiesen), das Gram-Polynom (hierfür wird vollinhaltlich auf Ralston A., Rabinowitz P.: A first Course in Numerical Ana- lysis, International series in pure applied mathematics, McGraw-Hill, 1978) oder andere orthogonale Polynome verwendet.According to an advantageous embodiment of the control method according to the invention, an event-triggered scanning system is used which takes into account flatness measuring systems with variable scanning times. In order to keep the number of controlled variables as small as possible and thus to simplify the optimization problem, according to an advantageous embodiment of the control method, the flatness course determined from the measurements of the flatness measuring system is broken down into orthogonal components with the help of orthogonal function systems. In particular, the Chebyshew polynomial (for this, full reference is made to Press WH, Teukolsky SA, Vetterling WT, Flannery BP: Numerical Recipies in C, Cambridge University Press, 1992), the Gram polynomial (for this, Ralston is referred to in full) A., Rabinowitz P .: A first Course in Numerical Analysis, International series in pure applied mathematics, McGraw-Hill, 1978) or other orthogonal polynomials.
Durch eine in einer bevorzugten Ausführungsform eingesetzten Störgrößen- aufschaltung, die die Eigenschaften des einlaufenden Bandes, die Variation der Walzkraft und/oder die Variation der thermischen Bombierung berücksichtigt, können sich hieraus ergebende Störungen kompensiert werden. Die Kompensation der Störungen kann in einem getrennten Modul erfolgen oder in die modellprädiktive Regelung eingebunden sein.Interferences resulting from this can be compensated for by a feedforward control used in a preferred embodiment, which takes into account the properties of the incoming strip, the variation of the rolling force and / or the variation of the thermal crown. The interference can be compensated for in a separate module or integrated into the model predictive control.
Vorzugsweise wird mit dem Planheitsmeßsystem der Planheitsverlauf über die Breite des Bandes aufgrund von Meßergebnissen, die zu unterschiedlichen Zeiten und insbesondere an unterschiedlichen Stellen entlang der Breite des Bandes ermittelt werden, geschätzt. Hierbei werden vorzugsweise die aktuellen Stelllgrößen berücksichtigt. Besonders bevorzugt wird der Planheitsverlauf unmittelbar nach Vorliegen des nächsten, neuen Meßwerts eines Sensors ermittelt. Hierdurch wird eine aktuellere Schätzung des Planheitsverlaufes erzeugt, die nicht davon abhängig ist, daß alle Meßwerte über die Breite des Bandes vorliegen. Zur Berechnung der Planheit während einer Umdrehung der Messrolle wird bevorzugt ein schaltender Kaiman-Filter verwendet. Für den Aufbau eines schaltenden Kaiman-Filters wird vollinhaltlich auf die parallele Anmeldung 103 06 837.6 verwiesen. Durch diese Ermittlung des Planheitsverlaufes kann auch bei der Verwendung von Planheitsmeß- rollen, wie sie beispielsweise beim Kaltwalzen verwendet werden, der Planungsverlauf zeitnah ermittelt werden. Auf der Planheitsmeßrolle sind Sensoren über den Radius und der Breite verteilt angeordnet. Diese liefern im zeitlichen Abstand zueinander und hinsichtlich der Breitenposition zueinander verschoben Informationen über die an dem jeweiligen Ort zum jeweiligen Meßzeitpunkt vorhandene Planheit des Bandes. Durch die Schätzung des Planheitsverlaufes nach der Ermittlung eines jeden einzelnen Meßwertes können auch sich schnell ändernde Planheitsveränderungen berücksichtigt werden. Diese führen bei Meßsystemen, bei denen zunächst alle Meßwerte über die Breite des Bandes bestimmt werden und so erst nach einer vollständigen Umdrehung der Planheitsmeßrolle eine vollständige Planheitsverteilung ermittelt werden kann, insbesondere bei sich schnell ändernden Planheitsverteilungen zu erheblichen Meßfehlern.The flatness measurement system is preferably used to estimate the flatness profile over the width of the strip on the basis of measurement results which are determined at different times and in particular at different points along the width of the strip. The current manipulated variables are preferably taken into account here. The flatness course is particularly preferably determined immediately after the next new measured value of a sensor is available. This produces a more up-to-date estimate of the flatness curve, which is not dependent on all measured values being available across the width of the strip. A switching Kaiman filter is preferably used to calculate the flatness during one revolution of the measuring roller. For the construction of a switching Cayman filter, please refer to the parallel application 103 06 837.6. This determination of the flatness course can also be used when using flatness measuring rolls, such as those used in cold rolling, the planning process can be determined promptly. Sensors are arranged on the flatness measuring roller distributed over the radius and the width. These provide information about the flatness of the strip present at the respective location at the respective measuring point in time, spaced from one another and with respect to the width position. By estimating the flatness course after the determination of each individual measured value, rapidly changing flatness changes can also be taken into account. In the case of measuring systems in which all measured values are initially determined over the width of the strip and a complete flatness distribution can only be determined after a complete rotation of the flatness measuring roller, especially in the case of rapidly changing flatness distributions, this leads to considerable measuring errors.
Ein erfindungsgemäßer Regler setzt die zuvor beschriebenen Verfahrensschritte und Eigenschaften einzeln oder in Kombination um.A controller according to the invention implements the previously described method steps and properties individually or in combination.
Durch eine Integration der Dicken-, Zug und Planheitsregelung in einem Regler oder der Aufbau einer Koordinierungskomponente dieser Regelungen können Performanceverschlechterungen und Stabilitätsprobleme vermieden werden. Die Kopplung, die zwischen Dicke, Zug und Planheit besteht, wird durch eine Entkoppelungsmatrix berücksichtigt, die sich aus der Inversen der Gesamtübertragungsmatrix von der Dicke- und Planheitregelstrecke berechnen lässt.By integrating the thickness, tension and flatness control in one controller or by building a coordination component of these controls, performance deterioration and stability problems can be avoided. The coupling that exists between thickness, tension and flatness is taken into account by a decoupling matrix, which can be calculated from the inverse of the overall transmission matrix from the thickness and flatness control system.
Nachfolgend wird die Erfindung anhand einer Zeichnung näher erläutert. In dieser Zeichnung ist ein Ausführungsbeispiel dargestellt. Sie zeigt die Struktur des erfindungsgemäßen Regelungsverfahrens.The invention is explained in more detail below with reference to a drawing. An embodiment is shown in this drawing. It shows the structure of the control method according to the invention.
Die dargestellte Regelungsstruktur, wie sie beispielsweise für ein Kaltwalzgerüst (Walzgerüst) 1 eingesetzt werden kann, weist vor allem ein Planheitsmeßsystem 2, einen Mehrgrößenregler 3 (MPC-Modul Dicke und Planheit) und eine Zugregelung 4 auf. Ein Planheitsmeßsystem 2 kann sowohl vor als auch hinter dem Gerüst 1 angeordnet sein, damit das Gerüst 1 im Reversier- betrieb benutzt werden kann. Das Walzgerüst 1 wird in diesem Ausführungsbeispiel zum Walzen von sehr dünnen Bändern eingesetzt. Hier besteht eine starke Koppelung zwischen den Einflußgrößen Dicke und Zug auf das Walzergebnis.The control structure shown, as can be used, for example, for a cold rolling mill (rolling mill) 1, has above all a flatness measuring system 2, a multivariable controller 3 (MPC module thickness and flatness) and a draft control 4. A flatness measuring system 2 can be arranged both in front of and behind the scaffold 1 so that the scaffold 1 can be used in reversing operation. The rolling stand 1 is used in this exemplary embodiment for rolling very thin strips. There is a strong link between the influencing variables thickness and tension on the rolling result.
Wie dargestellt, wird die Planheitsabweichung mittels eines Planheitsmeß- systems am Auslauf des Gerüsts bestimmt. Das Planheitsmeßsystem basiert bevorzugt auf einer Planheitmessrolle. Diese mißt die Bandspannung diskret an einzelnen, über die Messrollenbreite und den Messrollenumfang verteilten Meßpunkten. Der Planheitsverlauf (Planheitsverteilung) wird ausgehend von den einzelnen Meßergebnisse unmittelbar geschätzt. Der geschätzte Planheitsverlauf wird in orthogonale (unabhängige) Komponenten zerlegt. Dabei wird die Art der eingesetzten Zerlegung in Abhängigkeit von der Art des auftretenden Planheitsfehlers verändert, um den Planheitsfehler mit möglichst wenigen Komponenten zu beschreiben und damit das Optimierungsproblem zu vereinfachen.As shown, the flatness deviation is determined by means of a flatness measuring system at the scaffold outlet. The flatness measuring system is preferably based on a flatness measuring roller. This measures the belt tension discretely at individual measuring points distributed over the measuring roller width and the measuring roller circumference. The flatness course (flatness distribution) is estimated directly from the individual measurement results. The estimated flatness course is broken down into orthogonal (independent) components. The type of decomposition used is changed depending on the type of flatness error that occurs in order to describe the flatness error with as few components as possible and thus to simplify the optimization problem.
Die so ermittelten orthogonalen Komponenten werden mit Werten verglichen, die ein online-fähiges Modell der Anlage liefert. Die sich daraus ergebende Differenz wird als Regelgröße verwendet und dem Mehrgrößenregler 3 zugeführt. Dort erfolgt ein Vergleich mit einer in unabhängige Komponenten zerlegten Soll-Planheitskurve. Der Mehrgrößenregler besteht aus einem online-fähigen Modell und einer dynamischen Optimierung unter Einbeziehung von Stellgrößenbeschränkungen und vorhergesagtem Regelgrößenverlauf.The orthogonal components determined in this way are compared with values provided by an online-capable model of the system. The resulting difference is used as a controlled variable and fed to the multivariable controller 3. There is a comparison with a target flatness curve broken down into independent components. The multivariable controller consists of an online-capable model and dynamic optimization, taking into account manipulated variable restrictions and the predicted process variable curve.
Aus der Eingangsgröße ermittelt der Regler Stellsignale für das Walzenbiegen, das Walzenschwenken, das Axialverschieben der Walzen sowie für eine Mehrzonenkühlung und gegebenenfalls eine Änderung der Stützwalzenform. Zur Berücksichtigung des Einflusses der Walzkraft, der Eigenschaften des einlaufenden Bandes (beispielsweise einer im Einlauf des Gerüsts gemesse- nen Planheit, und der thermischen Bombierung) wird zudem eine Stör- größenaufschaltung vorgenommen, die diese Einflüsse kompensiert. Außerdem erfolgt ausgehend von der Soll-Planheitskurve eine Vorsteuerung, die ebenfalls in die von dem Mehrgrößenregler ermittelten Stellsignale eingebracht wird.From the input variable, the controller determines control signals for roll bending, roll swiveling, axial shifting of the rolls, as well as for multi-zone cooling and, if necessary, a change in the support roll shape. To take into account the influence of the rolling force, the properties of the incoming strip (for example, one measured in the flatness, and the thermal crowning), a disturbance variable is applied to compensate for these influences. In addition, starting from the desired flatness curve, a pilot control is carried out, which is likewise introduced into the actuating signals determined by the multivariable controller.
Der Regler wählt in Abhängigkeit der Banddicke des zu walzenden Bandes eine primäre Stellgröße, über die er den Walzprozeß bevorzugt beeinflußt. Bei Banddicken unterhalb einer festgelegten Größe wird der Zug als primäre Stellgröße verwendet. Die Anstellkraft sowie die Anstellposition der Walzen wird dann als zusätzliche sekundäre Stellgröße behandelt.Depending on the strip thickness of the strip to be rolled, the controller selects a primary manipulated variable via which it preferably influences the rolling process. For strip thicknesses below a specified size, the train is used as the primary manipulated variable. The pitch force and the pitch position of the rollers are then treated as an additional secondary manipulated variable.
Um auf Veränderungen im dynamischen Verhalten, die beispielsweise durch Verschleiß, den Austausch von Bauteilen des Walzgerüsts und Änderungen der Materialeigenschaften des Walzgerüsts hervorgerufen werden können, kompensieren zu können, werden die Modelle online während des Walzens eines einzigen Bandes adaptiert (in-bar Adaption). Zudem erfolgt eine Adaption von Bund zu Bund. Durch die in-bar Adaption werden relativ schnelle Änderungen, beispielsweise verursacht durch Termperaturänderungen des Bandes, ausgeglichen, während durch die Bund-zu-Bund-Adaption verschleißbedingte Änderungen ausgeglichen werden.In order to compensate for changes in the dynamic behavior, which can be caused by wear, the replacement of components of the roll stand and changes in the material properties of the roll stand, for example, the models are adapted online while rolling a single strip (in-bar adaptation). In addition, there is an adaptation from federal to federal government. The in-bar adaptation compensates for relatively rapid changes, for example caused by changes in the temperature of the belt, while the bundle-to-bundle adaptation compensates for wear-related changes.
Ein Ereignisgenerator erlaubt den Einsatz eines ereignisgetriggerten Abtastsystems zur Berücksichtigung von Planheitsmeßsystemen mit variabler Abtastzeit. An event generator allows the use of an event-triggered scanning system to take into account flatness measuring systems with variable scanning times.

Claims

Patentansprüche claims
1. Regelverfahren für ein Walzgerüst mit Meßsystemen zur Erfassung der Dicke, des Zugs und der Planheit und einem Regler, dadurch gekennzeichnet, daß Eingangsgrößen für den Regler in Abhängigkeit der Meßwerte der Meßsysteme erzeugt werden und daß der Regler mindestens ein Stellsignal für mindestens eine Stellgröße des Walzgerüsts aufgrund einer integrierten, modellprädiktiven Dicken-, Zug- und Planheitsregelung erzeugt.1. Control method for a roll stand with measuring systems for detecting the thickness, tension and flatness and a controller, characterized in that input variables for the controller are generated as a function of the measured values of the measuring systems and that the controller has at least one control signal for at least one control variable of the Roll stand generated due to an integrated, model-predictive thickness, tension and flatness control.
2. Regelverfahren nach der Anspruch 1 , gekennzeichnet durch einen Mehrgrößenregler, der eine dynamische Optimierung aufweist, in die die Dicke und die Planheit unterschiedlich gewichtet eingehen.2. Control method according to claim 1, characterized by a multivariable controller which has a dynamic optimization into which the thickness and the flatness are weighted differently.
3. Regelverfahren nach Anspruch 2, dadurch gekennzeichnet, daß eine Prädiktion der Regelgrößen in die dynamische Optimierung einbezogen wird.3. Control method according to claim 2, characterized in that a prediction of the control variables is included in the dynamic optimization.
4. Regelverfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß bei der dynamischen Optimierung die Beschränkungen und die systematische Aufweichung der Beschränkungen einbezogen werden.4. Control method according to claim 2 or 3, characterized in that the restrictions and the systematic softening of the restrictions are included in the dynamic optimization.
5. Regelverfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Regler ein explizites, lineares oder nicht-lineares, online-fähiges Profil- und Planheitsmodell einsetzt.5. Control method according to one of claims 1 to 4, characterized in that the controller uses an explicit, linear or non-linear, online-capable profile and flatness model.
6. Regelverfahren nach einem der Ansprüche 1 bis 5, gekennzeichnet durch mindestens ein vereinfachtes Prädiktionsmodell.6. Control method according to one of claims 1 to 5, characterized by at least one simplified prediction model.
7. Regelverfahren nach einem der Ansprüche 5 oder 6, gekennzeichnet durch ein Adaptionsverfahren für das online-fähige Profil- und Plan- heitsmodell, das online-fähige Prädiktionsmodell und/oder ein Set-up Modell.7. Control method according to one of claims 5 or 6, characterized by an adaptation method for the online-capable profile and plan unit model, the online-capable prediction model and / or a set-up model.
8. Regelverfahren nach einem der Ansprüche 1 bis 7, gekennzeichnet durch eine Störgrößenaufschaltung, die die sich aus den Eigenschaften des einlaufenden Bandes, der Variation der Walzkraft und/oder thermischen Bomierungen ergebenden Störungen kompensiert.8. Control method according to one of claims 1 to 7, characterized by a feedforward control which compensates for the disturbances resulting from the properties of the incoming strip, the variation of the rolling force and / or thermal bombing.
9. Regelverfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der aus einer Messung des Planheitsmeßsystem ermittelte Planheitsverlauf mit Hilfe von orthogonalen Funktionssystemen in orthogonale Komponenten zerlegt wird.9. Control method according to one of claims 1 to 8, characterized in that the flatness course determined from a measurement of the flatness measuring system is broken down into orthogonal components with the aid of orthogonal function systems.
10. Regelverfahren nach einem der Ansprüche 1 bis 9 mit einem Verfahren zur Ermittlung der Planheit während der Umdrehung einer Messrolle mittels Messungen, die quer zur Bandlaufrichtung versetzt zueinander erfolgen, mit folgenden Schritten: - Ermitteln eines Messwerts an mindestens einem Messpunkt, Berechnen der charakterisierenden Werte einer Planheitsver- laufsgleichung aus dem/den ermittelten Messwertenmittels eines schaltenden Kaimanfilters.10. Control method according to one of claims 1 to 9 with a method for determining the flatness during the rotation of a measuring roller by means of measurements which are offset with respect to one another transversely to the strip running direction, with the following steps: determining a measured value at at least one measuring point, calculating the characterizing values a flatness curve equation from the measured value (s) determined by means of a switching caiman filter.
11. Regler für ein Walzgerüst, der die Regelschritte eines Regelverfahrens nach einem der Ansprüche 1 bis 10 umsetzt. 11. Controller for a roll stand, which implements the control steps of a control method according to one of claims 1 to 10.
PCT/EP2005/000845 2004-01-30 2005-01-28 Control method and control device for a roll stand WO2005072886A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE502005008137T DE502005008137D1 (en) 2004-01-30 2005-01-28 RULES AND REGULATORS FOR A ROLLING RACK
AT05707062T ATE442918T1 (en) 2004-01-30 2005-01-28 CONTROL METHOD AND CONTROLLER FOR A ROLL STAND
EP05707062A EP1711283B1 (en) 2004-01-30 2005-01-28 Control method and control device for a roll stand

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004005011.2 2004-01-30
DE102004005011A DE102004005011B4 (en) 2004-01-30 2004-01-30 Control method and controller for a rolling stand

Publications (1)

Publication Number Publication Date
WO2005072886A1 true WO2005072886A1 (en) 2005-08-11

Family

ID=34813080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/000845 WO2005072886A1 (en) 2004-01-30 2005-01-28 Control method and control device for a roll stand

Country Status (4)

Country Link
EP (1) EP1711283B1 (en)
AT (1) ATE442918T1 (en)
DE (2) DE102004005011B4 (en)
WO (1) WO2005072886A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007022841A1 (en) * 2005-08-26 2007-03-01 Sms Demag Ag Method for thickness regulation during a hot-rolling process
WO2009053144A1 (en) * 2007-10-24 2009-04-30 Siemens Aktiengesellschaft Adaption of a controller in a rolling mill based on the variation of an actual value of a roll product
WO2017133814A1 (en) * 2016-02-04 2017-08-10 Primetals Technologies Germany Gmbh Model predictive strip position controller
WO2022226460A1 (en) * 2021-04-20 2022-10-27 Novelis, Inc. Roll steering control systems and methods for tandem mills

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005053489C5 (en) * 2005-11-09 2008-11-06 Siemens Ag Regulatory system and regulatory procedure for an industrial facility
AT503568B1 (en) * 2006-02-20 2007-11-15 Andritz Ag Maschf - Process for measuring the planarity of a strip on rolling in a rolling unit where the measured and target values are compared with a predetermined desired planarity value
DE102014007381A1 (en) 2014-05-20 2015-07-23 Asinco GmbH Method for measuring and controlling the flatness of a belt produced by belt rolling
CN107537861B (en) * 2016-06-27 2019-02-05 宝山钢铁股份有限公司 A kind of control method that slab hot sending examination is rolled

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865510A (en) * 1981-10-14 1983-04-19 Kawasaki Steel Corp Controlling method for sheet thickness in steel sheet rolling
JPS6018213A (en) * 1983-07-13 1985-01-30 Nisshin Steel Co Ltd Shape controlling method in rolling mill
US5586221A (en) * 1994-07-01 1996-12-17 Syracuse University Predictive control of rolling mills using neural network gauge estimation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995019591A1 (en) * 1994-01-13 1995-07-20 Siemens Aktiengesellschaft Method and device for running a process
EP0776710B1 (en) * 1995-11-20 2001-12-19 SMS Demag AG Device for influencing the profile section of a rolled strip
DE10041181A1 (en) * 2000-08-18 2002-05-16 Betr Forsch Inst Angew Forsch Multivariable flatness control system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865510A (en) * 1981-10-14 1983-04-19 Kawasaki Steel Corp Controlling method for sheet thickness in steel sheet rolling
JPS6018213A (en) * 1983-07-13 1985-01-30 Nisshin Steel Co Ltd Shape controlling method in rolling mill
US5586221A (en) * 1994-07-01 1996-12-17 Syracuse University Predictive control of rolling mills using neural network gauge estimation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MEHLICH F: "DANIELI LAUNCHES NEW CONTROL AND AUTOMATION SYSTEM", ALUMINIUM TODAY, ARGUS BUSINESS MEDIA, SURREY, GB, vol. 12, no. 6, November 2000 (2000-11-01), pages 33 - 34, XP000998999, ISSN: 0955-8209 *
PATENT ABSTRACTS OF JAPAN vol. 007, no. 157 (M - 227) 9 July 1983 (1983-07-09) *
PATENT ABSTRACTS OF JAPAN vol. 009, no. 135 (M - 386) 11 June 1985 (1985-06-11) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007022841A1 (en) * 2005-08-26 2007-03-01 Sms Demag Ag Method for thickness regulation during a hot-rolling process
WO2009053144A1 (en) * 2007-10-24 2009-04-30 Siemens Aktiengesellschaft Adaption of a controller in a rolling mill based on the variation of an actual value of a roll product
US8255074B2 (en) 2007-10-24 2012-08-28 Siemens Aktiengesellschaft Adaptation of a controller in a rolling mill based on the variation of an actual value of a rolling product
WO2017133814A1 (en) * 2016-02-04 2017-08-10 Primetals Technologies Germany Gmbh Model predictive strip position controller
CN108602100A (en) * 2016-02-04 2018-09-28 首要金属科技德国有限责任公司 Model prediction band positioner
US10908566B2 (en) 2016-02-04 2021-02-02 Primetals Technologies Germany Gmbh Model predictive strip position controller
WO2022226460A1 (en) * 2021-04-20 2022-10-27 Novelis, Inc. Roll steering control systems and methods for tandem mills

Also Published As

Publication number Publication date
ATE442918T1 (en) 2009-10-15
DE502005008137D1 (en) 2009-10-29
DE102004005011B4 (en) 2008-10-02
EP1711283B1 (en) 2009-09-16
EP1711283A1 (en) 2006-10-18
DE102004005011A1 (en) 2005-09-15

Similar Documents

Publication Publication Date Title
EP1711283B1 (en) Control method and control device for a roll stand
EP2076824B1 (en) Method for controlling and/or regulating an industrial process
DE102016116076B4 (en) Plant control device, rolling control device, plant control method and plant control program
DE4040360A1 (en) Multiple-stand strip rolling control - uses model comparisons and converging parameters to maintain strip profile and flatness
EP2603333B1 (en) Real-time determination method for temperature and geometry of a hot metal strip in a finishing train
EP2527053A1 (en) Operating method for a mill train
DE4416317B4 (en) Method and control device for controlling a material processing process
EP3437748B1 (en) Mass flow rate regulation in rolling mill plants
EP2620233A1 (en) Method for processing milled goods in a hot rolling mill
EP3122483B1 (en) Method for aligning a straightening roller of a straightening roller system
WO2018192798A1 (en) Optimization of the modelling of process models
DE102019112465B4 (en) REAL-TIME PERFORMANCE AND ADAPTIVE DRIVING AND FEEL FOR STEER-BY-WIRE VEHICLES
EP3720623B1 (en) Stretching-bending-straightening system and method for the actuation thereof
EP3691806B1 (en) Flatness control with optimiser
DE19731980A1 (en) Method for controlling and presetting a rolling stand or a rolling train for rolling a rolled strip
DE102018200939A1 (en) Tandem rolling mill control device and tandem rolling mill control method
DE2263674A1 (en) METHOD OF MANUFACTURING STRIP-SHAPED ROLLED MATERIAL USING A COMPUTER
DE3401894A1 (en) Method for the production of rolled strip with high strip shape accuracy and flatness
DE102005053489B3 (en) Industrial apparatus control system, e.g. for rolling mill, has multivariable controller with main control module which receives measured or observed parameters of industrial apparatus
EP4103339B1 (en) Determining a sensitivity of a target size of a rolling stock for an operating variable of a hot rolling mill
DE10159608C5 (en) Rolling process and rolling train for a band with a weld
EP1481742A2 (en) Control computer and computer-aided determination method for a profile and flatness control for a rolling mill
DE10106527A1 (en) Method for operating a rolling mill and control system for a rolling mill
DE4424613A1 (en) Strip rolling stand with finishing stand
AT503568B1 (en) - Process for measuring the planarity of a strip on rolling in a rolling unit where the measured and target values are compared with a predetermined desired planarity value

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005707062

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005707062

Country of ref document: EP